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Abstract. The following supplementary material contains addi-
tional results and analysis which are not included in the main paper
for brevity.

1 Datasets

We use datasets from different domains to rigorously test CAFIN’s
performance.

Citation networks. We use the two most standard citation net-
work benchmark datasets - Cora [3], and CiteSeer [1]. In both the
datasets, nodes correspond to manuscripts, and the undirected edges
to citations. The node feature vector for both datasets is a word dic-
tionary indicating the distribution of words in each paper’s abstract,
and the node label is the domain of the paper.

Social networks. We use the Twitch (EN) dataset [5] to study
CAFIN’s efficacy on social networks. The nodes in this dataset corre-
spond to Twitch streamers, and the edges to mutual followers. Node
features contain a representation of the games played by the streamer.
The node label is binary and indicates if the streamer streams mature
content.

E-commerce co-purchase networks. We use two datasets - Ama-
zon Photos (AMZN-P) and Amazon Computers (AMZN-C) [8]. In
both datasets, the nodes correspond to products, and the edges con-
nect co-purchased products. Node features contain the product re-
views as bag-of-words, and the node label indicates the product cat-
egory.

Protein interaction networks. Protein-Protein Interactions (PPI)
[9] contains a collection of graphs (24), each an interaction network
within different human tissues. Node features contain positional gene
sets, motif gene sets, and immunological signatures, and the node
label is a 121-dimensional vector corresponding to the gene ontology
sets.

2 Stricter Sampling

GraphSAGE [2] requires positive and negative samples for each node
for contrastive learning. They use a random node from the graph
as the negative sample. We impose stricter constraints for select-
ing negative samples by leveraging the precomputed pairwise dis-
tances. We define a minimum distance threshold (NEG_MIN_DIST)
for a node to qualify as a negative sample, i.e., the chosen negative
sample must atleast be NEG_MIN_DIST hops away from the node
(d(u,vn) > NEG_MIN_DIST). This ensures that the positive and
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negative samples are mutually exclusive, thus further improving the
contrastive learning.

3 Landmark-based Approximate Distance Method
Error Rates

CAFIN requires pairwise distances to operate and to impose a stricter
sampling strategy; thus, it needs to be precomputed. The best time
complexity (without approximations) for it is O(|V|?), where |V| is
the number of nodes in the graph. The time complexity becomes a
bottleneck when we try to scale CAFIN to large graphs. To address
this issue, we explore a fast approximate distance method.

As apart of our ablation study, we try out landmark-based distance
method for approximate distance computation [4]. This method in-
volves selecting a subset of nodes as “landmarks" and precomputing
the distances of each node to those landmarks. When CAFIN requires
the distance between a pair of nodes at runtime, it can be estimated
quickly by combining the precomputed distances .
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Figure 1: Error in Landmark-based Distance Approach - The
figure illustrates the error of the Landmark Distance approach in
calculating pairwise distances of nodes for various datasets. The

color of the bars represents the error value in the predicted distance.

An error of x denotes that the predicted distance deviates from the

actual distance by x.

The new preprocessing step only requires computing the dis-
tance of each node to landmarks, which can be achieved by doing
a breadth-first search from each landmark node. The time complex-
ity for the same is O(|V| - I), where [ is the number of landmark
nodes.



Table 1: Results of ablation studies for Node Classification: CAFIN-P and CAFIN-N show decreases in performance when compared to
CAFIN. Even for cases where high II is observed, either the CV is very high or the CA is high. Results with * were run with AdaBoost [6]
classifier instead of LinearSVC.

(a) CAFIN-N (b) CAFIN-P
Dataset 1 (CV)]) CA T T 1 (CV])) CA 1T T/
Cora 35.23% (8.50%)* -1.20%  0.29 -10.10% (7.44%) -2.90% INF
CiteSeer 75.61% (0.00%) -1543%  0.15 -55.48% (10.39%)  -6.28% INF
Twitch 32.24% (51.86%)* 0.10% 2.05 10.57% (7.02%) -1.76% 6.3
AMZN-P  55.37% (30.98%)*  -7.35%  2.09 16.92% (15.98%)  -17.90%  6.93
AMZN-C  88.83% (48.28%)*  -1.36%  4.82 42.54% (12.48%) -2.94% 10.09
PPI 73.71% (4.70%) -4.12%  3.26 6.29% (10.63%) -1.05%  38.16
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Figure 2: Actual Node Distances - The figure illustrates the correct
node distances for each dataset. The bar’s color represents the range
the actual distance lies in (for example the blue part of the bar
represents nodes with distances 1-3).

Let d(u,v) be the actual distance between nodes u and v in the
graph. It is important to note that the distance in graphs is a metric
that satisfies the triangle inequality. That is, given any three nodes z,
y, and z, the following inequality holds,

d(z,z) < d(z,y) +d(y, ) 0]

Note that if y belongs to one of the shortest paths from x to z, then
the inequality 1 holds with equality. In order to compute the pairwise
distances during runtime, we use the precomputed distances of nodes
u and v from the landmark nodes and the triangle inequality. Let i be

an arbitrary landmark node, and thus based on 1 and 2, for any two
nodes u and v, we have,

m?‘X |d(u7 7’) - d(vv 2)‘ < d(uv 1)) < miin{d(ua 7’) + d(ia ’U)}

In other words, the true distance between nodes d(u,v) lies in the
range [lb,ub], where b = max;|d(u,i) — d(v,4)| and ub =
min;{d(u,%) + d(i,v)}. Any value in the range [Ib, ub] works as
an approximation for d(u, v). We use ub as an approximation as [4]
suggests that it is the best in most cases. Therefore, the complexity
of computing distance during runtime for a pair of nodes is O(1).

Figure 1 captures the absolute errors in the distance approxima-
tions across datasets. Figure 2 contains the graph’s distribution of
actual node distances. These two graphs show that the landmark
method for distance approximation provides good approximations
but has large error rates at times, further accentuating the robustness
of CAFIN.

As expected, the performance of this method depends on the cho-
sen subset of landmark nodes. A perfectly chosen subset can give ac-
curate results for all distance pairs. Literature suggests picking nodes
that have a high degree or high closeness centrality because they are
more likely to be present in the shortest path of most pairs of nodes.
As we aim to mitigate bias induced by a node’s centrality, we do not
use the above to maintain the pipeline bias-free. There is a trade-off
between the performance and the computational complexity based
on the number of landmarks chosen. More landmarks will guarantee
stricter approximations but at the cost of more computation. There-
fore, we select | = 100 landmark nodes for all datasets, which fared
well on the trade-off through experimentation.
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Figure 3: II vs popular seeds - Positive II is observed for various
popular seeds for Link Predcition on Twitch dataset.

Since we use the upper bound ub of triangle inequality to predict
distance, our predicted distance can only be greater or equal to the
actual distance. We increase the NEG_MIN_DIST value by 1 or 2 to
account for the off by 1 or 2 error after noting the trend from Figure
1.

4 Node Classification

From Table 1(a) and Table 1(b), we can observe that neither CAFIN-
N nor CAFIN-P performs well consistently for Node Classification.
It either compromises II, CA, or the robustness of the values. It is
also important to note that the embeddings generated by CAFIN-N
for Cora, AMZN-P, and AMZN-C were very homogenous. We used
a more robust classifier with higher representative power, AdaBoost,
instead of our current one (LinearSVC) for the downstream task.



Although we observe better performances for a couple of datasets,
CAFIN is the preferred choice due to its balance of stability and per-
formance.

5 Influence of Seeds

GraphSAGE is known to be stochastic [7] due to the various random
components it contains. Even then, CAFIN shows a consistent posi-
tive I (34.9% on average for Twitch dataset) across popular seeds' as
seen in Figure 3. The values are averaged over 100 runs and we also
plot the first standard deviation interval. Figure 3 shows that CAFIN
is robust, and the results are reproducible across seeds, withstanding
the stochastic nature of GraphSAGE.

6 Note on PPI’s performance

Table 3 in the Main paper shows that PPI is extremely fast computa-
tionally and deviates from the trend of preprocessing time increasing
with |V| and | E|. The performance can be attributed to the inher-
ent structure of the dataset and how we exploit it to increase per-
formance. The dataset comprises 24 disconnected subgraphs, each
possessing a disjoint subset of the nodes in the graph. We perform
pairwise distance computations on each subgraph individually and
parallelly. It leads to a dramatic speedup as the pairwise distance
computation is now proportional to |V'|. The memory constraints are
also relaxed as we split and store the pairwise distances for each com-
ponent. Similar performance can be expected for any dataset with
multiple connected components that can be processed in parallel.

Table 2: Results of t-test for Node Classification: CAFIN-P and
CAFIN-N and CAFIN-P show a statistically significant change in
distribution hence verifying the validity of our results.

Dataset CAFIN-N  CAFIN-P
Cora <0.00001 0.293251
CiteSeer <0.00001 <0.00001
Twitch <0.00001 <0.00001
AMZN-P  <0.00001 <0.00001
AMZN-C  <0.00001 0.361
PPI <0.00001 <0.00001

7 Statistical significance of results

We conducted a t-test for statistical significance on the study re-
sults. We observe that in almost all the subject groups, the p-value
is less than 0.00001. This indicates that the distributions are, in fact,
independent of each other and that our ablation studies are statisti-
cally significant. Table 2 enumerates the p-values for CAFIN-N and
CAFIN-P for every dataset (with respect to CAFIN) for the node
classification task.

1 Weights & Biases 2022 statistics - https:/twitter.com/weights_biases/status/
1612829576618442754
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Figure 4: Loss Formulations - logQ(m), a smooth function,
achieves its minima at the required value

8 Intuition behind the loss function

Equation 5 details the loss formulation, and the goal is to make the
actual distance in the graph directly proportional to the distance in
the embedding space. Since the log function is naturally monotonic,
we square the formulation to ensure that the minima occurs when
the actual distance is equal to the embedding distance and the loss
doesn’t push the embedding distance to zero for all pairs of nodes (if
we don’t square the formulation, having an embedding distance of 0
would result in the least loss).

Considering x to be the embedding distance and d to be the actual
node distance in the graph, we ideally want the minima to occur when
x = d. We notice that this happens for both log? and |log|. As |log]
has a point of non-differentiability at x = d, and because smooth
functions are preferred for gradient descent, we choose log? for our
formulation. We have demonstrated the same in Figure 4.
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