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Abstract

Machine Learning models increasingly face data integrity challenges due to the use of large-scale
training datasets drawn from the Internet. We study what model developers can do if they detect that some
data was manipulated or incorrect. Such manipulated data can cause adverse effects like vulnerability
to backdoored samples, systematic biases, and in general, reduced accuracy on certain input domains.
Machine Unlearning, traditionally studied for handling user data-deletion requests to provide privacy, can
address these by allowing post-hoc deletion of affected training data from a learned model. Achieving
perfect unlearning is computationally expensive; consequently, prior works have proposed inexact
unlearning algorithms to solve this approximately as well as evaluation methods to test the effectiveness
of these algorithms.

In this thesis, we first outline some necessary criteria for evaluation methods and show no existing
evaluation satisfies them all. Then, we design a stronger black-box evaluation method called the Interclass
Confusion (IC) test which adversarially manipulates data during training to detect the insufficiency of
unlearning procedures. We also propose two analytically motivated baseline methods (EU-k and CF-k)
which outperform several popular inexact unlearning methods. We demonstrate how adversarial evalua-
tion strategies can help in analyzing various unlearning phenomena which can guide the development of
stronger unlearning algorithms.

Next, we study the practical constraint that model developers may not know all manipulated training
samples. Often, only a small, representative subset of the affected data is flagged. We formalize
“Corrective Machine Unlearning” as the problem of mitigating the impact of data affected by unknown
manipulations on a trained model, possibly knowing only a subset of impacted samples. We demonstrate
that the problem of corrective unlearning has significantly different requirements from traditional privacy-
oriented unlearning. We find most existing unlearning methods, including the gold-standard retraining-
from-scratch, require most of the manipulated data to be identified for effective corrective unlearning.
However, one approach, SSD, achieves limited success in unlearning adverse effects with just a small
portion of the manipulated samples, showing the tractability of this setting. We hope our work spurs
research towards developing better methods for corrective unlearning.

Finally, we demonstrate the use of unlearning in reducing the risk of Large Language Models assisting
malicious use in the creation of bioweapons and cyberattacks. Adaptations of existing state-of-the-art
unlearning techniques fail on this task, probably due to complexities introduced by not having access
to training data that leads to such capabilities. We discuss Contrastive Unlearning Tuning (CUT), a
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Representation Engineering based unlearning method that steers models towards novice behaviour
on potentially harmful dual-use knowledge, while retaining general model capabilities. We design a
probing evaluation which shows CUT succeeds in removing this knowledge even from the internal layer
representations of LLMs.

Overall, this thesis attempts to extend the frontiers of unlearning from user-privacy applications to
debiasing, denoising, removing backdoors, and removing harmful dual-use capabilities. We highlight
the shortcomings of privacy-oriented unlearning methods and formulations in achieving these goals. We
hope our work offers practitioners a new strategy to handle challenges arising from web-scale training,
and post-training line of defense towards ensuring AI Safety.
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Chapter 1

Introduction

Deep learning has become increasingly prevalent in everyday applications, with models being trained
on large amounts of sensitive personal information including health and financial records, social network
history, personal emails, and messages. This has led to growing privacy concerns, as codified in privacy
legislation like GDPR (Council of European Union, 2018), CCPA (California State Leglisature, 2018),
and PIPEDA (Parliament of Canada, 2018). The underlying motivation for privacy legislation is the
concept of data autonomy, which states that every individual must retain complete control of their own
data, including the right to withdraw their data from any system. However, deleting records corresponding
to individuals is considerably harder for machine learning systems, especially those using deep networks,
than with traditional databases.

Studies, such as (Feldman and Zhang, 2020; Zhang et al., 2017), have shown that deep neural networks
have a tendency to memorize data. This means that the network not only learns common patterns in
the data, but also stores information about individual training data points. This is concerning from a
privacy standpoint, as this information can be detected (Shokri et al., 2017) or even extracted from the
model (Carlini et al., 2019). The main goal of “machine unlearning” (Federal Trade Commission, 2021;
Cao and Yang, 2015; Ginart et al., 2019; Bourtoule et al., 2021; VIL, 2018) is to design both algorithms
to delete data stored in the network and evaluation methods to recover or detect the deleted data from
the trained model. Preserving privacy and removing memorization are not the only motivations to study

machine unlearning. In this thesis, we focus on extending the frontiers of unlearning by proposing its use
for the removal of incorrect data, manipulated data, and dual-use knowledge from ML models.

With the increasing prevalence of models being trained on web-scale datasets, collected with loose
quality controls, we argue removing the effects of incorrect or manipulated data is an important avenue
for Machine Unlearning. Several studies have shown that small amounts of corrupted data can induce
harmful properties into the trained model, which can greatly affect its behaviour on unseen data Nakkiran
and Bansal (2020), a phenomenon we refer to as property generalization. This can lead to problems
in trustworthy machine learning, such as with noisy data Frenay and Verleysen (2014); Northcutt et al.
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(2021b,a), systematically biased data Prabhu and Birhane (2021)1, or adversarial data, such as poisoned
samples Barreno et al. (2006); Chen et al. (2017); Yang et al. (2020). For example, Sanyal et al. (2021);
Paleka and Sanyal (2023) show that a small amount of random noisy labels can significantly harm the
adversarial robustness of a model. Further, Konstantinov and Lampert (2022) show that a small set of
adversarially corrupted data can greatly increase unfairness. As these corrupted samples are discovered,
model developers can use unlearning to remove the unwanted properties induced in previously trained
models.

Large Language Models (LLMs) trained on web-scale datasets often learn harmful dual-use knowledge.
The White House Executive Order on Artificial Intelligence (White House, 2023) mentions concerns
of AI being misused to develop chemical, biological, radiological, nuclear, and cyber weapons. For
instance, AI coding assistants can make it easier for non-experts to execute cyberattacks (Fang et al.,
2024) with increased stealth and scale, which if targeted at infrastructure like power grids can lead to
massive harm (UK Cabinet Office, 2023). Similar risks exist for reducing barriers to biological weapon
development (Sandbrink, 2023). Unlearning potentially dual-use knowledge from widely accessible
versions of AI models can act as one mitigation strategy towards such risks. Unlearned models have
higher inherent safety: if the model lacks the hazardous knowledge necessary to enable malicious use, it
will be safe even if jailbroken (Zou et al., 2023b).

Roadmap: In Chapter 2, we first argue for the need of stronger unlearning evaluations. Particularly,
we show shortcomings of existing evaluations, and propose the Interclass Confusion test as an adversarial
evaluation that demonstrates the weakness of some existing unlearning procedures. In Chapter 3, we then
discuss the problem of corrective unlearning, that is removing the influence of wrong or manipulated
training data, and how it has different requirements from unlearning for privacy, requiring separate
treatment. We show that state of the art unlearning methods are insufficient for corrective unlearning, as
often all the manipulated data is not known. Finally, in Chapter 4 we show how unlearning can be used
to remove potentially harmful dual-use knowledge and capabilities from Large Language Models.

1to the extent that bias is a dataset problem Hooker (2021).
* equal contribution
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Chapter 2

Adversarial Evaluations for Inexact Unlearning1

2.1 Introduction

The goal of Machine Unlearning is traditionally formalized using the concept of model indistin-
guishability, first defined in Golatkar et al. (2020a). Let M be an ML model trained on dataset S using
learning algorithm T and Sf ⊂ S be the set of points that need to be deleted from M . An unlearning
process is considered successful if the distribution2 of models produced by the unlearning process, is
indistinguishable from the distribution of models produced by retraining the model using any training
process T ′ on the remaining data S \ Sf . To see why model indistinguishability implies unlearning,
note that no training procedure T ′ which only uses S \ Sf can produce a model that carries information
specific to Sf . Hence, it is sufficient to show the model distribution produced by the unlearning algorithm
is indistinguishable from the model distribution produced by any one training algorithm T ′ using S \ Sf .
In this work, we study deleting a single query batch of samples. Extension to sequential deletion has to
tackle challenges like correlated queries across time (Chourasia et al., 2023).

A naive method for unlearning data from a machine learning model is to retrain the model on the
retain data S \ Sf . This method removes all information from the deletion set. Hence, in theory, it
achieves “exact unlearning”, but is computationally and memory intensive. Our work focuses on “inexact
unlearning”, in which the goal is to unlearn most information from the deleted data while minimizing
computational cost. While exact unlearning is often infeasible, inexact unlearning presents a more
tractable objective. In the specific case of deep networks, due to the absence of theoretical guarantees,
empirical tests are commonly used for evaluating the degree of unlearning. A strong empirical test
should reliably distinguish models unlearning to varying degrees in terms of memorization and property
generalization of the deletion set. The latter is challenging with existing evaluations which remove
Independently Identically Distributed (I.I.D) samples as the undesirable properties they induce may be
apriori unknown.

1Goel, S., Prabhu, A., Sanyal, A., Lim, S. N., Torr, P., Kumaraguru, P. (2022). Towards adversarial evaluations for inexact
machine unlearning. arXiv preprint arXiv:2201.06640. All figures in this section are taken from the paper.

2due to stochasticity in both the unlearning algorithm and T
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As comparing a distribution of ML models is intractable, most past evaluations compare the weights
(Wu et al., 2020; Izzo et al., 2021) or outputs (Golatkar et al., 2020a,b, 2021; Peste et al., 2021) of an
unlearnt model and one retrained using the original training procedure on S \ Sf . However, as we argue
in Theorem 1, even achieving nearly identical weights is insufficient to guarantee similarity in even well
known properties like adversarial error and fairness, and thus model indistinguishability. This motivates
the need for adversarial evaluations of unlearning. We propose performing manipulation in the training
data which introduces a known measurable property through Sf that is absent in S \ Sf . Thus, models
that exhibit this property cannot be indistinguishable from models obtained through retraining on S \ Sf .
Ideally, the property unique to Sf should produce a large predictable change in model behaviour to
make its presence easy to measure. To this end, inspired by the application of removing systematically
biased data, we propose the Interclass Confusion (IC) test. It induces the property of confusion between
two classes through label manipulations. IC test requires the unlearning procedure to erase the induced
confusion which we measure as the number of samples of the two classes “confused” as belonging to the
other class. As discussed in the following sections, we can use this test to detect both memorisation and
property generalisation in an efficient way.

We find that our proposed IC test is far stronger than existing evaluations, allowing us to glean
interesting insights into unlearning algorithms. Using the IC test, we can demonstrate the insufficiency of
a class of unlearning methods that simply modifies the final linear layer (Izzo et al., 2021; Baumhauer
et al., 2022) in deep networks or methods that do not use the retained data S \ Sf (Chundawat et al.,
2023b). Our test detects the presence of imperfectly unlearnt information about the deletion set Sf in
the early layers of a deep network. Along with designing a stronger evaluation method (IC test), we
also present two strong novel baselines — EU-k, which retrains the last k layers from scratch and CF-k,
where a model’s last k layers are continually trained on the retain set S \ Sf . Finally, we also propose
strategies to make the original model M more amenable to unlearning, thereby aiding faster unlearning.

Overall, in this chapter, we emphasise empirical evaluations of inexact-unlearning which measure
how well an unlearning procedure forgets additional properties induced by the deletion set Sf . The
proposed IC test alleviates certain shortcomings in existing evaluations as passing the IC test is necessary
for achieving model indistinguishability. Further, it’s adversarial nature makes it a much stronger test to
pass than prior evaluations as shown by our experiments. The main contributions of this chapter are:

1. In line with the motivations of machine unlearning, we decompose the evaluation of unlearning into
memorization and property generalisation. The former is computed on the forget set Sf whereas
the latter is computed using unseen samples from the test set.

2. We highlight some necessary principles for useful evaluations of unlearning not achieved in
existing work. We alleviate this by introducing a new black-box evaluation called the Interclass
Confusion (IC) test. We empirically demonstrate that the IC test is far stronger than existing tests.

3. Further, we use the IC test to show several surprising phenomena which may guide the design
of future unlearning methods (i) Unlearning just the last layer only removes a small fraction of
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information about Sf (ii) Unlearning methods may require the ability to learn i.e.gain information
(iii) Standard regularisation during training can make models more amenable to unlearning. Using
these insights, we propose two strong baselines, EU-k and CF-k, for comparing future unlearning
methods.

Roadmap: The rest of the chapter is organized as follows: Section 2.2 describes our proposed
evaluation methods in context of prior work, Section 2.3 describes our unlearning baselines and their
properties, Section 2.4 presents our experimental results.

2.2 Towards Adversarial Evaluations
We begin with an analysis of the shortcomings of prior evaluation strategies, and alleviate them by

proposing the Interclass Confusion Test.

2.2.1 Trends in Unlearning Evaluations

In this section, we look at existing approaches for evaluating unlearning procedures. First, these
methods choose one of the two types of deletion sets Sf : n I.I.D samples (I.I.D removal) (Golatkar et al.,
2021; Wu et al., 2020; Izzo et al., 2021; Peste et al., 2021; He et al., 2021; Shibata et al., 2021) or n
samples belonging to a particular class (Class Removal) (Golatkar et al., 2020a; Baumhauer et al., 2022).
Once the unlearning procedure is applied on the above Sf , the following are some popular metrics used
to measure forgetting:

Relearn Time: Golatkar et al. (2020a,b, 2021); Chundawat et al. (2023b) measure the number of
training epochs until the loss of an unlearnt model drops below a pre-chosen threshold when retrained on
samples in Sf . A higher re-learn time implies better forgetting.

Weight Similarity: Wu et al. (2020); Izzo et al. (2021) measure the L2 distance between the weights of
the unlearnt model and another model retrained on S \Sf using the original training procedure. Naturally,
a smaller distance is used to imply better unlearning.

Output similarity: Similar to distance between weights, distance in the softmax outputs on a pre-
defined set of data points are also used by different evaluation methods. Golatkar et al. (2020a,b, 2021)
measures the L1 distances between softmax outputs of a unlearnt model and a retrained model on the
pre-defined set, Peste et al. (2021) measure the L1 distance between the confusion matrices of the
respective models, He et al. (2021); Golatkar et al. (2021); Shibata et al. (2021) measure the gap in error
on the distribution of affected samples.

Membership Inference Attacks (MIA): Tests based on Membership Inference Attacks (Shokri et al.,
2017; Song and Mittal, 2021) are designed to reliably distinguish data points in the training set from
similar unseen data. Hence, they can also be used to reliably distinguish the deleted samples from similar
unseen samples (see Hu et al. (2021) for a survey). A detailed description of our MIA attack compared to
past unlearning literature is included in Section 2.5.2.
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Table 2.1: Comparison of evaluation methods (sampling strategy+metric) in inexact unlearning. Only our IC test satisfies all three desiderata.

Deletion Set Sampling Strategy Metric
Necessary for Comparable Across Checks Property

Indistinguishability Training Procedures Generalization

I.I.D (Golatkar et al., 2021), Class (Golatkar et al., 2020a,b, 2021) Relearn time ✓ × ×

I.I.D (Wu et al., 2020; Izzo et al., 2021; Thudi et al., 2021) L2 Weights × × ✓

I.I.D (Peste et al., 2021) L1-ConfusionMatrix × ✓ ✓

I.I.D (Golatkar et al., 2021), Class (Golatkar et al., 2020b, 2021) L1-Softmax × ✓ ✓

Class (Golatkar et al., 2021, 2020b; Baumhauer et al., 2022),

I.I.D (Golatkar et al., 2021; Ma et al., 2023)
MIA ✓ ✓ ×

I.I.D (He et al., 2021; Golatkar et al., 2021; Shibata et al., 2021),

Class (Golatkar et al., 2020a,b, 2021)
Error × ✓ ✓

Interclass Confusion (Ours) MIA ✓ ✓ ×

Interclass Confusion (Ours), I.I.D Confusion (Ours: Ablation) Error ✓ ✓ ✓



2.2.2 Shortcomings of Existing Evaluations

We start by listing three desiderata absent in most existing evaluation methods, as summarized in
Table 2.1. Theorem 1 then motivates the need for adversarial evaluations.

Necessary for Indistinguishability: Suppose there exists T ′ ̸= T such that retraining with T ′ on
S \ Sf would produce a model highly similar to the unlearnt model Mu, then Mu is a correct solution as
it satisfies model indistinguishability. Showing no such T ′ exists is difficult, and thus past evaluations
simply compare Mu with a model MT

r retrained using the original training procedure. However, this
can exclude a large set of correct solutions which have no information from Sf but behave differently
from MT

r . Consider a randomly initialized network. It clearly has no information from Sf , and indeed
satisfies model indistinguishability if we consider T ′ to be the random initialization process. However, it
will be arbitrarily far from MT

r and will be unnecessarily penalized by evaluations based on Weights
and Output similarity. Thus, passing past evaluations based on high similarity with a single model is not
necessary for achieving unlearning.

On the other hand, our proposed evaluation manipulates a subset of training data to introduce a
measurable property through Sf that is absent in S \ Sf . Any model that exhibits this property cannot
be from a model distribution produced by (re)training without Sf for all T ′, and has not unlearnt. Thus,
passing our evaluation is necessary to claim an unlearning procedure can handle arbitrary deletions.

Comparable Across Training Procedures: Unlearning procedures often significantly modify the
training procedure or architecture Bourtoule et al. (2021); He et al. (2021); Golatkar et al. (2020a,b,
2021); Graves et al. (2021). Thus, a versatile unlearning evaluation should provide measurements of
retained information that are comparable across chanes in architectures and training procedures. For
example, measuring relearn time as an evaluation method requires setting a threshold. However, different
unlearning procedures (Golatkar et al., 2020a,b, 2021; Chundawat et al., 2023b) may differ in learning
rate or have inherently different behavior in how low the loss can get and how fast it decreases. Similarly,
L2 distance between weights cannot be compared across architectures or hyperparameter choices like the
amount of weight decay.

Checks Property Generalization: Unlearning procedures must ensure that properties which are only
present in Sf do not influence performance on unseen samples. Some evaluations, such as membership
inference attacks (MIA) (Shokri et al., 2017; Chen et al., 2021) effectively only determine the removal of
memorization, and not the removal of generalized properties. In any evaluation with I.I.D removal, while
it is theoretically possible to check if generalized properties are removed, it is not clear what properties
to look for.

Two relevant properties that can be exacerbated by corrupted data are adversarial error (Radv) (Madry
et al., 2018) and unfairness3 (Γ). An evaluation method that can be satisfied without removing these
properties is clearly insufficient to guarantee unlearning. Theorem 1 shows that metrics like L2 distance

3We use accuracy discrepancy (Buolamwini and Gebru, 2018; Sanyal et al., 2022) for mathematical simplicity. Can be
shown for demographic parity and equalised odds (Hardt et al., 2016).
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Figure 2.1: IC Test Pipeline: We mislabel a subset of samples from two classes of the original dataset, forming Sf . Here, shape and colour

represent the actual and labelled class respectively. Then, M and Mr are obtained by training from scratch on S and S \ Sf respectively. The

unlearning procedure can leverage (some of) M , Sf and S \ Sf to produce the unlearnt model Mu.



in the parameter space and gap in test error on a random I.I.D sample (R) are poor indicators of whether
two models have similar RAdv and Γ.

Theorem 1. There exists a distribution D such that for any ϵ, α ≥ 0, there exist two ℓ-layered fully

connected linear NNs parameterised by W1,W2 which are simultaneously:

• Close in Weights: ∥W1 −W2∥F ≤ ϵ

• Close in Test Error: R (fW1) ≤ R (fW2) + α

• Far in Robustness: Radv (fW1) ≥ Radv (fW2) + 1− 2α

• Far in Fairness: Γ (fW1) = Γ (fW2)− 1

where R,RAdv,Γ are as defined above and fW is an ℓ-layered fully connected linear neural network

parameterised by W .

Proof. We prove this by constructing two ℓ-layered fully connected linear NNs, parameterised by W1,W2

and a distribution P such that, under P they are close in weights and test error but far in robustness and

fairness.

Let W1 = {A1, . . . , Aℓ} and W2 = {B1, . . . , Bℓ} be the list of weight matrices of the two networks

with each matrix having a dimension of m×m. Consider all but the first layer of the two networks be

identical. Specifically,

A2 = A3 · · · = Al =



σ

σ

. . .

σ

σ1


with the remaining entries being 0 where we will define σ, σ1 later. Construct the first layer of the two

networks as follows where ϵ > 0.

A1 =



1

1

. . .

1

0


B1 =



1

1

. . .

1

ϵ


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Closeness in L2 weights By construction, the two neural networks are close in weights: ∥W1 −W2∥1 =

ϵ where ∥W1 −W2∥1 =
∑ℓ

i=1

∥∥Ai − Bi
∥∥.

To complete the remainder of the proof, note that the two neural networks are essentially equivalent to

linear functions with the weight parameters A and B respectively where

A =



σl−1

σl−1

. . .

σl−1

0


B =



σl−1

σl−1

. . .

σl−1

σl−1
1 ϵ


Next, we construct a data distribution P that satisfies the criteria of our result. Our distribution P will be

supported on four points X1, X2, X3, X4 ∈ Rm where

X1 =

1, . . . , 1︸ ︷︷ ︸
m−1

, 0

 , X2 =

−1 . . . ,−1︸ ︷︷ ︸
m−1

, 0

 , X3 =

1, . . . , 1︸ ︷︷ ︸
m−1

,−1

 , X4 =

−1, . . . ,−1︸ ︷︷ ︸
m−1

, 1


and P is defined as

P[(X1,+1)] + P[(X2,−1)] = 1− α and P[(X3,+1)] + P[(X4,−1)] = α.

Test Error It is easy to verify that if σ > 0, then R(fW1), R(fW2) ≤ α.

Fairness Now, let
{
X3 ∪X4

}
be the minority group and

{
X1 ∪X2

}
be the majority group. Note

that fW1

(
X1

)
= fW1

(
X3

)
= 1 and fW1

(
X2

)
= fW1

(
X4

)
= −1, thereby leading to Γ(fW1) = 0.

On the other hand, for any ϵ,m if σ, σ1 are chosen such that

σl−1
1 ϵ > (m− 1)σl−1, (2.1)

we have that fW2

(
X3

)
= −1 and fW2

(
X4

)
= 1. Hence, Γ (fW2) = 1. This completes the proof of

Γ (fW2)− Γ (fW1) = 1.

Adversarial Robustness Let δ > 0 be the adversarial perturbation budget. Then, the adversarial error

of a network parameterised with parameters W is

RAdv(fW) = PX,y [∃z ∈ Rm s.t. ∥z∥ ≤ δ ∧ fW (X + z) ̸= y]

≥ αI
{
∃z1, z2 ∈ Rm s.t. ∥z1∥, ∥z2∥ ≤ δ ∧ fW

(
X1 + z1

)
̸= 1 ∧ fW

(
X2 + z2

)
̸= −1

}
.
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Note that if the parameters σ, σ1 satisfy the following with respect to ϵ, δ

σl−1
1 ϵδ > (m− 1)σl−1 (2.2)

then fW2

(
X1 − δem

)
= −1 and fW2

(
X2 + δem

)
= 1 where em is the mth canonical basis vector.

Thus, RAdv(fW2) ≥ 1 − α. It is also easy to verify that for any z : ∥z∥ ≤ 1
2 , we have that for

fW1

(
X1 + z

)
= 1 and fW1

(
X2 + z

)
= −1. Thus, RAdv(fW1) ≤ α. Subtracting the two adversarial

errors we obtain, RAdv(fW1)−RAdv(fW2) ≥ 1− 2α.

Finally, combining Equations (2.1) and (2.2) and setting the parameters such that σ1
σ ≥

(
m−1
ϵδ

) 1
l−1

completes the proof.

The theorem shows that two models that are arbitrarily close in weights and test error can be arbitrarily
far in adversarial robustness and fairness. In particular, we show an example where models get farther in
adversarial robustness as they get closer in test error. Thus, unlearning evaluations must either measure
indistinguishability in terms of more adversarial quantities like robustness and fairness or use strategic
non-I.I.D deletion sets. In our work, we explore the latter, i.e. an adversarial approach to designing
deletion sets. In the following section, we introduce this evaluation procedure known as IC test.

2.2.3 Proposal: Interclass Confusion Test

In contrast to existing evaluations, we inject a strong differentiating influence specific to Sf into the
training dataset via label manipulations. Specifically, we present:

Interclass Confusion (IC): As illustrated in Figure 2.1, the IC test using a deletion set of n samples
follows these steps:

1. Take n
2 samples each from two classes in the train data to form S′ ⊂ S (Targeted sampling).

2. Swap labels 4 between the two classes of samples in S′ (Adversarial manipulation) to get the
confused set Sf . The dataset for training the original model M is (S \ S′) ∪ Sf .

3. Select the set Sf as data to be deleted from the trained model M (Strategic deletion set).

4. Evaluate memorization and property generalization by measuring error on training and testing sets
S′ and S′

u corresponding to the two classes.

To isolate the effect of targeted sampling in the IC test i.e.confusing two specific classes, we introduce:

Ablation: I.I.D Confusion: We select n samples uniformly at random from S to form S′ and mislabel
them to a uniform random different class, using these mislabelled samples as Sf . Note that the removal
is not I.I.D, we replace targeted label manipulation with I.I.D label noise.

4Note that evaluations based on label swapping have been used in traditional adversarial robustness literature (Nakkiran,
2019; Fowl et al., 2021), but with quite different goals, setting and design.

11



We compute the MIA and Error on affected classes like previous work, but also introduce the Targeted
Error metric:

Error v/s Targeted Error: Error computed for a given set S is the fraction of samples in S which
were misclassified regardless of which class it was mistaken as. In Interclass Confusion, we are interested
specifically in the fraction of samples confused between the two confused classes. In Class Removal,
we are interested in the fraction of samples classified as the class to be removed. This is measured
by Targeted Error, which is the fraction of samples in S misclassified to the targeted class exhibiting
the unwanted property is not removed. Samples misclassified into any other class are not counted as
illustrated in Figure 2.1 for IC test. As an illustrative example, for IC test on a 10 class dataset: the error
of a random model would be 90%, but the targeted error would be 10%. Error/Targeted Error when
computed on the set S′ measures memorization, and when computed on the unseen (test) set samples St

from the same distribution as set S′ measures property generalization.

2.3 Unlearning Baselines

Having discussed properties of evaluation methods, we now discuss unlearning procedures – desirable
properties and our two simple baselines that achieve them.

2.3.1 Desiderata for Unlearning Methods

Unlearning procedures need the ability to learn: Consider a linearly-separable binary classification
task where we use the IC test to introduce complete confusion between the two classes (50% of samples
of each class mislabelled as the other). Powerful empirical risk minimizers (like neural networks trained
with SGD) will achieve a train accuracy on S close to 100% (Zhang et al., 2017). However the test
accuracy will be much lower, closer to 50%, as the training dataset is essentially fully randomly labelled.
However, upon deleting all the mislabelled samples, like in the IC test, we are left with 50% of the
original dataset but with correct labels. A model retrained from scratch on S \ Sf can be expected to
achieve reasonably good accuracy, much larger than 50%, which a good unlearning procedure is expected
to match. So we can expect the unlearnt model to have learnt to perform the task, whereas the original
model cannot.

Intuitively, this implies that solely erasing information from the model is not enough, and the ability
to learn may be necessary for ideal unlearning procedures. Consequently, we expect methods which do
not use information about the retain set (Chundawat et al., 2023b) will have limitations when handling
arbitrary deletions and will not perform well on the IC test.

Scalability to large deletion sets: Popular unlearning methods, both exact and inexact, either
explicitly assume tiny deletion sets (Thudi et al., 2021; Bourtoule et al., 2021; Wu et al., 2020) or
scale poorly beyond them in practice (Schelter, 2020; Graves et al., 2021; Golatkar et al., 2020a,b). In
Section 2.5.1 we show that the computational complexity of methods based on the paradigm of isolating
the influence of data to small parts of the training procedure (Bourtoule et al., 2021; He et al., 2021; Yan
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et al., 2022; Graves et al., 2021) scales exponentially with the size of the deletion set. Arguably, methods
which require resources similar to retraining from scratch for large deletion sets have limited practical
value, especially in applications which require large deletion sets (see Section 2.5.1 for a discussion).

Targeting Areas to Unlearn: A way to significantly improve efficiency of unlearning procedures is
to focus optimization power towards areas of a model where the deletion set is stored. We look from
a layerwise perspective- the early layers of a deep network capture generic low-level representation
(Yosinski et al., 2015; Kataoka et al., 2020), while the later layers focus on dataset-specific information.
Interestingly, the earlier layers are also the most computationally intensive (Brock et al., 2017). Hence,
focusing unlearning on the last k layers may allow computationally efficient erasure of information from
Sf . Such unlearning methods also help us analyze how early in a deep network can an evaluation method
detect the presence of information specific to Sf .

Overall, unlearning methods should: (i) have capacity to learn information in addition to unlearning
and (ii) scale to large deletion sets and further, for our analysis, we wish to have unlearning methods that
(iii) target specific parts of the model, e.g. the last k layers for unlearning.

2.3.2 Proposal for Unlearning baselines: CF-k and EU-k

We propose two methods which we believe will be useful ‘baselines’ for future work to compare
against. (i) They achieve a tradeoff between forgetting and efficiency which can be controlled using
parameter k, allowing comparisons with unlearning procedures of differing degrees of efficacy. (ii) They
are simple and require minimal assumptions: they scale to large deletion sets, are applicable for all DNN
training procedures and require only access to S \ Sf .

Exact-unlearning the last k layers (EU-k): We retrain the last k layers of M from scratch using the
same training procedure T on retain set S \ Sf while freezing prior layers.

Catastrophically forgetting the last k layers (CF-k): Neural Networks suffer from catastrophic-
forgetting (French, 1999) - when a model is continually updated without some previously learnt samples,
the model loses knowledge about them. We finetune the last k layers of M on the retain set S \ Sf using
the same training procedure T while freezing prior layers, hoping to catastrophically forget Sf . As we
avoid re-initializing the last k layers unlike EU-k, we need far fewer epochs, making CF-k more efficient
than EU-k.

2.4 Experiments

We show empirical support for three claims of our work. (i) We show that our EU-k and CF-k
unlearn better than four popular methods and are strong baselines. (ii) Using EU-k and CF-k for analysis,
we show our primary contribution, the IC test, is more reliable than previous evaluations in detecting
unwanted memorization and property generalization. (iii) We show standard regularization techniques
can make original models M more amenable to unlearning. Our training procedure is described in
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Section 2.5.3.1. All code has been made publically available at https://github.com/shash42/
Evaluating-Inexact-Unlearning.

2.4.1 Evaluating Baselines: EU-k and CF-k

Setup. Due to the lack of established evaluation methods and comparisons to other methods in past
work, the ’state of the art’ in unlearning is not clear. We compare our proposed baselines against four
popular past unlearning methods: Fisher (Golatkar et al., 2020a), NTK-Fisher (Golatkar et al., 2020b),
Amnesiac Unlearning (Graves et al., 2021), and LCODEC (Mehta et al., 2022) which have published
their codebase for accurate reproduction. We could not run Fisher, NTK-Fisher for our larger datasets
like CIFAR10 due to large memory requirements and thus compare all models on their setting: We use
Small-CIFAR-5 (Golatkar et al., 2020a) (a 5 class subset of CIFAR10), and all samples of a given class
as the Sf (Class Removal). We follow their training procedure to get their original and retrain models, as
we obtained near-random performance when we applied their unlearning method on our standard training
procedure perhaps due to violation of some of their training assumptions. For Amnesiac, LCODEC and
our unlearning procedures we report results on unlearning from an original model M produced by our
default procedure (T ) with a standard ResNet-20 architecture. We obtain the same observations on using
their respective training procedures which produce original models with lower accuracy. For forgetting
we report memorization and property generalization by computing targeted error on the deletion set (Sf )
and test set of the deleted class (St) respectively. We measure accuracy with test set error and efficiency
with unlearning time.

Results. We present all our results in Table 2.2.

Accuracy: The test error of the retrained model is 15% higher than the original (both T ) because
a portion of the test samples belong to the deleted class. Here, lower test errors are attributable to not
forgetting the deleted class. Comparing test error for the Original models, we observe our procedure
T has a large decrease (10%) in test error compared to Golatkar et al. (2020b). This ensures we study
unlearning on better, more realistic models. We find that Amnesiac and LCODEC produce unlearnt
models with almost random performance. Amnesiac relies on deletion set samples belonging to only
a few batches. However, this assumption does not scale to large deletion sets and we find all batches
are affected in our experiment, as expected from the mathematical analysis we present in Section 2.5.1.
LCODEC removes samples sequentially, and the error of the model increases fast as more samples are
deleted.

Forgetting: We measure the degree of unlearning of a given method by comparing the reduction in
targeted error of the method with the corresponding original and retrained models providing the starting
and ideal scores respectively. We observe that simply unlearning the last layer with our baselines (EU-1 &
CF-1) have far better reductions in targeted error compared to previous methods in both memorization and
property generalization. Surprisingly, Golatkar et al. (2020a) fails to achieve any significant forgetting.

Efficiency: We observe that 3 out of 4 past procedures take far more time for unlearning compared
to our baselines and even retraining as approximating the Fisher Information Matrix is expensive. In
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Table 2.2: Comparison between unlearning procedures on Class removal test on Small-CIFAR-5. For-

getting measured by targeted error: Memorization (Mem) and Property Generalization (PropGen).

Performance and efficiency measured by test error and unlearning time. For all metrics, lower is better.

Model Targeted Error Test Error Time(s)

Mem PropGen

T from Golatkar et al. (2020a,b)

Original 92.3 97.6 26.7 0.00

Fisher Golatkar et al. (2020a) 94.6 98.0 33.2 141.95

NTK-Fisher Golatkar et al. (2020b) 27.0 39.6 31.0 141.90

Retrain 0.0 0.0 41.4 9.81

T (Ours)

Original 98.0 97.3 16.3 0.00

Amnesiac (Graves et al., 2021) 22.3 21.6 74.3 1.72

LCODEC (Mehta et al., 2022) 20.7 20.2 80.3 226.9

1-layer (Ours)
CF 18.3 12.3 30.9 4.43

EU 9.6 4.3 31.9 9.38

10-layers (Ours)
CF 15.6 9.3 29.4 5.22

EU 2.0 0.0 32.6 10.78

Retrain 0.0 0.0 32.5 12.33

real-world scenarios, such speedups are highly important to enable practical applications of unlearning.
Amnesiac is fast but produces a random model.

Conclusion. Our methods EU -k and CF -k outperform popular unlearning methods by significant
margins in all three dimensions: forgetting, accuracy and efficiency indicating they are reasonable
baselines for analysis.

2.4.2 Comparing Tests for Evaluating Forgetting

Setup. We use CIFAR10 and CIFAR100 datasets with a 40K-10K-10K train-val-test split. Note that
we use the same deletion set size n for a fair comparison across all tests, with the sample set removed for
every test, with details in Section 2.5.3.3. Experiments in this section use n corresponding to the number
of training samples in one class: 4000 for CIFAR10 and 400 for CIFAR100 (Krizhevsky et al., 2009).
We further report results across different deletion set sizes n in the Section 2.6.3, 2.6.4 and find them to
be consistent. All results are averaged over three runs with different seeds for robustness.

Results. In Figure 2.2 we compare different unlearning evaluation methods on their ability to
demonstrate the degree of forgetting of models produced by our baselines EU-k and CF-k. Every line
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Exact	Unlearning-k

Memorization Property	Generalization
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Inter-Class	Confusion	(Ours)
Catastrophic	Forgetting-k

I.I.D Class I.I.D	Confusion

Figure 2.2: Error, MIA for various deletion strategies (Y) reported across the number of layers (X)

affected by the unlearning procedure. The left-most points at 0 layers represent the original model M ,

whereas the right-most points at 110 layers represent the retrained model MT
r . Only Interclass Confusion

reliably distinguishes different degrees of unlearning (no. of layers unlearnt) across all graphs.

is formed by varying the number of layers unlearnt k and hence the degree of forgetting, with 0 and
110 (leftmost and the rightmost points) indicating the original and retrain models respectively. A strong
test is indicated by: (i) the score of intermediate models (0 < k < 110) is different from that of the
retrain model as some information is still retained after unlearning k layers. (ii) There is a clear gradual
improvement in the forgetting metric as k increases. We present results consistent across graphs below:

Memorization: Across settings, class removal test (blue) is not able to detect memorized information
even in simply exact-unlearning the last layer on any metric or dataset (solid-blue line reaches retrain
scores immediately). I.I.D removal barely distinguishes 1-layer and 10-layer unlearning. We get random
(<50%) MIA scores for I.I.D confusion and hence exclude it. However, I.I.D confusion performs as
well as the IC test on the error metric. IC test is the most useful across metrics and datasets, clearly
distinguishing models with information removed from more layers.

Property Generalization: Only IC test is capable of detecting property generalization of confusion
even after exact unlearning just the last layer. Even I.I.D confusion, which represents adding noisy labels
with no systematic bias, is clearly insufficient to induce detectable generalized properties. Thus, both
components of the IC test, class-targeted removal and confusion, are needed together to show clear trends
in property generalization evaluations.

Hyperparameters of IC Test: The two hyperparameters in executing the IC test are choosing the two
classes to confuse and the number of confused and deleted samples n. We find that while trends are
similar across class pairs, unlearning is the hardest when we choose classes that are highly similar. We
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thus report results for (Cat, Dog) in CIFAR 10 and (Maple Tree, Oak Tree) in CIFAR 100 here. Further
details can be found in Section 2.6.5. Regarding the size of the deletion set, we demonstrate that the IC
test can reliably detect imperfect memorization and property generalization with just 1% and 5% of the
dataset being corrupted respectively. We report results for 5% here, and show IC test is the most useful
among all tests across deletion set sizes in Section 2.6.4, 2.6.3.

EU-k v/s CF-k: For any given k, catastrophic-forgetting (CF) removes most of the information in
those layers while being twice as fast as exact-unlearning (EU) indicated by the dotted lines closely
following their solid counterparts across tests. The only cases where they differ is when the test is simply
unable to detect information retained in exact unlearning (e.g. Class Removal). As shown by the IC test,
EU-1 leaks a lot of information gained from Sf , showing that prior exact unlearning methods that only
modify the final layer of deep networks (Baumhauer et al., 2022; Izzo et al., 2021) continue to store
information from Df and cannot handle arbitrary deletions 5. Note that EU-k and CF-k continue to
maintain the same accuracy across k as shown in Table 2.3. While we choose a 110 layer ResNet and
k = {1, 10, 50} as a concise representative sample here, all observations hold across more values of k
and network depths if compared using the fraction of layers unlearnt as shown in Section 2.6.2.

Conclusion. IC test is the only test that shows a clear difference between models with different
number of layers unlearnt for both memorization and property generalizaton, on all metrics and datasets.
IC test also shows past unlearning methods that propose to modify only the final layer of deep networks
continue to retain most information about the deletion set. Varying k in EU-k and CF-k can be used to
control the forgetting-efficiency tradeoff at the same overall accuracy. Catastrophic forgetting achieved
similar degree of forgetting as exact unlearning, while being twice as efficient.

2.4.3 Making Models Amenable to Unlearning

Aim. Different original models M can have varying propensities to memorize Df . We aim to
leverage this to provide training strategies that obtain original models M with better unlearning properties,
particularly computational efficiency. This is in line with Thudi et al. (2022) which theoretically motivates
this for |Sf | = 1, but we empirically show it holds even for large deletion sets.

Strategies. Early stopping has been a universal strategy to prevent overfitting (i.e.memorization) in
machine learning. We also use Cutmix (Yun et al., 2019), with the intuition that the model never sees a
training sample in isolation while training, inspired from Huang et al. (2020b). Apart from using these
regularization strategies during training, we use the same setup as before.

Results. We present results in Figure 2.3. Comparing original models (leftmost group of bars
on the graphs), we observe that both techniques obtain large reductions in memorization of Sf but
similar property generalization. We observe only a marginal dropoff in unlearning (especially property
generalization) from Cutmix+Early Stopping 10 layers to Original 50 layers. Cutmix+Early Stop 10
layers gives a huge improvement in unlearning performance compared to the Original 10 layers unlearnt

5Only unlearning the final layer may succeed if earlier layers are trained privately (Guo et al., 2020; Wu et al., 2020).
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Figure 2.3: Interclass Confusion Targeted Error (Y) on unlearning from original models with different

regularization (bar colors) reported for the original model M , EU-10, EU-50, and retrained model M t
r .

The same unlearning procedure can remove more confusion when starting from better regularized original

models.

models, especially on the harder CIFAR-100 dataset. In property generalization, this occurs despite
original models having similar amounts of confusion indicating better regularized models make it easier
for inexact unlearning methods to remove information.

Conclusion. The presented results validate the idea that some original models make it easier to
remove information using the same unlearning procedure. We demonstrated how this can be leveraged
to achieve forgetting using cheaper unlearning procedures. Comparisons across unlearning procedures
should ideally use the same original model for fairness, at least when there are no training assumptions.

2.5 Design Choices

We provide details of implementation, test and metric choices, unlearning method comparisons and
utility calculations.
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Figure 2.4: Hyperbolic deterioration of efficiency in isolation-based unlearning when scaling to a large

number of removed samples. In this work, we analyze |Sf | from 100-4000 where E[Y ] ∼ 1.

2.5.1 Against Isolation Strategies

Examples include removing noisy labels (Northcutt et al., 2021b,a), deleting poisoned samples (Wang
et al., 2019; Jagielski et al., 2018; Li et al., 2020), deleting data that induces harmful biases (Prabhu
and Birhane, 2021; Fabbrizzi et al., 2021), and organizations requiring deletion of user data older than
some retention period. Even in the context of privacy, a single user might own multiple samples in the
dataset. In biometrics like face recognition (Turk and Pentland, 1991), one user may form an entire
class (Baumhauer et al., 2022). Moreover, user deletion requests may occur in bursts after certain events
of interest, such as revelations of privacy leakages by an organization (Acquisti et al., 2006). Lastly,
batching online deletion requests requires less invocations of the unlearning procedure, boosting resource
efficiency.

A popular approach for unlearning is data-influence isolation, where each sample is made to contribute
only to a small part of the training procedure or model. Unlearning such as retraining from scratch only
the part affected by the deletion set erases the influence of the deletion set more efficiently. Isolation-
based strategies change the training process by creating an ensemble (Yan et al., 2022; Schelter, 2020;
Bourtoule et al., 2021; Graves et al., 2021; He et al., 2021), each of whose models is trained on different
subsets of the dataset. This ensures architecturally (Bourtoule et al., 2021; Aldaghri et al., 2021; Schelter,
2020; Yan et al., 2022) or temporally (He et al., 2021; Bourtoule et al., 2021) isolating the influence of
any sample to a limited part of training, requiring retraining for only the affected parts. Isolation has been
used across techniques like Linear Classification (Aldaghri et al., 2021), Random Forest (Schelter et al.,
2021; Brophy and Lowd, 2021), KNN (COO, 1982), SVM (Cauwenberghs and Poggio, 2000; Tsai et al.,
2014) and DNN (Graves et al., 2021; Bourtoule et al., 2021; He et al., 2021) by utilizing or creating a
sparse influence graph (Schelter, 2020). Data-influence isolation often comes at the cost of utility as each
portion becomes a weaker learner (Banko and Brill, 2001), especially in deep networks (Shorten and
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Figure 2.5: Logistic growth of the probability of needing to retrain all portions with increasing deletion

set size. We represent isolation strategies with different portion sizes P .

Khoshgoftaar, 2019). To overcome the dropping utility, the training and unlearning time may need to be
increased, reducing resource efficiency.

Figure 2.4 demonstrates that the computation costs of isolation-based strategies scale poorly as the
deletion set size increases. Note that even on a practical deletion set size like 500, existing isolation based
approaches (which create much less than 250 isolated portions) require almost full retraining costs on
expectation. Let P be the number of parts obtained with the isolation strategy. We assume the best-case
scenario where each sample only influences one part. We make the simplifying assumption that the
samples are uniformly distributed across parts, and the probability of a removed sample belonging to
any particular portion remains constant ( 1

P ). Let Y be the number of affected parts. The probability
part i is affected by atleast one sample in Sf is 1 − (1 − 1

P )
|Sf |. Thus by the linearity of expectation:

E[Y ] = P
(
1−

(
1− 1

P

)|Sf |
)

.

We also show that the probability of full-retrain in data-influence isolation unlearning methods scales
poorly with increasing deletion set size. Let p(n) be the probability that all P portions are affected on
the removal of n samples. Extending the analysis of Warnecke et al. (2021) from the specific case of
SISA to data-influence isolation in general, we get:

p(n) = 1−
∑|P |

j=1(−1)j+1
(|P |

j

)
(|P | − j)n

|P |n

Figure 2.5 shows p(|Sf |) grows logistically, implying there is a fast increase in the chance of needing
a full-retrain as deletion sets get larger. This demonstrates how data-influence isolation provides little
improvement in efficiency compared to the retrain-from-scratch baseline for practical scenarios.

Note that some prior work such as Graves et al. (2021) do not re-train the affected portions without the
deleted data, instead removing them entirely. This replaces the hit on resource efficiency with decreased
utility (such as accuracy) as more deletions lead to more affected portions being removed from the model.
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This explains why Graves et al. (2021)’s method produces an almost random model in the Class Removal
experiment shown in Table 2.2.

2.5.2 Membership Inference Attacks

Background Membership Inference Attacks (MIA) (Shokri et al., 2017) can be used to determine
whether a particular sample was part of the training data of a model. Many different black-box formula-
tions of MIA have been used to measure the efficacy of unlearning. Most (Golatkar et al., 2020b, 2021;
Ma et al., 2023; Graves et al., 2021) learn a binary attack classifier: based on the model’s output for
the sample, was the sample in the seen training set (class 0) or the unseen test set (class 1)? The attack
classifier is then applied on deletion set samples, with ideal unlearning entailing all samples are classified
as unseen. However, such a test is extremely sensitive to the efficacy of the attack classifier which may
be unreliable. Another approach has been to train the attack classifier to distinguish the outputs of a large
number of original (M ) and retrained (MT

r ) models and then classify the unlearnt model Mu (Baumhauer
et al., 2022). This formulation involves prohibitive computational expense and still can’t check over all
potential T ′ ̸= T , indistinguishability with any of whom would guarantee unlearning.

Song and Mittal (2021) show that metric-MIA, measuring simple metrics and deciding membership
based on a threshold, can match the classification accuracy of trained attack models. In particular, their
confidence-based MIA measures the model’s output probability for the target class and selecting separate
class-wise membership thresholds. It is shown to match the performance of even white-box MIA attack
classifiers.

Our Formulation
We adapt the confidence-based MIA (Song and Mittal, 2021) to propose an efficient black-box MIA

formulation specifically tailored for measuring forgetting. We assume direct access to the actual model
outputs instead of shadow models (Graves et al., 2021; Ma et al., 2023), as shadow models only weaken
the attack, making the unlearning test artificially easier to pass. We distinguish the model outputs on
samples from the deletion set Sf and unseen samples St from the same underlying distribution rather
than training an attack classifier using the entire train and test set. We believe this formulation is a more
targeted measurement of forgetting as it directly discriminates between outputs on Sf and St in contrast
to train and test set used in past literature (Golatkar et al., 2020b, 2021; Graves et al., 2021; Ma et al.,
2023).

Our MIA takes in model M , forget set Sf and unseen samples Su from the same classes found in Sf .
The following procedure is repeated for each ’target class’ t:

• Dataset SMIA is created with the probability outputs for class t: M(Sf )t and M(Du)t stored as
class 0 and class 1 respectively.

• We then create a 50-506 shadow (SMIA−S) - test (SMIA−T ) split of SMIA.

6Given that only 1 parameter (threshold) needs to be learnt, the shadow size is sufficient
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• A threshold pt needs to be chosen such that probabilities > pt are classified as class 0, and
probabilities < pt as class 1. The pt that maximizes the accuracy on SMIA−S is chosen.

• The accuracy obtained on SMIA−T using threshold pt is the MIA accuracy for target class t. A
weighted average of this test accuracy across all target classes is taken as the final MIA accuracy.

Usually, the target class t is the actual label of the sample. However, in the case of IC test, we use the
mislabelled class as the target for both, Sf and Su samples. Intuitively, the memorization of mislabels
in the deletion set would make the wrong class probability output unnaturally higher than other unseen
samples of the same class, making the MIA stronger. Such an enhancement is not possible in the case of
I.I.D confusion as the mislabels are untargeted.

In line with existing MIA literature, we want our attack classifier accuracy to be 50% incase of no
classifier advantage. Thus as the forget set and unseen set may have differing sizes in some experiments,
we take a random subset of the larger one to make the attack dataset balanced. The numbers reported are
averaged over 20 runs with randomness induced by the subset sampling step. Note that since the classifier
learns to distinguish between the test and forget set distribution directly, it might be able to distinguish
them spuriously, leading to slightly more than 50% attack classifier accuracy even on perfect unlearning.
Thus, the reference gold standard MIA performance can instead be that of any exactly unlearnt model
upon undergoing the same evaluation.

2.5.3 Hyperparameters

We now provide some additional details for results shown in the main paper.

2.5.3.1 Implementation Details

Training. We use the ResNet architecture (He et al., 2016) with 110 layers. Our standard training
procedure T is as follows: We train our models for 62 epochs (CIFAR10) or 126 epochs (CIFAR100),
using a SGD optimizer with momentum 0.9 and weight decay 5e-5, an SGDR scheduler with tmult = 2,
t0 = 1, minlr = 5e-3, maxlr = 0.01 and a batch size of 64. For EU-k and CF-k baselines, we use this same
training process, but on the final k layers. In CF-k, the only difference is we finetune for only half the
epochs.

The setup used for all experiments is a PC with a Intel(R) Xeon(R) E5-2640 2.40 GHz CPU, 128GB
RAM and 1 GeForce RTX 2080 GPU.

We make the following deviations in our experiments:

• In Table 2.2 we make changes described in Section ??.

• In Figure 2.3 and Table 2.4 we change the training procedure. When using cutmix regularization,
we use p = 0.5 and α = 1.0. For early stopping, we halve the number of epochs both while
training the original/retrain models and also in the unlearning procedures.

22



• In Table 2.5 we vary the number of finetuning epochs in CF-k.

• In Figure 2.11 we vary the confused classes in the IC test from easy-hard on the axis of distin-
guishability.

• In Figure 2.6 we further benchmark on ResNet-20, ResNet-56 and ResNet-110 to show our results
are robust to the choice of network depths.

• In Table 2.6 we ablate the effect of warm restarts in training the original/retrain model.

2.5.3.2 Metrics

Inclusion in the Evaluation Comparisons Table Note that the list of metrics in Table 1 of the main
paper does not include metrics like upper bound on information remaining in weights and activations
(Golatkar et al., 2020a,b, 2021) since its unclear whether such metrics can be computed on methods other
than their own proposed unlearning procedure. We also exclude purely-qualitative tests such as model
inversion attacks (Fredrikson et al., 2015) which have been used in prior unlearning works (Graves et al.,
2021; Baumhauer et al., 2022).

Details of Metric Computation
Targeted Error We propose Targeted Error which measures the number of samples classified

according to a property (information) unique to Sf . For the IC-test, it is the fraction of samples still

confused between the two classes, i.e. Targeted Error(M,S,A,B) =
CM,S

A,B +CM,S
B,A

|SA|+|SB | . where CM,S

is the confusion matrix when using model M outputs on dataset S and A,B are the classes confused.
For confusion between N > 2 classes, targeted error is the sum of the confusion matrix terms for all
pair-wise misclassifications among the N classes. Thus, targeted error converges to error when N is
the same as the total number of classes, as in I.I.D Confusion. For Class Removal test, targeted error
calculates the number of samples labelled as the removed class.

Note that the influence of utility on targeted error is significantly lesser than the simple error metric
on the affected classes as illustrated in Figure 2.1. Regarding the passing score for IC test: We speculate
achieving lower targeted error than randomly initialized models could be sufficient. However, achieving
this score is not necessary: even on exact unlearning of Sf , our models obtain a higher score due to
samples in the retained set (S \ Sf ) having noisy annotations, an unavoidable phenomena in real-world
datasets. We approximate this inherent noise in the dataset by using the model retrained from scratch.

For clarity, we further describe the computation of some metrics. Our MIA has already been described
in Section 2.5.2. Note that for measuring memorization, the deletion set is used, while for measuring
generalization (a subset of) the test set is used.

IC Targeted Error: For the IC test between class A and B, the targeted error represents the number
of samples of class A mislabelled as class B and vice-versa. Intuitively, as the mislabelled samples
are forgotten by the unlearning procedure, the model should confuse lesser samples between these two
classes.
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Method I.I.D Removal (↓) Class Removal (↓) I.I.D confusion (↓) IC (↓)

CIFAR-10 (|Sf | = 4000)

Original 8.4 ± 0.2 8.8 ± 0.4 14.3 ± 0.7 6.9 ± 0.5

1-layer
CF 8.4 ± 0.1 8.3 ± 0.2 13.0 ± 0.9 6.5 ± 0.5

EU 8.5 ± 0.1 8.4 ± 0.3 12.8 ± 0.9 6.6 ± 0.3

10-layers
CF 8.4 ± 0.2 8.4 ± 0.2 12.0 ± 0.6 6.5 ± 0.4

EU 8.7 ± 0.1 8.6 ± 0.2 12.0 ± 0.7 6.7 ± 0.2

50-layers
CF 8.5 ± 0.1 8.1 ± 0.4 10.0 ± 0.4 6.1 ± 0.3

EU 9.3 ± 0.3 8.8 ± 0.4 10.4 ± 0.4 6.9 ± 0.5

Retrain 9.3 ± 0.1 8.2 ± 0.3 8.8 ± 0.3 6.4 ± 0.2

CIFAR-100 (|Sf | = 400)

Original 32.1 ± 1.1 31.6 ± 1.1 32.4 ± 1.4 31.8 ± 0.8

1-layer
CF 32.1 ± 1.0 31.7 ± 1.2 32.4 ± 1.3 31.7 ± 0.7

EU 32.1 ± 1.0 31.7 ± 1.1 32.4 ± 1.2 31.8 ± 0.7

10-layers
CF 32.4 ± 0.9 32.2 ± 1.1 32.6 ± 1.3 32.0 ± 0.6

EU 33.3 ± 1.2 32.5 ± 1.1 33.3 ± 1.2 32.8 ± 0.9

50-layers
CF 31.7 ± 0.9 31.5 ± 1.0 31.8 ± 0.8 31.2 ± 0.6

EU 32.1 ± 0.3 31.6 ± 0.2 31.8 ± 1.0 31.7 ± 1.0

Retrain 32.2 ± 0.4 31.6 ± 0.6 31.7 ± 1.3 31.8 ± 1.0

Table 2.3: Error on the retain set distribution of test samples across unlearning tests. Scores are reported

as: mean ± stdev. The EU-k and CF-k unlearning procedures lead to a minimal change in utility

compared to retraining from scratch, unless utility is correlated with unlearning in the applied test.

Class Removal Targeted Error: For the class removal test removing samples from class A, the
Targeted Error represents the number of samples the model classifies as class A. Intuitively, as more
samples from A are removed, the model should classify lesser samples into A. Note that if the entire
class is not removed, a model that generalizes better from the partial samples still available may get
penalized unnecessarily.

IC Error: Error on train/test samples from the confused classes of the IC test, A and B.

Class Removal Error: Error on train/test samples of the removed class A.

I.I.D confusion, Error: Error on all samples from the train/test set. Here, a specific set of classes
cannot be used for a targeted measurement.

2.5.3.3 Choices for Tests

In the IC test we confuse samples between classes 3 (Cat) and 5 (Dog) on CIFAR10 and classes 47
(Maple Tree) and 52 (Oak Tree) on CIFAR100 unless otherwise specified. Confusing two classes can
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Method None Early Stop Cutmix Cutmix+Early

CIFAR-10 (|Sf | = 4000)

Original 6.53 7.91 5.81 8.02

10-layers
CF 6.11 7.93 5.45 7.27

EU 6.55 7.88 5.68 7.08

50-layers
CF 5.75 7.31 5.32 6.75

EU 6.57 7.87 6.16 8.20

Retrain 6.31 8.50 5.70 8.97

CIFAR-100 (|Sf | = 400)

Original 32.53 33.10 27.26 30.03

10-layers
CF 32.22 33.04 27.98 30.61

EU 33.25 33.23 28.59 31.23

50-layers
CF 30.93 32.37 27.92 29.37

EU 31.98 33.66 30.41 30.93

Retrain 30.64 32.62 26.67 30.67

Table 2.4: Error on the retain set distribution of test samples on varying the training procedure of the

original model. Regularized models have better utility even after unlearning.

harm the overall accuracy of the original model, and we expect this effect to be more prominent when
the total number of classes in the dataset is lower. The deletion set size is the same as the number of
samples from one class in the training set unless otherwise specified. Note that while the size of Sf is the
same when comparing different tests, the size of St is dependent on the test itself. In targeted tests (Class
removal, IC), St only has test set samples from the affected classes, whereas in untargeted tests (I.I.D
Removal, I.I.D confusion) St consists of the entire test set. In Class Removal test we remove class 0 for
both CIFAR10 and CIFAR100, whereas in I.I.D Removal and I.I.D confusion we draw an equal number
of samples randomly from each class.

2.5.3.4 Utilities

To measure utility, we compute error on unseen samples from the same distribution (unaffected
classes) as S \ Sf , called the retain distribution. For the I.I.D Removal and I.I.D confusion tests, as the
removal is untargeted, the evaluated samples are the same as the full test set. For the Class Removal and
I.I.D confusion tests the evaluated samples consist of test set samples from the unaffected classes. This is
done as error on samples from the deletion set distribution correlates with the unlearning efficacy, and
thus removing them leads to a measurement of utility largely independent of unlearning.

In Table 2.3 we show the utilities of the EU-k and CF-k unlearning procedures across all four tests.
We observe a negligible impact on utility compared to retraining from scratch, unlike most unlearning
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Method Epochs Mem Prop. Gen. Test-Error

(Targeted Error) (Targeted Error)

CIFAR10

Original - 3016.0 927.0 16.00

CF-10

6 1453 408 11.07

14 1305 366 10.63

30 1226 335 10.24

CF-50

6 758 251 9.42

14 643 241 9.17

30 569 229 9.25

Retrain 62 390 184 9.33

CIFAR100

Original - 395 70 32.53

CF-10

6 357 56 32.71

14 348 55 32.60

30 337 54 32.98

62 325 57 32.60

CF-50

6 128 47 32.88

14 141 45 32.12

30 108 47 32.11

62 86 36 31.92

Retrain 126 64 31 30.82

Table 2.5: Varying catastrophic forgetting epochs on the IC test. The number of epochs used for

fine-tuning can further control the forgetting-efficiency tradeoff without hurting utility.

procedures suggested in existing literature. The only significant difference in error is observed in the
I.I.D confusion test, where better unlearning leads to improved utility as the model gets less confused
by the mislabelled samples. Note that this is not observed in the IC test as the error is reported on only
the unaffected classes, where error is independent of unlearning. Thus, EU-k and CF-k can be used to
control the unlearning-efficiency tradeoff at a fixed utility.

In Table 2.4 we show the impact of regularization on utility. We observe that early stopping slightly
increases the errors, while cutmix alone reduces them especially in CIFAR100. Given the significant
improvement in utility and greater downstream amenability to unlearning, using regularizers like Cut-
mix seems highly rewarding. Our unlearning procedures do not decrease the utility barring a slight
deterioration when the training procedure uses cutmix while the unlearning procedure does not.
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2.6 Sensitivity Analysis

We show empirical results on (i) varying the number of unlearning epochs, (ii) layers in the architecture
and (iii) samples to be deleted. We also vary the choice of confused classes and ablate the effect of
warm restarts in our training procedure. These results demonstrate the robustness of our observations to
changes in optimization details, model, selected classes, and training procedure.

2.6.1 Varying the number of unlearning epochs

The original experiments train CF-k models for half the epochs compared to EU-k models. In
Table 2.5 we compare the variation of performance among CF-k models at the end of each warm restart
while finetuning. While less information is unlearnt on reducing epochs, even six epochs are sufficient
for drastic improvements in forgetting, with no significant change in utility (error on full test set). The
number of catastrophic forgetting epochs can thus be reduced, and control the forgetting-efficiency
tradeoff at constant utility.

2.6.2 Varying the number of layers

In Figure 2.6 we show results of varying k for 3 different ResNet depths: 20, 56 and 110. The IC test
is able to detect retained information despite exact unlearning of almost 30% of the final layers. However,
on unlearning the final half of the network, its unclear whether most information is removed or the IC
test is unable to identify the presence of retained information. CF-k is consistently within a small margin
of EU-k demonstrating the catastrophic forgetting is able to lose enough information to match EU while
being two times faster.

2.6.3 Varying Amount of Untargeted Removal

In Figures 2.7 and 2.8, we show the forgetting performance when we vary deletion set sizes in tests
with untargeted removal: I.I.D Removal and I.I.D Confusion. Here, we use larger sizes than those
reported in the main paper as smaller deletion sets show negligible trends in untargeted removal. For
detecting effects on property generalization, Error on I.I.D confusion test needs far fewer samples than
Error on I.I.D Removal. For memorization, we see that Error is able to distinguish and rank models
fairly well whereas MIA works well in the case of I.I.D Removal test but fails completely on the I.I.D
Confusion test. CF models continue to be close to EU models here and the gap between them decreases
as we add more confusion. Overall, untargeted removal requires much larger deletion sets to show clear
forgetting trends as compared to targeted removal, demonstrating the usefulness of strategic sampling.
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2.6.4 Varying Amount of Targeted Removal

Now, we study the forgetting performance for partial Class Removal and partial Interclass Confusion.
We show results for varying |Sf | from 10% samples of a class to the size of an entire class (as used in the
original paper).

First, we present the results of the IC test in Figure 2.9. We see that for memorization all metrics are
reflective even when a very small subset of samples is confused. Error and MIA having increasingly
better contrast for smaller deletion sets.

Then, we present the results of the Class Removal test in Figure 2.10. The Class Removal test has
significantly different behavior when all samples of the class are removed compared to partial class
removal. In the case of full Class Removal, all information about the class is removed, and hence an
unlearnt model is expected to not classify any sample as the removed class. However, in partial Class
Removal, a well generalized model may correctly classify more samples as the affected class, thus
leading to the misalignment of utility and forgetting. We observe that MIA seems to have unclear trends
in partial Class Removal, sometimes giving a weak signal for unlearning efficacy.

2.6.5 Varying Confused Classes

Throughout our experiments, we only confused the hardest pair of classes in the dataset (Cat and Dog
for CIFAR10, Maple Tree and Oak Tree for CIFAR100). In Figure 2.11 we ablate the chosen class pair,
grouping the ten classes in CIFAR10 into five pairs to maximize diversity. The five pairs are arranged in
increasing order of similarity below along with their bar color:

• Frog (6) - Horse (7): Red

• Bird (2) - Ship (8): Blue

• Airplane (0) - Deer (4): Light Green

• Automobile (1) - Truck (9): Dark Green

• Cat (3) - Dog (5): Black

We can see that the number of confused samples by any model is much higher as we go from
left to right, indicating that confusing a similar pair of classes makes unlearning more difficult. Both
memorization and property generalization trends across varying levels of unlearning, from Original to
Retrain, are consistently preserved. This shows that irrespective of the chosen class pair, the IC test is
able to clearly distinguish varying degrees of forgetting.
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Sched CF-10 CF-50

MIA Targeted Error MIA Targeted Error

CIFAR10 (|Sf | = 4000)

WR 58.66 335 54.24 229

No 58.10 340 53.62 234

CIFAR100 (|Sf | = 400)

WR 77.99 58 58.24 41

No 78.87 55 58.57 43

Table 2.6: We compare Warm Restarts and keeping a single learning rate cycle between the same maxLR

and minLR. MIA represents memorization while Targeted Error measures property generalization.

2.6.6 Learning Without Restarts

One concern which may arise is whether catastrophic forgetting performs well due to warm restarts in
our learning rate schedule. We ablate this effect in Table 2.6 and see that in all cases removing warm
restarts has no effect on the degree of catastrophic forgetting.
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Figure 2.6: We plot the MIA (Y) vs number of layers unlearnt using EU-k (solid blue) and CF-k (dashed

red) for different architectures across datasets. For each model (point) we report three forgetting metrics

as ‘memorization | property generalization (MIA)’ with memorization and property generalization

computed using targeted error. The leftmost point is the original model while the rightmost EU point

is the full retrained model. We observe consistent observations with the main paper across metrics and

datasets.
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Figure 2.7: Varying |Sf | for I.I.D Removal test. Error seems to distinguish varying levels of memorization,

but needs huge deletion sets (50% of dataset size) in the case of property generalization. Moreover, here

error has the limitation of misaligning forgetting (↑ is better) and utility (↓ is better).
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Figure 2.8: Varying |Sf | for I.I.D Confusion test. Error reliably measures memorization even in small

deletion sets (1% of deletion set size), though much larger ones (20% of deletion set size) are needed to

produce detectable effects on property generalization.
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Figure 2.9: Varying |Sf | for IC test. In CIFAR10, at 1% of dataset size, the IC test reliably detects

imperfect forgetting across metrics. In CIFAR100, imperfect removal of memorization is detected at 1%

of the class size, a noticeable effect on generalization requires a larger deletion set (5% of dataset size).
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Figure 2.10: Varying |Sf | for Class removal test. The Class removal test is not able to reliably distinguish

varying levels of property generalization and provides a weak signal for memorization, particularly for

small |Sf |.
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Figure 2.11: Varying confused class pairs on CIFAR10, with the similarity of the classes increasing from

left to right in each group of bars. While the IC test reliably detects imperfect forgetting across class

pairs, the trends are clearer for more similar classes.
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Chapter 3

Corrective Unlearning1

3.1 Introduction

Foundation models are increasingly trained on large and diverse datasets, including millions of
web pages and contributions from numerous users and organizations (Schuhmann et al., 2022; Gao
et al., 2020). However, data integrity issues significantly impact model performance (Konstantinov and
Lampert, 2022; Paleka and Sanyal, 2023) by introducing systemic biases (Prabhu and Birhane, 2021) and
adversarial vulnerabilities (Barreno et al., 2006; Sanyal et al., 2021). For instance, a small manipulated
subset of web data sources has led to large-scale model poisoning (Carlini et al., 2023), underscoring
the vulnerability of these models to such adversarial tactics. Moreover, a critical real-world obstacle is
that model developers can often only identify a fraction of the manipulated data, especially when the
manipulations are small, imperceptible changes to input or incorrect labels.

Model developers maybe notified of the manipulated data, either through poisoning defenses and other
methods for monitoring of the data pipeline (Breck et al., 2019; Wang et al., 2019; Northcutt et al., 2021b)
or external information. Due to high costs incurred in training, they may wish to update models trained
on the corrupted data, instead of stopping their use. To solve this problem of removing the influence of
manipulated data from a trained model, we introduce the concept of Corrective Machine Unlearning.
This approach aims to efficiently eliminate any detrimental effects from the identified samples, even
when the precise nature and extent of the manipulation is unknown. Corrective unlearning has different
underlying requirements from the traditional unlearning literature (see Nguyen et al. (2022) for a survey)
which is motivated by catering to user data deletion requests in light of privacy regulations (Council of
European Union, 2018; California State Leglisature, 2018; Parliament of Canada, 2018). Specifically,
corrective unlearning procedures do not need to obtain privacy guarantees on the “unlearned” data.
Instead, they must improve clean-label accuracy on parts of the data domain where model performance

1Goel, S., Prabhu, A., Torr, P., Kumaraguru, P., Sanyal, A. (2024). Corrective Machine Unlearning. Data-centric Machine
Learning Research (DMLR) Workshop at The Twelfth International Conference on Learning Representations (ICLR). All
figures in this section are taken from the paper.
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is adversely affected by the manipulated data while only having access to a representative subset of
manipulated samples.

We investigate the application of state-of-the-art unlearning procedures (Kurmanji et al., 2023; Goel et al.,
2023; Chundawat et al., 2023a; Foster et al., 2023) to remove adverse effects of two different kinds of
manipulations. First, we study a classic poisoning attack (Gu et al., 2019), where a trigger pattern is
embedded in a subset of samples, which are then assigned incorrect labels. Such manipulations occur
when collecting both features and labels from internet web-pages which adversaries can modify, such
as Wikipedia, as demonstrated by Carlini et al. (2023). This can lead to a backdoor where adversaries
trigger model misclassifications by inserting the trigger pattern during deployment. Such actions can
significantly harm applications, such as autonomous driving (Han et al., 2022). Second, we study the
Interclass Confusion test (Goel et al., 2023) where the adversary incorrectly labels samples between two
classes thereby entangling the model’s representations. Such mislabeling can cause systematic biases
in model outputs (Prabhu and Birhane, 2021). Such label-only manipulations can occur when model
developers have their own unlabelled datasets but rely on external sources for annotation.

Model developers may eventually recognize compromised data sources and wish to unlearn the influence
of this data from previously trained models. We find that many recent unlearning methods, including
the traditional gold standard of retraining-from-scratch, fail in the context of corrective unlearning as
illustrated in Figure 3.1. Particularly, even knowing 80% of the manipulated data is not enough to remove
the adverse effects introduced by manipulating just 1% of the whole training data. However, the Selective
Synaptic Dampening (Foster et al., 2023) method is able to remove the effect of BadNet poisoning with
just 10% of the manipulated data being identified, showing the tractability of this setting. However, it
leads to a significant drop in overall test accuracy, and fails in the Interclass Confusion setting, leaving
much to be desired. Overall, this chapter highlights the need for unlearning procedures tailored to
removing the influence of manipulated data.

3.2 Ideal Corrective Unlearning

In this section, we formalize the requirements of corrective unlearning, and detail key differences
from the traditional privacy-oriented unlearning.

3.2.1 Problem Setting

We initiate our discussion by detailing the ideal corrective unlearning framework, introducing a
precise threat model, and identifying specific desiderata.

Scenario: Training sets for large models are often compilations of data from diverse sources such as web
pages, platforms like Reddit, data contractors, annotators, user inputs etc. These sources can introduce
systematic biases or, more critically, contain data that has been adversarially manipulated, motivating
model developers to use corrective unlearning. Crucially, corrective unlearning methods should be able
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Figure 3.1: Traditionally, retraining after removing identified data is considered a gold standard in

unlearning. However, since developers may not identify all the wrong data for unlearning, retraining-

from-scratch on remaining data leads to poor clean-label accuracy. Ideally, corrective unlearning

procedures should improve accuracy on the affected domain with access to only a representative subset

of the wrong data.

to tackle a strong adversarial threat model that allows arbitrary manipulations. In doing so, it’s reasonable
to expect these unlearning methods can also address problems stemming from naturally occurring benign
errors.

Threat Model: Next, we discuss the adversary and model developer’s perspective.

Adversary’s Perspective: The adversary can arbitrarily manipulate any portion of the input data,
including labels in supervised learning scenarios. For example, in poisoning attacks, a trigger is inserted
into each manipulated data sample, altering its label to an incorrect one (Han et al., 2022).

Developer’s Perspective: Model developers identify some of the compromised data sources after
having already trained a model, either through internal monitoring or defenses or external information
like tipoffs. While detecting all manipulated data is challenging, it is feasible to be given a small subset
which we assume to be representative of the broader set of manipulated data. Since the adversary can
apply arbitrary manipulations, the exact manipulation type is unknown to the model developer apriori.
The goal of model developers is to remove the adverse effects of the manipulated data from the original
model using this small identified representative subset.

Formalization and Notation: Let X be the data domain, Y be the label space, and P be the distribution
on X × Y . Let Str ⊂ X be the training data, and Sm ⊂ Str be the training samples manipulated by
the adversary, either by modifying features, the associated training labels, or both. Let Dm ⊂ X be the
domain where performance is adversely affected when learning using Sm. For example, in poisoning,
Dm contains samples with the poison trigger. In Interclass Confusion, Dm consists of samples from
the two affected classes. Clearly, Dm also contains Sm. Finally, let A be the learning algorithm, and
Mo = A(Str) be the original trained model.
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A corrective unlearning algorithm Ucorr “improves” the original model (Mo) by removing the
influence of Sm. Typically, we expect only a subset of samples to be identified as manipulated, which we
denote as the deletion set Sf ⊆ Sm. Thus, Ucorr takes as inputs Mo, Str, Sf and yields an unlearned
model Mu. Next, we list the goals of an unlearning procedure.

Desiderata: A corrective unlearning procedure Ucorr has the following objectives:

1 Removing the influence of manipulated samples: The primary goal is to remove the adverse effect
learnt due to the manipulated data Sm. We operationalize this as improving the clean-label accuracy on
Dm:

E(x,y)∼P [I{h(x) = y} | x ∈ Dm]

where h = Ucorr(M0, Str, Sf ). We also compute the clean-label accuracy on the manipulated training set
Sm to check if the unlearning procedure “corrects” the manipulation in the training data. It is important to
note that while the domain Dm may be easier to identify for some kind of manipulations like poisoning,
it may be more difficult in other cases.

2 Maintaining model utility: Intuitively, the unlearning process should not harm performance on
unrelated samples i.e. data outside Dm, retaining model utility. We operationalize this as the overall
accuracy (X \ Dm):

E(x,y)∼P [I{h(x) = y} | x /∈ Dm]

where h = Ucorr(M0, Str, Sf ).

This quantity should decrease minimally, and can potentially increase due to a possibly conservative
estimate of Dm. For example, the manipulated data may affect the representations learned by the model
in unintended ways and thereby impact the utility on unrelated and unexpected parts of the domain.

3 Effectiveness with Incomplete Identification: Corrective unlearning algorithms (Ucorr) should
effectively unlearn adverse effects of manipulations even when the identified subset of the manipulated
data Sf is a small representative subset of Sm. This means achieving 1 , 2 even when |Sf |

|Sm| is less than
one.

4 Computation Efficiency: This is measured as the time taken by the procedure, which should be
minimized.

We refer to these desiderata and the associated numbering explicitly throughout the rest of the paper.

3.2.2 Differences from Privacy-Oriented Unlearning

Traditional unlearning seeks to ensure retrain indistinguishability: the unlearning procedure U aims to
produce a distribution of models that is indistinguishable from one obtained without the forget set. Thus,
for some learning algorithm A′ which may be different from the original training procedure A, U should
produce an indistinguishable distribution of models U(Mo, Str, Sf ) ∼ A′(Mo, Str \ Sf ). We highlight
the distinctive aspects of corrective unlearning as opposed to traditional privacy-focused unlearning, and
describe how these differences necessitate changes in unlearning evaluations and method design.
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3.2.2.1 No Privacy Requirements

Key Distinction: In the corrective unlearning context, Sf and Sm does not need to be privatized, setting
it apart from traditional unlearning.

Implications: Traditional unlearning is designed to meet strict privacy standards, necessitating either : (1)
algorithms with theoretical privacy guarantees (Thudi et al., 2022) akin to those provided by differential
privacy (Gupta et al., 2021), or at least (2) strong performance against privacy auditing on the data to be
forgotten Sf (Golatkar et al., 2020a) such as those performed by Membership Inference Attacks (Shokri
et al., 2017). In Chapter 2, we showed rigorous empirical evaluations of the retrain indistinguishability
goal are computationally infeasible for deep learning models. Not only is producing a distribution of
models expensive, but since A′ can differ from the original training procedure, there is a need to search
the algorithm space for an A′ that produces models indistinguishable from the unlearning procedure.
Corrective unlearning bypasses these challenges by setting the practical goal of achieving empirical
improvements in model accuracy on samples from the affected domain as the primary success metric
( 1 ).

3.2.2.2 Removal of Incorrect Training Data

Key Distinction: The goal of traditional unlearning is to remove untampered but sensitive user data.
However, corrective unlearning removes the influence of samples which were manipulated, either in data,
labels or both. This can be particularly challenging for mislabeled data or in multi-class problems, where
the corresponding clean version of the data and/or the correct label is unknown.

Implications: Removing accurate samples in traditional unlearning scenarios typically degrades model
performance (Golatkar et al., 2020a). Moreover, some unlearning procedures explicitly try to randomize
model outputs on forget set samples (Chundawat et al., 2023a; Li and Ghosh, 2023). However, in
corrective unlearning, eliminating manipulated samples is expected to significantly enhance model
performance on parts of the affected domain Dm ( 1 ). It may also improve the quality of learned
representations leading to increase in overall accuracy ( 2 ).

3.2.2.3 Retrain-from-Scratch is no longer a Gold Standard

Key Distinction: In traditional unlearning, all the data whose influence is to be removed from the model
is specified by user deletion requests. However, when identifying manipulated data, it is unrealistic to
assume all of it will be found. Thus, in corrective unlearning, Str \ Sf will continue to have manipulated
data from Sm \ Sf ( 3 ).

Implications: Retraining from scratch on Str \ Sf is the gold standard for traditional unlearning but
it is computationally expensive. Therefore, the core challenge for traditional unlearning procedures is
achieving computational efficiency ( 4 ). However, in corrective unlearning, as Str \Sf continues to have
manipulated data, unlearning procedures that solely rely on it (Schelter, 2020; Bourtoule et al., 2021; He
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Objective Measurement Poisoning Figure IC Test Figure

Removing influence of manipulation Clean-label accuracy on test set samples
Figure 3.2 Figure 3.4

on unseen samples ( 1 ) from affected domain (Dm)

Removing wrong predictions on Clean-label accuracy on
Figure 3.6 Figure 3.5

manipulated training samples ( 1 ) manipulated training samples (Sm)

Utility ( 2 )
Accuracy on test set samples from

Figure 3.3 Figure 3.7
unaffected domain (X \ Dm)

Table 3.1: Summary of figures in terms of quantities reported on the Y-axis, with the X-axis varying |Sf |.

et al., 2021; Graves et al., 2021; Goel et al., 2023) perpetuate the adverse effects of the manipulation.
This necessitates a methodological inquiry beyond computationally efficient approximations of retraining
from scratch, which ceases to be a gold standard. This naturally leads to the question How can we
effectively remove the detrimental impacts of Sm using a representative, albeit smaller, subset Sf?

3.3 Experiments

We study image classification as the broader existing unlearning literature is situated here, only
changing the task to corrective unlearning. We benchmark existing unlearning methods in the corrective
unlearning setting, across fractions of identified manipulated samples |Sf |

|Sm| . We investigate the unlearning
of two manipulations: poisoning (Gu et al., 2019) and interclass confusion (Goel et al., 2023).

Roadmap: We report the Experimental Setup in Section 3.3.1. Table 3.1 lists the quantities reported
on the Y-axis to measure removal ( 1 ) and utility ( 2 ). To measure effectiveness at different levels of
identification of manipulated samples ( 3 ), we vary |Sf | on the X-axis from 10% of |Sm|, i.e. a small
portion of manipulated samples being used for unlearning, to 100% of |Sm|, i.e. all manipulated samples
being used for unlearning. Finally, we report computational efficiency ( 4 ) of the different methods used
in Table 3.3.

3.3.1 Setup Details

Datasets, Models, Manipulation and Deletion Sizes: We use the CIFAR (Krizhevsky et al., 2009)
datasets as standard benchmarking datasets in image classification and unlearning. We use the ResNet-9
(Idelbayev, 2018) model for CIFAR10, and WideResNet-28x10 (Zagoruyko and Komodakis, 2016) for
CIFAR100. We report results for each dataset for multiple manipulation sizes n = |Sm| as detailed
in Table 3.2. In each setting, we vary the deletion set size |Sf | from 10% to 100% of the manipulation
size |Sm| at intervals of 10%.

Our standard training procedure A is as follows: We train our models for 4000 steps on CIFAR10,
PCAM and 6000 steps on CIFAR100. Each step consists of training on a single batch, and we use
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a batch size of 512 throughout. We use an SGD optimizer with momentum 0.9 and weight decay
5e-4, a linear scheduler with tmult = 1.25, and warmup steps as 1

100 of the total training steps. The
same hyperparameters are used during unlearning unless otherwise specified. The setup used for all
experiments is a PC with a Intel(R) Xeon(R) E5-2640 2.40 GHz CPU, 128GB RAM and 1 GeForce RTX
2080 GPU.

3.3.2 Unlearning Methods

We benchmark state-of-the-art unlearning methods across paradigms.

(1) Exact Unlearning (EU): This paradigm involves retraining parts of the ML system (Bourtoule
et al., 2021; Goel et al., 2023; He et al., 2021) that are influenced by Sf from scratch using Str \ Sf .

Method Used: We benchmark the strongest version, retraining the entire model from scratch on
Str \ Sf using the original training algorithm A. This is considered an inefficient but gold standard
unlearning procedure in prior work.

(2) Catastrophic Forgetting (CF) : Neural Networks suffer from catastrophic-forgetting (French,
1999) - when a model is continually updated without some previously learnt samples, the model loses
knowledge about them. Many unlearning methods perform finetuning on Str \ Sf to achieve unlearning
of Sf via catastrophic forgetting, and in chapter 2 we show even finetuning just the final layers of the
model performs well on the IC test.

Method Used: We use the strongest version of this by using all layers for unlearning. We use the
original training procedure A for 1000 steps on Str \ Sf .

(3) Modifying learnt parameters with high influence from Sf : This is a training-free class of
methods (Golatkar et al., 2020a,b; Peste et al., 2021; Chundawat et al., 2023b) that identifies parameters
with information relevant to the forget set using statistics like the Fisher Information Matrix (FIM). It
then damages these parameters by adding noise or reducing their magnitude hoping to selectively remove
information about Sf .

Method Used: We benchmark the recently proposed Selective Synaptic Dampening (SSD) method
which has shown state of the art results in this paradigm (Foster et al., 2023). We extensively tune
the weight selection threshold α and weight dampening constant γ. We find that γ should be tuned
relative to α for optimal results. For each datapoint, we pick the best result out of runs with α =

[0.1, 1, 10, 50, 100, 500, 1000, 1e4, 1e5, 1e6], γ = [0.1α, 0.5α, α, 5α, 10α].

(4) Pushing Sf outputs towards random: Some unlearning procedures (Graves et al., 2021; Li and
Ghosh, 2023; Chundawat et al., 2023a) push the model towards random outputs on the deletion set.

Method Used: We benchmark Knowledge Distillation from Bad Teacher (BadT) (Chundawat et al.,
2023a), a state of the art method in this paradigm, which simultaneously distills from a randomly
initialized neural network on Sf , and the original model on the remaining data Str \ Sf . We finetune the
original model using this procedure for 1000 unlearning steps.
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Dataset #Classes Model Poisoning |Sm|/|Str| IC Test |Sm|/|Str|

CIFAR-10 10 ResNet-9 0.2%, 1%, 2% 1%, 5%, 10%

CIFAR-100 100 WideResNet-28x10 0.2%, 1%, 2% 0.2%, 0.5%, 1%

Table 3.2: Dataset and models along with manipulation sizes for the Poisoning and Interclass Confusion

(IC) evaluation.

(5) Alternating between Forget and Retain steps
Method Used: Kurmanji et al. (2023) propose SCRUB and show it performs well on unlearning
mislabelled samples when all are identified. The method alternates between forget steps and knowledge
preservation steps. The forget step involves doing gradient ascent using the task-loss for Sf . The
knowledge preservation step does knowledge distillation from Mo using Str \ Sf as well as optimizing
the task-loss on Str \ Sf . We finetune the original model using this procedure for 1000 unlearning
steps, out of which the forget step is used only in the first 200 unlearning steps as it is recommended in
the paper to run it only in the initial iterations. We use a smaller learning rate (0.0025) as the original
value leads to stability issues. We tune the hyperparameter α which controls the trade-off between
the distillation loss and the task-loss. For each datapoint, we pick the best result out of runs with
α = [0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10].

Selection of Best Hyperparameters in Unlearning Phase: Most unlearning methods require hyper-
parameter tuning and this presents a challenge for the model developers on how to pick the best model.
Selecting the model with the best validation accuracy may have low removal ( 1 ), especially if the
domain affected by the manipulation Dm is a small fraction of the overall domain X . Moreover, model
developers are unaware of the manipulation performed by an adversary, and thus may not be able to
precisely isolate the affected domain for validation. In our setting, model developers only have access to
Sf ; thus even assuming the original training to be incorrect, the correct labels are unknown in multiclass
setting. Let the deletion change be the fraction of Sf whose prediction by the model differs from the
provided label in training. A higher deletion change may indicate more removal. However, note that the
deletion change of a trivial model that has no utility ( 2 ) can be quite high. Thus, we propose using a
weighted average of the deletion change and the validation accuracy to select an unlearnt model that
balances removal ( 1 ) and utility ( 2 ). In this work, we weigh them equally.

3.3.3 Unlearning Poisons

Setting: We use the BadNet poisoning attack introduced by Gu et al. (2019) to evaluate the use of
unlearning methods to remove backdoors. We manipulate n training images by inserting a trigger pattern
that makes 0.3% pixels white at bottom-right positions, re-labeling each of these images to class zero.
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Figure 3.2: Clean-label Accuracy on Test Samples with Poison Trigger. Each method is shown across

deletion sizes |Sf | after unlearning (“None” represents the original model). Existing unlearning methods

except SSD, including EU which is traditionally considered a gold-standard, perform poorly when ≤ 80%

of the poisoned data is identified for unlearning, even when just 1% of training data is poisoned as in (b),

(c), (e), (f).

Models trained on datasets containing this manipulation are more likely to label samples containing the
trigger pattern as class zero. Here the affected domain Dm consists of all samples containing the trigger
pattern. In this setting, adversaries manipulate both the data features and labels. This can occur when
model developers scrape data and corresponding annotations from webpages, such that a subset of these
webpages can be manipulated by the adversary.

Results: Figure 3.2 shows clean-label accuracies when the trigger pattern is inserted in all test set samples.
EU is the gold standard when all manipulated samples are known, and indeed it achieves the highest
accuracy at |Sf | = |Sm|. However, it dramatically fails in cases when up to 80% of the manipulated
samples are known, even where only 1% (500 samples) of the training data is poisoned (subfigures b, c,
e, and f). This shows the insufficiency of the traditional unlearning goal of approximating retraining from
scratch on Str \ Sf , as the remaining poisoned samples are capable of maintaining their adverse effects,
even when their number is small (Gu et al., 2019).

As a consequence, state-of-the-art approaches in unlearning literature like EU, CF, and Scrub perform
quite poorly in this setting. BadT shows poor results throughout, as randomizing outputs on Sf conflicts
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Figure 3.3: Accuracy on Test Samples with No Poison trigger. While other unlearning methods (“None”

represents the original model) maintain utility, SSD shows a significant drop across deletion sizes |Sf |

across (a)-(f).

with the goal of improving model accuracy on Sf ( 1 ). On the contrary, SSD recovers accuracy on Dm

(achieving 1 ) even with 10% of manipulated samples known, showing the tractability of generalizing
removal from a small representative subset of Sm ( 3 ). However, as shown in Figure 3.3, SSD leads
to significant drops in model utility ( 2 ), while other unlearning methods maintain utility throughout.
Pruning a small subset of weights is a well-known strategy to mitigate poisons (Wang et al., 2019) as
they associate a specific feature with the incorrect label. We believe SSD succeeds in this setting as
it can identify weights that learn the BadNet poison effectively even when only a small portion of the
manipulation set is known.

Conclusion: Traditional unlearning methods that train on Str \ Sf perform poorly in practical scenarios
when all manipulated samples are unknown ( 3 ). SSD shows positive results for removing poisons,
demonstrating the tractability of corrective unlearning in this setting, though it hurts model utility, leaving
scope for improvements. Since SSD works by modifying a small subset of weights, it motivates the
usefulness of mechanistic interpretability (Elhage et al., 2021) or influence-function based approaches
(Grosse et al., 2023) for removing backdoors at least in small-scale settings.
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Figure 3.4: Clean-label Accuracy on Test Samples on the Two Confused Classes. We compute clean-

label accuracy on the classes A,B used for the Interclass Confusion test, across deletion sizes |Sf |.

SSD provides no improvements over the original model (represented as “None”), and other unlearning

methods also require a large fraction of the manipulated data to be identified for unlearning. In the lower

manipulation size setting (a) and (d), the model outputs on unseen samples are not affected much, so we

show unlearning trends on manipulated train samples below.

3.3.4 Unlearning Interclass Confusion

Setting: We use the Interclass Confusion (IC) test as a strong evaluation for the use of unlearning methods
to remove the influence of mislabels. In the IC test, two classes A and B are picked, and n

2 samples
from both classes are selected, and their label is changed to the other class. Models trained on datasets
containing this manipulation are more likely to confuse these classes, i.e. predict A samples as B and
vice-versa. The affected domain Dm consists of all samples from class A and class B. For CIFAR10, we
confuse the Cat and Dog classes, and for CIFAR100 maple and oak tree, which is consistent with the
setup in Chapter 2.

The IC test applies in the setting where the adversary can only manipulate labels, such as when model
developers outsource annotations for their own data. Mislabels between two classes can also occur
due to systematic biases in the labelling process, or misinterpretation in annotation guidelines on how
to distinguish the classes. Manipulating only labels may appear to be a weaker setting compared to
poisoning. However, unlike poisoning where a small subset of weights may be associated with the trigger
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Figure 3.5: Clean-label Accuracy on Manipulated Training Samples Sm with Interclass Confusion for

different unlearning methods (“None” represents the original model) across deletion sizes |Sf | . Existing

unlearning methods perform poorly when |Sf |
|Sm| is lower. Even the smallest setting (a, d) shows clear

unlearning trends.
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and can be targeted for unlearning, the IC test can have a more uniform effect across weights, confusing
the learnt representations of clean samples without any specific triggers. We hypothesize unlearning
procedures like SSD that modify specific parameters may be less effective for such settings.

Results: In Figure 3.4, we see that EU, CF, and Scrub show gradual improvement in removal ( 1 )
as larger fractions of the manipulated set are identified. BadT performs poorly across deletion set
sizes, similar to poisoning. While SSD, a mechanistic intervention that prunes certain weights, showed
promising results for poison removal, it completely fails at removing interclass confusion. Finally,
while the smallest manipulation size (subfigures a, d) for Interclass Confusion did not show significant
effects on unseen samples from class A,B, Figure 3.5 shows unlearning methods continue to give wrong
predictions on the class A,B samples used for training. This emphasises the need to check unlearnt
model outputs on unseen training samples from the affected domain Dm in addition to test samples from
Dm.

Conclusion: The failure of SSD in this setting highlights the need for evaluating diverse manipulations
to test corrective unlearning procedures. Traditional unlearning procedures have poor removal ( 1 ) when
small subsets of the manipulation set are identified ( 3 ). Overall, there is scope for designing better
corrective unlearning methods that achieve desiderata 1 - 3 across different manipulation types.

3.4 Related Work

Learning from manipulated data: The adverse effects of manipulated training data on machine learning
models are well-documented across objectives like fairness (Konstantinov and Lampert, 2022), robustness
(Sanyal et al., 2021; Paleka and Sanyal, 2023), and adversarial reliability (Tian et al., 2022). One line of
defense is designing training strategies more robust to these issues, see Song et al. (2022) for a survey
on learning with mislabels. However, learning robust models from manipulated data is a hard problem
as reduced sensitivity to such minority data populations can harm accuracy and fairness (Feldman and
Zhang, 2020; Sanyal et al., 2022). Unlearning specific samples which are discovered to be manipulated
can be a complementary mitigation approach. Further, we hope corrective unlearning procedures are
compared using the same original model, to ensure improvements are due to the unlearning procedure
rather than properties of the original training procedure or model.

How to detect manipulated data? A prerequisite to the corrective unlearning task is detecting a
representative subset of manipulated data. Fortunately, this has long been studied (Brodley and Friedl,
1999), with prior work detailing techniques to discover mislabeled (Pleiss et al., 2020; Northcutt et al.,
2021a), biased (Prabhu and Birhane, 2021; Jiang and Nachum, 2020) and poisoned (Chen et al., 2019;
Wang et al., 2019) data. Further, compromised data sources can be identified using web security and data
collection practices. We assume the model developers employ such strategies for monitoring their data
sources. However, they cannot simply throw away the trained model when manipulated data is found due
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to expensive retraining costs. We study how to cheaply mitigate adverse effects on such models using
unlearning.

Known Manipulations or Correct Labels: If the type of manipulation is known, one may employ
manipulation-specific mitigation techniques such as poisoning (sometimes referred to as trojan) defences
(see Goldblum et al. (2022) for a survey). We restrict the scope of our work to not knowing the
precise manipulation, and study the use of unlearning as a broader panacea procedure across unknown
data manipulations. Finally, if the samples can be corrected through re-annotation, one may also use
knowledge editing techniques (Bau et al., 2020; Mitchell et al., 2022).

Unlearning: Prior work in designing unlearning procedures is motivated by privacy applications, and
aims to achieve retrain indistinguishability (Ginart et al., 2019; Golatkar et al., 2020a), that is to create
a distribution of unlearnt models indistinguishable from retraining from scratch without the data to
be deleted. In Section 3.2.2 we discuss differences in corrective unlearning desiderata from retrain
indistinguishability. “Exact Unlearning” procedures ensure the unlearnt model never sees the data whose
influence is to be deleted by design of the training procedure (Bourtoule et al., 2021; Schelter, 2020).
The empirical results of EU in Section 3.3 show how these approaches may not suffice for corrective
unlearning when the full manipulation set is unknown. Moreover, such methods drastically deteriorate in
efficiency as the as the number of samples to delete increase (Warnecke et al., 2021). This has led to
“Inexact Unlearning” proposals, and we use state of art methods in image classification from different
paradigms for our experiments:

• Modifying parameters which influence forget set outputs (Golatkar et al., 2020a; Peste et al., 2021;
Ma et al., 2023) - We benchmark Selective Synaptic Dampening (SSD) (Foster et al., 2023).

• Randomizing model outputs on the data to be deleted (Graves et al., 2021; Chundawat et al., 2023b;
Tarun et al., 2023) - We benchmark Knowledge Distillation from Bad Teacher (BadT) (Chundawat
et al., 2023a).

• Finetuning based approaches only using retained samples (Warnecke et al., 2021; Yao et al.,
2023b; Jang et al., 2023; Eldan and Russinovich, 2023; Chen and Yang, 2023) - We benchmark
Catastrophic Forgetting (CF), as Goel et al. (2023) show it works well on the Interclass Confusion
test.

• Alternating between Forgetting and Preservation Steps - We use SCRUB as Kurmanji et al. (2023)
show it works well on the Interclass Confusion test.

A group of works (Izzo et al., 2021; Wu et al., 2020; Gupta et al., 2021; Neel et al., 2021; Thudi et al.,
2022; Sekhari et al., 2021) also study unlearning procedures on convex or linear models with theoretical
guarantees inspired from differential privacy (Dwork et al., 2006), but in this work we focus on deep
models. Finally, Goel et al. (2023); Kurmanji et al. (2023); Sommer et al. (2022) consider unlearning
of mislabelled or poisoned samples, but only as a stronger evaluation for the privacy-oriented objective
of retrain indistinguishability. We show retraining cannot be used as a gold standard for corrective
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Figure 3.6: Clean-label Accuracy on Manipulated Train Samples Sm with Poison Trigger. Each method

is shown across deletion sizes |Sf | after training with adversarial poisoning (“None” represents the

original model). Trends mimic results for clean-label accuracy on unseen samples with the poison trigger.

unlearning when only a subset of manipulated samples is identified ( 3 ), which leads to the insufficiency
of unlearning methods geared towards indistinguishability from retraining for corrective unlearning.

3.5 More Results for Completeness

To ensure completeness, we now provide results that are less insightful, and thus not included in the
above sections.

3.5.1 Clean-label Accuracy on Manipulated Training Samples after Unlearning of Poi-

sons

To measure the removal of mislabelling on poisoned training samples, we report clean-label accuracy
on Sm in Figure 3.6. The trends across unlearning methods are similar to the ones on unseen samples
from the affected domain Dm reported in Figure 3.2, though the absolute accuracies after unlearning are
higher as expected from training samples in comparison to test set samples.
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Figure 3.7: Accuracy on Test Samples from classes other than the two confused. Except SSD which

shows drops in utility, we see similar accuracies across different unlearning methods across deletion sizes

|Sf | after training with Interclass Confusion (“None” represents the original model).

3.5.2 Utility after Unlearning of Interclass Confusion

We report accuracies on unseen samples from the classes not manipulated by interclass confusion.
These samples can be considered to belong to the same distribution as Str \Sm. In Figure 3.7 we plot the
utilities across deletion set sizes for IC test. We find methods maintain accuracy, and EU, CF even show
minor (0.5-1%) gains when most of the manipulated data is known. This is not surprising as removing
the effect of manipulations can improve learnt representations and the overall utility of the model.

3.5.3 Computational Efficiency of Unlearning Methods

In Table 3.3 we report average unlearning times of different unlearning methods. In the case of EU and
CF, while more efficient relaxations have been proposed (Goel et al., 2023; He et al., 2021; Graves et al.,
2021), we retrain from scratch to perform the strongest unlearning, which we still find to be insufficient.
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Method Time

(minutes)

EU 49.93

CF 10.52

Scrub 16.86

SSD 1.80

BadT 33.19

Table 3.3: Unlearning Time by Method
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Chapter 4

Unlearning Dual Use Knowledge from LLMs1

4.1 Introduction

Until now, we have seen the application of unlearning in purely a supervised image classification
setting. In this chapter, we explore the use of unlearning for Large Language Models (LLMs). Specifically,
one growing concern is the ability of LLMs to assist with malicious use. In particular, LLMs may
aid actors in planning bioattacks (Sandbrink, 2023) and procuring pathogens (Gopal et al., 2023).
Moreover, LLMs can assist users in synthesizing dangerous chemicals (Boiko et al., 2023) or conducting
cyberattacks (Bhatt et al., 2023). In response to these emergent hazardous capabilities, major AI labs
have developed frameworks to measure and mitigate biological, cybersecurity, and chemical hazards
posed by their models (Anthropic, 2023; OpenAI, 2023b, 2024). Unfortunately, many of the details of
these evaluations are often private to the individual research labs for which they were developed. We use
WMDP, an open-source evaluation procured by Li et al. (2024) to measure the unlearning of hazardous
biosecurity and cybersecurity knowledge from LLMs.

We examine an autoregressive language model designed to process prompts like How can I synthesize
anthrax?” and generate completions like To synthesize anthrax, you need...”). Our objective is to diminish
the model’s proficiency in responding to queries concerning dangerous information (e.g., synthesizing
anthrax) while preserving its capability to respond to inquiries about non-dangerous information (e.g.,
culturing yeast). We define this objective as reducing a model’s Question-Answer (QA) accuracy on
WMDP while upholding its performance on general competence benchmarks such as MMLU and
MT-Bench.

Unlike unlearning for copyright or privacy concerns, we do not assume access to questions from
WMDP. This is because our focus lies in unlearning methods capable of generalization: unlearning
hazardous knowledge with access to a representative set of samples from a similar distribution. We intro-
duce CUT, an unlearning method that removes hazardous knowledge without significantly compromising

1Li, N., Pan, A., Gopal, A., Yue, S., Berrios, D., Gatti, A.,Li, J.D., Dombrowski, A.K., Goel, S., et al. (2024). The WMDP
Benchmark: Measuring and Reducing Malicious Use With Unlearning. arXiv preprint arXiv:2403.03218. All figures in this
section are taken from the paper.
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general model performance. CUT capitalizes on the concept that model representations encapsulate
worldly knowledge and that these representations can be controlled to steer the model (Ilharco et al.,
2023; Zou et al., 2023a; Turner et al., 2023). Essentially, CUT guides the model to possess a novice-level
grasp of hazardous knowledge. We formulate a loss function comprising a forget loss and a retain
loss. The forget loss nudges the model representations towards those of a novice, while the retain loss
constrains the extent of general capabilities removal.

We adapt the SSD (Foster et al., 2023) and SCRUB (Kurmanji et al., 2023) unlearning methods from
supervised image classification to language modelling, showing they perform much worse than CUT.
CUT also drastically outperforms LLMU, a recent unlearning method proposed for LLMs. We do find that
CUT reduces performance on related but less hazardous fields like introductory virology and computer
security, while also slightly reducing model fluency. We believe this CUT is just a demonstration that
paves the way for better unlearning methods for removing dual-use domains of knowledge from LLMs.

4.2 Methodology

In this section, we describe the unlearning method proposed in Li et al. (2024), and the evaluations
and baselines needed to understand the results that follow.

4.2.1 Method - Contrastive Unlearn Tuning (CUT)

CUT is inspired from Representation Engineering (Zou et al., 2023a), where activations are steered
towards a novice using the forget loss, while the retain loss preserves other knowledge.

Forget loss: To determine which specific knowledge areas to eliminate (for example, in cybersecurity),
CUT identifies these areas using specific terms (such as exploit development or penetration testing).

updated model

layer ℓ

frozen model

layer ℓ

updated model

layer ℓ

frozen model

layer ℓ

= “You are a novice in ⟨keyword⟩”
= “You are an expert in ⟨keyword⟩”

novice representation

Figure 4.1: CUT optimizes a contrastive loss: a forget component that steers model activations on

hazardous data (xforget) towards a novice, and a retain component, which preserves activations on other

data (xretain). A multiplicative factor c omitted in the figure for simplicity is used to control this tradeoff.
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Eliminating knowledge associated with these terms allows us to effectively remove dangerous knowledge.
To influence model behavior, CUT employs control vectors as outlined in the studies by Zou et al. (2023)
and Ilharco et al. (2023). For any given term, like ”penetration testing,” a vector for unlearning control
represents in the model’s activation domain the lack of knowledge associated with that term. Utilizing
these unlearning control vectors for model adjustment offers greater precision than moving towards a
vague direction.

For calculating these vectors for unlearning control, CUT considers having access to Mupdated(·),
which are the hidden states at a certain layer ℓ after unlearning, and Mfrozen(·), the hidden states
from the original, unchanged model at the same layer ℓ. For a given ⟨keyword⟩, CUT sets pnovice =

”You are a novice at ⟨keyword⟩” and pexpert = ”You are an expert at ⟨keyword⟩”, then compute

hcontrol(⟨keyword⟩) = Mfrozen(pnovice)−Mfrozen(pexpert).

To modulate activations, CUT uses a designated forget dataset Dforget and define:

Lforget = Exf∼Dforget

∥∥Mupdated(xf)− (Mfrozen(xf) + c · hcontrol)
∥∥2
2
,

where hcontrol represents a unlearning control vector selected randomly from our collection.

Preservation loss: To minimize the loss of general abilities through unlearning, CUT applies an ℓ2

penalty to push the model’s activations towards those of the original, unchanged model. Using a retain
dataset Dretain, the preserve loss is calculated as:

Lretain = Exr∼Dretain

∥∥Mupdated(xr)−Mfrozen(xr)
∥∥2
2
.

Full loss: The total loss, depicted in Figure 4.2.1, integrates the forget and retain losses through a
weighted sum:

L = Lforget + α · Lretain.

CUT fine-tunes the model’s parameters to reduce this combined loss. To forget various knowledge
distributions, CUT alternates between gradient updates (for example, first on the biosecurity knowledge,
then on cybersecurity, and so forth). Adjusting only a few layers is enough, which conserves memory
and facilitates efficient unlearning in large models (with 34 billion parameters).

Forget and retain datasets. Dforget for biosecurity is collected from PubMed papers. For cyber-
security, it is collected by crawling GitHub for relevant documents. Li et al. (2024) set Dretain to be
Wikitext (Merity et al., 2016).

4.2.2 Evaluations

In this section we discuss the QA evaluation to measure unlearning performance, evaluations to ensue
the model retains general capabilities, and an evaluation that probes whether the information is scrubbed
from model internals as well.
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4.2.2.1 QA Evaluation

Li et al. (2024) introduce the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset
of expert-written, multiple-choice questions in biosecurity (WMDP-Bio), and cybersecurity (WMDP-
Cyber). The dataset measures hazardous dual-use knowledge in these domains, so the unlearning goal is
to reduce question-answer (QA) accuracy on WMDP.

4.2.2.2 Retaining Capabilities

It is imperative that the unlearnt model maintains as much of the original performance on capabilities
unrelated to the dual-use knowledge removed. We measure this using the MMLU benchmark (Hendrycks
et al., 2020). Further, unlearning biosecurity knowledge is most likely to have ripple effects on biology
knowledge, and to measure this we report MMLU performance on topics similar to biosecurity (college
biology, virology). Similarly, for cybersecurity, we report performance on the college computer science
and computer security section of MMLU. Finally, the LM outputs should not become less fluent, and we
evaluate this using MT-Bench (Zheng et al., 2023), a multi-turn conversation and instruction-following
benchmark.

4.2.2.3 Probing Evaluation

While evaluating QA accuracy measures an API-access threat model where only outputs or logits
may be available, the model internals may still continue to retain the knowledge. One example is if
the unlearned model refuses to answer all queries, while still containing hazardous knowledge. To test
against this failure mode, we train linear probes on all internal layers to see if the information to be
unlearned still exists.

4.2.3 Baselines

Here, we describe the baselines we compare CUT with. While these baselines have been proposed for
different tasks, we make our best attempt to adapt them to our setting.

4.2.3.1 LLMU

Yao et al. (2023b) propose Large Language Model Unlearning (LLMU) which uses a mix of gradient
ascent to increase the forget set loss, and finetuning towards random data. We apply a grid search over
the learning rates [1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3], the number of steps [500, 750, 1000], and
the forget weight [0.5, 1, 2].
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4.2.3.2 SCRUB

SCRUB (Kurmanji et al., 2023) was discussed earlier in the context of image classification, for which
it is proposed. Here we adapt SCRUB for LLM unlearning. To do this, we cycle between forget data
and retain data epochs, maximizing KL divergence of logits between the student and teacher model on
the forget set, and minimizing it on the retain set. The retain set epochs also includes a task-specific
loss with gold labels to maintain performance. We use the same forget set and retain sets as the CUT

experiments, and with log perplexity on Wikitext as the task-specific loss. We tune the α hyperparameter
at values [1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1, 1, 10], to search over loss weightings between
knowledge distillation and the task-specific loss. We do this as a grid search with learning rates being
[1 × 10−5, 5 × 10−6, 2 × 10−6]. We use 600 unlearning steps in total, doing the forget step only for
300 as it is recommended in Kurmanji et al. (2023) to stop it earlier. In the high learning rate case,
i.e. lr = 1e− 5 we also try doing only 400 unlearning steps in total, with only 100 forget steps. Each
sample of our dataset is truncated to 200 characters, and we use a batch size of 2. As shown in Chapter 3,
SCRUB performs poorly when most training samples relevant to removal are not available. This could be
one of the reasons why SCRUB performs poorly in our setting.

4.2.3.3 SSD

Selective Synaptic Dampening (SSD) (Foster et al., 2023) belongs to a class of methods which find
parameters in the model that are differentially more important for the forget set than the retain set. While
the method was originally developed for image classification, we adapt it for autoregressive language
modeling by altering the loss function to log-perplexity on the forget set and retain set. We grid-search on
the threshold [0.1, 0.25, 0.5, 1, 2.5, 5] and constant for dampening [1× 10−5, 1× 10−4, 1× 10−3, 1×
10−2, 1× 10−1, 1], the two main hyperparameters for SSD. We converged on these ranges after initial
manual hyperparameter exploration for our task and datasets.

4.3 Experiments

4.3.1 Setup Details

Models: We use ZEPHYR-7B-BETA (Tunstall et al., 2023) as it is among the best open-source LMs at 7
billion parameters, and similarly YI-34B-CHAT (01-ai, 2023) at 34 billion parameters. The performance
of GPT-4 (OpenAI, 2023a) is reported as an upper bound.

Output Setup: We use a zero-shot question-answer format, taking the top logit between A, B,
C, and D as the answer choice. For comparison, we also benchmark GPT-4 zero-shot on each of
these tasks. As language models are sensitive to the prompting scheme (Sclar et al., 2023), we use
lm-evaluation-harness (Gao et al., 2021) to standardize prompts. The same setup is used for
MMLU, and the standard setup is used for MT-Bench.
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Probing Setup: We train a 4-way (Options A, B, C, D) linear classifier on the unlearned CUT

models using half of WMDP-Bio and WMDP-Cyber. The other half is held out for evaluation of
accuracies, where a high accuracy indicates an unlearning failure, i.e. the layer representation still
contains WMDP-relevant knowledge. We test this across all layers of each model.

4.3.2 Results

4.3.2.1 Output Results

As shown in Table 4.1, for both ZEPHYR-7B and YI-34B, CUT is able to drop performance to near
random accuracy on WMDP-Bio and WMDP-Cyber, while other baselines struggle to drop accuracy on
WMDP-Bio and WMDP-Cyber without crippling model performance on MMLU. Figure 4.3 shows that
CUT is pareto-optimal over the baselines across the unlearning-utility tradeoff. Furthermore, Figure 4.4
illustrates that CUT maintains its effectiveness in areas associated with biology (college biology) and
computer science (college CS) within the MMLU topics, indicating a higher degree of unlearning
accuracy compared to the baseline methods. Nonetheless, there is a significant decline in performance
on topics closely related to biosecurity (virology) and cybersecurity (computer security) when using
CUT. This points to an opportunity for future research to enhance the preservation of related skills while
undergoing the unlearning process. This may be because of using a generic retain set Wikitext, which
doesn’t provide fine-grained feedback on where to draw the line between what knowledge to unlearn and
retain. Finally, CUT manages to sustain its performance on MT-Bench, with only a slight decrease of 0.13
on ZEPHYR-7B and 0.54 points on YI-34B (out of a total of 9). However, as CUT still experiences some
decline on MT-Bench, especially with YI-34B, there’s a necessity for advanced unlearning techniques
that maintain capabilities.

Model Method
WMDP (↓) MMLU (↑)

MT-Bench (↑)
Bio Cyber Chem College Bio Virology College CS Cybersec All

ZEPHYR-7B

Base 65.5 42.9 44.2 65.3 52.4 50.0 63.0 58.5 7.33

LLMU 59.5 38.2 39.3 54.2 40.3 45.0 50.0 45.2 1.00

SCRUB 43.4 37.3 39.6 53.5 41.0 49.0 62.0 51.9 7.09

SSD 55.2 34.0 35.9 48.6 40.4 38.0 55.0 41.5 5.48

CUT (ours) 29.3 24.9 40.5 64.6 22.9 47.0 50.0 57.0 7.20

YI-34B
Base 76.3 45.8 54.4 88.2 56.6 67.0 84.0 72.9 7.65

CUT (ours) 30.9 29.2 50.2 81.9 27.7 52.0 46.0 69.0 7.11

GPT-4 Base 81.6 51.8 59.7 93.9 58.2 69.0 84.5 83.4 9.13

Table 4.1: Comparing base models and unlearning methods on question-answer evaluation (WMDP,

MMLU) and fluency (MT-Bench). All WMDP and MMLU scores are percentage points. All unlearning

methods were applied on removing WMDP-Bio and WMDP-Cyber.
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4.3.2.2 Probing Results

In Figure 4.2, we evaluate the capability of probes to retrieve knowledge that has been retained by
the model following the application of CUT. Our findings indicate that the accuracy achieved through
linear probing marginally surpasses that of random chance. This inability of linear probes to discern the
information to be removed implies that CUT does more than superficially conceal or obscure the data.
Instead, it significantly modifies the model in a manner that obstructs the re-access of information that
has been unlearned.

4.4 Related Work

Unlearning (Cao and Yang, 2015) originally gained traction as a response to privacy concerns in light
of regulation (Council of European Union, 2018; California State Leglisature, 2018), and most methods
focused on erasing specific samples or facts (Golatkar et al., 2020b; Ma et al., 2023; Meng et al., 2022;
Jang et al., 2023; Pawelczyk et al., 2023) rather than entire domains. Goel et al. (2024) show existing
unlearning methods struggle to remove knowledge without access to all relevant training data, a challenge
CUT overcomes.

More recent methods erase broader concepts such as gender (Belrose et al., 2023), harmful behav-
iors (Yao et al., 2023b; Liu et al., 2024), or fictional universes (Eldan and Russinovich, 2023), but have
not been proven to eliminate scientific knowledge which enables malicious use. Furthermore, most
benchmarks for unlearning involve removing specific data samples (Google, 2023) or artificially chosen
deletion sets (Choi and Na, 2023; Goel et al., 2023; Maini et al., 2024; Goel et al., 2024). In contrast, we
study the removal of real-world information that enables malicious use.

There are other complementary strategies for improving safety against malicious use. These include
input filtering (Inan et al., 2023) and learning from human preference data (Ziegler et al., 2020; Rafailov
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Figure 4.2: Linear probes cannot recover hazardous knowledge erased using CUT as the probe accuracy

on unlearned models is random-chance. This indicates CUT also scrubs knowledge in model internals,

not just outputs.
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et al., 2023). However, these methods can be vulnerable to jailbreaks (Wei et al., 2023; Chao et al., 2023;
Yao et al., 2023a; Yuan et al., 2023) and adversarial attacks (Wallace et al., 2019; Guo et al., 2021; Jones
et al., 2023; Zou et al., 2023b). Another complementary approach is to remove hazardous data prior to
pretraining (Ngo et al., 2021). However, knowledge and capabilities can get through this process, or even
be introduced via later finetuning. We propose the use of unlearning as a post-hoc intervention to remove
dangerous knowledge.

Improvement

Figure 4.3: Results across a hyperparameter search. Compared to the other baselines, CUT is most

capable of reducing WMDP performance while maintaining accuracy on MMLU.
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Figure 4.4: MMLU accuracy of ZEPHYR-7B with CUT. CUT preserves general biology and computer
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Chapter 5

Discussion

5.1 Conclusion

While prior unlearning methods claim to handle arbitrary deletion sets, we prove that passing prior
evaluations based on weight and output similarity fail to guarantee unlearning of non-IID deletion sets.
This motivates the need for adversarial evaluations like our proposed Interclass Confusion test. In contrast
to prior evaluations, the IC test is necessary to pass to achieve model indistinguishability and is not
sensitive to different training procedures. Even with a small fraction of data being manipulated, the IC
test can reliably capture how well unlearning procedures remove memorization of deletion set samples
and properties generalized from them – both are important for different applications. We propose EU-k
and CF-k as strong unlearning baselines that scale to large deletion sets, enable analysis of how early
in the network information is retained and allow trading forgetting for efficiency at constant accuracy.
We use our evaluation and methods to glean a variety of insights. (i) Unlearning methods that only
modify the final layer in a deep network are not sufficient. (ii) We explore the interplay between learning
and unlearning – theoretically, we conjecture that an unlearning procedure aiming to handle arbitrary
deletions requires the ability to learn. Empirically, we show that better regularized models are more
amenable to unlearning.

We hope that our analysis and proposed IC test along with EU-k and CF-k baselines will enable
building stronger adversarial tests and better unlearning procedures. There is a need to bridge the current
limitations of our work: We do not expect EU-k and CF-k to be gold-standard unlearning procedures,
they are meant only as simple analytical tools that assist future research. As for the IC test, defining
a passing score for real-world datasets that is necessary and sufficient is an open problem. While any
procedure claiming to handle arbitrary deletions must pass the IC test, it alone cannot guarantee perfect
unlearning. Finding a test that if passed is sufficient to prove unlearning of arbitrary deletions is an
interesting direction.

We then treat the Corrective Machine Unlearning setting as a distinct requirement within Inexact
Unlearning. Corrective Unlearning is designed to mitigate the negative effects of manipulated data
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discovered post-training, such as diminished accuracy across specific domain areas, from an already
trained model. This concept is grounded in an adversarial threat model, acknowledging that all the
manipulated data samples may not be known. Instead, developers are often able to pinpoint only a
representative subset of the manipulated samples.

Corrective Unlearning diverges significantly from the traditional privacy-oriented unlearning. Our
findings indicate that latest unlearning methods, even the gold standard of retraining-from-scratch, fail to
enhance accuracy on the manipulated domain unless nearly all of the manipulated data is identified. A
notable exception is SSD (Foster et al., 2023), which successfully mitigates the effects of the BadNet (Gu
et al., 2019) poison, thus illustrating the feasibility of removing the influence of manipulated data with
only a small representative subset identified. However, this method does not work for the Interclass
Confusion manipulation, which demonstrates the need for designing unlearning procedures that can
ideally remove the influence of arbitrary manipulations. We hope our work spurs the development of
stronger corrective unlearning methods and evaluations to assist practitioners in dealing with data quality
issues arising from web-scale training.

We then demonstrate the use of unlearning to remove dual-use knowledge from Large Language
Models, towards mitigating AI misuse by malicious actors. Specifically, we discuss CUT, a Representation
Engineering based approach that steers models towards novice knowledge on specific domains. In the
setting of knowledge removal from LLMs using a different representative corpus of samples compared to
the training data, CUT outperforms adaptations of state of the art unlearning methods. We also propose
the use of probing to test whether knowledge has really been unlearned from the internals of a model, in
contrast to just producing random outputs on domain inputs.

Overall, as Machine Learning training runs become more expensive, it is less feasible to re-train new
models every time an issue is detected. In this thesis, we have shown how Machine Unlearning can be
used to remove the influence of undesirable training data or knowledge post-hoc. We hope unlearning
can act as an effective complementary tool to data-filtering methods before training, as it acts to correct
any oversights in the filtering process. An important challenge in unlearning is evaluating whether a
model has really unlearnt, and we hope the contributions of this thesis, such as the Interclass Confusion
Test, the Corrective Unlearning Paradigm, and Probing Evaluations, help ensure the robustness of future
unlearning methods.

5.2 Limitations and Future Work

1) Adaptive Testing: The ideal corrective unlearning approaches should exhibit robustness against a
broad spectrum of manipulation types. Specifically, these methods should withstand adaptive attacks,
where the manipulations targeted for unlearning are crafted with knowledge of the unlearning procedures
themselves (Tramer et al., 2020), not just the two evaluations we study. Similar to other related fields like
adversarial robustness and privacy, it is important to design new Corrective Unlearning algorithms that
work against powerful adaptive attacks.
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2) Diverse Corrective Unlearning Evaluations: In addition, there is scope to design stronger
evaluation frameworks for corrective unlearning. Apart from manipulating features and labels, adversaries
could generate entirely synthetic samples (Zhang et al., 2019; Huang et al., 2020a). Although our focus
is on supervised image classification, the concept of manipulation and its correction is also relevant
in self-supervised learning contexts, such as language modeling (Wallace et al., 2020). Finally, an
additional complexity could be the presence of false positives, where a clean sample getting identified as
manipulated.

3) Theoretical Characterization of Corrective Unlearning: Current unlearning procedures aim to
achieve a model distribution that is indistinguishably close to one obtained by retraining without certain
samples, measured in terms like (ϵ, δ)-certified unlearning (Sekhari et al., 2021). However, we anticipate
that the corrective unlearning problem will pave the way for innovative theoretical research. A critical
area of interest is determining what conditions make a small ‘representative set’ of manipulated samples
sufficient for effective corrective unlearning. Additionally, for a given manipulation class and a small set
of such samples, it would be interesting to develop algorithms that prioritize improving accuracy on the
manipulated domain over strict distributional indistinguishability. Another future challenge is to identify
additional manipulated samples based on a small initial representative set.

4) Better evaluations and methods for LLM Unlearning: CUT shows how not having access to
all the samples to be deleted can still be sufficient for unlearning, atleast in Large Language Models.
However, CUT while good at reducing accuracy on the target domain to random chance, also has ripple
effects on related domains of knowledge which may be desirable and not harmful. Future work can
grapple with where to draw the boundary of what knowledge is potentially harmful, and how to ensure
unlearning methods better adhere to these boundaries. Finally, more work is needed to ensure the unlearnt
knowledge cannot be recovered easily, essentially measuring the robustness of unlearning (Lynch et al.,
2024).
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Thomas, K., and Tramèr, F. (2023). Poisoning web-scale training datasets is practical. In IEEE
Symposium on Security and Privacy (SP).
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