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Abstract

Two critical challenges arise in the interconnected realm of online platforms: the need to ensure
equitable representation for entities and the emphasis on identifying deceptive practices. This work
aims to address both by introducing CAFIN to decrease the disparity in the representations of GNNs, and
by detecting and studying anomalies on the Google Play Store reviewer network for fraud prevention,
moving in the direction of reshaping digital ecosystems to be both fair and trustworthy.

Unsupervised Representation Learning on graphs is gaining traction due to the increasing abundance
of unlabelled network data and the compactness, richness, and usefulness of the representations gener-
ated. In this context, the need to consider fairness and bias constraints while generating the representa-
tions has been well-motivated and studied to some extent in prior works. One major limitation of most
of the prior works in this setting is that they do not aim to address the bias generated due to connectivity
patterns in the graphs, such as varied node centrality, which leads to a disproportionate performance
across nodes. In our work, we aim to address this issue of mitigating bias due to inherent graph struc-
ture in an unsupervised setting. To this end, we propose CAFIN, a centrality-aware fairness-inducing
framework that leverages the structural information of graphs to tune the representations generated by
existing frameworks. We deploy it on GraphSAGE (a popular framework in this domain) and showcase
its efficacy on two downstream tasks - Node Classification and Link Prediction. Empirically, CAFIN
consistently reduces the performance disparity across popular datasets (varying from 18% to 80% re-
duction in performance disparity) from various domains while incurring only a minimal cost of fairness.

Google Play Store’s policy forbids the use of incentivized installs, ratings, and reviews to manipulate
the placement of apps. However, there still exist apps that incentivize installs for other apps on the
platform. To understand how install-incentivizing apps affect users, we examine their ecosystem through
a socio-technical lens and perform a mixed-methods analysis of their reviews and permissions. Our
dataset contains 319K reviews collected daily over five months from 60 such apps that cumulatively
account for over 160.5M installs. We perform qualitative analysis of the reviews to reveal various types
of dark patterns that developers incorporate in install-incentivizing apps, highlighting their normative
concerns at both user and platform levels. Permissions requested by these apps validate our discovery of
dark patterns, with over 92% apps accessing sensitive user information. We find evidence of fraudulent
reviews on install-incentivizing apps, following which we model them as an edge stream in a dynamic
bipartite graph of apps and reviewers. Our proposed reconfiguration of a state-of-the-art microcluster
anomaly detection algorithm yields promising preliminary results in detecting this fraud. We discover
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highly significant lockstep behaviors exhibited by reviews that aim to boost the overall rating of an
install-incentivizing app. Upon evaluating the 50 most suspicious clusters of boosting reviews detected
by the algorithm, we find (i) near-identical pairs of reviews across 94% (47 clusters), and (ii) over 35%
(1,687 of 4,717 reviews) present in the same form near-identical pairs within their cluster. We also
discuss how fraud is intertwined with labor and poses a threat to the trust and transparency of Google
Play.
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Chapter 1

Introduction

Recent technological advancements have transformed how we interact, share information, and make
decisions. Yet, the increasing complexity and lack of transparency in many technological systems raise
concerns about fairness, accountability, and the preservation of user autonomy. While these advance-
ments promise societal progress, they also risk amplifying existing inequalities or setting up the stage
for new forms of subtle manipulation and fraud. This thesis investigates two interconnected aspects of
safety within the digital landscape: the tendency of algorithmic systems to produce biased outputs fa-
voring one party over the others [O’Neil, 2016], and the exploitation of users through deceptive design
practices [Mathur et al., 2019] and the identification of groups of fraudulent users acting in synchro-
nization to disrupt the platform.

With the rising adoption of deep models, the challenge of tackling algorithmic bias is paramount.
In the supervised setting, models trained on data that reflect real-world disparities may perpetuate and
amplify those biases [Hardt et al., 2016a]. Even unsupervised models tend to get misled by the stereo-
typical patterns [Buet-Golfouse and Utyagulov, 2022] observed in the data and the architecture’s pitfalls
themselves. This can lead to discriminatory outcomes in high-stakes domains, such as loan approvals
or predictive policing, with far-reaching societal consequences. The first work in this thesis aims to ad-
dress this issue by developing a framework, CAFIN (Centrality Aware Fairness Inducing IN-processing
for Unsupervised Representation Learning on Graphs), designed to promote fairness and mitigate bias
within a large set of graph representation learning methods. CAFIN aims to mitigate the bias in the final
embeddings induced due to the centrality of different data points within the overall graph structure by
modifying the loss functions. By ensuring fair representation learning, we hope to lay the groundwork
for downstream machine learning tasks that are less likely to exhibit discriminatory behavior.

Simultaneously, the widespread use of “dark patterns” [Mildner et al., 2023] and the proliferation
of fraud-induced content in user-facing platforms pose a significant ethical challenge. These deceptive
design strategies manipulate users into behaviors that may contradict their interests, subtly eroding trust
and exploiting the users’ vulnerabilities. The second work in this thesis investigates this phenomenon,
analyzing in detail how specific design strategies influence user actions, and how to identify micro-
clusters of users who do targeted review boosts and attacks on apps.
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Ultimately, this thesis aims to tie two important problems to foster a deeper understanding of the
ethical complexities inherent in the digital landscape. The hope is to advance the ongoing efforts to
promote transparency, fairness, and user autonomy in an era of increasingly sophisticated and com-
plex online interaction platforms. By addressing the challenges of algorithmic bias, deceptive design
practices, and the identification of fake review networks, the hope is to work towards a future where
technology empowers individuals and fosters a more just and equitable society. Chapters 2, 3, 4 cover
CAFIN, Chapter 5 covers our work on exposing dark patterns and identifying microclusters of anoma-
lous users on Google Play Store, and finally, Chapter 6 covers the conclusion, limitations, and the scope
for future work.
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Chapter 2

The lack and therefore the need for Fair Representations
1

Due to the prevalence and popularity of online social networks, network data has grown significantly,
both in quantity and quality, over the years [Leskovec et al., 2020]. Such rich data can be exploited to
gather information at both the individual and community levels. The influx of data having inter-personal
connections (represented as graphs) has served as motivation to develop several unsupervised learning
algorithms for various tasks on graphs [Hamilton et al., 2017, Velickovic et al., 2018]. These methods
leverage node features along with neighborhood information to learn node representations that do not
depend on the domain of the underlying graph or the desired task at hand.

It is essential that these node representations are generated with appropriate fairness measures, espe-
cially in the context of real-world deployments, to minimize bias induced by these graph learning frame-
works on downstream tasks. Accordingly, fairness in the context of trained decision-making systems
has increased in popularity recently due to the numerous social distresses caused when systems not in-
corporating adequate fairness measures were deployed in the wild [Pessach and Shmueli, 2022, Mehrabi
et al., 2021]. The job platform XING is an extreme example that exhibited gender-based discrimination
[Choudhary et al., 2022].

Previous works aimed to mitigate such unfairness, in this context, focus on ensuring minimal dis-
parity in performance among individuals or groups defined by some membership criteria. Although
sensitive node attributes generally decide these group memberships, a recent uptick in research consid-
ers intrinsic node properties, specifically node degree, to evaluate the fairness of Graph Neural Networks
(GNNs). For example, recent work [Tang et al., 2020] provides theoretical proof that a popular subclass
of graph neural networks − graph convolutional networks (GCNs) − are biased (in performance) to-
wards high-degree nodes. They propose a degree-specific GCN layer targetting degree unfairness in the
model and design a self-supervised learning algorithm for attaching pseudo labels to unlabelled nodes,
which further helps low-degree nodes to perform better. Later, RawlsGCN [Kang et al., 2022] reveals

1The next 3 chapters are a part of Arvindh Arun, Aakash Aanegola, Amul Agrawal, Ramasuri Narayanam, and Ponnu-
rangam Kumaraguru. CAFIN: Centrality Aware Fairness Inducing IN-processing for unsupervised representation learning
on graphs. In ECAI 2023 - 26th European Conference on Artificial Intelligence, September 30 - October 4, 2023, Krakow,
Poland, volume 372 of Frontiers in Artificial Intelligence and Applications, pages 101 - 108. IOS Press, 2023.
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Figure 2.1 Degree vs. Accuracy plot (Twitch dataset) - For the original GraphSAGE on the Node Clas-
sification task, the accuracy increases steadily with the degree (slope=0.0051). After the introduction
of CAFIN, the slope decreases significantly (slope=0.0041, a 20% reduction), leading to lower perfor-
mance disparity between high and low-degree nodes with negligible reduction (-0.3%) in the overall
accuracy.

the root cause of this degree-related unfairness by analyzing the gradients of weight matrices in GCN
and proposes techniques to mitigate this bias.

GNNs refine node embeddings by aggregating information from their neighbors. So, the efficacy of
a node’s representation is bound to be correlated to its abundance of structural information [Liu et al.,
2021]. This correlation creates a disparity in the richness of embeddings between structurally rich nodes
(highly central) and the rest (less central). Figure 2.1 empirically corroborates this claim. This disparity
is even more concerning as the centralities (degree) of most real-world graphs follow the power-law
distribution. This implies that a major fraction of nodes have low centrality scores and hence deficient
representations compared to a small fraction of nodes having high centrality.

Most of the works in the literature focus on imposing fairness concerning sensitive attributes but of-
ten overlook the more inherent centrality-induced disparity. Recent works [Liu et al., 2023] also probe
into how masking the sensitive attributes may not be enough, as some of the characteristics can seep
into the inherent network structure. Our work in this paper focuses exclusively on reducing the perfor-
mance disparity induced among groups of nodes due to skewed centrality distributions. Towards this
end, we propose a generalized (additive) modification to the loss function of well-known unsupervised
GNNs to impose group fairness constraints while minimizing the cost induced by the same. To formally
demonstrate our approach, we consider GraphSAGE [Hamilton et al., 2017] − a popular unsupervised
graph learning framework and widely adopted in many domains [Ying et al., 2018, Lo et al., 2022, Liu

4



et al., 2020] − and then show how we extend its objective function with fairness constraints. Graph-
SAGE, as studied empirically, focuses more on less frequent higher-degree nodes than on more frequent
lower-degree nodes, leading to a performance disparity between the two groups of nodes. We remedy
this limitation of GraphSAGE through our work.

Note that these fairness constraints can be added to any underlying graph learning algorithm at three
different stages: before learning (Pre-processing), during learning (In-processing), and after learning
(Post-processing) [Mehrabi et al., 2021]. In-processing is considered robust and generalizable and finds
its application across various domains as it directly adds a secondary objective to the original [Zafar
et al., 2019]; hence we adopt this technique in our proposed framework.

In particular, we propose a framework, Centrality Aware Fairness inducing IN-processing (CAFIN),
that focuses on augmenting the unsupervised version of GraphSAGE to induce centrality-based (ex: de-
gree) group fairness as an objective while maintaining similar performance on downstream tasks. To the
best of our knowledge, CAFIN is the first work to deal with centrality-driven fairness for unsupervised
graph learning, as all other methods work in the supervised or semi-supervised setting (and also largely
do not tackle centrality-based fairness aspects). Thus, our primary contribution is a novel in-processing
technique to achieve centrality-aware group fairness for unsupervised graph node representation learn-
ing.

The following section reviews relevant literature on (unsupervised) graph representation learning and
existing fairness measures for these graph representation learning algorithms.

Graph Representation Learning. Unsupervised representation learning on graphs has seen a recent
explosion due to the availability of unlabelled structured graph data [Velickovic et al., 2018, Hamilton
et al., 2017]. In specific, GraphSAGE [Hamilton et al., 2017], a method that samples and aggregates
information from node neighbors has found extensive applications in recommender systems [Ying et al.,
2018], intrusion detection systems [Lo et al., 2022], traffic networks [Liu et al., 2020], and more due to
its versatility and applicability on large graphs.

GraphSAGE [Hamilton et al., 2017] is a popular inductive representation learning framework specif-
ically tailored for efficient performance on large networks. Instead of training feature representations
for each node in the graph, it learns a set of functions that aggregate feature information from the neigh-
borhood of a node to update the node representation, helping it learn node feature embeddings while
accounting for information flow from neighbors. It also uses a constrastive-learning based unsupervised
loss function for learning embeddings in a task-agnostic fashion, which removes the dependence of net-
work parameters on downstream tasks. It functions efficiently because of the random sampling in each
stage of the pipeline, drastically reducing the training time as only a subset of the node neighborhood is
utilized. The downside of random sampling is that it induces stochasticity in the learned embeddings,
making them highly volatile and dependent on the random seed used during training [Schumacher et al.,
2020].

Fairness in Graph Learning Algorithms. The influx of deep learning technologies into the real-
world setting and them leading to possibly undesired conclusions has prompted the inquisition into the

5



fairness of the algorithms. More specific to graphs, studies like [Bertrand and Mullainathan, 2004,
Oreopoulos, 2011] explore the fairness of algorithms used for recruitment, and similarly [Khajehnejad
et al., 2020] explore the issue of the unfair impact of influential nodes on the overall graph and introduce
performance disparity.

The disparity introduced by these algorithms is quantifiable, and there are two primary methods to
evaluate the fairness of a graph learning algorithm - individual and group fairness. Individual fairness
seeks to attain similar treatment for similar individuals [Dwork et al., 2012], whereas group fairness
aims to reduce the bias that algorithms tend to possess towards certain groups [Hardt et al., 2016b].
Group membership is usually defined based on sensitive node attributes like gender, race, and economic
background in most studies [Krasanakis et al., 2021]. However, since a lot of graph data is unlabelled
or does not possess sensitive node attributes, this information may not always be available. In contrast,
very few studies like [Avin et al., 2015] divide them based on node characteristics like centrality -
characteristics intrinsic to the graph and present irrespective of domain. Furthermore, [Karimi et al.,
2018] confirms that degree disparities exist in real social networks, encouraging us to alleviate disparities
based on intrinsic node attributes to achieve fairness.

Previous work seeks to make graph algorithms fair by (a) preprocessing the original graph to remove
potential bias, for example, FairDrop [Spinelli et al., 2021] that adds and removes edges to induce fair-
ness, thereby altering graph structure, (b) in-processing during the training phase, for example, [Kang
et al., 2022] that modifies the gradient used in the optimization, and (c) postprocessing the node embed-
dings to remove bias [Mehrabi et al., 2021].

Several metrics have been proposed to evaluate group fairness along with the proliferation of methods
to augment fairness. [Newman, 2003] present the Assortative Mixing Coefficient, which measures
communities’ dependence on protected attributes and models relations between communities where
connections are considered fair when the coefficient is 0. The notion of average statistical imparity
[Kang et al., 2021] computes the performance differences across groups but primarily caters to the two-
group setting. We extend the notion of imparity to different tasks through minor modifications and
utilize it for evaluation.

Previous works utilize in-processing techniques for fairer results, like [Kang et al., 2022] that uses the
Rawlsian difference principle to mitigate unfairness across the degree of Graph Convolutional Networks
(GCN) and [Liu et al., 2021], which learns robust tail node (low-degree) representations by transferring
information from central nodes. We address similar concerns in an unsupervised setting through CAFIN,
as most prior works focus primarily on supervised and semi-supervised variants.
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Chapter 3

CAFIN

This chapter covers important concepts contextualizing our work and proposes our new centrality-
driven fairness framework for unsupervised graph representation learning.

Figure 3.1 Visual Depiction of CAFIN - GraphSAGE refines node embeddings using positive and
negative samples as mentioned in section 3.1.2. In the input graph (a), node 6 is a high-degree node
(popular), while node 2 has a low-degree (unpopular). As it can be noted from their computation graphs
(blue and orange), node 6 has richer structural information when compared to node 2, which causes a
disparity in the information flow (indicated by the arrow directions). This transitively causes a disparity
in the final quality of the representations learned. The node sizes in graphs (b) and (c) represent the
performance distribution in downstream tasks using the final representations learned. The introduction
of CAFIN prioritizes the information flow in the computation graphs of less central nodes (indicated by
stronger arrows) by penalizing them more, leading to a more homogenous distribution performance in
downstream tasks, as shown in graph (c).

3.1 Preliminaries

We provide a brief overview of unsupervised representation learning, focusing on GraphSAGE, fol-
lowed by group fairness (which we work with in this paper) and the evaluation metric for fairness.
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3.1.1 Unsupervised Representation Learning

Unsupervised Representation Learning involves learning useful and rich features from unlabeled
data. The learned representations compress and efficiently encode entity information (each node in the
graph) which can later be used for several downstream tasks. Learning representations in an unsuper-
vised fashion leads to task-agnostic representations that provide a general overview of a node’s inherent
characteristics, eliminating the need to re-train large networks to obtain node representations that may
not translate well to other tasks. We focus on GraphSAGE, a popular unsupervised graph learning
framework in our work, as it is empirically shown to have centrality-based biases.

3.1.2 GraphSAGE

GraphSAGE [Hamilton et al., 2017] works by sampling and aggregating information from the neigh-
borhood of each node. The sampling component involves randomly sampling n-hop neighbors whose
embeddings are then aggregated to update the node’s own embedding. It works in the unsupervised
setting by sampling a positive (nearby nodes) and a negative sample (distant nodes) for each node in
the training batch. It then attempts: (a) to minimize the embedding distance between the node and the
positive sample, and (b) to maximize the embedding distance between the node and the negative sample.
The unsupervised version of GraphSAGE uses the following loss formulation,

JG(zu) = − log(σ(zTu zv))−Q · Evn∼Pn log(σ(−zTu zvn)) (3.1)

where v is a node that co-occurs near u on fixed-length random walk, σ is the sigmoid function, Pn

is a negative sampling distribution, and Q defines the number of negative samples. zu, zv and zvn
correspond to the learned embeddings of the training sample, the positive sample, and the negative
sample, respectively. The loss landscape is formulated in such a way that it is minimized when zu, zv

are close together and zu, zvn are distant in the embedding space.

3.1.3 Graph Centrality Measures

Centrality measures correlate with a node’s influence on a graph and capture the relative importance
of nodes [Kang et al., 2011]. Among the several centrality measures that exist, we report results on
degree centrality due to its popularity in current literature [Liu et al., 2021, Tang et al., 2020, Kang et al.,
2022, Fish et al., 2019]. Another advantage is that the degree centrality for a graph can be calculated in
linear time with respect to the number of edges, which is computationally inexpensive, unlike some of
the other centralities.

3.1.4 Centrality-driven Group Fairness

Group Fairness concerns the disparity in the performance of a system for entities from different
groups. Since most graph data does not possess explicit sensitive attributes, we utilize the connectivity
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structure of the graph using centrality measures to naturally categorize nodes into groups - the group of
popular (centrality greater than the median) and unpopular (centrality less than the median) nodes.

3.2 Fairness in GraphSAGE

GraphSAGE aggregates information from its neighbors, does not consider any intrinsic structural
attributes, and focuses primarily on node attributes. Intrinsic graph structure information is very valuable
irrespective of domain [Liu et al., 2021], and we believe that the learning process can be made fairer by
leveraging aspects of this information. GraphSAGE takes the maximum number of nodes to be sampled
from each hop neighborhood as a hyperparameter to build the computation graph, which could result
in central nodes having complete and larger computation graphs while the less central ones having less
information-rich subgraphs. As the size of the computation graph determines how much information the
chosen node aggregates and learns from its neighborhood, the representations of central nodes encode
much more information, giving them an advantage over less central nodes. Previous works [Kang et al.,
2022] have theoretically and empirically proven the above claim for GCNs.

Theorem 1 Suppose we have an input graph G = {VG ,A,X}, the renormalized graph Laplacian

Â = D̃− 1
2 (A+ I)D̃− 1

2 , a nonlinear activation function σ and an L-layer GCN that minimizes a task-

specific loss function J . For any l-th hidden graph convolution (∀l ∈ {1, . . . , L}) layer, the gradient of

the loss function J with respect to the weight parameter W(l) is a linear combination of the influence

of each node weighted by its degree in the renormalized graph Laplacian.

∂J

∂W(l)
=

n∑
j=1

degÂ(j)I(row)
j =

n∑
i=1

degÂ(i)I(col)
i

where degÂ(i) is the degree of node i in the renormalized graph Laplacian Â,

I(row)
j =

(
H(l−1)[j, :]

)TEi∼pN̂ (j)

[
∂J

∂E(l)[i,:]

]
and I(col)

i =

(
Ej∼pN̂ (i)

[
H(l−1)[j, :]

])T
∂J

∂E(l)[i,:]

are the row-wise influence matrix of node j and the column-wise influence matrix of node i correspond-

ingly. H(l−1) is the input node embeddings of the hidden layer and E(l) = ÂH(l−1)W(l) is the node

embeddings before the nonlinear activation.

Theorem 1, as proved in [Kang et al., 2022], implies that the node degree in A is proportional to
its importance on the gradient of the weight matrix ∂J

∂W(l) , implying that GCN is biased against low-
degree nodes. This remark also stands true for our case as we use GraphSAGE with a mean aggregator
(GraphSAGE-Mean behaves like a GCN [Hamilton et al., 2017]). As described in detail in the sub-
sequent sections, we propose a fairer learning process, CAFIN, with higher penalties for less central
nodes to tackle this issue. CAFIN helps prioritize the information flow in smaller computation graphs,
as depicted in Figure 3.1, alleviating the disparity caused due to the computation graph sizes.
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3.3 Imparity

We focus on inter-group fairness between groups constructed from intrinsic node characteristics
rather than node features. The group membership is based on degree centrality in our results, how-
ever, CAFIN can be used with any centrality measure. From Figure 2, our initial analysis shows that
GraphSAGE is biased towards nodes with more neighbors to learn from, and performs better for popular
nodes. We use a modified variant of inter-group imparity [Kang et al., 2021] to measure the disparity
in the performance of the embeddings between unpopular and popular nodes for different downstream
tasks. Fairer representations would minimize the imparity between groups. Note that imparity is not
used to train the network, but rather is exclusively an evaluation method.

3.3.1 Imparity for Node Classification

Node classification involves identifying labels for nodes in a graph [Tang et al., 2020, Hamilton et al.,
2017]. As explained earlier, we divide the nodes into two groups (1 & 2) based on their centrality. We
compute the inter-group accuracy differences for all classes weighted by the class distribution,

Inc =
∑
c∈C

wc|ac1 − ac2| and wc =
fc
|V |

(3.2)

where Inc represents the imparity for the task of node classification, fc represents the count of nodes
labeled with class c in the input graph, and aci represents the average accuracy of nodes labeled with class
c in the ith group (either popular or unpopular nodes). We use a weighted metric (where the weights
are proportional to the respective class cardinality) in place of the original [Kang et al., 2021] to avoid
skewing the metric based on classes that are less common than others. In the case of multi-label node
classification (such as in PPI dataset), we compute imparity as the difference in macro-F1 scores instead
of accuracy, as it is a better representative of performance in the case of multi-label data [Grandini et al.,
2020].

3.3.2 Imparity for Link Prediction

Link Prediction involves inferring whether an edge exists between two nodes solely from their at-
tributes and local connectivity structure [Grover and Leskovec, 2016]. Based on our prior division of
nodes based on popularity, edges are divided into three groups - between two popular nodes (p − p),
between one popular and one unpopular node (p − up), and between two unpopular nodes (up − up).
We define imparity as the standard deviation between the accuracies for these three types of edges.

Ilp =

√
(ap−p − µ)2 + (ap−up − µ)2 + (aup−up − µ)2

3
(3.3)

µ =
ap−p + ap−up + aup−up

3
(3.4)
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where Ilp is the imparity for the task of link prediction and ax−y is the accuracy of link prediction
between nodes of type x and y. This formulation ensures that the metric is minimized when equal
performance is observed across all three categories of edges. We choose standard deviation (SD) over
the mean absolute deviation (MAD) to emphasize the effect of extreme outliers, better quantifying the
overall fairness.

3.4 Preprocessing the Input Graph

Our proposed augmentations require pre-computed centrality measures for each node and the pair-
wise distances between all pairs of nodes. We pre-compute the pairwise distances using a breadth-first
search (BFS) from each node while incrementally computing the degree centrality values simultane-
ously. Our framework utilizes the pairwise distances during training to impose the fairness constraints,
while the centrality values are used later for defining group membership during evaluation.

Time complexity of this step can be broken down into three components. Let |V | denote the number
of nodes and |E| denote the number of edges. Pairwise distance calculation uses BFS from each node
and incurs O(|V |2+ |V ||E|) in total but can easily be parallelized for improved performance. In section
4.5, we also explore efficient approximate distance measures as a potential replacement for this step to
minimize the complexity, and we observe comparable results even with approximate distance measures.
We calculate the degree centralities with one pass over all the edges, which incurs O(|E|). We do
not consider the centrality computation as overheads in our work, as they are used only to evaluate
performance or to divide graphs that do not contribute to training time. The primary and most significant
overhead is the pairwise distance computation which we consider a cost of fairness.

3.5 Preparing Graph Data for Inductive Setting

To translate transductive datasets to the inductive setting, we create disjoint subgraphs for each part
of the pipeline. For both the downstream tasks (node classification and link prediction), we sample
three subgraphs (g1, g2, and g3) from the original graph: One for training GraphSAGE (g1), one for
training the downstream task classifier (g2), and the other for evaluating the classifier’s performance in
the downstream task (g3). We allocate more data for training GraphSAGE (g1) than the downstream
task classifier (g2) as it has more parameters to learn.

Node Classification: Random vertex-induced subgraphs with 60% of the nodes for g1, 30% for g2
and the rest 10% for g3.

Link Prediction: The subgraph for training embeddings g1 is constructed by sampling 60% of the
edges from the original graph. Since g2 and g3 deal with link prediction, they need positive samples
(edges that actually exist) and negative samples (fabricated edges). We split the remaining edge set into
g2p and g3p randomly (the positive edge set) and construct g2n and g3n, sets of artificial edges between
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nodes that do not have an edge in the graph (the negative edge sets). The positive and negative edge
partitions are merged to obtain the graphs g2 and g3, g2 = g2p ∪ g2n and g3 = g3p ∪ g3n.

3.6 Centrality Aware Fairness Inducing In-processing (CAFIN)

We incorporate node degree and pairwise distance measures to augment GraphSAGE’s loss formu-
lation and achieve more equitable training between popular and unpopular nodes. Since this informa-
tion is not dataset-specific, our method finds applications across domains without the inclusion of any
dataset-specific overhead. Our proposed novel loss formulation is described below,

fl(u, v) =
maxz deg(z)

deg(u)
· log2

(
D(zu, zv)

k
· maxx,y(d(x, y))

d(u, v)

)

Lf = fl(u, v) + fl(u, vn) (3.5)

where deg(u) represents the degree of node u, zu the embedding of node u, D(zu, zv) the distance
between the node embeddings of nodes u and v, and d(u, v) the distance between the nodes in the
graph. x, y, and z represent arbitrary nodes. Using GraphSAGE’s notation, we represent the node
of interest with u, the positive sample with v, and the negative sample with vn. The parameter k

normalizes the embedding distance and brings it to the same range as the normalized node distance.
GraphSAGE’s original loss formulation takes a contrastive form that we improve by considering the
actual node distance. Lf , the final modified loss function, converges to 0 when the ratio between the
two distances is 1, and our loss formulation tries to make the node embedding distance equal to the
actual (normalized) distance between the nodes in the graph. Most real-world graphs are assortative in
nature (similar nodes are close together) [Suresh et al., 2021]; hence, the actual node distance is a good
proxy for the embedding distance.

We introduce a logarithm to curtail penalties for nodes whose embedding distances are distant from
the actual node distances. Additionally, we square the overall formulation to ensure that the loss reaches
a minimum when the embedding distance is equivalent to the actual node distance. The loss formulation
focuses more on nodes with lower degrees, which conventionally have a lower impact on learning for
GraphSAGE as they have few neighbors that they influence and are influenced by. Including the inverse
of node degree helps shift focus toward less popular nodes, leading to less overall disparity during the
learning process. We demonstrate that these enhancements lead to a fairer version of GraphSAGE on
tasks that require node representations.

Intuition behind the loss function. Equation 3.5 details the loss formulation, and the goal is to make
the actual distance in the graph directly proportional to the distance in the embedding space. Since the
log function is naturally monotonic, we square the formulation to ensure that the minima occurs when
the actual distance is equal to the embedding distance and the loss doesnt push the embedding distance
to zero for all pairs of nodes (if we dont square the formulation, having an embedding distance of 0
would result in the least loss).

12



Figure 3.2 Loss Formulations - log2(x), a smooth function, achieves its minima at the required value

Considering x to be the embedding distance and d to be the actual node distance in the graph, we
ideally want the minima to occur when x = d. We notice that this happens for both log2 and |log|.
As |log| has a point of non-differentiability at x = d, and because smooth functions are preferred for
gradient descent, we choose log2 for our formulation. We have demonstrated the same in Figure 3.2.

Joint Training Strategy. To train CAFIN, we employ a joint training strategy that uses the original
loss formulation as its primary objective and the modifications as its secondary.

L = Lo + αLf (3.6)

Equation (3.6) describes the joint loss function where Lo is the original loss JG(zu) described in
equation (3.1), and Lf is the fairness-inducing constraint described in equation (3.5). α is a Lagrangian
multiplier (balance factor) used to control the influence of the secondary fairness-inducing objective.

Stricter Sampling. GraphSAGE [Hamilton et al., 2017] requires positive and negative samples for
each node for contrastive learning. They use a random node from the graph as the negative sample.
We impose stricter constraints for selecting negative samples by leveraging the precomputed pairwise
distances. We define a minimum distance threshold (NEG MIN DIST) for a node to qualify as a neg-
ative sample, i.e., the chosen negative sample must atleast be NEG MIN DIST hops away from the
node (d(u, vn) ≥ NEG MIN DIST). This ensures that the positive and negative samples are mutually
exclusive, thus further improving the contrastive learning.
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Chapter 4

Experiments with CAFIN

Here, we briefly describe the datasets we work with and the evaluation criteria we utilize. We then
present the experimental results along with ablation studies.

Table 4.1 Dataset Description - We test CAFIN’s efficacy over six datasets of various sizes from diverse
domains.

Dataset Nodes Edges Features Classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
Twitch 7,126 25,468 20 2
AMZN-P 7,650 238,162 745 8
AMZN-C 13,752 491,722 767 10
PPI 56,658 793,617 50 121

(24 graphs) (multilbl.)

4.1 Datasets

We evaluate CAFIN on popular datasets spanning four domains, each possessing different network
characteristics. Table 4.1 contains the quantitative description of each dataset.

Citation networks. We use the two most standard citation network benchmark datasets - Cora
[McCallum et al., 2000], and CiteSeer [Giles et al., 1998]. In both the datasets, nodes correspond to
manuscripts, and the undirected edges to citations. The node feature vector for both datasets is a word
dictionary indicating the distribution of words in each paper’s abstract, and the node label is the domain
of the paper.

Social networks. We use the Twitch (EN) dataset [Rozemberczki et al., 2021] to study CAFIN’s
efficacy on social networks. The nodes in this dataset correspond to Twitch streamers, and the edges
to mutual followers. Node features contain a representation of the games played by the streamer. The
node label is binary and indicates if the streamer streams mature content.
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E-commerce co-purchase networks. We use two datasets - Amazon Photos (AMZN-P) and Ama-
zon Computers (AMZN-C) [Shchur et al., 2018]. In both datasets, the nodes correspond to products, and
the edges connect co-purchased products. Node features contain the product reviews as bag-of-words,
and the node label indicates the product category.

Protein interaction networks. Protein-Protein Interactions (PPI) [Zitnik and Leskovec, 2017] con-
tains a collection of graphs (24), each an interaction network within different human tissues. Node
features contain positional gene sets, motif gene sets, and immunological signatures, and the node label
is a 121-dimensional vector corresponding to the gene ontology sets.

We use Cora [McCallum et al., 2000] and CiteSeer [Giles et al., 1998] from the citation network
domain, Twitch (EN) [Rozemberczki et al., 2021] dataset to study CAFIN’s efficacy on social networks,
co-purchase networks - Amazon Photos (AMZN-P) and Amazon Computers (AMZN-C) [Shchur et al.,
2018], and PPI [Zitnik and Leskovec, 2017] from the biological networks domain.

4.2 Evaluation Criteria

We evaluate the effective improvement in the model’s fairness by comparing the change in imparity
(refer to Section 3.3) with the original model. The lower the imparity value of an experiment, the fairer
it is compared to the original. A decrease in the imparity value indicates the reduction of the model’s
performance disparity between the groups, depicted by a positive percentage in the tables. We also
report the change in accuracy and the time overhead, the two primary costs of fairness for CAFIN.

Improvement in Imparity (II). The change in the imparity value measures the effective increase in
fairness induced by the new formulations compared to the original. II measures the percentage decrease
in imparity compared to the original. The higher the value of II, the fairer the formulation is. II is
defined as,

II =
Io − I

Io
· 100

where Io corresponds to the imparity values of the original and I corresponds to the current imparity
value.

Change in Accuracy (CA). Imposing fairness comes with a cost, like in most cases [Corbett-Davies
et al., 2017, Menon and Williamson, 2018], generally in the form of a compromise in the model’s
performance. CA measures the overall model’s accuracy change compared to the original. In an ideal
experimental setting, CA will be close to 0. CA is defined as,

CA = A−Ao

where Ao corresponds to the overall accuracy of the original and A corresponds to the current overall
accuracy.

Coefficient of Variance (CV). We measure the consistency of our results with the Coefficient of
Variance (CV), which is defined as,

CV =
σ

µ
· 100
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where µ corresponds the mean of observed results across runs and σ to the standard deviation. Low
values of CV indicate consistency in the results. No specific ranges are considered acceptable in general
as that depends on various factors like the experimental setting and objectives. [Aronhime et al., 2014]
proposes that a CV value ≤ 10% is considered excellent and anything between 10− 20% is considered
good in their experimental setting.

Table 4.2 Results of CAFIN - (a) Link Prediction, II(CV) indicates a stable increase in fairness across
datasets. (b) Node Classification, II indicates an increase in fairness, however, less consistently than
link prediction (as indicated by the higher CV).

(a) Link Prediction (b) Node Classification

Dataset II ↑ (CV ↓) CA ↑ T ↓ II ↑ (CV ↓) CA ↑ T ↓

Cora 20.48% (10.22%) -2.75% 0.50 33.13% (10.86%) 0.19% 0.31
CiteSeer 62.89% (15.68%) 3.87% 0.18 17.71% (11.18%) -1.00% 0.65
Twitch 38.92% (4.10%) -5.67% 1.73 80.34% (12.06%) -3.28% 0.84
AMZN-P 24.32% (5.26%) -3.30% 4.80 32.63% (22.12%) -7.70% 3.58
AMZN-C 53.07% (6.71%) -4.56% 8.06 79.74% (38.30%) -7.53% 5.37
PPI 73.31% (12.98%) -3.28% 3.27 71.58% (3.28%) -3.89% 3.35

Time Overhead per Increase in Imparity (T). This metric measures the effective increase in time
per unit increase in imparity to give an idea about the effectiveness of the formulations with respect to
the time overhead. Due to the augmentations, two parts in the pipeline could potentially incur a time
overhead.

• Training (tt) - We observe empirically that the time overhead in the training loop is insignificant
in most cases. The increase for all datasets is less than 1% of the original time required to train,
which is in milliseconds for 100 epochs. Nevertheless, for completeness, we add it to the final
time overhead.

• Preprocessing (tp) - The majority of the time overhead is constituted by preprocessing. We ob-
serve significant differences in this step as our augmentation requires extra information about the
network to impose proposed constraints, specifically pairwise distance measures, which is an ex-
pensive operation. However, we propose a solution to this overhead in the form of approximate
distance measures, later discussed in 4.5.2.

Based on the above two observations, we define T as,

T =
t

II

where t = tt + tp corresponds to CPU + I/O time (in seconds) required to precompute necessary data
for the augmented formulation. We divide it by II to calculate the time spent to increase II by 1%. As
the total time depends on various factors like the load on the hardware and other factors, we report the
mean across 100 runs along with the CV. INF is reported when II is negative.
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4.3 Results

The following results were obtained by using a linear SVM classifier for node classification, logistic
regression for link prediction, and multiclass node classification (using a one vs. rest strategy), chosen
due to their prevalence in the unsupervised learning paradigm, simplicity, and performance. The clas-
sifiers require the embeddings from GraphSAGE as input and use the train/test sets that were held out
during the embedding training phase.

Table 4.2(a) captures our results for the link prediction task using all datasets and their respective
fairness costs. We observe an improvement in imparity across the board with relatively low CV values,
indicating stable improvements for this task. The drop in accuracy is reasonable across datasets and
even positive in the case of Citeseer (indicating that in-processing for fairness can lead to performance
enhancements in the case of extreme skews in centrality distribution). Although the time overhead is
significant for larger graphs, we address it by including approximate distance measures, which results in
minor reductions to both II and CA but a drastic reduction in T, which makes our method more feasible
for large graphs.

Table 4.3 Results of Ablation studies for Link Prediction - (a) For CAFIN-N, the results are less con-
sistent than the original. (b) For CAFIN-P, the results are less consistent than the original and, in some
cases, much worse. (c) For CAFIN-AD, the approximations in pairwise node distances do not impact
the II or CA by much, indicating the robustness of CAFIN and reassuring the scope of scalability.

(a) CAFIN-N (b) CAFIN-P

Dataset II ↑ (CV ↓) CA ↑ T ↓ II ↑(CV ↓) CA ↑ T ↓

Cora -12.98% (7.17%) -3.56% INF -216.01% (1.10%) -1.41% INF
CiteSeer 84.66% (18.17%) 4.03% 0.13 42.26% (0.00%) 1.92% 0.26
Twitch 28.24% (5.35%) -6.96% 2.34 48.87% (3.52%) -10.04% 1.36
AMZN-P 21.24% (2.44%) -3.87% 5.46 23.47% (0.82%) -6.57% 5.00
AMZN-C 46.78% (9.20%) -4.23% 9.14 49.66% (9.31%) -7.03% 8.65
PPI 90.73% (26.14%) -3.52% 2.65 76.05% (15.35%) -3.01% 3.16

(c) CAFIN-AD

Dataset II ↑ (CV ↓) CA ↑ T ↓

Cora -12.68% (14.73%) -5.47% INF
CiteSeer 77.18% (13.01%) -0.29% 0.07
Twitch 14.75% (5.70%) -7.26% 0.34
AMZN-P 21.09% (5.73%) -4.61% 0.24
AMZN-C 43.17% (4.46%) -4.15% 3.59
PPI 24.46% (9.91%) -2.96% 0.02

The low value of T, despite the size of the graph for PPI, is due to the distribution of its nodes and
edges into multiple subgraphs, reducing the time overhead deviating from the trend of preprocessing
time increasing with |V | and |E|. The performance can be attributed to the inherent structure of the
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dataset and how we exploit it to increase performance. The dataset comprises 24 disconnected sub-
graphs, each possessing a disjoint subset of the nodes in the graph. We perform pairwise distance
computations on each subgraph individually and parallelly. It leads to a dramatic speedup as the pair-
wise distance computation is now proportional to |V |. The memory constraints are also relaxed as we
split and store the pairwise distances for each component. Similar performance can be expected for any
dataset with multiple connected components that can be processed in parallel.

Table 4.2(b) contains results for the node classification task, and we observe improvement in impar-
ity for all datasets. We also observe that the improvements are much greater than the corresponding
improvements in the link prediction task, with larger drops in accuracy. Although the improvement
for the node classification task is better than that of link prediction, it is also more volatile than the
improvement for link prediction. The lower variance in the link prediction task results stems from the
task’s simplicity when compared to node classification - binary classification compared to multiclass
classification.

Table 4.4 Results of ablation studies for Node Classification - CAFIN-P and CAFIN-N show decreases
in performance when compared to CAFIN. Even for cases where high II is observed, either the CV is
very high or the CA is high. Results with * were run with AdaBoost classifier instead of LinearSVC.

(a) CAFIN-N (b) CAFIN-P

Dataset II ↑ (CV ↓) CA ↑ T ↓ II ↑ (CV ↓) CA ↑ T ↓

Cora 35.23% (8.50%)* -1.20% 0.29 -10.10% (7.44%) -2.90% INF
CiteSeer 75.61% (0.00%) -15.43% 0.15 -55.48% (10.39%) -6.28% INF
Twitch 32.24% (51.86%)* 0.10% 2.05 10.57% (7.02%) -1.76% 6.3
AMZN-P 55.37% (30.98%)* -7.35% 2.09 16.92% (15.98%) -17.90% 6.93
AMZN-C 88.83% (48.28%)* -1.36% 4.82 42.54% (12.48%) -2.94% 10.09
PPI 73.71% (4.70%) -4.12% 3.26 6.29% (10.63%) -1.05% 38.16

4.4 Hyperparameters

As GNNs are known to be sensitive to hyperparameters, we experiment with various combinations
to obtain the best-performing values for each setting. The base configuration for training is 100 epochs,
a learning rate of 0.0025, and a step learning rate scheduler. We tune the learning rate for each of the
datasets that we do not detail in the interest of space. We use GraphSAGE with three layers and a
hidden embedding size of 256 across runs and datasets. We experimented and empirically converged on
α = 0.05. All training runs were performed on an NVIDIA GeForce RTX 2080 Ti and 20 Intel Xeon
E5-2640 v4 CPU cores with access to a minimum of 20GB of RAM.

GraphSAGE is known to be stochastic [Schumacher et al., 2020] due to the various random compo-
nents it contains. Even then, CAFIN shows a consistent positive II (34.9% on average for the Twitch
dataset) across popular seeds as seen in Figure 4.1. The values are averaged over 100 runs and we also
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Figure 4.1 II vs popular seeds - Positive II is observed for various popular seeds (Avg - 34.9) for Link
Prediction on the Twitch dataset.

plot the first standard deviation interval. Figure 4.1 shows that CAFIN is robust, and the results are
reproducible across seeds, withstanding the stochastic nature of GraphSAGE.

4.5 Ablation Studies

We focus primarily on the loss formulation design to test which components of CAFIN lead to
improvements and plausible solutions for the high time complexity of the dataset preprocessing step.

4.5.1 Loss Formulation Design

CAFIN treats positive and negative samples equally, but unpopular nodes have fewer positive sam-
ples than popular nodes, and the utilization of positive and negative samples may provide an unfair
learning advantage to more popular nodes. To verify this theory, we construct two loss formulations
based on the original hypothesis.

Lp(u, v) = fl(u, v) (4.1)
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Ln(u, vn) = fl(u, vn) (4.2)

Lp (CAFIN-P) adds an additional term only for positive samples, and Ln (CAFIN-N) adds a term
for only negative samples. The model is trained jointly, similar to Eq. 3.6 with the same parameter
α = 0.05. From tables 4.3(a) and 4.3(b), it can be observed that neither formulation performs con-
sistently across datasets and either compromises on the improvement in imparity or the accuracy drop.
Although we observe better performances for some datasets, CAFIN remains the preferred choice due
to its stability. From Tables 4.4(a) and 4.4(b), we can observe that neither CAFIN-N nor CAFIN-P per-
forms well consistently for Node Classification. It either compromises II, CA, or the robustness of the
values. It is also important to note that the embeddings generated by CAFIN-N for Cora, AMZN-P, and
AMZN-C were very homogenous. We used a more robust classifier with higher representative power,
AdaBoost [Schapire, 1999], instead of our current one (LinearSVC) for the downstream task. Although
we observe better performances for a couple of datasets, CAFIN is the preferred choice for this task as
well, due to its balance of stability and performance.

Table 4.5 Results of t-test for Node Classification - CAFIN-P and CAFIN-N and CAFIN-P show a
statistically significant change in distribution hence verifying the validity of our results.

Dataset CAFIN-N CAFIN-P

Cora <0.00001 0.293251
CiteSeer <0.00001 <0.00001
Twitch <0.00001 <0.00001

AMZN-P <0.00001 <0.00001
AMZN-C <0.00001 0.361

PPI <0.00001 <0.00001

We conducted a t-test for the statistical significance of the study results. We observe that in almost
all the subject groups, the p-value is less than 0.00001. This indicates that the distributions are, in
fact, independent of each other and that our ablation studies are statistically significant. Table 4.5
enumerates the p-values for CAFIN-N and CAFIN-P for every dataset (with respect to CAFIN) for the
node classification task.

4.5.2 Approximate Distance Measures

CAFIN and its variants require an O(|V |2 + |V ||E|) overhead to compute pairwise distances for
the entire graph. This computation increases the time and space requirements during the preprocessing
stage, inhibiting our in-processing technique’s application to larger graphs. We demonstrate results us-
ing the landmark distance method to overcome this impediment [Potamias et al., 2009]. The landmark
distance method considers several “landmarks” that are randomly chosen and computes the distance of
every node to these landmarks during preprocessing. It utilizes the distance from landmarks and uses
the triangle inequality to acquire an upper bound on the distance between any two nodes during infer-
ence. The landmark method for approximate distance measures reduces the time overhead from best
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case O(|V |2) to O(|V | · l), where l is the number of landmarks chosen. We consider 100 landmarks for
our experiments due to the performance-complexity trade-off. The time overhead can be approximated
to a linear overhead for large graphs. Table 4.3(c) reports the results of CAFIN using landmark ap-
proximation (CAFIN-ApproximateDistance or CAFIN-AD) in place of the original pairwise distances.
We observe a nominal drop in II compared to exact distance measures but a drastic reduction in the
preprocessing time required, indicating that our method is robust to aberrations in distance measures.

Figure 4.2 Error in Landmark-based Distance Approach - The figure illustrates the error of the Land-
mark Distance approach in calculating pairwise distances of nodes for various datasets. The color of
the bars represents the error value in the predicted distance. An error of x denotes that the predicted
distance deviates from the actual distance by x.

Landmark-based Approximate Distance Method Error Rates. CAFIN requires pairwise dis-
tances to operate and to impose a stricter sampling strategy; thus, it needs to be precomputed. The best
time complexity (without approximations) for it is O(|V |2), where |V | is the number of nodes in the
graph. The time complexity becomes a bottleneck when we try to scale CAFIN to large graphs. To
address this issue, we explore a fast approximate distance method.

As part of our ablation study, we try out landmark-based distance method for approximate distance
computation [Potamias et al., 2009]. This method involves selecting a subset of nodes as “landmarks”
and precomputing the distances of each node to those landmarks. When CAFIN requires the distance
between a pair of nodes at runtime, it can be estimated quickly by combining the precomputed distances.
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The new preprocessing step only requires computing the distance of each node to landmarks, which
can be achieved by doing a breadth-first search from each landmark node. The time complexity for the
same is O(|V | · l), where l is the number of landmark nodes.

Figure 4.3 Actual Node Distances - The figure illustrates the correct node distances for each dataset.
The bar’s color represents the range the actual distance lies in (for example the blue part of the bar
represents nodes with distances 1-3).

Let d(u, v) be the actual distance between nodes u and v in the graph. It is important to note that the
distance in graphs is a metric that satisfies the triangle inequality. That is, given any three nodes x, y,
and z, the following inequality holds,

d(x, z) ≤ d(x, y) + d(y, z) (4.3)

d(x, z) ≥ |d(x, y)− d(y, z)| (4.4)

Note that if y belongs to one of the shortest paths from x to z, then the inequality 4.3 holds with
equality. In order to compute the pairwise distances during runtime, we use the precomputed distances
of nodes u and v from the landmark nodes and the triangle inequality. Let i be an arbitrary landmark
node, and thus based on 4.3 and 4.4, for any two nodes u and v, we have,

max
i

|d(u, i)− d(v, i)| ≤ d(u, v) ≤ min
i
{d(u, i) + d(i, v)}
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In other words, the true distance between nodes d(u, v) lies in the range [lb, ub], where lb = maxi |d(u, i)−
d(v, i)| and ub = mini{d(u, i) + d(i, v)}. Any value in the range [lb, ub] works as an approximation
for d(u, v). We use ub as an approximation as [Potamias et al., 2009] suggests that it is the best in most
cases. Therefore, the complexity of computing distance during runtime for a pair of nodes is O(l).

Figure 4.2 captures the absolute errors in the distance approximations across datasets. Figure 4.3
contains the graph’s distribution of actual node distances. These two graphs show that the landmark
method for distance approximation provides good approximations but has large error rates at times,
further accentuating the robustness of CAFIN.

As expected, the performance of this method depends on the chosen subset of landmark nodes. A
perfectly chosen subset can give accurate results for all distance pairs. Literature suggests picking nodes
that have a high degree or high closeness centrality because they are more likely to be present in the
shortest path of most pairs of nodes. As we aim to mitigate bias induced by a node’s centrality, we
do not use the above to maintain the pipeline bias-free. There is a trade-off between the performance
and the computational complexity based on the number of landmarks chosen. More landmarks will
guarantee stricter approximations but at the cost of more computation. Therefore, we select l = 100

landmark nodes for all datasets, which fared well on the trade-off through experimentation. Since we
use the upper bound ub of triangle inequality to predict distance, our predicted distance can only be
greater or equal to the actual distance. We increase the NEG MIN DIST value by 1 or 2 to account for
the off by 1 or 2 error after noting the trend from Figure 4.2.

In the next section, we will move on to our second work on identifying dark patterns and fraud
reviewer clusters on the Google Play Store.
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Chapter 5

Dark Patterns in Install-Incentivizing Apps of Google Play 1

Google Play lists over 2.89 million apps on its platform [Statista, 2022c]. In 2021 alone, these
apps collectively accounted for over 111 billion installs by users worldwide [Statista, 2022a]. Given
the magnitude of this scale, there is tremendous competition amongst developers to boost the visibility
of their apps. As a result, developers spend considerable budgets on advertising, with expenditure
reaching 96.4 billion USD on app installs in 2021 [Statista, 2022b]. Owing to this competitiveness,
certain developers resort to inflating the reviews, ratings, and installs of their apps. The legitimacy
of these means is determined by Google Plays policy, under which the use of incentivized installs is
strictly forbidden [Google, 2022]. Some apps violate this policy by offering users incentives in the
form of gift cards, coupons, and other monetary rewards in return for installing other apps; we refer
to these as install-incentivizing apps. Past work [Farooqi et al., 2020] found that apps promoted on
install-incentivizing apps are twice as likely to appear in the top charts and at least six times more likely
to witness an increase in their install counts. While their work focuses on measuring the impact of
incentivized installs on Google Play, our work aims to develop an understanding of how it affects the
users of install-incentivizing apps. To this end, we perform a mixed-methods analysis of the reviews
and permissions of install-incentivizing apps. Our ongoing work makes the following contributions:

1. We provide a detailed overview of various dark patterns present in install-incentivizing apps and
highlight several normative concerns that disrupt the welfare of users on Google Play.

2. We examine different types of permissions requested by install-incentivizing apps to discover
similarities with dark patterns, with 95% apps requesting permissions that access restricted data
or perform restricted actions

1The following chapter is a part of Ashwin Singh, Arvindh Arun, Pulak Malhotra, Pooja Desur, Ayushi Jain, Duen Horng
Chau, and Ponnurangam Kumaraguru. Erasing Labor with Labor: Dark Patterns and Lockstep Behaviors on Google Play.
In Proceedings of the 33rd ACM Conference on Hypertext and Social Media, HT 22, page 186 - 191, New York, NY, USA,
2022. Association for Computing Machinery.
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3. We show promising preliminary results in algorithmic detection of fraud and lockstep behaviors in
reviews that boost the overall rating of install-incentivizing apps, detecting near-identical review
pairs in 94% of the 50 most suspicious review clusters.

4. We release our dataset [Singh et al., 2022] comprising 319K reviews written by 301K reviewers
over a period of five months and 1,825 most relevant reviews with corresponding qualitative codes
across 60 install-incentivizing apps.

5.1 Dataset

Figure 5.1 Distribution and CDF plot of install count for the 60 shortlisted install-incentivizing apps
that collectively account for over 160.5M installs. Eighty-five percent of these apps have 100K or more
installs, demonstrating their popularity.

We created queries by prefixing install apps with phrases like earn money, win prizes, win rewards,
etc., and searched them on Google Play to curate a list of potentially install-incentivizing apps. Then,
we proceeded to install the apps from this list on our mobile devices to manually verify whether these
apps incentivized installs for other apps; we discarded the apps that did not fit this criterion. Following
this process, we shortlisted 60 install-incentivizing apps. In Figure 5.1, we plot a distribution and CDF
of their installs, finding that most apps (85%) have more than 100K installs. We used a scraper to
collect reviews written daily on these apps, over a period of 5 months from November 1, 2021, to April
8, 2022. Reviews were collected daily to avoid over-sampling of reviews from certain temporal periods
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Figure 5.2 Network of apps showing labels of five apps that share the most reviewers with other apps.
App ‘us.current.android’ shares 6.4K reviewers with other install-incentivizing apps.

over others. This resulted in 319,198 reviews from 301,188 reviewers. Figure 5.2 shows a network of
apps where edges denote the number of reviewers shared by any two apps. We observe that certain apps
share more reviewers with some apps over others, hinting at the possibility of collusion. Lastly, we also
collected the permissions requested by apps on users devices.

5.2 Qualitative Findings

To understand the various ways in which install-incentivizing apps affect their users, we performed a
qualitative analysis of their reviews. Unless a user expands the list of reviews, Google Play displays only
the top four most relevant reviews under its apps. Owing to their default visibility, we sampled these
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reviews for all 60 apps over a one-month period, obtaining 1,825 unique reviews. Then, we adopted
an inductive open coding approach to thematically code [Miles and Huberman, 1994] these reviews.
In the first iteration, all researchers independently worked on identifying high-level codes for these
reviews which were then compared and discussed. During this process, we defined the ‘completion of
offers on install-incentivizing apps’ as an act of labor by users and the ‘incentive promised for their
labor’ as value. Then, we reached a consensus on four high-level themes: exploitation, UI challenges,
satisfaction, and promotion, which we define below:

1. Exploitation: User invests labor but is unable to gain value.

2. UI challenges: User invests labor but the app’s UI makes it challenging for them to gain value.

3. Satisfaction: User invests labor and is able to gain value.

4. Promotion: User invests labor in promoting an app through their review, rating or a referral code
to gain value.

While all themes were useful for capturing the inter-relationship between a user’s labor and its value,
the first three themes were relatively more prevalent in our data. Next, we performed two iterations of
line-by-line coding of reviews within the high-level themes where the researchers identified emerging
patterns under each theme until the principle of saturation was established.

In this section, we describe our findings from the qualitative analysis to shed light on how install-
incentivizing apps affect their users. More specifically, we elaborate on the commonalities and differ-
ences of patterns within high-level codes that we discovered using line-by-line coding to depict how
labor invested by users in these apps is not only exploited but also leads to negative consequences for
them as well as the platform.

5.2.1 Dark Patterns

Dark patterns can be defined as tricks embedded in apps that make users perform unintended ac-
tions [Brignull, 2018]. We find comprehensive descriptions of dark patterns present within install-
incentivizing apps in reviews coded as ‘exploitation’ and ‘UI challenges’. These patterns make it dif-
ficult for users to redeem value for their labor. First, our low-level codes uncover the different types
of dark patterns present in reviews of install-incentivizing apps. Then, we ground these types in prior
literature [Mathur et al., 2021] by utilizing lenses of both individual and collective welfare to highlight
their normative concerns. The individual lens focuses on dark patterns that allow developers to benefit
at the expense of users whereas the collective lens looks at users as a collective entity while examining
expenses. In our case, the former comprises three normative concerns. First, patterns that enable devel-
opers to extract labor from users without compensating cause financial loss (I1) to users. Second, cases
where the data of users is shared with third parties without prior consent, leading to invasion of privacy
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Table 5.1 Different types of dark patterns mapped to their individual {Finanical Loss (I1), Invasion of
Privacy (I2), Cognitive Burden (I3)} and collective {Competition (C1), Price Transparency (C2), Trust
in the Market (C3)} normative concerns.

High-Level
Code

Low-Level
Code Review Normative Concerns

I1 I2 I3 C1 C2 C3

Exploitation

Withdrawal Limit
100000 is equal to 10 dollars. Just a big waste of time.
You can not reach the minimum cashout limit.

✓ ✓ ✓ ✓

Cannot Redeem
Absolute scam. Commit time and even made in app
purchases to complete tasks ... I have over 89k points
that it refuses to cash out!

✓ ✓ ✓ ✓

Only Initial Payouts
Good for the first one week then it will take forever to
earn just a dollar. So now I quit this app ...

✓ ✓ ✓ ✓

Paid Offers
In the task I had to deposit 50 INR in an app and I
would receive 150 INR as a reward in 24 hrs. 5 days
have passed and I get no reply to mail.

✓ ✓ ✓ ✓

Hidden Costs
Most surveys say that the user isnt eligible for them,
after you complete them! Keep in mind you may not
be eligible for 90% of the surveys.

✓ ✓ ✓ ✓

Privacy Violations
Enter your phone number into this app and youll be
FLOODED with spam texts and scams. I might have
to change my phone number because I unwittingly ...

✓ ✓

UI Challenges
Too Many Ads

Pathetic with the dam ads! Nothing but ads!!! Money
is coming but only pocket change. Itll be 2022 before
i reach $50 to cashout, if then.

✓ ✓

Progress Manipulation
I redownload the app since the app would crash all the
time ... I logged in and guess what?? ALL MY POINTS
ARE GONE.. 12k points all gone...

✓ ✓ ✓ ✓

Permission Override
When you give it permission to go over other apps it
actually blocks everything else on your phone from
working correctly including Google to leave this review.

✓ ✓ ✓

(I2). Third, when the information architecture of apps manipulates users into making certain choices
due to the induced cognitive burden (I3). The lens of collective welfare facilitates understanding of
the bigger picture of install-incentivizing apps on Google Play by listing three additional concerns. Due
to high competition (C1), some developers incorporate dark patterns in apps that empower them to
‘extract wealth and build market power at the expense of users [Day and Stemler, 2020] on the platform.
In conjunction with their concerns at the individual level, they also pose a serious threat to the price
transparency (C2) and trust in the market (C3) of Google Play. In Table 5.1, we show these differ-
ent types of dark patterns mapped to their individual and collective normative concerns using sample
reviews from our data.

5.2.2 Evidence of Fraudulent Reviews and Ratings

During qualitative analysis, we found that most reviews coded as ‘satisfaction’ were relatively shorter
and lacked sufficient context to explain how the app benefitted the user, for e.g. “Good app, “Nice
App, “Very easy to buy money., “Nice app for earning voucher. We performed Welchs t-test to validate
that the number of words in reviews coded as satisfaction were very highly significantly lower than
reviews coded as exploitation or UI challenges (p < 0.001, t = −11.41). The shorter length of reviews,
along with the excessive use of adjectives and unrelatedness to the apps represented key spam-detection
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signals [Shojaee et al., 2015], raising suspicions about their fraudulence. We discovered evidence of
the same in reviews coded as ‘promotion – “Gets high rating because it rewards people to rate it so,
“I rated it 5 stars to get credits, thus finding that install-incentivizing apps also violate Google Plays
policy by incentivizing users to boost their ratings and reviews. Other reviews coded as ‘promotion
involved users promoting other competitor apps (“No earning 1 task complete not give my wallet not
good ! CASHADDA App is good fast earning is good go install now thanks) or posting their referral
codes to get more credits within the install-incentivizing app (‘The app is Awesome. Use My Referral
Code am****02 to get extra coin‘).

5.3 Quantitative Findings

In this section, we ascertain findings from our qualitative analysis as well as reveal more charac-
teristics about the behavior of install-incentivizing apps and their reviews. For the same, we examine
the permissions requested by these apps to establish their relevance to the dark patterns discussed in
Section 5.2.1, and perform anomaly detection on their reviews to build upon the evidence of fraud from
Section 5.2.2.
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Figure 5.3 UpSet plot demonstrating different types of permissions present in install-incentivizing apps.
Over ninety-two percent of apps request permissions that access sensitive user information.
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5.3.1 Permissions in Install-Incentivizing Apps

App permissions support user privacy by protecting access to restricted data and restricted actions
on a users device [Developers, 2022]. Most permissions fall into two protection levels as determined
by Android, namely normal and dangerous, based on the risk posed to user privacy. Similarly, another
distinction can be made between permissions that access user information and permissions that only
control device hardware [Center, 2015]. We leverage these categories in our analysis to identify types
of permissions prominent across install-incentivizing apps. Figure 5.3 shows an UpSet plot [Lex et al.,
2014] of different types of permissions present in install-incentivizing apps. First, we observe that
over 92% of apps comprise dangerous permissions that access user information. The most popular
permissions in this category include ‘modify or delete the contents of your USB storage (41 apps),
‘read phone status and identity (24 apps), ‘access precise location (19 apps), and ‘take pictures and
videos (14 apps). Second, despite being requested by relatively fewer apps, some permissions in this
category enable an alarming degree of control over user information; for e.g. ‘create accounts and set
passwords (5 apps), ‘add or modify calendar events and send email to guests without owners’ knowledge
(3 apps) and ‘read your contacts (2 apps). Third, 34% of install-incentivizing apps contain permissions
that access dangerous hardware-level information, the most prominent one being ‘draw over other apps
(14 apps). Fourth, we note that all but three apps request at least one dangerous permission. Lastly,
permissions requested by install-incentivizing apps share common characteristics with the dark patterns
discussed above, thus validating their qualitative discovery.
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Figure 5.4 Reviews are modeled as an edge-stream in a dynamic bipartite graph of apps and reviewers.
Each edge e ∈ E represents a tuple (r, a, t) where r is a reviewer who reviews an app a at time t.
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5.3.2 Lockstep Behaviors

In Section 5.2.2, we found evidence of install-incentivizing apps indulging in review and rating
fraud. Thus, we build upon the same to investigate reviews of these apps for anomalous behaviors such
as lockstep that are indicative of fraud. Specifically, we focus on detecting groups of reviews that exhibit
similar temporal and rating patterns; for e.g. bursts of reviews on an app within a short period of time
to boost its overall rating.

Figure 5.5 CDF plot of anomaly scores for the two edge streams Eboost and Esink. Reviews that boost
the overall rating of an install incentivizing app exhibit significantly more anomalous behavior than
reviews that aim to bring it down.

5.3.2.1 Modelling and Experimental Setup

Given that reviews are a temporal phenomenon, we model them as an edge-stream E = {e1, e2, ...} of
a dynamic graph G. Each edge ei ∈ E represents a tuple (ri, ai, ti) where ri is a reviewer who reviews
an app ai at time ti (see Fig 5.4). Groups of fraudulent reviewers may either aim to boost the overall
rating of an install-incentivizing app or sink the rating of a competitor app. Thus, we partition our edge
stream into two sub-streams as follows:

1. Eboost = {(ri, ai, ti) ∈ E | Score(ri, ai) ≥ Rai}, |Eboost| = 215, 759

2. Esink = {(ri, ai, ti) ∈ E | Score(ri, ai) < Rai}, |Esink| = 103, 439
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where Score(ri, ai) ∈ {1, 2, 3, 4, 5} is the score assigned by reviewer ri to the app ai and Rai denotes
the overall rating of app ai. Next, we reconfigure a state-of-the-art microcluster anomaly detection
algorithm MIDAS-F [Bhatia et al., 2022] for our use. In particular, we modify the definition of a
microcluster to accommodate the bipartite nature of our dynamic graph. Given an edge e ∈ E, a
detection period T ≥ 1 and a threshold β > 1, there exists a microcluster of reviews on an app a if it
satisfies the following equation:

c(e, (n+ 1)T )

c(e, nT )
> β where c(e, nT ) =

∣∣{(ri, a, ti) | (ri, a, ti) ∈ Eboost∧(n−1)T < ti ≤ nT}
∣∣ (5.1)

if e ∈ Eboost and vice versa for Esink. Depending on whether e is a boosting or sinking edge,
c(e, nT ) counts similar edges for the app a within consecutive detection periods (n − 1)T and nT .
Values recommended by the authors are used for the remaining parameters α and θ. It is worth noting
that our modification preserves its properties of (i) theoretical guarantees on false positive probability,
and (ii) constant-time and constant-memory processing of new edges [Bhatia et al., 2022].

 
 
 
 

r1 r2

 

Cashyy 

 
 
 
 

r3

Appflame 

 

 

 

Figure 5.6 A microcluster anomaly detected by the algorithm. Three reviewers are boosting the overall
rating of two install-incentivizing apps ‘Cashyy’ and ‘Appflame’ on the same day.

5.3.2.2 Analysis and Preliminary Results

MIDAS-F follows a streaming hypothesis testing approach that determines whether the observed and
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expected mean number of edges for a node at a given timestep are significantly different. Based on a chi-
squared goodness-of-fit test, the algorithm provides anomaly scores S(e) for each edge e in a streaming
setting. Upon computing anomaly scores for both sub-streams Eboost and Esink, we visualize their CDF
with an inset box plot in Fig 5.5. It can be observed that Eboost exhibits more anomalous behavior
than Esink. To ascertain the statistical significance of the same, we make use of Welch’s t-test for the
hypothesis H1 : Sµ(Eboost) > Sµ(Esink). We infer that reviews that aim to boost the rating of an install-
incentivizing app show anomalous behavior that is highly significantly more (t = 157.23, p < 0.0) than
reviews that aim to bring it down.

Next, we examine fraud across anomalous microclusters detected by the algorithm. Figure 5.6 shows
one such microcluster anomaly where the algorithm detects reviews from three reviewers boosting the
overall rating of two install-incentivizing apps on the same day. We extract the 50 most suspicious
clusters of reviews from both sub-streams Eboost and Esink based on their average anomaly scores. For
each pair of reviews (ri, rj) within these clusters, we compute their cosine similarity CS(ri, rj) using
embeddings generated by Sentence-BERT [Reimers and Gurevych, 2019]. Over 35% of reviews (1,687
of 4,717) from the suspicious clusters in Eboost form at least one pair of highly identical reviews i.e.,
CS(ri, rj) = 1. However, this percentage drops to 10% (45 of 432 reviews) in the case of Esink. On
closer inspection, we find that these are all extremely short reviews with at most three to four words that
comprise mostly of adjectives; for e.g., Eboost: (‘good app’, ‘very good app’), (‘good earning app’, ‘very
good for earning app’), (‘best app’, ‘very best app’) and Esink: (‘bad’, ‘very bad’), (‘super’, ‘super’),
(‘nice’, ‘very nice’). It is surprising to see that all but four identical pairs from Esink contain only
positive adjectives considering they assign the app a low rating. A potential reason for this dissonance
can be that reviewers writing these reviews want to camouflage as normal users in terms of their rating
patterns. Lastly, from the fifty most suspicious clusters, we find such pairs across 47 (94%) clusters from
Eboost and 21 (42%) clusters from Esink. This demonstrates that the efficacy of our approach towards
detecting lockstep behaviors is not only limited to the temporal and rating dimensions but also extends
to the content present in reviews.
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Chapter 6

Conclusion, Limitations and Future Work

We introduce CAFIN, a fairness-inducing in-processing technique, and demonstrate its efficacy in re-
ducing degree-based disparities in the embeddings generated by GraphSAGE. CAFIN offers an average
of 49.50% and 52.52% improvement in Imparity for Link Prediction and Node Classification tasks, re-
spectively, across datasets. We test CAFIN’s robustness by conducting various ablation studies. We also
introduce the CAFIN-AD variant, which uses approximate distances for reduced computational com-
plexity, making it highly scalable and deployable in more extensive settings. We believe that CAFIN
can be extended to any other contrastive-learning-based framework in this domain..

Our second work sheds light on how lax implementation of Google Plays policy on fraudulent in-
stalls, ratings, and reviews empowers developers of install-incentivizing apps to deplete the trust and
transparency of the platform. Through the use of permissions that access restricted data and perform
restricted actions, developers incorporate dark patterns in these apps to deceive users and extort labor
from them in the form of offers. The second form of labor that we study in our work is the writing
of fraudulent reviews. We find evidence of their presence qualitatively and show promising results in
detecting them algorithmically. Both types of fraud (incentivized installs and reviews) are only made
possible by the labor of users who are vulnerable or crowd-workers who are underpaid [Rahman et al.,
2019]. This enables developers to extract profits as they get away with violating Google Plays policies
without any consequences or accountability.

CAFIN fills a niche, but a crucial gap in the centrality-driven fairness paradigm, so its focus is tar-
geted. Interpretability and explainability of graph learning algorithms also need to be explored - and this
work does not seek to address these concerns. Further, CAFIN does not compare and contrast the im-
pact of various centrality measures on the fairness constraints, as it imposes only degree-centrality-based
fairness constraints, it is another direction to explore. We hope our work promotes further investigation
in the domain of fairness for unsupervised GNNs, explicitly focusing on graph structure-induced biases.

In the context of identifying microclusters of anomalous users, a question that remains unanswered
is, if reviews under these apps describe exploitative experiences of users, what is it that facilitates their
continued exploitation? For now, we can only conjecture that fraudulent positive reviews on install-
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incentivizing apps suppress ranks of reviews containing exploitative experiences of users. Whether the
same holds true or not is a question that remains to be explored in our future work.

With these works, we hope that we have demonstrated the need and the scope for pushing toward a
more equitable and fair online environment by both ensuring that models don’t carry any form of biases
and also by constantly detecting and addressing harmful user behavior.
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