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Abstract. In this paper, we study the role of nodes and edges in a
complex network in dictating the robustness of a community structure
towards structural perturbations. Specifically, we attempt to identify all
vital nodes, which, when removed, would lead to a large change in the
underlying community structure of the network. This problem is critical
because the community structure of a network allows us to explore deep
underlying insights into how the function and topology of the network
affect each other. Moreover, it even provides a way to condense large net-
works into smaller modules where each community acts as a meta node
and aids in more straightforward network analysis. If the community
structure were to be compromised by either accidental or intentional per-
turbations to the network, that would make such analysis difficult. Since
identifying such vital nodes is computationally intractable, we propose
a suite of heuristics that allow to find solutions close to the optimality.
To show the effectiveness of our approach, we first test these heuristics
on small networks and then move to more extensive networks to show
that we achieve similar results. Further analysis reveals that the pro-
posed approaches are useful to analyze the vulnerability of communities
in networks irrespective of their size and scale. Additionally, we show the
performance through an extrinsic evaluation framework – we employ two
tasks, i.e., link prediction and information diffusion, and show that the
effect of our algorithms on these tasks is higher than the other baselines.

Keywords: Community Structure, Vulnerability Assessment, Complex
Networks

1 Introduction

A large body of research in complex networks involves the study and effects of
community structure as it is one of the salient structural characteristics of real-
world networks. A network is said to have a community structure if it can be
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grouped easily into sets of nodes. Each set of nodes is densely connected inter-
nally and sparsely linked externally. Research in this field is broadly classified
into two categories – first, where one detects the community structure within a
given network and the other where one studies the properties of a community
structure to infer more details about the network. A variety of methods have
been proposed that target the former issue as described [38,15]. The advantage
of such algorithms is that it provides us with an efficient and approximate clus-
tering of nodes that allows us to condense large networks to smaller ones owing
to their mesoscopic structure. Within the second paradigm, the ability to detect
vital nodes is of significant practical importance. It provides insight into how a
network functions and how the network topology change affects the interactions
between the nodes within the network. Exploring this structural vulnerability
of the network allows us to prepare beforehand if the network is affected by
undesired perturbations and adversarial attacks. A significant factor in under-
standing this is to analyze the network and comprehend the effect of these vital
nodes’ failure on the community structure of the network.

In this paper, we attempt to identify and investigate some vital nodes in
a network, whose removal highly affects the network’s community structure.
Formally, given a networkG(V,E) and a positive integer k, we intend to find a set
S ∈ V consisting of k nodes whose removal leads to the maximum damage of the
community structure. The change in the community structure is quantified using
different measures such as Modularity [45], Normalized Mutual Information [24],
Adjusted Rand Index [36], etc.

There are many real-world applications of this problem. Consider a power
grid network where a power outage is a frequently occurring event. Most power
networks have a regional hub that caters to the needs of nearby power sta-
tions. In such a scenario, the vendor of this power grid needs to make quick
decisions about how the failure of some nodes in the network would affect the
customers. The solution would be to ensure that crucial nodes in this network
have enough backup so that the restoration process can move effortlessly. An-
other application would be the railway networks, where inadvertent cutting of
routes to certain stations can cause significant problems for the city residents.
Hence, the government needs to ensure that routes to certain critical stations
have redundancies so that if one route gets cut off, then the trains can utilize
other routes. This problem also has applications in Online Social Networks such
as the worm containment problem [42]. This knowledge would provide helpful
insights into protecting sensitive nodes once worms spread out into the network.
In all of the issues mentioned above, it is evident that one needs to study the
structural integrity of the communities underlying in the network. Note that a
minor structural change that can be as small as removing a node in the network
can lead to the community’s breakdown that the node was a part of, given that
the removed node had a considerable influence on the network. If the removed
node were of less significance, that would have less impact on the network’s
community structure.
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Additionally, understanding the network vulnerability from the standpoint
of the community structure is essential in real-world settings. The networks that
are dealt with here have tremendous size, which adds to the computational over-
head and, most importantly, shed light on some latent characteristics shared by
different nodes. Since communities can act as meta-nodes, they allow for a more
comfortable study of large networks. This reduces the computational overhead
and provides useful insights based on the properties shared by the community’s
nodes that can be exploited to understand the network’s vulnerability.

We propose a hierarchical greedy approach that selects communities based on
the community-centric properties in phase 1 and then, within that community,
selects the most vulnerable nodes in phase 2. We test this algorithm on six real-
world datasets of varying sizes. Our empirical results indicate that the algorithm
can identify properties that contribute most towards community structures’ vul-
nerabilities in a network. The past work in this domain [64,3] is restricted to
smaller networks, but our work extends the scope towards even more extensive
networks with the number of nodes in the order of millions.

In summary, our contributions in this paper are as follows:

– We study the structural vulnerability of communities in networks and assess
the impact of nodes’ failure on the underlying community structure.

– We suggest few heuristics, including a hierarchical greedy approach that
allows for identifying such critical nodes in the network that profoundly
impact the community structure.

– We conduct experiments on real-world datasets and show the effectiveness
of the heuristics that we propose.

– We propose a novel task-based strategy to evaluate the extent of correctness
of the algorithm extrinsically. This allows us to estimate the performance of
our algorithm in a real-world context.

The remaining part of this paper is as follows. We discuss the literature review
on community detection and vulnerability assessment in Section 2. We formalize
our problem in Section 3. We then discuss some preliminaries in Section 4. We
present our proposed methodology in Section 5. Section 6 describes the datasets
used to evaluate the proposed approach. In Section 7 we provide the results of
our method when applied to these datasets and briefly discuss the evaluation
strategy how we go about validating our proposed method on larger datasets.
We put forward our conclusion in Section 8.

2 Related Work

This section first presents the literature on community detection algorithms and
then discusses community vulnerability analysis.

2.1 Community Detection

Community detection, a task of grouping similar nodes together, is a significant
problem. A lot of work has been done in the past to come up with a solution
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effectively. Numerous approaches have been developed and applied to detect
community structure. For instance, a hierarchical agglomerative algorithm was
proposed by Newman et al.[31]. An extensive literature survey can be found in
[38]. Here we briefly mention some of the popular approaches.

Initial efforts at community detection assumed that the nodes are densely
connected within a community and sparsely connected across communities. Un-
der this assumption, the algorithms proposed were targeted towards community
detection in static networks. Such efforts involved several approaches such as
modularity optimization [10,23,33,45,48], clique percolation [27,52], information-
theoretic approaches [59,60], and label propagation [53,65,66]. Furthermore, spec-
tral partitioning [46,56], local expansion [7,39], random-walk based approaches
[25,37], diffusion-based approaches [53] and significance-based approaches [40]
were explored to help in identifying the community instances within a network.
Several pre-processing methods [5,57] were also introduced to improve upon these
algorithms. Such methods involved generating a preliminary community struc-
ture on a set of nodes and modifying iteratively until all the nodes are covered.
Apart from these, several other algorithms were proposed to detect communities
in dynamically evolving networks [2,58].

Another set of community detection algorithms allows a vertex to be part
of multiple communities simultaneously. Such overlapping community detection
algorithms used ideas based on local expansion and optimization. These include
RankRemoval [8] which uses local density function, LFM [39], and MONC [34]
which iteratively maximize a fitness function, and GCE [41] which makes use
of an agglomerative pipeline to detect overlapping community instances. Other
approaches also looked into the idea of partitioning links instead of nodes to
discover the network’s underlying community structure. The clique percolation
method was also explored in CFinder [1], but since many real-world networks are
sparse, these methods generally produced low-quality outputs. Recently, several
new ideas were presented, such as [44] which solved a constrained optimization
problem using simulated annealing techniques, and [47,51,71,55] which used mix-
ture models to solve the problem. Even a game-theoretic approach [22] was pro-
posed in which a community is equated to a Nash local equilibrium. Non-negative
Matrix Factorization [68,72] framework has also been utilized to identify fuzzy
or overlapping community structures. Chakraborty et al. proposed MaxPerm
and GenPerm, two greedy approaches which maximize a node-centric metric,
called ”permanence” to detect disjoint [31] and overlapping communities [17].
They also proposed a post-processing technique based on permanence to de-
tect overlaps from a disjoint community structure [14]. Several ensemble-based
approaches were also proposed by leveraging the output of disjoint community
detection methods [18,16,19].

2.2 Community Vulnerability Analysis

Assessing the structural network vulnerability has received increasing atten-
tion. For example, Nguyen et al. [50] have proposed a Community Vulnerability
Assessment (CVA) problem and suggested multiple heuristic-based algorithms
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based on the modularity measure of communities in the network. These ap-
proaches are restricted to the scope of online social networks and do not cater
to general network structures. Another work by Nguyen et al. [49] explored the
number of connected triplets in a network as they capture the strong connection
of communities in social networks. They proposed an efficient approximation al-
gorithm to identify triangle breaking points like nodes or links within a network.

Additionally, different measures and metrics have been proposed to measure
the robustness of a network. Such efforts include the average size of a cluster,
relative size of the largest components, diameter, and network connectivity. One
approach dealt with this problem using the weighted count of loops in a network.
Chan et al. [21] addressed this problem in both deterministic and probabilistic
settings where they suggested solutions based on minimum node cutset. Frank et
al. [29] outlined a solution that uses the second smallest eigenvalue of a Lapla-
cian matrix of a network and termed it as the algebraic connectivity of that
network. Fiedler [28] proposed four basic attack strategies, namely, ID removal,
IB removal, RD removal, and RB removal. ID and RD removal deal with the de-
gree distribution of the network. The only difference is that the second approach
changes the removal strategy based on the degree distribution change. IB and RB
removal are also similar constructs, but they are based on the betweenness dis-
tribution. Holme et al. [35] used an algorithm adapted from Google’s PageRank
providing a sequence of losses that add to the collapse of the network. Allesina et
al. [4] evaluated the network characteristics like cyclomatic number and gamma
index. They mentioned that such global graph-theoretic indices are not sufficient
to measure a network’s vulnerability, but they showcase the hierarchy of nodes
in the system.

Ramirez et al. [54] proposed an approach where the community structure’s
resilience is quantified by introducing disruption in the original network and
measuring the change in the community structure temporally, i.e., after the dis-
connection and during the restoration process. Geubesic et al. [32] provided a
review of various approaches that use the facility importance concept to under-
stand the system-wide vulnerability. These concepts include alpha index, beta
index etc. They concluded that simple graph-theoretic measures were not suf-
ficient to measure the vulnerability of a network. It also required many local
efforts, such as the degree of node. They mentioned that global indicators mea-
sure network accessibility, path availability, and local measures to provide better
information about node criticality. Sankaran et al. [64] proposed a new vulnera-
bility metric where they considered a combination of external and internal fac-
tors such as connection density. They proposed a non-linear weighted function
to combine these factors. However, the proposed method was not proved feasible
in practice as the weights of all the elements were assumed to be equal and not
self-adjusting to the network. These methods allow us to quantify a community’s
vulnerability but do not provide us with a set of nodes that contribute to the
community’s vulnerability.

The information of critical nodes that contribute to the communities’ vul-
nerability would provide far more insights than just discovering the vulnerable
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community. As a result, a more comprehensive study is required to assess the
vulnerability of general network structures.

3 Problem Statement

Let G(V,E) be an input graph and let k be the number of nodes that we want
to select. Let A be a community detection algorithm. For a vertex set S ∈ V , let
G[S] be the subnetwork induced by S and f(A(G[V ]),A(G[V \ S])) is a value
function that computes some measure of the difference between the community
structures of G[V ] and G[V \ S] obtained from A. We need to identify a set
S ∈ V of size k which,

maximize f(A(G[V ]),A(G[V \ S])) (1)

This problem is computationally intractable as shown by Alim et al. [50] and
hence requires the use of greedy heuristics to approach the optimal answer.

4 Preliminaries

We used the Louvain algorithm for detecting the underlying community struc-
ture. It is a greedy optimization algorithm proposed by Blondel et al. [10], that
tries to optimize the modularity metric of a network and extracts communi-
ties from large networks using heuristics. This approach, however, can easily be
modified to use with other community detection algorithms as well.

To quantify the difference between the community structures of G[V ] and
G[V \ S], we use the following measures:
• Modularity: It is a measure to quantify the strength of the division of

the network into communities. Networks with high modularity have denser con-
nections within a community and sparse connections across communities. It is
defined as follows,

Q =
1

(2m)

∑
vw

[
Avw −

kvkw
(2m)

]
δ(cv, cw), (2)

where m = number of edges, A = adjacency matrix, kv = degree of node v, cv
= community label of node v, δ(cv, cw) = 1 if ci = cj and 0 otherwise.
• Normalized Mutual Information: It is a measure that quantifies the

similarity between two community structures. It produces 1 if two community
structures are exactly the same and 0 otherwise. It is defined as follows.

N =

2
cX∑
i=1

cY∑
j=1

[
nij log

(
nijn
xiyj

)]
(n− k)H(X) + ȳ log(n− k)−

cY∑
j=1

(yj log(yj))

, (3)
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where cX = number of communities in community structure X, cY = number of
communities in community structure Y , nij = |Xi ∩ Yj |, n = number of nodes
in the network, xi = |Xi|, yi = |Yi|, ȳ = total size of communities in Y , H(X)
= entropy of X.
• Adjusted Rand Index: It is another measure of similarity between two

data clusterings. It represents the frequency of occurrence of agreements over the
total pairs. Its maximum value is 1 which indicates perfect similarity between
two clusterings. It is defined as follows,

R =

∑
ij

(
nij

2

)
−
[∑

i

(
ai

2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai

2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai

2

)∑
j

(
bj
2

)]
/
(
n
2

) (4)

where L = contingency Table, nij = L[i][j], ai = sum of entries in ith row in L,
bi = Sum of entries in ith column in L, n = number of nodes in the network.

5 Proposed Methodology

Given the computation intractability of the problem statement, we first chunk
our approach into two sections. We analyze the structural properties of a small
network and generate ground-truth data. This data provides us a way to compare
our proposed heuristics, thereby quantifying the effectiveness of these heuristics.

Algorithm 1: Exhaustive Algorithm

Input : Network G = (V,E), k, a community detection algorithm A, a value
function F

Output: Set of nodes whose size is k

1 X ← Run community detection algorithm A on G.
2 C ← Generate all the combination of nodes in V of size k.
3 foreach Ci ∈ C do
4 G′ ← Remove Ci from G.
5 Y ← Run community detection algorithm A on G′.
6 Compute F by comparing Y and X.
7 Return a Ci which maximizes F .

8 end

The thorough approach to gather this information is described in Algorithm
1. This approach compares the networks’ community structures before and after
structural perturbations, where similarity scores for each combination of nodes
are computed.

Yang et al. provide a comparative analysis of significant community detection
algorithms, including Edge Betweenness, Fastgreedy, and Infomap. In Algorithm
1, we generate all possible combinations of nodes of size k and then analyze
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the effect of each such combination to see which minimized the target value
function more. Let’s consider the computational complexity of the community
detection algorithm to be D. This means that the complexity of this algorithm is
O(max(C(n, k), D)) where n = |V | and k is the budget. Note that D is generally
defined in terms of |V | and |E|, so this term becomes more dominant for larger
networks, thereby increasing the algorithm’s computational complexity.

Algorithm 2: Network Based Greedy Approach

Input : Network G = (V,E), k, a structural property to rank the nodes P , a
community detection algorithm A, a value function F

Output: Set of nodes whose size is k, score

1 X ← Run community detection algorithm A on G.
2 R← Rank the nodes in G based on the structural property P .
3 G′ ← Remove top k nodes from G based on R.
4 Y ← Run community detection algorithm A on G′.
5 Compute the value function F by comparing X and Y .
6 Return the set of top k nodes in R along with the score of the value function

F .

Next, we propose a naive network-based greedy approach defined in Algo-
rithm 2. This algorithm takes in a property as an input and ranks the nodes
in the input network based on the property specified. It greedily removes the
top k nodes based on their ranks and then evaluates the underlying community
structure using a community detection algorithm. The output of this algorithm
computes the value function and returns the set of nodes removed along with
the evaluated value function score. The structural properties which were used
are as follows,

– Clustering Coefficient - We use the global coefficient, which is defined as
the number of closed triplets over the total number of triplets where a triplet
is a set of three nodes that are connected by either two or three undirected
edges. The complexity of calculating this property for a node is O(|V |3).

– Degree Centrality - It is defined as the number of edges that are incident
upon a node. The time complexity of this metric is O(|V |+ |E|).

– Betweenness Centrality - We use the betweenness centrality estimate
defined by Freeman. [30] as the number of times a node acts as a bridge
along a shortest path route between two other nodes. Time complexity of
this metric is O(|V ||E|+ |V |2).

– Eigenvector Centrality - It is a measure of the influence of a particular
node in the network [11]. This centrality estimate is based on the intuition
that a node is more central when there are more connections within its local
network. The time complexity of calculating this metric for a node is O(|V |3).

– Closeness Centrality - It measures how easily other vertices can be reached
from a particular vertex [9,61]. Time complexity of this metric is O(|V ||E|+
|V |2).
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– Coreness - The coreness of a node is k if it is a member of a k-core but not
a member of a k + 1-core where a k-core is a maximal subnetwork in which
each vertex has at least degree k [6]. The time complexity of this metric is
O(|E|).

– Diversity - The diversity index of a vertex is estimated by the normalized
Shannon entropy of the weights of the edges incident on a vertex [26]. The
time complexity of calculating this metric is O(|V |+ |E|).

– Eccentricity - It is defined as the shortest maximum distance from the
vertex to all the other vertices in a network. The time complexity of this
metric is O(|V |2 + |V ||E|).

– Constraint - Introduced by Burt [13], this measure estimates the time and
energy that are concentrated on a single cluster. This measure would be
higher for a node that belongs to a small network, and also, all the con-
tacts are highly connected. The time complexity of calculating this metric is
O(|V |+ |E|+ |V |d2) where d is the average degree.

– Closeness Vitality - It is defined as the change in the distance between
all node pairs when the node in focus is removed. It is based on the Wiener
Index, which is defined as the sum of distances between all node pairs [12].
The metric’s time complexity is O(|E| log |V |).

This algorithm takes in a community detection algorithm and a structural
property of a node as inputs. If the computational complexity of the community
detection algorithm is D and for calculating the structural property for all nodes
is S as discussed above, then the total computational complexity of Algorithm
2 is O(max(S,D)).

The downside of this algorithm is that it does not consider the nodes’ effect
on the community structure of the networks itself. This is addressed in Algorithm
3, which also considers the underlying community structure. Here, we propose a
hierarchical approach where we choose a community based on some community-
centric metric in the first phase. Then in the second phase, we select a node
greedily based on its node-centric properties. The community-centric properties
used are as follows:

– Link density: D(G) = 2E
V (V−1) , where E is the number of edges in the

network and V is the number of vertices in the network.
– Conductance: Given a graph G(V,E), λ(G) = s

v , where s is number of
vertices with one endpoint in G and another in Ḡ, v is the sum of degree of
nodes in G. This measure calculates how well-knit a graph is.

– Compactness: C(G) is defined as the average shortest path lengths within
the network G.

This algorithm takes a community detection algorithm, a node’s structural
property, and a community-centric property as inputs. The computational com-
plexity of calculating the community-centric property will be constant in time
as they are defined in terms of fixed formulas; hence, this would not contribute
much to this algorithm’s overall complexity. If the computational complexity
of the community detection algorithm is D and for calculating the structural
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Algorithm 3: Community Based Greedy Approach

Input : Network G = (V,E), k, a global community centric property Pc, a
node centric property Pn, a community detection algorithm A, a
value function F

Output: Set of nodes whose size if k, score

1 Function best community(network G, community structure X):
2 foreach Xi ∈ X do
3 G′ ← Create a subnetwork from G with only the vertices from Xi.
4 Rg ← Rank each such G′ based on the community-centric property Pc.
5 Return Xi whose induced subnetwork G′ ranked above others based on

Rg.

6 end

7 Function best node(network G, community structure X):
8 G′ ← Create the subnetwork G′ from G which is induced from X.
9 Rn ← Rank the nodes in G′ based on the node centric property Pn.

10 Return the top node that ranks above others based on Rn.

11 X ← Run community detection algorithm A on G
12 Y ← Run community detection algorithm A on G
13 while k nodes are not selected do
14 X ′ ← best community(G, Y )
15 node← best node(G, X ′)
16 G′ ← Remove node from G and add this node to the output set
17 Y ← Run community detection algorithm A on G′

18 end
19 Compute the value function F by comparing Y and X.
20 Return the output set of nodes and the score evaluated by the value function

F .

property for all nodes is S as discussed above, then the total computational
complexity of Algorithm 2 is O(max(S,D)).

The algorithms proposed above are sufficient for smaller networks. We can
evaluate them with Algorithm 1; however, real-world networks exhibit a much
more extensive and complex structure.

The reason is the inefficiency of Algorithm 1 as it is a brute force method.
This won’t allow for the extraction of the ground truth, which we use to estimate
the performance of Algorithm 2 and Algorithm 3. To counter this, we propose
a new task-based approach. Here, the intuition is as follows: if the performance
of an extrinsic task, based on the network structure is φ, then after removing
the nodes based on the outputs of Algorithm 2 and Algorithm 3, the task would
perform χ ≤ φ on the new network structure, thereby validating the selection of
nodes.

Specifically, suppose that a user wants to select vulnerable nodes in an ex-
tensive network such that the resulting value function score is maximized. To do
so, a straightforward way is to use Algorithm 2 and Algorithm 3 to select the
nodes whose effectiveness can be validated by the results of Algorithm 1. But
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Algorithm 4: Task Based Approach

Input : Network G = (V,E), k, a task T , a community detection algorithm
A, a value function F

Output: Set of nodes whose size if k, score

1 Function compute task performance(Task T , network G1, network G2,
community structure of G1 X, community structure of G2 Y ):

2 if T is link prediction then
3 Create a test and train edge list based on the edge set of G1.
4 G′

1 ← Create a subnetwork induced by the training set
5 Apply the link prediction task using X to decide on the edge

probabilities on G′
1

6 Compute the F1 score for the predicted edges
7 Repeat the same process for network G2

8 Compare the F1 scores for both the networks

9 end
10 else
11 Select a random set of seed nodes that are active by default
12 With pi = 0.7 and po = 0.3 apply the information diffusion task on G1

using the independent cascade model for 200 iterations. This will give
the number of active nodes at the end of the iterations

13 Repeat the process with G2

14 Compare the number of active nodes at the end for both G1 and G2

15 end

16 X ← Run community detection algorithm A on G
17 S ← Output from Algorithm 2 or Algorithm 3 which return the target set of

nodes
18 G′ ← Remove nodes in S from G
19 Y ← Run community detection algorithm A on G′

20 score← compute task performance(T , G, G′, X, Y )

since the network is extensive, it is quite evident that it is not feasible to use
Algorithm 1. To counter this, one would use Algorithm 4 to validate the results
based on the network’s performance drop on the tasks. Since we are using the
same algorithms used for small networks, it is evident that the actual problem
at hand of maximizing the value function is still of prime focus. Only the way
to validate those same results has been changed for more extensive networks.

In Algorithm 4, we consider two different tasks, which are described as fol-
lows:

1. Link Prediction: We predict the likelihood of a future association between
two nodes knowing that there is no association between those nodes in the
current state of the network. Hence, the problem asks to what extent the
evolution of a complex network can be modeled using features intrinsic to
the network topology itself. Generally, in literature, people use few metrics
to assign probabilities to a set of non-edges in a network such as Within-
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Inter-Cluster defined by Rebaza et al. [63], Modified Common Neighbors and
Modified Resource Allocation defined by Soundarajan and Hopcroft [62].

2. Information Diffusion: It is defined as the process by which a piece of
information is spread and reaches individuals through interactions. We em-
pirically study the behavioral characteristics of information diffusion mod-
els, specifically IC (Independent Cascade), on different community struc-
tures. We incorporate the community information in this task by assigning
pi probability to edges inside a community and po probability to edges that
connect separate communities. We keep pi ≥ po as information is more likely
to spread among nodes within the same neighborhood as observed by Lin et
al.[43].

6 Datasets

To run our experiments extensively, we select six real-world networks of diverse
sizes. The datasets used are as follows:

1. Karate Club: The data was collected from the members of a karate club
[70,69]. Each node represents a club member, and each undirected edge rep-
resents a tie between two members of the club. The network has two com-
munities, one formed by ”John A” and another by ”Mr Hi”.

2. Football Network: Girvan and Newman [31] collected this network. It
contains American football games between division IA colleges during the
regular season Fall of 2000. The nodes represent teams identified by names,
and edges represent regular-season games between two teams that they con-
nect. The network has twelve communities where each community is signified
by the conferences that each college belongs to.

3. Indian Railway Network: This network was used in [20], which consists
of nodes that represent stations where two stations are connected by an edge
if there exists at least one train route between them such that these stations
are scheduled halts. The states act as communities, and hence there are 21
communities.

4. Co-authorship Network: This network was collected by Chakraborty et
al. [20]. This dataset comprises nodes representing an author, and an undi-
rected edge between two authors is drawn if and only if they were co-authors
at least once. Each author is tagged with one research field on which he/she
has written most papers on. There are 24 such fields, and they act as com-
munities.

5. Amazon Product Co-purchasing Network: This was collected by crawl-
ing the Amazon site [67]. The nodes represent products, and an undirected
edge between two nodes represents a frequently co-purchased product. There
are 75,149 communities, and only groups containing more than three users
are considered.

6. Live Journal: This is a free online blogging community where users declare
friendship with each other [67]. Therefore, each node is a user, and an edge
between two users represents a friendship. Users are allowed to form groups,
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and such user-defined groups form communities. There are 287,512 commu-
nities, and only groups containing more than three users are considered.

Table 1: Properties of the real-world networks used in our experiments. We chose 3
small and 3 large networks to extensively show the effects of each algorithm in terms

of efficiently computing the vulnerable communities.

Dataset #Nodes #Edges #Communities

Karate Club Network 34 78 2

Football Network 115 613 12

Indian Railway Network 301 1,224 21

Co-authorship Network 103,667 352,183 24

Amazon Product Co-purchasing Network 334,863 925,872 75,149

Live Journal Network 3,997,962 34,681,189 287,512

7 Experiments

We divide this section into three subsections to cover all the value functions
discussed in Section 4. We first present the results of Algorithm 1 for smaller
networks, which will be used as a benchmark to compare the results of Algorithm
2 and Algorithm 3 whose results will follow. Using the inferences from these
results, we build on our argument and present the results of Algorithm 4 to
establish similar results even on more extensive networks.

7.1 Modularity

Exhaustive approach: Table 2 shows the results of Algorithm 1 on three small
networks when using the modularity as the target value function. We perform
the analysis by fixing k = 5 1. For the Karate network, we observe that nodes (0,
1, 3, 5, 6) are the most vulnerable as their removal maximizes the difference of
modularity scores between the original and the perturbed networks. Similarly,
the most susceptible nodes identified for the other two networks are mentioned
in Table 2.

1 We choose the value of k to be five because of the following reason. Since we intend
to compare our approach with the ground truth data, we first need to generate this
ground truth data. For smaller k values, the number of nodes’ combinations is more
diminutive and keeps increasing exponentially as we increase the value of k. To limit
the computational time, we restricted k to be five, and beyond that, the number of
combination of nodes was too large. Simultaneously, we did not want to choose a
smaller k, as removing a smaller number of nodes would not have that much impact
on the underlying community structure than removing more nodes.
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Table 2: Effect of the exhaustive algorithm on the small networks. The nodes here
indicate the ID of the most vulnerable points in the network when the modularity is
utilized as the value function. Since the networks are smaller in size, the budget k is

fixed at 5 which is why the algorithm detects only 5 vulnerable nodes. The
corresponding modularity score reported is the maximum across all possible

combinations of the nodes.

Network Nodes Modularity

Karate (0, 1, 3, 5, 6) 0.13436

Football (23, 33, 24, 32, 45) 0.10492

Railway (105, 76, 203, 123, 97) 0.14723

Network Based Greedy Approach: This section presents the analysis re-
sults on all the datasets of Algorithm 2. We performed this analysis on all the
datasets irrespective of their scale as the algorithm applied was greedy and did
not need much time to execute. Moreover, we fix k = 5 for smaller networks,
but such a removal strategy won’t showcase significant effects for more extensive
networks. This is because removing just five nodes in more extensive networks
won’t affect the underlying community structure enough to cause substantial
structural perturbations. So, to handle such cases, we instead remove 5% of the
total nodes. From Figure 1, we infer that the clustering coefficient as a network-
based greedy metric performs better than other greedy metrics when we remove
the target five nodes.

Moreover, when we compare the maximum values attained in the smaller
networks, we see that this algorithm cannot achieve the optimal answer indicated
in Table 2. For example, in the Karate network, the maximum score obtained by
Algorithm 2 is around 0.05, whereas the optimal answer is 0.13. This indicates
that there is a lot of scope for improvement.

Community Based Greedy Approach: In this section, we evaluate the per-
formance of Algorithm 3 over all the datasets. As mentioned previously, we fix
k = 5 for smaller networks and 5% for more extensive networks. We compare
the different community-centric properties in Table 3. Here we present the best
modularity scores obtained after applying this algorithm on all the datasets.
As this algorithm is also inherently greedy, it also is computationally efficient.
Based on Table 3, we observe that Link Density performed better than the
other community-centric properties as the scores over all the datasets were max-
imum. Now that we have established that the best community-centric property
in a modularity difference maximization setting is link density, we present the
node centric properties’ results in Figure 2. Overall, we ran experiments on the
datasets; we found that eigenvector centrality performs better than other greedy
metrics.

Additionally, when we compare this algorithm’s results with the ground truth
data presented in Table 2, we observe that this solution comes close to the
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Fig. 1: Outcome of the network based approach over all the networks with modularity
being the target value function. The legend indicates all the structural properties of a
network that were used to greedily select nodes. For smaller networks we used k = 5

nodes whereas for larger network s we used 5% of the nodes in the corresponding
network. If we compare the smaller datasets’ results with Table 2, we observe that

the maximum values obtained could not attain the optimal values. Across the
networks, for higher budget we observe that clustering coefficient turned out to be

the best indicator for vulnerability in terms of modularity.
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optimal solution. For example, in the Railway network, we follow that the best
modularity score obtained to be around 0.06, which is close to the ground truth
score of 0.14 compared to the 0.01 score obtained from Algorithm 1. So it is
evident from this data that the difference between the optimal solution and the
current solution has decreased, thereby establishing the superiority of Algorithm
3 over 2.

Fig. 2: Results of the community based approach over several datasets with
modularity being used as the target value function. These results are reported only
for Link Density as it outperformed the other community based greedy metrics as

described in Table 3. The plots indicate that across the datasets for larger budgets,
eigenvector centrality performs better in comparison to other greedy metrics. The

values indicated are close to the ground truth as reported in Table 1.

7.2 Normalized Mutual Information

Exhaustive approach: Table 4 presents the results of Algorithm 1 on three
small scale datasets where the value function that we are trying to minimize is
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Table 3: Outcome of the community based approach using modularity as the target
value function. It shows the effects of different community based metrics have when

used to greedily select nodes. Based on this table we observe that Link Density
performs better to indicate the vulnerability of nodes in terms of difference between

modularity of the resultant and the original network across all the datasets.

Network Link Density Conductance Compactness

Karate 0.04194 0.00116 0.02219

Football 0.04202 0.02193 0.00490

Railway 0.06422 0.03174 0.03749

Coauthorship 0.13037 0.03609 0.00285

Amazon 0.13052 0.00550 0.01783

Live Journal 0.05289 0.00016 0.03749

NMI. Note that we would want to minimize NMI as this metric gives a value of
1 for two similar community structures and 0 otherwise as mentioned in Section
4. For this experiment, we fix the number of target nodes, i.e., k = 5. For the
football network, we observe that nodes (32, 33, 5, 6, 1) are identified as the
most vulnerable as they minimize the NMI score between the original and the
structurally perturbed one to 0.38. This value represents the ground truth as no
other combination of the five-tuple nodes will further decrease the NMI score
between the two partitions. Similarly, the other small datasets’ ground truth
values can be found in Table 4.

Table 4: Effect of the exhaustive algorithm on the smaller networks. The nodes here
indicate the ID of the most vulnerable points in the network when NMI is utilized as
the value function. Since the networks are smaller in size the budget k was fixed at 5

which is why there the algorithm detected 5 vulnerable nodes. The corresponding
NMI score reported was the minimum across all possible combinations of the nodes.

Network Nodes NMI

Karate (33, 10, 32, 6, 23) 0.36762

Football (32, 33, 5, 6, 1) 0.38580

Railway (51, 143, 2, 89, 287) 0.38723

Network Based Greedy Approach: This section presents the analysis results
on all the datasets of Algorithm 2. Moreover, we fix k = 5 for smaller networks, as
mentioned previously. Still, for more extensive networks, such removal strategy
won’t showcase significant effects, and hence we remove till 5% of the total nodes
in such cases. Based on Figure 3, we infer that eccentricity as a network-based
greedy metric performs better than other greedy metrics when we remove the
target five nodes. As we evaluate the NMI measure, we compare the minimum
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values attained in the ground truth data to the minimum values obtained with
Algorithm 2. This is because NMI’s value is small when two clusterings are
not the same as mentioned previously in Section 4. Based on this comparison
for smaller networks, we see that this algorithm could not attain the optimal
answer indicated by Table 4. For example, in the Karate network, the minimum
score obtained by Algorithm 2 is 0.55, whereas the optimal answer is 0.36. This
indicates that there is a lot of scope for improvement.

Fig. 3: Results of the network-based approach over all the datasets with NMI being
the target value function. For smaller networks we use k = 5 and for larger ones we

use 5% of the total nodes within the network. The plots indicate that for larger
budgets, eccentricity performs well in identifying vulnerable nodes when the

vulnerability of a community is quantified using NMI where lower values are better
indicators of disjointness. However, upon closer inspection one can observe that these
values when compared to the ground truth values reported in Table 4, are still pretty

far from optimal.

Community Based Greedy Approach: In this section, we evaluate the per-
formance of Algorithm 3 over all the datasets. As mentioned previously, we fix
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k = 5 for smaller networks and 5% for more extensive networks. We compare the
different community-centric properties in Table 5. Here we present the best NMI
scores obtained after applying this algorithm on all the datasets. Based on Table
5, we observe that Link Density performed better than the other community-
centric properties as the scores over all the datasets were minimal. With link
density as the best community-centric method, we present the node centric prop-
erties’ results in Figure 4. Overall the datasets we ran experiments on, we found
that the clustering coefficient performs better than other greedy metrics.

Additionally, when we compare this algorithm’s results with the ground truth
data presented in Table 4, we observe that this solution comes close to the
optimal solution. For example, in the Railway network, we follow that the best
NMI score obtained to be around 0.5 is close to the ground truth score of 0.38
compared to the 0.88 score obtained from Algorithm 1. So it is evident from this
data that the difference between the optimal solution and the current solution
has decreased, thereby establishing the superiority of Algorithm 3 over 2.

Table 5: Results of the community based approach using NMI as the target value
function. It shows the effects of different community based metrics that are used to
greedily select nodes. We observe that Link Density performs better to indicate the
vulnerability of nodes in terms of the NMI between the resultant and the original

network across all the datasets.

Network Link Density Conductance Compactness

Karate 0.62484 0.68425 0.79993

Football 0.75558 0.96877 0.91794

Railway 0.51372 0.80825 0.62484

Coauthorship 0.59279 0.71568 0.79993

Amazon 0.58566 0.76560 0.65510

Live Journal 0.58566 0.62484 0.78850

7.3 Adjusted Rand Index

Exhaustive approach: Table 6 shows the results of Algorithm 1 on three small
scale datasets when using the ARI as the target value function. We performed
the analysis by fixing k = 5. We observe that nodes (61, 85, 16, 99, 7) are
the most vulnerable for the football network as their removal minimized the
ARI scores between the original and the perturbed network’s vertex clusterings.
Similarly, the most susceptible nodes identified for the other two datasets have
been tabulated in Table 6.

Network Based Greedy Approach: This section presents the analysis re-
sults on all the datasets of Algorithm 2. We fix k = 5 for smaller networks as
mentioned previously, but for more extensive networks, we remove till 5% of the
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Fig. 4: Outcome of the community based approach over all the datasets with NMI
being the target value function. Based on Table 5 we observed that Link Density
performs better in comparison to other greedy metric. The plots reported in this
figure present the results of the node centric properties with Link Density as the
community centric method. They indicate that across all the datasets clustering

coefficient performed better compared to other greedy metrics.

Table 6: Effect of the exhaustive algorithm on the smaller networks. The nodes here
indicate the ID of the most vulnerable points in the network when ARI is utilized as
the value function. Since the networks are smaller in size the budget k was fixed at 5

which is why there the algorithm detected 5 vulnerable nodes. The corresponding
ARI score reported was the minimum across all possible combinations of the nodes.

Network Nodes ARI

Karate (32, 7, 12, 18, 2) -0.46342

Football (61, 85, 16, 99, 7) 0.36342

Railway (171, 229, 236, 75, 204) -0.28694
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total nodes. Based on Figure 5, we infer that closeness vitality as a network-
based greedy metric performs better than other greedy metrics when we remove
the target five nodes. As we evaluate the ARI measure, we compare the mini-
mum values attained in the ground truth data to the minimum values obtained
with Algorithm 2. This is because ARI’s value is small when two clusterings do
not agree with each other, as mentioned previously in Section 4. Based on this
comparison for smaller networks, we see that this algorithm cannot attain the
optimal answer mentioned in Table 6. For example, in the Railway network, the
minimum score obtained by Algorithm 2 is 0.65, whereas the optimal answer is
-0.28. This indicates that there is a lot of scope for improvement.

Fig. 5: Results of the network based approach applied on several datasets with ARI
being the target value function. We chose k = 5 for smaller networks and for larger

networks we chose upto 5% of the total nodes within the network. The plots reported
in this figure show that closeness vitality performed better than the other node
centric properties as for larger budgets the ARI between the resultant and the

original network was low. When compared to the exhaustive results as reported in
Table 6, we observe that the ARI values with closeness vitality as the greedy metric

does not come close to the optimal answer.
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Community Based Greedy Approach: In this section, we evaluate the per-
formance of Algorithm 3 over all the datasets. As mentioned previously, we
fix k = 5 for smaller networks and 5% for larger networks. We compare dif-
ferent community-centric properties in Table 7. Here we present the best ARI
scores obtained after applying this algorithm on all the datasets. We observe
that conductance performs better than the other community-centric properties
as the scores over all the datasets are minimum. With conductance as the best
community-centric method, we present the node-centric properties’ results in
Figure 6. Overall the datasets we run experiments on, we find that coreness
performs better compared to other metrics.

Additionally, when we compare this algorithm’s results with the ground truth
data presented in Table 6, we observe that this solution comes close to the
optimal solution. For example, in the Railway network, we follow that the best
ARI score obtained to be around 0.26 is close to the ground truth score of -
0.28 compared to the 0.65 score obtained from Algorithm 1. So it is evident
from this data that the difference between the optimal solution and the current
solution has decreased, thereby establishing the superiority of Algorithm 3 over
Algorithm 2.

Table 7: Results of the community based approach using ARI as the target value
function. It shows the effects of different community based metrics used to greedily

select nodes. We observe that conductance performs better to indicate the
vulnerability of nodes in terms of the ARI between the resultant and the original

community structure across all the datasets.

Network Link Density Conductance Compactness

Karate 0.45034 0.25670 0.82691

Football 0.82530 0.64736 0.89587

Railway 0.44367 0.26693 0.27997

Coauthorship 0.71958 0.45670 0.75187

Amazon 0.69230 0.64979 0.76453

Live Journal 0.44367 0.25670 0.26693

7.4 Task Based Approach

Based on the results that we observed in the previous sections for the smaller
networks, we perform similar tests on more extensive networks using Algorithm
4. To quantify this algorithm’s performance, we use the widely use F1 score for
the link prediction task. We evaluate the fraction of active nodes at the end
of the few cascades for the information diffusion task. For each experiment, we
consider k to be the percentage of nodes removed as otherwise the change in
the community structure would not be enough to have significant effects. We
have divided this section into two subsections to cover both the tasks that were
described before.
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Fig. 6: Outcome of the community based approach over all the datasets with ARI
being the target value function. Based on Table 7, we observe that conductance
performs better compared to other community based methods to quantify the
vulnerability of communities using ARI. The plots show the effects of different

node-centric properties with conductance in Algorithm 3. The results show that
across all the datasets, coreness outperforms other metrics. Upon comparing these

results with the ground truth data in Table 6, we observe that the values are close to
the optimal answers.
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Link Prediction: We test this task by assigning probabilities to the edges using
three metrics separately: Within-Inter Cluster, Modified Common Neighbors,
and Modified Resource Allocation. We find that Within-Inter Cluster produces
better results compared to the other alternatives.

Fig. 7: Results of link prediction task over larger datasets with all the value functions.
For modularity, we use Link Density combined with eigenvector centrality. For NMI,
we use Link Density combined with eccentricity, and for ARI, we use conductance

and closeness vitality. Original here represents when we use the original community
structure for the nodes rather than the community structure after perturbing it. The
plots indicate that when using these combinations for different value functions, the

link prediction task’s performance quantified with the F1 score decreases.

Based on Figure 7, we observe that overall value functions the network’s
performance in the link prediction task has decreased, which is evident from
the lower F1 scores. For each value function, we show the best combination
as identified in the previous sections. The performance drop can be attributed
to significant changes introduced into the system by removing vulnerable nodes.
Their removal triggers significant structural perturbations in the underlying com-
munity structure, which causes the within-inter cluster method to assign lower
probabilities to the edges due to fewer connections within the community and
more connections across other communities. This decreased the likelihood of the
test edge being classified as a valid link, thereby reducing the performance.

Information Diffusion: In 8, we observe that overall value functions the per-
formance in the information diffusion task has decreased, which is evident from
the lower fraction of active nodes. For this set of experiments, we set pi ≥ po and
let the cascade model run for 200 iterations. With a higher probability for the
initial set and the subsequent set of active nodes to affect the nodes within their
community, it is trivial to see that the fraction of nodes that will be active at the
end of all the iterations would be low. This is true if the underlying community
structure was significantly perturbed and the network was highly disconnected,
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whereas it would be the opposite for the other case. For each value function, we
show the best combination as identified in the previous sections.

This shows that the best combination of community-centric and network-
centric nodes that we get from Algorithm 3 when applied to the more extensive
networks using Algorithm 4 results in the decrease in the performance of the
networks over both tasks that they are employed on, thereby validating our initial
hypothesis. This establishes that Algorithm 3 can be applied to any general
network irrespective of the size.

Fig. 8: Outcome of information diffusion task over larger networks with all the value
functions. For modularity we use Link Density along with eigenvector centrality, for

NMI we use Link Prediction combined with eccentricity and for ARI we utilize
conductance combined with closeness vitality. Original here represents when we use
the original community structure for the nodes rather than the community structure

after perturbing it. The plots show that for all the target value functions the
performance of the information diffusion task decreases. This performance was

quantified using the fraction of active nodes after all the iterations.

8 Conclusion

In this paper, we proposed a hierarchical greedy-based approach that efficiently
identified critical nodes in the network, which significantly impacted the under-
lying community structure. Additionally, we also proposed a novel task-based
strategy to apply the results of the hierarchical greedy based approach on more
extensive networks and quantify its effectiveness, which would enable us to esti-
mate the performance of the algorithm in a real-world context.

Due to the extensive size of our experiments, we show our best results only.
Since Algorithm 1 is exhaustive and hence was applied only to small networks
such as Karate, Football and Railway Network. The results of this algorithm
provided us with the benchmark to compare with our other algorithms. We fur-
ther saw that Algorithm 2 was not that promising and were far from the gold



26 V. Parimi et al.

standard in comparison to Algorithm 3 which came close to the gold standard.
This comparison showed that Algorithm 3 works best for small networks. As
mentioned previously, we used Algorithm 4 to compare the performance of Al-
gorithm 2 and Algorithm 3 for large networks such as Co-authorship, Amazon,
and Live Journal Networks. Based on these results, we established that when we
use Algorithm 3, we get a performance drop over both the tasks, namely link
prediction and information diffusion, compared to the original network. This
establishes the generalizability of Algorithm 3.

To conclude, this work has provided a hierarchical approach that allowed for
identifying the vulnerable nodes in a network efficiently. The proposed method
was used to analyze the community vulnerability of several networks whose valid-
ity was established using both exhaustive and task-based approaches depending
on the network’s size.

Acknowledgement. T. Chakraborty would like to acknowledge the support of
SERB (ECR/2017/001691) and the Infosys Centre for AI, IIIT-Delhi.

References

1. Adamcsek, B., Palla, G., Farkas, I.J., Derenyi, I., Vicsek, T.: CFinder: locat-
ing cliques and overlapping modules in biological networks. Bioinformatics 22(8),
1021–1023 (02 2006). https://doi.org/10.1093/bioinformatics/btl039

2. Agarwal, P., Verma, R., Agarwal, A., Chakraborty, T.: Dyperm: Maximizing per-
manence for dynamic community detection. In: Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining. pp. 437–449. Springer (2018)

3. Alim, M.A., Li, X., Nguyen, N.P., Thai, M.T., Helal, A.: Structural vul-
nerability assessment of community-based routing in opportunistic networks.
IEEE Transactions on Mobile Computing 15(12), 3156–3170 (Dec 2016).
https://doi.org/10.1109/TMC.2016.2524571

4. Allesina, S., Pascual, M.: Googling food webs: Can an eigenvector measure species’
importance for coextinctions? PLOS Computational Biology 5(9), 1–6 (09 2009).
https://doi.org/10.1371/journal.pcbi.1000494

5. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partition-
ing and Graph Clustering, 10th DIMACS Implementation Challenge Workshop,
Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012. Pro-
ceedings, Contemporary Mathematics, vol. 588. American Mathematical Society
(2013). https://doi.org/10.1090/conm/588

6. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of net-
works. CoRR cs.DS/0310049 (2003), http://arxiv.org/abs/cs.DS/0310049

7. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlap-
ping communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang,
F.Y., Chen, H., Merkle, R.C. (eds.) Intelligence and Security Informatics. pp. 27–
36. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

8. Baumes, J., Goldberg, M.K., Krishnamoorthy, M.S., Magdon-Ismail, M., Preston,
N.: Finding communities by clustering a graph into overlapping subgraphs. IADIS
AC 5, 97–104 (2005)

9. Bavelas, A.: Communication patterns in task-oriented groups. Acoustical Society
of America Journal 22, 725 (1950). https://doi.org/10.1121/1.1906679

https://doi.org/10.1093/bioinformatics/btl039
https://doi.org/10.1109/TMC.2016.2524571
https://doi.org/10.1371/journal.pcbi.1000494
https://doi.org/10.1090/conm/588
http://arxiv.org/abs/cs.DS/0310049
https://doi.org/10.1121/1.1906679


On the Vulnerability of Community Structure in Complex Networks 27

10. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10008 (2008), http://stacks.iop.org/1742-5468/2008/i=
10/a=P10008

11. Bonacich, P.: Factoring and weighting approaches to status scores and clique
identification. The Journal of Mathematical Sociology 2(1), 113–120 (1972).
https://doi.org/10.1080/0022250X.1972.9989806

12. Brandes, U.: Network analysis: methodological foundations, vol. 3418. Springer
Science & Business Media (2005)

13. Burt, R.: Structural holes and good ideas. American Journal of Sociology 110(2),
349–399 (2004), http://www.jstor.org/stable/10.1086/421787

14. Chakraborty, T.: Leveraging disjoint communities for detecting overlapping com-
munity structure. Journal of Statistical Mechanics: Theory and Experiment
2015(5), P05017 (2015)

15. Chakraborty, T., Dalmia, A., Mukherjee, A., Ganguly, N.: Metrics for community
analysis: A survey. ACM Computing Surveys (CSUR) 50(4), 54 (2017)

16. Chakraborty, T., Ghosh, S., Park, N.: Ensemble-based overlapping community de-
tection using disjoint community structures. Knowledge-Based Systems 163, 241–
251 (2019)

17. Chakraborty, T., Kumar, S., Ganguly, N., Mukherjee, A., Bhowmick, S.: Gen-
perm: a unified method for detecting non-overlapping and overlapping commu-
nities. IEEE Transactions on knowledge and data engineering 28(8), 2101–2114
(2016)

18. Chakraborty, T., Park, N.: Ensemble-based discovery of disjoint, overlapping and
fuzzy community structures in networks. arXiv preprint arXiv:1712.02370 (2017)

19. Chakraborty, T., Park, N., Subrahmanian, V.: Ensemble-based algorithms to de-
tect disjoint and overlapping communities in networks. In: 2016 IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis and Mining
(ASONAM). pp. 73–80. IEEE (2016)

20. Chakraborty, T., Srinivasan, S., Ganguly, N., Mukherjee, A., Bhowmick, S.:
On the permanence of vertices in network communities. In: Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 1396–1405. KDD ’14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2623330.2623707

21. Chan, H., Akoglu, L., Tong, H.: Make it or break it: Manipulating robustness in
large networks. In: Proceedings of the 2014 SIAM International Conference on
Data Mining. pp. 325–333. SIAM (2014)

22. Chen, W., Liu, Z., Sun, X., Wang, Y.: A game-theoretic framework to identify
overlapping communities in social networks. Data Min. Knowl. Discov. 21, 224–
240 (09 2010). https://doi.org/10.1007/s10618-010-0186-6

23. Clauset, A., Newman, M.E.J., , Moore, C.: Finding community struc-
ture in very large networks. Physical Review E pp. 1– 6 (2004).
https://doi.org/10.1103/PhysRevE.70.066111, www.ece.unm.edu/ifis/papers/

community-moore.pdf

24. Danon, L., Dı́az-Guilera, A., Duch, J., Arenas, A.: Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment 2005(09),
P09008 (2005), http://stacks.iop.org/1742-5468/2005/i=09/a=P09008

25. De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Enhancing community de-
tection using a network weighting strategy. Inf. Sci. 222, 648–668 (Feb 2013).
https://doi.org/10.1016/j.ins.2012.08.001

http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
https://doi.org/10.1080/0022250X.1972.9989806
http://www.jstor.org/stable/10.1086/421787
https://doi.org/10.1145/2623330.2623707
https://doi.org/10.1007/s10618-010-0186-6
https://doi.org/10.1103/PhysRevE.70.066111
www.ece.unm.edu/ifis/papers/community-moore.pdf
www.ece.unm.edu/ifis/papers/community-moore.pdf
http://stacks.iop.org/1742-5468/2005/i=09/a=P09008
https://doi.org/10.1016/j.ins.2012.08.001


28 V. Parimi et al.

26. Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development.
Science 328 5981, 1029–31 (2010)
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