
CHARACTERIZING AND DETECTING LIVESTREAMIMG
CHATBOTS

Thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science
in

Computer Science and Engineering by Research

by

SHREYA JAIN
201402230

shreya.jain@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

May 2020

Copyright © Shreya Jain, 2020

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “ Characterizing and Detecting Livestreaming
Chatbots” by SHREYA JAIN, has been carried out under my supervision and is not submitted elsewhere
for a degree.

Date Adviser: Dr. Ponnurangam Kumaraguru

To Family and Friends

Acknowledgments

I would like to express my deepest gratitude to my advisor Dr. Ponnurangam Kumaraguru for his
guidance and support. The quality of this work would not have been nearly as high as without his
well appreciated advice. I am extremely grateful to Neil Shah and Hemank Lamba for collaborating
with us on this work and providing guidance. I thank all the students working with Dr. Ponnurangam
Kumaraguru at IIIT Hyderabad and IIIT Delhi for their inputs and suggestions and especially Dipankar
Niranjan for shepherding me and spending his valuable time on collaborating with me on this work.
Last but not the least, I would like to thank all my supportive family and friends who encouraged me
and kept me motivated throughout the thesis.

v

Abstract

Livestreaming platforms enable content producers or streamers to broadcast creative content to a poten-
tially large viewer base. Chatrooms form an integral part of such platforms, enabling viewers to interact
both with streamer and amongst themselves. Streams with high engagement (many viewers and high
active chatters) are typically considered engaging and often promoted to end users by means of rec-
ommendation algorithms, and exposed to better monetization opportunities via revenue share from plat-
form advertising, viewer donations and third-party sponsorships. Given such incentives, some streamers
make use of fraudulent means to increase perceived engagement by simulating chatter via fake “chat-
bots” which can be purchased from online marketplaces. This inorganic engagement can negatively
influence recommendations, hurt streamer and viewer trust in the platform, and harm monetization for
honest streamers. In this study, we tackle the novel problem of automating detection of chatbots on
livestreaming platforms. To this end, we first formalize the livestreaming chatbot detection problem
and characterize differences between botted and genuine chatter behaviour observed from a real-world
livestreaming chatter dataset collected from Twitch.tv. We then propose SHERLOCK and BOTHUNT
methods, which posits a two-stage approach of detecting chatbotted streams, and subsequently detecting
constituent chatbots. Finally, we demonstrate effectiveness on both real and synthetic data: to this end,
we propose a novel strategy for collecting labeled, synthetic chatter dataset (typically unavailable) from
such platforms, enabling evaluation of proposed detection approaches against chatbot bahaviors with
varying signatures. The SHERLOCK approach achieves 97% precision/recall on the real world dataset
and +80% F1 score across most simulated attack settings and BOTHUNT achieves 86% accuracy for
real world dataset and 93% accuracy across all attack settings. This thesis is a timely contribution to the
area of computer science specially combating astroturfing, needed to mitigate the spread of fraudulent
bot users on Live streaming Platforms. The results from this thesis can be used to build real world
solutions to mitigate the spread of untrustworthy or botted streams, fake users, etc. on live streaming
platforms in the future.

vi

Contents

Chapter Page

1 Introduction . 1
1.1 Live streaming platform service . 1
1.2 Thesis statement . 2
1.3 Thesis contribution . 3
1.4 Thesis Roadmap . 3

2 Background and Literature Review . 4
2.1 Twitch : Terminology, Building Blocks and Characterization 4
2.2 Existence of chatbots on Twitch . 4
2.3 Prior work on Chatbot detection . 5
2.4 Limitations and Challenges on Twitch . 7
2.5 Overview of the Chatbot Detection Framework . 8

3 Data Collection and Generation . 9
3.1 Data Collection of Real World Data . 9
3.2 Synthetic Data Generation . 10
3.3 Analysis of Datasets . 12

4 Feature Selection . 14
4.1 Chatbot Detection Problem . 14

4.1.1 STAGE 1: Detecting Chatbotted Streams . 14
4.1.2 STAGE 2: Detecting constituent chatbots . 15

4.2 Feature Selection . 15
4.2.1 Initial Observation . 15
4.2.2 STAGE 1: Detecting Chatbotted Streams . 19
4.2.3 STAGE 2: Detecting constituent chatbots . 21

5 Towards Chatbots detection on Twitch/Methodology . 23
5.1 Proposed SHERLOCK Framework . 23

5.1.1 Method for detecting chatbotted streams . 23
5.1.2 Method for detecting chatbot users . 24

5.2 Adapted Baseline models . 27
5.2.1 SynchoTrap model . 27
5.2.2 Supervised Spam Classification (SSC) model 29

vii

viii CONTENTS

6 Evaluation and Comparison . 30
6.1 Results on Real world Twitch Data . 30
6.2 Sanity check on Synthetic dataset . 31

6.2.1 Stage 1 Analysis . 31
6.2.2 Stage 2 Analysis . 31

7 Textual Features for bot detection . 34
7.1 Text Wrangling . 34

7.1.1 Text Preprocesing . 34
7.1.2 Text Normalization . 35

7.1.2.1 Noise Normalization . 35
7.1.2.2 Slang Normalization . 35
7.1.2.3 Emoji Normalization . 35
7.1.2.4 Spell Correction . 36

7.2 Key Information Extraction . 36
7.3 Entropy measures . 38

7.3.1 Corrected Conditional Entropy . 39
7.3.2 Binning Strategies . 40
7.3.3 Implementation details . 40

7.4 Social Graph Construction . 40
7.5 Observations . 41
7.6 Feature Selection . 42

7.6.1 STAGE 1 : Detecting Chatbotted Streams . 42
7.6.2 STAGE 2: Detecting Constituent Chatbots . 44

7.7 Proposed BOTHUNT Framework . 45
7.7.1 Method for detecting Chatbotted Streams . 45
7.7.2 Method for detecting Chatbot Users . 45

7.8 Adapted Baseline Models . 46
7.8.1 User Text Similarity (UTS) Model . 46
7.8.2 Revised Supervised Spam Classification (SSC) Model 46
7.8.3 Revised SynchroTrap Model . 47

7.9 Evaluation and Comparison . 47
7.9.1 Results on Real World Twitch Data . 47
7.9.2 Sanity Check on synthetic dataset . 47

8 Practicality . 49
8.1 Future analysis on real world streams . 49
8.2 Implications . 50
8.3 Scalability . 50

9 Conclusion and Future Work . 52

10 Related Publications . 53
10.1 Published . 53
10.2 Under Review . 53

Bibliography . 54

List of Figures

Figure Page

1.1 The chatroom of a livestreaming website (Twitch). Notice the extremely noisy nature of
the text. 2

2.1 The dashboard of a chatbot service provider highlighting the settings available to the
customer. 5

2.2 We enable discovery of chatbotted streams, notice genuine/real users asking for moder-
ators to handle the bots. 6

2.3 The constituent chatbots are detected using discriminative features (large points indicate
high user density) of SHERLOCK for the stream in the Figure 2.2 7

3.1 Generating synthetic chatbotted chatlogs. 11

4.1 We propose SHERLOCK, a two-stage chatbot detection approach based on stream (top)
and user-level classification (bottom). 16

4.2 Analysis on real world data (159 real streams and 24 chatbotted streams). 16
4.3 ECDF for median distribution on number of messages for genuine and chatbotted streams.

Distribution of number of messages posted for randomly selected genuine and chatbot-
ted streams. 17

4.4 ECDF for distribution of median on Inter Message Delay for genuine and chatbotted
streams. Distribution of Inter Message Delay. 18

4.5 ECDF for distribution of median on number of windows per user for genuine and chat-
botted streams. Distribution of number of windows per user. 18

4.6 Plots for stage 1 - Detecting chatbotted streams. Highlights deviation from normal be-
havior at stream level based on Number of messages. 19

4.7 Plots for stage 1 - Detecting chatbotted streams. Highlights deviation from normal be-
havior at stream level based on mean Inter Message Delay. 20

5.1 Mean Inter Message Delays (Y axis) vs. number of messages (X axis) plots indicating
steps for stage 2 - detecting individual chatbots. 28

6.1 Performance of on various attack models (bar colors), stream durations (bar groups),
noise levels (columns) and noise types (bot users in (a-c), and bot messages in (d-f)).
SHERLOCK is robust to noise and performs consistently well across varying adversarial
configurations, with F1 scores generally over 0.80. 33

ix

x LIST OF FIGURES

7.1 Term-User Bipartite Graph. 37
7.2 Analysis on real world data (159 real and 24 chatbotted streams with 6167 real and

2739 botted users). Distribution of Inter Message Delay bin numbers. Distribution of
Message Lengths across users (real and bot) . 42

8.1 Real-world botted streams which were identified by SHERLOCK and the predicted la-
bels. Fig 8(a) contains 239 bot labels and Fig 8(b) contains 974 bot labels in the ex-
tremely dense red dotted region. Many of the files consisted of different patterns that
the bots followed. 49

8.2 SHERLOCK has near-linear runtime # streams (Stage I) and # users (Stage II). 51

List of Tables

Table Page

3.1 Dataset Statistics . 12
3.2 Statistics of each regime of synthetic dataset . 13

6.1 Precision and Recall for SHERLOCK, SSC and SynchroTrap on real data. 30
6.2 F1 score of across different classification and attack models (Stage I). 31

7.1 Accuracy for BOTHUNT, SSC, UTS and SynchroTrap on real data. 46
7.2 Accuracy of BOTHUNT across different classification and attack models (Stage I). . . 47

xi

Chapter 1

Introduction

Livestreaming refers to online streaming media simultaneously recorded and broadcast in real time.
Live stream services encompass a wide variety of topics, from social media to video games. It is the
broadcasting of real-time live video to an audience over the Internet. In recent years, livestreaming
platforms such as Twitch 1, YouTube Live 2, Facebook Live 3, Ustream 4, Muvi 5 and JW Player Live 6

have grown to become dominant players in the content broadcasting space, commanding millions of
broadcasters and tens of millions of daily active users [1]. These platforms provide avenues for
broadcasters, or streamers, to share creative content of various forms (e-sports gameplay, live events,
art, live matches, etc.) to a large audience. The audience covers all aged people and mostly appealing
to children and young people.

1.1 Live streaming platform service

Live streaming platforms provides a chance to user to be a creator, a presenter and to be seen by an
audience. All one need to be able to live stream is an Internet-enabled platform, like a phone or a tablet
and a platform to broadcast on. Each broadcasting session, or stream, consists of two key components -
the content being shared live to viewers, and a chatroom, where viewers can chat and interact amongst
themselves, and with the streamer. These chatrooms provide a completely different community
experience to viewers in contrast to traditional media, providing an increased sense of participation and
gratification [2].

Most livestreaming platforms recommend streams to would-be viewers based on prior and current
engagement metrics, which is effectively a function of viewership and chatroom activity. Specifically,

1https://www.twitch.tv/
2https://www.youtube.com/live
3https://www.facebook.com/facebookmedia/solutions/facebook-live
4https://video.ibm.com/
5https://www.muvi.com/
6https://www.jwplayer.com/live-streaming/

1

Figure 1.1: The chatroom of a livestreaming website (Twitch). Notice the extremely noisy nature of the
text.

streams that garner high viewership and have active chatrooms are considered to be likely interesting
and engaging to new viewers, and are thus recommended to draw new viewers, amplifying preferential
attachment effects. Moreover, streamers who produce such content and draw such engagement are
prime candidates for on-platform and off-platform monetization via advertising revenue share,
donations from viewers, and sponsorships from third-parties (i.e. computer hardware companies for
e-sports professionals). Such incentives lead some streamers to resort to fraudulent methods to increase
their viewership and chatroom activity.

According to the study 7, there are 15M daily active users on Twitch with 2.2− 3.2M broadcasters
and 44B minutes watched per month by audience. Similar are the cased for YouTube Live and
Periscope 8. YouTube Live streams 4k streams per day with 1.17B broadcasters and 10B minutes
watched per month. Periscope has 1.2M active users with 200M broadcasts. All these statistical
numbers shows the usage of live streaming platforms by users.

1.2 Thesis statement

Given the above challenges, we address the issue of identifying chatbotted streams and its constituent
chatbot users on Twitch.tv live streaming platform. The thesis statement is as follows:

7https://www.statista.com/statistics/761122/average-number-viewers-on-youtube-gaming-live-and-twitch/
8https://blog.streamlabs.com/q2-2019-7e8039277b11

2

Detecting and Characterizing Chatbots on Live streaming Platform such as Twitch.tv within
seconds in two stages.

1.3 Thesis contribution

This thesis contributes to mitigate the spread of fraudulent activity on Live streaming platforms. The
results from this thesis can be used to build solutions to hinder the spread of untrustworthy or botted
streams, fake users, etc. on live streaming platforms in the future. The insights obtained and the system
built as a part of this thesis can be effectively used by real users to make them informed about the
chatbotted streams and bot users to whom they can interact on chatroom. We present how automated
computational techniques can be used to deploy a real world system for genuine users to differentiate
between real and bot users.

1.4 Thesis Roadmap

The rest of this thesis is organized as follows : Chapter 2 discusses the literature review in the space of
exploring Twitch and other live streaming platform, existing research on chatbot detection on Online
social media. Chapter 3 describes about the data collection from Twitch streams and generating
synthetic data with analysis. Chapter 4 discusses about how the problem statement can be break down
into two stages and the feature selection for each stage. Chapter 5 describes the SHERLOCK
framework to tackle the problem statement and other state of art baseline models. Chapter 6 discusses
about the evaluation of SHERLOCK on the dataset and the comparison on results of both SHERLOCK
and other baseline models. Chapter 7 discusses about the textual features from the chats to detect bots,
BOTHUNT framework which handles the problem based on textual features and its result comparison
with other baseline models. Chapter 8 discusses about the practicality on Twitch platform in terms of
adversarial implications and time scalability. We conclude our work in Chapter 9 with future work and
limitations.

3

Chapter 2

Background and Literature Review

2.1 Twitch : Terminology, Building Blocks and Characterization

Twitch is a video live streaming service which focuses on streaming live video games. It allows user to
broadcasts eSports competition along with music broadcasts, live sports tournaments broadcasts and
other creative content which can be viewed live or video on demand. In addition, personal streams of
individual players and gaming-related talk shows. The homepage of Twitch lists out the streams based
on viewership or high user activity. As per the wikipedia 1, most popular games streamed are Fortnite,
League of legends, Dota2, Counter-strike: Global Offensive, Battlegrounds etc. Twitch stream has an
outlook as shown in Figure 1.1 where on the left the live content is showcased while on right there is a
chatroom which allows users to post messages to interact amongst themselves or with a streamer. To
post a message in a chatroom, a user must login to Twitch whilst not the case to view the content. For
each stream, there are few numerical values that are shown which helps other to choose which stream
to view, like, total users who watched that stream and number of current viewers who are watching.
For each stream, you can know the number of subscribers and for each user you can know the number
of streams that user subscribed to. Twitch has different set of emojis compared to other multi-user chat
platform. A user can even pay for emojis to use them in their messages. Even a stream also has specific
set of emojis where the streamer would have bought them to make it accessible to the users in the
chatroom of that stream.

2.2 Existence of chatbots on Twitch

As discussed in Section 1.1, streamers are monetary benefited in case they draw attention of audience
by increasing activity in their streams through various sources. Such incentives lead some streamers to
resort to fraudulent methods to increase their viewership [3] and increase chatroom activity [4].
Numerous online marketplaces like streambot.com and youtube-livebot.com offer streamers the ability

1https://en.wikipedia.org/wiki/Twitch (service)

4

to increase their chatroom activity (refer to Figure 2.1) over sustained period of time, via chatbots
which simulate human-like chatter. Such fraudulent engagement has several adverse effects: (a) honest
streamers may not be as highly recommended as fraudsters and lose out on potential engagement they
may have otherwise garnered via preferential attachment, (b) viewers and streamers have reduced trust
in the platform to recommend and prioritize good content, (c) the platform and third-party sponsors
may lose money by partnering with fraudulent streamers who reach much lesser human eyes than their
metrics suggest. One such example of chatbotted stream is shown in Figure 2.2. Despite these
concerns, prior work in mitigating chatbot abuse on livestreaming platforms is minimal, we seek to
bridge the gap in this work.

Figure 2.1: The dashboard of a chatbot service provider highlighting the settings available to the cus-
tomer.

2.3 Prior work on Chatbot detection

We discuss prior work in (a) detecting chatbots, and (b) astroturfing in social media.

Detecting chatbots. Most prior work on chatbot detection consider chatbots as accounts that spread
malicious or spammy URLs [5, 6, 7]. Gianvecchio et al.(2011) proposed a classifier based on
entropy-based features (message length, and inter-message delay) to detect chatbots on Yahoo chat
systems. McIntire et al.(2010) used similar features to differentiate between bot and genuine users on
various instant messaging platforms in IM (instant messaging) settings (i.e. human is chatting only
with one user (bot/genuine)). Additionally, Guan et al.(2009) proposes detecting chatbots based on the
links they post, using cues from spam classification literature to detect malicious URLs. However, all

5

Bot

Bot

Bot

Bot

Genuine

Genuine

Genuine

Figure 2.2: We enable discovery of chatbotted streams, notice genuine/real users asking for moderators
to handle the bots.

of these methods are based on IM platforms, where chat messages are more directed towards other
chatters, and are primarily concerned with delivering a payload of a malicious URL. Our work studies
chatbots on livestreaming platforms, where bots are used with an alternative purpose of increasing
perceived chatter, and hence vary in their design and motive. Though many works tackle bot detection
on popular social media platforms, such as Twitter [8, 9], Facebook [10], and software marketplaces
[11, 12], they are characteristically different from our work as they do not focus on detecting chatbots.
Besides this, there is a lot of work in designing conversational agents [13], which is beyond the scope
of this work as they aim at coming up with creating realistic chatbots not for malicious purposes.

Astroturfing in social media. Social media websites have become a common target for astroturfing,
where users artificially inflate engagement to increase perceived popularity. Graph-based factorization
approaches to group nodes based on similarity or dense connectivity implying suspicious, large
clusters have shown considerable success in detecting fraudulent activities [14, 10, 15]. Random-walk
based methods have also been used to detect abnormal cuts between suspicious and legitimate parts of
a social graph [16]. Content-based methods use textual features [11] or local engagement features (i.e.
based on egonets) [17] to detect spam and fraud. [18] also propose temporal methods focusing on
finding anomalous patterns in multivariate time series. The closest work to ours is by [19], in which the
author proposes an unsupervised method to detect livestreaming viewbots. Despite rich literature in
this space, none of the prior works have focused on the problem setting of detecting chatbots on
livestreaming platforms.

6

Figure 2.3: The constituent chatbots are detected using discriminative features (large points indicate
high user density) of SHERLOCK for the stream in the Figure 2.2

Though a lot of work has been done in detecting suspicious activities on social media; however none of
them have focused in the setting of detecting chatbots on livestreaming platforms. Given the challenges
mentioned above in the previous section, the problem we tackle is very different from the work we
discuss above.

2.4 Limitations and Challenges on Twitch

There are numerous challenges in this problem setting: (a) noisy data: livestreaming chatter is full of
messages with ill-formed sentences, containing spelling errors, “legitimate” spam messages (copy
paste), and emotes, limiting efficacy of text-based features to identify fraudulent activity, (b)
user-controlled fraud: most chatbotting services available on online marketplaces allow streamers to
control the bots (Figure 2.1), giving them the ability to decide when and how much fake chatter should
be introduced, and thereby complicating the attack space and hurting detection generalizability, and (c)
lack of ground-truth: as livestreaming platforms operate at an extremely large-scale and do not reveal
the chatbots they proactively ban from the service, obtaining reliable ground truth for building machine
learning models is non-trivial.

7

2.5 Overview of the Chatbot Detection Framework

In this work, we tackle these challenges and more. To our knowledge, we are the first to study the
chatbot detection problem in the livestreaming setting. Specifically, our contributions are as follows:

1. Problem formulation: We formalize the chatbot detection problem in the context of chatrooms
of livestreaming platforms.

2. Dataset collection and characterization: We obtain real livestreaming chatlog data, and com-
pare the behaviors of chatbots and real users. We also discuss how to construct labeled synthetic
chatter datasets from livestreaming platforms, for a variety of attack models.

3. Proposed framework: We propose methods (SHERLOCK and BOTHUNT) which tackles chat-
bot detection in a two-stage approach: detecting botted livestreams using a classification model
(stage I), and detecting constituent chatbots using a seeding and label propagation approach (stage
II). Overview of both approaches given in Figure 4.1, covering all possible features that could be
extracted from livestreaming platform.

We conduct several experiments to demonstrate that our proposed method is (a) effective: we show that
our approach outperforms alternatives in detection performance on real chatlog datasets (SHERLOCK
achieving .97 precision/recall and BotHunt achieving 0.93 accuracy) (Figure 2.3) (b) robust to different
attacks: we show consistently good performance in detecting chatbots across many attack
configurations (SHERLOCK poses ≥ .80 F1 against most attack settings and BOTHUNT attaining
0.85 accuracy), and (c) scalable: our approach scales near-linearly on large datasets, especially due to
our two-stage task formulation.

8

Chapter 3

Data Collection and Generation

3.1 Data Collection of Real World Data

In this work, we study Twitch 1, a dominant livestreaming platform with over 2.2M streamers and
15M unique daily viewers reported in 2018 2. We collected chatter of 439K messages over a period of
three months from August to October 2018 from chatrooms of 690 randomly chosen Twitch streams.

Annotation. We manually annotated 183 chatlogs out of the 690 collected. The annotators 3 used cues
such as relevance of text to the context, number of messages posted by accounts, metadata and other
similar signals to identify if a particular livestream was chatbotted or not, as per knowledge from prior
literature [19] and a survey of chatbotting services. The annotators found 24 botted and 159 seemingly
genuine streams. While annotation was possible, it took each annotator roughly 104 hours to complete
the task, clearly making annotation of the entire dataset infeasible. Thus, for our further analysis, we
use the 183 streams, with 78,124 messages from 6,167 genuine users and 23,236 messages from 2,739

chatbots.

We present a few cues that aid in human annotation of chatlogs and constituent chatbots:

1. At the stream level:

• High number of messages - a lot of messages appearing in quick succession (especially if a
stream has less number of followers).

• Context of messages - chatbot messages are always out of context/random. Existence of a
very large number of such messages. This is one cue where humans perform much better
than a machine.

• Low or zero subscribers - a low count of paid subscribers inspite of high chat activity.
1https://twitchadvertising.tv/audience/
2Note that due to limitations on data collection and labelling cost, it is unfeasible to work with their platforms. However,

the similar method of providing chatbots is also used for other livestreaming platforms
3There were 2 annotators who manually annotated chatlogs.

9

• Formation of large groups in any of the modalities of #msgs, mean IMD, #windows,
IMDentropy, metadata.

• Existence of a large number of user handles which do not follow any stream (bot handles
generally do not follow any stream(er)s).

• Existence of a large number of user handles with peculiar usernames (eg: all handles could
have a serial number appended to a random name, there could be many names with random
combinations of letters, etc.)

2. At the user level: Adapt most of the aformentioned cues to a user level.

• High number of messages.

• Every messages appear to be random.

• Lies in a large group with other user handles in terms of a combination of #msgs, mean
IMD, etc.

• Does not follow any stream(er)s.

• A peculiar username as described above.

• Possible repeated text messages.

3.2 Synthetic Data Generation

Bot service providers 4 typically offer the following control setup (refer to Figure 2.1) to the fraudulent
streamer: (i) on demand availability of chatbots - can be activated and deactivated whenever the
streamer wants, (ii) number of chatbots - can be changed during the chatbotting attack, (iii)
inter-message delay - the minimum and maximum time dealy between any two succesive messages by
(any pair of) chatbots can be set by streamer 5, (iv) the message contents - the streamer can upload a
custom file with a set of text messages or choose one of the predefined files from which messages will
be sampled randomly and posted in the chatroom through the bot user handles.

We cannot bot attack real world streams due to obvious ethical reasons. Hence, to get a few chatlogs
which were chatbotted, we manually annotated chatlogs of select streams. Detecting chatbot(ing)s
manually is possible but time consuming. We rely on cues like context (feasible for humans, but tough
to train a model on) and each chatlog takes around 30 minutes to annotate on an average. Thus it is not
feasible to create a large labeled dataset from real chatlogs. From the labeled chatlogs at hand (14
botted logs), we observed that chatbots and real users virtually never interacted with each other.

4Some chatbot service providers (eg. viewerlabs.com,streambot.com) offer a free trial which can only be used once. If
one tries to use the trial service again, a message stating that the service has already been utilized pops up. We collected logs
for these streams as some of these streamers are likely to have continued to indulge in chatbotting.

5To clarify, the minimum and maximum delays are between any two successive messages in a stream - these two messages
could be typed by any pair of chatbot handles (or even by the same chatbot handle).

10

Figure 3.1: Generating synthetic chatbotted chatlogs.

Though the chatbots had ability to @mention other users, they always @ mentioned other bot handles
or stream handle - never the genuine users. Similarly, the real users always tended to converse amongst
themselves. The only instances wherein the activity of the two sets intersected was when a contentious
statement/question by a chatbot provoked a reaction from a real user. Upon not receiving a reply from
the chatbot in turn, the real user ignored the bot user handle and moved on to converse with other real
users.

Due to the observation that chatbots, in general, do not interact with real users, we came up with the
following method for a synthetically generated, labeled, chatbotted dataset: (i) We hired a real chatbot
service provider and bot attacked an empty stream that we had set up. (ii) We logged the messages
while changing the different parameters in the control setup, (refer to Figure 2.1), and noted down the
timestamps at which we performed these changes. After this, we had a chatlog of our stream which
only consisted of messages from only real users 6, from the data that we collected earlier. To generate a
“chatbotted stream” with both real and bot users, we considered relative timestamps and simply
superimposed the two logs according to their relative times as shown in Figure 3.1. By doing this, we
ensured that we maintain the behavior of chatbots whilst also maintaining the behavior of normal
streams.

We considered four representative regimes (chatbot attack model) of how the two parameters in the
control setup, number of chatbots (NC) and maximum delay between any two consecutive messages
(MD), which could come from any pair of chatbots, were changed:

1. Chatters Controlled (CC): NC was kept constant (at various values), MD was varied. Simulates
a setting where streamers setup a constant number of chatbots and occasionally tweak the delay
parameter.

6We make sure that the streams in this set were mostly from Twitch verified profiles and had a relatively high subscriber
count.

11

2. Rapid Increase (RI): Start off with a small value of NC and rapidly increase, simultaneously
decrease MD. Repeat until attaining a particular value of NC, then maintain constant NC and MD
values for the remaining duration. Simulates a setting where streamers try to show that a large
number of users joined their chatrooms within a short period of time, and later, the chatroom had
sustained activity with lots of users for a prolonged period of time.

3. Gradual Increase (GI): Similar to (2) except that we change NC and MD slowly over a longer
period of time. Simulates a similar setting as in (2) except that the streamer is now trying to
project a gradual increase in chatroom activity followed by a prolonged period of activity with
lots of users.

4. Organic Growth (OG): Increase NC, but at each such increase, start off with a large MD (less
frequent messages) and decrease it (more frequent messages). Repeated until hitting predefined
values and then keep them constant. This simulates an intelligent streamer who is trying to negate
the effect of a sudden spike of messages by new chatbot users when they join the stream initially.

This dataset works well as we are only looking at stream level dynamics. Also the objective of such
fine-grained division is to find out the percentage of corruption at which the detection performance
deteriorates. We consider the various (a) attack models {CC, RI, GI, OG}, (b) stream duration {0.5, 1,
1.5, 2, 2.5, 3 hours}, (c) ratio of botted to overall messages and (d) ratio of chatbots to real users {40,
60, 80%}. We created multiple simulated attack chatlogs by considering variants of {a,b,c} and
{a,b,d}. This labeled dataset is also used to train the Stage I classifier when classifying unseen streams.

3.3 Analysis of Datasets

Table 3.1: Dataset Statistics

of chatlogs 690
of messages 439,650
of streamers 168
of chatters 8,885
Median stream duration 2.7 hours

A brief description of the dataset collected is given in Table 3.1 . The statistics evaluated are on real
world dataset. After the following the steps illustrated in Section 3.2, the statistics of synthetic dataset
is illustrated in Table 3.2. For attack setting CC and OG, we mainly focused on delay between
messages and hence the possibility of finding a high number of messages which resulted in more
number of chat logs while merging with real stream chat logs. This resulted in higher numbers of each
attribute.

12

Table 3.2: Statistics of each regime of synthetic dataset

Attribute CC RI GI OG

No of chatlogs 945 180 149 939
No of chatters 4377 3939 3854 31261

No of streamers 36 35 35 36
No of messages 627877 321753 252595 2966152

Median of duration (in hours) 2.04 1.17 1.77 2.21

13

Chapter 4

Feature Selection

4.1 Chatbot Detection Problem

Chatbots are the set of fake user handles which post messages at random interval of time through the
length of stream. Bot service providers typically offer the control setup such as availability of chatbots
when demanded by streamer, number of chatbots they want, at what time they should post a message
and what should be the content of that message, (refer to section 3.2) to the fraudulent streamer. The
objective of the chatbots in our setting is simply to present a picture of increased chatroom activity.

Livestreaming platforms need to detect instances of fraudulent activity and take action against both
streamers indulging in astroturfing as well as against fake accounts associated with bot user handles.
We note that considering all users in all streams is a computationally heavy and expensive task.
Moreover, it is difficult to claim in isolation whether any given message is from a chatbot or real user,
and even if a single user is a chatbot or not. We take a step back to consider that instead of gauging
whether each message or user is legitimate or not, we should first consider the aggregate behavior of
the parent stream. This is because it is unlikely to observe a number of chatbots orchestrating a
coordinated activity inflation effort on a given stream. By focusing on a stream-level first, we can
leverage aggregate behaviors from many messages from many users jointly to infer whether the stream
appears to be botted or not. We formally define this task as follows:

4.1.1 STAGE 1: Detecting Chatbotted Streams

PROBLEM 1 : Given a set of streams S and corresponding set of chatters Cs, for each s ∈ S, find the
set of chatbotted streams.

Upon obtaining the set of suspected chatbotted stream Scb we can next focus only on this subset to
discern suspected chatbots from real chatters. We argue that while it is conceivable that chatbots may
exist in isolation in other streams, it is unlikely, and at best ineffective from the streamer’s point of
view. Moreover, since Scb is much likely to be smaller than S, we can dramatically improve scalability

14

by avoiding chatbot detection for determined “low-suspicion” streams, and only focussing on the
high-suspicion ones. The task that we pose for these is as follows:

4.1.2 STAGE 2: Detecting constituent chatbots

PROBLEM 2 : Given a suspicious chatbotted stream s ∈ Scb, and corresponding set of individual
chatters I , label each of the chatter i ∈ I as being part of the (disjoint) set of real users Ir or chatbotted
users Icb.

Breaking down the broader problem of detecting chatbots offers the following benefits : (i) It allows us
to utilize the supervised learning approach for stage 1, as features exhibiting consistent patterns across
instances are much easier to find when we focus only on detecting chatbotting at stream level. (ii) In
terms of interpretability, we can make a set of assumptions about the data for stage 2. If a stream is
flagged as chatbotted, then with a very high probability, we expect to find users with both labels creal
and cbot in Scb. This helps in setting appropriate clustering thresholds, since we already expect to find
two classes. Then having an initial set of labels for few users, we can make semi-supervised label
propagation to find the labels for remaining users. (iii) In terms of scalability, we do not need to
perform the more compute intensive stage 2 steps for clustering, followed by label propagation on all
streams, but only need to perform them on streams detected as chatbotted. Figure 4.1 presents a high
level overview of our approach. Note that we do not have per user message data across streams, i.e. we
do not haveM′i for each chatter ci whereM′i =

⋃
ci∈C∀s∈SMi which may have enabled us to

approach this task in a different way.

4.2 Feature Selection

4.2.1 Initial Observation

Before proposing our approach, we conduct preliminary exploration of the dataset and try to identify
key statistics that can help us differentiate the genuine/real and suspicious streams/bots. In this section,
we describe the potential features we considered and point out the key insights we obtained about
genuine and fraudulent behavior.

Message Frequency Since bots are created with the purpose of increasing chatroom activity, it is
natural to assume that they will post more messages than the genuine users in a stream. However, it could
be contrary as well, that if the users are fooled by the bots into believing that bots are actually genuine
accounts, it might happen that genuine users might keep up the end of conversation and end up creating
similar or more messages than the bot accounts. For each stream, we compute the median of the number
of messages posted. We observe that the number of messages for chatbotted streams is higher than that
of genuine streams. We show this by plotting the Empirical Cumulative Distribution Function (ECDF)

15

Figure 4.1: We propose SHERLOCK, a two-stage chatbot detection approach based on stream (top) and
user-level classification (bottom).

(a) Mean time taken (for all streams) to reach
x% of total number of messages typed in that
stream.

(b) Shows the rate at which messages arrive (relative timestamps
from start of the stream).Rows indicates messages by a user, with
bot users shown in red. In this case, messages by bot users exhibit a
temporal pattern.

Figure 4.2: Analysis on real world data (159 real streams and 24 chatbotted streams).

16

in Figure 4.3(a). Additionally, we observe that the median statistic is able to differentiate between
chatbotted streams and genuine streams with a Kolmogrov-Smirnov test p-value of 4.34× 10−8. Based
on the above statistics, we make the following key observation:

(a) Number of messages distribution ECDF. (b) Example of genuine and chatbotted streams.

Figure 4.3: ECDF for median distribution on number of messages for genuine and chatbotted streams.
Distribution of number of messages posted for randomly selected genuine and chatbotted streams.

Observation 1 Chatbots tend to post more messages than genuine users, with most chatbots posting
messages with similar frequency.

Inter-message delays (IMD). IMDs have been used previously in literature to identify bot behavior
[18]. They have proved to be useful in identifying footprints of automation by scripting, which tends
to be regular and deterministic. We define IMDs for an entire stream as the difference in time between
each pair of consecutive messages from the same user, across all users for the duration of the stream.
We plot the ECDF of median IMDs for each stream in Figure 4.4(a). We can observe that ECDF differs
significantly for genuine and chatbotted streams (KS Test p-value: 1.93× 10−19). We also plot the PDF
across all IMD for users in genuine streams and users in botted streams, and show this in Figure 4.4(b).
Based on the above plots, we make the following observation:

Observation 2 Chatbotted streams have a higher IMD than genuine streams. Chatbots have a
consistent IMD showing that they are automated.

Message Spread. Since bots are designed to maintain engagement for extended periods (rather than
specific times), we hypothesize that they post throughout the duration of most chatbotted streams. We
investigate this empirically by counting the number of equal-duration time intervals in which a particular
user posts during the duration of the stream. To compute this, we partition the stream into equal-duration
intervals, and count the number of windows in which each user posts a message. Intuitively, users who

17

(a) Median IMD distribution ECDF.

30 sec

5 min 15 min

(b) IMD distribution for all genuine (top) and botted
(bottom) streams

Figure 4.4: ECDF for distribution of median on Inter Message Delay for genuine and chatbotted streams.
Distribution of Inter Message Delay.

post consistently will appear in more windows. Figure 4.5(a) shows the ECDF of the median of the
number of windows per user distribution. We note that the distribution for chatbotted and genuine
stream is significantly different, corroborated by a KS test with p-value of 7.34 × 10−7. Figure 4.5(b)
shows examples of these distributions for a chosen bot and genuine stream. We have the following
observation:

2 5 10 30
Median IMD(in secs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Genuine
Bot

(a) Median number of windows distribution ECDF.

0 10 20 30 40 50 60
.1
.2
.3
.4
.5
.6
.7 Genuine

0 2 4 6 8 10 12
.1
.2
.3
.4
.5
.6
.7 Bot

Fr
ac

tio
n

Of
 U

se
rs

Number of Messages

(b) Number of windows per user distribution for all gen-
uine (top) and botted (bottom) streams

Figure 4.5: ECDF for distribution of median on number of windows per user for genuine and chatbotted
streams. Distribution of number of windows per user.

Observation 3 Chatbots message distribution is more spread out, and on average, they post
consistently throughout the stream.

18

4.2.2 STAGE 1: Detecting Chatbotted Streams

We aim to solve Problem 1: given the set of stream S, we aim to detect the subset of streams Scb which
are chatbotted. We present the features that we chose, and the ideas that led to them. In general, we
aim to reason about what constitutes normal behavior (i.e. chatrooms of livestreams with only real
users) and how a chatroom with artificially inflated activity would deviate from normal behavior.

Distribution of user messages We expect the distribution of the fraction of users of a stream vs the
number of messages typed by them, to be very different for chatbotted streams as compared to streams
with only genuine users. Chatbotted streams have a higher fraction of users with more messages as
compared to real streams Figure 4.6(a),(b). Given that the objective function of the chatbots is to present
a picture of inflated chatroom activity, these fake user handles post more messages than typical real
users.

To construct a per-stream, stream independent feature using this observation, we sort the (y,x) tuples
(where x = number of messages and y = fraction of users with x messages) as follows: (i) sort ascending
with y as key (ii) for tuples such as (y,x1), (y, x2), where y values are equal, sort descending with x
as key. We are simultaneously interested in both the measures - what fraction of users, and how many
messages. We take the last k (k = 3 in practice) values from the sorted list, in that order, and construct a
feature vector of length k as: {x1 × y1, x2 × y2 . . . xk × yk}

(a) The distribution of # msgs per user (X axis) vs.
fraction of users (Y axis). Highlights the location and
magnitude of the tallest three peaks (in red) for a real
livestream (normal behavior).

(b) The distribution of # msgs per user (X axis) vs.
fraction of users (Y axis). Highlights the location and
magnitude of the tallest three peaks (in red) for a chat-
botted livestream (inflated activity).

Figure 4.6: Plots for stage 1 - Detecting chatbotted streams. Highlights deviation from normal behavior
at stream level based on Number of messages.

19

(a) The distribution of Inter Message Delay bins (X axis)
vs. # Inter Message Delays in that bin (Y axis) for a real
livestream (normal behavior). Almost all values occur
in the lower Inter Message Delay ranges.

(b) The distribution of Inter Message Delay bins (X axis)
vs. # Inter Message Delays in that bin (Y axis) for a chat-
botted livestream (the IMDs corresponding to messages
by chatbots are colored in red - notice their location).

Figure 4.7: Plots for stage 1 - Detecting chatbotted streams. Highlights deviation from normal behavior
at stream level based on mean Inter Message Delay.

Inter Message Delays (IMDs)
Definition : Inter Message Delay: Given a chatter ci, and the timestamps t1, t2,..tn corresponding

to each of their messages m1, m2, ..mn, their IMDs are as follows: i1 = t2 − t1, i2 = t3 − t2, ..
in−1 = tn − tn−1.

For each livestream, we plot a graph, considering IMD bins (with 1000ms as bin size) on X axis, and
number of IMDs (from all users) on the Y axis. As seen in Figure 4.7(a),(b), chatbotted streams have a
lot of IMDs lying in the mid-higher ranges (X axis) and those IMDs are precisely the ones corresponding
to chatbot handles.

To construct a per stream feature using this observation, we consider percentiles of IMDs. If i%ile
denotes the bin number at which the ith percentile of all IMDs has occurred, the feature vector we con-
sider is {60%ile,70%ile,80%ile,90%ile}. We expect to get higher bin numbers for chatbotted livestreams
and lower bin numbers for streams with only real users. By considering percentiles, we make the feature
vector stream independent.

Number of windows Per livestream, for each user who was a part of that livestream’s chatlog, we
maintain the fraction of the stream duration in which that user was involved in active conversation. To
this end, we divide the stream’s chatlog into windows of size sz seconds and keep count of how many
such windows each user was a part of (typed at least 1 message during). To make the feature stream
independent, we transform the counts so that there would be at most 100 windows per stream.

20

We plot a graph, considering number of windows on the X axis, and the fraction of users that occur
in these many windows on the Y axis. We expect to find graphs similar to those of the distribution
of user messages, i.e. similar to Figure 4.6(a),(b) (as when sz is sufficiently small, it is equivalent to
counting the number of messages per user) That said, the graphs would be significantly different when
many users chat within a short span of time (i.e. multiple messages within a few windows) and very few
messages at other instances of time through the length of the stream. The per-stream feature is similarly
constructed as in the distribution of user messages.

All in all, we have a 10 dimensional feature vector, composed of the above mentioned features per
stream. We train a classifier on the labeled data in a supervised setting. This constitutes the classification
module which would detect if a new, unlabeled stream is chatbotted. If a stream is detected as chatbotted,
the steps outlined in stage 2 are then performed to identify the chatbot user handles.

4.2.3 STAGE 2: Detecting constituent chatbots

Given a chatbotted stream Scb, we aim to label each chatter ci ∈ Scb as cbot or creal. We present the
chosen features and relevant observations on the labeled data. We finalized on five features for this
step, adapting three from stage 1 for use at a per user level rather than at a per stream level.

Number of messages (nm) We keep a count of the number of messages chatted by each user through
the duration of stream.

OBSERVATION 1. Given their objective, chatbots generally post a high number of messages on an
average compared to genuine users. In most cases, there are multiple chatbots with the same number of
messages.

Mean IMD (mimd) For each user, we consider the mean of all the IMDs, between all messages chat-
ted by that user, that is, mean(i1, i2....in−1) where i1, i2, etc are as follows: i1 = t2 − t1, i2 = t3 − t2,
.. in−1 = tn − tn−1.

OBSERVATION 2. Mean IMDs of chatbots are generally higher. In most cases, many chatbots have
same/similar mean IMDs.

Number of windows (nw) For each user, we keep a count of the number of windows in which this
user’s messages have occured.

OBSERVATION 3. Given their objective, the messages of chatbots generally appear in more num-
ber of windows as compared to real users. Also, groups of chatbots appear in the same total number of
windows - there could be many such large sized groups, with each group containing bots that appear in
the same total number of windows. Real users does not form such groups at larger window values.

21

IMD Entropy (eimd). Let us consider IMDseq(c) = ic1, ic2, .. ic(n−1) to be user c’s IMD sequence
and IMDbinseq(c) = ibc1, ibc2, .. ibc(n−1) to be user c’s IMD sequence after binning. We calculate
user IMD entropy for each user cm ∈ scb (details provided in the Reproducibility section). With IMD
entropy, we are trying to quantify the amount of variation in IMD values.

OBSERVATION 4. In general, there could be many large sized groups of chatbots, with each group
consisting of chatbots having the same value of IMD entropy. Real users could have those IMD entropy
values too. Also, there could exist a small number of real users with the same entropy value, but the
probability of them forming large sized groups, like chatbots, is negligibly low.

Metadata (meta). We maintain a list of users who subscribe to the stream under consideration. This
feature is dependent on the livestreaming platform under consideration. For example, Twitch follows a
paid subscription model, hence users who subscribe to a stream are real users.

OBSERVATION 5. Subscribers of a stream are certified genuine users, as chatbots do not subscribe
to the stream.

22

Chapter 5

Towards Chatbots detection on Twitch/Methodology

5.1 Proposed SHERLOCK Framework

We next propose SHERLOCk, a two-stage framework which solves Problem 1 of finding chatbotted
streams and Problem 2 of labelling constituent bot users in the chatbotted stream.

5.1.1 Method for detecting chatbotted streams

Given the set of stream S, we aim to detect the chatbotted stream Scb. Based on the observations from
Section 4.2.1, we aim to featurize streams in space that can best differentiate chatbotted and genuine
streams. We discuss our features below:

Number of messages Observation 1 from section 4.2.1 shows that the chatbotted streams tend to
have higher number of messages than genuine/real streams. Though many summary statistics can be
extracted from the number of messages distribution, we found that weighted top-k nodes (most frequent
values) worked well empirically, as they represented the k-largest “peaks” in the distribution. We were
interested in capturing (possibly multiple) spikes in the distribution (for examples, see Figure 4.6), which
are generally associated with chatbotting activities. We used k = 3 to avoid introducing noises in our
feature selection. Further, we weighed each of the k peaks with associated fraction of users, allowing
us to capture the intensity and overall contributions of the peak. Intuitively, peaks at larger number of
messages, and with high fraction of users are the most suspicious. This produces 3 features.

IMD quantiles. Observation 2 from section 4.2.1 reflects that chatbotted streams tend to have higher
IMDs than genuine ones. Moreover, many chatbots have spiky behavior which involves long lulls
between chat messages. To capture the spikes and the overall higher IMD of chatbots, we used higher
quantiles of the stream IMD distribution (60%ile, 70%ile, 80%ile, 90%ile).

Number of windows. Observation 3 from section 4.2.1 posits that since chatbots send messages
atypically, and spread throughout the chat (rather than in quick conversations), they appear in higher
numbers of windows than genuine users. Thus, a stream with many chatbots will likely have a number

23

of window distribution with peaks associated with chatbot behaviors. Following the same rationale as
before, we take the weighted top-k modes, again using k = 3 to avoid noise.

Concatenating these, we arrive at a 10-dimensional feature space. Next, we train a supervised model
over this feature space and use the classifier to predict chatbotting propensity for any new, unseen stream.
We add those with a sufficiently confident predictions to Scb.

5.1.2 Method for detecting chatbot users

Upon obtaining a set of chatbotted streams Scb, our goal for each stream s ∈ Scb, is to label each user
i ∈ I (relevant chatters) as belonging to real users Ir or chatbots Icb. We use a semi-supervised learning
approach for this stage; such approaches have been demonstrably useful in tasks for which ground truth
is limited. In the livestreaming case, collecting ground-truth for individual users as chatbots is highly
challenging, time-consuming and unscalable. Thus, we employ a label propagation approach to identify
chatbots.

Generating seeds. The success of our label propagation approach for classifying users naturally
depends on the goodness of the seed labels. If a stream s ∈ Scb has a sufficiently high prediction score,
we conjecture that Icb will be large compared to Ir. With this key assumption, we consider certain
regions of our feature space to identify seed users for whom we have “high confidence” seed labels. We
use heuristics based on our earlier observations to obtain these seed labels. Specifically, our approach
begins by bootstrapping seed sets using empirically observed highly discriminative features (i.e. high
confidence seeds):

Number of messages. Observation 1 from section 4.2.3 notes that chatbots tend to post more mes-
sages than genuine users. We denote number of messages sent by chatter i as mi.

Mean IMD. Observation 2 from 4.2.3 notes that chatbots tend to have longer IMDs than genuine
users. We denote chatter i’s mean IMD as di.

Subscription status. Many livestreaming platforms offer paid subscription models, where users can
pay to subscribe to a streamer. We assume that subscribers are genuine chatters, and can thus be exon-
erated. We use ri to indicate chatter i’s subscription status.
Next, we refine the seeds by exploiting synchronicity over less discriminative features to gain confidence
in seed veracity; we use the following features:

Number of windows. The message spread of a chatter provides a strong signal if a particular chatter
is a bot or not. We count the number of unique windows a chatter i posts a message in and denote it by
wi.

IMD entropy. In addition to computing mean IMD, we also compute entropy of IMD. For each chat-
ter i, entropy of it’s inter message delay distribution is given by hi = H(IMDi) where H is illustrated
in Algorithm 1.

This approach is summarized in Algorithm 2, which we describe next. We first consider all users in I
on m (number of messages) and d (mean IMD) (Line 1), as we empirically observed that these features
are highly discriminative. In this (d,m) space, we first remove outliers (Line 2) in sparse regions due

24

Algorithm 1: CalculateUserIMDEntropy
Input: IMDseq(c) ∀ c ∈ Scb, cm
Parameters: nbin
Output: H(IMDbinseq(cm))
Ascending Sort all imd = [IMDseq(c) ∀ c ∈ Scb]1

Split all imd into nbin parts of equal sizes.2

Label each split part as 1,2, .. nbin3

∀ imj ∈ IMDseq(cm), replace imj with the label of the split part that it lies in to construct4

IMDbinseq(cm)
Return H(IMDbinseq(cm)) where H is the information entropy of the discrete random variable5

IB which can take values 1,2, .. nbin and is calculated for IMDbinseq(cm) as
−
∑nbin

i=1 P (IBi) log(P (IBi)) where P (IBi) is the probability of IBi occurring in
IMDbinseq(cm)

to low confidence about their status. Next, we initialize sets Rcb and Rr with users who have jointly
high, and jointly low values on the features; these sets represent candidate bots, and candidate genuine
chatters respectively (Lines 3-4). For users in each Rcb and Rr, we next identify the largest cluster
of candidate bots and genuine users (we use X-Means clustering [20] as it automates choice of cluster
count using information theoretic measures), and add them to the seed set with respective labels (Lines
6-7). We further refine the seeds by exonerating users where 1(ri).

Next, we refine Rcb and Rr. To do so, we first construct a bounding box Bcb around Rcb (Line 8),
which captures nearby users that may be missing in Rcb, but may still be suspicious. We then consider
the number of windows w and IMD entropy h feature values for these users, as we empirically observed
that many chatbots tend to share similar values (motivated by Observations 4.2.1-4.2.1). We identify the
feature values that occur over users in Bcb with greater than a given frequency nsim as supposed “peaks”
or bot signatures. Given these, we add chatters in I who have highly recurring feature values to Rcb,
and also remove them from Rr if applicable. In effect, our seeding process is a two-level clustering,
where the first-level relies on exploiting knowledge of suspicious regions in the (d,m) space, and the
second-level relies on augmenting this with non-region-specific synchronicity in the (w,h) space (step-
wise algorithm is illustrated in Algorithm 3). We note that we considered seeding via a single clustering
stage in experimentation, but achieved poor results due to noisiness induced by the less-discriminative
features.

Lets take an exmaple of a stream which was classified as chatbotted by Stage 1. We initialize seed
labels for each ci ∈ Scb as -1. We consider the m, d (chosen empirically) feature space as our base. We
remove the outliers which would otherwise have greatly perturbed the clustering and label propagation
steps. We split this feature space into quadrants as indicated in Figure 5.1(a).

Since chatbots have chatted a higher number of messages and have greater mean IMDs on an average,
we expect to find a few chatbots in the first quadrant (the part of the graph corresponding to higher m
and higher d values) Since we expect to find multiple chatbots having same/similar m and d, we perform

25

Algorithm 2: SEEDUSERS

Input: Number of messages vector , mean IMD vector d, number of windows vector w, IMD
entropy vector eimd, subscriber indicator vector , synchrony threshold nsim

Output: Refined seed sets Rcb, Rr
Project all users into a subset feature space: {m,d}1

Remove outliers chatters in this subset feature space.2

/*Initialize candidate bot region. */
Rcb ← {i ∈ I |mi > (m) and di > µ(d)}3

/*Initialize candidate genuine user region. */
Rr ← {i ∈ I |mi < µ(m) and di < µ(d)}4

/*Exonerate users with paid subscriptions. */
S ← {i ∈ I | 1(ri)5

Rcb ← (largest cluster inRcb) \ S6

Rr ← (largest cluster inRr) ∪ S7

/*Track # windows and IMD entropy in candidate bot region. */
Create bounding box cb around cluster Rcb.8

/*multiset with freq. mW (·) */
W ← {}9

/*multiset with mH(·) */
H ← {}10

for chatter i in cb do11

W ←W ∪ {wi}12

H ← H ∪ {hi}13

end14

/*Augment chatbot seeds with too-synchronous users. */
Wsync ← {w ∈W |mW (w) ≥ nsim}15

Hsync ← {h ∈ H |mH(h) ≥ nsim}16

for chatter i ∈ I do17

if wi ∈Wsync and hi ∈ Hsync then18

Rcb ← Rcb ∪ {i}19

Rr ← Rr \ {i}20

21

end22

return Rcb, Rr23

26

a clustering step for all users in this quadrant, shown in Figure 5.1(b). We consider the largest cluster
found (C1). With a very high probability, the users in this clusters are cbots.

We perform a clustering step in the third quadrant, the region with small m and d values. By con-
sidering the largest cluster, we expect the labels of the users in this cluster to be creal. Next, use metai
to label real users. We now have an initial set of seed labels gleaned using three features m, d and r.
We now make use of Algorithm 3 to get more accurate seed labels as indicated in Figure 5.1(c). Now
compare the predicted labels in Figure 5.1(d) with those in Figure 5.1(a).

Algorithm 3: Readjust
Input: mi, di, wi, hi ∀ ci ∈ Scb, seedScb

[] with a few indices already set to cbot or creal, C1

Output: seedscb [i] set to cbot or creal for relevant cis
Parameters: nsim
For a suitably sized rectangular boundary R1, constructed around C1 in the (m,d) feature space,1

set seedScb
[i] = -1 if seedScb

[i] was creal
For users in R1 with seedScb

[i] = cbot, collect nwi values into set(w) and hi values into set(h)2

For users in R1 with seedScb
[i] = creal or seedscb [i] = −1 , if wi ∈ set(w) and hi ∈ set(h), set3

seedScb
[i] = cbot

For users in R1 with seedScb
[i] = cbot, if wi /∈ set(w) and hi /∈ set(h), set seedScb

[i] = -14

∀ wi ∈ w, if count(wi) > nsim, insert wi into set(w many). ∀ hi ∈ h, if count(hi) > nsim,5

insert hi into set(h many)
Set seedScb

[i] = cbot if wi ∈ set(w many) and hi ∈ set(h many)6

nr = max(|C1|, |seedScb
[relabeled]|)7

Return seedScb
[], nr8

Propagating suspiciousness. Upon obtaining the seed sets Rcb and Rr, we constructed a k-nearest-
neighbors (kNN) graph between all chatters in I to represent their proximity in the feature-space. Fi-
nally, we utilized a graph-based label propagation algorithm proposed in [21], seeding nodes (users)
with labels as applicable. We tuned parameters of the propagation algorithm empirically to maximize
performance.

5.2 Adapted Baseline models

Although no prior works are directly related to the problem we tackle on livestreaming chatbot
detection, we adapt certain spam detection approaches which use user similarity and textual features
for this setting.

5.2.1 SynchoTrap model

SynchroTrap [22] is an unsupervised method that operates on user groups; hence, we apply it for each
stream to identify constitutent chatbots. We construct edges between any pairs by measuring a soft
Jaccard similarity (values are considered similar if they are within small ε) between every pair of users.

27

(a) Indicates the ground truth labels. The bold lines
indicate the means used for outlier removal. The
dotted lines indicate the means used for forming
the quadrants.

(b) Clustering the users in the first quadrant (high
nmi,mimdi) of Fig 5.1(a). Notice that the cluster-
ing is not ideal. Readjust is necessary to get better
seed labels.

(c) The seed labels used for label propagation after
Readjust. Improves upon the clustering and utilizes
information from other modalities nwi, eimdi,
metai.

(d) Using labels from Figure 5.1(C) as seed, label
propagation is performed and final labels are ob-
tained for all users.

Figure 5.1: Mean Inter Message Delays (Y axis) vs. number of messages (X axis) plots indicating steps
for stage 2 - detecting individual chatbots.

28

The similarity is computed on two features – (i) IMD, and (ii) number of messages for each user, for
every window. We sum the two similarity scores and construct a pairwise similarity graph. We cluster
the matrix into two groups via KMeans, and consider the chatbots as the one associated with the group
that maximizes performance.

5.2.2 Supervised Spam Classification (SSC) model

We adapt the original work [23] (used for Twitter spam user classification) to our setting. For each
user, various features like max, min, mean, median of number of words, characters, URLs and IMDs
are used to infer in a supervised fashion if user is a chatbot or not. The method works at user-level and
does not consider group effects/information at stream level.

29

Chapter 6

Evaluation and Comparison

6.1 Results on Real world Twitch Data

We evaluate against the two adapted baselines. We evaluate all three methods at the finest applicable
granularity, on their eventual detection performance in detecting chatbots. Stage I is applicable only for
SHERLOCK, and we evaluate it’s performance using 5-fold cross validation. We discover that
SHERLOCK correctly identifies 98.3% of streams, reporting a precision of 0.95. We run Stage II only
on those streams that are marked as chatbotted in Stage I; thus, for a misclassified genuine stream, all
chatbots are false negatives, and vice versa. For SynchroTrap, we evaluate on all 183 streams in our
dataset. Similarly for SSC, we evaluate on all users. We report precision/recall values for each method
in their capability to identify chatbots in Table 6.1.

Table 6.1: Precision and Recall for SHERLOCK, SSC and SynchroTrap on real data.

Model
Genuine Class Bot Class

Precison Recall Precision Recall

SHERLOCK 97.4% 98.6% 97.0% 94.4%
SSC 92.6% 96.2% 90.0% 82.8%

SynchroTrap 74.1% 51.8% 35.4% 59.3%

We find that SHERLOCK outperforms both SSC and SynchroTrap in precision and recall, despite only
requiring stream-level labels and SSC requiring much harder to obtain user-level labels. We further
conjecture that SSC would perform much worse if the chatbot text was more intelligently generated,
while our approach would remain unaffected, due to our text-agnostic feature space. SynchroTrap
(unsupervised), works at the stream-level and is unable to leverage information from other streams,
hence performing the worst.

30

Table 6.2: F1 score of across different classification and attack models (Stage I).

Classifier CC RI GI OG

Decision Tree 0.884 0.943 0.906 0.881
Random Forest 0.889 0.940 0.922 0.899

SVM 0.775 0.711 0.623 0.781
NN 0.842 0.927 0.902 0.892

NN-MLP 0.852 0.925 0.911 0.833
XGBoost 0.897 0.949 0.928 0.909

6.2 Sanity check on Synthetic dataset

As real world data is not exhaustive, we perform a set of experiments on a variety of synthetic datasets
to test the performance of our approach in Stage I/II under unseen, adversarial settings. We consider
only our performance, given that SynchroTrap is shown to perform poorly in Table 6.1, and SSC only
operates at user-level.

By considering various parameters, we generated 945 CC, 180 RI, 149 GI and 939 OG chatbotted
streams. For Stage I, we report performance of using various traditional supervised learning methods,
for different attack models. For Stage II, we consider only streams classified as chatbotted in Stage I.
We study the effects of the various synthetic chatlog generation parameters mentioned above.

6.2.1 Stage 1 Analysis

We evaluated performance of different supervised classification models over our feature set, and across
varying attack models. We used the corrupted versions of legitimate streams as the positive class, and
the original legitimate streams as the negative class. All experiments were conducted using 5-fold cross
validation – Table 6.2 shows F1 score for the different classification and attack models.

We found that gradient boosted trees (XGBoost) performed the best amongst the tested methods.
Moreover, we discovered that for all classifiers, the CC attack model is the most difficult, while RI is
the easiest. We conjecture that this is due to our model’s reliance on discriminating IMD features,
which are most variant throughout the stream under the CC model (unlike other models, dmax never
stabilizes in CC).

6.2.2 Stage 2 Analysis

We conduct analysis on all streams marked as botted by the best-performant Stage I classifier. We
study the effect of attack model, stream duration, and noise (both ratio of chatbots, and ratio of bot
messages). Figure 6.1 shows the collective results in terms of F1 score.

31

Effect of Attack Model. Unlike in Stage I, we find that the Organic Growth (OG) model is most
challenging. We conjecture that the OG model produces tremendous diversity in the user feature space
given many different chatbot configurations, and thus hurts the clustering and propagation steps the
most. The GI model proves the easiest to handle; the slow, staggered parameter changes produces
several close-by microclusters, which are well-handled by the label propagation.

Effect of Duration. Figures 6.1(a-c) and (d-f) show that duration impacts performance minimally, with
slight reduction for higher durations, likely due to increased IMD variety in genuine behaviors.

Effect of Noise. We alter between two types of noise models, based on the bot message and bot user
ratios. In both cases, increasing the chatbot noise percentage improves performance across various
attack models and durations for most configurations. For example, F1 score improves from
78.38(40%), to 91.39(60%), and 92.94(80%) for the 2-hour, Chatters Controlled (CC) model, bot user
noise setting (red bars in (a-c)). Naturally, higher chatbot signal accentuates the features we use for
chatbot seeding and label propagation, lending to better separation.

32

(a) 40% of chatbots (b) 60% of chatbots

(c) 80% of chatbots (d) 40% of messages posted by chatbots

(e) 60% of messages posted by chatbots (f) 80% of messages posted by chatbots

Figure 6.1: Performance of on various attack models (bar colors), stream durations (bar groups), noise
levels (columns) and noise types (bot users in (a-c), and bot messages in (d-f)). SHERLOCK is robust to
noise and performs consistently well across varying adversarial configurations, with F1 scores generally
over 0.80.

33

Chapter 7

Textual Features for bot detection

We additionally experimented with various features from text mining literature to determine if
language used by chatbots is significantly different from that used by genuine or real users. We give a
very brief overview of few features that were considered based on text which aimed at utilizing
conversational cues.

7.1 Text Wrangling

Although it has many forms, text wrangling is basically the preprocessing and normalization work
thats done to prepare raw text data ready for training. Simply, its the process of cleaning your data to
make it readable by your program, and then formatting it as such. So we step by step perform cleaning
text data process by first undergoing preprocessing followed by text normalization.

7.1.1 Text Preprocesing

Normally the message posted by user (both bot or genuine) are written in informal text which requires
pre-processing for information extraction which means bringing text to a form such that it is
predictable and analyzable for the task. The steps for pre-processing are as follows:

1. Converting all letters to lowercase

2. removing punctuations, accent marks and other diacritics

3. removing white spaces

4. expanding abbreviations with apostrophe (e.g. i’ll →i will, you’re →you are etc.)

5. removing stop words word stemming and lemmatization

34

7.1.2 Text Normalization

Text normalization is the process of transforming text to canonical or standard form. It is important in
case of informal text such as social media comments, text messages and comments to blog posts where
abbreviations, misspellings and use of out-of-vocabulary words (oov) are prevalent. We have
performed some of the normalization technique in our method stated below.

7.1.2.1 Noise Normalization

The most common form of noise in chat messages is the unnecessary repeated use of punctuation
marks or letters. This repetition may occur in any position - start, middle or end of a word. For
example, okkkk and really????? have single character repeat at the end, hahaha has double-character
repeats, and wowwowwow has triple-character repeats. We used regular expressions to normalize such
repeats. To normalize words containing digits and punctuation marks, we assume that no character can
repeat more than once continuously, and consequently the excessive characters are dropped, such that
f99 becomes f9 which is a slang version of fine. For letters, we assume that they can not repeat
continuously more than twice, and therefore drop the extra repeats, such that oookkkk becomes ok, okk
remains as it is, freakkkky becomes freaky, freaeakkkky becomes freaky, and add also remains as it is.

7.1.2.2 Slang Normalization

Slang expressions comprises of acronyms and phonetic substitutions commonly used in chat messages
that have no booked place in standard dictionaries. Therefore, we compiled a list of acronyms and
phonetic substitutions and their equivalent standard terms from different sources 1 and personal
surveys. We follow a table lookup process to scan the complete set of chat messages to identify slang
expressions and replace them with the equivalent standard terms. The lookup replaces each occurrence
of phonetic substitution like f9 by fine, and replaces each occurrence of acronyms like lol by Laugh
out loud.

7.1.2.3 Emoji Normalization

Emojis have become integral part of ones chat messages as they act as a way to express emotion in
addition to text in messages. Emojis are not a part of the standard vocabulary and hence to make it
useful we replaced each emoji with their expansion (as they are the part of standard dictionaries)
collected from sources 2. We maintained a lookup table with emoji and their corresponding expansion
and where ever emoji is found replace every instance of it with the respective expansion.

1https://www.noslang.com/dictionary/
2https://unicode.org/emoji/charts/full-emoji-list.html

35

7.1.2.4 Spell Correction

In a multi user platform, users have to be active in chatting with other users on the current topic. This
increases the chance of unintentionally making spelling mistakes. The misspelled words doesn’t exist
in standard dictionaries. Misspelled words are corrected using Norvig 3 method. So in a chat message
if we find the word that neither exist in vocabulary nor is a emoji or slang, then its highly probable to
be misspelled word and we replace it with the most apt correct word from the list of candidate
corrected words.

7.2 Key Information Extraction

This task aims to extract key information components from chat logs and to compute their feature
values, where the key information refers to three things, vocabulary terms, participating users and chat
sessions [24]. The usage of vocabulary terms by chat participants follow different patterns. Each one
has some specific level of prominence or implication in the whole chat discussion. This step extracts
feature values for all terms existing in the extracted vocabulary to characterize their prominence in the
whole chat discussion, as some terms are used more frequently than others. The vocabulary usage
pattern remains specific to participating users and chat session. Every user roughly follows a pattern of
vocabulary usage unintentionally; and since a chat session includes discussion at a specific point of
time and situation, it remains confined to a specific vocabulary centered around the topic of discussion.
Thus, there exist two kinds of relations in usage patterns vocabulary-user relation and
vocabulary-session relation. To explore these relationships further, a bipartite graph is constructed,
which is treated by a self-customized Hyperlink-Induced Topic Search (HITS) algorithm [25] to
compute hub and authority scores. HITS algorithm distinguishes hubs and authorities in the set of
objects. A hub object has links to many good authorities and an authority object has a high quality
content with many hubs linking to it. The hub and authority scores are computed in an iterative manner.

A bipartite graph, term-user, is constructed, considering terms in the vocabulary as hubs and users as
authorities. A user node or authority is linked to all those term nodes or hubs that have been used by
the user at least once in a chat message. Similarly, a term node or hub is linked to all those users or
authorities who have used it at least once in a chat message. We represented bipartite graph as triplet of
the form GTU = {VT , VV , ETV }, where VT = {Ti} is the set of terms in the vocabulary, VV = {Vj} is
the set of participating users and ETV = {ej |Ti ∈ VT , Vj ∈ VV } refers to the correlation between
vocabulary terms and users. Each edge eji is assigned a weight wji ∈ [0,1] to represent the strength or
integrity of a relationship between a term Ti and a user Vj . The weight wji of a term Ti is associated
with a user Vj in chat sessions is calculated using equation 7.1

3https://norvig.com/spell-correct.html

36

Figure 7.1: Term-User Bipartite Graph.

wji = (
freq(Ti,Vj)

freq(Ti,Vj) + 0.5 + (1.5× (
|Vj |
V

))
)× (

log |V |+0.5
ifreq(Ti,V)

log(|V |+ 1)
) (7.1)

where freq(Ti,Vj) denotes the number of times term Ti used by user Vj , |Vj | denotes the total number
of terms in the vocabulary used at least once by the user Vj , V denotes the average number of terms
associated with a user, |V | denotes the total number of participating users in the complete set of chat
sessions, and ifreq(Ti,V) denotes the inverse user frequency of Ti in the set V.

Authority Score AS(t+1)(Vj) for user Vj and Hub score HS(t+1)(Ti) for term Ti in (t+ 1)th iteration
are based on the authority and hub scores obtained during tth iteration and calculates using equation
7.2 and 7.3 respectively.

AS(t+1)(Vj) =
∑
Ti∈VT

wji ×HS
(t)(Ti) (7.2)

HS(t+1)(Ti) =
∑
Vj∈VV

wji ×AS
(t)(Vj) (7.3)

After each iteration, authority and hub scores are normalized by dividing them by the corresponding
norm measures defined in equations 7.4 and 7.5, respectively.

normAS =

√∑
i

(AS(t)(Vi))
2 (7.4)

normHS =

√∑
i

(HS(t)(Ti))
2 (7.5)

37

The bipartite graph GTU is represented using adjacency matrix L = (Li,j)|VT |×|VV |,−→a (t) = [AS(t)(Vj)]|VV |×1 denotes authority scores vector for users in tth iteration and
−→
h (t) = [AS(t)(Ti)]|VT |×1 denotes the hub scores vector for the terms in the tth iteration such that
−→a (t+1) = L

−→
h (t) and

−→
h (t+1) = L−→a (t).

The iteration process continues until convergence is achieved, i.e., until the difference between two
successive norm measures falls below 0.0001 [24]. After convergence, the resultant hub scores of
vocabulary terms Ti and the authority scores of users Vj are considered as their feature values, µTi and
µVj , respectively. Based on µTi values, the terms in VT are sorted and top-ranked terms are declared as
key-terms representing the main theme of the whole chat discussion. Similarly, based on µVi values,
users in VV are sorted and top-ranked users are declared as key-users playing leading roles in the
discussion.

In the second phase of feature extraction process, another bipartite graph GTS is constructed,
considering vocabulary terms as hubs and chat sessions as authorities. Formally, it is represented as a
triplet of the form GTS = (VT , Vξ, ETξ), where VT = Ti is the set of vocabulary terms, VV = ξj is the
set of chat sessions, and ETξ = |eji |Ti ∈ VT , ξj ∈ Vξ| refers to the correlation between users and
vocabulary terms. The weight wji ∈ [0, 1] of an edge eji is calculated in the same way as equation 7.1,
except that the measures are computed with respect to the sessions ξ instead of users V. HITS
algorithm is applied on GTS in the same way as earlier, and final authority and hub scores are
considered as feature values, µTi and µξj , for terms and sessions, respectively. On sorting the
vocabulary terms based on µTi values, we get another set of key-terms with respect to sessions. Based
on µVi values, chat sessions are sorted and the top-ranked sessions are declared as key-sessions. They
are considered as the most important discussions with respect to their coverage through vocabulary
terms. Based on the two different sets of feature scores for vocabulary terms, final score µTi for each
term Ti is computed using Equation 7.6

µTi = α× µTUTi + (1− α)× µTSTi (7.6)

where µTUTi and µTSTi are the feature scores computed during the first and second phase, respectively, of
the feature extraction process, and α ∈ [0, 1] is a constant.

7.3 Entropy measures

In this section, we first describe entropy, conditional entropy and corrected conditional entropy and
how this can help in detecting fraudulent activity in a stream based on entropy measures.

38

7.3.1 Corrected Conditional Entropy

The entropy rate, which is average entropy per random variable is defined as the conditional entropy of
a sequence of infinite length. A highly complex process has a high entropy rate, low for regular process
and zero for rigid periodic process, i.e., repeated pattern.

A random process X = Xi is defined as an indexed sequence of random variables. To give the
definition of the entropy rate of random process, we first define the entropy of a sequence of random
variables as :

H(X1,.....Xm) = −
∑

X1,....,Xm

P (x1,....,xm) log(P (x1,.....,xm)) (7.7)

where P (x1,....,xm) is the joint probability P (X1 = x1,....,Xm = xm).

Then, from the entropy of a sequence of random variables, we define the conditional entropy of a
random variable given the previous sequence of random variables as :

H(Xm|X1,...,Xm−1) = H(X1,....,Xm)−H(X1,...,Xm−1) (7.8)

Lastly, the entropy rate of random process is defined as:

H(X) = lim
m→∞

H(Xm|X1,....,Xm−1) (7.9)

The entropy rate is the conditional entropy of a sequence of infinite series and therefore cannot be
calculated for finite series. The exact entropy rate for finite samples cannot be measured but can be
estimated. In practice, we replace probability density functions with empirical probability density
functions based on the method of histograms. The data is binned in Q bins of approximately equal
probability. The empirical probability density functions are determined by the proportions of bin
number sequences in the data, i.e., the proportion of a sequence is the probability of that sequence. The
estimates of the entropy and conditional entropy, based on empirical probability density functions, are
represented as: EN and CE, respectively.

There is a problem with the estimation of CE(Xm|X1, ..., Xm1) for some values of m. The
conditional entropy tends to zero as m increases, due to limited data. If a specific sequence of length
m-1 is found only once in the data, then the extension of this sequence to length m will also be found
only once. Therefore, the length m sequence can be predicted by the length m-1 sequence, and the
length m and m-1 sequences cancel out. If no sequence of length m is repeated in the data, then
CE(Xm|X1, ..., Xm1) is zero.

To solve the problem of limited data, without fixing the length of m, we use the corrected conditional
entropy represented as CCE. The corrected conditional entropy is defined as:

CCE(Xm|X1,....,Xm−1) = CE(Xm|X1,....,Xm−1) + perc(Xm) · EN(X1) (7.10)

39

where perc(Xm) is the percentage of unique sequences of length m and EN(X1) is the entropy with
m fixed at 1 or the first-order entropy.

The estimate of the entropy rate is the minimum of the corrected conditional entropy over different
values of m. The minimum of the corrected conditional entropy is considered to be the best estimate of
the entropy rate from the available data.

7.3.2 Binning Strategies

The strategy of binning the data is critical to the overall effectiveness of the test. The binning strategy
decides : (1) how the data is partitioned and (2) the bin granularity or the number of bins Q.
Considering the previous work, partitioning data into equiprobable (area of each bin is equal) bins
seemed to be effective. The bin number for a value can then be determined based on the cumulative
distribution function:

bin = bF (x)×Qc (7.11)

where F is the cumulative distribution function and x is the value to be binned.

7.3.3 Implementation details

Corrected conditional entropy is implemented using Q-ary tree where patterns are represented as nodes
in a Q-ary tree of height m. The nodes of the tree include pattern counts and links to the nodes with
longer patterns. The level of the tree corresponds to the length of patterns. The children of the root are
the patterns of length 1. The leaf nodes are the patterns of length m.

To add a new pattern of length m to the tree, we move down the tree towards the leaves, updating the
counts of the intermediate nodes and creating new nodes. Thus, when we reach the bottom of the tree,
we have counted both the new pattern and all of its sub-patterns. After all patterns of length m are
added, we perform a breadth- first traversal. The breadth-first traversal computes the corrected
conditional entropy at each level and terminates when the minimum is obtained. If the breadth-first
traversal reaches the bottom of the tree without having the minimum, then we must increase m and
continue.

The time and space complexities are O(n ·m), where n is the size of the sample, if we assume a prior
knowledge of the distribution and use the cumulative distribution function to determine the correct bin
for each value in constant time. Otherwise, the time complexity increases to O(n ·m · log(Q)).

7.4 Social Graph Construction

A chat session generally contains a group of users interacting with each other and such interactions
establish a kind of tie or bond between them. The motive behind social graph construction is to model

40

the participating users and their interaction patterns into a rich structure which could represent the ties
among the participating users. We model social graph as a weighted graph G = (VV , EV V ,WV V),
where VV = Vi is the set of . nodes representing all participating users, EV V ⊆ VV × VV is the set
of edges representing ties among the users, and WV V = [0,1] is the set of weights assigned to edges.
An edge between a pair of users Vi and Vj , e

j
i is created if they participate together in at least one chat

session. Considering top-k key terms based on their feature scores, each user Vi ∈ VV is assigned a
feature vector

−→
Φ Vi = (ΦVi

1 ,Φ
Vi
2 ,....Φ

Vi
k), where ΦVi

j = µTj (refer equation 7.6) if a term Tj has been
used by Vj at least once, otherwise the value of ΦVi

j is set to 0. Thereafter, weight of an edge connecting
a pair of users Vi and Vj , w

j
i is calculated using equation

wji =
ΦVi · ΦVj

|ΦVi | · |ΦVj |
× deg(Vi,Vj)× (deg(Vi) + deg(Vj)

2× deg(Vi)× deg(Vj)
(7.12)

where deg(Vi,Vj) is the number of sessions in which both of the users participated together and
deg(Vi) and deg(Vj) are the degrees of the nodes corresponding to the users Vi and Vj respectively in
the social graph.

The weight calculation formula captures two different types of data, one overlapping interests and
other overlapping interactions at the same time. It considers textual conversation data representing users
interests in the first part and interaction structure data in the second part of the formula, and multiply
them together to get the final weight. The first part computes the cosine similarity between two feature
vectors, where a feature vector consisting of feature values of the key-terms conversed by the respective
users. Its value range from 0 (if the vectors are completely dissimilar) to 1 (if the vectors are exactly
same). The second part of the formula determines the tie (or the degree of association) between a pair
of users by considering their interaction pattern in the chat sessions. Its value range from 0 (if a pair
of users never shared any chat session) to 1 (if a pair of users always participated together in the chat
sessions). Ultimately, the final weight ranges from 0 to 1.

7.5 Observations

We prior observed the dataset to extract the key features to differentiate between genuine and bot
streams/users. We point out some key insights about genuine and bot behavior which acts as potential
distinguishing features.

Inter Message Delay (IMDs) : Given a chatter ci, and the timestamps t1, t2,..tn corresponding
to each of their messages m1, m2, ..mn, their IMDs are as follows: i1 = t2 − t1, i2 = t3 − t2, ..
in−1 = tn− tn−1. Since the bot engagement is user controlled, so more patternize behavior is observed
in bot users unlike genuine users with respect to the time they post messages in the chat. We plot the
distribution of IMDs (for all messages by all users) vs IMD bin numbers (binned on 1000ms window)
in Figure 7.2(a). Higher bin numbers indicate higher IMD value. This makes significant difference at
both stream and user level.

41

Message Length (MLs) : On hiring bots from bot service provider, streamer gets privilege to control
message content, bots will post in the chatroom by giving messages file. Bot providers then sample
messages from it and make bot users to post that message at the decided timestamp. This leads to
redundancy of MLs in case of bot users unlike real users are genuinely making comments with variable
MLs. We plot distribution of MLs Vs Number of users in Figure 7.2(b).

Message Content : It has been observed that genuine users converse with both bot and real users.
They post messages based on the current scenario. They tag both real and bot users (via ’@handle’
mechanism) in their comments unlike bot users who post sampled messages. Bot users can tag each
other or the streamer but not real users however smart is the service provider’s design as it will be
unaware of real users present in the chatroom.

0 200000 400000
IMD bin numbers

0

500

1000

1500

N
um

be
r

of
IM

D
s

real users

bot users

0 40 80 120
Message Lengths

0

500

1000

1500

2000

Nu
m

be
r o

f u
se

rs

bot users
real users

Figure 7.2: Analysis on real world data (159 real and 24 chatbotted streams with 6167 real and 2739
botted users). Distribution of Inter Message Delay bin numbers. Distribution of Message Lengths across
users (real and bot)

7.6 Feature Selection

In order to detect chatbots, we have divided the problem into two subproblems as stated in the and for
each subproblem we have defined the set of features based on the observations, which helps in solving
the objective of the that subproblem.

7.6.1 STAGE 1 : Detecting Chatbotted Streams

Problem 1 (Chatbotted Stream Classification) Given a set of streams S, and corresponding set of
chatters C for each s ∈ S , the set of all messagesMi for each ci ∈ C, and the associated timestamp tj
for each mj ∈Mi, find the set of chatbotted streams, Scb ⊆ S.

We now discuss the stream level features that are chosen.

42

Algorithm 4: PseudoCCE
Construct level 1 tree (add all sequences of length 1 to the tree)1
Calculate entropy for level 12
Construct level 2 tree by incrementing intermediate nodes (need to traverse the tree till respective leaf node) and adding3
new nodes at level2
Start entropy calculation from level 1, through BFS, calculate entropy of level 2 (here entropy calculation means4
CCE(X2|X1))
Construct level 3 tree (add all sequences of length 3 to the tree) by incrementing intermediate nodes at levels 1 and5
level2 (youll need to traverse the tree till respective leaf node)
Start entropy calculation from level 1, then level 2 (CCE(X2|X1)), then level 3 (CCE(X3|X2)) using BFS6
Keep doing this until get a minimum value of CCE.7

Randomness of IMDs (eIMD) As from Figure 7.2(a), it has been observed that more randomness
in IMD is witnessed in real users compared to bot users, since the IMD of bot users are controlled
by streamer which in general has to be patternize. Hence entropy is the prominent way to quantize
randomness. We have used Corrected Conditional Entropy (CCE) [26] to capture randomness. We
followed the methodology to calculate CCE stated in section 7.3. The only difference is that binning
works on continuous random variable unlike our discrete IMD value. To divide into bins with equal area
under curve, we divided into bins (for our case we have fixed the number of bins, Q = 5) such that each
bin has equal IMD points and the IMD value is correspondingly replaced by the bin number it lies in
(see Entropy Calculation section for CCE calculation with an example). CCE of each user is calculated
and 25%,50%,75% quartile is taken into account to encapsulate the distribution of users throughout the
stream.

Randomness of MLs (eML) Observations leads to similar outlook as IMDs, real users shows more
randomness compared to bot users as former comments staying in reality while the latter post messages
sampled from a input file. To map this observation to feature vector, we gauge through computing the
CCE (similar to eIMD) for each user. From the set of values obtained , we took 25%,50%,75% quartile
to capture the distribution of users across the stream.

We have a 6 dimensional feature vector on which we train a classifier in a supervised setting. To detect
previously undetected chatbotted streams in a real world setting, we would train a classifier on the
representative synthetic dataset (described later). If a stream is detected as chatbotted, the steps
outlined in stage 2 are then performed to identify the chatbot user handles.

Entropy Calculation This is required in Step 2, Step 4, Step 6 of Algorithm 4. Let’s assume sequence
of bin numbers for IMD values for a particular user is: 2, 3, 1, 5, 1, 1, 5, 2, 5, 1, 1, 4, 4, 2. For our use
case, we have assigned Q = 5. Let n = 14 be length of sequence.
Step 2 of Algorithm 4 Entropy calculation Now let’s think of m = 1 (m denotes the length of
subsequences to be considered). We’ll get 14 sequences and each of them is a sequence on its own. So
in our Qary tree, root node will be empty node and it will have 5 children. Each child node will store
two things: i) bin number and ii) count in the format (bin no, count) as here (1,5) (2,3) (3,1) (4,2) (5,3)

43

will get created/stored. In a separate dict/map, store key:value = m:sum of counts of sequences - in this
case 1:14. The entropy for level 1 is EN(X1) = H(X1) = −(5

14 log 5
14 + 3

14 log 3
14 + 1

14 log 1
14 ...),

where numerator is the count of the number of times the sequence occurs i.e. the second value that
each node is storing and denominator is the total number of sequences.
Step 4 Entropy calculation Now to construct depth 2 tree, when m = 2 and 〈2,3〉, 〈3,1〉, 〈1,5〉, 〈5,1〉,
〈1,1〉, 〈1,5〉, 〈5,2〉, 〈2,5〉, 〈5,1〉, 〈1,1〉, 〈1,4〉, 〈4,4〉, 〈4,2〉 will be our sequences of length 13. So each of
the earlier 5 children nodes will have 5 more children So 〈2,3〉 will be stored in the path : root (empty)
→ level 1 (2 = bin no child, 3+1 = count)→ level 2 (3 = bin no child,1 = count) and count is 1 for 3 at
level 2 because 〈2,3〉 as a sequence occurs only once out of 13. Now is it 3+1 for level 1 node with bin
no 2, as from the paper, to add a new pattern of length m to the tree, we move down the tree towards
the leaves, updating the counts of the intermediate nodes and creating new nodes. 〈1,5〉 will be stored
in the path : root (empty)→ level 1 (1,5+1)→ level 2 (5,1). Then again 〈1,5〉 if you want to add
(you’ll add it eventually as it occurs again later), path : root (empty)→ (1,6+1 as it was 5+1 = 6
earlier, it could be anything else if 1 was in the path of some other length 2 sequence)→ (5,2) because
(1,5) as a sequence occurs twice out of 13. So finally it will look like: root (empty)→ level 1 (1,7)→
level 2 (5,2) which indicates 1,5 has occurred twice, 1 has occurred 7 times (including sequence of
length 1 and sequence of length 2) Store 2:13 in the map - length 2, 13 sequences, though this can be
calculated directly which is n-m+1). To calculate CCE values, do Breadth First Search of above Qary
tree. H(X1,X2) = −(1

13 log 1
13 + 1

13 log 1
13 + 2

13 log 2
13 +). Corrected Conditional Entropy for level 2

is CCE(X2|X1) = CE(X2|X1) + perc(X2)× EN(X1), where
CE(X2|X1) = H(X1,X2)−H(X1), perc(X2) is percentage of unique patterns of length 2.
Similarly do for subsequence length 3,4,5 and so on using equation 7.10 till we find that m for which
the evaluated CCE is local minimum.

7.6.2 STAGE 2: Detecting Constituent Chatbots

Problem 2 (Constituent Chatbots Identification) Given a suspicious stream Scb ∈ S , and corre-
sponding set of chatters C for Scb, the set of all messagesMi for each ci ∈ C, the associated timestamp
tj for each mj ∈ Mi, and the follower metadata fi for each ci ∈ C, label each ci ∈ C as a real user
creal or as a bot cbot.

We finalized on five features for this step, adapting 2 features from stage 1 for use as per user level
rather than as per stream level. We need to keep a note in mind that all features are to be interpreted on
labelled (Chatbotted or not) stream.

Conversational Features (convFT) The chatlog is replete with ill-formed sentences as users post
informal messages. Cleaning of text becomes mandatory to extract features from the chats. So we do
perform sequence of pre-processing steps like converting all letters to lowercase, removing punctuations,
removing white spaces, expanding abbreviations with apostrophe and lexical normalization like spelling
correction 4, phonetic substitutions (e.g.,f9→ fine), expansion of acronyms (e.g., idk→ i don’t know),

4https://norvig.com/spell-correct.html

44

slang expansion 5, replacing emojis with their corresponding description and emphasis on certain words.
After normalization, the messages are formal english sentences. We extract conversational features from
the set of cleaned messages following steps stated in section 7.4. The dimension of this feature set is
dependent on vocabulary of words used by user in the stream’s chatlog.

User Tag Features (UT) Users in the chatroom while replying to one another use ’@handle’ to
address it to other user. As we know that, real users can tag both bot and real users in their messages as
their content is not pre-decided unlike bot users. Bot users are aware of other bot user handles as they
all are hired from the same bot service provider and will tag each other. So we will keep the count of
number of times useri tag userj in all the messages the prior posted. The dimension of this feature is
also stream dependent.

Channel followers (meta) Many livestreaming platform facilitates user for paid subscription model
where users can pay and subscribe to a streamer. We assume that the chatters are genuine users and can
be acquited from the suspicion on been bot users. We maintain a list of users subscribed to the stream
under consideration. This feature is also stream dependent.

7.7 Proposed BOTHUNT Framework

7.7.1 Method for detecting Chatbotted Streams

We have a 6 dimensional feature vector on which we train a classifier in a supervised setting. To
detect previously undetected chatbotted streams in a real world setting, we would train a classifier on
the representative synthetic dataset (described later). If a stream is detected as chatbotted, the steps
outlined in stage 2 are then performed to identify the chatbot user handles.

7.7.2 Method for detecting Chatbot Users

Since Scb is a stream that has been flagged as chatbotted, there will be c ∈ Scb with label cbot. With
this key assumption, if we seek to look at specific regions of the feature space (based on our observations
on labeled chatlog data), we should be able to find users whose ground truth labels are probably cbot.
We detail the procedure of obtaining seed labels in Algorithm 1.

Since genuine users shows comparatively more randomness than chatbots in terms of both IMD and
Message Lengths, users in those regions in the plot of eIMD vs eML are assigned seed labels accord-
ingly. Once we get the set of seed labels for all the points, we use label propagation in the convFT and
UT feature space, to find the labels for the remaining users. Graph-based Label Propagation algorithms
are commonly used in semi-supervised settings where the labels for a few of the datapoints are known.
We use the Label Spreading algorithm proposed by [21].

5https://www.noslang.com/

45

Algorithm 5: GetSeedLabels
Input: eIMDi, eMLi, metai ∀ ci ∈ Scb, seedScb [] = [−1,−1, ..− 1] ∀ ci
Output: seedScb [i] set to cbot or creal for relevant cis
Considering all users, plot a graph G1 with eIMD on the X axis and eML on the Y axis. Calculate mean(eIMD)1
and mean(eML). Consider all users with eIMDi > mean(eIMD) and eMLi > mean(eML) to construct a new
graph G2. Also consider users with eIMDi < mean(eIMD) and eMLi < mean(eML) to construct a new graph
G3.
Calculate mean(eIMD)G2 and mean(eML)G2 for users in G2. Divide the graph into quadrants, with2
mean(eIMD)G2 as X axis and mean(eML)G2 as Y axis with origin (mean(eIMD)G2,mean(eML)G2).
For users in the first quadrant in graph G2, perform XMeans clustering. Users in largest cluster formed are creal.3
Calculate mean(eIMD)G3 and mean(eML)G3 for users in G3. Divide into quadrants, with mean(eIMD)G3 as X4
axis and mean(eML)G3 as Y axis with origin (mean(eIMD)G3,mean(eML)G3). All users in the third quadrant
are cbot.
Set seedscb [i] = creal if seedscb [i] 6= creal and metai = 15
Return seedscb []6

Table 7.1: Accuracy for BOTHUNT, SSC, UTS and SynchroTrap on real data.

Model Accuracy

BOTHUNT 0.864
UTS 0.7576

Revised SynchroTrap 0.516
Revised SSC 0.7408

7.8 Adapted Baseline Models

We adopted two baseline to compare with method which adapt certain spam detection approaches
using textual features setting.

7.8.1 User Text Similarity (UTS) Model

This ia a user-level supervised approach [27] which uses content-based and graph-based features for
each user in Twitter setting. Real users doesn’t post duplicate messages disparate from bot users. This
duplicity is measured using Levenshtein distance between all messages posted by a user. To capture the
variance in duplicity, we have taken min, max, mean, median and standard deviation of the distances
which acts as feature set for content-based feature. Users following the particular stream is considered
for graph-based feature and then performed classification.

7.8.2 Revised Supervised Spam Classification (SSC) Model

We adapt the original work [23] (used for Twitter spam user classification) to our setting. For each
user, various features like max, min, mean, median of number of words, characters, URLs and number
of User Mentions are used to infer in a supervised fashion if user is a chatbot or not. The method works
at user-level and does not consider group effects/information at stream level.

46

7.8.3 Revised SynchroTrap Model

This is an unsupervised method [22] applied on user groups on each stream to find constituent bots.
Similarity between users is the measure of soft Jaccard similarity score. The similarity score is com-
puted on four features - (i) message length bins (ii) number of characters bins (iii) user mentions (iv)
URLs used. Message length bins are calculated considering 3 words window and bins on characters are
computed considering 5 characters window. We sum the four similarity scores and construct a pairwise
similarity graph. We cluster the matrix into two groups via KMeans, and consider the chatbots as the
one associated with the group that maximizes performance.

Classifier CC RI GI OG

Decision Tree 66.52 90.33 91 85
Random Forest 74.41 92.59 93.51 86.05

XGBoost 70.77 92.59 93.02 87.6
SVM 68.92 92.59 92.4 82.76
NN 67.94 90.68 90.69 81.4

Table 7.2: Accuracy of BOTHUNT across different classification and attack models (Stage I).

7.9 Evaluation and Comparison

We first test all four methods on real world annotated dataset (159 real and 24 chatbotted streams,
78,124 messages from 6,167 real users and 23,236 messages from 2,739 chatbots) introduced earlier.

7.9.1 Results on Real World Twitch Data

We evaluate all models on their eventual detecting chatbots performance. For BOTHUNT, we eval-
uate it’s stage 1 performance using 5-fold cross validation. For SSC and UTS, we divided the 183
chatlogs into 60% training and 40% test data. We report the efficacy of each model in Table 7.1.

7.9.2 Sanity Check on synthetic dataset

We perform experiments on synthetic dataset as the real world data is not comprehensive. The data
comprises of all attack models possible by tweaking various parameters at the disposable of fraudulent
streamer (Figure 2.1) to simulate intelligent adversary. The four attack models are Chatters Controlled
(CC), Rapid Increase (RI), Gradual Increase (GI) and Organic Growth (OG) with 945, 180, 149 and 939

streams respectively. On this dataset, we evaluated our two stage framework.

Stage I: We evaluated performance of different supervised classification models over our feature set,
and across varying attack models. We used the fraudulent streams as the positive class, and the original

47

legitimate streams as the negative class. All experiments were conducted using 5-fold cross validation.
Table 7.2 shows accuracy for the different classifiers.

Stage II: We conduct analysis on all streams marked as botted by the best-performant Stage I classi-
fier. We obtained an average accuracy of around 85% across all labeled chatbotted streams irrespective
of type of attack model.

48

Chapter 8

Practicality

8.1 Future analysis on real world streams

We utilized the synthetic dataset to train Stage 1 of and tried to find instances of chatbotting on
chatlogs collected from Twitch over a period of two days in January 2019. This unlabeled dataset
consisted of 139 files, out of which our method was able to detect 14 chatbotted livestreams and 711
users were labeled as chatbots. Fig 8 shows plots for two such streams. This highlights the magnitude
of the problem and the effectiveness of our method.

0 10 20 30
Mean IMD

0

500

1000

N
u

m
b

e
r

o
f

m
sg

s. real

bot

(a) 40% of chatbots

0 10 20 30
Mean IMD

0

500

1000

N
u

m
b

e
r

o
f

m
sg

s. real

bot

(b) 60% of chatbots

Figure 8.1: Real-world botted streams which were identified by SHERLOCK and the predicted labels.
Fig 8(a) contains 239 bot labels and Fig 8(b) contains 974 bot labels in the extremely dense red dotted
region. Many of the files consisted of different patterns that the bots followed.

49

8.2 Implications

Breaking down the problem into two allowed us to make key assumptions and utilize the strengths of
both supervised and semi-supervised methods. Further, SHERLOCK is not dependent on detecting
chatbots exhibiting lockstep behavior (or any other specific pattern), which can easily be bypassed by
an intelligent adversary.

We first consider the robustness of stage 1. For a malicious streamer/bot service provider to avoid
detection (while presenting a picture of high activity at the same time), they would need to (i) have a
high total number of messages (ntot), but a distribution similar to Fig 4.6(a) (meaning that most of the
bots would need to have typed in a very small number of messages), (ii) have an IMD distribution
similar to Fig 4.7(a), with no outliers (fairly easy to fake, yet included based on practical observations),
(iii) have a number of windows distribution similar to Fig 4.6(a) (without knowing the window size sz -
making it a very hard task). Controlling for ntot (whilst keeping that number high), we calculated the
difference in the number of users required to create a distribution similar to Fig 4.6(a) as against
something similar to Fig 4.6(b). On an average, 2.5 - 3.5x (a higher multiplier if ntot is higher) handles
were required to achieve this. Since almost all livestreaming platforms (Twitch, YouTube Live, etc.)
have constraints on the number of users using the service per IP address [19], more handles would
require more IP addresses. With an IP limit of 2 users per IP, a 2.5 - 3.5x increase in the number of
handles needed comes with a 25-75% increase in IP costs. This is a significant increase in the
adversarial cost. The synthetic dataset also enables tuning for specific P/R values by using training files
of appropriate levels of corruption.

For stage 2, to present a picture that most of the handles are real, the adversary would have to ensure
that the bot handles do not form clusters in each of the different modalities (due to Readjust) - (i)
#msgs, (ii) mean IMD, (iii) #windows (without knowing the window size), (iv) IMDentropy,
(v) metadata (the less the number of subscribers, the less the number of seed labels with
seedscb = creal, hence more propagation of bot labels), while at the same time maintaining a high
value of ntot. Avoiding clusters across multiple modalities simultaneously is non-trivial at scale (i.e.
when ntot has to be high). Even if an adversary somehow manages to accomplish this, we are still sure
of the labels in the largest cluster in the first quadrant (high nmi, high mimdi), since the probability of
a real user posting a high number of messages whilst having a high mean IMD is very low. In practise,
we did not come across a scenario wherein a stream was flagged in stage 1, but did not exhibit a high
degree of clustering in the metrics mentioned above.

8.3 Scalability

Our two-stage approach is designed to scale naturally, as Stage II (more demanding) works on a
significantly reduced set of streams. We evaluate SHERLOCK’s scalability in terms of both stages. For

50

Stage I, we generate a synthetic dataset with varying number of streams and show runtime in Figure
8.2(a). For Stage II, we measure time for seeding and propagation; despite O(kn2) worst-case
complexity for k neighbors and n users, Figure 8.2(b) shows near-linear convergence in practice. The
reason could be, marginally separated clusters as shown in Fig 5.1, the data points are mainly clustered
, so we can get highly confident seed labels. While generating seed labels we are focusing on subspace
where we can prominently find real and bot users. Our model doesnt hit worst case scenario of KNN,
firstly due to clearly separated clusters and secondly because of number of seed labels we dont have to
look for all possible pair of data points to label non-labelled users.

(a) Stage I (b) Stage II

Figure 8.2: SHERLOCK has near-linear runtime # streams (Stage I) and # users (Stage II).

For BOTHUNT method, non-linear runtime is observed for both the stages same as SHERLOCK for
same set of streams and users distribution. SHERLOCK performs better in terms of time complexity
compared to BOTHUNT.

51

Chapter 9

Conclusion and Future Work

In this work, we tackle the problem of detecting chatbots on livestreaming platforms. Chatbot
detection is important due to its direct impact on recommendation, user trust and monetization for
these services. We make several contributions in this paper: We are the first to introduce and formalize
the chatbot detection problem in the livestreaming setting. Next, we collect and annotate a real-world
livestreaming chat dataset from Twitch.tv and compare and contrast genuine and chatbot user
behaviors, by identifying key differentiators. We additionally discuss a strategy for obtaining realistic
chatlogs with varying attack types and signatures, and employ it in our experimentation. Based on our
observations, we propose SHERLOCK and BOTHUNT, a two-stage approach for detecting chatbotted
streams and users with limited supervision and different set of features. Finally, we evaluate both
methods effectiveness on - a real-world dataset (SHERLOCK achieving .97 precision/recall and
BOTHUNT achieving 0.93 accuracy), and a synthetically generated dataset, showing robustness under
various intelligent attack models (SHERLOCK achieving 0.80+ F1 score across most settings and
BOTHUNT achieving 0.85 accuracy), and also demonstrate near-linear empirical runtime. The features
extracted are platform generic, hence the frameworks can be used for all livestreaming platforms.
There is this only limitation where bot service provider of platform other than Twitch.tv offer different
attack settings because we based our observations on possible simulated attack settings on Twitch.tv.
For the former platforms the set of features could change. But if the Bot service provider offers the
same simulation then the models can be used across all livestreaming platforms. Our later goal will be
to merge the features of SHERLOCK and BOTHUNT to check the efficacy of the resulted framework.

52

Chapter 10

Related Publications

10.1 Published

1. Jain, S., Niranjan, D., Lamba, H., Shah, N., Kumaraguru, P. (2019). Characterizing and detecting
livestreaming chatbots. ASONAM ’19.

10.2 Under Review

1. Jain, S., Kumaraguru, P. BotHunt : Chatbot detection on Livestreaming Platforms.

53

Bibliography

[1] Karine Pires and Gwendal Simon. Youtube live and twitch: a tour of user-generated live streaming
systems. In ACM-MM, 2015.

[2] Eric Chow. Crowd culture & community interaction on twitch. tv. 2016.

[3] Paris Martineau. Inside YouTubes Fake Views Economy, 2018.

[4] Matthew DiPietro. On Artifical viewers, Followers, and Chat Activity, 2016.

[5] Steven Gianvecchio, Mengjun Xie, Zhenyu Wu, and Haining Wang. Humans and bots in internet
chat: measurement, analysis, and automated classification. IEEE/ACM Transactions On Network-
ing, 2011.

[6] John P McIntire, Lindsey K McIntire, and Paul R Havig. Methods for chatbot detection in dis-
tributed text-based communications. In ISCTS, 2010.

[7] DJ Guan, Chia-Mei Chen, and Jia-Bin Lin. Anomaly based malicious url detection in instant
messaging. In JWIS, 2009.

[8] Neil Shah, Alex Beutel, Brian Gallagher, and Christos Faloutsos. Spotting suspicious link behavior
with fbox: An adversarial perspective. In ICDM, 2014.

[9] Neil Shah, Hemank Lamba, Alex Beutel, and Christos Faloutsos. The many faces of link fraud. In
ICDM, 2017.

[10] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos.
Copycatch: stopping group attacks by spotting lockstep behavior in social networks. In WWW,
2013.

[11] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion fraud detection in online reviews
by network effects. ICWSM, 2013.

[12] Hemank Lamba, Bryan Hooi, Kijung Shin, Christos Faloutsos, and Jürgen Pfeffer. zooRank:
Ranking suspicious entities in time-evolving tensors. In PKDD, 2017.

54

[13] Lorenz Cuno Klopfenstein, Saverio Delpriori, Silvia Malatini, and Alessandro Bogliolo. The rise
of bots: A survey of conversational interfaces, patterns, and paradigms. In DIS, 2017.

[14] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Catchsync: catching
synchronized behavior in large directed graphs. In KDD, 2014.

[15] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. Timecrunch:
Interpretable dynamic graph summarization. In KDD. ACM, 2015.

[16] Haifeng Yu, Michael Kaminsky, Phillip B Gibbons, and Abraham Flaxman. Sybilguard: defending
against sybil attacks via social networks. ACM SIGCOMM Computer Communication Review,
2006.

[17] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. Oddball: Spotting anomalies in
weighted graphs. In PAKDD, 2010.

[18] Alceu Ferraz Costa, Yuto Yamaguchi, Agma Juci Machado Traina, Caetano Traina, Jr., and Chris-
tos Faloutsos. Rsc: Mining and modeling temporal activity in social media. In KDD, 2015.

[19] Neil Shah. Flock: Combating astroturfing on livestreaming platforms. In WWW, 2017.

[20] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with efficient estimation of the
number of clusters. In ICML, 2000.

[21] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf.
Learning with local and global consistency. NIPS’03, 2003.

[22] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. Uncovering large groups of active
malicious accounts in online social networks. In CCS, 2014.

[23] Fabricio Benevenuto, Gabriel Magno, Tiago Rodrigues, and Virgilio Almeida. Detecting spam-
mers on twitter. In CEAS, 2010.

[24] Tarique Anwar and Muhammad Abulaish. A social graph based text mining framework for chat
log investigation. Digit. Investig., 11(4):349362, December 2014.

[25] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604632,
September 1999.

[26] Steven Gianvecchio and Haining Wang. Detecting covert timing channels: An entropy-based ap-
proach. In Proceedings of the 14th ACM Conference on Computer and Communications Security,
CCS 07, page 307316, New York, NY, USA, 2007. Association for Computing Machinery.

[27] Alex Hai Wang. Detecting spam bots in online social networking sites: A machine learning ap-
proach. In Proceedings of the 24th Annual IFIP WG 11.3 Working Conference on Data and Ap-
plications Security and Privacy, page 335342, Berlin, Heidelberg, 2010. Springer-Verlag.

55

