
Multi-objective Reinforcement Learning based approach for User-Centric Power
Optimization in Smart Home Environments

Anonymous Submission

Abstract—Smart homes require every device inside them to
be connected with each other at all times, which leads to a
lot of power wastage on a daily basis. As the devices inside
a smart home increase, it becomes difficult for the user to
control or operate every individual device optimally. Therefore,
users generally rely on power management systems for such
optimization but often are not satisfied with the results. In
this paper, we present a novel multi-objective reinforcement
learning framework with two-fold objectives of minimizing
power consumption and maximizing user satisfaction. The
framework explores the trade-off between the two objectives
and converges to a better power management policy when both
objectives are considered while finding an optimal policy. We
experiment on real-world smart home data, and show that the
multi-objective approaches: i) establish trade-off between the
two objectives, ii) achieve better combined user satisfaction
and power consumption than single-objective approaches. We
also show that the devices that are used regularly and have
several fluctuations in device modes at regular intervals should
be targeted for optimization, and the experiments on data
from other smart homes fetch similar results, hence ensuring
transfer-ability of the proposed framework.

Keywords-power management; multiobjective reinforcement
learning (MORL); sequential decision-making

I. INTRODUCTION

The amount of power consumption in households (residen-
tial) is among the top three in world electricity consumption
[1], and is ever increasing with the increase in demand of
smart homes and IoT (Internet of Things) devices. Accord-
ing to the United States Department of Energy (DoE), the
average household consumes 90 million units of power a
year, and much of that power is wasted [2]. Habits like
leaving lights on when we leave rooms, forgetting to turn
off televisions or computers when not in use, etc., are major
reasons behind such wastage [3]. Therefore, there is a need
for power controllers that can take actions like turning
devices on and off, or changing devices’ modes of operation
on behalf of users to achieve a goal like consumption
optimization.

In the past, researchers have used traditional reinforce-
ment learning for several power optimization tasks. For ex-
ample, [4] proposed a model-free constrained RL approach
for online power management. [5] presented another similar
algorithm that requires no prior information of the workload
and dynamically adapts to the environment to achieve au-
tonomous power management. [6] proposed an RL based
technique that performs simultaneous online management

of both performance and power consumption. The authors
applied RL in a realistic laboratory testbed to find the
optimal policy. None of these techniques towards power
optimization are used for smart home power management,
and they do not consider user satisfaction while finding
optimal policies.

However, power management in a smart home is a prob-
lem that needs to solve two tasks with different rewards
simultaneously: minimize power consumption and maximize
user satisfaction. It is important for a power controller to
consider user preferences as well, i.e., the goal of minimal
power consumption must be achieved but not at the expense
of user satisfaction. The scenario can be formulated as
a MORL problem where sequential decision making is
required with multiple objectives.

Our contribution: In this paper, we propose, for the
first time, a novel multi-objective reinforcement learning
(MORL) approach for power management inside a smart
home with two objectives: minimize power consumption
and maximize user satisfaction. In a MORL problem, an
action on the environment results in multiple rewards. The
agent (power controller) learns an optimal policy from
these rewards using a variation of Q-learning [7]. Since the
objectives are contrasting, there is a trade-off between the
two, and based on their importance, optimization priorities
are set. We use an overall reward function to incorporate
these optimization priorities, which is a weighted sum of the
two rewards RE representing power consumption, and RU
representing user satisfaction. We explore single objective
strategies [8], and specifically the weighted sum method [9]
for multi-objective optimization.

We evaluate our proposed methods on the Smart* data
set for sustainability[10]. The data samples include device-
level real-world power consumption values in several smart
homes, named as A, B, C, ..., H recorded at every 30
minutes. We show the effectiveness of our approach on
data from smart home A, and demonstrate transferability of
experiments on smart homes B and C. We use Q learning
with individual objectives (single policy single objective
approaches) as a baseline reference to compare the proposed
single policy multi-objective approaches. We also define a
metric “clash rate” for evaluating user satisfaction in the
predicted policy at each episode.

The remainder of this paper is organized as follows.
Section II give some background of traditional and multi-

objective reinforcement learning (MORL). Section III ex-
plains our problem formulation followed by algorithms to
solve the optimization problem in Section IV. The experi-
ments and results are presented in Section V. We conclude
our work in Section VI.

II. BACKGROUND

In this section, we discuss traditional reinforcement learning
with Q-learning, an algorithm widely used to solve tradi-
tional RL problems. Then we introduce the concepts of
multi-objective reinforcement learning (MORL) and how it
differs from the traditional reinforcement learning.

A. Traditional Reinforcement Learning

Traditional reinforcement learning [11] mimics the natural
learning style of trial-and-error by interacting with an en-
vironment (static or dynamic) and receiving feedback based
on an action. The components of reinforcement learning are:
• An Agent
• A finite state space S
• A set of available actions for the agent A
• A reward function R : S ×A→ R

The agent’s objective is to maximize its average long-
term reward. It is achieved by learning a policy π, which
is a mapping between the states and the actions. In our
problem, one goal is to minimize the power consumption of
a smart home, and the other is to maximize user satisfaction.
But, in a traditional reinforcement learning setting, the two
goals are independent. An agent can either minimize power
consumption, or it can maximize user satisfaction.

Q-learning [7] is a widely known algorithm used to solve
sequential decision-making RL problems. In each step, on
the successful execution of every action a, the environment
yields a reward R, which indicates the value of a state
transition. The issued reward can be positive or negative. The
agent keeps a value function Qπ(s, a) for each state-action
pair. Learning to act in the environment will make the agent
choose actions to maximize long-term rewards. Based on
this value function, the agent decides its immediate action.
The Q-value for each state-action pair is initially chosen
during the problem formulation, and later, it is updated with
each taken action and its issued reward. The value function
is given by the following Bellman equation:

Qπ(s, a) = R(s, a) + γmax
a

Qπ(s′, a) (1)

where R(s, a) is the reward issued after taking action a in
state s, s′ is the successive state of s, and γ is the discount
factor used due to the different influences of future rewards
on the present value.

The optimal state-action value function is defined as:

Q∗(s, a) = maxπQ
π(s, a) (2)

When Q∗(s, a) is obtained, the optimal policy π∗ can be
computed by:

π∗(s) = argmax
a

Q∗(s, a)

B. Multi-objective Reinforcement Learning

Reinforcement learning is a machine learning paradigm
that helps with sequential decision making under several
uncertainties and aims to achieve a single long-term ob-
jective. However, due to the complex requirements of real-
world control systems, often times, there are two (or more)
conflicting objectives. For example, in our case of smart
home power management system the controller has two
goals: i) to minimize energy consumption of the smart home,
ii) to maximize user comfort by moving to states preferred
by the user. In reinforcement learning, problems of this
nature having more than one conflicting objectives are called
multi-objective reinforcement learning problems (MORL).

MORL is different from tradtional RL in that there are
two or more objectives to be optimized simultaneously
by the learning agent. [12] provides an architecture for a
MORL problem, where reward is provided for the learning
agent at each step. Figure 1 shows the difference between
architectures of traditional RL (Figure 1(a)) and multi-
objective RL (Figure 1(b)). In MORL (Figure 1(b)), there
are N objectives and ri(1 ≤ i ≤ N) is the ith reward signal
provided by the environment. The architecture illustrates a
single agent that has to find an optimal policy for a set of
multiple objectives simultaneously. The objectives can be
conflicting, as in our case, or they can be independent as
well.

(a) Traditional RL (b) Multi-Objective RL

Figure 1. Architecture of Reinforcement Learning.

For each objective i (1 ≤ i ≤ N) and a stationary policy
π, there is a corresponding state-action value function Qπi ,
which satisfies the Bellman equation 1.

Let the combined value function for multi-objective rein-
forcement learning is:

MQπ(s, a) = [Qπ1 (s, a), Q
π
2 (s, a), ..., Q

π
N (s, a)]

where MQπ(s, a) is a vector and it also satisfies the Bellman
equation (1). Then the optimal state-action function will be
given as:

MQ∗(s, a) = max
π

MQπ(s, a) (3)

and the optimal policy π∗ can be obtained by:

π∗(s) = argmax
a

MQ∗(s, a) (4)

MORL is a combination of multi-objective optimization
methods and RL techniques to solve sequential decision
making problems with multiple conflicting objectives. We
will justify why we formulate smart home power manage-
ment as a MORL problem in the next section.

III. PROBLEM FORMULATION

The case of a smart home power management system is a
multi-objective problem with two objectives, viz., minimiz-
ing power consumption and maximizing user satisfaction.
Ideally, a controller will try to reduce the power consumption
as much as it can, given an optimization goal. The trivial
solution for the controller will be to turn off all the devices
that operate in the smart home. However, this state might
not be desirable by the user. Therefore, it is important for
a controller to consider user preferences as well. Therefore,
the goal of minimal power consumption must be achieved
but not at an expense of user satisfaction, thus establishing a
trade-off between power consumption and user satisfaction.
Hence, there are two conflicting objectives in this scenario
for the controller (agent) to consider.

Based on the importance of an objective function, op-
timization priorities must be ensured while designing the
policies. After appropriately expressing the preferences, we
have to design efficient algorithms that can solve the se-
quential decision making problems based on observed state
transition data.

Figure 2. Illustration of Power controller. Detailed explanation of each
component is available in the text.

A. Environment

Smart homes usually have smart meters to measure the
power consumption for each device operating within it. The
power consumption values for every device is independent,

and take a fixed number of discrete values. This is because
each device operates only in a fixed number of modes and
their power consumption in a specific mode remains the
same. For example, a simple furnace has only two modes,
ON and OFF. In OFF mode, it consumes no power while
in ON mode it consumes x (say) units of power. We are
assuming that the consumption x remains the same and
no degradation of device happens over time, hence causing
more energy consumption. Similarly, a washing machine can
have three modes of operation, viz, standby, washer and
dryer. Let’s assume a smart home has N devices. A state
in an environment is a vector of energy consumption values
(in whatever device modes they are in) of these N devices,
as depicted by blocks s and s′ in Figure 2.

Let’s assume the number of device modes each one
operates in is given by a set D = {nD1, nD2, ..., nDN}

Total number of states in state− space =
N∏
i=1

nDi

Increasing the number of devices, or just their modes of
operation can lead to state-space explosion. Therefore, in
our techniques we choose devices selectively and use data
processing (explained in Section V) to avoid state-space
explosion.

B. Power Controller (Agent)

The Agent is a power controller that can change the mode
of operation of any of the N devices, consequently chang-
ing the energy consumption value. For example, a power
controller can turn off the furnace, if it is on, or switch the
washing machine to dryer mode from some other mode.
However, an agent can also choose not to do anything.
Therefore, the Agent can perform either of the two actions,
viz., MOV E or STAY , on each device in a state s, to
move the environment to a state s′. For example, in Figure
2, the controller changes the mode of operation of device
1 and device 2, from green to red by MOV E action, and
chooses to keep the Nth device it its current state by STAY
action.

C. Reward

Whenever the proposed agent takes an action on the envi-
ronment, a reward is calculated on the basis of the state
chosen by the controller and the ground truth state from the
Smart House Dataset. Since there are two distinct objectives,
we formulate the reward functions to incorporate the power
consumption and user satisfaction. Every update of the state-
action value function (Equation 1) is dependent on the
reward. Therefore, by integrating the optimizations in reward
function, the agent learns the trade-off between optimization
priorities for an optimal state. First we introduce both
rewards separately and then we combine them to form a
single reward, as shown in Figure 2.

1) Minimizing Power Consumption: Let’s say the power
consumption in the predicted and ground truth state is Ps′ ,
and Ps respectively. The reward, RE is given as:

RE =

∑
d−(Ps′ − Ps)

D
(5)

which is the average difference of power consumed by
the D devices between predicted state and the desired state.
As the agent always tries to maximize the reward, thus we
negate the sum in order to achieve state which consumes less
power than what user had chosen. By negating, the state with
the least electricity consumption becomes goal state for the
power controller.

2) Maximizing User Satisfaction: To model user be-
havior, we compute the Euclidean distance between the
predicted state and the ground truth state. The reward

RU =

∑
d |s′ − s|
D

(6)

where d ∈ D devices.
3) Overall reward: We take a weighted combination of

both the rewards, RE (Equation 5) and RU (Equation 6),
and define overall reward as:

R =WE ∗RE +WU ∗RU (7)

where WE and WU are the weights to manipulate the
optimization priorities of the two objectives. These weights
are treated as hyper parameters during experimentation.

D. Evaluation

The evaluation of power controller’s performance is two-
fold, due to the multi-objective nature of the optimization
problem. The reward RE represents negation of power
consumption, therefore, a policy with more positive RE
value is desired. Hence, as we increase the number of
iterations, the value of RE should increase.

Similarly, the reward RU represents the likelihood that
the next state predicted by the controller, SpredU matches to
the next state that user prefers, SrealU . However, to evaluate
RU , we introduce a term called “clash rate” to get a device
level view of clashes. To calculate clash rate:

clash rate =
∑

(SrealU == SpredU) (8)

where “==” is an element wise comparison that assigns 1
if values do not match and 0 otherwise, and returns an array
with 1’s and 0’s.

For example, let say the user wants next state to be
SrealU = [D1, D2, D3, D3, D1], where Dis represent the
device modes at this state. Now, the controller takes an
action on the environment to change its state to SpredU =
[D2, D1, D3, D1, D1]. The clash rate in this case is 3, as the
device modes at index 0, 1, and 3 do not match (assume
the vectors are indexed starting from 0). As we increase the

iterations to train the power controller more, the clash rate
should decrease.

IV. SOLUTIONS

Multi-objective reinforcement learning (MORL) approaches
can be divided into two groups based on the number of
policies to be learned [13]:single policy and multiple policy
approaches. In our case, the objectives are contrasting, and
the availability of data allows us to create a sufficiently good
representation of the environment. Therefore, we focus on a
single policy approach, and discuss the feasibility of multiple
policy approaches in discussion.

The aim of single policy approaches is to obtain one
best policy, which simultaneously satisfies the optimization
priorities as set by the designer, or defined by the application
domain. Therefore, based on varying optimization priorities
we implemented four variation of a single policy algorithm
to find an optimal policy for our two-fold objectives of
minimum power consumption and maximum user satisfac-
tion. A single policy approach to solve MORL problems
is to formalize an objective function TQ(s, a), which can
represent overall preferences in optimization. The approach
is very similar to Q-learning with a few modifications, as
shown in Algorithm 1. The objective function TQ(s, a) is
given as the summation of Q-values for all the objectives,
and is given as:

TQ(s, a) =

N∑
i=1

Qi(s, a) (9)

Algorithm 1 Single Policy Approach to solve MORL
1: K: the maximum number of episodes
2: N: the number of objectives
3: Initialize TQ(s, a);
4: Initialize Qi(s, a), ∀(i < N);
5: for each episode j ranging from 1 to K do
6: Fetch sj0, s

j
1 from samples;

7: Choose a using TQ(s, a) policy using ε greedy
approach;

8: Take action a, s′;
9: Compute reward [r1, r2,..., rN] based on sj1, and s′;

10: for i = 1, 2, ..., N do
11: Qi(s, a)← Qi(s, a) + α[ri + γmaxa′ Qi(s

′, a′)−
Qi(s, a)];

12: end for
13: Compute TQ(s, a);
14: s← s′;
15: end for

As discussed in Section III-C, we incorporate the opti-
mization priorities using weights WE and WU in the reward
function. Since Q(s, a) is dependent on the reward function,
and TQ(s, a) on Q(s, a), any change in the weight values

in equation 7 will result in a change of values in TQ(s, a).
To study the effectiveness of our formulation, we implement
four variations of Algorithm 1. They are defined as:

A. Single Policy Single Objective

As a baseline reference, we implement single policy ap-
proach with single objectives. Recall equation 7, the overall
reward is defined as the sum of two rewards, one for min-
imizing power consumption and other for maximizing user
satisfaction. Therefore, for single policy with one objective
taken at a time has two cases:

1) Power Consumption Minimization: To implement this,
we give 100% optimization priority to power consumption,
and set WE and WU to 1 and 0, respectively in equation 7.

2) User Satisfaction Maximization: To implement this,
we give 100% optimization priority to user satisfaction, and
set WE and WU to 0 and 1, respectively in equation 7.

B. Single Policy Multi Objective

The goal of the power controller is to achieve a multi-
objective optimization. Therefore, we consider two cases:

1) Equal weights: The case where both objectives are
equally as important, and the power controller tries to
optimize both. Both WE and WU are set to 1. Based on the
policy calculated by the power controller, the action with
the maximum summed values is chosen to be executed.

2) Weighted Sum: The weighted sum approach is proven
to be effective with multiple objectives in the past. [14] used
it to combine seven vehicle overlapping objectives, and [15]
used it with a combination of three objectives, viz., degree
of the crowd in an elevator, the waiting time, and the number
of start-ends. The approach modifies equation 9 as:

TQ(s, a) =

N∑
i=1

WiQi(s, a)

In our case, the Wis are WE and WU , and we experiment
with different values of both to get the best results.

V. IMPLEMENTATION DETAILS

We evaluate the proposed solutions in Section IV using
the Smart* data set for sustainability [10]. As a baseline
reference, we consider Q-learning with single objective
of power consumption minimization and user satisfaction
maximization. We plot the reward and clashes for all four
proposed algorithms to contrast the results. In this section,
we first briefly explain the data set, then the environment
design, and finally the experiments and results.

A. Smart* Data Set for Sustainability

The data set includes real power consumption readings of
multiple devices such as furnace, fridge, washing machine,
etc., inside smart homes collected over regular intervals of
30 minutes. Each device has sensors attached to them to
record the power consumption after regular time intervals

inside seven smart homes1. For our experiments, we used
data from smart home A collected over a period of three
years. We also use data from smart home B, and C to show
transferability of the framework. Note that data from each
smart home is similar in nature. The only difference is in
the type and the number of devices used to collect data.

B. Designing the Environment

The data set has power consumption values from more than
20 devices for each smart home. We have considered only
5 devices from a smart home: furnace, washing machine,
fridge, heater, and kitchen lights. The reasons to do so are:
• In a real world scenario, a user does not want the

controller to operate on all of the devices in their smart
home.

• Formalizing an optimization problem with only a top
few devices with maximum power consumption is more
realistic and helpful than taking all the possible devices
and constraints into consideration.

• For simplicity of experimentation.
1) Data Processing: In our data set, the power consump-

tion reading for each device took many distinct unique val-
ues. For example, the power consumption values for Furnace
has 17, 000 unique entries, and that of Fridge is 16, 000.
However, a lot of these values are very close and differ
only at 4th/5th decimal place representing a data collection
glitch. Since we chose 5 devices, a state in this environment
is represented by a vector of size [D1

1, ..., D
k
i , ..., D

5
2]1×5

where Dk
i represents the device Dk in mode i, and its value

is given as the power consumption by device k in mode Di.
The size of the state space is the cross product of all

the unique values taken by each device. Therefore by this
convention, if we consider only the furnace and the fridge,
the size of state space will be 272 million (16, 000×17, 000).
With such a big state space, the problem becomes very
complex to solve, and therefore, to avoid the state space
explosion, we cluster the energy consumption values of each
device separately to find a fixed number of modes of
operation for each device. Intuitively, in real-life, a furnace
cannot have 17,000 modes of operation. Therefore, finding
device modes with clustering seems to be a fair assumption
to make.

2) Clustering to assign the modes of operation for each
device: We wanted to find cluster centers of power consump-
tion values for each device individually, which can represent
different modes of operation. The modes of operation can
be readily available from manufacturer’s end but they might
not be ideal for our case. For example, suppose a washing
machine consumes x power in standby mode, y in wash
mode and z in dry mode, and the values, y and z are very
close. The manufacturer can say that modes y and z are
different, but we have similar readings for the two states,

1http://traces.cs.umass.edu/index.php/Smart/Smart

and hence, does not effect our objective. Therefore, we
cluster the readings such that each device mode represents
a significant amount of change in power consumption from
one mode to another. The clustering helps us reduce the state
space to a very good extent.

First we performed silhouette analysis [16] to find the
optimal number of clusters for each device. We vary k,
the number of clusters from 2 to 6 assuming it is rare
that a device has more than 6 modes of operation. Figure
3(a) shows the silhouette plot for various clusters using
Duct Heater’s electricity consumption data for k = 3. The
clusters are well formed with coefficient value more than the
threshold, as can be seen in Figure 3(b). The plot is shown
for k = 3 as it yielded the best silhouette score. Similar
experiments are performed with remaining 4 devices.

(a) Silhouette analysis for K-means
clustering with k = 3 for Duct
Heater

(b) Distribution of consumption val-
ues of Duct Heater with k = 3

Figure 3. Clustering results for Duct Heater from smart home A.

After clustering, the optimal number of clusters for the
chosen devices, Furnace, Washing Machine, Fridge, Duct
Heater, and Kitchen Lights is 2, 3, 3, 3, and 5, respectively.
Clustering reduces the size of state space from 272 million+
(16, 000×17, 000) to just 270 (2×3×3×3×5) preventing
the state space explosion.

C. Experiments

As discussed earlier, we use Algorithm 1 to find the op-
timal policy for the power controller (agent) with multiple
objectives. The first objective is to minimize the total power
consumption, and the second objective is to maximize user
satisfaction. Our algorithm takes into account 4 hyper-
parameters: learning rate (α), discount factor (γ), exploration
rate (ε), reward prioritization weights WE and WU . As a
baseline, we use Algorithm 1 with single objectives. Note
that if we run the algorithm with a single objective, it
becomes the traditional Q-learning algorithm. The clash
rate as defined in Equation 8 will be maximum for single
policy with power consumption minimization objective, and
minimum with user satisfaction maximization objective.
However, with multi-objectives, the cash rate should be
between the two. The overall reward is given as the weighted
sum, therefore, reward will be maximum for multi-objective

approach. We implemented the solutions discussed in Sec-
tion IV as:

1) Single Policy Single Objective: The overall reward
has two weighted terms, WE and WU representing power
consumption and user satisfaction, respectively. For the
first set of experiments, we focus only on optimizing a
single objective by initialising WE and WU as (1, 0) for
power consumption minimization objective, and (0, 1) for
user satisfaction maximization objective. Hence, in single
policy single objective Q-learning formulation, our agent
only receives the reward RE in the former case and the
reward RU in the latter.

We experimented with more than 100 combinations of
α and γ with α, γ ∈ (0, 1] to find the best hyperparame-
ters. The agent calculates average total reward R and the
clashrate for every combination of our hyperparameters
over a total of 463 unique states episodes learned over 300
epochs. We decayed the value of ε by a factor of 1.4 every
20 epochs. The set of parameters which gives us the highest
average reward and least number of clashes is chosen. The
hyperparameters shown in Table I achieves the best results
when our aim is to minimize the average number of clashes
to meet each objective individually.

Table I
HYPER-PARAMETER VALUES FOR SINGLE POLICY SINGLE-OBJECTIVE

Q-LEARNING

Objective/Hyper-
parameters

Power Consumption
Minimization

User Satisfaction
Maximization

α 0.4 0.9
γ 0.1 0.05
ε 0.1 0.1
WE 1 0
WU 0 1

2) Single Policy Multi-Objective: We divide the experi-
ments for multi-objective approaches into two approaches
as discussed in Section IV: Equal Weights and Weighted-
Sum. As shown in Line 11 of Algorithm 1, the update
function for the Q-values is different than the normal Q-
learning formulation. The equation for the Q-value update
is given as:

Qi(s, a) = Qi(s, a) + α(ri + γmax
a′

Qi(s
′, a′)−Qi(s, a))

(10)
For equal weights approach, the weights WE and WU

have been assigned the same value of 1 representing equal
priority for both objectives. For Weighted-Sum approach,
we perform experiments by taking approximately 2, 300
combinations of α, γ,ε, WE and WU with their values within
the range (0,1]. The best hyperparameters for the multi-
objective approaches are listed in the Table II.

Table II
HYPER-PARAMETER VALUES FOR SINGLE POLICY MULTI-OBJECTIVE

Q-LEARNING

Approach/Hyper-
parameters

Equal Weights Ap-
proach

Weighted-Sum
Approach

α 0.9 0.9
γ 0.1 0.1
ε 0.05 0.07
WE 1 0.3
WU 1 0.1

D. Results

1) Average Power: To compare the four algorithms pro-
posed to find an optimal policy, we ran them for equal
number of epochs using the best hyperparameters obtained
for each. Each epoch has 463 training steps and 450 vali-
dation steps, we plotted the average power for each epoch
for comparison. Figure 4 shows the average reward for each
algorithm.

Figure 4. Average Power vs No. of Episodes for different approaches.

The average power is maximum for power satisfaction
minimization because the policy is getting reward based on
the predicted state and user’s next state, and it is lowest
for user satisfaction maximization due to the fact that if
we move from a high power state to a low power state,
it will hurt user’s satisfaction, which is indeed the desired
behavior. The plots for multi-objective approaches always
end up between the two single objective ones, representing
the trade-off between the two contrasting objectives.

2) Average Number of Clashes: Figure 5 shows the com-
bined clash rate for all four algorithms. The experimental
parameters are kept same as the previous section.

Note that for power consumption minimization the clash
rate is highest because no weightage is given to user satis-
faction. If we deploy an agent with such policies, the user
will get agitated and they will try to override agent’s actions,
rendering it useless. While on the other hand, an agent with
user satisfaction maximization policies will not be helpful
in optimizing power consumption. However, if we look at
clash rates for multi-objective techniques, they lie between

Figure 5. Average Number of Clashes vs No. of Episodes using different
approaches.

the two single objective approaches, and this clash rate can
be adjusted using weights based on user preferences.

3) Appliance-wise clashes: We calculate the average
number of clashes for each of the five appliances and plot
them separately to see the behavior of proposed approaches.
Figure 6 shows the clash rate for each device. The experi-
mental parameters are kept same as Section V-D1.

(a) Furnace (b) Heater

(c) Lights (d) Refrigerator

(e) Washer

Figure 6. Appliance wise clash rate.

The results for appliances with three device modes is
consistent with the overall results with two exceptions of
furnace (two device modes) and kitchen lights (5 device
modes).

For furnace, the power consumption minimization ap-
proach does not behave as expected. The reason could be
the irregular usage and collection of data, as a furnace is
used only during colder seasons and the data we used for

experiments is collected over a span of three years. For
lights, all algorithms fetch nearly same results. The reason
can be because lights are used for prolonged times, and there
are not many fluctuations in lights’ modes of operation.
Therefore, the clash rate coincides for user satisfaction,
power consumption, and a combination of the two. Hence,
Furnace and Lights have very little to contribute to the
overall optimization. The results, therefore, suggest that
devices that are used regularly and with several fluctuations
in device modes at regular intervals should be targeted for
optimization.

4) Transferability on other smart homes consumption
data: To show that the proposed framework can be applied
to power consumption data of multiple smart homes, we
choose the best algorithm (weighted sum approach) and run
it for smart homes B, and C from the same Smart* data
discussed in Section V-A.

Figure 7 shows that the rewards increase and the clash
rate decreases with increase in number of episodes. Figure
7(a) and Figure 7(b) shows that the behavior is similar on
all three smart homes data.

(a) Rewards (b) Clash Rate

Figure 7. Average reward and Clashes with Weighted Sum approach smart
homes A, B, and C.

VI. CONCLUSION

In this paper, we present a novel multi-objective rein-
forcement learning technique for power consumption opti-
mization with contrasting objectives of minimizing power
consumption and maximizing user satisfaction. We show
that both objectives, when considered together, achieve the
best optimal policy. Our experimental results show that
the proposed multi-objective techniques establish a trade-
off between the two objectives. The optimal policy achieves
better user satisfaction than power optimization policies and
achieves better power consumption than user maximization
policies. We show that the devices used regularly in smart
homes should be the ones targeted for such optimization
purposes. Finally, we also show that the experiments can be
performed with other smart home data set to achieve similar
results.

REFERENCES

[1] IEA, “World electricity final consumption by
sector, 1974-2017,” 2019. [Online]. Avail-
able: https://www.iea.org/data-and-statistics/charts/world-
electricity-final-consumption-by-sector-1974-2017

[2] R. P. S. Center, “Energy data facts,” 2019. [Online].
Available: https://rpsc.energy.gov/energy-data-facts

[3] Constellation, “Energy-saving strategies for
smart homes,” 2019. [Online]. Avail-
able: https://blog.constellation.com/2019/01/22/smart-home-
energy-saving-strategies/

[4] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management us-
ing reinforcement learning,” in 2009 IEEE/ACM International
Conference on Computer-Aided Design-Digest of Technical
Papers. IEEE, 2009, pp. 461–467.

[5] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving
autonomous power management using reinforcement learn-
ing,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 18, no. 2, pp. 1–32, 2013.

[6] G. Tesauro, R. Das, H. Chan, J. Kephart, D. Levine, F. Raw-
son, and C. Lefurgy, “Managing power consumption and
performance of computing systems using reinforcement learn-
ing,” in Advances in Neural Information Processing Systems,
2008, pp. 1497–1504.

[7] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[8] R. Cheng, Genetic algorithms and engineering optimization.
Wiley-Interscience, 2000.

[9] I. Y. Kim and O. De Weck, “Adaptive weighted sum method
for multiobjective optimization: a new method for pareto front
generation,” Structural and multidisciplinary optimization,
vol. 31, no. 2, pp. 105–116, 2006.

[10] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy,
J. Albrecht et al., “Smart*: An open data set and tools for
enabling research in sustainable homes,” SustKDD, August,
vol. 111, no. 112, p. 108, 2012.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction. MIT press, 2018.

[12] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement
learning: A comprehensive overview,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 45, no. 3, pp.
385–398, 2014.

[13] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and
E. Dekker, “Empirical evaluation methods for multiobjec-
tive reinforcement learning algorithms,” Machine learning,
vol. 84, no. 1-2, pp. 51–80, 2011.

[14] D. C. K. Ngai and N. H. C. Yung, “A multiple-goal rein-
forcement learning method for complex vehicle overtaking
maneuvers,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 2, pp. 509–522, 2011.

[15] F. Zeng, Q. Zong, Z. Sun, and L. Dou, “Self-adaptive
multi-objective optimization method design based on agent
reinforcement learning for elevator group control systems,”
in 2010 8th World Congress on Intelligent Control and
Automation. IEEE, 2010, pp. 2577–2582.

[16] P. J. Rousseeuw, “Silhouettes: A graphical aid to the in-
terpretation and validation of cluster analysis,” Journal of
Computational and Applied Mathematics, vol. 20, pp. 53 –
65, 1987.

