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ABSTRACT
This paper presents Con2KG, a large-scale recruitment domain
Knowledge Graph that describes 4 million triples as facts from 250
thousands of unstructured data of job postings. We propose a novel
framework for Knowledge Graph construction from unstructured
text and an unsupervised, dynamically evolving ontology that helps
Con2KG to capture hierarchical links between the entities missed
by explicit relational facts in the triples. To enrich our graph, we
include entity context and its polarity. Towards this end, we discuss
Con2KG applications that may benefit the recruitment domain.
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1 INTRODUCTION
Knowledge Graph (KG) is a multi-relational structured graph which
consists of various facts. Each fact includes entities represented as
nodes and different relations represented as edges between them.
KGs contribute tremendously in many applications such as search
engines, AI assistants, etc. Online recruitment companies (such as
LinkedIn, Indeed, etc.) also explore KG utility in various crucial
tasks of job recruitment business such as personalized job sugges-
tions, job search, candidate recommendation, content quality, etc.
that can leverage the connected data. Despite the utility of KG in the
recruitment domain, most of the existing Knowledge bases (KBs)
such as Freebase [2], NELL [3], and DBpedia [6] provide limited
facts which are of importance to recruitment domain. These KBs
also lack essential entities such as evolving skills, designation, and
hidden properties of the job, such as type of recruiter, shift tim-
ings, interview dates, etc. Prior Research works like T2KG [5] are
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specific to general concepts from day-to-day life and lack domain-
specific knowledge. Given these challenges1 and limitations, our
work Con2KG proposes and demonstrates a framework for con-
structing large scale recruitment domain-specific KG of 4 million
facts from 250 thousands of job postings. In contrast to the existing
work, our contributions are:

• Con2KG exploits abundant information including properties
such as skills, companies, work locations, type of job, type of
company, shift timings, important dates, designation, candi-
date experience, type of qualification (degrees, diploma), and
salary into a structure that helps recruiters and job seekers
to organize knowledge about recruitment process.

• It provides a multi-tier architecture for the construction of
KG from the structured and unstructured text from hetero-
geneous sources such as job postings, candidate profiles,
etc.

• It offers a data-driven ontology mining of concepts and repre-
sents nuanced meanings of an entity when appearing within
different contexts.
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Figure 1: Architecture of Con2KG System

2 DATASET DESCRIPTION
We randomly sampled 250 thousand jobs from 1million job postings
collected over 120 months. We identified popular entities such as
12,057 skills, 60 qualifications, 87,905 institutes, 1,100 certifications,
2,23,955 companies, and 10,000 designations. We also extract essen-
tial facts like the type of job (home-based, full-time, etc.), recruiter
type (company, consultancy, etc.), and shift timings (night, day, etc.)
to form entities in our recruitment domain. We have 5,220 unique
relations linking 3,65,061 entities extracted from unstructured and
structured heterogeneous data.
1 https://2018.semantics.cc/building-deploying-and-evolving-large-knowledge-
graph-recruitment-domain-best-practices-and-lessons

Poster Session HT ’19, September 17–20, 2019, Hof, Germany

287

https://doi.org/10.1145/3342220.3344931
https://doi.org/10.1145/3342220.3344931
https://2018.semantics.cc/building-deploying-and-evolving-large-knowledge-graph-recruitment-domain-best-practices-and-lessons
https://2018.semantics.cc/building-deploying-and-evolving-large-knowledge-graph-recruitment-domain-best-practices-and-lessons


3 SYSTEM OVERVIEW
Figure 1 gives an overview of the system architecture of Con2KG,
which consists of two main modules:

3.1 Knowledge Mining Module
We divided this module into three phases:

• Pre-Processing and Entity Extraction: In this compo-
nent, we first pre-process the noisy and unstructured data us-
ing NLP techniques. We employ sentence simplification mod-
ule for complex sentences and part-of-speech approaches us-
ing Stanford Core NLP framework to revive missing phrases.
Additionally, we use dependency parsing tree for rebuild-
ing the syntactic and semantic structure [7]. To deal with
abbreviations, we exploit rule-based heuristics and utilize a
proprietary vocabulary list. Secondly, we discover the enti-
ties such as the type of company, recruiter type, important
dates extraction, type of job using a hybrid combination
of Stanford NER, libraries, dependency parser, and pattern-
based heuristics.

• Context mapping: This component aims to describe the
contextualization and polarities of the entities extracted from
the previous steps. For Example, "Candidate should be a Post-
Graduate. Freshers cannot apply". We apply the entity extrac-
tion algorithm and remove ‘Freshers’(negative polarity) from
the list of entities extracted (Post-Graduate, Freshers). We
also enhance our module by incorporating contextual infor-
mation such as preferred candidates (Experienced, Fresher),
etc. using Dependency Parser [7].

• Triple Extraction and Ontology Constitution : In this
module, Firstly, we perform triple extraction using state-of-
the-art OpenIE5 [8]. It extracts triples (subject, predicate,
object) in a sentence by using pattern templates. In this,
we identify the relations and its associated arguments in a
sentence without using either prior domain knowledge. For
Example, a sentence is "Candidate should have experience of
4 years". After triple extraction we get ("Candidate", "should
have experience of", "4 years"). To add on missing entities,
we also defined static relationships for the concepts whose
triples are not extracted using OpenIE5. Secondly, we employ
a hierarchical structure to these extracted key concepts and
hidden nuances. We manually curated concepts related to
companies, qualifications, etc. from the structured fields into
the Ontology. We use the Louvain algorithm [1] to detect
communities with the highest corresponding modularity and
iteratively split these communities if the new partition had a
positive modularity value. After ontology construction, we
apply the state-of-the-art clustering approaches [4] to these
entities capturing semantic information.

3.2 Knowledge Integration Module
In this module, we represent all of the extracted knowledge and
store it into efficient graphical storage. All the entities (subjects
and objects) are nodes and relationships are edges in the graph.
Con2KG discovers and easily traverse through millions of nodes
and edges using Neo4j Cypher Query Framework [10].

4 EVALUATION
We randomly selected 310 jobs from our legacy dataset containing
4719 sentences to evaluate the quality and quantity of the triples
extracted. Based on the results, Con2KG can extract 1.72 triples
per sentence on an average. We assess these triples and found 82%
precision, 68.23% recall, and F-measure of 74.46%. We also analyze
that triple extraction causes 0.05% errors due to incomplete triples
and 0.20% due to no triple extraction for most of the sentences.
Based on the preliminary analysis, errors in triple extraction occurs
due to complexity in unstructured text and relations which are
not identified clearly. Apart from these challenges, we still achieve
approximately 74% both in terms of quantity and quality. Note that
this evaluation methodology is also followed by T2KG [5].

5 FUTURE DIRECTIONS
Con2KG can exploit the entity and its relationships to predict and
personalize the job suggestions in the recruitment domain using
Entity Cards [9]. We can also query Con2KG and the complex data
at the real-time to provide smart knowledge and detect false facts.
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