Access Control Matrix

- Access control matrix
 - Describes protection state precisely
 - Matrix describing rights of subjects
Description

<table>
<thead>
<tr>
<th>subjects</th>
<th>objects (entities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>o_1</td>
</tr>
<tr>
<td>s_2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>s_n</td>
<td></td>
</tr>
</tbody>
</table>

- **Subjects** $S = \{ s_1, ..., s_n \}$
- **Objects** $O = \{ o_1, ..., o_m \}$
- **Rights** $R = \{ r_1, ..., r_k \}$
- **Entries** $A[s_i, o_j] \subseteq R$
- $A[s_i, o_j] = \{ r_x, ..., r_y \}$ means subject s_i has rights $r_x, ..., r_y$ over object o_j.

Objects $O = \{ o_1, ..., o_m \}$

Rights $R = \{ r_1, ..., r_k \}$

Entries $A[s_i, o_j] \subseteq R$
Example 1

- Processes \(p, q \)
- Files \(f, g \)
- Rights \(r, w, x, a, o \)

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>rwo</td>
<td>(r)</td>
<td>rwxo</td>
<td>(w)</td>
</tr>
<tr>
<td>(q)</td>
<td>(a)</td>
<td>(ro)</td>
<td>(r)</td>
<td>rwxo</td>
</tr>
</tbody>
</table>
Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it’s a security violation

- Secure system
 - Starts in authorized state
 - Never enters unauthorized state
Confidentiality

- X set of entities, I information
- I has confidentiality property with respect to X if no $x \in X$ can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key
Integrity

- X set of entities, I information
- I has *integrity* property with respect to X if all $x \in X$ trust information in I
- Types of integrity:
 - trust I, its conveyance and protection (data integrity)
 - I information about origin of something or an identity (origin integrity, authentication)
 - I resource: means resource functions as it should (assurance)
Availability

• \(X \) set of entities, \(I \) resource
• \(I \) has availability property with respect to \(X \) if all \(x \in X \) can access \(I \)
• Types of availability:
 – traditional: \(x \) gets access or not
 – quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved
Policy Models

• Abstract description of a policy or class of policies
• Focus on points of interest in policies
 – Security levels in multilevel security models
 – Separation of duty in Clark–Wilson model
 – Conflict of interest in Chinese Wall model
Types of Security Policies

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
- Commercial security policy
 - Policy primarily protecting integrity
- Confidentiality policy
 - Policy protecting only confidentiality
- Integrity policy
 - Policy protecting only integrity
Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - individual user sets access control mechanism to allow or deny access to an object

- Mandatory Access Control (MAC)
 - system mechanism controls access to object, and individual cannot alter that access

- Originator Controlled Access Control (ORCON)
 - originator (creator) of information controls who can access information
Confidentiality Policies

• Overview
 – What is a confidentiality model

• Bell-LaPadula Model
 – General idea
 – Informal description of rules
Overview

• Goals of Confidentiality Model
• The Bell–LaPadula Model corresponds to military-style classifications.
Confidentiality Policy

• Goal: prevent the unauthorized disclosure of information
 – Deals with information flow
 – Integrity incidental

• Multi-level security models are best-known examples
 – Bell-LaPadula Model basis for many, or most, of these
Bell–LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret (TS): highest
 - Secret (S)
 - Confidential (C)
 - Unclassified (UC): lowest
- A Subject has a *security clearance* $L(s)$
- An Object has a *security classification* $L(o)$
- The goal of the Bell–LaPadula Security model is to prevent read access to objects at a security classification higher than the subject’s clearance.
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Secret (TS)</td>
<td>Tamara</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>Secret (S)</td>
<td>Samuel</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>Confidential (C)</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>Unclassified (UC)</td>
<td>Ulaley</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists
Reading Information

• Information flows *up*, not *down*
 – "Reads up" disallowed, "reads down" allowed

• Simple Security Condition (Step 1)
 – Subject s can read object o iff $L(o) \leq L(s)$ and s has permission to read o

• Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)

– Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 – “Writes up” allowed, “writes down” disallowed
• *–Property (Step 1)
 – Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 – Sometimes called “no writes down” rule
Integrity Policies

- Requirements
 - Very different than confidentiality policies
- Biba’s model
- Clark–Wilson model
Biba Integrity Model

- Set of subjects S, objects O, integrity levels I, relation $\leq \subseteq I \times I$ holding when second dominates first
- $\text{min}: I \times I \rightarrow I$ returns lesser of integrity levels
- $i: S \cup O \rightarrow I$ gives integrity level of entity
Intuition for Integrity Levels

• The higher the level, the more confidence
 – That a program will execute correctly
 – That data is accurate and/or reliable

• Note relationship between integrity and trustworthiness

• Important point: *integrity levels are not security levels*
Biba's Model

• Similar to Bell-LaPadula model
 1. $s \in S$ can read $o \in O$ iff $i(s) \leq i(o)$
 2. $s \in S$ can write to $o \in O$ iff $i(o) \leq i(s)$
 3. $s_1 \in S$ can execute $s_2 \in S$ iff $i(s_2) \leq i(s_1)$
Clark–Wilson Integrity Model

- Integrity defined by a set of constraints
 - Data in a *consistent* or valid state when it satisfies these
- Example: Bank
 - \(D \) today’s deposits, \(W \) withdrawals, \(YB \) yesterday’s balance, \(TB \) today’s balance
 - Integrity constraint: \(D + YB - W \)
- *Well-formed transaction* move system from one consistent state to another
- Issue: who examines, certifies transactions done correctly?
Hybrid Policies: Chinese Wall Model

Problem:

- Tony advises American Bank about investments
- He is asked to advise Toyland Bank about investments

• Conflict of interest to accept, because his advice for either bank would affect his advice to the other bank
Organization

- Organize entities into “conflict of interest” classes
- Control subject accesses to each class
- Control writing to all classes to ensure information is not passed along in violation of rules
- Allow sanitized data to be viewed by everyone
Definitions

- **Objects**: items of information related to a company
- **Company dataset (CD)**: contains objects related to a single company
 - Written $CD(O)$
- **Conflict of interest class (COI)**: contains datasets of companies in competition
 - Written $COI(O)$
 - Assume: each object belongs to exactly one COI class
Example

Bank COI Class
- Bank of America
- Citibank
- Bank of the West

Gasoline Company COI Class
- Shell Oil
- Standard Oil
- Union '76
- ARCO
Temporal Element

• If Anthony reads any CD in a COI, he can never read another CD in that COI
 – Possible that information learned earlier may allow him to make decisions later
 – Let $PR(S)$ be set of objects that S has already read
Sanitization

• Public information may belong to a CD
 – As is publicly available, no conflicts of interest arise
 – So, should not affect ability of analysts to read
 – Typically, all sensitive data removed from such information before it is released publicly (called sanitization)
CW–Simple Security Condition

• s can read o iff either condition holds:
 1. There is an o' such that s has accessed o' and $CD(o') = CD(o)$
 - Meaning s has read something in o''s dataset
 2. For all $o' \in O, o' \in PR(s) \Rightarrow COI(o') \neq COI(o)$
 - Meaning s has not read any objects in o''s conflict of interest class
 3. o is a sanitized object

• Initially, $PR(s) = \emptyset$, so initial read request granted
Writing

- Anthony, Susan work in same trading house
- Anthony can read Bank 1’s CD, Gas’ CD
- Susan can read Bank 2’s CD, Gas’ CD
- If Anthony could write to Gas’ CD, Susan can read it
 - Hence, indirectly, she can read information from Bank 1’s CD, a clear conflict of interest
CW-Property

- s can write to o iff both of the following hold:
 1. The CW-simple security condition permits s to read o; and
 2. For all *unsanitized* objects o', if s can read o', then $CD(o') = CD(o)$

- Says that s can write to an object if all the (unsanitized) objects it can read are in the same dataset