An Inquiry Into Modern Cryptography

Kannan Srinathan IIIT-Hyderabad

What is cryptography about? Why is cryptography important? How to solve it (cryptography)?

CRYPTOGRAPHY

Is about 'solving' impossible problems

Cryptography ...

... has to brazenly circumvent logical no-go theorems!

Sample No-Goes

Illustrating Logical No-Go (Russell's Paradox): Let S be the set of all sets that do not contain itself. Does S belong to S?
Ans: Yes and No!

1. Should the machine know your *password*?

Ans: Yes (for checking) and No (for secrecy)

2. Can you spend your digital cash?

Ans: Yes (the original) and No (the copies)

3. Should there be CCTV cameras?

Ans: Yes (for policing) and No (for privacy)

Cryptography is Fascinating

Because ...

no other field of science has so pleasingly succeeded in circumventing logical no-go results

Sample "Successes" against Logical Impossibilities

Authenticity with Anonymity!

2. Blinding but Binding!

3. Compression without Collision!

4. Privacy Preserving Personalization!

Cryptography

Is therefore fundamental

Cryptography is Fundamental

Because ...

... it has extended its success story by circumventing logical no-go theorems in **other areas** too ...

(S) ample Technical Benefits of Cryptography

- Coding Theory
 - Detecting 100% Adversarial Noise
- Distributed Computing
 - Fault -Tolerant Agreement
- Mathematics
 - What is a Proof?: Zero-Knowledge Proof Systems
- Algorithms
 - Pseudorandomness and Derandomization

Rest of the talk ...

How To Solve It?

... the power of adversarial interference

The Cryptographic Method

Understand the (original) impossibility

- Bring in another impossibility
 - In just about the correct proportion
- Make the impossibilities destructively interfere each other
 - ... to make a solution possible!

Adversarial Interference (has happened before crypto too)

Randomized Algorithms

Game Theory and Byzantium

Some Famous Adversities

(that enable cryptography)

- Computational Adversity
 - Eg. Limited resources
- Physical Adversity
 - Eg. Quantum and Relativistic Mechanics
- Practical Adversity
 - Eg. Scheduling and Software Bugs
- Philosophical Adversity
 - Eg. Clash of Fundamental Definitions

We'll See One Example For Each Kind of Adversarial Interference

Four examples in all

Our First Example

Is Secure Communication a Cryptographic Problem?

Yes! It is a Logical No-Go! Why?

Secure Communication is Impossible!

adversary

- At time t₀
 - Information@Receiver = Information@Adversary
 - Recall: Kerckhoff's Principle
- At every subsequent instant of time
 - Information gained by receiver = Information gained by adversary

How to Circumvent the Impossibility?

Only Two Ways

At time t₀

Information@Receiver

is (perceived as) greater than

Information@Adversary

At some subsequent instant of time

Information gained by receiver

is (perceived as) greater than

Information gained by adversary

OR

The First Way ...

Representation matters, indeed!

Natural Numbers, Efficiency of Operations and Modern Cryptography

Ease of Computation Depends on the Representation

It also depends on the operation!

Ease/Speed of Operation Depends on The Representation

- □ Viii * XVi = CXXViii
- 8 * 16 = 128
- $2^3 * 2^4 = 2^7$
- □ viii + xvi = xxiv
- 8 + 16 = 24
- $2^3 + 2^4 = 2^3.3$
- □ viii < ix is true
- 8 < 9 is true</p>
- $2^3 < 3^2$ is true

Top Three Most Frequent Operations

Addition (+)

Comparison (<)</p>

Multiplication (*)

Why is the Decimal System Popular?

	Addition	Multiplication	Comparison
ROMAN	SLOW	SLOW	SLOW
DECIMAL	FAST	MEDIUM	FAST
PRIME PRODUCT	SLOW	FAST	SLOW
RESIDUE SYSTEM	FAST	FAST	MEDIUM

Is There a Representation Where all Common Operations are FAST?

Not Easy!

Slowness is ADVANTAGEOUS too!

Public Key Cryptography

Secure Communication

In Representation R₂

- Operation E_K is FAST
- Operation E_K⁻¹ is <u>VERY SLOW</u>

In Representation R₁

•Operation E_K-1 is FAST

EXAMPLE RSA Cryptosystem

R₁: Product of Primes

R₂: Decimal

E_K: Modular Exponentiation

me mod K

RECALL: How to Circumvent the Impossibility?

At time to

Information@Receiver

is (perceived as) greater than

Information@Adversary

At some subsequent instant of time

Information gained by receiver

is (perceived as) greater than

Information gained by adversary

OR

Our second example

Secure Communication in Quantum Channels

Natural Adversary

Quantum World: It's Bizarre!

An Experiment with Photons

The Three Polarizers

The Photon Experiment

The Photon Experiment (Contd.)

Qubits

An Explanation

Qubits

A quantum bit, or qubit, is a unit vector in a two dimensional complex vector space for which a particular basis has been fixed and is denoted by:

Qubits can be in a superposition of |0> and |1> such as

where a and b are complex numbers such that $|a|^2 + |b|^2 = 1$.

Measuring a Qubit in the Basis

For the qubit

the probability that the measured value is $|0\rangle$ is $|a|^2$

after which the state collapses to |0> and

the probability that the measured value is $|1\rangle$ is $|b|^2$

after which the state collapses to |1>

Qubit Model Correctly Predicts the Outcome of Photon Experiment

and several other experiments too!

Quantum Secret Key Establishment Protocol

The Standard Setting

Quantum Secret Key Establishment Protocol

Two bases are used, say b₁ and b₂

 S chooses a random base, and based on the bit to send, it sends a qubit prepared in the corresponding state.

Bit	0	1
b ₁	†	
b ₂	I	

R measures the qubit received, with a random base. If the base is different from what S used, the bit is lost, else R measures the actual bit (always so, only if an eavesdropper is absent!).

Our third example

Secure Communication in Noisy Channels

Practical Adversary

Secure AND

Securely Computing x ∧ y in GF(2)

Noise: Any 1 bit out of every block of 4 bits sent will be toggled

Fact: Perfectly Secure AND is impossible in a noiseless channel

Protocol for Secure AND

- A chooses four random bits, r₀,r₁,r₂,r₃ and sends them to B, who receives s₀,s₁,s₂,s₃
 - One of the r_i is different from s_i
 - Three of the others are equal
- A and B compute the following 3-tuples respectively

$$M = \begin{array}{c|cccc} 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \end{array}$$

- A (respectively B) multiplies the ith row of matrix M with r_i (respectively s_i) to obtain a matrix M^A (resp. M^B)
- A (resp. B) adds up the resultant 4 by 3 matrix M^A (resp. M^B) column-wise to obtain a 3-tuple $T^A = (a_0, b_0, c_0)$ (resp. $T^B = (a_1, b_1, c_1)$)

Our Last Example

Philosophical adversity

Some Important Philosophical Questions

- Who is honest?
- How can a software be at fault?
- What is a proof?
- What is efficiency?
- What is intelligence?
- What is security?

Can a cluster of insecure systems-simulate security?

Welcome to **blockchain!**

Concluding Remarks

Adversarial interference is the key!

Thank You

Questions?