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Preface

Research in Natural Language Processing (NLP) has taken a noticeable leap in the recent
years.Tremendous growth of information on the web and its easy access has stimulated a large
interest in the field. India with multiple languages and continuous growth of Indian language content on
the web makes a fertile ground for NLP research. Moreover, industry is keenly interested in obtaining
NLP technology for mass use. The internet search companies are increasingly aware of the large market
for processing languages other than English. For example, search capability is needed for content in
Indian and other languages. There is also a need for searching content in multiple languages, and making
the retrieved documents available in the language of the user. As a result, a strong need is being felt for
machine translation to handle this large instantaneous use. Information Extraction, Question Answering
Systems and Sentiment Analysis are also showing up as other business opportunities.

These needs have resulted in two welcome trends. First, there is much wider student interest in
getting into NLP at both postgraduate and undergraduate levels. Many students interested in computing
technology are getting interested in natural language technology, and those interested in pursuing
computing research are joining NLP research. Second, the research community in academic institutions
and government funding agencies in India have joined hands to launch consortia projects to develop
NLP products. Each consortium project is a multi-institutional endeavour working with a common
software framework, common language standards, and common technology engines for all the different
languages covered in the consortium. As a result, it has already led to the development of basic tools for
multiple languages which are interoperable for machine translation, cross lingual search, handwriting
recognition and OCR.

In this backdrop of increased student interest, greater funding and most importantly, common
standards and interoperable tools, there has been a spurt in research in NLP on Indian languages whose
effects we have just begun to see. A great number of submissions reflecting good research is a heartening
matter. There is an increasing realization to take advantage of features common to Indian languages in
machine learning. It is a delight to see that such features are not just specific to Indian languages but
to a large number of languages of the world, hitherto ignored. The insights so gained are furthering
our linguistic understanding and will help in technology development for hopefully all languages of the
world.

For machine learning and other purposes, linguistically annotated corpora using the common standards
have become available for multiple Indian languages. They have been used for the development of basic
technologies for several languages. Larger set of corpora are expected to be prepared in the near future.

This conference proceedings contains papers selected for presentation in technical sessions of
ICON-2019 and short communications selected for poster presentation. We are thankful to our excellent
team of reviewers from all over the globe who deserve full credit for the hard work of reviewing the high
quality submissions with rich technical content. From 88 submissions, 28 papers were selected, 19 for
full presentation, 9 for poster presentation, representing a variety of new and interesting developments,
covering a wide spectrum of NLP areas and core linguistics. Besides presentations, the conference also
hosted 5 tutorials and 1 workshop.

We are deeply grateful to Jan Hajič from Charles University (Czech Republic), C. V. Jawahar
from IIIT Hyderabad (India) and Amba Kulkarni from University of Hyderabad (India) for giving the
keynote lectures at ICON. We would also like to thank the members of the Advisory Committee and
Programme Committee for their support and cooperation in making ICON 2019 a success.
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We thank Anil Kumar Singh, Samar Hussain, Co-Chairs, Workshop/ Tutorial for taking the
responsibilities of the events. We are thankful to Radhika Mamidi, Anil Kumar Vuppala and
Manish Shrivastava for making the organization of the event at the International Institute of Information
Technology (IIIT) a success.

We convey our thanks to Krishna Sireesha S., P V S Ram Babu, G Srinivas Rao, A Lakshmi
Narayana, Praveen, Hostel and Administrative staff, International Institute of Information Technology
(IIIT), Hyderabad for their dedicated efforts in successfully handling the ICON Secretariat. We also
thank IIIT Hyderabad team of Vineet Chaitanya, Vasudeva Varma, Soma Paul, Radhika Mamidi, Manish
Shrivastava, Suryakanth V Gangashetty and Anil Kumar Vuppala. We heartily express our gratitude to
Saumitra Yadav, Pruthwik Mishra, Vandan Mujadia, Nirmal Surange, Prashant Kodali and other team
members at IIIT Hyderabad for their timely help with sincere dedication to make this conference a
success. We also thank all those who came forward to help us in this task.

Finally, we thank all the researchers who responded to our call for papers and all the participants
of ICON-2019, without whose overwhelming response the conference would not have been a success.

December 2019 Pushpak Bhattacharyya
Hyderabad Dipti Misra Sharma

Rajeev Sangal
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Title: “European Language Technology and Resources Infrastructures”
Session Chair: Prof. Rajeev Sangal

+ 10:30 – 11:00 Tea break

+ 11:00 – 12:30 Technical Session I: Information Retrieval and Extraction
Session Chair: Sobha L Devi

A Deep Ensemble Framework for Fake News Detection and Multi-Class Classifica-
tion of Short Political Statements
Arjun Roy, Kingshuk Basak, Asif Ekbal and Pushpak Bhattacharyya

Language Modelling with NMT Query Translation for Amharic-Arabic Cross-
Language Information Retrieval
Ibrahim Gashaw and H.L Shashirekha

Robust Deep Learning Based Sentiment Classification of Code-Mixed Text
Siddhartha Mukherjee, Vinuthkumar Prasan, Anish Nediyanchath, Manan Shah,
Nikhil Kumar and Prajakta Kulkarni

+ 12:30 – 13:30 Lunch

+ 13:30 – 14:30 Keynote II by Prof C. V. Jawahar
Title:“Data Driven Methods for Multilingual and Multimodal Problems”
Session Chair: Prof. Pushpak Bhattacharyya

+ 14:30 – 16:00

Technical Session II: Machine Learning in NLP
Session Chair: Asif Ekbal

Robust Text Classification using Sub-Word Information in Input Word Representa-
tions.
Bhanu Prakash, Priyank Chhipa, Vivek Sridhar and Vinuthkumar Prasan

Introducing Aspects of Creativity in Automatic Poetry Generation
Brendan Bena and Jugal Kalita

Identification of Synthetic Sentence in Bengali News using Hybrid Approach
Soma Das and Sanjay Chatterji

xi



Technical Session III: Speech Processing
Session Chair: S. R. M. Prasanna

Non-native Accent Partitioning for Speakers of Indian Regional Languages
Guntur Radhakrishna, Krishnan Ramakrishnan and Vinay Kumar Mittal

Autism Speech Analysis using Acoustic Features
Abhijit Mohanta and Vinay Kumar Mittal

+ 16:00 – 17:00 Tea break

+ 16:00 – 17:00 Poster Session
Session Chair: Manish Shrivastava

+ 17:00 – 18:00 NLPAI Meeting

+ 18:30 – 20:00 Cultural Programme

+ 20:30 Onwards Dinner

xii



Day 2: Friday, December 20, 2019

+ 9:00 – 10.30 Keynote-III by Prof. Amba Kulkarni
Title:“Information Coding in Language:Some insights from Indian Grammatical
Tradition”
Session Chair: Sudeshna Sarkar

+ 10:30 – 11:00 Tea break

+ 11:00 – 13:00

Technical Session IV: Information Retrieval and Extraction
Session Chair: Ashutosh Modi

Multi-linguality helps: Event-Argument Extraction for Disaster Domain in Cross-
lingual and Multilingual setting
Zishan Ahmad, Deeksha Varshney, Asif Ekbal and Pushpak Bhattacharyya

A Multi-task Model for Multilingual Trigger Detection and Classification
Sovan Kumar Sahoo, Saumajit Saha, Asif Ekbal and Pushpak Bhattacharyya

Unsung Challenges of Building and Deploying Language Technologies for Low Re-
source Language Communities
Pratik Joshi, Christain Barnes, Sebastin Santy, Simran Khanuja, Sanket Shah,
Anirudh Srinivasan, Satwik Bhattamishra, Sunayana Sitaram, Monojit Choudhury
and Kalika Bali

Samajh-Boojh: A Reading Comprehension system in Hindi
Shalaka Vaidya and Hiranmai Sri Adibhatla

Technical Session V: NLP for Low Resource Languages
Session Chair: Bharat Ambati

Incorporating Sub-Word Level Information in Language Invariant Neural Event De-
tection
Suhan Prabhu, Pranav Goel, Alok Debnath and Manish Shrivastava

A little perturbation makes a difference: Treebank augmentation by perturbation
improves transfer parsing
Ayan Das and Sudeshna Sarkar

Sanskrit Segmentation revisited
Sriram Krishnan and Amba Kulkarni

Towards measuring lexical complexity in Malayalam
Richard Shallam and Ashwini Vaidya

+ 13:00 – 14:00 Lunch

xiii



+ 14:00 – 15:00 Women in NLP workshop
Session Chair: Manjira Sinha

+ 15:00 –15:30 Industry Interaction Session

+ 15:45 –17:00 Technical Session VI: Syntax, Semantics and Discourse
Session Chair: Radhika Mamidi

Building Discourse Parser for Thirukkural
Anita R and Subalalitha C N

DRCoVe: An Augmented Word Representation Approach using Distributional and
Relational Context
Md. Aslam Parwez, Muhammad Abulaish and Mohd Fazil

Event Centric Entity Linking for Hindi News Articles: A Knowledge Graph Based
Approach
Pranav Goel, Suhan Prabhu, Alok Debnath and Manish Shrivastava

+ 17:00 – 17:15 Tea break

+ 17:15 – 17:45 Valedictory Function

xiv



D M Sharma, P Bhattacharyya and R Sangal. Proc. of the 16th Intl. Conference on Natural Language Processing, pages 1–8
Hyderabad, India, December 2019. c©2019 NLP Association of India (NLPAI)

 

 

 

Abstract 

Word based deep learning approaches have 

been used with increasing success recently 

to solve Natural Language Processing 

problems like Machine Translation, 

Language Modelling and Text 

Classification. However, performance of 

these word based models is limited by the 

vocabulary of the training corpus. Alternate 

approaches using character based models 

have been proposed to overcome the 

unseen word problems arising for a variety 

of reasons. However, character based 

models fail to capture the sequential 

relationship of words inherently present in 

texts. Hence, there is scope for 

improvement by addressing the unseen 

word problem while also maintaining the 

sequential context through word based 

models.  

In this work, we propose a method where 

the input embedding vector incorporates 

sub-word information but is also suitable 

for use with models which successfully 

capture the sequential nature of text. We 

further attempt to establish that using such 

a word representation as input makes the 

model robust to unseen words, particularly 

arising due to tokenization and spelling 

errors, which is a common problem in 

systems where a typing interface is one of 

the input modalities. 

1 Introduction 

Recent research has demonstrated the success of 

word based models for NLP problems like 

Machine Translation (Sutskever, 2014) and Text 

Classification (Mikolov, 2010). It is well 

established in literature that the dictionary of words 

contained in the training corpus have significant 

bearing on the performance of these models. For 

example, in the case of language modelling, an 

unseen word can never be predicted and models 

also tend to have lower accuracies when predicting 

words in the vicinity of an unseen word. Models 

for text classification also suffer from a similar 

problem wherein one or more unseen words in the 

input may significantly increase classification 

error. Alternate approaches using character based 

models (Zhang, 2015; Kim, 2016) have been 

proposed to overcome the unseen word problem 

which ails word-based deep learning networks. 

However, character based models fail to capture 

the sequential relationship of words inherently 

present in texts. 

The main contribution of this paper is to 

establish the suitability and robustness of an input 

embedded vector which incorporates sub-word 

information (Bojanowski, 2016) with a recurrent 

neural network model for sentence classification 

and also establish the capability of such a 

configuration to deal effectively with the unseen 

word problem, especially arising due to word 

segmentations and spelling errors. 

2 Related Work 

The input to text based deep learning models is 

usually a numeric vector representation of text, 

commonly called embedded vectors. The 

embedded vector of each word is designed to be 

indicative of its semantic relationship with other 

words or characters as available in the corpus in 

embedded space. This usually constitutes the very 

first layer of the network. This layer may be 

initialized randomly or with pre-trained vectors 

The pre-trained vectors may be static or may also 

be learned with the network. These pre-trained 

vectors are typically generated from a large 

training corpus which is usually not directly related 

to the problem at hand, but is representative of 

language as a whole. One of the most commonly 

Robust Text Classification using Sub-Word Information 

 in Input Word Representations 
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used pre-trained embedding is proposed by 

Mikolov (2010) where a neural network approach 

is used to generate word vectors based on a 1.6 

billion words data set. An alternate approach 

discussed in Pennington (2014) focusses on 

whether distributional word representations are 

best learned from count-based methods rather than 

prediction-based methods. Since these vectors are 

pre-trained using large corpora, they contain 

meaningful semantic representations of even 

words not seen in the training corpus for the 

specific problem, which helps deal with the unseen 

word problem to a certain extent. In addition, 

models tend to converge faster when pre-trained 

vectors are used. However, pre-trained word 

embedding approaches continue to have difficulty 

with words not in the dictionary of the input 

embedding. Also, rare words are often not 

represented as well as more frequently occurring 

words. Words not seen in the training corpus are 

usually either marked as unknown (UNK) or 

excluded altogether from the input. To address 

these drawbacks, several alternate approaches 

have been proposed. Zhang (2015) proposed a 9-

layer character based CNN model which addresses 

the unseen word problem in Word based models. 

However, this CNN based approach fails to capture 

sequence context features in the text. Kim (2016) 

proposed an architecture in which the character 

embedding is input to a CNN, the output of which 

acts as input to an RNN. In such models, the CNN 

component captures the n-gram features of text and 

RNN takes care of sequence context of such 

features in the text. For character based CNN 

models, the context or relationship between 

multiple characters and words are captured by 

convolution filters or kernels. A set of fixed filter 

sizes (n-grams) may not completely capture word-

level information. Also, capturing longer context is 

difficult in CNN models. Another alternate 

approach is proposed by Bojanowski (2016) where 

each word is represented as a bag of character n-

grams and a vector representation is associated to 

each character n-gram. Words are represented as a 

sum of these representations. This is found to be 

especially effective when dealing with 

morphologically rich languages. This has been 

used with shallow models for sentiment analysis 

and tag identification problem in Joulin (2016). 

However, for more complex problems over a larger 

number of classes, the higher representational 

power of deep networks such as RNNs and CNNs 

may be desired. 

In this work, we apply the method for generating 

vector representations proposed in Bojanowski 

(2016) to deep learning networks such as the 

architecture proposed in Sutskever (2014) and 

explore the extent to which unseen word problem, 

especially arising due to misspellings and 

tokenization errors, is addressed. 

3 Proposed Approach 

Unseen words are a common occurrence in NLP 

problems and arise from a variety of situations. The 

most common reasons for unseen words is simply 

a lack of exhaustive training data for a specific 

problem. This problem is largely dealt with by 

using pre-trained distributions trained on a large 

corpus. Another common source of unseen words 

is morphological variance. This is a scenario where 

the unseen word is close to a seen word both 

superficially and semantically. Research described 

in Bojanowski (2016) and Joulin (2016) show that 

input vectors incorporating sub-word information 

have proved effective in tackling this problem.  

Another source of unseen words are 

misspellings or incorrect word segmentation. This 

is a common problem faced in multi-modal 

applications such as voice assistants wherein one 

of the input modalities is a typing interface. These 

types of errors seem to be similar to the UNKs 

arising from morphological variance wherein the 

unseen word shares a close superficial as well as 

semantic similarity with a seen word. 

We propose to use pre-trained embedded 

vectors to deal with the unseen word problem, 

especially due to misspellings, using word vectors 

which incorporate sub-word information. An RNN 

based sentence classifier with an architecture 

similar to the one proposed by Sutskever (2014) is 

used and compared with the performance of the 

distributions described by Mikolov (2013) and 

Pennington (2014) on standard data sets for text 

classification. In addition, we intend to simulate 

the UNK problem due to misspellings and 

incorrect tokenization by applying rules to the 

standard data sets. These rules consist of common 

misspellings such as “ei” instead of “ie”, incorrect 

double consonants (‘aggressive’ vs ‘aggresive’) 

and so on. 
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3.1 Word Representations with Sub-Words 

Word vectors are traditionally used to cluster 

words with a high degree of semantic similarity.  

These representations help to deal with rare word 

problem wherein words which are less frequently 

present in training data are not learnt as well as 

words which are semantically similar but present 

more frequently. Word distributions learnt on 

larger corpora alleviate this problem. Another 

source of rare or unseen words is morphological 

variance. This problem is particularly important for 

languages which have a high degree of inflection. 

The work by Bojanowski (2016) uses a word 

representation which incorporates sub-word 

information to construct word vectors to deal with  

this problem.  

Misspelled words also share several sub-words 

with the actual word and we therefore propose that 

a word representation which incorporates sub-

word information should be good at dealing with 

UNKs due to spelling or tokenization errors. This 

intuition is validated by the clusters shown in the 

word representations of the misspelling words 

projected in two dimensions.  

As seen in Figure 1, various common 

misspellings of the word ‘aggression’ are clustered 

close to the actual word and related words like 

‘aggresion’, ‘aggressive’ and so on. 

Figure 2 shows that another common 

misspelling, ‘ie’ instead of ‘ei’, is dealt with well 

by the word vectors constructed using sub-words. 

Figure 3 shows the incorrect tokenization of the 

phrase ‘remind me’ as ‘remindme’ which is placed 

in the relevant cluster containing ‘reminds’, 

’remind’, ’reminded’ and other similar words. 

The above plots indicate the robustness of a 

word vector built using sub-words to deal with 

spelling and word segmentation errors. We attempt  

 

Figure 2: Cluster for 'Fahrenheit' 

to establish this conclusively by applying such a 

word representation to a sentence classification 

problem using a standard word-based RNN 

architecture described in the following sections. 

 

Figure 3: Cluster for tokenization (remind me) 

3.2 Sentence Classification RNN Model 

Sentence classifier architecture used is depicted 

in Figure 4 and is based on the sequence to 

 

Figure 1: Word clusters for ‘aggression’ 

 

Figure 4: RNN based Sentence Classifier 
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sequence learning architecture for machine 

translation described in Sutskever (2014). 

The input ‘wi’ is the embedded vector used to 

represent words in the input text. Experiments 

were carried out using the word distributions 

described in Mikolov (2013) and Pennington 

(2014) and used as reference for comparison.  

 𝐿𝑜𝑠𝑠 = − ∑ 𝑦𝑜,𝑐 log (𝑃𝑜, 𝑐)
𝑀

𝑐=1
  (1) 

The model is trained with the 20% dropouts and 

categorical cross entropy loss function represented 

by the Equation 1. The rmsprop optimizer is used 

which is a popular choice for Recurrent Neural 

networks. A 300-dimension word vector is used as 

the input. 

3.3 Sentence Classification RNN Model with 

Pre-Trained Embedding containing 

Sub-Word Information 

Figure 5 shows the architecture used with the 

input vector built using a combination of sub-

words. One of the configurable parameters while 

generating the pre-trained embedded vectors is the 

sub-word length to be incorporated. Sub-words 

consisting of lengths from 3 to 6 along with the 

whole word are used to generate the input 

embedding. 

The skip-gram model described by Bojanowski 

(2016) is used to generate the pre-trained input 

vector representation using One-billion-word 

benchmark (Chelba, 2013). This is used for 

comparison with the reference word distributions 

described in Mikolov (2013) and Pennington 

(2014) which are commonly used with deep neural 

network based architectures.  

4 Datasets and Experimental Setup 

The sentence classification task is chosen for the 

work described in this paper.  

In our first set of experiments, we apply the 

reference word-based sequence learning 

architecture of Sutskever (2014) to the sentence 

classification problem on three standard datasets. 

The pre-trained embedding learnt through the 

method proposed in Bojanowski (2016) is used as 

a static input embedding and is not updated as part 

of the training for the specific problem.  

We compare the performance of these sub-word 

based input embedded vectors with the popular 

GloVe and Word2vec pre-trained word 

representations using this architecture. This is used 

to establish the suitability of the word 

representations of Bojanowski (2016) to deep 

learning architectures. 

In our second set of experiments, we apply the 

reference word-based sequence learning 

architecture of Sutskever (2014) to the sentence 

classification problem on three standard datasets 

which are modified to incorporate misspellings. 

Two standard misspelling dictionaries are used to 

generate the misspelled versions of the standard 

datasets. This is done in order to simulate real-

world situations, such as multi-modal smart 

assistants, where the input to a sentence 

classification system may be via a textual input 

interface, and therefore prone to misspellings. The 

performance of sub-word based word vectors 

Bojanowski (2016) is compared with reference 

distributions. This is used to establish that word 

representations which are constructed using sub-

word information are robust and more suitable for 

use in multi-modal commercial applications than 

the more popular GloVe and Word2vec word 

representations. The datasets used for these 

experiments are described in detail in the following 

sections. 

4.1 Sentence Classification Datasets 

The following three datasets are used for 

benchmarking on the sentence classification 

problem. 

The SUBJ Subjectivity dataset is a two-class 

dataset where the task is to classify a sentence as 

subjective or objective. There are 10000 sentences, 

 

Figure 5: RNN based sentence classifier with sub-

word information based embedding 
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we used 5-fold cross validation with 80% of the 

data for train and the remaining 20% are used as a 

test set. 

The MPQA Opinion polarity dataset has 10606 

sentences with two classes. We use 80% of the data 

for model training and remaining 20% for testing. 

A 5-fold cross validation result is presented since a 

pre-defined test and train split is not available. 

AG News dataset is a four-class dataset where 

the task is to classify the sentence into ‘world’, 

‘sports’, ‘business’, ‘science and tech’. This 

dataset has two parts: title and description, but we 

only considered the title for text classification. The 

dataset contains 120000 training and 7600 test 

samples. 

4.2 Spelling Error Dictionaries 

There are two broad sources of misspellings, 

namely phonetic and typographic. We use the 

following two reference dictionaries which focus 

on these two kinds of misspellings. 

The Wikipedia1 misspelling dictionary contains 

2,455 misspellings of 1,922 words. This is a list of 

common misspellings made by Wikipedia editors. 

This dictionary focuses mainly on the typographic 

misspellings, but also includes several common 

phonetic based spelling errors. 

The Aspell2 dictionary contains 531 

misspellings of 450 words. This dataset focusses 

on phonetic misspellings. Aspell begins by 

converting the misspelt word to its sounds-like 

equivalent using Metaphone and moves on to find 

all words that have a sounds-like within one or two 

edit distances from the original word’s sounds-

like. These sounds-like words are the basis for the 

suggestions of Aspell. This is derived by Atkinson2 

for testing the GNU Aspell spellchecker.  

5 Results 

The reference model of Sutskever (2014) 

described in the sections above with GloVe and 

Word2vec embedding vectors used as the input 

word vectors has been compared with the proposed 

word embedding on the three standard sentence 

classification datasets as described in the Table 1.  

The main purpose of this experiment is to prove 

the performance of the proposed word embedding 

using sub-words with a word-based RNN sequence 

learning architecture. 

The performance of the proposed input word 

embedding applied to the reference architecture is 

comparable to the performance with the 

Pennington (2014) and Mikolov (2010) input 

embedded vectors. This illustrates the suitability of 

the sub-word embedding for use with deep neural 

networks.  

The accuracies shown in Table 1 above are used 

as benchmarks for our further investigation into the 

capacity of the various types of input embedded 

vectors to deal with misspellings and tokenization 

errors. 

The Wikipedia misspelling dictionary mainly 

focusses on typographic misspellings. The 

different datasets are also differently prone to 

spelling errors. In the case of Subj dataset, 964 out 

of 1000 test sentences are modified, but a majority 

of these misspellings are words like ‘the’ and ‘and’, 

which are typically less likely to affect the 

classification result. However, 40% of the MPQA 

test set is modified and about 29% of the AG News 

data set is modified by the Wikipedia misspelling 

dictionary. This serves to illustrate the need to deal 

with misspellings as part of any commercial 

application.  

The results in Table 2 show that the proposed 

approach is always better than the reference 

embedded vectors at dealing with the UNK 

problem arising due to spelling errors. In certain 

cases, the improvement is marginal (Subj: ~1%) 

Dataset 

Misspelling Dictionary : Wikipedia 

Changed Data GloVe Word2vec 
Sub-word 

embedding 

subj 964/1000 79.72 78 81.3 

MPQA 401/1000 66.62 66.66 87.3 

AGNews 2201/7600 83.3 82.7 86.3 

Table 2: Comparison of reference distributions 

with proposed approach on standard datasets with 

misspellings from Wikipedia 

 

 

1 http://www.dcs.bbk.ac.uk/~ROGER/wikipedia.dat 
2 http://aspell.sourceforge.net/ 

 

Dataset 
Test Set 

Size 

Standard Data Set 

GloVe Word2vec 
Sub-word 

embedding 

subj 1000 85.68 86 84.58 

MPQA 1000 89.8 89.8 89.8 

AGNews 7600 87.2 87.5 87.5 

Table 1: Comparison of reference distributions with 

proposed approach on standard datasets 
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whereas in the best case (MPQA), a huge 

improvement of over 20% is observed. These 

results indicate that the proposed approach is 

significantly better at dealing with UNKs arising 

due to typographic misspellings. 

The Aspell misspelling dictionary mainly 

focusses on phonetic misspellings. Similar to the 

discussion above, the different datasets show 

varying susceptibility to spelling errors. Applying 

the misspellings from the Aspell dictionary results 

in 12% and 14% of the MPQA and AG News test 

sets being modified respectively. In the case of the 

Subj dataset, a much larger 86% of the 1000 test 

sentences are modified. 

The results in Table 3 show that GloVe and 

Word2vec word representations show a drop in 

performance due to misspellings for all 3 datasets 

ranging from 3% in the case of AG News to 19% 

in the case of MPQA dataset and that the proposed 

approach is better than the reference embedded 

vectors at dealing with the UNK problem arising 

due to phonetic spelling errors in all cases. 

Table 4 compares the performance of the 

proposed approach on the datasets modified with 

misspellings with the best accuracy out of any of 

the three word representations on the original 

dataset without misspellings. The purpose of this 

comparison is to measure the extent to which the 

proposed approach addresses the problem of 

spelling errors.  

In most of the cases, only a minor drop in 

accuracy is observed ranging from 0.7% to 2.4%. 

The only outlier is the Wikipedia dictionary 

modified SUBJ dataset where a significant drop of 

over 4.7% is seen. Detailed analysis shows that the 

most common spelling modifications in this 

dataset are the words ‘the’ and ‘and’ which the sub-

word based representation doesn’t deal with well 

as the number of sub-words for very short words 

are too less to have a significant impact in 

generating the word vectors. Some more specific 

situations which are not handled well by the 

proposed approach are discussed in the following 

section along with the direction our future work 

will take to address these problems. 

Overall, the performance of the proposed 

approach is close enough to the performance on the 

original datasets without misspellings to indicate 

that the proposed approach is not only comparable 

to the state-of-the-art when applied to deep 

learning architectures but also solves the UNK 

problems arising due to typographic and phonetic 

misspellings to a significant extent. 

6 Discussion 

It is seen that 7% of the attendees of the TOEFL3 

examination, a test of English, tend to make 

spelling errors, even in an environment where the 

sole focus is correctness of grammar and language. 

Our study of internal data from a Voice Assistant 

applications indicates that in excess of 25% of all 

data input using a typing interface contains errors 

in spelling and word breaks. This illustrates the 

need for a method to handle spelling errors 

gracefully and reliably, especially for more natural 

AI applications. 

The major motivation to conduct the 

investigations presented in this work was to come 

up with a technique to deal with the misspelling 

problem which is inherently present in multi-

modal voice assistants where the primary input 

paradigm is speech, which is not prone to 

misspellings at all, and the secondary modality is a 

typing interface which is quite prone to spelling 

and word segmentation errors. The goal was to use 

a technique wherein the models trained on well-

formed data are robust to errors in spelling rather 

than to implement a relatively clumsy rule-based 

preprocessing module which would attempt to 

Datasets 
Best Accuracy  

(without misspelling) 

Proposed Approach  

(Wikipedia misspelling) 

Proposed Approach  

(Aspell misspelling) 

SUBJ 86 81.3 84.58 

MPQA 89.8 87.3 89 

AG news 87.5 86.3 86.79 

Table 4: Comparison of proposed approach on 

misspelled data with best accuracy on original 

datasets 

 

3 https://www.researchgate.net/figure/Average-percent-

of-misspelled-words-per-essay-by-NS-NNS-and-score-

panel-A-GRE-data_fig3_277584335 

Dataset 

Misspelling Dictionary : Aspell 

Changed Data GloVe Word2vec 
Sub-word 

embedding 

subj 859/1000 81.75 80.56 83.8 

MPQA 145/1000 70.69 70.6 89 

AG News 970/7600 84.5 83.3 86.79 

Table 3: Comparison of reference distributions with 

proposed approach on standard datasets vs 

misspellings from Aspell 
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correct misspellings but would tend to be 

unreliable by nature. 

A study of the misspelling dictionaries and the 

substitutions made to the standard datasets using 

these dictionaries gives further clarity on the 

various types of spelling errors commonly seen. 

The first level classification of the types of spelling 

errors is typographical and phonetic. 

Typographical errors consist mainly of omission, 

addition or swapping of characters. All these three 

cases seem to be handled reasonably well using the 

sub-words approach to construct word vectors. The 

second major category of phonetic misspellings 

consists mainly of replacement of characters by 

other similar characters such as ‘destruction’ vs 

‘distruction’ and so on. Other common errors of 

this kind are incorrect usage of double consonants, 

‘ei’ instead of ‘ie’ and so on. The majority of these 

cases are also handled well by the sub-word based 

word representations. One of the observations 

while analyzing the drop in accuracy of the models 

on the misspelled datasets is that misspellings 

towards the middle of the word are not dealt with 

as well as misspellings near either end of the words 

since more number of sub-words are affected in 

this case. We are currently working on some 

improvements to the word representations to 

overcome this problem. 

7 Conclusion 

The work in this paper demonstrates that input 

embedded vectors which incorporate sub-word 

information and are learnt through a shallow 

network are well-suited for use with sequence 

aware deep learning networks. It also showcases 

the effectiveness of such a configuration in dealing 

with various common types of spelling errors 

arising due to both typographic as well as due to 

phonetic reasons. The results showing that the 

accuracy of the proposed configuration on the 

standard datasets with misspellings is comparable 

to the best performance on the misspelling free 

datasets indicate that the proposed configuration 

almost entirely solves the problem of spelling 

errors.  

The proposed work is especially suited for use 

is multi-modal applications as it not only 

seamlessly handles spelling errors but performs as 

well as state-of-the-art systems on correctly spelled 

inputs. One example of such a real-world 

application is a multi-modal voice assistant which 

allows textual input in addition to speech input. 

Modern multi-modal voice assistants attempt to 

support a very wide range of complex functionality 

for which deep learning networks are a natural 

choice and will greatly benefit from an input 

embedding which seamlessly handles 

misspellings. Moreover, the approach used to 

construct these input embedded vectors also 

handles morphological variance and is applicable 

across languages. 

This work also establishes the similarity in 

nature between morphological variance and 

spelling or tokenization errors wherein the unseen 

word is both semantically and superficially similar 

to an actual seen word, and therefore 

improvements made in dealing with one are likely 

to be beneficial in dealing with the other. This 

opens up the possibility of a wide area of research 

as this work proves a significant overlap between 

two problem statements which were hitherto 

perceived to be different. 

8 Future Work 

Our future work will focus on proving the 

applicability of the proposed approach across 

languages by extending the experiments conducted 

here to more languages. 

Another line of research we are pursuing 

focusses on improving the method of selecting 

sub-words in order to deal better with certain kinds 

of morphological variance and spelling errors, 

such as omission of a character in the middle of a 

long word, which this proposed approach doesn’t 

deal with well in some cases. 

We also intend to improve this approach to be 

robust to other variance arising from other forms 

of textual input such as text messages, tweets and 

so on. 
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Abstract
Fake news, rumor, incorrect information, and
misinformation detection are nowadays cru-
cial issues as these might have serious con-
sequences for our social fabrics. Such infor-
mation is increasing rapidly due to the avail-
ability of enormous web information sources
including social media feeds, news blogs, on-
line newspapers etc. In this paper, we de-
velop various deep learning models for de-
tecting fake news and classifying them into
the pre-defined fine-grained categories. At
first, we develop individual models based on
Convolutional Neural Network (CNN), and
Bi-directional Long Short Term Memory (Bi-
LSTM) networks. The representations ob-
tained from these two models are fed into
a Multi-layer Perceptron Model (MLP) for
the final classification. Our experiments on
a benchmark dataset show promising results
with an overall accuracy of 44.87%, which
outperforms the current state of the arts.

1 Introduction

“We live in a time of fake news-
things that are made up and manufac-
tured.” Neil Portnow.

Fake news, rumors, incorrect information, mis-
information have grown tremendously due to the
phenomenal growth in web information. During
the last few years, there has been a year-on-year
growth in information emerging from various so-
cial media networks, blogs, twitter, facebook etc.
Detecting fake news, rumor in proper time is very
important as otherwise, it might cause damage to
social fabrics. This has gained a lot of interest
worldwide due to its impact on recent politics and
its negative effects. In fact, Fake News has been
named as 2017’s word of the year by Collins dic-
tionary1.

1 http://www.thehindu.com/books/fake-news-named-

Many recent studies have claimed that US elec-
tion 2016 was heavily impacted by the spread of
Fake News. False news stories have become a part
of everyday life, exacerbating weather crises, po-
litical violence, intolerance between people of dif-
ferent ethnics and culture, and even affecting mat-
ters of public health. All the governments around
the world are trying to track and address these
problems. On 1st Jan, 2018, bbc.com published
that ”Germany is set to start enforcing a law that
demands social media sites move quickly to re-
move hate speech, fake news, and illegal material.”
Thus it is very evident that the development of au-
tomated techniques for detection of Fake News is
very important and urgent.

1.1 Problem Definition and Motivation

Fake News can be defined as completely mislead-
ing or made up information that is being intention-
ally circulated claiming as true information. In
this paper, we develop a deep learning based sys-
tem for detecting fake news.

Deception detection is a well-studied problem
in Natural Language Processing (NLP) and re-
searchers have addressed this problem quite ex-
tensively. The problem of detecting fake news in
our everyday life, although very much related to
deception detection, but in practice is much more
challenging and hard, as the news body often con-
tains a very few and short statements. Even for
a human reader, it is difficult to accurately dis-
tinguish true from false information by just look-
ing at these short pieces of information. Develop-
ing suitable hand engineered features (for a classi-
cal supervised machine learning model) to identify
fakeness of such statements is also a technically
challenging task. In contrast to classical feature-
based model, deep learning has the advantage in

word-of-the-year-2017/article19969519.ece
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the sense that it does not require any handcrafting
of rules and/or features, rather it identifies the best
feature set on its own for a specific problem. For
a given news statement, our proposed technique
classifies the short statement into the following
fine-grained classes: true, mostly-true, half-true,
barely-true, false and pants-fire. Example of such
statements belonging to each class is given in Ta-
ble 1 and the meta-data related to each of the state-
ments is given in Table 2.

1.2 Contributions

Most of the existing studies on fake news detec-
tion are based on classical supervised model. In
recent times there has been an interest towards de-
veloping deep learning based fake news detection
system, but these are mostly concerned with bi-
nary classification. In this paper, we attempt to
develop an ensemble based architecture for fake
news detection. The individual models are based
on Convolutional Neural Network (CNN) and Bi-
directional Long Short Term Memory (LSTM).
The representations obtained from these two mod-
els are fed into a Multi-layer Perceptron (MLP) for
multi-class classification.

1.3 Related Work

Fake new detection is an emerging topic in Natu-
ral Language Processing (NLP). The concept of
detecting fake news is often linked with a vari-
ety of labels, such as misinformation (Fernandez
and Alani, 2018), rumor (Chen et al., 2017), de-
ception (Rubin et al., 2015), hoax (Tacchini et al.,
2017), spam (Eshraqi et al., 2015), unreliable news
(Duppada, 2018), etc. In literature, it is also ob-
served that social media (Shu et al., 2017) plays
an essential role in the rapid spread of fake con-
tents. This rapid spread is often greatly influenced
by social bots (Bessi and Ferrara, 2016). It has
been some time now since AI, ML, and NLP re-
searchers have been trying to develop a robust au-
tomated system to detect Fake/ Deceptive/ Mis-
leading/ Rumour news articles on various online
daily access media platforms. There have been
efforts to built automated machine learning algo-
rithm based on the linguistic properties of the arti-
cles to categorize Fake News. Castillo et al. (2011)
in their work on social media (twitter) data showed
that information from user profiles can be useful
feature in determining veracity of news. These

features were later also used by Gupta et al. (2014)
to build a real-time system to access credibility of
tweets using SVM-rank. Researchers have also at-
tempted to use Rule-Based and knowledge driven
techniques to track the problem. Zhou et al. (2003)
in their work showed that deceptive senders have
certain linguistic cues in their text. The cues are
higher quantity, complexity, non-immediacy, ex-
pressiveness, informality, and affect; and less di-
versity, and specificity of language in their mes-
sages. Methods based on Information Retrieval
from web were also proposed to verify authen-
ticity of news articles. Banko et al. (2007) in
their work extracted claims from web to match
with that of a given document to find inconsisten-
cies. To deal with the problem further, researchers
have also tried to seek deep learning strategies
in their work. Bajaj (2017) in his work applied
various deep learning strategies on dataset com-
posed of fake news articles available in Kaggle2

and authentic news articles extracted from Signal
Media News3 dataset and observed that classifiers
based on Gated Recurrent Unit (GRU), Long Short
Term Memory (LSTM), Bi-directional Long Short
Term Memory (Bi-LSTM) performed better than
the classifiers based on CNN. Ma et al. (2016) in
their work, focused on developing a system to de-
tect Rumor at EVENT level rather than at individ-
ual post level. The approach was to look at a set
of relevant posts to a event at a given time interval
to predict veracity of the event. They showed that
use of recurrent networks are particularly useful
in this task. Dataset from two different social me-
dia platform, Twitter, and Weibo were used. Chen
et al. (2017) further built on the work of Ma et al.
(2016) for early detection Rumors at Event level,
using the same dataset. They showed that the use
of attention mechanism in recurrent network im-
proves the performance in terms of precision, and
recall measure, outperforming every other exist-
ing model for detecting rumor at an early stage.
Castillo et al. (2011) used social media dataset
(which is also used by Ma et al. (2016) for Rumor
Detection) and developed a hybrid deep learning
model which showed promising performance on
both Twitter data and Weibo data. They showed
that both, capturing the temporal behavior of the
articles as well as learning source characteristics
about the behavior of the users, are essential for

2https://www.kaggle.com/mrisdal/fake-news
3http://research.signalmedia.co/newsir16/signal-

dataset.html
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Table 1: Example statement of each class.

Ex Statement (St) Label

1 McCain opposed a requirement that the government buy American-made motorcycles. And he said
all buy-American provisions were quote ’disgraceful.’

T

2
Almost 100,000 people left Puerto Rico last year.

MT

3 Rick Perry has never lost an election and remains the only person to have won the Texas
governorship three times in landslide elections.

HT

4 Mitt Romney wants to get rid of Planned Parenthood. BT
5 I dont know who (Jonathan Gruber) is. F
6 Transgender individuals in the U.S. have a 1-in-12 chance of being murdered. PF

Table 2: Meta-data related to each example. P, F, B, H, M is speaker’s previous count of Pants-fire, False, Barely-
true, Half-true, Mostly-true respectively.

Ex St
Type Spk Spk’s

Job State Party P F B H M Context

1 federal-budget barack-obama President Illinois democrat 70 71 160 163 9 a radio ad

2
bankruptcy,
economy,
population

jack-lew
Treasury
secretary

Washington,
D.C.

democrat 0 1 0 1 0
an interview

with
Bloomberg

News

3
candidates-
biography

ted-nugent musician Texas republican 0 0 2 0 2 an oped
column.

4

abortion,
federal-
budget,

health-care

planned-
parenthood
-action-fund

Advocacy
group

Washington,
D.C.

none 1 0 0 0 0 a radio ad

5 health-care nancy-pelosi
House

Minority
Leader

California democrat 3 7 11 2 3
a news

conference

6

corrections-
and-

updates,
crime,

criminal
-justice,
sexuality

garnet-
coleman

president,
ceo of

Apartments
for America,

Inc.

Texas democrat 1 0 1 0 1
a committee

hearing

fake news detection. Further integrating these two
elements improves the performance of the classi-
fier.

Problems related to these topics have mostly
been viewed concerning binary classification.
Likewise, most of the published works also has
viewed fake news detection as a binary classifica-
tion problem (i.e., fake or true). But by observing
very closely it can be seen that fake news articles
can be classified into multiple classes depending
on the fakeness of the news. For instance, there
can be certain exaggerated or misleading informa-
tion attached to a true statement or news. Thus,
the entire news or statement can neither be ac-
cepted as completely true nor can be discarded

as entirely false. This problem was addressed by
Wang (2017) where they introduced Liar dataset
comprising of a substantial volume of short polit-
ical statements having six different class annota-
tions determining the amount of fake content of
each statement. In his work, he showed compara-
tive studies of several statistical and deep learning
based models for the classification task and found
that the CNN model performed best. Long et al.
(2017) in their work used the Liar dataset, and
proposed a hybrid attention-based LSTM model
for this task, which outperformed W.Yang’s hybrid
CNN model, establishing a new state-of-the-art.

In our current work we propose an ensemble
architecture based on CNN (Kim, 2014) and Bi-
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LSTM (Hochreiter and Schmidhuber, 1997), and
this has been evaluated on Liar (Wang, 2017)
dataset. Our proposed model tries to capture the
pattern of information from the short statements
and learn the characteristic behavior of the source
speaker from the different attributes provided in
the dataset, and finally integrate all the knowledge
learned to produce fine-grained multi-class classi-
fication.

2 Methodology

We propose a deep multi-label classifier for clas-
sifying a statement into six fine-grained classes of
fake news. Our approach is based on an ensemble
model that makes use of Convolutional Neural
Network (CNN) (Kim, 2014) and Bi-directional
Long Short Term Memory (Bi-LSTM) (Hochre-
iter and Schmidhuber, 1997). The information
presented in a statement is essentially sequential
in nature. In order to capture such sequential
information we use Bi-LSTM architecture. Bi-
LSTM is known to capture information in both
the directions: forward and backward. Identifying
good features manually to separate true from
fake even for binary classification, is itself, a
technically complex task as human expert even
finds it difficult to differentiate true from the fake
news. Convolutional Neural Network (CNN) is
known to capture the hidden features efficiently.
We hypothesize that CNN will be able to detect
hidden features of the given statement and the
information related to the statements to eventually
judge the authenticity of each statement. We
make an intuition that both- capturing temporal
sequence and identifying hidden features, will be
necessary to solve the problem. As described in
data section, each short statement is associated
with 11 attributes that depict different information
regarding the speaker and the statement. After
our thorough study we identify the following
relationship pairs among the various attributes
which contribute towards labeling of the given
statements.

Relation between: Statement and Statement
type, Statement and Context, Speaker and Party,
Party and Speaker’s job, Statement type and Con-
text, Statement and State, Statement and Party,
State and Party, Context and Party, Context and
Speaker.

To ensure that deep networks capture these re-

Figure 1: A relationship network layer. Ax and Ay are
two attributes, Mi and Mj are two individual models,
Networkn is a representation of a network capturing a
relationship

lations we propose to feed each of the two at-
tributes, say Ax and Ay, of a relationship pair into
a separate individual model say Mi and Mj re-
spectively. Then, concatenate the output of Mi

and Mj and pass it through a fully connected
layer to form an individual relationship network
layer say Networkn representing a relation. Fig.
1 illustrates an individual relationship network
layer. Eventually after capturing all the rela-
tions we group them together along with the five-
column attributes containing information regard-
ing speaker’s total credit history count. In addi-
tion to that, we also feed in a special feature vec-
tor that is proposed by us and is to be formed us-
ing the count history information. This vector is a
five-digit number signifying the five count history
columns, with only one of the digit being set to
’1’ (depending on which column has the highest
count) and the rest of the four digits are set to ’0’.
The deep ensemble architecture is depicted in Fig.
2.

2.1 Bi-LSTM

Bidirectional LSTMs are the networks with LSTM
units that process word sequences in both the di-
rections (i.e. from left to right as well as from right
to left). In our model we consider the maximum
input length of each statement to be 50 (average
length of statements is 17 and the maximum length
is 66, and only 15 instances of the training data of
length greater than 50) with post padding by zeros.
For attributes like statement type, speaker’s job,
context we consider the maximum length of the
input sequence to be 5, 20, 25, respectively. Each
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input sequence is embedded into 300-dimensional
vectors using pre-trained Google News vectors
(Mikolov et al., 2013) (Google News Vectors
300dim is also used by Wang (2017) for embed-
ding). Each of the embedded inputs are then fed
into separate Bi-LSTM networks, each having 50
neural units at each direction. The output of each
of these Bi-LSTM network is then passed into
a dense network of 128 neurons with activation
function as ’ReLU’.

2.2 CNN

Over the last few years many experimenters has
shown that the convolution and pooling functions
of CNN can be successfully used to find out hid-
den features of not only images but also texts. A
convolution layer of n×m kernel size will be used
(where m-size of word embedding) to look at n-
grams of words at a time and then a MaxPooling
layer will select the largest from the convoluted
inputs.The attributes, namely speaker, party, state
are embedded using pre-trained 300-dimensional
Google News Vectors (Mikolov et al., 2013) and
then the embedded inputs are fed into separate
Conv layers.The different credit history counts the
fake statements of a speaker and a feature pro-
posed by us formed using the credit history counts
are directly passed into separate Conv layers.

2.3 Combined CNN and Bi-LSTM Model

The representations obtained from CNN and Bi-
LSTM are combined together to obtain better per-
formance.

The individual dense networks following the
Bi-LSTM networks carrying information about
the statement, the speaker’s job, context are re-
shaped and then passed into different Conv layers.
Each convolution layer is followed by a Maxpool-
ing layer, which is then flattened and passed into
separate dense layers. Each of the dense layers
of different networks carrying different attribute
information are merged, two at a time-to capture
the relations among the various attributes as men-
tioned at the beginning of section 2. Finally, all
the individual networks are merged together and
are passed through a dense layer of six neurons
with softmax as activation function as depicted in.
The classifier is optimized using Adadelta as opti-
mization technique with categorical cross-entropy
as the loss function.

Figure 2: Deep Ensemble architecture

3 Data

We use the dataset, named LIAR (Wang, 2017),
for our experiments. The dataset is annotated with
six fine-grained classes and comprises of about
12.8K annotated short statements along with vari-
ous information about the speaker. The statements
which were mostly reported during the time inter-
val [2007 to 2016], are considered for labeling by
the editors of Politifact.com. Each row of the data
contains a short statement, a label of the statement
and 11 other columns correspond to various infor-
mation about the speaker of the statement. De-
scriptions of these attributes are given below:

1. Label: Each row of data is classified into six
different types, namely

(a) Pants-fire (PF): Means the speaker has
delivered a blatant lie .

(b) False (F): Means the speaker has given
totally false information.

(c) Barely-true (BT): Chances of the state-
ment depending on the context is hardly
true. Most of the contents in the state-
ments are false.

(d) Half-true (HT): Chances of the content
in the statement is approximately half.

(e) Mostly-true (MT): Most of the con-
tents in the statement are true.

(f) True (T): Content is true.

2. Statement by the politician: This statement
is a short statement.

3. Subjects: This corresponds to the content of
the text. For examples, foreign policy, educa-
tion, elections etc.

4. Speaker: This contains the name of the
speaker of the statement.
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5. Speaker’s job title: This specifies the posi-
tion of the speaker in the party.

6. State information: This specifies in which
state the statement was delivered.

7. Party affiliation: This denotes the name of
the party of the speaker belongs to.

8. The next five columns are the counts of the
speaker’s statement history. They are:

(a) Pants fire count;
(b) False count;
(c) Barely true count;
(d) Half false count;
(e) Mostly true count.

9. Context: This corresponds to the venue or
location of the speech or statement.

The dataset consists of three sets, namely a train-
ing set of 10,269 statements, a validation set of
1,284 statements and a test set of 1,266 statements.

4 Experiments and Results

In this section, we report on the experimental
setup, evaluation results, and the necessary anal-
ysis.

4.1 Experimental Setup
All the experiments are conducted in a python en-
vironment. The libraries of python are required for
carrying out the experiments are Keras, NLTK,
Numpy, Pandas, Sklearn. We evaluate the per-
formance of the system in terms of accuracy, pre-
cision, recall, and F-score metrics.

4.2 Results and Analysis
We report the evaluation results in Table 3 that also
show the comparison with the system as proposed
by Wang (2017) and Long et al. (2017).

Table 3: Overall evaluation results

Model Network Attributes taken Accuracy
William Yang Wang (2017) Hybrid CNN All 0.274

Y. Long (2017) Hybrid LSTM All 0.415
Bi-LSTM Model Bi-LSTM All 0.4265

CNN Model CNN All 0.4289
Our Proposed Model RNN-CNN combined All 0.4487

We depict the overall evaluation results in Ta-
ble 3 along with the other existing models. This
shows that our model performs better than the ex-
isting state-of-the-art model as proposed in Long

Table 4: Evaluation of our different proposed deep
learning models on basis of precision, recall, and F1
score. PF, F, BT, HT, MT, and T are class pants-fire,
fale, barely-true, half-true, mostly-true, and true re-
spectively.

Bi-LSTM model
precision recall F1-score Support

PF 0.73 0.35 0.47 92
F 0.47 0.53 0.50 249
BT 0.58 0.32 0.41 212
HT 0.39 0.46 0.42 265
MT 0.33 0.66 0.44 241
T 0.88 0.14 0.23 207
Avg/Total 0.53 0.43 0.41 1266
CNN model
PF 0.67 0.39 0.49 92
F 0.36 0.63 0.46 249
BT 0.50 0.36 0.42 212
HT 0.42 0.46 0.44 265
MT 0.41 0.49 0.45 241
T 0.70 0.16 0.26 207
Avg/Total 0.48 0.43 0.42 1266
Combined model
PF 0.70 0.43 0.54 92
F 0.45 0.61 0.52 249
BT 0.61 0.32 0.42 212
HT 0.35 0.73 0.47 265
MT 0.50 0.36 0.42 241
T 0.85 0.14 0.24 207
Avg/Total 0.55 0.45 0.43 1266

et al. (2017). This state-of-the-art model was a hy-
brid LSTM, with an accuracy of 0.415. On the
other hand, our proposed model shows 0.4265,
0.4289 and 0.4487 accuracies for Bi-LSTM, CNN
and the combined CNN+Bi-LSTM model, respec-
tively. This clearly supports our assumption that
capturing temporal patterns using Bi-LSTM and
hidden features using CNN are useful, channeliz-
ing each profile attribute through a different neu-
ral layer is important, and the meaningful combi-
nation of these separate attribute layers to capture
relations between attributes, is effective.

We also report the precision, recall and F-score
measures for all the models. Table 4 depicts the
evaluation results on the test data of our proposed
CNN, Bi-LSTM and CNN and Bi-LSTM com-
bined models. The evaluation shows that on the
precision measure the combined model performs
best with an average precision of 0.55 while that
of Bi-LSTM model is 0.53 and CNN model is
0.48. The combined model of CNN and Bi-LSTM
even performs better with respect to recall and
F1-Score measures. The combined model yields
the average recall of 0.45 and average F1-score
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Table 5: Confusion matrix of our different proposed
models on Test data. PF, F, BT, HT, MT, and T are class
pants-fire, fale, barely-true, half-true, mostly-true, and
true respectively.

Bi-LSTM model
Actual\Predicted PF F BT HT MT T

PF 32 35 3 8 14 0
F 4 131 16 36 59 3

BT 5 31 68 48 60 0
HT 0 38 8 123 95 1
MT 1 20 8 54 158 0
T 2 25 15 47 90 28

CNN model
PF 36 35 6 11 2 2
F 7 156 21 30 28 7

BT 5 66 76 34 29 2
HT 2 75 14 123 48 3
MT 1 53 17 51 119 0
T 3 44 18 44 65 33

Combined model
PF 40 34 4 10 4 0
F 7 152 10 67 11 2

BT 4 48 68 83 9 0
HT 0 43 7 193 20 2
MT 2 31 9 112 86 1
T 4 31 13 89 41 29

of 0.43 while that of Bi-LSTM model is 0.43 and
0.41, respectively and of the CNN model is 0.43
and 0.42, respectively. On further analysis, we
observe that although the performance (based on
precision, recall, and F1-score) of each of the
models for every individual class is close to the
average performance, but in case of the prediction
of the class label TRUE the performance of each
model varies a lot from the respective average
value. The precisions of TRUE is promising (Bi-
LSTM model:0.88, CNN model: 0.7, Combined
model:0.85), but the recall (Bi-LSTM model:0.14,
CNN model: 0.16, Combined model:0.14) and
the F1-score (Bi-LSTM model:0.23, CNN model:
0.26, Combined model:0.24) are very poor. This
entails the fact that our proposed model predicts
comparatively less number of instances as TRUE,
but when it does the prediction is very accurate.
Thus it can be claimed that if a statement is pre-
dicted as True by our proposed model then one
can rely on that with high confidence. Although
our model performs superior compared to the
existing state-of-the-art, still the results were not
error free. We closely analyze the models’ outputs
to understand their behavior and perform both
quantitative as well as qualitative error analysis.
For quantitative analysis, we create the confusion

matrix for each of our models. Confusion matrix
corresponding to the experiment with proposed
Bi-LSTM model, corresponding to experiment
with proposed CNN model, and corresponding to
our final experiment i.e with proposed RNN-CNN
combined model is given in Table 5.

From these quantitative analysis it is seen
that in majority of the cases the test data state-
ments originally labeled with Pants-Fire class
gets confused with the False class, statements
originally labeled as False gets confused with
Barely true and half true classes, statements
originally labeled as Half true gets confused
with Mostly True and False class, statements
originally labeled as Mostly true gets confused
with Half True, statements originally labeled
with True gets confused with Mostly True class.

It is quite clear that errors were mostly con-
cerned with the classes, overlapping in nature.
Confusion is caused as the contents of the state-
ments belonging to these classes are quite similar.
For example, the difference between ’Pants-Fire’
and ’False’ class is that only the former class
corresponds to the false information with more
intensity. Likewise ’Half True’ has high similarity
to ’False’, and ’True’ with ’Mostly True’. The
difference between ‘True’ and ‘Mostly True’ is
that the later class has some marginal amount of
false information, while the former does not.

For qualitative analysis, we closely look at the
actual statements and try to understand the causes
of misclassifications. We come up with some in-
teresting facts. There are some speakers whose
statements are not present in the training set, but
are present in the test set. For few of these state-
ments, our model tends to produce wrong answers.
Let us consider the example given in Table 6. For
this speaker, there is no training data available and
also the count history of the speaker is very less.
So our models assign an incorrect class. But it is to
be noted that even if there is no information about
the speaker in the training data and the count his-
tory of the speaker is almost empty, still we are
able to generate a prediction of a class that is close
to the original class in terms of meaning.

It is also true that classifiers often make mis-
takes in making the fine distinction between the
classes due to the insufficient number of training
instances. Thus, classifiers tend to misclassify the
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Table 6: Sample text with wrongly predicted label and original label. Spk is speaker, and P, F, B, H, M is speaker’s
previous count of Pants-fire, False, Barely-true, Half-true, Mostly-true respectively.

Label Statement St
Type Spk Spk’s

Job State Party Context P F B H M Predicted
Label

barely-true

We know there are
more Democrats
in Georgia than

Republicans. We know that for
a fact.

elections
mike-
berlon

none Georgia democrat an article 1 0 0 0 0 False

instances into one of the nearby (and overlapped)
classes.

5 Conclusion and Future Works

In this paper, we have tried to address the prob-
lem of fake News detection by looking into short
political statements made by the speakers in differ-
ent types of daily access media. The task was to
classify any statement into one of the fine-grained
classes of fakeness. We have built several deep
learning models, based on CNN, Bi-LSTM and
the combined CNN and Bi-LSTM model. Our
proposed approaches mainly differ from previ-
ously mentioned models in system architecture,
and each model performs better than the state of
the art as proposed by Long et al. (2017), where
the statements were passed through one LSTM
and all the other details about speaker’s profile
through another LSTM. On the other hand, we
have passed every different attribute of speaker’s
profile through a different layer, captured the rela-
tions between the different pairs of attributes by
concatenating them. Thus, producing a mean-
ingful vector representation of relations between
speaker’s attributes, with the help of which we ob-
tain the overall accuracy of 44.87%. By further
exploring the confusion matrices we found out that
classes which are closely related in terms of mean-
ing are getting overlapped during prediction. We
have made a thorough analysis of the actual state-
ments, and derive some interesting facts. There are
some speakers whose statements are not present in
the training set but present in the test set. For some
of those statements, our model tends to produce
the wrong answers. This shows the importance of
speakers’ profile information for the task. Also as
the classes and the meaning of the classes are very
near, they tend to overlap due to less number of
examples in training data.

We would like like to highlight some of the pos-
sible solutions to solve the problems that we en-
countered while attempted to solve fake news de-
tection problem in a more fine-grained way.

• More labeled data sets are needed to train
the model more accurately. Some semi-
supervised or active learning models might
be useful for this task.

• Along with the information of a speaker’s
count history of lies, the actual statements
are also needed in order to get a better un-
derstanding of the patterns of the speaker’s
behavior while making a statement.

Fake news detection into finely grained classes
that too from short statements is a challenging but
interesting and practical problem. Hypothetically
the problem can be related to Sarcasm detection
(Joshi et al., 2017) problem. Thus it will also be
interesting to see the effect of implementing the
existing methods that are effective in sarcasm de-
tection domain in Fake News detection domain.
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Abstract 

Thirukkural is one of the famous Tamil 

Literatures in the world. It was written by 

Thiruvalluvar, and focuses on ethics and 

morality. It provides all possible solutions to 

lead a successful and a peaceful life fitting 

any generation. It has been translated into 

82 global languages, which necessitate the 

access of Thirukkural in any language on 

the World Wide Web (WWW) and 

processing the Thirukkural 

computationally. This paper aims at 

constructing the Thirukkural Discourse 

Parser which finds the semantic relations in 

the Thirukkurals which can extract the 

hidden meaning in it and help in utilizing 

the same in various Natural Language 

Processing (NLP) applications, such as, 

Summary Generation Systems, Information 

Retrieval (IR) Systems and Question 

Answering (QA) Systems. Rhetorical 

Structure Theory (RST) is one of the 

discourse theories, which is used in NLP to 

find the coherence between texts. This 

paper finds the relation within the 

Thriukkurals and the discourse structure is 

created using the Thirukkural Discourse 

Parser. The resultant discourse structure of 

Thirukkural can be indexed and further be 

used by Summary Generation Systems, IR 

Systems and QA Systems. This facilitates 

the end user to access Thirukkural on 

WWW and get benefited. This Thirukkural 

Discourse Parser has been tested with all 

1330 Thirukurals using precision and recall.  

1 Introduction 

Tamil literature has so many nuggets hidden in it 

which need to be explored for the goodness of the 

society. One of the ways to explore the Tamil 

literature is to make it easily accessible on the 

World Wide Web (WWW).  For instance, 

Thirukkural is one of the famous Tamil literatures 

in the world and it is respected by people across 

the globe. In order to make it to reach to all 

people, it should be made available on the web. 

This makes necessary to process it 

computationally. Hence, this paper proposes a 

methodology to perform a discourse analysis of 

Thirukkural, which aids in exploring its semantics 

and also organizing it on the web. 

Natural Language Processing (NLP) is the 

process of interaction between computer and 

human or natural languages. Analysis of text can 

be done at various levels namely, word, clause, 

sentence, paragraph and document. Discourse 

analysis is used for analyzing the text beyond the 

clause level. The proposed work attempts to 

extract the relations found within the Thirukkural.  

Discourse structure of a text can be built by 

using a popular theory called, Rhetorical 

Structure Theory (RST) (Thompson and Mann, 

1987; Mann and Thompson, 1988). Using RST-

based discourse relations, the RST captures the 

coherence among the Natural Language (NL) text 

spans. The coherence can be found between two 

or more text fragments. The text fragments could 

be within a sentence, across sentences, across 

paragraphs and even across documents.  

In this paper, each Thirukkural is considered 

as a sentence and discourse parser is built using 

RST. The contributions of this paper are twofold. 

1) Finding feature set using rule based 

approach. 

2) Building Discourse parser by identifying 

discourse relations. 
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The rest of the paper is organized as follows. 

Section 2 describes background details. Section 3 

describes the related work. Section 4 discusses the 

proposed work. Section 5 gives details on the 

evaluation of the proposed technique. Section 6 

presents the conclusion and future works. 

2 Background  

This section describes about the Thirukkural and 

the basics of RST based Discourse Parsing. 

2.1. Thirukkural 

Thirukkural consists of 1330 couplets or 

Thirukkurals. They are classified into three 

sections and 133 chapters. Each chapter in 

Thirukkural has a specific subject and consists of 

ten couplets or Thirukkurals. A couplet consists 

of two lines. Each Thirukkural or couplet is 

formed with seven cirs (words). First line of the 

couplet consists of four cirs and the second line of 

the couplet consists of three cirs. A single Tamil 

word or a combination of two or more Tamil 

words forms a cir.   

2.2. Rhetorical Structure Theory 

RST is a descriptive theory which focuses on the 

organization of the natural language. It was 

proposed by Bill Mann, Sandy Thompson, and 

Christian Matthiessen at the University of 

Southern California (Thompson and Mann, 1987; 

Mann and Thompson, 1988). It identifies the 

coherence between the text spans using discourse 

relations and forms a discourse structure called 

rhetorical structure. The discourse units are 

Nucleus, Satellite and Discourse Relations. The 

nucleus carries the necessary information and the 

satellite carries the additional information 

supporting the nucleus.  

Discourse relations are organized into three 

categories, namely, subject matter, 

presentational, and multinuclear. In subject 

matter relations, satellite is a request or problem 

posed by the reader, i.e. satisfied or solved by 

nucleus. Elaboration, evaluation and condition 

are some of the subject matter relations. In 

presentational relations, satellite increases 

reader’s inclination in accepting the facts stated in 

nucleus. Antithesis, background and enablement 

are some of the presentational relations. In 

multinuclear relations, two nuclei are connected 

instead of one nucleus and one satellite. 

Conjunction, contrast and sequence are some of 

the multinuclear relations. 

Figure 1 shows an example of how the 

nucleus, satellite, and the discourse relation are 

identified for an English sentence in Example 1.  

Example 1 Raj sings well but he could not win 

the contest. 

Nucleus:                          Raj sings well 

Satellite:                          he could not win the    

                                        contest 

Discourse Relation:        Antithesis 
Figure 1.  NRS Sequence for Example 1. 

In Example 1, the sentence holds antithesis 

relation. It is identified by the signal word but. 

“Raj sings well” is the nucleus, because it 

represents the ideas favored by the author. “He 

could not win the contest” is the satellite, because 

it represents the ideas disfavored by the author.  

These NRS sequences capture the inherent 

semantics in the texts which is applied to the 

Thirukkural couplets by the proposed approach.       

3 Related Work     

Subba and Di (2009) found discourse relations by 

using shift reduce parsing model and WordNet. 

The linguistic cues were used as features. The 

document was analyzed at sentence level. 

Hernault et al. (2010) constructed discourse 

parser by building discourse tree using Support 

Vector Machine Classifier. The document was 

analyzed beyond the sentence level and the 

combination of syntactic and lexical features such 

as words, POS tags and lexical heads were used 

as feature sets. 

Hernault et al. (2010a) used a semi-supervised 

method called Feature Vector Extension for 

discourse relation classification. The method was 

based on the analysis of co-occurring features 

present in unlabelled data, which was then taken 

into account for extending the feature vectors 

given to a classifier. The word pairs, production 

rules from parse trees and Lexico-Syntactic 

context at the border between two units of text 

were used as features for the algorithm. 

Sucheta et al. (2011) identified explicit 

discourse connectives for Penn Discourse Tree 

Bank (PDTB). They proposed shallow discourse 

parsing for performing token level argument 

segmentation. The document was analyzed at 

sentence level. The lexical, syntactic and 

semantic features were used as features.     
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Sucheta et al. (2012) improved a shallow 

discourse parser by using a constraint-based 

method based on conditional random fields and 

the recall was improved. Sucheta, Giuseppe, and 

Richard (2012) constructed a parser which uses 

local constraints and then global constraints.  

They analyzed the text at the inter sentence level 

and they used the lexico-syntactic features. 

Subalalitha and Ranjani Parthasarathi (2013) 

used Tamil and Sanskrit literature concepts called 

suthras and sangatis, along with the current-day 

text processing theories namely, RST, Universal 

Networking Language for identifying semantic 

indices for Tamil documents. Suthras are used for 

representing the text in a crisp manner. 

Sobha et al. (2014) and Sobha and Patnaik 

(2004) proposed automatic identification of 

connectives and their arguments for the Indian 

languages Hindi, Malayalam and Tamil. They 

used Conditional Random Fields machine 

learning technique. They used 3000 sentences 

from a health domain as a corpus. Sobha et al. 

(2014), annotated the three language corpus, 

namely Tamil Hindi and Malayalam, with the 

discourse relations.  

Lin et al. (2014) constructed an end-to-end 

discourse parser in the PDTB style. Their parser 

identified all discourse and non-discourse 

relations, labeled the arguments, and found the 

sense of relation between arguments. The 

document was analyzed at paragraph level.  The 

lexical, syntactic and semantic features were used 

as features.      

Yangfeng and Jacob (2014) transformed 

surface features into a latent space by using a 

representation learning approach that facilitates 

RST discourse parsing. They used shift reduced 

discourse parser and analyzed the document at 

sentence level.  

Uladzimir et al. (2015) segmented the German 

text for the RST-based discourse parsing.  They 

analyzed the text at sentence level. Parminder et 

al. (2015) proposed document level sentiment 

analysis using RST discourse parsing and 

recursive neural network. They analyzed the text 

at document level and lexical features were used 

as features. 

Subalalitha and Ranjani Parthasarathi (2015) 

found 13 RST Relations in Tamil documents. The 

Naïve Bayes probabilistic classifier machine 

learning algorithm was used and the Tamil 

documents were analyzed beyond the sentence 

level. The high level semantic features were used 

by their discourse parser, which were inherited 

from UNL to construct rhetorical structure trees.  

Manfred et al. (2016) annotated the corpus 

with two theories, namely, RST and Segmented 

Discourse Representation Theory. It was also 

annotated with the argumentation annotation. The 

document was analyzed at sentence level.  The 

syntactic and semantic features were used as 

feature set.  

Yangfeng et al. (2016) proposed a latent 

variable recurrent neural network for finding the 

discourse relation between adjacent sentences. 

They analyzed the text at inter sentence level and 

they have used lexical features. Yangfeng and 

Noah (2017) proposed text categorization by 

using recursive neural network and RST. The 

document was analyzed at sentence level.   

It can be observed that, the existing discourse 

methodologies analyzed the text in English 

documents and expository type Tamil documents. 

This paper proposes a discourse methodology that 

makes use of RST to identify the semantic 

relations/discourse relations from a Tamil 

literature text which lacks a regular pattern for 

semantic analysis. Unlike English which has a 

fixed SVO (Subject Verb Object) sentence 

pattern, Tamil expository texts have either SVO 

or SOV (Subject Object Verb) pattern. Tamil 

literatures on the other side neither follow SOV 

nor SVO pattern. Tamil literatures also have a 

relatively rich set of morphological variants 

(Anand et al., 2010; Goldsmith, 2001). This 

makes the processing of Tamil literature more 

complex than processing the expository Tamil 

documents. This paper focuses on finding 

discourse relations in a Tamil literary work called, 

Thirukkural, which has the structure of classic 

Tamil language poetry form, called venba. Venba 

style Tamil literature consists of lines between 

two and twelve. Expository Tamil documents 

have the cue words in middle of the sentence. It is 

not difficult to find the nucleus satellite 

identification for expository type of texts, 

whereas the cue words in Tamil literature 

specifically in venba style of texts will be present 

in any part of the sentence. If the cue word is 

present in the middle of the Thirukkural couplet, 

it is not difficult to find the nucleus satellite 

identification. If it is present at either end of the 

Thirukkural couplet then it is difficult to find the 

nucleus satellite identification. The proposed 
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Thirukkural Discourse Parser handles these cases 

to an extent which is discussed in the upcoming 

sections. 

4 Proposed Work  

The Tamil Thirukkural couplets are given as 

input. Initially the cue phrases or signal words are 

identified in each Thirukkural. RST based 

discourse relations are identified by Thirukkural 

Discourse Parser based on the cue words and 

semantics. Then the Nucleus and Satellites are 

identified for each Thirukkural.  Finally, the NRS 

sequences are identified as output from the 

Thirukkural Discourse Parser.  

4.1. Feature Sets  

The connectives connecting two clauses of the 

Thirukkural are used as the feature set as they 

signal a discourse relation. An analysis of the 600 

Thirukkural has been done and the feature set for 

each discourse relation has been identified. For 

condition relation, 108 features have been 

identified; for evidence relation, 36 features have 

been identified; for contrast relation, 37 features 

have been identified; for enablement relation, 24 

features have been identified; for background 

relation, 9 features have been identified. The 

feature sets, cue words and signal words are 

interchangeably used in this paper. The part of the 

cue words are appeared in Table 1. For example, 

‘இலவே (Ilave-If not)’, ‘ஆயின் (Ayin-If)’, 

and ‘ஆற்றின் (Arrin-If someone did)’ are some 

of the cue words commonly appeared in 

Thirukkural.  

4.2. Discourse Relation Identification 

 The discourse relations namely, condition, 

evidence, contrast, enablement and background 

are identified by the Thirukkural Discourse 

Parser. A cue word may either be a single word 

which can be explicitly identified by the 

Thirukkural Discourse Parser or it may be a case 

suffix which may have to be split by the 

morphological analyzer (Anandan et al., 2001).   

If the cue words explicitly appear in the 

Thirukkural, then the RST based discourse 

relations are identified using the signal words in 

Table 1. The cue words are given in Tamil along 

with their English transliteration and English 

meaning. 

If the cue words do not explicitly appear in the 

Thirukkural, then the morphological analyzer is 

used for finding the cue words. For example, in 

the word ‘எழுதத்தல்லாம் (Eluttellam-All the 

letters) ’, the cue word ‘எல்லாம் (Ellam- 

Everything)’ is a case suffix and so the 

morphological analyzer is used to isolate the cue 

word (‘எழுதத்ு+ எல்லாம்’). Now the cue 

word ‘எல்லாம் (Ellam- Everything)’ can be 

used for identifying the RST based discourse 

relation. 

S. 

No. 

 

Relation List of Cue words 

1 Condition இலவே (Ilave-If not),   

என்னும் (Ennum- The),  

தெறின் (Perin- If received),  

என்னாம் (Ennam-If),   

ஆயின் (Ayin-If),   

ஆற்றின் (Arrin-If someone did) 

2 Evidence வேண்டா (Venta- Do Not), 

அதுேல்லது 

(Atuvallatu - That is not),  

தான்(Tan- Just),  

வொன்று (Ponru- Like ),  

வதரின் (Terin- Selection ), 

எங்ஙனம் (Ennanam- How) 

3 Contrast அரிய (Ariya – Rare),  

மற்தறல்லாம் 

(Marrellam- On every),  

ஆதல் (Atal- Therefore),  

உய்க்கும் (Uykkum- That derived) 

4 Enablement எல்லாம் (Ellam- Everything), 

அேருள்ளும் (Avarullum- Plunge),  

மன்ற (Manra- House), 

வொல(Pola-Like) 

5 Background எனினும் (Eninum- However),   

தெல்லாது (Cellatu- Invalid),  

இனிவத (Inite- Greeter),  

அற்று (Arru- Without), 

உறறயும் (Uraiyum- Freezing) 

Table 1. Some Relations and Cue Words 

4.3. Nuclearity Identification 

The cue words are appeared anywhere in the 

Thirukkural.  In most of the Thirukkural, it is 

appeared in the middle. The text before the cue 

word is considered as Clause1 and the text after 

the cue word is considered as Clause2. Clause1 

and Clause2 can be indicated as nucleus and 

satellite.  

In few Thirukkural, Clause1 can act as the 

nucleus and Clause2 can act as the satellite. And 

in others, they may be vice versa. Hence, it is 

identified separately and the NRS sequences are 

identified accordingly. Table 2 lists some of the 

cue words appear in Thirukkural in which 

Clause1 and Clause2 are categorized as nucleus 

and satellite. 
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Example 2 in Figure 2 shows NRS sequence 

identified by the Thirukkural Discourse Parser. 

S. 

No 

   Relation Clause1-Nucleus,  

Clause2-Satellite 

Clause2-Nucleus,  

Clause1-Satellite 

1 Condition இலவே (Ilave-If 

not), என்னும் 

(Ennum-The),  

தெறின் (Perin- If 

received),  

என்னாம் 

(Ennam-If),  

றேெ்பின் 
(Vaippin-Fund) 

ஆயின்  

(Ayin-If), 

ஆற்றின்  
(Arrin-If someone 

did) 

2 Evidence வேண்டா  
(Veṇṭa- Do Not),  

அதுேல்லது 

(Atuvallatu - That is 

not),  

தான் 
(Tan- Just),  

வொன்று 

(Ponru- Like ),  

வதரின் (Terin-

Selection ),  

எங்ஙனம் 

(Ennanam- How) 

3 Contrast அரிய (Ariya – 

Rare),  

மற்தறல்லாம் 
(Marrellam- On 
every),  

ஆதல் (Atal-

Therefore), 

உய்க்கும்  
(Uykkum- That 

derived) 

உரியர ்

(Uriyar- Belong) ,  

தெயினும் 

(Ceyinum- 
Though did) 

4 Enablement எல்லாம்  
(Ellam- Everything),  

அேருள்ளும் 
(Avarullum- Plunge),  

மன்ற (Manra- 

House) 

வொல 
(Pola-Like) 

5 Background தெல்லாது 
 (Cellatu- Invalid),  

இனிவத 
 (Inite-Greeter),  

அற்று (Arru- 

Without), 

உறறயும் 
 (Uraiyum- Freezing) 

எனினும் 
(Eninum- 

However),   

Table 2. Nucleus and Satellite Identification 

The Thirukkural in Figure 2 is given as the 

input for the Thirukkural Discourse Parser. This 

Thirukkural has the cue word ‘வொல (Pola-

Like)’ explicitly.  This cue word is used for 

identifying    the     Enablement      relation.    The 

Thirukkural Discourse Parser identifies 

‘Enablement’ as the discourse relation, ‘ஆங்வக 

இடுக்கண் கறளேதாம் நடப்ு’ as nucleus, 

(as it contains an action), and ‘உடுக்றக 

இழநத்ேன் றக’ as satellite, (as it contains the 

information for performing the action). Similarly 

NRS sequences for all such cases present in the 

Thirukkurals are identified by using the 

Thirukkural Discourse Parser. Figure 3 shows 

Nucleus, Satellite and Discourse relation for the 

Example 2. 

Figure 2. Example 2 

 

            Figure 3. NRS Sequence for Example 2. 

The algorithm for Thirukkural Discourse 

Parser is shown in Figure 4. 

Input: Thirukkural Couplets 

Output: NRS Sequences 

(i) Find cue words in all Thirukkural Couplets 

(ii) Store it separately corresponding to the 

relation 

(iii) for Thirukkural couplets = 1 to 1330 do 

if cue word is present in the Thirukkural 

then 

     identify the Discourse relation 

     display the NRS sequences 

 end 

if cue word is not present in the 

Thirukkural then 

    use morphological analyzer to find the 

cue word 

     identify the Discourse relation 

  display the NRS sequences 

 end 

end 
Figure 4. Algorithm for Thirukkural Discourse 

Parser 

Example 2: 
உடுகற்க இழநத்ேன் றகவொல ஆங்வக 

இடுகக்ண் கறளேதாம் நடப்ு. 

 

English Transliteration: 

Utukkai ilantavan kaipola anke 

itukkan kalaivatam natpu. 

 

Meaning in English: 

True friendship hastens to the rescue of the 

afflicted as readily as the hand of one 

whose garment is loosened. 

22



51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

5 Evaluation  

The features are extracted from 600 couplets. 
The 1330 Thirukkural couplets are given as the   

input for the Thirukkural Discourse Parser. The 

NRS sequences are identified by the Thirukkural 

Discourse Parser based on the cue words. This 

work is evaluated using the parameters, precision 

and recall. Precision (P), and recall (R) values are 

calculated using equations (1) and (2). 

Precision(P)=
Number of relevant NRS sequences retrieved,   (C)

Total number of NRS sequences retrieved,(M)
              (1) 

Recall(R)=
Number of  relevant NRS  sequences retrieved,   (C)

Total number of relevant NRS sequences present,   (N)
        (2) 

The Table 3 shows the precision and recall of 

the discourse parser. The total number of NRS 

sequences retrieved by the proposed Thirukkural 

Discourse Parser is denoted as - M, total number 

of relevant NRS sequences actually present in 

Thirukkural is denoted as - N, and number of 

relevant NRS sequences retrieved by the 

proposed Thirukkural Discourse Parser is denoted 

as - C. The value of the variables, C and N are 

calculated using human judgement. About six 

domain experts have calculated these metric N, 

and the average has been taken and presented in 

Table 3.  

 

Relation 
N 

 

M 

 

C 

 

P=
C

𝑀
  

(%) 

 

R=
C

𝑁
 

(%) 

 

Condition 547 616 514 83.44 93.97 

Evidence 248 283 225 79.51 90.73 

Contrast 262 216 182 84.26 75.21 

Enablement 189 158 129 81.65 76.33 

Background 176 145 114 78.62 73.08 

 Table 3. Precision, Recall and F-Measure for the 

Discourse Relation 

It can be observed from the table that the total 

number of NRS sequences relevant to the 

condition relation is 547 and total number of NRS 

sequences retrieved from the Thirukkural 

Discourse Parser is 616. This is because more 

than one cue words belonging to the Condition 

relation are appeared in some Thirukkurals. 

In Example 3 shown in Figure 5, two cue 

words "ஆற்றின் (Arrin-If someone did)" and 

"பெறின் (Perin- If received)" have appeared in 

the Thirukkural. Both cue words belong to the 

Condition relation. In order to analyze the 

significance of each feature, the NRS sequences 

emerging out of two features present in the same 

Thirukkural is counted and hence, M is greater 

than N.  Similarly, for Evidence relation also M is 

greater than N. On the other side, in Contrast, 

Enablement and Background relations, N is more 

than M.   

Example 3: 
தெறிேறிநத்ு சீரற்ம ெயக்கும் அறிேறிநத்ு 

ஆற்றின் அடங்கெ் தெறின். 

English Transliteration: 

Cerivarintu cirmai payakkum arivarintu 

aarrin atankap perin. 

Meaning in English: 

Knowing that self-control is knowledge, if a 

man should control himself, in the prescribed 

course, such self-control will bring him 

distinction among the wise. 
Figure 5. Example 3. 

The correctly retrieved Thirukkurals, C is 

smaller than N in all the discourse relation, this is 

due to the inability of the discourse parser to 

extract the NRS sequences using implicit cue 

words. 

Example 4: 
உள்ளற்க உள்ளம் சிறுகுே தகாள்ளற்க 

அல்லற்கண் ஆற்றறுெ்ொர ்நடப்ு.  

English Transliteration: 

Ullarka ullam cirukuva kollarka 

allarkaṇ arraruppar natpu. 

Meaning in English: 

Do not think of things that discourage your 

mind, nor contract friendship with those who 

would forsake you in adversity. 
Figure 6. Example 4. 

In Example 4 shown in Figure 6, the cue word  

“வொல (Pola-Like)” is implicit. The 

Enablement relation identification needs  

additional semantic analysis which is currently 

not done by the discourse parser. 

In some Thirukkurals, more than one cue 

words pointing to different relations have 

appeared. Therefore more than one NRS 

sequences are identified by the Thirukkural  

Discourse Parser for the same Thirukkural. 

In Example 5 shown in Figure 7, two cue 

words namely, "ஆற்றின் (Arrin-If someone 

did)" and “வொல் (Pol-Like)” are present. 
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"ஆற்றின் (Arrin-If someone did)" is a cue word  

related to Condition relation and “வொல் (Pol-

Like)” is a cue word related to Evidence relation. 

So the Condition and Evidence relations are 

identified by the Thirukkural Discourse Parser. 

Example 5: 
ஒருறமயுள் ஆறமவொல் ஐந்தடக்கல் ஆற்றின் 

எழுநம்யும் ஏமாெ் புறடதத்ு. 

English Transliteration: 

Orumaiyul amaipol aintatakkal arrin 

elunamyum emap putaittu. 

Meaning in English: 

Should one throughout a single birth, like a 

tortoise keep in his five senses, the fruit of it 

will prove a safe-guard to him throughout the 

seven-fold births. 
Figure 7. Example 5. 

The precision and recall values of the 

discourse parser can further be increased by 

increasing the feature sets, by incorporating a 

machine learning algorithm.  The efficiency can 

be increased by finding the discourse relations for 

the Thirukkurals having implicit cue words. The 

efficiency of the Thirukkural Discourse Parser 

also depends on the efficiency of the 

morphological analyzer. A high level semantic 

knowledge base such as WordNet (George, 1995) 

or ontology may improve the efficiency even  

better. 

6 Conclusion and Future Works  

Thirukkural has much valuable information that 

is to be followed by the society. In order to access 

the Thirukkural on the web, the semantic analysis 

of the same becomes necessary. This paper makes 

use of discourse theory, named, RST to do a 

discourse/semantic analysis on the Thirukkural 

which will be useful to retrieve the Thirukkural 

using an Information Retrieval System.  

Keyword-based Thirukkural search is 

available but limits the user to retreive the 

Thirukkural containing only the query words. In 

this paper, we propose a methodology to construct 

a discourse parser for Thirukkural which aids in 

semantic analysis and semantic representation of 

Thirukkural. This kind of semantic representation 

can be used for efficient semantic indexing of 

Thirukkural for better retrieval. 

Using the results of the proposed discourse 

parser, an analysis of how Thirukkural is written 

and organized is also evident which can be useful 

to write similar works in future. This kind of 

analysis can also help in automatic author 

detection of text (Stamatatos, 2008). 

This paper focuses on the discourse relations 

present within a Thirukkural couplet. It may be 

further extended to find the relations across the 

Thirukkural couplets. An application that clearly 

depicts the discourse structure representation is 

also to be done.  
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Abstract

Poetry Generation involves teaching systems
to automatically generate text that resembles
poetic work. A deep learning system can learn
to generate poetry on its own by training on
a corpus of poems and modeling the partic-
ular style of language. In this paper, we pro-
pose taking an approach that fine-tunes GPT-
2, a pre-trained language model, to our down-
stream task of poetry generation. We extend
prior work on poetry generation by introduc-
ing creative elements. Specifically, we gener-
ate poems that express emotion and elicit the
same in readers, and poems that use the lan-
guage of dreams—called dream poetry. We
are able to produce poems that correctly elicit
the emotions of sadness and joy 87.5 and 85
percent, respectively, of the time. We pro-
duce dreamlike poetry by training on a cor-
pus of texts that describe dreams. Poems from
this model are shown to capture elements of
dream poetry with scores of no less than 3.2
on the Likert scale. We perform crowdsourced
human-evaluation for all our poems. We also
make use of the Coh-Metrix tool, outlining
metrics we use to gauge the quality of text gen-
erated.

1 Introduction

Many natural language processing tasks require
the generation of human-like language. Some
tasks, such as image and video captioning and au-
tomatic weather and sports reporting, convert non-
textual data to text. Some others, such as summa-
rization and machine translation, convert one text
to another. There are additional tasks that aim to
produce text, given a topic or a few keywords such
as story generation, joke generation, and poetry
generation, among others.

Poetry generation produces creative content,
and delivers the content in an aesthetically pleas-
ing manner, usually following a specific structure.

Thus, in addition to generating text as if in a story,
the lines produced usually have a certain length,
quite frequently there is a rhyming scheme as well
as rhythm, and organization into structures such as
couplets, quatrains, quintets, and stanzas. Among
other tools, creativity comes from unusual usage
of words through effects such as alliteration, asso-
nance, and elision; use of metaphors, symbolism,
and other linguistic devices; licensing of underly-
ing imagery with expressed feelings, sentiments,
and emotions.

Work in natural language generation can
be traced to pioneering rule-based simula-
tions of chatbots such as the “psychotherapist”
Eliza (Weizenbaum et al., 1966) and paranoid
schizophrenia-suffering PARRY (Colby, 1981).
Surveys such as (Hovy, 1990; Reiter and Dale,
2000; Gatt and Krahmer, 2018; Santhanam and
Shaikh, 2019) have described the progress in nat-
ural language generation over 50 years. Of late,
the use of deep learning has produced enviable
progress in natural language generation, especially
in topics such as machine translation (Bahdanau
et al., 2014; Wu et al., 2016), image captioning
(Mao et al., 2014) and dialogue generation (Li
et al., 2016).

This paper discusses the automatic generation
of natural-sounding poems that are creative. Cre-
ativity comes in many hues, and we experiment
with a few established ways of creative expression
in poetry generation. First, we generate poetry that
can potentially evoke a response from the read-
ers or hearers in terms of emotions and feelings
they generate. Additionally, we choose the idea
of mimicking the language of dreams as another
form of creative expression due to its longstand-
ing history in poetry. Dream poetry dates back to
medieval times where famous fourteenth century
authors, like Chaucer, experimented using dreams
as the structure for an image or picture they wished

26



to paint with a poem (Spearing, 1976a). A dream
poem is said to be characterized by the ‘I’ of the
poem and its substance of a dream or a vision in-
cluded (Lynch, 1998). To the best of our knowl-
edge, prior work on poetry generation, whether
using deep learning or not, has not explored the
incorporation of emotion-eliciting phraseology or
elements of creativity such as dream poetry.

Our research provides the following contribu-
tions:
• generating grammatical, coherent, and flow-

ing poetry using the powerful and versatile
GPT-2 architecture,
• successfully generating poetry that elicits

certain emotions in readers, and
• generating poems that follow time-honored

tradition of dream-like language usage and
imagery.

This paper is organized as follows. Section 2
presents related work. Section 3 discusses our
approach to creative text generation including
pre-processing steps, architecture used, and ap-
proaches to training. Section 4 discusses our ex-
periments and results. Finally, we present evalua-
tion of our research in Section 5, followed by con-
clusions and future work in Section 6.

2 Related Work

Early methods for poetry generation made use
of template-oriented and rule-based techniques.
These approaches often required a large amount of
feature picking and knowledge of syntactic and se-
mantic rules in a language (Oliveira, 2009, 2012).
Other methods treated poetry generation as spe-
cial cases of machine translation or summarization
tasks (Yan et al., 2013; He et al., 2012). We believe
that forcing a model to adhere to specific rules or
templates, or summarizing or translating a given
text to generate new poetry is unlikely to lead to
the artistically expressive quality we seek to gen-
erate.

More recently, deep learning methods have be-
come prevalent in natural language generation,
including poetry generation. Zhang and Lapata
(2014) for instance, used Convolutional (CNN)
and Recurrent Neural Networks (RNN) to gen-
erate Chinese Poetry. RNNs allow for short-
term memory of the language to be maintained
by inputting the generated output of a network
cell back into itself, essentially building context.
Ghazvininejad et al. (2017) used Long Short-Term

Memory (LSTM) units, which are advanced gated
versions of RNNs, to the task of poetry generation.
Wei et al. (2018) attempted to address the style is-
sue by training the networks using particular poets
and controlling for style in Chinese poetry. They
found that with enough training data, adequate re-
sults could be achieved. Problems related to poetic
structure were addressed by Hopkins and Kiela
(2017). They generated rhythmic poetry by train-
ing the network on only a single type of poetry to
ensure produced poems adhered to a single rhyth-
mic structure. It was found in human evaluations
that while the poems produced were rated to be of
lower quality than human produced poems, they
were indistinguishable from human produced po-
ems. Lau et al. (2018) took the LSTM approach
one step further with the Deepspeare model by
employing an attention mechanism to model in-
teractions among generated words. They also use
three neural networks, one for rhythm, one for
rhyming and another for word choice in their quest
to generate Shakespeare-like sonnets.

Vaswani et al. (2017) developed a deep neu-
ral architecture called the Transformer that did
away with any sort of need for recurrence. The
Transformer also employed an elaborate attention
mechanism that has been shown to be useful in
natural language tasks. Radford et al. (2019) used
this architecture in their Generative Pretrained
Transformer 2 (GPT-2) model. GPT-2 is capable
of many downstream tasks like text generation but
to our knowledge, research has not been published
using the GPT-2 model specifically for poetry gen-
eration.

On a slightly different but related note, natural
language generation influenced by multi-modal in-
put was attempted by Vechtomova et al. (2018) to
generate song lyrics in the style of specific artists
by fusing outputs coming from lyrical inputs pro-
cessed by an RNN and audio clips processed by
a CNN. Text generation has also been influenced,
in a cross domain manner, through images. The
works of Liu et al. (2018) have shown that cou-
pled visual-poetic embeddings can be used to pick
out poetic clues in images, which in turn can be
used to inspire the generated text. Though influ-
enced natural language generation in and of itself
is not a novel idea, we feel our attempt to style
text with the intent of eliciting particular emotions
provides a creative way to explore this subtask.
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3 Approach

Our goal is to successfully demonstrate the intro-
duction of creative flair in automatic poetry gen-
eration in two exemplar ways: explicit show of
emotion and the use of language that is predom-
inantly first person with dream-like imagery. To
enable the expression of emotion in generated po-
ems, our work involves a preliminary step of scor-
ing a corpus of downloaded poems for emotion to
produce subsets of poems that express one of eight
different identified emotions. This step is followed
by the actual generation of poems by fine-tuning
the pre-trained GPT-2 natural language model. We
train eight separate models for eight different emo-
tions, each on a sub-corpus predominantly demon-
strating a particular emotion. To generate poems
that use dream-like language, we create a text cor-
pus composed of a large number of dream tran-
scriptions created in first person by actual viewers
of dreams. In this case, we apply transfer learn-
ing by fine-tuning the pre-trained GPT-2 on the
dream corpus, followed by training again on po-
etry. We evaluate the generated poems using auto-
mated techniques as well as humans.

3.1 Poem Emotion Scoring

Figure 1: A high-level overview of our project imple-
mentation for emotion eliciting poetry

A high-level overview of the emotion elicita-
tion portion of our project is shown in Figure 1.
To create a corpus of poems based on the emo-
tions they elicit, we make use of the EmoLex dic-

tionary (Mohammad and Turney, 2013). EmoLex
is a word-level emotion lexicon that associates En-
glish words with the eight different emotion cate-
gories we wish to explore. Each poem (or book of
poems) in our dataset is given a score that is the to-
tal of the associated emotion scores in EmoLex for
each word. The maximum emotion word score is
taken and the poem is labeled under that emotion
category. We create eight such datasets, one corre-
sponding to each emotion category supported by
EmoLex. This approach allows us to to train mul-
tiple models on our split dataset.

Currently, the emotions of joy, anticipation,
trust, anger, and sadness represent a large portion
of our data while the emotions of surprise, dis-
gust, and fear are severely underrepresented. Ta-
ble 1 shows key differences in models including
the number of tokens in the text and the final aver-
age loss during training.

3.2 GPT Architecture

To create a model for poetic language, we propose
finetuning OpenAI’s GPT-2 architecture. GPT-2 is
a Transformer-based model that was trained sim-
ply to predict the next word in a 40GB text cor-
pus (Radford et al., 2019). This 40GB dataset,
WebText, was scraped from the internet with cer-
tain heuristics that aimed to gather only quality
text (i.e. only outbound Reddit links from posts
with a karma rating of 3 stars or better). By train-
ing on such a large, all-encompassing corpus of
text, the architecture has proven to model the En-
glish language well and has obtained state-of-the-
art results on downstream text-based tasks such
as machine translation, question answering, and
summarization. We leverage GPT-2’s pre-trained
knowledge of language for our downstream task
of peotry generation.

GPT-2 is the successor of OpenAI’s first
Transformer-based architecture, GPT (Radford
et al., 2018), with a few changes to the structure.
The medium version of GPT-2 we use contains
345M parameters and is a 24 layer, decoder-only
Transformer architecture. GPT-2 moves layer nor-
malization to the input of each sub-block, adds
another layer normalization after the final self-
attention block and increases context size from
512 to 1024 tokens. This architecture allows for
long term dependencies to be captured better in
language modeling. GPT-2’s attention mechanism
is referred to as a masked multi self-attention head.
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Figure 2: GPT Architecture. Adapted from (Radford
et al., 2018, 2019)

Data Model Size # of Tokens Final
Loss

anger 345M 1,292,457 0.27
antici-
pation

345M 2,314,637 1.30

joy 345M 11,668,792 3.19
sadness 345M 2,090,915 1.03
trust 345M 16,667,178 3.39

Table 1: Comparison of 5 emotion models trained.

This technique allows for a relationship to be mod-
eled for all words in an input sequence. Words that
have multiple meanings can then be represented
based on the context they appear in. Higher at-
tention scores from surrounding words relate to a
larger contribution to the representation of a word.
GPT-2 makes use of byte-pair encoding (BPE) like
its predecessor GPT but on UTF-8 byte sequences
(Sennrich et al., 2015). GPT-2’s encoding is some-
where in between character level and word level.
The model also prevents different versions of com-
mon words from being duplicated (i.e. fate!, fate?,
and fate would not be joined). This technique im-
proves the quality of the final byte segmentation.
GPT-2’s encoding rids the need for pre-processing
or tokenization of data and is able to assign a prob-
ability to any Unicode string.

3.3 Training for Creative Poem Generation

The task-agnostic nature of GPT-2 allows us to
take a fine-tuning approach to our downstream

task of poetry generation. Our approach to gen-
erating poems that exhibit emotion as well as
dream-like imagery involves training the pre-
trained GPT-2 model. Our training protocol for the
two cases are stated briefly below.

3.3.1 Generating Emotion Poems
Poetry is a personal form of writing that ex-
presses human feelings, and Mill (1860) famously
said “What is poetry, but thoughts and words in
which emotion spontaneously embodies itself?”
Mill (1833) also said ”The object of poetry is
confessedly to act upon the emotions”. Express-
ing emotions, with possible motive of eliciting the
same emotions in readers, is a basic characteristic
of poems. Our goal in this paper is to use artificial
neural networks to generate poems that explicitly
evoke certain specific emotions.

To generate poems with emotional content, we
have split our poetry data into sub-corpora, one
sub-corpus for each emotion. We train the already
pre-trained GPT-2 on a sub-corpus of poems that
demonstrate a certain emotion. Pre-trained GPT-2
has a very strong foundational knowledge of En-
glish. We find that training it again on emotion-
bearing poetry seems to enable it to generate high
quality poetry, which is even able to use emotion-
laden words for the correct form of elicitation.
We also find that the poems we generate seem
to exhibit proper punctuation as well as lines that
have poem-appropriate length and sentences that
are grammatically correct. In addition, the poems
we generate seem to be quite readable and demon-
strate high coherence. Detailed analyses are re-
ported in the next section.

3.3.2 Generating Dream Poems
Dream poems represent a style of poetry that was
“astonishingly” popular in the 14th through the
16th centuries (Spearing, 1976b; Windeatt, 2003)
and are still popular (Russo, 2003). Such po-
ems tell a story based on a dream or a number
of dreams, dreamt by the narrator or by a char-
acter that the poet introduces. Spearing (1976b)
claimed that dream poems are based on objective
experience, but at the same time they are free of
constraints of everyday possibilities. Such poems
represent the outcome of a poetic process with
many different influences, models, and analogues
(Windeatt, 2003), but without going into such de-
tails, our goal is to see if an ANN can produce
poems which share characteristics with dream po-
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ems.
To generate poems that demonstrate first-person

language with dream-like imagery, we take a simi-
lar approach. However, in this case, GPT-2 under-
goes three separate training cycles. The first cy-
cle is the pre-training that GPT-2 goes through be-
fore release to the public by OpenAI. Second, we
train the pre-trained model on a corpus of first-
person dream descriptions. Third, we train again
on poems. Our hypothesis is that pre-training by
OpenAI results in good basic knowledge of En-
glish; that training on the dream corpus endows
the network with the knowledge of first-person
imagery-based language; and that the last training
cycle teaches the network language of poems. We
demonstrate in the next section that we are not far
off from our being successful in our hypothesis.

3.4 Text Generation and Sampling

As stated by Radford et al. (2019), the core ap-
proach of GPT-2 is language modeling. A lan-
guage model can be thought of as a probability
distribution over a sequence of words in the form:

p(w1, ..., wn). (1)

Likewise, natural language tends to have a se-
quential order so it can be modeled in terms of the
conditional probability of a word given the words
preceding it (Bengio et al., 2003):

p(wn|w1, ..., wn−1). (2)

We make use of this probabilistic style of lan-
guage modeling by sampling from the distribution
in a semi-random fashion. Just as the GPT-2 pa-
per does for its text generation, we make use of
Top K sampling, limiting the possible guesses of
words to 40. In addition to Top K, we make use of
a temperature constant of 0.75 which controls ran-
domness in the distribution. A temperature closer
to 0 correlates to less randomness while a temper-
ature closer to 1 relates to more randomness. Fi-
nally, at the end of the generation process, we em-
ploy a simple text cleaning algorithm that allows
poems to end more naturally and rather than trail
off as they do sometimes.

4 Experiments and Results

4.1 Datasets and Resources

In order to classify emotion-eliciting poems or
books, we use the NRC Word-Emotion Asso-

ciation Lexicon (EmoLex) resource. EmoLex1

was created by the National Research Council of
Canada and includes 14,182 English words that
are associated with different emotions and posi-
tive or negative sentiment (Mohammad and Tur-
ney, 2013). Words in EmoLex have been manu-
ally annotated via crowd-sourcing and emotions
fall into one or more categories of eight basic
emotions: joy, trust, fear, surprise, sadness, antic-
ipation, anger, and disgust (Plutchik, 2014). We
elect to use this simplified version of the Wheel
of Emotions due to its parallels with the available
EmoLex dataset. This resource provides us with
a way to fabricate a ground truth in the types of
emotion-infused texts we wish to use for training
data.

Figure 3: American pyschologist Robert Plutchik’s
Wheel of Emotions

To handle the training and generation por-
tions of the project, we draw data from the
Project Gutenberg website2. Project Gutenberg is
a massive online database containing over 59,000
eBooks. We limit this corpus to a smaller sub-
corpus using an adaptation of the GutenTag tool
(Brooke et al., 2015). This tool allows us to place
constraints on the amount of literature we choose
to use in our work. Our final dataset includes ap-
proximately three million lines of poetic text from
the Gutenberg database and is further divided by
poem/book into our eight emotion categories.

We attempt to create dream poetry by mak-
ing use of the DreamBank dataset. The Dream-
Bank was created by Schneider & Domhoff at
UC-Santa Cruz3. The dataset contains a collec-
tion of over 20,000 dreams from users age 7 to 74.
We scraped this dataset from the website assuring
that dreams collected were recorded only in En-
glish. The DreamBank allows us to attempt trans-

1https://saifmohammad.com/WebPages/
NRC-Emotion-Lexicon.htm

2https://www.gutenberg.org/
3https://www.dreambank.net/

30



Heard I a song of joy,
A song of happy sound,
Fills all the air I breathe,

To him I sing, to him
I sing the happy song.

All night long on the steep green grass
I ride and sing

Figure 4: A hand-picked, automatically generated
poem from the joy model

The other, who with one accord
Wrote my essay, in that he was dear

And good, and knew well, how we ought to treat
A man of such renown, and such love?

He’s a good honest man, no doubt

Figure 5: A hand-picked, automatically generated
poem from the trust model

fer learning by finetuning on the dream dataset
first, then further finetuning on our poetry dataset.

Initially, we retrained 6 GPT-2 based models.
Default training parameters were used each of the
5 different emotion datasets and our dream dataset.
All were trained for 12,000 steps (except for our
dream model which was trained for 12k steps on
dreams and on poetry) with a learning rate of
0.0001. When generating text, we do not input
context: we allow the model to write the poem en-
tirely through the sampling of conditional proba-
bility from the language it has modeled.

Figures 4 through 8 give examples of 5 poems
that we have hand-picked to illustrate the quality
of poems generated. A cursory glance at the po-
ems reveals the high quality of the text in terms of
lexical choice, grammatical integrity, and seman-
tic cohesion. We discuss how we quantitatively as-
sess the poems below.

5 Evaluation

In the first crowd-sourced analysis of our emotion-
eliciting poetry we presented four poems from
each category (of the five data-represented emo-
tion categories) to ten human reviewers with un-
dergraduate level educational backgrounds. All re-
viewers are native speakers of English. Poems pre-
sented were randomly selected from the top 20
EmoLex scored poems out of a pool of 1,000 gen-
erated poems. These reviewers were asked to rate
each poem based on the emotions elicited within

We have reached the peak of the highest mountain
in the world

The mountain of dreams.
This is the view

Across the valley,
One hour’s journey back,

We crossed it on the way between
A band of beautiful young women.

There was

Figure 6: A hand-picked, automatically generated
poem from the anticipation model

A long trail of falling mist
Had made its way here, and now
Aerily it seemed, as if to drown
The discordant thunder clang.

It seemed to drown the music of the rain;
In this lost place of sorrow

Far off

Figure 7: A hand-picked, automatically generated
poem from the sadness model

Amidst the chaos throng’d, with angry voices each
His rival’s mockery; loud their scorn was fill’d;

So fierce their rage, and in their eager power
Met on the walls of Troy, were fill’d with dismay.

Figure 8: A hand-picked, automatically generated
poem from the anger model

A thousand stars at once,
An hundred thousand stars!

The sun was low,
And the stars were bright,

My heart would do the same.
A thousand stars at once,
A hundred thousand stars!

The night had begun,
And the stars were all the same.

When I came back from the dead,
I saw the stars

Figure 9: A hand-picked, automatically generated
poem from the dream model
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For she was mine.
I was the only one

She had,
And a thousand other friends,

And a hundred more
She held me dear.

Her eyes were clear, her cheeks were bright,
Her heart was like a rose,

Her mouth was full of music,
Her lips were white

As snow,
And the music she sang

Figure 10: A hand-picked poem, automatically gener-
ated from the dream model

Emotion Anger Antic. Joy Sad. Trust
% 65 40 85 87.5 32.5

Table 2: Average percentage of correctly elicited emo-
tion across four poems in each category

them after reading. An emotion was deemed cor-
rectly elicited if the associated Likert score was 4
or greater from the reviewer. Table 2 illustrates the
results from our evaluation. When taking the av-
erage percentage of correct emotion-eliciting po-
ems, the models of joy, sadness, and anger pro-
duced the most promising results while the trust
and anticipation models were less than satisfac-
tory. We believe this is because joy, sadness and
anger are basic or fundamental emotions com-
pared to trust and anticipation, which are more
complex and difficult to explain. Although there
are many opinions among psychologists about
what constitute basic emotions, joy, sadness and
anger, (especially the last two) seem to occur the
most often in proposals that demarcate a set of ba-
sic emotions (Ortony and Turner, 1990).

To preserve consistency in our experiments, we
evaluate our dream model poetry in a manner sim-
ilar to our evaluation of the emotion poems. Four
poems from the model were presented to the same
ten judges and they were asked to assess the po-
ems based on qualities of dream poetry. These
poems were cherry picked from a pool of 1,000
generated poems. A dream poem is said to have
the following qualities (Windeatt, 2003; Spearing,
1976b; Russo, 2003) among many other qualities.
We believe these three are the least ambiguous and
easiest to decipher for human evaluation.

Poem 1 2 3 4
Qual 1 5 4.9 4.8 4.5
Qual 2 3.5 4.1 3.2 3.3
Qual 3 3.9 4.2 3.7 3.7

Table 3: Average Likert score of users for each poem

• Quality 1: The poem is generally a first-
person expression
• Quality 2: The poem’s main substance is

dream or vision like
• Quality 3: The poem recounts or foretells an

experience or event

Analysis of results show that machine gener-
ated poems are able to capture the first person per-
spective well, achieving between 4.5 and 5 aver-
age Likert scores. The poems often appear to retell
a story or an event, scoring between 3.7 and 4.2
average Likert scores. The nature of poetry and
dream recounts that make up our data is often nar-
rative, so this result stands to reason. However,
Quality 2 scores of the poem substance containing
a dream or vision are questionable. We suspect the
Quality 2 score is lower due to the ambiguity in
ascertaining dream text from regular text. Table 3
highlights our results for the dream model.

Currently, there exists no widely available stan-
dard for evaluating poetry generation. Scores like
BLEU, ROUGE, METEOR, etc. are more suited
for Machine Translation (MT) tasks (Zhang et al.,
2019). For example, they compare how similar
sentence P is to translated-sentence P̂. Instead, we
outline some metrics from the Coh-Metrix web
tool that helps us further quantitatively evaluate
the quality of text generated. With the goal of elic-
iting emotions, we claim that subjective analysis
of generated poetry is superior to any available ob-
jective metrics.

5.1 Coh-Metrix
To provide a quantitative calculation of the caliber
of text our models produce, we outline in this sec-
tion relevant metrics from the University of Mem-
phis Coh-Metrix tool (Graesser et al., 2004). Coh-
Metrix is a text evaluation software kit and from
it, we have chosen 8 forms of assessment. The
first two, Flesch-Kincaid Grade Level (FKGL)
and Flesch Reading Ease (FRE), are two standard
measures that deal with text readability and ease
(Klare, 1974). The FKGL scores a text from grade
level 0 to 18, while the FRE score is a 0-100 index
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Model FRE FKGL IMGc CNCc LDTTRa PCREFp PCSYNp PCNARp
anger 93.07 2.01 445.91 407.16 0.53 0.68 80.78 53.19
antici-
pation

100 0.83 440.93 403.10 0.40 7.78 83.65 81.86

joy 100 0.39 446.23 403.07 0.39 11.90 91.31 78.52
sadness 98.20 1.18 444.96 403.25 0.44 1.88 88.69 72.91
trust 100 0.16 434.66 412.72 0.33 18.14 84.61 91.31
dream 100 0 427.36 377.48 0.24 99.90 65.17 70.88

Table 4: Average Coh-Metrix evaluations across 25 randomly selected poems from each model.

with 100 being an easily readable text. We aim to
produce text that is readable by all, so a low FKGL
score and high FRE score would be ideal.

The next metrics we employ evaluate at the
word level. The word imageability (IMGc) and
word concreteness (CNCc) scores measure con-
tent words on their ability to create an image in
the reader’s mind and their ability to appeal to
a reader’s senses, respectively (Coltheart, 1981).
We aim for our art to create a connection be-
tween the reader and poem, so we believe im-
ageability and concreteness of content words are
two good measures with this in mind. We also
make use of three text easibility principal com-
ponent scores: narrativity (PCNARp), referential
cohesion (PCREFp), and syntactic simplicity (PC-
SYNp) (Graesser et al., 2004). The text easibility
PC scores are percentile scales, and thus we aim
for higher numbers for these scores. Finally, we
make use of the Lexical Diversity Type:Token Ra-
tio score (LDTTRa) for all words. LDTTRa mea-
sures the ratio of type (unique) words to all tokens
in the text. Because our text is relatively short,
we aim for a middle ground in the LDTTRa ratio,
meaning there is uniqueness in the word choice of
the text, but cohesion is still upheld.

Inspection of our Coh-Metrix results show that
randomly selected poems from all models fall at
or below the 2nd-grade reading level (in FKGL
scores) and are greater than 93 on the FRE scale.
This suggests generated poems are easily read-
able by the majority of viewers. Looking at the
IMGc and CNCc scores, we see that our poems,
except for the dream model concreteness, fall in
the 400s. Words with higher imageability and con-
creteness fall around the low 600s while words
that are lower fall around the upper 200s on this
scale. These scores reveal that our models are gen-
erating text that is concrete in word choice and that
paint a picture. Our dream model scoring lower in

the concreteness is reasonable as the word choice
of dreams tends to be more abstract. Lastly, per-
centile scores of PCSYNp and PCNARp show
that the majority of models are producing poems
that are both syntactically simplistic and narrative.
Most PCREFp scores are on the lower end of the
scale. We suspect the reason these scores are lower
is because the poems are not necessarily related
and were all input at once. Table 4 highlights these
scores for each poetry model.

6 Conclusion & Future Work

In this paper we influenced automatic natural lan-
guage generation to create poetry through the use
of classified emotion poems and dream text. To do
so, we first leveraged a word-level emotion lexicon
to construct a meaning for emotion-eliciting text
and used that text to train separate language mod-
els. Next, we gathered data of dream records and
employed transfer learning in attempts to generate
dream-like poetry. The work reported in this paper
seeks to create art in the form of auto-generated
poetry while opening the door to more projects in-
volving emotion-eliciting text-based tasks and in-
fluenced creative neural generation.

We would like to thank the reviewers for their
feedback on this project. Comments and sugges-
tions from reviewers — both those that the were
incorporated into this article and those on which
we will report in future work — provide invalu-
able insight as to improving our results. Impor-
tantly, our continuing research involves gather-
ing a more comprehensive human-evaluation with
a larger number of reviewers and poems to be
judged. We also wish to gather data for the un-
derrepresented emotion categories, leading, ide-
ally, to a more robust language model for each
emotion. Our work thus far provides a baseline
for introducing emotions into generated text via a
word-level lexicon, but we wish to employ other

33



tools — segment-level lexicons, for example — in
an attempt to better capture the contextual depen-
dencies of emotion. Additionally, the word-level
baseline we have produced focuses on generating
single-emotion text. We are interested in examin-
ing poems of multiple emotions and different lev-
els of intensity to expand on this study. Finally,
we wish to seek out additional forms of replicating
creativity that artists incorporate in their work.
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Abstract

Detection of TimeML events in text have
traditionally been done on corpora such as
TimeBanks. However, deep learning meth-
ods have not been applied to these corpora,
because these datasets seldom contain more
than 10,000 event mentions. Traditional ar-
chitectures revolve around highly feature en-
gineered, language specific statistical models.

In this paper, we present a Language Invari-
ant Neural Event Detection (ALINED) archi-
tecture. ALINED uses an aggregation of both
sub-word level features as well as lexical and
structural information. This is achieved by
combining convolution over character embed-
dings, with recurrent layers over contextual
word embeddings. We find that our model ex-
tracts relevant features for event span identi-
fication without relying on language specific
features.

We compare the performance of our language
invariant model to the current state-of-the-art
in English, Spanish, Italian and French. We
outperform the F1-score of the state of the art
in English by 1.65 points. We achieve F1-
scores of 84.96, 80.87 and 74.81 on Spanish,
Italian and French respectively which is com-
parable to the current states of the art for these
languages. We also introduce the automatic
annotation of events in Hindi, a low resource
language, with an F1-Score of 77.13.

1 Introduction

Automatic extraction of events has gained sizable
attention in subfields of NLP and information re-
trieval such as automatic summarization, ques-
tion answering and knowledge graph embeddings
(Chieu and Lee, 2004; Glavaš and Šnajder, 2014),
as events are a representation of temporal informa-
tion and sequences in text. Various developments
in guidelines and datasets for event detection have

been met with equally fast paced evolution of au-
tomatic event annotation and detection method-
ologies in the last few years (Doddington et al.,
2004; Pustejovsky et al., 2010; O’Gorman et al.,
2016). On a larger scale, event extraction has ex-
tended to many languages beyond English, includ-
ing French (Bittar et al., 2011), Spanish (Saurı,
2010), Italian (Caselli et al., 2011a) and very re-
cently, Hindi (Goud et al., 2019b). Event detection
architectures have their origins in statistical mod-
els such as K-means and hierarchical clustering
methods (Arnulphy et al., 2015), which have more
recently given way to neural models. Deep neu-
ral architectures on event annotation vary based on
the approach taken to identifying and handling the
data.

However, event detection as a problem shifts
when we move away from the annotation
paradigm of datasets such as ACE (Doddington
et al., 2004) and TAC KBP (Mitamura et al., 2015)
to TimeML datasets such as TimeBank (Puste-
jovsky et al., 2006), which are used in this paper.
There has been limited use of deep learning meth-
ods on TimeBanks due to fewer event mentions
and a need for data augmentation and bootstrap-
ping. However, in this paper, we show that us-
ing subword level information, a language invari-
ant deep learning model can provide similar event
detection accuracies as heavily feature engineered
language specific statistical methods without using
any augmented data.

This paper has two main contributions. First,
we introduce our model, the Architecture for
Language Invariant Neural Event Detection
(ALINED), which is a deep learning model for
event extraction from TimeML event annotated
datasets from five languages. We show that for
four of these languages, using no augmented data,
we achieve comparable F1 score on these datasets
to heavily feature engineered language specific
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statistical models, with less than 12,000 event
mentions in each. Secondly, to the best of our
knowledge, we present the first ever baseline for
neural event detection in Hindi using this model.
Our architecture uses both word and character em-
beddings and captures information from them dis-
tinctly, before combining them into a coherent rep-
resentation of both. This is then used to determine
the label for each input word. The proposed ar-
chitecture is language invariant as well, such that
no part of the system undergoes a change when
training on different languages. In presenting this
architecture, we highlight the importance of us-
ing subword level information in order to incor-
porate morphological as well as syntactic features
in event extraction. This can also be extended
to other semantically oriented sequence labeling
tasks

2 Related Work

Neural approaches to sequence tagging are com-
mon due to extensive developments in named en-
tity recognition. Huang et al. (2015) introduced
and cultivated the use of bidirectional LSTMs
to incorporate features that could be used for
sequence tagging using a CRF. Ma and Hovy
(2016)’s architecture and the NeuroNER program
(Dernoncourt et al., 2017) provided a basic archi-
tecture and influenced multiple developments to
most sequence labeling tasks, including event de-
tection and extraction (Araki, 2018). The task of
event extraction in any language involves the iden-
tification of the event nugget (Ahn, 2006). Promi-
nent work has been done to analyze the lexical and
semantic features of event representation (Li et al.,
2013), which served as a basis for neural event
nugget detection (Liang et al., 2017).

The task of neural event detection has been
attempted using a combination of networks, but
mostly revolving around the use of convolutional
neural architectures. Work in this approach fo-
cused on various aspects such as max-pooling to
retrieve the structure of event nugget information
(Nguyen and Grishman, 2015), modeling the skip-
gram architecture to learn lexical feature represen-
tations (Chen et al., 2015) as well as using dy-
namic CNNs in order to extract lexical and syn-
tactic features in parallel (Nguyen and Grishman,
2016). Recurrent neural architectures have also
been employed for this task, which predict the lo-
cation of the trigger based on combining the for-

ward and backward features of sentences in which
events occur (Nguyen et al., 2016; Ghaeini et al.,
2016). Note that in both cases architectures fo-
cused on dealing with structural, lexical and con-
textual features.

In the domain of multi-lingual and cross lingual
event detection, Feng et al. (2018) uses a com-
bination of both LSTMs and CNNs for creating
a language independent architecture for capturing
events, while Goud et al. (2019a) used stacked
RNNs for sequence labeling and a language dis-
criminator to learn language features. The latter
architecture implements the use of the character
embeddings, but does not identify the relevant fea-
tures independent of the word embeddings.

3 Model Description

In this section, we describe the ALINED model for
the event detection. Primarily, we focus on how
to capture event representation at both a character
and a word level. In this model, we had to focus
on the following major considerations:

1. Syntactic and lexical information captured by
previous event detection tasks should be ac-
counted for.

2. Furthermore, sub-word information is essen-
tial as morphological features are also useful
in identifying event semantics if the language
is morphologically rich, or has a free word
order structure.

Fundamentally, our architecture generates char-
acter embeddings through convolution and aggre-
gates this information using bidirectional LSTMs
(Hochreiter and Schmidhuber, 1997). The same
is done over pretrained word embeddings in paral-
lel, creating distinct intermediate representations.
These representations are combined using a high-
way architecture for a final representation, which
is used for the sequence tagging task.

3.1 Generating Contextual Character
Embedding

In order to generate character embeddings from
the input sentence, we first use a CharCNN (Kim
et al., 2016). Let C be the dictionary of all the
characters in the language and V be all the words
in the language. We first define the character em-
beddings matrix E ∈ Rd×|C |, where d is the di-
mensionality of the character embeddings, with
the constraint that d < |C |. Let word wi ∈ V
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Figure 1: The proposed ALINED model

be made up of n characters, such that cwi =
[cwi
1 , c

wi
2 , . . . , c

wi
n ]. The character representation

of wi is therefore given by Ewi ∈ Rd×n.
We define a filter W ∈ Rd×b where b is the

width of the filter. We apply a narrow convolution
between Ewi and W , to obtain the embedding of
wi as:

ewi
i = f (W ·Ewi [∗, i : i+ b− 1]) + b (1)

where Ewi [i : i+ b− 1] accounts for all the char-
acters of given window size of the word. The ob-
tained embedding ewi ∈ Rn−b+1. The function f
is a non-linear function such as a hyperbolic tan-
gent or a sigmoid. It is applied over the Frobenius
inner product of the filter and the embedding value
as A ·B = Tr(ABT ) for any two matrices A and
B.

We use max-pooling over the output embedding
(instead of mean-pooling as it better incorporates
the nature of natural language sequences (Xiang
et al., 2016)) as:

wci = max
i
ewi
i (2)

For a total of h filters, each of varying widths,
we get different representations of wi. Therefore
wc
i = [wc

1,w
c
2, . . . ,w

c
h] is the representation of

the ith word.

The aggregated word representations based on
character information now capture the features
that represent the event semantics at a sub-word
level accurately. However, the contextual infor-
mation has not been accounted for yet. This is
done by using a bidirectional LSTM, as mentioned
above.

hci = bi-LSTM(wc
i , h

c
i−1, h

c
i+1) ∈ Rk×l (3)

The bi-LSTM hidden state vector hc =
[hc1, h

c
2, ..., h

c
k], each hci of dimension Rl is now

propagated to the rest of the network. hc can be
seen as a lexically context-aware character repre-
sentation of the words of the input sentence.

3.2 Using Contextual Word Embeddings
To capture structural information well, we use
contextual word embeddings. Let w =
[w1, w2, ..., wk] be the words in a sentence. Let
their corresponding pre-trained word embeddings
be ew = [ew1 , e

w
2 , ..., e

w
k ]. We aggregate the mean-

ing of the sentence by passing the word embed-
dings through a bidirectional LSTM layer, as fol-
lows:

hwi = bi-LSTM(ewi , h
w
i−1, h

w
i+1) ∈ Rk×l (4)

Now each hidden state of hw =
[hw1 , h

w
2 , ..., h

w
k ], i.e., each hwi of dimension
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Rl, is used in the rest of the network. Since
the pre-trained word embeddings are already
contextual in nature, we do not process it further.
Note that hw can be seen as the semantically
context-aware representation of the words of the
input sentence. This also includes the structure of
event representation in that sentence.

3.3 Combining Character and Word
Representations

Given the representations of the hidden states from
characters and words, we combine the two using
a concatenation function followed by a highway
network. The concatenation is represented as fol-
lows:

hi = f (hwi , h
c
i ) (5)

The function f (·) is the concatenation function,
which can be represented as:

f(hwi , h
c
i ) =





hwi � hci (6)

W · hwi � (1−W ) · hci (7)

Ww · hwi �W c · hci (8)

Equation 6 is a direct concatenation of the hid-
den states hc and hw. A direct concatenation au-
tomatically implies that the information gathered
from the representations are given equal weight.
However, this is not true for all languages, as lan-
guages with fewer inflections require less informa-
tion from the character representations and more
from the word representations.

Equations 7 and 8 attempt to account for this
by using a shared weight concatenation and a
weighted concatenation respectively. In equation
7, W ∈ Rk×k is a weight matrix, where the values
are scaled down to 1, in order to capture the rela-
tive importance of each hci and hwi ∀hci ∈ hc, hwi ∈
hw. This shared weighting is a modification of the
concept of leaky integration (Bengio et al., 2013).
On the other hand, equation 8 uses two indepen-
dent weight matrices, W c,Ww ∈ Rk×k, which
does not constrain the network to use on other the
other hidden representation. However, the gradi-
ents are still clipped at a low value (≈ 1) to avoid
explosion.

We then use the highway network (Srivastava
et al., 2015) on the combined hidden state vec-
tor h. This network adaptively ”carries” some di-
mensions of h to the output for predicting the cor-
rect label sequence. Therefore, the hidden states

undergo the following transformation (Wen et al.,
2016):

hi = ρ(hi)�g(WH ·h̄i+bH)+(1−ρ(h))�h̄i (9)

The function ρ(hw) = σ(Wρ · hi + bρ), which
is a simple activation function. g is any non-linear
function, such as sigmoid or hyperbolic tangent.
Following the highway network’s output, we pass
the hidden embeddings to a dropout layer, which
effectively reduces the number of hidden units by
a fraction d, so hdrop ∈ Rk/d×l, and a linear layer,
which maps the hdrop to a smaller embedding
space. We label this space h ∈ Rk/d×f (f being
the dimensions of the feature space) for brevity.

3.4 Sequence Tagging Layer
In the sequence tagging layer, we use the com-
bined embeddings to identify the most likely se-
quence of tags for the input sentence. With the
aggregated combined hidden state h, we have the
information required to assign tags to the words
of the input sentence. For this, we use conditional
random fields (CRF). The traditional formulation
of a CRF can be written, given a set of observa-
tions sequences X = x1, x2, ..., xk and sequence
of labels Y = y1, y2, ..., yk as,

p(Y |X;W, b) =

∏k
i=1 exp (yi−1, yi, X)∑

y′∈L
∏i=1
k exp (y′i−1, y

′
i, X)

(10)
where L is the set of possible labels in the tagset.

Since the observation sequence in our formula-
tion is essentially the output vector h, we can sim-
plify the above equation by performing softmax
to score the likelihood of a label being assigned.
Therefore, the probability distribution is computed
as,

P (yi = t|hi) =
exp (hTi wj + bj)∑
k exp (hTi wm + bm)

(11)

with j,m ∈ L as tag labels. We also compute
the transition probability T of the label yi being
assigned to hi given the labels of hi−1. Therefore,
the probability of the sequence of labels over the
hidden states can be computed as:

Seq(Y,h) =
k∑

i=1

P (yi = t|hi)+

k∑

i=1

T (yi = t|yi−1 = t′); t, t′ ∈ L

(12)
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Therefore the probability of that sequence Y
computed above is calculated as:

p(Y |h) =
exp (Seq(Y,h)∑

y′∈L exp (Seq(y′,h))
(13)

4 Experimental Setup

In this section, we go over the various experi-
ments, implementation details such as number of
epochs, training time, datasets and the like. These
are covered in detail for the replicability of our re-
sults, which are highlighted in section 5.

4.1 Datasets
To train and evaluate our model, we use the fol-
lowing datasets for each of the languages we work
with multiple corpora, as our experiments span
multiple languages.

1. The TempEval-3 TimeBank dataset was used
for English (UzZaman et al., 2012). The cor-
pus consists of 61,418 tokens for training and
6,756 event mentions.

2. For Spanish, we use the ModeS TimeBank
(Modern Spanish TimeBank 1.0) (Nieto and
Saurı́, 2012) for training and testing. This
was used in SemEval-2013 Task 1 Task B
(UzZaman et al., 2013). The corpus consists
of 57,977 tokens.

3. For Italian, we use Ita-TimeBank’s ILC cor-
pus (Caselli et al., 2011a) the Italian cor-
pus annotated using ISO-TimeML rules for
events and temporal information. The corpus
consists of 68,000 tokens and 10,591 event
mentions.

4. For French, we use the French TimeBank as it
is the ISO-TimeML annotated reference cor-
pus for event annotation tasks (Bittar et al.,
2011). The corpus consists of 16,208 tokens
and 2,100 event mentions.

5. For Hindi, we use the gold-standard corpus
of Goud et al. (2019b), which consists of 810
event annotated news articles based on mod-
ified TimeML rules. The dataset has 242,201
tokens and 20,190 event mentions.

4.2 Model Implementation and Training
Details

The datasets are annotated in the IOB format. At a
word level, B represents the first token of an event,

I represents all the other tokens of an event and O
represents the tokens which are not a part of any
event in the sentence. We train the model for 50
epochs, but the loss tends to stabilize at 25 to 35
epochs. We use a 40 dimensional character em-
bedding, which we create ourselves, as mentioned
in section 3.1. The CNN uses 40 filters with a win-
dow size of 3.

For our contextual word embeddings, we use
fastText embeddings for English (Bojanowski
et al., 2017) which are pretrained on common-
Crawl and the Wikipedia corpus. FastText embed-
dings are also used for Hindi, French, Spanish and
Italian word representations (Grave et al., 2018).
The bi-LSTM trains on a fixed 300 hidden dimen-
sions for all the bi-LSTMs in the architecture.

For the linear and dropout layers, the dropout is
fixed to 0.3. The initial learning rate parameter is
0.015, which increases with a momentum of 0.9.
On approaching the end of an epoch, the learning
rate decays at a rate of 0.05. We train on a negative
log-likelihood loss function

5 Results and Analysis

In this section, we analyze the results of the
ALINED model, and compare them to the current
state of the art systems for the various languages
we train on. We also provide a rigorous error anal-
ysis of our system and methodology.

Since no single system has compared work in
event detection across the five languages that we
have chosen for the experiments here, we draw
comparisons to the various systems that trained
on the individual or group of languages that have
been used. Table 1 ahows the direct comparison of
results.

1. For English, we compare our system to the
SemEval-2013 Task 1 Task B (UzZaman
et al., 2013), detection of event extents. We
compare our models’ scores with those of the
best performing models of SemEval-2013.

2. SemEval-2013 Task 1 Task B (UzZaman
et al., 2013) performs the task of detecting
event extents in Spanish texts. We compare
our model performance to FSS-TimeEX and
TipSemB-F, the best performing models in
that task.

3. Caselli et al. (2011b) establishes the current
state of the art for data driven models in tem-
poral and event extent information in Italian.
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Language Model Precision Recall F1-Score

English

ATT-1 (Jung and Stent, 2013) 81.44 80.67 81.05
ATT-2 (Jung and Stent, 2013) 81.02 80.81 80.91
ATT-3 (Jung and Stent, 2013) 81.95 75.57 78.63
KUL (Kolomiyets and Moens, 2013) 80.69 77.99 79.32

ALINED 78.79 87.00 82.70

Spanish
FSS-TimEX (Zavarella and Tanev, 2013) 89.80 42.40 57.60
TIPSemB-F (UzZaman et al., 2013) 91.70 86.00 88.80

ALINED 86.77 83.22 84.96

Italian

TIPSemIT basic (Caselli et al., 2011b) 90.00 77.00 83.00
TIPSemIT FPC5 (Caselli et al., 2011b) 89.00 81.00 85.00
TIPSemIT FPC5Sem (Caselli et al., 2011b) 91.00 83.00 87.00

ALINED 79.92 81.85 80.87

French
CRF-kNN (Arnulphy et al., 2015) 87.00 79.00 83.00
Bittar (2009) 46.00 82.00 64.00

ALINED 84.48 67.12 74.81

Hindi ALINED 78.22 76.08 77.13

Table 1: Comparison of Model Performance

The system is a modification of the TipSem
system. We compares our models to their
reported scores. However, the corpus used
in Caselli et al. (2011b) is the Ita-TimeBank
which has been augmented with further anno-
tations and resources, while our system uses
just the Ita-TimeBank for event extraction.

4. For French, we did not find systems that did
event extraction from the French TimeBank
corpus. The existing literature either cre-
ates and evaluates on a modified corpus (Bit-
tar, 2009) or provides annotations trained on
the TimeML annotated data and tested on Fr-
TempEval2) (Arnulphy et al., 2015). There-
fore, we compare our performance to those,
while also understanding that the compari-
son is not a strict metric. We hope to estab-
lish the scores here as baseline for further im-
provement over models in event detection in
French.

5. To the best of our knowledge, there is no
baseline system available for event detection
in Hindi, therefore, we provide our model as
the first performance metric in that direction.

In most comparisons, our models perform
equally well or better than the current systems for

each of the above languages. we do not annotate
or augment any of our data sources for using this
model, so the reference corpora are being trained
and tested upon, which are mentioned in section
4.1.

The calculation of the metrics of comparison,
precision, recall and accuracy are calculated as
follows:

precision = tp/(tp+ fp)

recall = tp/(tp+ fn)

f −measure = 2 ∗ (P ∗R)/(P +R)

where tp is a true positive, where the part of the ex-
tent identified in the system output is the same as
the expected output, fp is a false positive, where
the token identified as part of the extent by the sys-
tem is not a part of the expect output, and fn is a
false negative, where a token not identified as a
part of the extent by the system output, is a part of
the expected output.

We note a lower precision score in case of En-
glish and Spanish, as the number of false posi-
tives are slightly higher. We attribute this differ-
ence to the fact that due to the combination of
sub-word level features, the model seems to some-
times ”spill over” the boundary of single word or
nominal. However, higher recall implies that there
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are fewer false negatives, meaning the model more
accurately identifies those words which are in the
event span. More labeled data would be very use-
ful in learning the span boundaries, especially for
nominal events, as the network would have more
samples to learn the variations in the methods of
event representation.

For English, surprisingly, we see that an in-
crease in the F1-scores. We attribute this to a com-
bination of factors, including well defined verbal
affixes which are attributed to events, and effec-
tive weighted combination of character and word
embeddings.

For Italian, we train and test solely on the Ita-
TimeBank, whereas the current state of the art
system trained on an augmented Ita-TimeBank
(Caselli et al., 2011b), which was enriched with
more labeled data. Similarly, in French, we use the
established French TimeBank, while experiments
in French so far have been on self-annotated (Ar-
nulphy et al., 2015) or TimeML corpora (Bittar,
2009). Since these repositories of augmented data
were not available to us at the time of writing this
paper, the values reflect the same. However, it is
to be noted that our system does provide an accu-
racy that is close to the currently reported state-
of-the-art even in the absence of language specific
features, explaining the fact that sub-word infor-
mation is necessary for event detection in Italian
and French as well.

For Hindi, our architecture provides a good
baseline. However, the training data consists of far
too many words that are out of vocabulary, which
is a major issue in working with word embeddings.
While the concatenation of sub-word information
mitigates this, a system focused on a better repre-
sentation of out of vocabulary words would signif-
icantly help the network. However, this required a
larger labeled corpus as well, which makes this a
challenge as Hindi is a low-resource language in
terms of corpora for event detection and extrac-
tion.

6 Conclusion

In this paper, we show the development of
ALINED, a language invariant neural sequence
tagging architecture for event detection in five dif-
ferent languages, namely, English, Spanish, Ital-
ian, French and Hindi. We develop insight into the
use of sub-word level information and combining
it effectively. with the lexical and syntactic infor-

mation.
For our training and testing, we use only estab-

lished corpora, which have not been augmented or
changed in any way. We perform almost at par
or better then the current state of the art in all the
languages we train in. We establish a new best
F-score for event extraction in English. We also
establish the baseline for training and testing on
the French TimeBank and for event extraction as a
task in Hindi.

Our model has been thoroughly error-analyzed,
which we have explained based on the compari-
son of system output and expected tags. Given
the nature of our results, we aim to establish the
importance of sub-word level information in event
detection. Further work in this task could be done
by providing augmented reference corpora, so that
problems based on lack of labeled data do not limit
further research in this topic. This could also be
tackled by effectively introducing transfer learn-
ing to neural event detection, where the model
learns the representation of events irrespective of
language, while accounting for sub-word, lexical
and structural information.
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Abstract

We describe the development of a knowledge
graph from an event annotated corpus by pre-
senting a pipeline that identifies and extracts
the relations between entities and events from
Hindi news articles. Due to the semantic im-
plications of argument identification for events
in Hindi, we use a combined syntactic argu-
ment and semantic role identification method-
ology. To the best of our knowledge, no other
architecture exists for this purpose. The ex-
tracted combined role information is incorpo-
rated in a knowledge graph that can be queried
via subgraph extraction for basic questions.
The architectures presented in this paper can
be used for participant extraction and event-
entity linking in most Indo-Aryan languages,
due to similar syntactic and semantic proper-
ties of event arguments.

1 Introduction

Events are defined as situations that happen or
occur (Saurı́ et al., 2006). Events therefore in-
volve participating entities, sometimes referred to
as event arguments (Ji and Grishman, 2008). The
extraction of role information of entities partic-
ipating in events is a fast-evolving area of re-
search in information retrieval as well as subfields
of NLP such as question answering and summa-
rization (Lin and Liang, 2008). This paper han-
dles the challenge of participant detection and la-
beling in Hindi, using syntactic measures such as
dependency parsing and semantic measures such
as verb frame comparisons and semantic role la-
beling. Using the entities extracted from the text
and their relation to the event, a knowledge graph
is generated, which can then be queried for basic
questions.

In Hindi NLP, the representation, identifica-
tion and extraction of events is a fairly new con-
cept. Event extraction from twitter data (Kuila and

Sarkar, 2017) and in news data (Ramrakhiyani and
Majumder, 2013; Goud et al., 2019) are still devel-
oping areas of research. However, extensive work
has been done on argument structure for Hindi
verbs, therefore the syntactic analysis of verbal
events has been a topic of sufficient inquiry (Butt,
2010). On the other hand, nominal events, while
not studied under that paradigm, have been refer-
enced in entity linking in NER research (Athavale
et al., 2016).

This paper, given the definition of events in
Hindi (Goud et al., 2019), identifies the arguments
of these events. We employ a syntactico-semantic
approach of entity identification by using depen-
dency parsing to determine the syntactic roles of
the arguments and their dependency length from
the event mention (Gulordava et al., 2015), and a
semantic role labeler which is used to determine
the semantic case or functions of the participating
entities (Carreras and Màrquez, 2005). For ver-
bal events, verb frame data has also been used for
verifying the arguments. This information is con-
structed as a knowledge graph, a query graph (Yih
et al., 2015) of which can then be used for question
answering.

2 Related Work

Entity or participant extraction is a vital sub-
domain of event detection and related informa-
tion extraction tasks. The ACE project (Dodding-
ton et al., 2004) and many of the relevant event
extraction tasks that followed it had entity detec-
tion and tracking as one of the main components
for event detection and extraction systems (Ahn,
2006). ACE also provided twenty-four different
types of relations between entities. Hong et al.
(2011) establishes a mechanism of using entity
links in order to more accurately detect event men-
tions, by associating some entities as event par-
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ticipants or arguments. Joint extraction of event
and entity mentions has been attempted (Yang and
Mitchell, 2016) by learning intra-event structures
and possible forms of entity relations to events.

Named entity recognition has been another
broader form of approach to entity identification
and linking. Entity mention detection and tracking
its use in the corpus (Xu et al., 2017) is considered
the most fundamental method in this approach.
Yamada et al. (2015) approaches the problem of
named entity recognition from the perspective of
entity linking. Hybrid joint approaches to partici-
pant extraction and linking (Plu et al., 2015) have
been treated as an extension of this problem, and
the OKE 2017 task (Plu et al., 2017) performed
participant extraction and linking for ontology en-
richment. Florian et al. (2004) and Lin et al.
(2016) perform cross lingual entity linking over an
enriched knowledge base, one of the languages be-
ing Hindi. These approaches are important for un-
derstanding and disambiguating the links between
nominal events and their participants.

Argument analysis for verbs in Hindi has been
a well-researched topic, as mentioned above.
Palmer et al. (2009) studies the computational
properties of verbal predicates from a depen-
dency annotation perspective, while Vaidya et al.
(2016) and Vaidya et al. (2019) focuses on the
syntactic argument structure of light verbs in
Hindi. Light verbs are one of the syntactic con-
structions observed in representation of eventive
verbs. Compound verb detection (Chakrabarti
et al., 2008), complex predicate detection (Muk-
erjee et al., 2006) and argument identification in
complex predicates (Montaut, 2016) can be mod-
eled together in syntactic argument detection for
verbal events. The study of noun incorporation in
verb complexes (Dayal, 2015) provide a semantic
perspective of argument structure and event par-
ticipation. Syntactically, two major concerns of
verb argument analysis are verb phrase ellipsis and
complex predicate analysis (Manetta, 2018b,a).

Knowledge graphs are extensively used in se-
mantic information retrieval and has numerous
other applications cross language document re-
trieval (Franco-Salvador et al., 2014), cross lin-
gual plagiarism detection Franco-Salvador et al.
(2016), question answering (Indurthi et al., 2017)
and summarization (Zheng et al., 2016).

Figure 1: Example of a tagged pair of sentences. The
event indexes are intra-sentence.

Overall statistics
Number of Articles 810

Total Number of Sentences 13949
Total Number of Events 20190

Nominal Events 1841
Verbal Events 18349

Total Number of Entities 41847
Average per sentence

Length (Words) 18
Number of Entities 3
Number of Events 1.48

Number of Entities per Event 2.08
Most Common Relation

Entity - Nominal Event (ARG0)
Entity - Verbal Event (K1, ARG0)

Inter-Annotator Statistics
Participant Identification 0.86

Syntactic Role Identification 0.89
Semantic Role Identification 0.79

Coreferent Mention Identification 0.91

Table 1: Dataset and Annotation Statistics

3 Dataset and Annotation Specifications

We use a gold-standard corpus of 810 news arti-
cles of Goud et al. (2019), and annotate it for enti-
ties and their relations with the events. The entity-
event relations are annotated based on a syntactic
as well as a semantic role. The syntactic role is
simply a dependency label (Tandon et al., 2016),
while the semantic labels are provided according
to Hindi and Urdu PropBank labels (Bhatt et al.,
2009).

The annotated sentence shown in Figure 1 is:
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frans aur england ke sipahi
France and England of soldiers
vishva yudha mein maare gaye.
World War in killed got.

ye sun kar ram ko
This listen to Ram (acc)

bohot dukh hua
much sad happen

Table 1 presents some of the basic statistics of
the annotated data. The data has been annotated
by four annotators who are proficient in Hindi and
are students of linguistics using the BRAT annota-
tion tool (Stenetorp et al., 2012) for annotating and
providing labels. The inter-annotator agreement
was measured by a strict match Cohen’s Kappa
Score (Cohen, 1960).

The dataset is then annotated further for ease of
semantic role extraction. All event mentions are
indexed, and if two event mentions are coreferent,
they are given the same index. In case of entities,
only entities with coreferent mentions are indexed.
Coreferent entity mentions are given the same in-
dex. For this task, inter-annotator agreement was
calculated on four different measures, identifying
the participant, correct syntactic role, correct se-
mantic role and correct coreferent mention identi-
fication. For the purpose of coreference, the enti-
ties and events are treated the same.

4 Identifying Entity Participation in
Events

In this section, we look at the pipeline for the ex-
traction of entities as arguments of events. We de-
fine here a nominal event as an event which has
the event nugget (the core of the event) is a noun.
Similarly, a verbal event is an event which has the
event nugget which is a verb.

As discussed before, discerning entity participa-
tion in events is a syntacto-semantic problem, and
therefore our solution (refer to Figure 2) has both
syntactic and semantic components. Note that
a IOB (inside-outside-begin) tagged event men-
tioned corpus is the input to the pipeline. The out-
puts from each module and the final pipeline are
formatted to be used in the form of a knowledge
graph, which is detailed in Section 5.

4.1 Syntactic Participation Detection
The syntactic components are essential prepro-
cessing tasks such as POS tagging and depen-
dency parsing. The dependency parse provides the

syntactic role information. Particularly for verbal
events, the parse also provides the distance from
the event mention, which is essential in order to
determine participation in sentences with multiple
events. This participation is then verified using
verb frame data.1

The procedure for syntactic participation detec-
tion is as follows:

1. A Hindi POS tagger (Shrivastava and Bhat-
tacharyya, 2008) is used to identify the part
of speech of all the lexical items in the sen-
tence. Since most event arguments are nomi-
nal or pronominal, the relevant words are ex-
tracted. The POS tagged text is then provided
as input to the next phase.

2. The text is then parsed using a dependency
parser (Palmer et al., 2009). The dependency
labels from the root are considered most im-
portant, since the nouns and pronouns di-
rectly associated with the verb are most likely
to be the arguments of the event.

3. The karaka and sambandh edge labels, which
are provided by the dependency parser, are
extracted. The karaka edge labels provide
the case of the noun and its role with re-
spect to the verb, while the sambandh edge
label mark the genitive relation between two
nouns. If either one of the nouns is eventive,
the relation given to it is the relevant karaka
relation. If both the nouns are entities, then
they are not linked. The relation between two
entity nouns by a sambandh (genitive) case
marker is not marked in the graph directly.
Instead, genitive chains are constructed after
extraction of the entity, using the dependency
tree.

The dependency parser provides syntactic role
information and the distance of the extracted
words from the verbs in the sentence. For sen-
tences with relative or subordinate clauses, as well
as multiple events, this feature is used to determine
which event is linked to which entity. The genitive
sambandh relations are retained irrespective of the
eventiveness of the nouns for the purpose of iden-
tifying the primary participant in an event in case
of a long genitive chain.

1While we define entities by participation similar to ACE
(Doddington et al., 2004), the definition of event (Goud et al.,
2019) allows for multiple events in a single sentence.
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Figure 2: Pipeline for Participant Extraction

4.2 Semantic and Discourse Relation
Extraction

The semantic role of the arguments to an event are
extracted by the semantic role labeler (SRL) for
Indian languages (Anwar and Sharma, 2016). The
SRL uses POS tagged text as an input and pro-
vides the semantic role of the nouns and adverbs
in the sentence. For the purpose of participant ex-
traction, the adverbs are ignored.

However, before the semantic role extraction
can be done, event coreference, entity coreference
and anaphora resolution are permormed, in order
to determine the possible overlap of event men-
tions (multiple event mentions for the same event)
(Chen et al., 2009).

• Event coreference is taken care of by index-
ing the event. All event mentions in the an-
notated input are indexed by a numerical sub-
script. Corefernent events have similar event
triggers and overlapping argument structures
(Lu et al., 2016), which are crucial features
in the annotation of these events. The indices
of coreferent event mentions are the same,
which indicates that they share their argu-
ments.

• Entity coreference is taken care of determin-
ing the role that the entity performs in the
event. This is one of the primary entity based
features used for entity coreference (Clark
and Manning, 2015). In the corpus, the en-

tities are partially indexed, that is that only
coreferent entities are indexed.

Both anaphora and event coreference are done
automatically using a combination of role extrac-
tion and verb relations as mentioned above, as well
as using pretrained models (Devi et al., 2014) and
manual editing of the output.

After this, if a noun also happens to be an event,
the dependency relation between it and a verbal
event in the sentence (if any) is retained, while
the semantic relation is removed. Event-event re-
lations are beyond the scope of this paper, and for
the sake of simplicity, it is assumed that events can
not be arguments to other events. Retaining the de-
pendency information, however, as it is a feature
used in entity disambiguation if an entity happens
to participate in a nominal and a verbal event. As
with the dependency parse, the semantic relations
between two nouns is retained regardless of their
eventiveness, as the semantic relation acts as a ver-
ification for the detected primary participant.

4.3 Role Analysis and Verification

In order to accurately determine the roles as-
signed by the two modules above, our pipeline is
equipped with an analysis module. In line with
the Paninian tradition, we use the notion of yogy-
ata (capability) (Kulkarni et al., 2010) to verify
whether an event can take the types and roles of
the arguments that have been assigned to it. The
output of this system are then analyzed as tem-
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plates of entity-event relations, which are used to
create the knowledge graph.

Verbal events are analyzed using verb frame
data (Soni et al., 2013). The verb frame data pro-
vides the possible karaka relations which can be
used to determine the mandatory and optional syn-
tactic expectancy of the verb in different senses.
A maximal matching algorithm (Algorithm 1) is
used across all senses, and the sense with all
mandatory and the maximum number of optional
karaka arguments is chosen as the sense of that
verb.

Algorithm 1 Maximal matching Verb Verification
1: procedure MAXMATCHVERB

2: VFD← Verb Frame Data
3: V ← Verbal Event
4: part← list [(Parent, Participant, Role)]
5: max all← 0
6: max← −1
7: for verb in V FD do
8: for sense in verb do
9: if (V = verb) and (part[2] =
sense) then

10: max = max+ 1

11: if (max all < max) then
12: max all← max

13: return max all

Algorithm 2 Entity Disambiguation
1: procedure ENTITYDISAMBIGUATION

2: N ← NominalEvent
3: E ← EntityList
4: if N in E then
5: Remove N from E

6: V ← Closest verbal event from N .
Word distance or tree distance

7: Add ARG0, ARG1 of V to E
8: V EList← list of all verbal events
9: for V E ∈ V EList do

10: if ARG2LOC ∈ V E then
11: Add ARG2LOC of V E to E
12: if ARG2GOL ∈ V E then
13: Add ARG2GOL of V E to E
14: if ARGSOU ∈ V E then
15: Add ARGSOU of V E to E
16: if ARGTMP exists then
17: if ARGTMP /∈ arg(V E) for V E ∈

V EList then
18: Add ARGTMP to E

Nominal entity participant identification fol-
lows two steps, jointly referred to as entity dis-
ambiguation. First, we use a naive coreference
resolution using a feature set similar to Dakwale
et al. (2013)’s rule based implementation, for en-
tities and events. The syntactic roles of signifi-
cance are sambandh relations. Some of the de-
sign choices in Lee et al. (2012), including fea-
tures such as number of coreferent arguments and
argument roles are crucial to determining partici-
pation, as shown in Algorithm 2.

Finally, we analyze and resolve co-participation
ambiguities. For sentences with multiple events, it
is necessary to verify whether all the entities nec-
essarily participate in, or are modified by, the at-
tributed events. In verbal events, maximal match-
ing is done on the entities syntactically closest to
it, which performs well in default word order. For
entities linked to both nominal and verbal events,
semantic role information is considered. Nominal
events characteristically only take agentive, the-
matic and locative arguments over the verbal pred-
icate (Gerber and Chai, 2012), while only those
temporal arguments are taken which are not at-
tributed to the verbal event.

After completing this analysis, the output of the
pipeline is condensed and reformatted as inputs to
a knowledge graph.

5 Entity-Event Knowledge Graph

Knowledge graphs have been widely used in in-
formation retrieval, since their adoption in popular
search engines. However, knowledge graphs can
be constructed for document wide, corpus wide or
domain wide extraction of information as well. In
this section, we show the development of an event-
centric entity linked knowledge graph.

(Rospocher et al., 2016) defines an event centric
knowledge graph as a knowledge graph in which
all information is related to events through which
the knowledge in the graph obtains a temporal di-
mension. Knowledge graphs are useful for the rep-
resentation of semantic information in the edge la-
bels or in the attributes of the nodes itself. Doc-
ument wide knowledge graphs can be queried by
limiting the search space based on the query. This
method of creating a query graph allows for an
inference chain for the related nodes (Yih et al.,
2015).
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Question word Gloss Category Role
kis + case marker2 who Entity -

kaun who Entity -
kahAn where Entity Location or Source

kab when Entity (Time)
kyun why Event or Entity (Goal)

Table 2: Question Words and Answer Types

Figure 3: Pipeline for Knowledge Graph and Query Graph Creation. ”Participant Extraction” refers to the Pipeline
in Fig. 1

5.1 Developing the Knowledge Graph
In order to develop a knowledge graph, we must
determine the relevant nodes and edges. We
choose to consider events and entities as nodes,
and the relations between them as the edges. The
relations between them, as mentioned before, are
both syntactic and semantic. We show the de-
velopment of the knowledge graph and handling
queries in Figure 3

Creating triples As with most knowledge graph
based representations, the first step is to extract
the necessary triples that constitute the graph. The
data after being passed through the entity detec-
tion and linking pipeline, has to be reformatted
into (e, (n,m), vi) triples, where e ∈ E, the set
of all entities, (n,m) ∈ (N ∪ {φ},M), where N
is the set of all syntactic roles and M is the set of
all semantic roles, and vi ∈ V , the set of all events
in the document, indexed. If there is no syntactic
role of the entity in an event, as is common with
nominal events, the syntactic role given to it is φ.

We also construct specific genitive triples, de-

fined as (ei, n, ej) where ei, ej ∈ E, the set of
all entities and n is always given a POF rela-
tion. These links are useful when constructing en-
tity links and chains. The genitive triples are not
used directly in the knowledge graph. Instead, the
constructed genitive triples (since they are directly
extracted from the dependency graph) are used for
generating an answer for a query. These are main-
tained primarily for efficiency in generating an an-
swer for the query.

Handling Event Coreference After triple cre-
ation, event coreference has to be handled. Coref-
erence is handled in semantic role extraction.
Events are indexed by the occurrence of their first
mention in the text. A relation has to be created
between the entities of events with the same in-
dex. Note, however, that because of the tempo-
ral nature of events, entities that are linked to a
later mention of a coreferent event are not linked
to the first. In our approach, the first mention of
an event is considered its primary mention, for
the purpose of creating the knowledge graph. All
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Figure 4: Knowledge graph representation of fig. 1

other mentions are secondary mentions, which are
ordered through the document in their order of oc-
currence. The entities participating in the primary
event mention are considered participants to all the
secondary mentions, while the arguments of the
first secondary mention are arguments only to it-
self and the remaining secondary mentions and so
on. Therefore, for each new event mention of the
same event, new triples are made which account
for the participation of that event from all previ-
ous event mentions.

Handling Entity Coreference In the case of en-
tity coreference and anaphora, entities with multi-
ple mentions are already indexed, and therefore,
all the entity mentions are considered the same
entity, and if an entity mention participates in an
event, all other entity mentions participate in it as
well. Therefore using the index values of the enti-
ties, a coreference chain can be formed that defers
all entity mentions to the primary entity mention,
which is the first mention of an entity. This choice
also makes query graph formation easier. There-
fore, all triples where the entity is indexed are re-
placed with the primary mention of the entity.

Figure 4 shows the knowledge graph of a snip-
pet of the sentences from figure 1. Events and en-
tities are both nodes, as mentioned; we use colors
to distinguish between them.

5.2 Querying the Knowledge Graph

Once the knowledge graph has been created, it can
be used for other downstream tasks and applica-
tions. One of the major applications is question-
answering. Recent approaches to open domain
question-answering systems over graph databases
like Freebase (Bollacker et al., 2008) follow a se-
mantic parsing approach (Yao and Van Durme,
2014). Our approach for querying the entity-event
knowledge graph is similar to Yih et al. (2015)’s
approach. We generate a query graph of the ques-

tion and perform predicate matching over the λ-
expression corresponding to the query graph after
exhausting all possible inference chains.

We are first tasked with the annotation of events
and entities in the question. Event annotation is
done by the the methods described in (Goud et al.,
2019), and are not discussed in the scope of this
paper. But given an event annotated event sen-
tence, we first identify the entities and the question
entity, which is the interrogative pronoun. The ba-
sic pipeline for entity recognition in the document
is also followed for the question. In the analysis
phase, the question pronoun is marked. We map
the question pronoun to the type of response ex-
pected, that is, either an entity or an event. Using
this information, the query graph is created, from
which a λ-expression is extracted.

Carrying the example from section 3, a factoid
question based on the sentences (sentences in 1,
graph in 4) could be:

yudh mein kaun maare gaye?
War in who killed got?

As mentioned, we first parse and analyze the
question, as has been done before in section 4.
The dependency parse provides us with which
word is the question word. We also use a spe-
cific morphanalysis module to extract syntactic
role (karaka) information.

From this, we construct the λ-expression
λx.∃y : entity(x, y)∧ Arg0(y,maare gaye)∧
k1(y,maare gaye)∧ Arg0(y, yudh). The first of
the relations (entity), can be determined based
on the question word’s role in the sentence. For
the purpose of factoid questions on our dataset,
only the question kyun (why) is considered to
have an answer which is tagged event. Table
2 is the simple mapping from question to query.
In the cases where a question can have multi-
ple types of answers, the largest number of over-
lapping words is considered the disambiguating
heuristic. Question words such as kaise (how) and
kyA (what) are not accounted for, as not all formats
of the question are factoid in nature. Therefore,
using the lambda-expression, we can construct a
query graph, which can easily be mapped onto the
knowledge graph, and the y is the answer to the
query, while λ(x) ascertains whether the answer
is of the correct type (event or entity).
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Entity Detected Overlap Label
Overall 86.4% 84.1%

Nominal Events 64.1% 71.7%
Verbal Events 93.7% 89.4%

Table 3: Average Accuracy for Participant Extraction

6 Analysis and Results

In this section, we look into the two pipelines
which have been developed for constructing a ba-
sic knowledge graph from an event annotated cor-
pus, and the type of queries it can handle. We pro-
vide both a qualitative and quantitative analysis of
the results of the pipelines. We also provide a thor-
ough analysis of errors.

6.1 Participant Extraction Pipeline

The participant extraction pipeline (figure 2) has
multiple interdependent components, such as the
event annotated corpus, the POS tagger and de-
pendency parser, the coreference resolution mod-
ule and the semantic role labeler. Based on the an-
notated data, we find that the pipeline accurately
detects the presence of 86.4% of the participants
of the events for each event on an average. Table 3
shows the percentage of average complete overlap
and the accuracy of label detection. Note that only
complete overlap of the entity span is considered
as the output and the label is considered accurate
if all the roles have been correctly identified.

The relative drop in accuracy for nominal events
is due two primary reasons, first that there are
no syntactic features for the detection of partici-
pants in nominal events and secondly coreference
of nominal events as entities. We notice that a
coreferent event mention can act as an entity, but
still hold eventive characteristics, which has not
been handled in our pipeline. Furthermore, due to
case marker overloading (Bharati et al., 2002) in
Hindi, the accurate detection of labels is affected.

6.2 Knowledge Graph and Queries

In the creation of the knowledge and query graphs,
illustrated in figure 3, we see that the errors of the
participant extraction pipeline mentioned above
will propagate forward, causing the knowledge
graph to be an ill-representation of the document.
As mentioned above, the characteristic error arose
from coreference mishandling, and therefore, the
coreference validation module accounts for the as-
signing the eventive nature of the coreferent event

mentions which act as entities.
We qualitatively analyze the knowledge graph

and the pipeline by using simple queries in order
to verify the creation of the graph and the associ-
ated nodes and edges. The queries, as shown in
Figure 3, also pass through the same pipeline, and
we verify the knowledge graph based on the ac-
curacy of the response to the query. Since the λ
expressions are constructed based on simple rules
based on the nature of Hindi question words, we
could only qualitatively analyze the graph on sim-
ple queries with single query results.

Queries of the form ’kis’ + case marker or kaun
provide a valid response to the query. However,
for sentences with multiple events, queries provide
incorrect results in some cases. This is partly be-
cause of entity sharing, which is that an entity is
associated to multiple events if they are subevents.
Since the relations between events have not been
handled yet, and is beyond the scope of this paper.

7 Conclusion

In this paper, we attempted to determine a method
of identifying the participants of each event in an
event-annotated corpus, given the syntactic and se-
mantic role of each noun and verb in a sentence.
We used a distinct pipeline of interacting tools
which provided various levels of syntactic and se-
mantic information, which were then combined
and analyzed. We have presented the two major al-
gorithms; one for identifying the sense of the verb
being used (based on the available mandatory ar-
guments and the maximum match of optional ar-
guments), and the other for determining the partic-
ipants of a nominal event. We have also presented
the development of a queryable knowledge graph
on the basis of the events and entities extracted,
that use the role information as edge labels. With
this work, we hope to develop a more robust rep-
resentation of events and entities, which can be
enriched with developments in event classification
and event relation extraction in Hindi. Most im-
portantly, the pipeline and algorithms developed
in this paper are language agnostic, which we hope
will spur research into developing information rich
representations of event and participation informa-
tion in other languages as well.
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Abstract
This paper describes our first experiment
on Neural Machine Translation (NMT)
based query translation for Amharic-
Arabic Cross-Language Information Re-
trieval (CLIR) task to retrieve relevant
documents from Amharic and Arabic text
collections in response to a query expressed
in the Amharic language. We used a pre-
trained NMT model to map a query in the
source language into an equivalent query
in the target language. The relevant docu-
ments are then retrieved using a Language
Modeling (LM) based retrieval algorithm.
Experiments are conducted on four con-
ventional IR models, namely Uni-gram and
Bi-gram LM, Probabilistic model, and Vec-
tor Space Model (VSM). The results ob-
tained illustrate that the proposed Uni-
gram LM outperforms all other models for
both Amharic and Arabic language docu-
ment collections.

1 Introduction

Information Retrieval (IR) is the activity
of retrieving relevant documents to informa-
tion seekers from a collection of informa-
tion resources such as text, images, videos,
scanned documents, audio, and music as well.
These resources can be structured, indexed,
and navigated through Language Technology
(LT), which includes computational methods
that are specialized for analyzing, producing,
modifying, and translating text and speech
(Madankar et al., 2016) . The increasing ne-
cessity for retrieval of multilingual documents
in response to a query in any language opens
up a new branch of IR called Cross-Language
Information Retrieval (CLIR). Its goal is to
accept the query in one language, transform
it into a searchable format and provide an in-
terface to allow a user to search and retrieve

information in different languages as per their
information need (Sourabh, 2013).

The Amharic language is the official lan-
guage of Ethiopia spoken by 26.9% of
Ethiopia’s population as mother tongue and
spoken by many people in Israel, Egypt, and
Sweden. Arabic is a natural language spoken
by 250 million people in 21 countries as the
first language and serving as a second lan-
guage in some Islamic countries. Ethiopia
is one of the nations, which have more than
33.3% of the population who follow Islam, and
they use the Arabic language to teach religion
and for communication purposes. Arabic and
Amharic languages belong to the Semitic fam-
ily of languages, where the words in such lan-
guages are formed by modifying the root itself
internally and not simply by the concatena-
tion of affixes to word roots (Shashirekha and
Gashaw, 2016).

Nowadays, it is widely used to solve CLIR
problems for many language pairs. However,
much of the research on this area has fo-
cused on European languages despite these
languages being very rich in resources. So
this study is aimed to develop the NMT query
translation based Amharic-Arabic CLIR sys-
tem.

An essential part of CLIR is mapping be-
tween query and document collections by
translating queries to the target document lan-
guage or the source document to the target
document language. We follow the first ap-
proach to translate the query words by us-
ing a pre-trained NMT model. For the pur-
pose of this translation, we have constructed
a small parallel text corpus by modifying the
existing monolingual Arabic and its equiva-
lent translation of Amharic language text cor-
pora available on Tanzile (Tiedemann, 2012),
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as Amharic-Arabic parallel text corpora are
not available for MT task.

The rest of the paper is organized as fol-
lows. CLIR approaches are discussed in sec-
tion 2. Related works are reviewed in Section
3. The proposed CLIR approach based on LM
is described in Section 4. Resources and con-
figurations of experiments for evaluating the
system and the results are detailed in Section
5, followed by a conclusion in section 6.

2 CLIR Approaches

In CLIR, the query and the document col-
lection needs to be mapped into a common
representation to enable users to search and
retrieve relevant documents across the lan-
guage boundaries (Tune, 2015). Based on
the resources used to map the query and the
documents in different languages, CLIR ap-
proaches can be categorized as; Dictionary-
based approach, Latent Semantic Indexing
(LSI), Machine Translation (MT) approach,
and Probabilistic-based approach (Raju et al.,
2014).

2.1 Dictionary-based approaches

Dictionary-based approaches use either an
automatically constructed bilingual Machine
Readable Dictionaries (MRD), bilingual word
lists, or other lexicon resources to translate the
query terms to their target language equiva-
lents. This approach offers a relatively cheap
and easily applicable solution for large-scale
document collection. Due to Out of Vocab-
ulary (OOV), some words in a query may
not be translated. Further, linguistic con-
cepts such as polysemy and homonymy may
introduce ambiguity in translation of words
(Shashirekha and Gashaw, 2016)

2.2 LSI approach

In the LSI approach, the documents of
the source language are represented in the
language-independent LSI space. Similarly,
a user query can be treated as a pseudo-
document and represented as a vector in the
same LSI space. Even though the performance
of the LSI model is on par with the tradi-
tional vector space model, the cost of comput-
ing Singular Value Decomposition (SVD) of
very large collections is high, and it makes a

difference between different meanings of am-
biguous terms according to their contexts of
utilization (Nie, 2010).

2.3 Machine Translation approach
MT is a process of obtaining a target language
text for a given source language text by us-
ing automatic techniques. MT can be used
to translate the query, the document, or both
into the same language, and the retrieval pro-
cess could then be treated similar to a con-
ventional IR system. However, MT systems
require time and resources to develop and are
still not widely or readily available for many
language pairs (Madankar et al., 2016) .

2.4 Probabilistic-based approaches
Probabilistic-based approaches include
corpus-based methods which translate queries
and language modeling which avoid transla-
tion of queries.

2.4.1 Corpus-based methods
Corpus-Based approaches use multilingual
corpora which can be parallel corpora or com-
parable corpora. In this approach, queries are
translated on the basis of multilingual terms
extracted from parallel or comparable docu-
ment collections. While parallel corpora con-
tain translation-equivalent texts which contain
direct translations of the same documents in
different languages, comparable corpora con-
tain texts of the same subject which are nei-
ther aligned nor direct translations of each
other but composed in their respective lan-
guages independently (Tesfaye, 2010). It is
available only in a few languages and more ex-
pensive to construct.

2.4.2 Language modeling approaches
A language model is a probability distribution
over all possible sentences or other linguistic
units in a language. While the classification of
LM is not exhaustive, and a specific language
model may belong to several types, LM can be
categorized as uniform, finite state, grammar-
based, n-gram, and Neural Language Model
(NLM) (or continuous space LM) that might
be feed-forward or recurrent (SWLG, 1997) .
Uniform LM uses the same probability for all
words of the vocabulary of the sentences if
the number of sentences is limited. In finite-
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state LM, the set of legal word sequences is
represented as a finite state network (or regu-
lar grammar) whose edges stand for the words
that are assigned probabilities. Grammar-
based LM is based on variants of stochastic
context-free grammars or other phrase struc-
ture grammars.

Data scarcity is a significant problem in
building language models, as most possible
word sequences will not be observed in train-
ing. One solution to this problem is contin-
uous representations, or embedding of words
to make their predictions that help to alle-
viate the curse of dimensionality in LM. The
main advantage of LM is to estimate the dis-
tribution of various natural language phenom-
ena for language technologies such as speech,
machine translation, document classification
and routing, optical character recognition, in-
formation retrieval, handwriting recognition,
spelling correction, etc. (Kim et al., 2016) .
Over-fitting (random error or noise instead of
the underlying relationship when its test error
is larger than its training error) is the main
limitation in current LM for small size datasets
(Jozefowicz et al., 2016) .

3 Related works

Most of the researchers have studied CLIR
works related to different language pairs.
However, the only work reported on Amharic
and Arabic languages pair is ”Dictionary
Based Amharic-Arabic Cross-Language Infor-
mation Retrieval System” (Shashirekha and
Gashaw, 2016). The performance was af-
fected by incorrect translation due to out-
of-dictionary words and unnormalized Arabic
words; specifically, diacritics not mapped with
the dictionary words, and the query was for-
mulated by selecting words available in the
dictionary.

Some of the prominent works reported on
Amharic and Arabic languages paired with
other languages are discussed below.

In bilingual Amharic-English Search En-
gine (Munye and Atnafu, 2012), limitation of
word coverage includes a large-size commercial
bilingual dictionary and on-line bilingual dic-
tionary for query translation and short data
size. The system can perform best only on
the selected query terms which are available

in the dictionary. The lack of electronic re-
sources such as morphological analyzers and
large MRD have forced A. Argaw (2005)  to
spend considerable time to develop those re-
sources themselves.

Solving the problem of word sense dis-
ambiguation will enhance the effectiveness
of CLIR systems. Andres Duque et al.
(2015), studied to choose the best dictionary
for Cross-Lingual Word Sense Disambiguation
(CLWSD), which is focused only on English-
Spanish cross-lingual disambiguation and the
disambiguation task is dependent on the cov-
erage of dictionary and corpus size. Query
suggestion that exploits query logs and doc-
ument collections by mapping the input query
of French language to queries of English lan-
guage in the query log of a search engine by
W. Gao et al. (2007) showed the strong cor-
respondence between the French input queries
and English queries in the log, but languages
may be more loosely correlated. For exam-
ple, English and Amharic. M.Al-shuaili and
M.Garvalho (2016), proposed a technique to
map characters automatically from different
languages into English, without human inter-
ference and prior knowledge of the language.
While mapping helps transliterations of OOV
names to have the same or, at least, very
similar pronunciations in any language, word
structure, and writing direction add complex-
ity for character mapping and originality of
the names also affects the result of character
mapping.

In the Corpus-based CLIR system for
Amharic and English language pairs (Tesfaye
and Scannell, 2012), the size and the qual-
ity of document constructed highly affected
the performance of the system. Nigussie Eyob
(2013), have developed a corpus-based Afaan
Oromo-Amharic CLIR system to enable Afaan
Oromo speakers to retrieve Amharic informa-
tion using Afaan Oromo queries. The scarcity
of aligned corpus creates a problem of trans-
lation disambiguation, and the dictionary is
limited to translate words only.

F. Türe et al. (2012), explores combination-
of-evidence techniques for CLIR using three
types of statistical translation models:
context-independent token translation, token
translation using phrase-dependent con-
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texts, and token translation using sentence-
dependent contexts. Experiments on retrieval
of Arabic, Chinese, and French documents us-
ing English queries show that no one technique
is optimal for all queries, but statistically
significant improvements in Mean Average
Precision (MAP) over strong baselines can be
achieved by combining translation evidence
from all three techniques.

In all the above-mentioned cases, the key el-
ement is the mechanism to map between lan-
guages that can be encoded in different forms
as a data structure of the query and document-
language term correspondences in an MRD or
as an algorithm, such as an MT or machine
transliteration system.

Nowadays, the direction of CLIR is on utiliz-
ing neural approaches. Quing Liu (2018), pro-
posed a neural approach to English-Chinese
CLIR, which consists of two parts; bilin-
gual training data and Kernel-based Neural
Ranking Model (K-NRM). External sources
of translation knowledge are used to gener-
ate bilingual training data which is then fed
into a kernel-based neural ranking model. The
bilingual training approach outperforms tra-
ditional CLIR techniques given the same ex-
ternal translation knowledge sources. K-NRM
learns translation relationships from bilin-
gual training data by capturing soft-matches
from bilingual term pairs and combine soft-
matches to generate final scores with a set of
bins. Kazuhiro Seki (2018) explores a neural
network-based approach to compute similar-
ities of English and Japanese language text.
They focus on NMT models and examine the
utility of an intermediate state. The interme-
diate state of input texts is indeed beneficial
for computing cross-lingual similarity outper-
forming other approaches, including a strong
machine translation baseline.

Many of CLIR works related to neural ap-
proaches are focused on neural ranking meth-
ods not directly using NMT for query transla-
tion. In this work, an NMT based query trans-
lation is employed to map between Amharic
and Arabic Languages using traditional IR
ranking methods.

4 Proposed Amharic-Arabic CLIR
System

Traditional IR in cross-language environment
settings mainly allows measuring the similar-
ity between the information need (query) in
source language and collection of documents
in both languages. In a CLIR environment,
queries and documents are written in two dif-
ferent languages. In order to match terms be-
tween the two languages, a retrieval system
needs to establish a mapping between words
in the query vocabulary and words in the doc-
ument vocabulary.

Deep learning NMT is a recent approach of
MT that produces high-quality translation re-
sults based on a massive amount of aligned
parallel text corpora in both the source and
target languages. Deep learning is part of a
broader family of ML methods based on arti-
ficial neural networks (MemoQ, 2019). It al-
lows computational models that are composed
of multiple processing layers to learn repre-
sentations of data with multiple levels of ab-
straction. These methods have improved the
state-of-the-art research in language transla-
tion (LeCun et al., 2015). NMT is one of the
deep learning end-to-end learning approaches
to MT that uses a large artificial neural net-
work to predict the likelihood of a sequence of
words, typically modeling entire sentences in
a single integrated model. The advantage of
this approach is that a single system can be
trained directly on the source and target text
no longer requiring the pipeline of specialized
systems used in statistical MT. Many compa-
nies such as Google, Facebook, and Microsoft
are already using NMT technology (Wu et al.,
2016). NMT has recently shown promising re-
sults on multiple language pairs. Nowadays,
it is widely used to solve translation problems
in many languages. However, much of the re-
search on this area has focused on European
languages despite these languages being very
rich in resources.

Our research has been focused on resolv-
ing query translation ambiguity. The open-
source NMT system, called OpenNMT (Klein
et al., 2017), which is an open-source toolkit
for NMT, is used to construct the Amharic-
Arabic NMT model. The pre-trained model is
used to translate the text in Amharic to the
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Arabic language. Once the query is translated
into Arabic, standard IR algorithms can be
used to retrieve the relevant documents from
Amharic and Arabic document collections. As
shown in Figure 1, prepossessing (tokeniza-
tion, punctuation, and stop-word removal) is
done for Amharic and Arabic document col-
lections first. Then language models are pro-
duced for both languages, which will be used
to estimate the query likelihood of the given
query.

The search module is used to input Amharic
language queries and retrieve relevant docu-
ments in both languages. A sample screen-
shot of the proposed system displaying rele-
vant documents as a list of a hyperlink for a
sample user query is shown in Figure 2.

A Sample Amharic text which is pre-
procesed after sentence spliting, tokenizing
words, punctuation and stop-word removal is
shown in Table 1, the same procedure is fol-
lowed for Arabic text also.

A language model, which is a probability of
words in each document p(w|d) in the collec-
tion, is used to rank the documents accord-
ing to the probability of generating the query.
The query likelihood is given by P (q|d) =∏m

i=1 p(qi|d). But this will assign zero prob-
ability for the words that are not available in
the specific documents. Therefore the follow-
ing maximization technique, which is LM with
Jelineck-Mercer smoothing (Zhai and Lafferty,
2017), is used to optimize the likelihood of a
given query, as shown in Equation 1.

prob(qti) =

n∏

i=1

λ ∗ p(qti |md) + 1− λ ∗ p(qti |mc)

(1)
where, prob(qti) is the probability of query
term in position i, md is the probability in the
document language model, mc is the probabil-
ity in the collection language model λ is the
smoothing parameter and n is the length of
the given query. After extensive experiments,
λ is set to 0.9999. A document that is more
likely to generate the user query is considered
to be more relevant.

5 Experiments and Results

To design, develop, and maintain effective IR
system, evaluation is very crucial as it allows

the measurement of how successfully an infor-
mation retrieval system meets its goal of help-
ing users fulfill their information needs.

There are two approaches for evaluating the
effectiveness of IR systems: (i) user-based
evaluation and (ii) system-based evaluation.
In the system-based evaluation method, sev-
eral human experts evaluate the system to
prepare a set of data that can be reused in
later experiments. The user-based evaluation
method quantifies the satisfaction of users by
monitoring the user’s interactions with the
system (Samimi and Ravana, 2014). In this
work, the focus is on system-oriented evalua-
tion that focuses on measuring how well an IR
system can rank the most relevant documents
at the top for a given user query.

To evaluate the proposed Amharic-Arabic
CLIR system, test collections (document cor-
pus, search queries, and relevance judgments)
have been prepared as bench-marked data-
sets are not available. Amharic is used as
a source language to retrieve target language
documents in Arabic as well as in Amharic.
Experiments are conducted on four conven-
tional IR models, namely Uni-gram and Bi-
gram LM, Probabilistic model, and VSM. Uni-
gram LM is the bag-of-words model where the
probability of each word only depends on that
word’s own probability in the document. Bi-
gram LM denotes n-gram models with n = 2.
It is assumed that the probability of observing
the ith word wi in the context history of the
preceding i−1th word can be approximated by
the probability of observing it in the preceding
n − 1th word. The Probabilistic model makes
an estimation of the probability of finding if
a document dj is relevant to a query q, which
assumes that the probability of relevance de-
pends on the query and document represen-
tations. VSM is an algebraic model for rep-
resenting queries and documents as vectors of
identifiers.

Relevant judgments can be created using
Crowdsourcing (Maddalena et al., 2016; Efron,
2009), (Ravana et al., 2015), which is a time-
consuming and expensive task. Therefore, we
considered the topmost ranked documents and
took the union of all intersections between Un-
igram and Bigram, Unigram and VSM, Bi-
gram and probability, and Probability and
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Amharic Documents

Amharic Documents LM

Source language Query
(Amharic) 

Arabic Documents

Query Translation
(Pre-trianed NMT model)

Target Language Query 
(Arabic)

Searching

Retrieved Ranked Documents
(Arabic and Amharic)

Arabic Documents LM

Preprocessed Arabic documents

Preprocessed Amharic documents

Figure 1: Amahric-Arabic CLIR Architecture

Table 1: Sample Amharic Text Preprocesing

Sample Amharic Text from Tanzile (Chapter 1) Preprocessed Text

በአላህ ሩኅሩህ አዛኝ
ምስጋና ለአላህ የዓለማት ጌታ
ርኅሩህ አዛኝ
የፍርዱ
እንግገዛለን እርዳታን እንለምናለን
ቀጥተኛውን መንገድ ምራን
በጎ የዋልክላቸውን ያልተቆጣህባቸውንና ያልተሳሳቱትንም
ሰዎች መንገድ ምራን

VSM. If the number of documents in this set
is less than 10, the symmetric difference of the
uni-gram model is taken. As it is shown in
Figure 3, the documents (Amtext1.txt, Am-
text43.txt, Amtext27.txt, Amtext39.txt, Am-
text26.txt, Amtext41.txt, Amtext81.txt, Am-
text67.txt, Amtext28.txt, Amtext34.txt) are
selected as the top-ranked documents relevant
for the query "ምስጋና ለአላህ ይገባው የዓለማት
ጌታ ለኾነው" (All praise is due to Allah, Lord
of the worlds). For evaluation, we config-
ure our test collection as 75 Amharic search
queries, 114 Arabic and equivalent transla-
tion of Amharic documents (each verse of the
Quran is organized as a single document), and
relevant judgments are extracted using Equa-
tion 2. the description of this test collection
is shown in Table 2. The test collection and
parallel Amharic-Arabic text corpora used for
translation will be provided on request.

Xqi = (A∩B)∪(A∩D)∪(B∩C)∪(C∩D) (2)

Table 2: Description of Test Collection for
Amharic-Arabic CLIR Evaluation

#Query #Documents (228)

75 Amharic
Queries

114 separated Chapters of
Quran in Arabic language
114 separated Chapters of
Quran in Amharic language

Top 10 documents judged as relevant for each
query is computed as;

RD =

{
Xqi , if Xqi ≥ 10
Xqi ∪A, if Xqi < 10

(3)

where, RD is list of relevant documents, Xqi

is set of top-ranked relevant documents for
query i which is computed based on Equa-
tion 2, and A, B, C, and D are a set of
top-ranked retrieved documents from Uni-
gram, Bigram, Probability, and VSM models
run. We adopted Text Retrieval Conference
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Figure 2: Display of relevant documents as a list
of hyperlink for a sample users query

Amtext81.txt
Amtext41.txt
Amtext26.txtAmtext34.txt

Amtext40.txt

Amtext27.txt
Amtext39.txt 

Amtext35.txt
Amtext62.txt
Amtext106.txt

Amtext17.txt 
Amtext28.txt 
Amtext6.txt 
Amtext7.txt

Amtext67.txt

Amtext29.txt
Amtext31.txt

Amtext1.txt
Amtext43.txt

Figure 3: Four combinations of relevant judgment
identification

(TREC) 1 test collection format where each
query-document pair has a 5-level relevance
scale, 0 to 4, with 4 meaning document d is
most relevant to query Q and 0 meaning d is
not relevant to Q.

The most frequently used and still the dom-
inant approach to evaluating the performance

1https://trec.nist.gov/

of information retrieval systems are precision
and recall. Precision is defined as the pro-
portion of retrieved documents that are actu-
ally relevant, and recall is defined as the pro-
portion of relevant documents that are actu-
ally retrieved. Both precision and recall can
be expressed as; Precision =

∑n
i=1 di
n , and

Recall =
∑n

i=1 di
R where, di is the relevance

level of the ith document in the ranked out-
put to a certain query, R is number of relevant
documents for a query and n denotes the num-
ber of documents in the ranked output (Zhou
and Yao, 2010).

Mean Average Precision (MAP) values are
considered to give the best judgment in the
presence of multiple queries. The evaluation
metrics used in this work are; MAP and Re-
call.

MAP and recall are computed as the sum of
Average Precision (AP) of each query divided
by the number of queries and sum of average
recall of each query divided by the number of
queries, respectively.

The other measurement technique used
for evaluation is Discount Cumulative Gain
(DCG) that measures the usefulness or gain
of a document based on its position in the re-
sult list. The gain is accumulated from the
top of the result list to the bottom, with the
gain of each result discounted at lower ranks.
DCG adopted from Moffat and Zobel (2008)
is accumulated at a particular rank position p
as given in Equation 4.

DCGp =

p∑

i=1

reli
log2(i+ 1)

= rel1+

p∑

i=2

reli
log2(i+ 1)

(4)
Comparing search algorithms performance

from one query to the next cannot be con-
sistently achieved using DCG alone. So the
cumulative gain at each position for a cho-
sen value of p should be normalized across
queries. This is done by sorting all relevant
documents in the corpus by their relative rele-
vance, producing the maximum possible DCG
through position p, also called Ideal DCG
(IDCG) through that position (Chapelle and
Wu, 2010) as shown in Equation 5.

nDCGp =
DCGp

IDCGp
(5)
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where,

IDCGp =

|REL|∑

i=1

2reli − 1

log2(i+ 1)

reli is the graded relevance of result at position
i and |REL| is the list of documents ordered
by relevance in the corpus up to position p.

We also used Normalized NDCG to measure
the usefulness of documents at first, fifth, and
tenth position of ranked lists.

Evaluation Results of all models are pre-
sented in Table 3. In general, the proposed
Unigram LM shows better performance than
all others for both Amharic and Arabic lan-
guage document collections. The unigram
model makes a strong assumption that each
word occurs independently, and consequently,
the probability of a word sequence becomes
the product of the probabilities of the individ-
ual words. Bigram model is better to iden-
tify the most relevant document at the top.
As it is shown in Table 3, NDCG@1 has a
higher value, which means it has a high cu-
mulative gain in the first position. The bi-
gram model considers the local context, which
is the probability of a new word depending on
the probability of the previous word. This Bi-
gram model feature allows us to retrieve the
most relevant document at the top. Still, it
decreases the recall highly because it misses a
strong assumption that each word occurs inde-
pendently. Probability and VSM models per-
form almost the same. The length of the query
influenced the final retrieval to a great extent
both in Unigram and Bigram LM.

Table 3: Models Evaluation results

Models NDCG@1 NDCG@5 NDCG@10 MAP RECALL
Am-uni-gram 0.9933 0.6969 0.7497 0.7866 0.8556
Am-probability 0.97 0.6185 0.6279 0.5059 0.5867
Am-bi-gram 0.9733 0.4581 0.4426 0.2296 0.2681
Am-VSM 0.5233 0.5208 0.6038 0.5264 0.6504

Ar-uni-gram 0.98 0.7896 0.8455 0.8202 0.8637
Ar-probability 0.89 0.6812 0.6883 0.5698 0.64
Ar-bi-gram 0.9667 0.54 0.4827 0.2725 0.2844
Ar-VSM 0.3233 0.4483 0.5257 0.4148 0.5704

6 Conclusion

CLIR systems are very demanding and are di-
rectly connected with language-specific issues.
The retrieval of relevant documents intended
for further analysis is the first important step,

which significantly influences the retrieval per-
formance. We prepared Test collections (doc-
ument corpus, search queries, and relevance
judgments) as bench-marked data-sets are not
available. Experiments are carried out on four
conventional IR models, namely Unigram and
Bigram LM, Probabilistic model, and VSM.
The result illustrates that LM based CLIR
performs better compared to others. Fur-
thermore, we discovered that the length of
the query influenced the final retrieval to a
great extent. Our future directions towards
achieving better results include experimenting
on large data-sets with different domains be-
cause the document collection in this work is
taken only from Quran, and explore recently
introduced neural IR approaches Mitra et al.
(2017).
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Abstract

Acoustic features extracted from the speech
signal can help in identifying speaker related
multiple information such as geographical ori-
gin, regional accent and nativity. In this paper,
classification of native speakers of South In-
dian languages is carried out based upon the
accent of their non-native language, i.e., En-
glish. Four South Indian languages: Kannada,
Malayalam, Tamil, and Telugu are examined.
A database of English speech from the native
speakers of these languages, along with the na-
tive language speech data was collected, from
a non-overlapping set of speakers. Segment
level acoustic features Mel-frequency cepstral
coefficients (MFCCs) and F0 are used. Ac-
cent partitioning of non-native English speech
data is carried out using multiple classifiers:
k-nearest neighbour (KNN), linear discrimi-
nant analysis (LDA) and support vector ma-
chine (SVM), for validation and comparison of
results. Classification accuracies of 86.6% are
observed using KNN, and 89.2% or more than
90% using SVM classifier. A study of acous-
tic feature F0 contour, related toL2 intonation,
showed that native speakers of Kannada lan-
guage are quite distinct as compared to those
of Tamil or Telugu languages. It is also ob-
served that identification of Malayalam and
Kannada speakers from their English speech
accent is relatively easier than Telugu or Tamil
speakers.

1 Introduction

Identification of speakers, classification of their di-
alectal zones is important in a multilingual coun-
try like India (Bhattacharjee and Sarmah, 2012).
Speaker uniqueness is manifested in both anatom-
ical and learned traits. When the context is con-
strained, speaker characteristics can be used reli-
ably to identify individuals (Arslan and Hansen,
1996). The accent is one of the glaring indi-
cations of linguistic and social background of a

speaker. Studying the characteristics of dialect on
a phonetic or phonemic level belongs to accent
recognition (Mittal et al., 2014). Earlier studies
have concluded that native language (L1) affects
the speaker’s traits of their second language (L2)
(Ghorbani et al., 2018; Graham and Post, 2018).
Analysis and classification of utterances that be-
long to specific groups of learners is the main ob-
jective of Native Language Identification (NLI)
(Nisioi, 2015). However, there is very little re-
search on the question of accuracy with which ac-
cent features can be used to identify a speaker’s
regional or ethnic origin (Harper and Maxwell,
2008). A solution to the problem of regional ac-
cent classification across English speaking South
Indians is attempted in the present research, using
a specifically developed corpus.

Discriminative classifiers based on characteriz-
ing acoustic differences across foreign accents can
be employed to direct an accent dependent recog-
nition system (Omar and Pelecanos, 2010; Ikeno
and Hansen, 2006). Systems with an automatic
evaluation of non-native speech, which includes
characteristics of the mother tongue will have bet-
ter performance over similar algorithms that de-
pend upon target languages (Qian et al., 2017).
This is particularly true when the text uttered is
unknown. Native listeners are mostly aware of
the speaker’s regional accent and also the social or
geographical subgroup within the region (Hanani
et al., 2013). Automatic speaker characterization
is vital in real-world applications and the advan-
tages are widely open (Zampieri et al., 2017; Kr-
ishna and Krishnan, 2014).

Pattern recognition approach of collecting
data, extracting suitable features, and training
classification module using machine learning is
a powerful tool in applications like Computer-
Assisted-Pronunciation-Training (CAPT) pro-
grams. Acoustic descriptors are critical in tasks
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Table 1: Summary of data used for training and testing:
(a) attributes (b) values for training set and (c) values
for testing set

(a) Attributes (b) Training set (c) Test set
Total number
of speakers

60 75

Speakers per
language group
(KAN, MAL*,
TAM, TEL)

20 25

Speech Du-
ration per
speaker

300 sec 60 sec

Note: *MAL-Malayalam data set is used only in
tests related to cepstral features.

such as sound Classification (Day and Nandi,
2007). State-of-the-art Accent Identification
(AID) systems widely rely on spectral acoustic
distribution for modeling the pronunciation. In
applications like accent recognition, features
distinguishing different phonemes of a language
will be useful (Neumeyer et al., 2000). Language-
specific differences in phonological development
might be related to differences in phoneme and
phoneme sequence frequency across languages
(Ikeno and Hansen, 2006). Such variations are
also represented by the intonation patterns of
individuals (Mary and Yegnanarayana, 2008;
Li et al., 2017). Apart from cepstral features
that capture underlying acoustic characteristics,
information from higher-level prosodic traits
(Doddington, 2001; MALMASI and DRAS,
2017) were examined in the present study.

English is the most widely spoken second lan-
guage in India and elsewhere in the world (Saha
and Mandal, 2015; Guntur et al., 2018). Indian
English has several varieties with their specific ac-
cents and phonological features and often a dis-
tinct lexicon. Research on spoken English of In-
dian speakers is urgently needed from a multi-
disciplinary perspective (Cheng et al., 2013; Kr-
ishna et al., 2019). Present work is aimed at com-
paring the acoustic properties that are likely to
differ between English accents different groups
of South Indian language of speakers. The non-
native prosodic traits are a hindrance to profi-
ciency in a second language (L2), and also to the
mutual understanding. Present work also exam-
ines the local prosodic changes in the non-native
English speech, without incorporating any phonol-

ogy of the specific languages. The ability to com-
pensate against prosodic deviation during English
production can be improved by identifying the ar-
ticulatory gestures that emphasize the non-native
speaker accent.

Table 2: Template of file naming for data recording

Native
language Name Age / Sex File Name

The paper is organized as follows: Section
2 presents the details of the database, including
the recording methodology. Section 3 describes
acoustic and prosodic features used in foreign ac-
cent recognition. Section 4 describes the classi-
fication procedures employed in the NLI experi-
ments. Section 5 gives the details of the experi-
ments and results. Analysis of results of regional
accent classification is given in section 6. Section
7 describes the key outcome and contributions.
Conclusions drawn are given in Section 8.

2 Data Sets of 4 Indian Regional
Languages

The main focus of current research work is on
differentiating the regional non-native English ac-
cents of speakers, and also describing foreign ac-
cent in terms of a common set of fundamental
speech attributes. A database has been specif-
ically developed (G.Radha Krishna and Mittal,
2018) with native and non-native speech samples
containing utterance by the speakers belonging
to language groups Kannada (KAN), Malayalam
(MAL), Tamil (TAM), and Telugu (TEL). Table 2
shows the template of file naming process.

2.1 Selection of Regional Languages

Among more than six thousand languages in the
world, less than 10% of the languages are spoken
by more than 90% of the people. Speakers and
learners of the English language constitute a large
proportion in countries like India, South Africa,
and much of the developing world. India has dis-
tinct linguistic communities, each of which shares
a common language and culture. English, Hindi
and dominant local languages are spoken non-
natively by a large number of Indians. In South In-
dian cities, many people speak at least two second
languages. It would be beneficial if speech based
systems can store models of all known languages
and carry out the task of NLI automatically.
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Table 3: Summary of speaker traits and related speech
features (Day and Nandi, 2007).

Speech char-
acteristic

Speaker trait Speech feature

Lexical, Syn-
tactic

Socio eco-
nomic

Vocabulary,
Word

(Idiolect,
Semantics,
Pronun-
ciations,
dictions, Id-
iosyncrasies)

Educational
status (Lan-
guage use
and sentence
construction)

arrangement
& grammatical
cues.

Prosodic
(Rhythm,
Intonation,
Articulation
rate etc.)

Personality
type, Parental
influences

Durational fea-
tures. Pitch
dynamics, En-
ergy (likely to
be Text / time
dependent).

Low level
acoustic
features

Anatomical
structure of
speaker’s vo-
cal apparatus

Short-time spec-
trum, Predictor
coefficients, In-
tensity, Pitch.

2.2 Speech Corpus Recording Methodology

The details of speech corpus developed for each of
the languages is shown in Table 1. Native speech
utterances of 20 speakers from each of the na-
tive language groups KAN, TAM, and TEL, each
with a duration of 300 seconds formed the train-
ing set. English test samples for a duration of
60 seconds were collected from 25 speakers be-
longing to each of the four groups KAN, MAL,
TAM, and TEL. As the sufficient number of na-
tive speakers of MAL are not readily available,
it is included in the testing set only. The test ut-
terances were recorded under identical conditions
as training speech samples and there is no overlap
between training and testing sets with respect to
speakers and sentences. Each of the test samples
is recorded for a duration of 60 seconds. The non-
native English speech samples are collected from
a set of speakers with nearly uniform geographi-
cal distribution within a region with an educational
background of at least graduation, but who do not
use English routinely.

Recordings of speakers were made in quiet of-
fice room conditions using Logitech h110 micro-
phone and waveforms are sampled at a rate of 16
kHz. The recordings were made in a laboratory
environment with written text, with negligible re-

Table 4: Major text-independent features used in
prosodic analysis.

Prosodic
features

Factors that influences speech

Dynamics
of F0

contour

Identity of sound unit, its position
from phrase, word; Speaking style;
Intonation rules; Type of sentence
(Interrogative, Declarative)

Intonation,
Rhythm,
Stress

Attitudinal, Accentual, Discourse,
Grammatical

verberation. The participants were asked to read
aloud passages of a text from general topics. For
applications like screening of non-native speech,
read data can be used for both training and test-
ing (Schuller et al., 2013). It is ensured that Gen-
der weightages are equally distributed in training
as well as testing data sets. The speakers in the
training set are considered representative of the
regional languages KAN, TAM and TEL. How-
ever, for testing set speakers of Malayalam were
also included. These speakers are so chosen from
language heartlands. The speakers in the test set
are considered potential users of future systems
augmented with automatic Accent Identification
(AID) capability.

3 Features for Non-native Accent
Partitioning

Understanding similar variations in foreign ac-
cents is a crucial factor for the development of an
NLI system. The dominant articulatory traits of
different languages are different (Koreman, 2018).
In applications like accent recognition, features
distinguishing different phonemes of a language
will be useful (Li et al., 2013). The acoustic sig-
nature or the voice individuality of the speech sig-
nal are available as differences in transformations
occurring at semantic, linguistic articulatory, and
acoustic levels. Out of all the factors affecting
speech, accent is a week factor in the sense that
speech variation is not as evident as that due to
speaker/gender.

Language-specific differences in phonological
development might be related to differences in
phoneme and phoneme sequence frequency across
languages (Graham and Post, 2018). Speakers of
the second language (SL) are expected to import
certain patterns from their native language (NL)
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Figure 1: Front end signal processing for feature ex-
traction

which are audible in SL. The influence of the sur-
rounding speech prosody on new-born cry melody
has been shown (Monnin and Loevenbruck, 2010).
The non-native speech detection is thus very chal-
lenging .

Characterization of a foreign accent is mostly
based on either auditory analysis or manual tran-
scriptions of deviations. The auditory spectrum
is consistent with several phenomena observed
in speech perception and is useful in automatic
speaker independent speech recognition. Features
used for nonnativeness detection include cepstral
vectors, phone strings and a variety of prosodic
features, but when used alone, systems based on
acoustic features perform better (Shriberg et al.,
2005). We can consider acoustic features, which
are proxy of phonetic reproduction as acoustic-
phonetic features (Li et al., 2013).

3.1 Acoustic Features

Earlier investigations on text-independent non-
native speech tied to underlying native language
structure are based on (i) Global acoustic distri-
bution of phonemes (which requires no language
knowledge) (ii) Different intonations correspond-
ing to uniqueness in the manner in which artic-
ulators are manipulated. The shape of the vocal
tract is manifested in the envelope of the short-
time power spectrum (Reynolds and Rose, 1995).
The attributes that contain speaker identifiability
for machine as well as for humans are of interest
(Zheng et al., 2007; Franco et al., 2000).

In this study, acoustic features used for phonetic
modeling of the accent differences consists of the
cepstral features: Perceptive Linear Prediction Co-
efficients (PLPs), Linear Predictive Cepstral Coef-
ficients (LPCCs), and MFCCs (Hermansky, 1990;
Luengo et al., 2008; Mittal and Yegnanarayana,
2013). The steps followed are shown in Figure

Figure 2: Waveform and Pitch contour of non-native
English speech by female Kannada speaker

1. Given all the alternative spectral features based
on LPC - cepstrum and FFT cepstrum for speaker
recognition, MFCCs, give a highly compact rep-
resentation of the spectral envelope of a sound
(López, 2014). The LPCCs are known to cap-
ture extra information from a speech that discrim-
inates different languages. The PLPs which take
advantage of psychoacoustic principles are robust
against noise. A hierarchy of speech character-
istics, related speaker traits, and possible speech
features are listed in Table 3.

3.2 Prosodic Features

The prosodic structure is a critical aspect of lan-
guage contact and gives important information re-
lated to the speaking habit of a person (Kinnunen
and Li, 2010; Farrús et al., 2010). The goal is
to capture prosodic idiosyncrasies of speakers be-
longing to different native languages. Prosodic
cues Stress, Rhythm, and Intonation are each com-
plex entities expressed using (i) Pitch (ii) Energy
(iii) Duration. Major text-independent features
used in prosodic analysis are given in Table 4.

In this study Prosodic statistics were obtained
by performing different measurements of pitch,
which are derived supra segmentally. The power
of accent in voice identification is investigated as
explained below. A Generative model of pronun-
ciation describes what is acceptable, and Discrim-
inative model both acceptable and unacceptable
pronunciation, and the pronunciation score is the
direct output of the classification module.

Non-native prosodic traits limit proficiency in
a second language (L2). Prosodic phenomena lo-
cated on word level and above, help listeners to
structure the speech signal and to process the lin-
guistic content successfully. Table 4 shows some
of the features useful for detecting non-native
speech without annotation of prosodic events. The
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Figure 3: Distribution of MFCC Coefficients as a Scat-
ter plot of C0 versus C1 for native ENGLISH speakers

Figure 4: Distribution of MFCC Coefficients C0 versus
C1 for English speech by KANNADA speakers

experiment by Rosenberg to foil a Speaker Verifi-
cation system says that even an identical twin was
unable to imitate the enrolled sibling well enough
to get accepted by the system, tells the need to look
at learned speaking behaviour.

4 Classification for Non-native Accent
Partitioning

Speaker Classification can be conveniently de-
fined as a grouping of speakers speaking in a sim-
ilar manner, on the basis of acoustic characteris-
tics (Chen et al., 2014). Classification of foreign
accents directly from the acoustic features is at-

Figure 5: Distribution of MFCC Coefficients C0 versus
C1 for English speech by MALAYALAM speakers

Figure 6: Distribution of MFCC Coefficients C0 versus
C1 for English speech by TAMIL speakers

Figure 7: Distribution of MFCC Coefficients C0 versus
C1 for English speech by TELUGU speakers

tempted by using a test data set described in Ta-
ble 1. The role of accent in voice identification
is investigated as explained below. There exists a
significant overlap between NLI approaches and
computational methods for dialect and language
identification (LID), and Support Vector Machine
(SVM) classifiers are a very good fit for NLI
(Zampieri et al., 2017).

4.1 Accent Partitioning using SVM Classifier

SVM is one of the most popular supervised clas-
sifiers on a wide range of data sets, which looks
for a maximum-margin hyper plane for data sepa-
ration (Wu et al., 2010; Bahari et al., 2013; Camp-
bell et al., 2006). Accuracies of non-native accent
classification were studied for the present prob-
lem by using the SVM classifier. The speech sig-
nal is first processed to extract attributes relevant
to the foreign accent (Moustroufas and Digalakis,
2007). The most representative acoustic features,
the LPCC, the PLP (Li et al., 2013) have been
tested but were found to be less efficient. The in-
put to the system is a 13 dimensional MFCC vec-
tor consisting of 12 cepstral coefficients and one
energy coefficient. Thus the front end for the pro-
posed classification system consisted of only 13
dimensional MFCC vector including C0.
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Figure 8: Distribution of MFCC Coefficients C0 versus
C1 for non-native English speech by four South Indian
language speakers against native English speech.

4.2 Intonation Analysis

Native traits located at a word and sentence levels
help listeners structure the speech signal. In many
approaches that apply prosody to either Language
Identification (LID) or Speaker Recognition, ex-
tracted features are based on statistics of pitch /
energy contour segments or piecewise linear styl-
ization of pitch / energy contours. Intonation is
a key expressive factor which can covey the in-
tent of a speaker, contains a lot more information
than words and utterance (Ward et al., 2017). In-
tonation is more used than energy and duration
features in the context of prosody. Listeners can
discern a speaker’s regional accent from intona-
tion alone (Eady and Cooper, 1986; Tepperman
and Narayanan, 2008).

Dynamics of F0 contour corresponding to a
sound is influenced by several factors such as the
identity of the sound unit, its context, the speak-
ing style of the speaker, intonation rules of the
language, type of the sentence, etc. (Arias et al.,
2010). The focus was mainly on the pitch since
it is one of the most important characteristics of
prosody and helps in predicting human intonation
rating. These suprasegmental parameters can be
used to model non-native English prosody (Hönig
et al., 2012). In the present study, the main aim is
to ascertain the influence of linguistic background
on F0 across regional varieties of English, future
studies are planned to include the aperiodic com-
ponents of excitation of expressive voices like Noh
voice (Mittal and Yegnanarayana, 2015)

Figure 9: Confusion Matrix for SVM classification of
South-Indian English including native English. Note:
TPR is True Positive Rate, FNR is False Negative Rate.

Table 5: Non-native Regional English Accent Classi-
fication accuracies using (a) k-nearest neighbourhood
(KNN), (b) Linear Discriminant (LDA), and (c) SVM

Classifier (a) KNN (b) LDA (c) SVM
Accuracy 86.6% 82.5% 89.2

5 Experiments and Results

To validate the hypothesis that the accent of the
mother tongue is separable, experiments were per-
formed to understand and to calibrate idiolectal
differences in the non-native speech samples of the
language groups KAN, MAL, TAM and TEL. The
corpus is sampled at 16000 samples per second
and the bit rate was 32 bits per sample. Silence
removal has been implemented using a VAD algo-
rithm (Kinnunen and Li, 2010). The feature vec-
tors are computed over 20 msec windowed frames
every 10 msec. Fourier spectra were computed for
sequential frames 160 points apart by using a 320
point Hamming window. Finally Cepstral Mean
Normalization (CMN) is applied by subtracting
the mean value of each feature over the entire ut-
terance. MFCCs are generated by windowing the
signal, application of DFT, taking the log of the
magnitude and warping the frequencies on Mel
scale and finally application of DCT.

5.1 Non-native Accent Classification based
upon Acoustic Features

Experiments were performed to establish the dif-
ferences in the distribution of acoustic features in
the non-native speech samples of four language
groups KAN, MAL,TAM, and TEL. Graphical il-
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Figure 10: : ROC curve for SVM classification of Non-
native English speech by Kannada speakers.

lustration of accent partitioning on test data is
shown in Figures 3,4,5,6,7, and 8. It indicates
that the high classification accuracies are possi-
ble in the present task. Classification of foreign
accents directly from the acoustic features is at-
tempted, by using data set described in Table 1.
Figure 9 shows the confusion matrix for best per-
forming SVM classifier for the five class classifi-
cation. Figure 11 shows the confusion matrix for
the three class classification.

The confusion matrix indicates that the iden-
tification rates for Kannada and Tamil language
speakers from their non-native English speech can
be high compared to that of Telugu native speak-
ers . The Receiver Operating Point Curve (ROC)
shown in Figure 10 is a plot of true positive rate
as a function of false positive rate, which is very
close to the upper left hand corner, indicates that
the classifiers can achieve good overall accuracies.

Verification of accent partitioning of non-native
speech using a series of classification techniques:
k-nearest neighbourhood, and Linear Discrimi-
nant Analysis was also implemented. English
speech samples of the native speakers of KAN,
MAL, TAM, and TEL are tested against standard
English speech corpus using TIMIT corpus. The
resulting accuracies are 86.6% when a KNN clssi-
fier is used, 82.5% when Discrimination classifier
is used, and 89.2% using SVM classifier is used.
These results are consolidated in Table 5. Figure
4, and 6 shows the corresponding confusion matri-
ces, obtained during SVM classification.

Figure 11: Confusion Matrix for SVM classification
of English by speakers of KAN, TAM, and TEL. Note:
TPR is True Positive Rate, FNR is False Negative Rate.

5.2 Foreign Accent Discrimination based
upon Prosodic Features

Experiments were conducted on native and non-
native speech samples of bilingual and multilin-
gual speakers. The pitch frequency was extracted
using the ”pitch contour” function of the Wave
Surfer software, and F0 data was extracted. Typ-
ical waveform showing the non-native speech by
a female Kannada speaker and the pitch contour
were shown in Figure 2. The speakers in this study
were asked to speak in their mother tongue or in
English, and 20 exemplars were analysed from
each group KAN, TAM, and TEL. In few cases
the same speakers have spoken in other Indian lan-
guage of the neighbouring state.

The difference inF0 contour between native and
non-native speech for speakers from each group
has been tested. These results shown in Table
6 clearly indicate that the mean value of non-
native pitch is markedly high in the case non-
native speakers in all the three groups. The per-
centage deviation from native language to English
speech for a group of 20 speakers in each of the
three languages has been estimated and is pre-
sented in Table 7. It is evident from the scores
presented in Table 7 that the dynamic variation of
pitch is the least at 3.7% for the regional variant
of KAN speakers, which is significantly less when
compared to 9.5%,and 27% corresponding to na-
tive TAM and TEL speakers respectively.
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Table 6: Mean (µ) and SD (σ) of Pitch variation of
single speaker from three groups of native speakers
when speaking (a) Native Language (NL) (b) English
(c) Other South Indian language (OSIL)

L1

LANGUAGE SPOKEN
(a) NL (b) English (c) OSIL

µ σ µ σ µ σ

Kan 214 32.2 254 32.3 235 32.4
Tam 227 21.7 248 28.9 230 30.6
Tel 133 21.5 157 22.9 150 26.3

6 Analysis of Results

• Figures 3,4,5, and 8 reveal that the English
spoken by native Kannada and Malayalam
speakers is distinct than native Tamil or Tel-
ugu speakers, when compared to standard
English.

• Accent partitioning experiments from a short
utterance of 60 seconds of test data, indicates
the suitability of the SVM classifier, as can
be seen from accuracies shown in Table 5.

• Figure 1 reveals that the English spoken by
Telugu native speakers are marginally closer
to standard English, compared to that of Kan-
nada and Malayalam language speakers.

• Higher mean values of the non-native pitch
shown in Table 6 indicates the accommoda-
tion of speakers of all native languages to suit
different social groups.

• Table 7 shows that English speakers of Tamil
and Telugu would produce statistically sig-
nificant higher pitch contour deviations than
KAN speakers.

7 Key Outcome and Contributions

• A framework to handle the deviations of
L2 influenced by closely related L1s and to
achieve better performance for a given NLI
task, even with fewer features is proposed

• Current study is significant when the target
languages are linguistically close, and large
resources of spoken English are not available

• Prosodic differences across the South Indian
English accents has been experimentally il-
lustrated, which is useful in automatic intona-
tion classification for L2 speech acquisition.

Table 7: Percentage increase in Standard Deviation of
pitch contour from native language speech to English
speech (using two non-overlapping sets of 20 speakers
from each native language group Kannada, Tamil, and
Telugu).

Language group Male Female Average
Kannada 0.9 6.5 3.7

Tamil 9 10 9.5
Telugu 33 21 27

• Present work helps in accurate recognition of
regional accent, that can improve the speech
and speaker recognition system performance.

• Distinct pitch pattern variations in non-native
English speech by Malayalam, and Kannada
speakers compared to that of Tamil and Tel-
ugu varieties can help in distinguishing them.

8 Conclusion

It can be concluded that the regional native lan-
guage classification has been achieved with an ac-
curacy of nearly 90%, by using the acoustic dis-
tribution of cepstral features on the four types
of non-native South Indian English speech. It is
known that systems make more mistakes among
regionally close languages. Accent differences
among the non-native speakers are reflected as
the deviation of L2 influenced by L1 on prosodic
level. Studies carried out based on intonation dis-
tribution indicates that English speaking South In-
dian groups corresponding to Kannada, Malay-
alam, Tamil, and Telugu are clearly divided as
per their native languages. Prosodic differences
in the native and English speech by South In-
dian speakers were detected without annotation.
Present method can potentially be applied to other
languages like Hindi, and in addressing the impor-
tant question of finding a universal feature set for
identifying the non-native speech.

Present research is useful in applications such
as voice based wireless services like mobile health
care, agriculture. Automatic accent characteriza-
tion can also be applied to fields such as sociolin-
guistics and speech pathology. Future work can
employ different speech styles, and characteristics
of speaker population to be carefully scrutinized,
and also by including multi-disciplinary informa-
tion. Further, the results can be extended to sep-
arating language families and also for rating L2

proficiency.
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Mireia Farrús, Michael Wagner, Daniel Erro, and Javier
Hernando. 2010. Automatic speaker recognition as
a measurement of voice imitation and conversion.
International Journal of Speech, Language and the
Law, 17(1):119–142.

Horacio Franco, Leonardo Neumeyer, Vassilios Di-
galakis, and Orith Ronen. 2000. Combination of
machine scores for automatic grading of pronunci-
ation quality. Speech Communication, 30(2):121–
130.

Shahram Ghorbani, John H L Hansen, Robust Speech,
and Systems Crss. 2018. Leveraging native lan-
guage information for improved accented speech
recognition. (September):2449–2453.

R. Krishnan G.Radha Krishna and Vinay Kumar Mit-
tal. 2018. Native Language Identification from
South Indian English Speech. In Workshop on Ma-
chine Learning in Speech and Language Processing,
September 7th, 2018.

Calbert Graham and Brechtje Post. 2018. Second lan-
guage acquisition of intonation: Peak alignment in
American English. Journal of Phonetics, 66:1–14.

Radha Krishna Guntur, R Krishnan, and V.K. Mittal.
2018. Prosodic Analysis of Non-Native South In-
dian English Speech. In Proc. The 6th Intl. Work-
shop on Spoken Language Technologies for Under-
Resourced Languages, pages 71–75.

A. Hanani, M. J. Russell, and M. J. Carey. 2013.
Human and computer recognition of regional ac-
cents and ethnic groups from British English speech.
Computer Speech and Language, 27(1):59–74.

Mary P. Harper and Michael Maxwell. 2008. Spo-
ken Language Characterization, pages 797–810.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Hynek Hermansky. 1990. Perceptual linear predictive
(plp) analysis of speech. The Journal of the Acous-
tical Society of America, 87(4):1738–1752.

Florian Hönig, Anton Batliner, and Elmar Nöth. 2012.
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Abstract
We present an approach for cross-lingual
transfer of dependency parser so that the parser
trained on a single source language can more
effectively cater to diverse target languages.
In this work, we show that the cross-lingual
performance of the parsers can be enhanced
by over-generating the source language tree-
bank. For this, the source language tree-
bank is augmented with its perturbed version
in which controlled perturbation is introduced
in the parse trees by stochastically reordering
the positions of the dependents with respect
to their heads while keeping the structure of
the parse trees unchanged. This enables the
parser to capture diverse syntactic patterns in
addition to those that are found in the source
language. The resulting parser is found to
more effectively parse target languages with
different syntactic structures. With English
as the source language, our system shows an
average improvement of 6.7% and 7.7% in
terms of UAS and LAS over 29 target lan-
guages compared to the baseline single source
parser trained using unperturbed source lan-
guage treebank. This also results in significant
improvement over the transfer parser proposed
by Ahmad et al. (2019) that involves an “order-
free” parser algorithm.

1 Introduction

Cross-lingual dependency parsing involves train-
ing a dependency parser using a treebank in one
language (source language) and applying it to
parse sentences in another language (target lan-
guage). This can be used to develop parsers for
languages for which no treebank is available.

The syntactic similarity between the source and
the target languages typically plays an impor-
tant role in the success of a cross-lingual transfer
parser (Zeman and Resnik, 2008; Naseem et al.,
2012; Søgaard, 2011). A major challenge in trans-
fer parsing is to bridge the difference in the syntax

of the source and the target languages. For exam-
ple, the object usually occurs after the correspond-
ing verb in English while the verb normally occurs
at the final position in a clause in Japanese.

In order to achieve better performance of the
transfer parsers, researchers have worked on the
selection of syntactically similar source languages
for a given target language (Søgaard, 2011; Ra-
sooli and Collins, 2017; Wang and Eisner, 2016).
Attempts have also been made towards improv-
ing the performance of the transferred parsers
for a given source-target language pair by reduc-
ing the syntactic gaps between them. This is
done by transforming the source language parse
trees (Aufrant et al., 2016; Rasooli and Collins,
2019; Wang and Eisner, 2016, 2018; Das and
Sarkar, 2019) using knowledge of the typologi-
cal properties of the target language. However,
these approaches are target language specific and
may not give satisfactory results for multiple lan-
guages.

Recent work by Ahmad et al. (2019) proposed
an “order-free” parser model that comprises of a
transformer-based encoder and a graph-based de-
coder. They show that the self-attention mecha-
nism of the transformer with direction indepen-
dent position encoding used in their model gives
rise to improved performance for transfer between
distant pair of languages compared to a standard
parser model that uses an RNN based encoder and
stack pointer-based decoder.

In this paper, we propose a different approach
for enhancing the performance of a target lan-
guage independent transfer parser based on a sin-
gle source language by augmenting the treebank of
the source language without using any target lan-
guage information. For this, we add sentences ob-
tained by rearranging the original sentences in the
treebank while keeping the parse tree of the sen-
tence fixed. This can be construed as generating
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a more general treebank which may contain sen-
tences not conforming syntactically to the source
language.

Specifically, we introduce controlled perturba-
tion in the relative ordering of the head-dependent
pairs in the source language parse trees. We
stochastically alter the order of some of the head-
dependent pairs in the source language sentences
while keeping the head-dependent relations in the
parse trees intact. This perturbation reduces the
dependency of the parser on the word order in the
training sentences and makes it more robust to-
wards the variation in syntax.

We show that a stack-pointer network-based
parser model (Ma et al., 2018) trained using
this treebank results in improvement of the per-
formance of the transfer parser over a baseline
parsers trained on an unperturbed treebank. This
parser also significantly outperforms the “order-
free” parser model proposed by Ahmad et al.
(2019) model by 3.8% UAS and 4.2% LAS. We
also show that our target language independent ap-
proach gives a competitive performance with that
of a target language specific transformation ap-
proach (Das and Sarkar, 2019).

2 Related Work

Initial work on model transfer involved training
delexicalized models (Zeman and Resnik, 2008;
McDonald et al., 2013) using only language inde-
pendent non-lexical features such as PoS tags in
the source language treebanks.

Several approaches for model transfer that in-
corporate lexical features in the transfer models
have been reported in the literature. These include
use of cross-lingual word clustering (Täckström
et al., 2012), dictionary-based mapping of dis-
tributed word embeddings and projection-based
bi-lingual word representations (Xiao and Guo,
2014; Guo et al., 2015; Schuster et al., 2019; Ah-
mad et al., 2019).

Søgaard (2011) proposed an approach for se-
lecting training instances from source language
by ranking them in terms of similarity with the
target language sentences in terms of PoS tag
perplexity. Naseem et al. (2012); Täckström
et al. (2013); Zhang and Barzilay (2015) pre-
sented a multilingual algorithm for dependency
parsing that selectively learns the aspects (some
features listed in World Atlas of Language Struc-
tures (WALS) (Haspelmath, 2005)) of the source

languages relevant to the target language and ties
the model parameters accordingly.

Another approach for improving the perfor-
mance of cross-lingual transfer parsers is by
transforming the source language parse trees to
match the syntax of the target language. Aufrant
et al. (2016) improves performance of the trans-
fer parsers by transforming the source language
parse trees based on the knowledge of the tar-
get language syntax derived from WALS. Das and
Sarkar (2019) also proposed a similar source lan-
guage treebank transformation method in which
knowledge of the syntax of a target language is
derived from small number annotated target lan-
guage parse trees. Wang and Eisner (2016) gener-
ated synthetic treebanks by altering the word order
of the source language treebanks using knowledge
of the distribution of the noun and verb dependents
of other real-world languages from their respec-
tive treebanks. Wang and Eisner (2018) proposed
an approach for learning an optimized permutation
parameter using the given source language tree-
bank and a gold PoS tag annotated corpus in the
target language. This parameter set is then ap-
plied to permute the source language parse trees
to approximately match the syntax of the target
language. These methods are however target lan-
guage specific and may not perform well for other
languages.

Bhat et al. (2017) have shown that training a
parser model using scrambled parse trees of sen-
tences of one domain improves performance of the
parser over a parser model trained using the origi-
nal treebank on test sentences of another domain.
They scrambled the parse trees of sentences from
newswire data and tested on conversational data.
The scrambled treebank consisted either of all pos-
sible permutations of a subset of the parse trees in
the original treebank, or, a fixed number of permu-
tations of all the parse trees, where the permuted
parse trees with the lowest perplexity assigned by
a language model are selected.

Ahmad et al. (2019) proposed a parser algo-
rithm that improves the quality of transfer parser
independent of the target language. They have
compared the performance of combinations of dif-
ferent encoder-decoder architectures. They con-
sider a bidirectional LSTM based encoder (order-
sensitive) and a transformer-based encoder (order-
free), and, two types of decoders, stack-pointer
based (order-sensitive) and a biaffine graph-based
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(order-free) and have shown that overall best
cross-lingual performance of a parser across sev-
eral target languages can be achieved using the
combination of transformer-based encoder and
graph-based decoder model. This system is ex-
pected to be agnostic to the word order of the
source sentence and thus work effectively for a va-
riety of target languages.

Multi-source transfer (McDonald et al., 2011;
Rosa and Zabokrtsky, 2015) parsing approaches
combine treebanks of multiple source languages
to train cross-lingual transfer parsing models.

3 Perturbation of Source Language
Parse Trees

3.1 Parse Tree Structure based Perturbation
We now discuss the details of our stochastic per-
turbation algorithm. We call this perturbation
scheme as PTSPert. In order to introduce vari-
ation in word order in the source language parse
trees, we apply perturbation on each parse tree in
the treebank which randomly changes the relative
ordering of some head-dependent word pairs in the
sentence. For each node in the parse tree, we clas-
sify each of its dependents as either pre-dependent
or post-dependent based on whether it appears be-
fore or after its head word in the sentence. Dur-
ing perturbation, we convert a pre-dependent to
post-dependent and vice versa with some proba-
bility. The probability of altering the relative po-
sition of a dependent with respect to its head word
in a sentence is referred to as perturbation proba-
bility (P ).

The PTSPert algorithm takes the original source
language parse tree Ts as input and returns the per-
turbed sentence as output.

For each node n in the parse tree Ts, we
maintain four lists: pre-modifiers list (initpren),
post-modifiers list (initpostn), final pre-modifiers
list (finalpren) and final post-modifiers list
(finalpostn). The pre-modifiers list and post-
modifiers list contain the pre-modifiers and post-
modifiers of the node in the same sequence as they
appear in the original sentence. The final pre-
modifiers list and final post-modifiers list are ini-
tially empty.

The steps of the PTSPert algorithm are as fol-
lows;

1. Traverse the words in the sentence from left
to right. For each word in the sentence; let w
be the node in Ts corresponding to the word.

(a) Traverse initprew from left to right. For
each dependent in the list;

i. With probability P , append the de-
pendent to finalpostw

ii. With probability 1 − P , append the
dependent to finalprew.

(b) Traverse initpostw from left to right.
For each dependent in the list;

i. With probability P , append the de-
pendent to finalprew

ii. With probability 1 − P , append the
dependent to finalpostw.

The in-order traversal of the perturbed tree Ts
based on the finalpres and finalposts of the nodes
return the sentence with the new word-order.

Example In Figure 2 we present the perturbed
version of the sentence “Now you write your own
story”. The words whose positions have changed
after perturbation are shown in red and blue. The
final sentence after perturbation is “Now you your
story own write”.

Now you write your own story

obl
nsubj

nmod:poss
amod

obj

root

(a) English sentence before perturbation

Now you your own story write

obl
nsubj

nmod:poss
amod obj

root

(b) Perturbation at “write”

Now you your story own write

obl
nsubj

nmod:poss amod
obj

root

(c) Perturbation at “story”

Figure 1: Perturbation on an English sentence.

After perturbation, the subtree with the word
“story” as the head becomes a pre-dependent of
the word “write”. (Figure 1b) and the adjective
“own” of “story” is converted to a post modifier.
(Figure 1c)

77



3.2 Alternative Perturbation Models
Perturbation or introduction of noise in data is not
new in natural language processing. It has been
used to train a system to reconstruct the original
sentence from its corrupted version (Dai and Le,
2015; Hill et al., 2016).

Artetxe et al. (2018) used a perturbation ap-
proach in unsupervised machine translation to
learn the internal structure of a language and to
reduce the dependence on the word order of the
sentences to address the differences in the source
and target languages. This was done by training
an encoder-decoder system to recover the original
sentence from its corrupted version given as input.

In this perturbation method, given a sentence of
length N , N/k random swaps are made between
the contiguous words, where k is a integer param-
eter. Artetxe et al. (2018) used k = 2. We call this
perturbation approach SwapPert.

Some target language specific perturbation ap-
proaches extensively used in dependency parsing
are discussed in Section 2.

4 Data and Parser Model

Data We carried out our experiments using tree-
banks of 29 languages from the UD v2.2 tree-
banks. We used the language-independent UD
UPOS tags and dependency relations. We have
used the acronyms of the language names in the
rest of the paper. The full names of the languages
are listed in Appendix A.1.

Word Embeddings We have used 300-
dimensional fasttext (Bojanowski et al., 2017)
pre-trained word embeddings for each language.
The cross-lingual word embeddings were ob-
tained by projecting the monolingual embeddings
for all the languages into the space of the English
language (Smith et al., 2017).

4.1 Parser
We have experimented with parser models with
two types of encoder-decoder based parser mod-
els. The models are as follows;

• RS: Stack-pointer-based parser model (Ma
et al., 2018) with BiLSTM RNN (Schuster
and Paliwal, 1997; Hochreiter and Schmidhu-
ber, 1997) based encoder and stack-pointer-
based decoder model (Ma et al., 2018).

• TG: Transformer (Vaswani et al., 2017)
based encoder with relative position repre-

sentation (Shaw et al., 2018) and biaffine
graph based decoder (Dozat and Manning,
2017). This encoder-decoder combination is
due to Ahmad et al. (2019).

For our experiments, we have used the imple-
mentations of the parsers and the corresponding
hyperparameter settings by Ahmad et al. (2019).1

5 Experiments and Results

We carried out the experiments corresponding to
the different perturbation approaches under the
following settings.

SwapPert Given a sentence of length N , for
N/k perturbations, we have carried out separate
experiments with k = 2 and k = 10. The stack-
pointer-based parser model (Ma et al., 2018) (RS)
was trained for this perturbation.

PTSPertRS This refers to the stack-pointer-
based parser model (Ma et al., 2018) (RS) parser
model trained using a source language treebank
augmented with its versions perturbed by PTSPert.
We experimented with different perturbation prob-
ability values (P ∈ {0.1, 0.2, 0.3, 0.4, 0.5}).

STATtrans This refers to the stack-pointer-
based parser model (Ma et al., 2018)(RS) parser
model trained using source language treebank
transformed using statistical knowledge of target
language syntax derived from samples of 20 tar-
get language parse trees (Das and Sarkar, 2019).
For each target language, we randomly sampled
20 parse trees from combined training and devel-
opment sets. We trained separate models specific
to each target language.

5.1 Baselines

RSUnpert This refers to the stack-pointer-based
parser model (Ma et al., 2018)(RS) trained on un-
perturbed source language treebank.

TGUnpert This is the parser model comprising
of a transformer-based encoder and a graph-based
decoder (Ahmad et al., 2019) (TG) trained on un-
perturbed source language treebank.

All our experiments were repeated 5 times and
we report the average result in this paper.

1The implementation was obtained from https://
github.com/uclanlp/CrossLingualDepParser
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TL RSUnpert TGUnpert
PTSPertRS

(P=0.2) STATtrans
en 91.2/89.3 90.3/88.4 91.2/89.3 89.9/87.6
no 81.8/73.6 80.3/72.2 81.1/73.5 79.7/72.4
sv 82.3/74.3 80.9/73.1 82.2/74.3 82.1/74.7
fr 76.1/70.7 78.6/73.4 80.7/76.1 79.9/75.0
pt 74.6/65.8 77.0/68.1 79.1/69.8 78.9/69.4
da 77.6/68.5 77.1/68.4 78.1/69.3 76.9/68.2
es 73.4/65.1 74.9/66.9 77.4/69.1 78.1/70.3
it 80.4/75.4 80.6/75.4 83.9/79.4 84.6/79.4
hr 61.1/51.5 62.4/52.5 63.5/53.1 66.7/56.8
ca 72.1/63.1 73.9/65.3 76.0/66.9 76.2/66.5
pl 72.5/60.1 75.4/62.8 79.4/66.7 80.9/69.2
uk 60.0/52.0 59.8/51.6 62.6/53.3 63.3/55.3
sl 68.0/56.4 68.6/56.6 68.8/56.9 69.5/57.4
bg 79.6/68.0 80.1/68.7 79.6/68.6 80.5/69.4
ru 61.2/52.2 61.4/51.9 62.8/53.1 64.4/55.3
de 69.2/59.3 72.0/62.1 77.1/68.5 78.6/69.7
he 56.4/45.0 55.9/46.9 56.6/48.2 58.2/50.6
cs 62.6/52.9 63.3/54.0 64.8/54.3 63.3/54.1
ro 61.9/50.6 66.3/55.1 67.8/56.3 69.9/59.3
sk 66.6/57.5 67.5/58.9 69.4/59.2 69.6/60.3
id 46.6/41.2 49.5/43.6 55.0/47.8 57.8/50.2
fi 66.4/49.0 66.6/48.6 66.0/48.6 66.5/49.2
et 64.6/44.1 66.0/45.9 64.1/44.9 67.1/47.6
zh* 41.3/24.2 40.3/24.0 41.9/24.1 44.8/28.4
ar 33.7/25.8 38.2/28.2 43.3/33.6 44.2/35.3
la 44.7/32.1 48.0/35.2 51.3/37.1 54.4/39.8
ko 33.6/14.4 34.2/16.7 33.9/16.4 39.3/21.5
hi 26.6/18.4 35.0/26.5 45.0/35.9 69.9/55.9
ja 15.0/9.3 27.2/19.4 38.8/30.7 60.8/46.8
Avg 62.1/52.0 63.8/53.8 66.3/56.1 68.8/58.5

Table 1: UAS%/LAS% corresponding to different per-
turbation methods on the target languages. ’*’ indicates
the results corresponding to the delexicalized models.
The underlined entries indicate the cases where STAT-
trans performs better than PTSPertRS

5.2 Results with English as Source Language

Evaluation Metric We report the results of our
experiments in terms of unlabeled attachment
score (UAS) and labelled attachment score (LAS)
excluding punctuation and symbols.

In Table 1 we report the performance of the
RSUnpert, TGUnpert and PTSPertRS (P = 0.2)
and STATtrans on 29 target languages with En-
glish as the source language. The target languages
are ordered according to their typological similar-
ity with the English language based on the metric
given by Ahmad et al. (2019). For the Chinese (zh)
and Japanese (ja) languages, we report the results
of the delexicalized transfer parsers for a fair com-
parison with the baseline. The best performance
for PTSPertRS was achieved at P=0.2.

We observe that perturbation results in an over-
all improvement in the performance of the cross-
lingual transfer parsers. Our proposed approach
(PTSPertRS) performs better than the RSUnpert
baseline parser in case of 24 out of 29 target lan-

guages. It improves cross-lingual performance of
the transferred parser by 6.69% and 7.74% in
terms UAS and LAS respectively. PTSPertRS also
performs better than TGUnpert in case of 25 out of
29 target languages and improves average scores
by 3.8%UAS and 4.2%LAS.

We also observe that although the PTSPertRS
is a target language independent approach it gives
better performance than STATtrans in case of 7
languages out of 29 target language. Furthermore,
the parser model with transformer-based-encoder
and graph-based-decoder (TG) trained using the
treebank perturbed by PTSPert also performs bet-
ter than TGUnpert and RSUnpert. However, it per-
forms slightly worse than PTSPertRS.

In Table 2 we summarize the performance of
the different approaches discussed in this paper in
terms of UAS% and LAS% averaged over all 29
target languages with English as the source lan-
guage. We observe that for different values of
perturbation probability, PTSPertRS outperforms
RSUnpert, TGUnpert and SwapPert. We also ob-
serve that SwapPert performs slightly better than
RSUnpert for k = 10.
Consider the following German sentence (DE) and
its English gloss (EN).
DE: “Ich kann diese Tauch schule jeden
empfehlen”
EN: I recommend this driving school to everyone.
This is parsed by a transfer parser trained on
English. The words and relations indicated in red
show the errors by RSUnpert parser. The error
is possibly because the verb empfehlen occurs
at the end and after the object (Tauchschule),
whereas the verbs occur before the objects in
most English sentences. It is observed that the
PTSPert parser correctly parses the sentence. This
may have been made possible by perturbation
of the source treebank resulting in instances of
verb-final occurrences in the augmented treebank.

5.2.1 Dependency Relation-wise Analysis
In Table 3 we compare the labelled accuracies of
PTSPertRS (P = 0.2) with RSUnpert and TGUn-
pert corresponding to 18 most frequent depen-
dency relations averaged across all the 29 target
languages. We observe that PTSPertRS performs
better than RSUnpert and TGUnpert in terms of
the case, nmod, nsubj, amod, obl, advmod, acl,
obj, aux, mark and cc relations.

However, PTSPertRS performs worse than ei-
ther RSUnpert or TGUnpert in terms of the advcl,
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RSUnpert TGUnpert PTSPert SwapPert STATtrans
0.1 0.2 0.3 0.4 0.5 N/2 N/10

UAS 62.1 63.8 65.8 66.2 66.1 66.1 64.8 59.7 63.6 68.7
LAS 52.0 53.8 55.7 56.1 55.6 55.6 54.4 49.3 53.7 58.4

Table 2: Comparison of average performance of different transfer approaches.

Ich kann diese Tauchschule jeden empfehlen

nsubj
aux

det
obj

iobj

root

(a) Parser output of PTSPertRS model

Ich kann diese Tauchschule jeden empfehlen

nsubj
cop

det nsubj
acl

root

(b) Parser output of RSUnpert model

Figure 2: Parses of a German sentence.

det, cop, nummod, compound, xcomp and flat re-
lations. We note that the group of words related
by compound, fixed and flat relations are usually
arranged sequentially in a sentence and the de-
pendents with appos relation always follow their
respective heads. Thus perturbation with respect
to these relations negatively affects the perfor-
mance of the parsers. Furthermore, TGUnpert per-
forms better than the PTSPertRS model in terms
of the det, nummod, cop, iobj and appos relations.
We observed that the dependents with cop, num-
mod and det relations appears before their head
words in English. In case of the languages in
which the copulas, determiners and numeric modi-
fiers predominantly appears after their head words,
the PTSPertRS shows an overall improvement of
17.25%, 4.14% and 50.0% respectively over the
TGUnpert model. However, it loses out in terms
of average accuracy in case of the other languages
by 4.32%, 1.06% and 4.28% respectively. Since
these relations appear before their respective heads
in majority of the languages which includes En-
glish, the overall accuracy is less in terms of these
relations.

For a dependency relation, we call probability
of the dependents occurring before their heads in
a language as the precedence probability of that
relation in that language. The precedence proba-
bility of a relation in a language is measured by the

ko hi ja la pl sk ru de uk hr cs he sl et ar fi da bg es ca ro en no sv fr pt it id zh
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(a) Auxiliary dependency relation (aux)
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(b) Case dependency relation (case)
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(c) Subject dependency relation (nsubj)
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(d) Oblique dependency relation (obl)

Figure 3: The blue and the red lines indicate the gain
in LAS by PTSPertRS and TGUnpert over RSUnpert
respectively. The black line indicates the precedence
probabilities of the dependency relations in the lan-
guage. The languages are sorted on the precedence
probabilities from low to high. RS: RSUnpert, TG:
TGUnpert, PTS: PTSPertRS

ratio of the number of times the dependents with
that relation appear before their heads and the total
number of times the relation occurs in the data.

In our experiments, the precedence probabilities
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Dep Rel
RSU-
npert

TGU-
npert

PTSPert-
RS (P=0.2)

case 69.2 72.0 75.6
nmod 26.2 27.2 29.0
nsubj 52.5 51.2 56.6
amod 74.1 78.7 79.4
obl 40.8 38.8 47.3

advmod 63.2 60.7 63.7
obj 46.0 46.1 48.8
aux 59.5 72.4 78.9

mark 62.3 61.7 63.5
cc 71.3 71.1 71.9
acl 23.6 21.5 24.8

advcl 32.5 29.5 32.2
det 79.3 86.2 82.5
cop 57.4 61.6 60.1

nummod 65.3 68.1 67.7
compound 36.5 34.7 33.2

xcomp 34.9 39.5 34.9
flat 34.9 35.6 35.1

Table 3: Dependency-wise average accuracies of
RSUnpert, TGUnpert and PTSPertRS (P=0.2).

of the relations in the source and target languages
are estimated from the corresponding training and
test sets respectively. Note that we have used these
estimates for analysis of the results only.

In Figure 3 we compare the gain in LAS of
PTSPertRS over RSUnpert parser corresponding
to 4 different dependency relations over all the
target languages. The dependency relations are
chosen such that two are short distance relations
(intra-phrase): case and auxiliary and two are rela-
tively long-distance relations (inter-phrase): nsubj
and obl.

For all the four dependency relations, we ob-
serve that the gains in performance of PTSPertRS
over TGUnpert increases with the increase in the
difference of precedence probability of the rela-
tions in the languages from that of English.

We also observe significant improvement in
the performance of the PTSPertRS parsers over
TGUnpert in case of the nsubj and obl for most of
the language. Only in case of fi and ko languages,
both RSUnpert and TGUnpert perform better than
PTSPertRS in terms of the nsubj relation.

It is also observed that PTSPertRS performs sig-
nificantly better than RSUnpert and TGUnpert in
terms of the aux and case relations for the lan-
guages in which the precedence probabilities of
the relations are different from that of English.

5.2.2 PTSPertRS with Variable Perturbation
Probability Values

The results on PTSPertRS discussed above corre-
spond to a single perturbation probability value

applied on all the dependency relations. How-
ever, we observed that the best accuracies corre-
sponding to different dependency relations were
achieved at different P values. Thus we hypoth-
esize that perturbing the dependents of different
dependency relations by different amounts might
be more helpful. We try to get an estimate of the
perturbation probabilities corresponding different
dependency relations from the performance of the
PTSPertRS models trained using augmented tree-
banks perturbed with different perturbation prob-
ability values on the test set of a small number of
languages. For this, we selected a random subset
of 9 languages from the 29 languages. The 9 ref-
erence languages are es, sl, he, id, sv, de, et, ar and
hi.

The steps for obtaining the probability value
corresponding to a dependency relation are as fol-
lows;

• Corresponding to each P value in
{0.0, 0.1, 0.2, 0.3, 0, 4, 0.5}, we find the
average accuracy for the dependency relation
over the 9 languages.

• We take the P value for the dependency re-
lation for which the highest average accuracy
is observed.

In Table 4 we present the perturbation prob-
ability values used for the different dependency
relations. We apply these perturbation prob-

Dep Rels Pert Prob
appos, parataxis, goeswith,flat,

discourse, list, iobj,expl 0.0
det, cop, acl, advcl,
mark, cc, compound 0.1

aux, ccomp, amod, obl,
nummod, advmod, acl 0.2

nsubj, nmod, discourse, vocative 0.3
obj 0.4

case, csubj 0.5

Table 4: Perturbation probability values corresponding
to the different dependency relations.

ability values corresponding to the different de-
pendency relations to perturb the source language
parse trees.

In Table 5 we present the performances of
TGUnpert, RSUnpert, PTSPertRS with fixed P
values and the PTSPertRS with variable P val-
ues averaged over all the 9 reference languages,
29 target languages and the 20 held-out languages
respectively. On the set of the held-out 20 target
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No. of
languages

RSU-
npert

TGU-
npert

PTS-
Pert
(0.2)

PTS-
Pert
(Var.
P )

9 reference
languages

UAS 57.9 60.1 63.3 64.7
LAS 47.7 50.0 53.2 55.1

20 held-out
languages

UAS 64.0 65.5 67.6 68.6
LAS 53.9 55.5 57.4 58.6

29 target
languages

UAS 62.1 62.7 66.3 67.4
LAS 52.0 52.5 56.1 57.5

Table 5: Average %UAS/%LAS over different sets of
target languages for RSUnpert, TGUnpert, PTSPertRS
(P=0.2) and PTSPertRS with variable P .

languages, we observe an improvement of 1.6%
UAS and 2.16% LAS over the best single pertur-
bation probability value of (P = 0.2) on the 20
languages. On the set of all the 29 languages also,
this perturbation approach results in an overall im-
provement of 1.66% UAS and 2.49% LAS over
the best single perturbation value (P = 0.2).

5.3 Results with Hindi as Source Language

We report here a summary of the results for Hindi
as the source language. The variable perturbation
probability values were derived from the following
languages: es, sl, he, id, sv, de, et, ar and en.

In Table 6 we present the results corresponding
to the different transfer approaches averaged over
29 target languages. We observe that PTSPertRS
with different values of P outperform RSUnpert
and TGUnpert. The best PTSPertRS result is
achieved at P=0.3. PTSPertRS with variable P
values also performs better than fixed P values.
We observe that PTSPert with P=0.3 and variable
P performs better than RSUnpert and TGUnpert
for 27 out of 29 languages except ko and ja. We
observe that ko and ja are syntactically quite close
to Hindi and hence a parser model trained on un-
perturbed treebanks perform better than their per-
turbed versions.

In Table 7 we compare the performance of
RSUnpert, TGUnpert, PTSPertRS with the P =
0.3 and PTSPertRS with variable P value aver-
aged over all the 9 reference languages, 29 target
languages and the 20 held-out languages respec-
tively. We observe that PTSPertRS with variable
P values gives the best results.

In Table 8 we report the average performance of
RSUnpert, TGUnpert, PTSPertRS with the P =
0.3 and PTSPertRS with variable P values on
Tamil (ta), Telugu (te), Urdu (ur) and Marathi (mr)
languages for which treebanks are available in UD

v2.2.
We observe that on an average over the four

Indian languages, the best UAS and LAS scores
are achieved for RSUnpert and TGUnpert respec-
tively. Since the distribution of the dependents
with respect to their heads for different depen-
dency relations in the Indian languages are similar
to that of Hindi, the best results are obtained for
the parsers trained using unperturbed source tree-
bank. This observation is in coherence with the re-
sults in English and Hindi where RSUnpert trained
on unperturbed treebanks yield better results than
PTSPert for the languages syntactically similar to
the corresponding sources languages i.e. no and sv
for English and ko and ja for Hindi.

5.4 Performance over Other Source
Languages

We show that our perturbation approach enhances
the performance of the “order-free” model pro-
posed by Ahmad et al. (2019) for most of the 29
source languages. For this, we trained the parser
model with transformer-based encoder and graph-
based decoder using both unperturbed source lan-
guage treebanks and PTSPert treebanks perturbed
using P=0.1. The performance of the model
trained using unperturbed treebank is taken as
baseline. Following Ahmad et al. (2019), we
trained the models using the first 4000 parse trees
of each of the source language treebanks.

Figure 4: The red curve indicates average improve-
ment over baseline for a language as source. The blue
curve and the right y-axis indicates the average distance
of a language from the rest.

In Figure 4, for each language as a source, we
show the average improvement over all the tar-
get languages in cross-lingual performance of the
parser trained using perturbed treebank. The lan-
guages are sorted according to their average syn-
tactic distance from the other languages.

We observe that perturbation improves the av-
erage performance of the transfer parsers for the
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RSUnpert TGUnpert PTSPertRS
0.1 0.2 0.3 0.4 0.5 Var P

UAS 36.2 40.6 49.9 52.3 52.9 52.7 52.7 54.0
LAS 26.1 30.2 37.7 39.6 39.9 39.4 39.7 41.2

Table 6: Average UAS%/LAS% of different transfer parser approaches with Hindi as the source language.

No. of
langs

RSU-
npert

TGU-
npert

PTS-
Pert
(0.3)

PTS-
Pert
(Var.
P )

9 reference
languages

UAS 31.8 36.7 50.8 52.4
LAS 22.4 27.1 37.7 39.6

20 held-out
languages

UAS 38.2 42.3 53.8 54.7
LAS 27.8 31.6 40.8 42.0

29 target
languages

UAS 36.2 40.5 52.9 54.0
LAS 26.1 30.2 39.9 41.2

Table 7: Average %UAS/%LAS over different sets of
target languages for different parsing approaches with
Hindi as source language.

RSU-
npert

TGU-
npert

PTS-
Pert
(0.3)

PTS-
Pert
(Var.
P )

UAS 75.9 74.9 73.9 74.4
LAS 55.6 55.9 54.8 55.5

Table 8: Average %UAS/%LAS over ta, te, mr
AND ur for different parsing approaches with Hindi
as source language.

source languages except pt, sk and ca. The Pear-
son correlation coefficient of the average improve-
ments with the languages as source with respect
to the average distance from other languages is
0.82 indicating that the improvement due to per-
turbation is strongly correlated with the average
distance from the target languages.

6 Conclusion

In this paper propose an approach for introduc-
ing perturbation in the source language treebank
to improve single source target language indepen-
dent cross-lingual transfer parsing. We show that
this approach indeed helps to improve the per-
formance of the transferred parsers over models
trained using only source language treebanks.

References
Wasi Uddin Ahmad, Zhisong Zhang, Zuezhe Ma, Ed-

uard Hovy, Kai-Wei Chang, and Nanyun Peng.
2019. On difficulties of cross-lingual transfer with
order differences: A case study on dependency pars-
ing. In Proceedings of the 2019 Conference of the
NAACL: HLT.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised neural ma-
chine translation. In International Conference on
Learning Representations.

Lauriane Aufrant, Guillaume Wisniewski, and François
Yvon. 2016. Zero-resource dependency parsing:
Boosting delexicalized cross-lingual transfer with
linguistic knowledge. In COLING 2016, 26th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
December 11-16, 2016, Osaka, Japan, pages 119–
130.

Riyaz A. Bhat, Irshad Bhat, and Dipti Sharma. 2017.
Leveraging newswire treebanks for parsing conver-
sational data with argument scrambling. In Proceed-
ings of the 15th International Conference on Parsing
Technologies, pages 61–66, Pisa, Italy. Association
for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in neural informa-
tion processing systems, pages 3079–3087.

Ayan Das and Sudeshna Sarkar. 2019. Transform,
combine, and transfer: Delexicalized transfer parser
for low-resource languages. ACM Trans. Asian
Low-Resour. Lang. Inf. Process., 19(1):4:1–4:30.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the 53rd Annual Meeting of the
ACL and the 7th IJCNLP (Volume 1: Long Papers),
pages 1234–1244, Beijing, China. Association for
Computational Linguistics.

Martin Haspelmath. 2005. The world atlas of language
structures / edited by Martin Haspelmath ... [et al.].
Oxford University Press Oxford.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016. Learning distributed representations of
sentences from unlabelled data. arXiv preprint
arXiv:1602.03483.

83



Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Os-
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A Appendices

A.1 Language Name Abbreviations
en - English, no - Norwegian, sv - Swedish, fr -
French, pt - Portuguese, da - Danish, es - Spanish,
it - Italian, hr - Croatian, ca - Catalan, pl - Polish,
uk - Ukranian, sl - Slovenian, bg - Bulgarian, ru
- Russian, de - German, he - Hebrew, cs - Czech,
ro - Romanian, sk - Slovak, id - Indonesian, fi -
Finnish, et - Estonian, zh - Chinese, ar - Arabic, la
- Latin, ko - Korean, hi - Hindi, ja - Japanese.
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Abstract

Autism speech has distinct acoustic patterns,
different from normal speech. Analyzing
acoustic features derived from the speech of
children affected with autism spectrum disor-
der (ASD) can help its early detection. In this
study, a comparative analysis of the discrim-
inating acoustic characteristics is carried out
between ASD affected and normal children
speech, from speech production point of view.
Datasets of English speech of children affected
with ASD and normal children were recorded.
Changes in the speech production characteris-
tics are examined using the excitation source
features F0 and strength of excitation (SoE),
the vocal tract filter features formants (F1 to
F5) and dominant frequencies (FD1, FD2),
and the combined source-filter features signal
energy and zero-crossing rate. Changes in the
acoustic features are compared in the five vow-
els regions of the English language. Signifi-
cant changes in few acoustic features are ob-
served for ASD affected speech as compared
to normal speech. The differences between the
mean values of the formants and dominant fre-
quencies, for ASD affected and normal chil-
dren, are highest for vowel /i/. It indicates that
ASD affected children have possibly more dif-
ficulty in speaking the words with vowel /i/.
This study can be helpful towards developing
systems for automatic detection of ASD.

keywords: acoustic analyses of autism,
autism spectrum disorder, ASD, dominant fre-
quencies, formants

1 Introduction

ASD is a pervasive developmental disorder, de-
fined clinically by observing the abnormalities in
three areas: communication, social reciprocity,
and hyperfocus or reduced behavioral flexibility
(Kjelgaard and Tager-Flusberg, 2001; Diehl et al.,
2009; McCann and Peppé, 2003). Study shows,
at least 50% of the total population of ASD tends

to show atypical acoustic patterns in their speech,
and it persists throughout the improvement of
other language aspects (DePape et al., 2012; Bal-
taxe and Simmons, 1985; Fusaroli et al., 2017).
In fact, the exact characteristics of autism and its
underlying mechanisms are also unclear (Kanner
et al., 1943; Bonneh et al., 2011). According to
study, 1 in 150 individuals with autism was re-
ported in 2002, which became 1 in 68 in 2014 (Ku-
mar et al., 2018; Autism and Investigators, 2014).
It is reported that there are tens of millions of in-
dividuals with ASD worldwide, and it is affecting
approximately 1.5% of our total population (San-
tos et al., 2013; Parish-Morris et al., 2016).

Communication impairments, abnormal voice
quality and disturbances of prosody are some of
the most important aspects among individuals with
ASD who speak (Paul et al., 2005; Bonneh et al.,
2011). Individuals with ASD speak with distinc-
tive acoustic patterns in their speech, and as a re-
sult they face social interaction deficits (Fusaroli
et al., 2017). The reason behind the language im-
pairment in autism is the result of primary linguis-
tic disorder with a focus on pragmatic impairments
(Baltaxe, 1977). Besides, the speech signal of the
children with ASD is reported as improperly mod-
ulated, wooden, and dull (Baltaxe and Simmons,
1985). In fact, in many cases, a significant spoken
language delay and repetitive language can also
be encountered (Mower et al., 2011). In general,
normal children start establishing their vocabular-
ies at the age of two years, whereas the children
with ASD may not be able to do the same (Tager-
Flusberg et al., 2005; Short and Schopler, 1988).

Previous studies mostly based on either speech
prosody or unusual suprasegmental features of
speech production of children with ASD (Bon-
neh et al., 2011). Like, in Shriberg et al. (2001),
authors had reported the segmental and supraseg-
mental speech features of individuals with high-
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functioning autism (HFA). Also, some studies
used objective measures to quantify speech related
issues in autism (Bonneh et al., 2011). Some of
the most significant analyses based on pitch fea-
tures of individuals with ASD were reported in
Brisson et al. (2014), Quigley et al. (2016), etc.,
where in each study authors had reported differ-
ent result from others. For instance, in Brisson et
al. (2014), authors had reported higher pitch value
for ASD children as compared with normal chil-
dren. On the other hand, in Quigley et al. (2016),
authors had reported lower pitch value for ASD
children as compared with normal children. Be-
sides, in the case of the intensity based analyses,
some of the studies indicated no significant differ-
ences between ASD and normal children (Quigley
et al., 2016; Hubbard and Trauner, 2007). Like-
wise, based on duration (syllable duration, utter-
ance duration, etc.), voice patterns, speech rate,
etc., researchers had done some significant anal-
yses on individuals with ASD (Santos et al., 2013;
Kakihara et al., 2015; Bone et al., 2013). But,
none of the previous studies had done only on En-
glish vowels, especially pronounced by non-native
Indian English speakers with ASD. Also, many
robust speech features like dominant frequencies
(FD1, FD2), strength of excitation (SoE), etc., had
not been considered in previous studies. There-
fore, in this study, we have considered all these
mentioned points.

This paper analyzed the autism speech, i.e., the
speech signal of the children with ASD, by dif-
ferentiating them from the normal children. Dif-
ferences are made in terms of the speech produc-
tion features of the ASD and the normal children.
Here, only English vowels, i.e., /a/, /e/, /i/, /o/, and
/u/ are taken into consideration, because of their
relatively longer duration in the case of children
with ASD. Also, the production of vowels sounds
by an individual is not a random process; hence
it is important to find characteristics of the speech
production mechanism of children with ASD dur-
ing the pronunciation of vowels sounds. This
study on analyzing the speech production charac-
teristics of the children with ASD has high im-
portance, because it may play a vital role in im-
proving the communication impairments associ-
ated with ASD. In addition, current diagnostic cri-
teria for ASD do not include any atypical vocal-
izations (Bonneh et al., 2011). Hence, this study
can be utilized as a diagnostic marker to identify

Table 1: Dataset Details of the ASD and the Normal
Children

Attributes Group
Statistics

Male Female

Total children
ASD 11 02
Normal 11 09

Age (in years)
ASD 03 to 09 3.5
Normal 03 to 09 3.5 to 09

Reading skill
(English)

ASD Beginner Beginner
Normal Beginner Beginner

Data Duration
(in sec)

ASD 6850 2500
Normal 6000 6000

ASD.
This study consists of four major steps. Firstly,

two speech signal datasets were collected, by
recording the sound files of the ASD and the nor-
mal children. Secondly, unwanted signal parts
were removed, and the speech signal files were
arranged in two different databases for the ASD
and the normal children. Thirdly, speech signal
processing methods were applied on the collected
datasets to extract the selected production features.
Finally, results were made by differentiating be-
tween the ASD and the normal children in terms
of their speech production features.

The rest of the paper is organized as follows.
Details about the two collected datasets of the
ASD and the normal children are discussed in Sec-
tion 2. Next, the signal processing methods and
features used for analyses are discussed in Section
3. Section 4 presents key results and observations
on results. Then, Section 5 discusses the analy-
ses of observed results in speech production point
of view. Section 6 represents key contributions.
Lastly, Section 7 presents conclusions, along with
the scope of future work on this topic.

2 Speech Datasets of ASD and Normal
Children

Two speech signal datasets in the English lan-
guage were recorded for this study, where one
dataset contains the speech samples of 13 children
with ASD, and another dataset contains the speech
samples of 20 normal children. Details of both the
datasets are given in Table 1. In this study, the
number of ASD and normal children is different.
There are numerous previous studies like Parish-
Morris et al. (2016), Nakai et al. (2014), etc.,
where researchers took a different number of ASD
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and normal children. Besides, children with age
less than 3 years were not considered in this study,
because typically the diagnosis of ASD starts by
the age of 3 years when a child begins to show
delays in developmental milestones (Santos et al.,
2013; McCann and Peppé, 2003). Another reason
was that the current study only focused on verbal
children. Besides, in the case of the children with
ASD, it was made sure by a well-experienced doc-
tor and a psychologist that the children considered
were diagnosed with ASD. The children with ASD
considered for the data collection met the DSM-IV
diagnostic criteria (Wing et al., 2011; Lord et al.,
1994). Furthermore, all the children with ASD
considered here had distinctive acoustic patterns in
their speech, during the entire period of data col-
lection. However, the normal children did not have
any such issues and were living a normal life.

Speech samples were recorded every week
(once or twice), for a period of over 1 year.
Recordings took place in a noise-free empty room,
which did not have any object that could dis-
tract the children. Also, the neutral emotional
state of the children was affirmed during all the
data collection sessions. The ASD and the nor-
mal children were asked to name in English a
set of 25 specifically selected daily life pictures,
shown to them along with each picture’s name in
English on a laptop. The pictures consisted of
animals, vegetables, flowers, and English num-
bers. All the children were asked to pronounce
only the object’s name as a word, presented to
them in the form of a picture. The children’s
first response was confronted by asking them to
pronounce the picture’s name. Then, we kept
changing the pictures one by one, while the chil-
dren named the object shown as a picture. Each
child was asked to name the same set of pictures
over each of the recording sessions. Five differ-
ent pictures were selected for each of five English
vowels, and the names of all the pictures were
either in consonant-vowel-consonant (CVC) or
consonant-vowel-vowel-consonant (CVVC) word
format. The total utterances of 25 words by each
child (5 vowels × 5 words) were recorded in each
of the two such sessions, in a day.

Roland R-26 digital audio recorder was used
with 48 KHz sampling rate to record the speech
samples. The distance of 25 cm was maintained
between the recorder and the speaker’s mouth.

Our collected datasets have immense impor-

tance because of several reasons. Firstly, all the
children considered here were non-native Indian
English speakers. Whereas, in previous studies
like Oller et al. (2010), Asgari et al. (2013),
Marchi et al. (2015), Kakihara et al. (2015),
etc., authors had not considered non-native Indian
English speakers(children) with ASD. Secondly,
in previous studies datasets were mostly collected
from social interaction (Santos et al., 2013), con-
strained production (Bone et al., 2013) and spon-
taneous production (Fusaroli et al., 2017). But,
here the datasets were recorded differently, as de-
scribed earlier in this section.

3 Signal Processing Methods and
Features

The production characteristics of speech signal of
the ASD and the normal children are differenti-
ated by examining changes in the source features,
vocal tract system features and combined source-
filter features. The source features F0 and strength
of excitation (SoE), and the vocal tract filter fea-
tures dominant frequencies (FD1, FD2) and first
five formants (F1 to F5) are examined. The com-
bined source-filter features signal energy (E) and
zero-crossing rate (ZCR) are also examined. Here,
for each speech feature, the mean (µ) or average
values are computed. The mean values are com-
puted for each English vowel by taking the av-
erage of all the calculated values of a particular
speech feature, and this procedure is followed for
each speaker. Besides, the µSoE , µE and µZCR

values are multiplied by 100, 1000, and 1000, re-
spectively, for a better understanding.

3.1 Excitation Source Features

The excitation source feature F0 was derived us-
ing zero-frequency filtering (ZFF) method (Murty
and Yegnanarayana, 2008; Yegnanarayana and
Murty, 2009). The ZFF method involves com-
puting the output of the cascade of two zero-
frequency resonators (ZFRs). That is y1[n] =
−∑2

k=1 aky1[n − k] + x[n] and y2[n] =
−∑2

k=1 aky2[n− k] + y1[n]. Where, x[n] is pre-
processed input signal, a1 = −2 and a2 = 1.
This operation is repeated twice (denoted as y1[n]
and y2[n]) for a cascade of ZFRs. The trend in
this output is removed by subtracting the mov-
ing average corresponding to the 10 ms window
at each sample. The resultant trend removed sig-
nal, called the ZFF signal, given as y[n] = y2[n]−
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Table 2: Mean (µ) Values of the Source Features (F0 and SoE), Combined Source-filter Features (Energy E and
Zero-crossing Rate ZCR) and Vocal Tract Filter Features (Formants Frequencies and Dominant Frequencies) of
the Male Children with ASD and Normal (Nm): (a) Acoustic Features and (b)-(f) Mean Values for Five English

Vowels; F1 to F5 Indicate First Five Formants Frequencies, Respectively, and FD1 and FD2 are First and Second
Dominant Frequencies, Respectively

(a) Features
(b) /a/ (c) /e/ (d) /i/ (e) /o/ (f) /u/

ASD Nm ASD Nm ASD Nm ASD Nm ASD Nm

F0 (Hz) 263 258 267 260 271 262 269 256 246 236
SoE×100 34.9 32.1 43.4 46.3 44.0 47.7 39.1 35.7 35.9 31.1

E×1000 36.5 24.7 31.4 30.7 43.2 33.7 41.2 35.6 54.3 34.9
ZCR×1000 37.7 39.3 28.2 34.7 30.9 30.9 28.2 32.0 30.5 33.6

F1 (Hz) 720 453 554 452 589 424 657 557 662 498
F2 (Hz) 1628 1238 1665 1207 1658 1255 1310 1111 1466 1185
F3 (Hz) 2694 2486 2726 2551 2686 2566 2603 2504 2673 2446
F4 (Hz) 3712 3552 3715 3613 3675 3642 3561 3572 3603 3651
F5 (Hz) 4471 4455 4467 4435 4427 4425 4394 4320 4410 4331

FD1 (Hz) 1042 819 900 580 1043 519 863 824 952 731
FD2 (Hz) 3295 3470 3234 3171 3282 3125 3291 3375 3316 3368

1
2N+1

∑N
m=−N y2[n + m]. Where, 2N+1 is the

window length in terms of sample number. The re-
sultant signal is called the ZFF signal. Its positive
giving zero crossings indicate the glottal closure
instants (GCIs), which are used to estimate the F0
(Murty and Yegnanarayana, 2008).

The excitation feature, SoE was derived us-
ing the ZFF method. The slope of the ZFF
signal around the glottal closure instants (GCIs)
gives a measure of the SoE (Murty and Yegna-
narayana, 2008; Murty et al., 2009; Mittal and
Yegnanarayana, 2015b).

3.2 Vocal Tract Filter Features
The first five formants (F1 to F5) were derived by
using linear prediction (LP) spectrum (Makhoul,
1975; Hermansky, 1990; Atal and Hanauer, 1971;
Yegnanarayana, 1978). The sound files were re-
sampled to 10 KHz and LP order as 10.

The first two dominant peak frequencies (FD1
and FD2) were derived from the acoustic signal
using LP analysis (Makhoul, 1975; Hermansky,
1990). With the LP order 5, the LP spectrum
will have a maximum of two peaks correspond-
ing to two complex conjugate pole pairs (Mittal
et al., 2014). The corresponding frequencies of
these two peaks are known as the dominant fre-
quencies, denoted as FD1 and FD2, respectively
(Mittal and Yegnanarayana, 2015a). The dominant
frequencies represent the frequency response with

high spectral energies. These high spectral ener-
gies give an idea of the concentration of energy in
the spectrum (Mittal and Yegnanarayana, 2015a).

3.3 Combined Features

The E (Rihaczek, 1968) was calculated using the
frame size 30 ms and frame shift 10 ms. Signal
energy of a discrete-time signal x[n] can be com-
puted as Ew =

∑w/2
n=−w/2 |x [n]|

2. Where, w is
the window length.

In the context of discrete-time signals, ZCR
is defined as the number of times in any spe-
cific time interval/frame that the amplitude
of the speech signal goes through a value of
zero (Bachu et al., 2008). The definition of
ZCR as given in (Bachu et al., 2008) is Zn =∑∝

m=−∝ |sgn[x(m)]− sgn[x(m− 1)]|w(n −

m). Where, sgn[x(n)] =

{
1, x(n) ≥ 0
−1, x(n) < 0

and

w(n) =

{
1
2N for, 0 ≤ n ≤ N − 1
0 for, otherwise

.

4 Results and Observations

The obtained results indicate higher µF0 values
for the children with ASD as compared with the
normal children, and this statement is true for all
English vowels. Besides, according to the tongue
position, female children with ASD have the high-
est µF0 value for mid-vowel /e/ and have the low-
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Table 3: Mean (µ) Values of the Source Features (F0 and SoE), Combined Source-filter Features (Energy E and
Zero-crossing Rate ZCR) and Vocal Tract Filter Features (Formants Frequencies and Dominant Frequencies) of

the Female Children with ASD and Normal (Nm): (a) Acoustic Features and (b)-(f) Mean Values for Five English
Vowels; F1 to F5 Indicate First Five Formants Frequencies, Respectively, and FD1 and FD2 are First and Second

Dominant Frequencies, Respectively

(a) Features
(b) /a/ (c) /e/ (d) /i/ (e) /o/ (f) /u/

ASD Nm ASD Nm ASD Nm ASD Nm ASD Nm

F0 (Hz) 326 314 343 321 339 330 340 310 335 313
SoE×100 32.0 30.5 37.1 41.9 38.1 50.9 42.9 33.0 37.1 35.3

E×1000 39.5 23.4 35.3 24.2 48.3 20.7 63.7 34.9 58.6 30.3
ZCR×1000 35.6 55.3 26.9 48.3 29.3 39.4 29.9 38.3 32.1 40.8

F1 (Hz) 711 457 572 517 633 438 670 646 693 546
F2 (Hz) 1554 1261 1636 1213 1630 1141 1322 1231 1438 1278
F3 (Hz) 2653 2484 2776 2523 2746 2476 2537 2487 2588 2532
F4 (Hz) 3720 3559 3778 3571 3782 3501 3558 3612 3629 3649
F5 (Hz) 4439 4411 4425 4404 4429 4411 4417 4345 4396 4348

FD1 (Hz) 865 827 686 783 681 560 803 784 860 810
FD2 (Hz) 3185 3436 3286 3111 3269 3129 3058 3432 3112 3175

est µF0 value for low-vowel /a/ as compared with
other English vowels. But, in the case of the nor-
mal female children, high-vowel /i/ gives the high-
est and mid-vowel /o/ gives the lowest µF0 values
as compared with other English vowels. However,
in the case of the male children with ASD, such re-
sults have not been found. It is observed that male
children with ASD follow a similar µF0 trend with
the normal male children for all English vowels.
These results can be analyzed from Table 2 and 3.

Like µF0, in the case of µE also, the children
with ASD have higher values for all the five En-
glish vowels as compared with the normal chil-
dren. Also, for all the five English vowels, the
female children with ASD have higher µE values
as compared with the male children with ASD, but
this is vice versa for the normal children. Besides,
in the case of the children with ASD, the same
vowel /e/ has the lowest µE values for both male
and female children, whereas this is not the same
for the normal male and female children. Like-
wise, in the case of the normal children, the same
vowel /o/ has the highest µE values for both male
and female children, whereas this is not true for
the male and female children with ASD. These
statements can be observed from µE values in Ta-
ble 2 and 3.

Regarding µSoE , only front vowels /e/ and /i/
indicate lower values for the children with ASD

as compared with the normal children. But, in
the case of mid and rear vowels, i.e., /a/, /o/, and
/u/, µSoE indicate higher values for the children
with ASD than the normal children. Besides, in
the case of both the normal male and female chil-
dren, the same vowel /i/ has the highest µSoE val-
ues as compared with other English vowels. But,
this statement is not true in the case of the chil-
dren with ASD. Again, in the case of both the male
and female children with ASD, the same vowel /a/
has the lowest µSoE values as compared with other
English vowels, whereas this is not the case with
the normal children. All these results can be ob-
served from µSoE values, tabulated in Table 2 and
Table 3.

The µZCR have lower values for the children
with ASD as compared with the normal children,
and it is true for all English vowels. This observa-
tion is graphically represented in Figure 1(g) and
1(h). Also, in the case of the front and mid vowels,
i.e., /a/, /e/, and /i/, the male children with ASD
have higher µZCR values as compared with the fe-
male. But, it is vice versa in the case of the normal
children. Besides, in the case of both male and fe-
male children with ASD, the same vowel /e/ has
the lowest µZCR values as compared with other
English vowels, whereas this is not the case with
the normal children. These results can be observed
from µZCR values, given in Table 2 and 3.
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Figure 1: Differences in the Mean Values of F0, E,
SoE, and ZCR between the ASD Affected and the

Normal Children.

The children with ASD have significantly
higher µF1 values for all English vowels as com-
pared with the normal children. Next, it is ob-
served that the normal female children have higher
µF1 values for all the five English vowels as com-
pared with the normal male children, whereas this
statement is not true in the case of the children
with ASD. According to the tongue position, in
the case of both the male and female children with
ASD, the µF1 indicates the highest values for the
low vowel /a/ as compared with the high and mid
vowels. But, in the case of both the male and fe-
male normal children, the µF1 indicates the high-
est values for the mid vowel /o/ as compared with
the high and low vowels. The µF1 results are tab-
ulated in Table 2 and 3.

The µF2 values are higher for all English vow-
els in the case of the children with ASD as com-
pared with the normal children. Also, the µF2

values for all the five English vowels of both the
male and female children with ASD follow a sim-
ilar trend, whereas there is no such trend observed
in the case of the normal children. Besides, ac-
cording to the tongue position, both the male and
female children with ASD have the highest µF2

values for the mid vowel /e/ as compared with the
high and low vowels. But, in the case of the nor-
mal children, as compared with the mid and low
vowels the high vowels /i/ and /u/ give the high-
est µF2 values for both the male and female chil-
dren, respectively. All these results can be ana-
lyzed from µF2 values tabulated in Table 2 and 3.

Like µF1 and µF2, the µF3 values are also
higher for all English vowels in the case of the
children with ASD as compared with the normal
children. According to the tongue position, in the
case of both the male and female children with
ASD, the µF3 indicates the highest values for the
mid vowel /e/ as compared with the high and low
vowels. But, in the case of the normal children,
the µF3 indicates the highest values for the high
vowels (/i/ and /u/) as compared with the mid and
low vowels. The µF3 values are tabulated in Table
2 and 3.

As compared with the normal children, the chil-
dren with ASD have higher µF4 values for the
front and mid vowels only. Next, according to the
tongue position, in the case of both the male and
female children with ASD, the µF4 gives the high-
est values for the mid vowel /o/ as compared with
the high and low vowels. But, this is not the case
for the normal children. The µF4 results can be
analyzed from the Figure 2(g) and 2(h), also from
the µF3 values, tabulated in Table 2 and 3.

The µF5 indicates higher values for all the five
English vowels in the case of the children with
ASD as compared with the normal children, de-
picted in Figure 2(i) and 2(j). Also, both the male
and female normal children have the lowest µF5

values for the mid vowel /o/ as compared with the
high and low vowels. But, this statement is not
true in the case of the ASD children. The µF5 val-
ues are tabulated in Table 2 and 3.

All the five English vowels have higher µFD1

values for the children with ASD as compared
with the normal children, depicted in Figure 3(a)
and 3(b). According to the tongue position, both
the male and female normal children have the low-
est µFD1 values for the high vowel /i/ as compared
with the mid and low vowels. But, in the case of
the ASD children, as compared with the high and
low vowels the mid vowels /e/ and /o/ indicate the
lowest µFD1 values for both the female and male,
respectively. The µFD2 results can be analyzed
from Table 2 and 3.

In the case of µFD2, only the front vowel /e/ and
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Figure 2: Differences in the Mean Values of Formants
Frequencies (F1, F2, F3, F4, and F5) between the ASD

Affected and the Normal Children.

/i/ have higher values for the children with ASD
as compared with the normal children, graphically
shown in Figure 3(c) and 3(d). In addition, ac-
cording to the tongue position, both the male and
female normal children have the highest µFD2 val-
ues for the low vowel /a/ as compared with the mid
and high vowels. On the other hand, as compared
with other English vowels the high vowel /u/ has
the highest µFD2 value for the male ASD group
and the mid vowel /e/ has the highest µFD2 value
for the female ASD group. The µFD2 values are
tabulated in Table 2 and 3 for the male and female
children, respectively.

5 Analyses of Results

This section describes the observed results in
speech production point of view. Firstly, the F0
which reveals the source characteristics of the
speech production system, the result infers that in
the case of all the five English vowels, the male
and female children with ASD have a higher vo-

cal fold vibration rate than the normal male and
female children. This statement is true for all the
five English vowels. Furthermore, in the case of
female children with ASD, mid-vowel /e/ has the
highest and low-vowel /a/ has the lowest vocal
fold vibration rate as compared with other English
vowels. On the other hand, in the case of the nor-
mal female children, high-vowel /i/ has the highest
and mid-vowel /o/ has the lowest vocal fold vibra-
tion rate as compared with other English vowels.
These observations can be analyzed from Figure
1(a) and 1(b).

In the case of E which gives the information
about the combined source-system characteristics
of the speech production system, the result implies
that the children with ASD have louder speech and
put more vocalization effort than the normal chil-
dren. Also, in the case of all English vowels the
female children with ASD put more vocalization
effort than the male children with ASD, but this is
vice versa in the case of the normal group. These
results can be analyzed from µE values graphi-
cally depicted in Figure 1(c) and 1(d).

The observed SoE result infers that in the case
of the front vowels the strength of impulse-like
excitation is lower during the glottal activity (vi-
bration of vocal folds) of the children with ASD
as compared with the normal children. But, in
the case of mid and rear vowels the strength of
impulse-like excitation is higher for the ASD chil-
dren than the normal children. This result can be
analyzed from Figure 1(e) and 1(f).

The F1 result implies that in the case of all
five English vowels, the children with ASD have
a lesser oral constriction in the front half of the
oral section of the vocal tract as compared with the
normal children. Again, in terms of pharyngeal
constriction, it can be stated that during the pro-
nunciation of all the five English vowels the pha-
ryngeal constriction is greater for the children with
ASD as compared with the normal children. The
F1 observed result also implies that both the male
and female children with ASD have the greatest
pharyngeal constriction for the low-vowel /a/ as
compared with the mid and high vowels. But, the
normal male and female children have the greatest
pharyngeal constriction for the mid-vowel /o/ as
compared with the high and low vowels. Further-
more, during the pronunciation of all English vow-
els the children with ASD increase their tongue
higher than the normal children. Because the F1
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Figure 3: Differences in the Mean Values of Dominant
Frequencies (FD1 and FD2) between the ASD Affected

and the Normal Children.

value increases with increasing the tongue posi-
tion higher. The F1 values for all English vowels
are graphically depicted in Figure 2(a) and 2(b).

The F2 result implies that in the case of all En-
glish vowels the back tongue constriction is lesser
and the front tongue constriction is greater for the
children with ASD than the normal children. Fur-
thermore, it can be stated from the observed re-
sult that both the male and female children with
ASD have the least back tongue constriction and
the greatest front tongue constriction for the mid
vowel /e/ as compared with the high and low vow-
els. On the other hand, the normal male chil-
dren have the least back tongue constriction and
the greatest front tongue constriction for the high-
vowel /i/ as compared with the mid and low vow-
els, and the normal female children have the least
back tongue constriction and the greatest front
tongue constriction for the high-vowel /u/ as com-
pared with the mid and low vowels. This observa-
tion can be analyzed from Figure 2(c) and 2(d).

The F3 result implies that in the case of the
children with ASD lip-rounding is lesser during
the pronunciation of all English vowels. Hence,
the constriction is least and as a result all English
vowels give higher µF3 frequency values for the
children with ASD as compared with the normal
children. The results are graphically depicted in
Figure 2(e) and 2(f).

Also, the results of the first three formants
(F1, F2 and F3) indicate that the length of the
pharyngeal-oral tract is shorter in the case of the
children with ASD as compared with the normal
children. Because, the formants values of vowels
are inversely proportional to the pharyngeal-oral
tract, and here the children with ASD have higher

µF1, µF2 and µF3 values for all English vowels as
compared with the normal children. Also, in terms
of the lip-rounding, the F1, F2, F3 and F5 results
imply that the children with ASD have a lesser lip-
rounding as compared with the normal group.

In the case of formants frequencies and domi-
nant frequencies, the differences between the ASD
and the normal children are highest for vowel /i/.
It implies that ASD children have probably more
difficulty in pronouncing the words with vowel /i/.

6 Key Contributions

The key contributions of this study are as follows:

• The ASD and the normal children’s speech
datasets are collected by recording the speech
samples of non-native Indian English speak-
ers.

• Only English vowels (/a/, /e/, /i/, /o/, and /o/)
are considered in this study.

• Some of the robust speech features like SoE,
F5, FD1, and FD1 are considered here, which
were not considered in similar types of previ-
ous studies.

• The F0, E, F1, F2, F3, and F5 results clearly
distinguish the ASD and the normal children.
All these features have significantly higher
mean values for all English vowels in the case
of the ASD children as compared with the
normal children.

• The results of the formants and dominant
frequencies indicate that children with ASD
have probably more difficulty in pronouncing
the words with vowel /i/.

7 Conclusions

The aim of this study is to analyze differences in
various speech production features of the children
with ASD as compared with the normal children.
Only English vowels sounds are used in this study.
An autism speech dataset and a normal childrens
speech dataset are recorded separately for this re-
search purpose. Then, differences between the
children with ASD and the normal children are an-
alyzed by observing the source characteristics (F0
and SoE), system characteristics (dominant fre-
quencies and formants), and combined character-
istics (ZCR and E). It is observed that there are
significant differences between the ASD and the
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normal children, in terms of their speech produc-
tion characteristics in English vowels regions. In
the case of most of the speech production features,
the ASD children have significantly higher values
than the normal children. These acoustic charac-
teristics of the children with ASD can be used as
markers to identify ASD. But, we did not find any
single speech feature that can be utilized as a di-
agnostic marker for ASD.

A small size of speech data for female ASD
children is a limitation of this study. In future stud-
ies, we will try to find a single speech feature that
can be utilized as an acoustic marker to identify
ASD.
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Abstract
Increased internet bandwidth at low cost is
leading to the creation of large volumes of
unstructured data. This data explosion opens
up opportunities for the creation of a variety
of data-driven intelligent systems, such as the
Semantic Web. Ontologies form one of the
most crucial layers of semantic web, and the
extraction and enrichment of ontologies given
this data explosion becomes an inevitable
research problem. In this paper, we survey the
literature on semi-automatic and automatic
ontology extraction and enrichment and
classify them into four broad categories based
on the approach. Then, we proceed to narrow
down four algorithms from each of these
categories, implement and analytically
compare them based on parameters like
context relevance, efficiency and precision.
Lastly, we propose a Long Short Term
Memory Networks (LSTM) based deep
learning approach to try and overcome the
gaps identified in these approaches.

1 Introduction

There has been an explosion of data on the
Internet in the past few years, primarily caused by
the drastic increase in the number of internet
users over the years. About 90% of the data on
internet has been created since 2016, mainly
because of the massive increase in the user base
and machine to machine communication. Data is
defined as unprocessed facts and figures that do
not contain any added interpretation or analysis.
Information is interpretation of structured or
unstructured data so that it holds meaning.
Knowledge is processed information, experience,
and insight combined such that it is beneficial to
the end user1.

Web pages, the primary source of knowledge
on the World Wide Web (WWW) are primarily

1https://tinyurl.com/datainfknowledge

text documents annotated using Hypertext
Markup Language (HTML). Lack of semantic
markup of pages can result in irrelevant search
results. The semantic web2 provides a format or
structure to machines to understand the meaning
of the web page data rather relying on HTML
markup, to make web intelligent and intuitive to
user’s queries. The semantic web includes
data-centric publishing languages, including RDF
(Resource Description Framework - the data
modeling language for the semantic web),
SPARQL (SPARQL protocol and RDF query
language for semantic web) and OWL (Web
Ontology Language - schema language, or
knowledge representation language, of the
semantic web), which allows meaning and
structure to be added to content in a
machine-readable format. OWL 3 allows
definition of concepts composably, i.e. in such a
way that it allows the reuse of concepts and
relationships. Given the amount of information
being extracted from the data generated on a
regular basis in various domains, it becomes
essential for it to be stored in the form of
knowledge in ontologies. However, the
knowledge stored in ontologies is rarely static.
Like all other knowledge structures, its vital for
ontologies to be enriched with time so as to
improve the quality of search results.

Given recent advances in the fields of artificial
intelligence and machine learning, as well as
increased data processing capabilities with
increase in compute power, newer, better and
more accurate ways of extracting and enriching
ontologies from text are now possible. Ontology
extraction from text has primarily been at lower
layers in ontology ”layer cake” (Buitelaar et al.,

2https://expertsystem.com/what-is-the-semantic-web/
3https://db-x.org/blog/2016/04/15/semantic-web-2/
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2005). A pre-existing seed ontology created
manually or through learning needs enrichment.
Ontology enrichment (Faatz and Steinmetz, 2002)
is population, updation, and adaptation (Noy and
Klein, 2004) of concepts, relations and rules. In
the context of this paper, we assume a
pre-existing seed ontology that is enriched by
learning (semi-automatic or automatic) from text.
The survey in this paper attempts to address the
following important research questions:

• How are ontologies enriched by learning
from unstructured text, and which
algorithms are considered seminal?
• How do seminal algorithms compare with

each other, in regards to context relevance,
algorithmic efficiency and precision?
• What gaps are identified in these algorithms,

and how can they be potentially addressed?

We did not focus on the other knowledge
representation methods such as knowledge
graphs, frames, semantic nets and others in the
survey considering the extensivity of ontology
research and the generalizability of research
trends to other knowledge representation
methods. The further sections of the document
contain our literature survey approach for
identifying the state-of-the-art in section 2; we
explain the broad genres identified in the
ontology extraction in section 3; we proceed with
a critical analysis of the major approaches
through the years, by analyzing the algorithms on
context relevance, efficiency and precision in
section 4; we propose a deep learning based
methodology (LSTM - Long Short Term
Memory) to possibly overcome the gaps in the
ontology enrichment in section 5 and finally end
with a conclusion summarizing our observations.

2 Approach for Literature Review

We started the review on ontology learning from
text before focusing on enrichment. Research on
ontology learning from text started in 1995
(Mahesh et al., 1995) but still continues to be an
area of interest. In the last two decades, there
have been 20 survey papers on ontology tools,
learning, evolution, construction, enrichment,
change, generation, population, and matching
with text. The large count of survey papers
indicates the growing interest among researchers
and changing research approaches in ontology

learning. We classified these survey papers4 on
the basis of text format (structured or
unstructured), evaluation methods, ontology layer
cake, AI techniques, level of automation, etc.
Most survey papers recommended human
intervention, continued automation, gold
standards and graphical interfaces for improved
quality, expressiveness and scalability. While the
survey papers were thorough, there weren’t any
papers that follow the systematic literature review
(SLR) or systematic mapping process
(Kitchenham, 2004), or any that discussed
seminal papers that led to change of approaches.

Based on our study of the survey papers’
classification methods and future directions, the
keywords for search from digital libraries were
”Extraction”, ”Evolution”, ”Enrichment”,
”Maintain”, and ”Learning” along with
”Ontology” as keyword. We did not follow SLR
process as our objective was to analyze the
seminal papers based on context relevance,
precision and algorithm efficiency. The input to
our survey process consisted of 166 research
papers extracted from ScienceDirect, Springer,
IEEE, and ACM digital libraries from 1990-2018
time period. After reviewing the abstract and
conclusion, 65 papers were eliminated from the
list as they were thesis, patents, grey material,
non-English, position or tutorial papers and
others. The papers related to construction of data,
text summarization using ontologies, machine
translation, Information Retrieval, etc, of the
extracted research papers were also excluded
from further analysis. While there were about 23
domains for validation, Medical and Education
domains were the most referred domains in the
shortlisted papers. The Figure 1 (Y-axis is the
count of papers and X-axis is the year of
publication) on ontology learning depicts the
ongoing interest of researchers. The study on
approaches of the shortlisted papers stated that
although natural language processing and
description logic continue to be used; Word2Vec,
a step towards deep learning is being more
leveraged for ontology learning. The shortlisted
papers were categorized after reading the abstract,
introduction and conclusion, as shown in Figure
2. The papers on ”create” were related to
ontology construction or population or
generation. The papers on ”update” were related

4https://tinyurl.com/OntoSurvey
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Figure 1: Trend Chart on Ontology Research

to ontology evolution, enrichment, updation,
refinement, maintain, etc. The papers on ”CRUD”
operation dealt with creation, updation and
deletion of redundant concepts and relations as
well. For further analysis, the papers on ”update”
and ”CRUD” on ontology were clustered into 4
categories based on the approach used for
enrichment.

1. Similarity Based Clustering Algorithms
2. Set Theoretic Based Algorithms
3. Web Corpus Based Algorithms
4. Deep Learning Based Algorithms

Figure 2: Ontology Learning Categories

3 Categories in Ontology Enrichment

We proceeded with a review of the 23 shortlisted
papers of the 4 categories in ontology enrichment.

3.1 Similarity Based Clustering Algorithms:
Some of the earliest papers in the field of
ontology enrichment from text, adopted
similarity-based clustering approach. A
hierarchical clustering algorithm to classify
ontology-based metadata (Maedche and
Zacharias, 2002) was proposed in 2002. Later, a
similarity-based clustering approach was
proposed to identify concepts in a gene ontology
(Cheng et al., 2004). The unsupervised guided
hierarchical clustering algorithm (Cimiano and

Staab, 2005) uses an oracle of hypernyms derived
from WordNet, text and WWW corpora for
clustering concepts in a hierarchy. The fuzzy
inference mechanism (Lee et al., 2007) uses fuzzy
numbers that calculate the conceptual similarity
between concepts to obtain new learning
instances.

3.2 Set Theoretic Based Algorithms
These algorithms used a set-theoretic approach to
order concepts. Harris’s distributional hypothesis
(Sahlgren, 2008) modeled the context of a certain
word with its dependencies, and on the basis of
this information, Formal Concept Analysis (FCA)
(Cimiano et al., 2005a) outputs a concept lattice
which is then converted into a concept hierarchy.
Also, algorithms and transformations that
combine FCA and the Horn model (Ben-Khalifa
and Motameny, 2007) of a concept lattice have
been proposed (Haav, 2004). A fuzzy extension
of FCA (De Maio et al., 2009) described an
approach for automatic elicitation of ontologies
by web analysis. It also formalized a method that
generated an OWL-based representation of
concepts, individuals and properties.

Relational Concept Analysis (RCA) (Hacene
et al., 2008) constructs ontologies in a
semi-automated manner by translating concept
lattices with interrelated elements to concepts and
relations in the ontology. RCA is an extension of
FCA that allows for the processing of
multi-relational datasets, each with its own set of
attributes and relationships amongst themselves.

3.3 Web Corpus Based Algorithms
Web corpus Based Algorithms used web as a big
data corpus to overcome problems of data
sparsity. The categories and labels from
Wikipedia were used to classify concepts (Cui
et al., 2009; Ahmed et al., 2012; Medelyan et al.,
2009) leveraging N-grams and other related NLP
algorithms. The Open Linked Data (Booshehri
and Luksch, 2014), a freely available source of
semantic knowledge is used as a skeleton to
construct ontologies (Tiddi et al., 2012).
DBPedia, another crowd-sourced Linked Data
dataset that extracts structured information from
Wikipedia is used to enrich ontology (Booshehri
and Luksch, 2015).

An automatic and unsupervised methodology
that uses the Web to learn ontological concept
properties, or attributes, and attribute restrictions,
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was proposed (Sánchez, 2010). In the ”Self
Annotating Web”, globally available knowledge,
or syntactic resources, were used for the creation
of metadata, the basic idea being that the
statistical distribution of syntactic structures on
the web can be used to approximate semantics.
One such algorithm that implemented this
paradigm is called PANKOW (Pattern-based
Annotation through Knowledge On the Web)
(Cimiano et al., 2004), in which patterns were
instantiated from schemata and the number of hits
of related entities for each concept were counted.
C-PANKOW (Cimiano et al., 2005b), or
Context-driven PANKOW that outperforms its
predecessor, PANKOW by downloading abstracts
offline, performing linguistic analysis and using
the context to resolve ambiguity.

3.4 Learning based Algorithms

In recent years, learning algorithms driven by
feedback from domain experts have gained
popularity. OntoAMAS (Benomrane et al., 2016)
tool is based on adaptive multi-agent system
(AMAS) for ontology enrichment and makes
proposals based on ontologists’ feedback. Also
noteworth, is the Probabilistic Relational
Hierarchy Extraction technique based on
Probabilistic Relational Concept Extraction
(Drumond and Girardi, 2010) to extract concepts
and the taxonomic relationships from inference
on Markov Logic Networks. Group storytelling
technique has been used (Confort et al., 2015) to
gather knowledge from those involved in the field
in the first phase, which makes the system learn
the concepts for an ontology automatically.
OntoHarvester system (Mousavi et al., 2014)
used deep NLP-based algorithms to mine text and
extract domain-specific ontologies by iteratively
extracting ontological relations that link the
concepts in the ontology to the terms in the text,
out of which strongly connected concepts were
added to the ontology.

The Automated Ontology Generation
Framework (Alobaidi et al., 2018), used Linked
Biomedical Ontologies, various NLP techniques
(in text processing based on ”Compute on
Demand” method, N-Grams, ontology linking
and classification), semantic enrichment (using
RDF mining), syntactic pattern and graph-based
techniques (to extract relations), and domain
inference engine (to build the formal ontology).

They also proposed Linked Biomedical
Ontologies as a promising solution towards
automating the ontology generation process in the
disease-drug domain. Word2Vec was used
(Wohlgenannt and Minic, 2016) to extract similar
meaning terms or concepts and to get certain
semantic and syntactic relations based on simple
vector operations. The word representations
derived from traditional Distributional Semantic
Models such as Latent Dirichlet Allocation
(LDA) and Latent Semantic Analysis (LSA)
assume that words in similar contexts have
similar embeddings. Word embeddings using
neural language models, for example, CBOW and
Skip gram, begin usage of deep learning.
(Casteleiro et al., 2016) focused on the
performance of LDA, LSA, Skip gram and
CBOW algorithms in ontology enrichment.

4 From Clustering to Learning
algorithms: An in-depth analysis

After categorizing our research set of 23 papers
into 4 categories, the seminal algorithms from
each category are listed below:

1. Similarity Based Clustering Algorithms:
Guided Agglomerative Clustering (Cimiano
and Staab, 2005)

2. Web Corpus Based Algorithms:
C-PANKOW Algorithm (Cimiano et al.,
2005b)

3. Set Theoretic Based Algorithms:
Constructing a concept hierarchy using
Formal Concept Analysis (Cimiano et al.,
2005a)

4. Deep Learning Based Algorithms: The
Word2Vec-based algorithm (Wohlgenannt
and Minic, 2016)

In this section, we performed an in-depth analysis
of these algorithms and compared their
performance based on ontology evaluation
(Netzer et al., 2009) methods like contextual
relevance, precision and algorithmic efficiency.

4.1 Guided Agglomerative Clustering

The guided agglomerative clustering algorithm
(Cimiano and Staab, 2005) has a citation count of
99 and published in 2005. The paper is based on
Harris’s distributional hypothesis and works by
clustering concepts based on their similarities.
Hypernym oracle extracted using different
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methods is the driving factor in the clustering
process. Hypernyms oracle is constructed with

Figure 3: Hearst Patterns (Cimiano and Staab, 2005)

the help of Hearst Patterns (Hearst, 1992). Hearst
Patterns 3, used Noun Phrases (NPs) consisting of
a determiner, an optional adjective sequence and
a common noun sequence which constitutes the
NP head. The hypernym oracle H(t) is
constructed using the following three sources:

1. WordNet: Uses synsets from WordNet for
extracting hypernyms

2. Text Corpus using Hearst Patterns: Hearst
Patterns were matched against the
underlying text corpus, by using a regular
expression comprising of POS tags to match
Noun Phrases, thus constructing an is-a
relation between the two terms.

3. WWW Corpus using Hearst Patterns: Every
concept of interest is instantiated in a Hearst
Pattern to form queries to Google API, and
the abstracts from the results were
downloaded offline. Hearst patterns were
matched against these abstracts similar to
how they were matched in the text corpus,
and is-a relations were extracted accordingly.

The algorithm takes a list of words to be clustered
as input. Once the hypernym oracle was
constructed, each of these terms were paired up
and sorted in the descending order of similarity.
The clustering algorithm used the oracle to
construct parent-child or sibling relationships
between these terms. After this step, the
unclassified terms were classified using the
r-matches relation.

Though WordNet provides easy and accurate
hypernyms, it is not extensive and has a very
limited scope. It does not classify proper nouns or
infrequently occurring terms, leading to most
instances remaining unclassified leading to
sparsity and scalability issues. Moreover,
matching Hearst Patterns had very bad precision
( 13%), as shown in Figure 4 and outputs a lot of
noisy data. This is due to the algorithm paying no

attention to context relevance and extracting
hypernyms that were irrelevant to a domain. The
same word that had different meanings in
different contexts (for instance, bank - which
could refer to a river bank or a blood bank or a
financial bank) were clustered together. In
addition, this approach disregarded a lot of
relevant relations because it relied on an exact
syntactic pattern match that pays no attention to
semantics.

4.2 C-PANKOW algorithm

The C-PANKOW algorithm (Cimiano et al.,
2005b) again by Cimiano et al. has a citation
count of 246. The algorithm was based on the
paradigm of ”Learning by Googling”. In this
paradigm, given an instance, evidence was
collected from the internet for the possible
concepts. Then, either the instance was mapped
to the concept with maximum evidence, or
alternatively, an engineer with domain-specific
knowledge does mapping manually. The
PANKOW (Pattern-based Annotation through
Knowledge on the Web) algorithm (Cimiano
et al., 2004), the predecessor of the C-PANKOW
algorithm, instantiated a query using pre-defined
patterns or regular expressions. A one-to-one
mapping was done between each concept and
instance to generate a query from these patterns.
This query, similar to how the hypernym oracle
was extracted using the WWW corpus in Guided
Clustering, was made available to the Google API
and the number of hits for this query were
counted. Based on the statistical web fingerprint,
or the total number of search results for each
entity, the instance were mapped to the concept to
get disambiguation by maximal evidence. The
statistical web fingerprint were presented to the
knowledge engineer to review and take the final
decision. However, PANKOW had a few
disadvantages. Firstly, it issued a large number of
requests to the Google Web API, which is
proportional to the number of ontology concepts,
so it does not scale well for large ontologies.
Also, because of the restrictions inherent in the
generation of patterns, many actual instances
were not found.

C-PANKOW addresses some issues by
downloading results of queries, or the abstracts,
and then doing the pattern matching locally by
linguistic analysis. Downloading web pages
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reduced the number of requests made to Google
Web API and the network traffic by issuing a
constant number of queries per instance. In
addition, it factors context into consideration and
calculates the contextual similarity between two
pages before doing concept-instance mapping,
which reduced ambiguity especially in cases
where a word has multiple meanings and its
meaning depends on context. C-PANKOW
presented a novel idea to concept extraction by
combining the approaches of maximum
frequency-based mapping and document
similarity-based filtering. Frequency-based
mapping reduces noise and gives only the most
relevant relations, whereas similarity-based
filtering using Doc2Vec (Lau and Baldwin, 2016)
helps partially address the issue of context
relevance by preemptively filtering out irrelevant
abstracts. These two approaches augmented
C-PANKOW’s precision ( 36%) to be more than
that of Guided Clustering. The filtering also
increased algorithmic efficiency as, unlike Guided
Clustering, it does not look for matches in
irrelevant documents. However, despite its
advantages, since C-PANKOW (like Guided
Clustering) uses naive syntactic pattern matching
to extract hypernymy relations, it does yield noisy
data as well, whilst ignoring relevant results. This
is because: a) The pattern matching fails to take
semantics and language structure into
consideration. b) It is also ineffective in situations
where the concept being referred were already
defined in an earlier sentence c) Though Doc2Vec
does partially address the issue of context
relevance at the document level, it does not check
the relevance at the sentence or paragraph level,
resulting in noisy data as well.

To address the concerns of disambiguation in
concepts or relations, agent based models have
been proposed for the enrichment of ontologies
(Sellami et al., 2013). An agent has local
knowledge about itself and other neighbour
agents, as well as about the lexical terms and
concepts extracted from the corpus. It uses this
knowledge to evaluate its own relevance in the
ontology and manage its relationships with other
agents. When new documents are added to the
corpus, or when the ontologist suggests changes
to the ontology proposed by the MAS, there were
perturbations or disturbances caused in the
system. Each agent in the MAS reacts to these

perturbations by modifying its relations with
other agents, updating its knowledge on and/or
communicating with other agents in order to
reach a stable state. On reaching this stable state,
the MAS proposes a new version of the ontology
which is once again presented to the ontologist.
The ontologist suggests changes again and this
whole process continues iteratively till the MAS
reaches a final state where the ontology is not
challenged by him anymore. In DYNAMO-MAS
(Sellami et al., 2013) word disambiguation is
handled by the Teminological Ontological
Resource (TOR) model which comprises of a
conceptual component (the ontology) and a
lexical component (the terminology). Terms were
attached to concepts by denotation links and
contain a confidence score. These denotation
links can be changed by the agents if a request
with a higher confidence score is made. Thus, any
term is attached by a denotation link to the
concept with the highest confidence score. Since
the same term can have different meanings in
different context, the TOR model is able to
disambiguate the meaning using these confidence
scores. However, the confidence score is partly
generated from a pattern score, which in turn has
to be manually defined from empirical
evaluations. Moreover, the ontologist has to
manually verify the annotations proposed by the
MAS which in turn means the text corpus has to
be limited to a few hundred documents and
cannot work on the larger web corpus. Thus
while this approach makes a massive progress
towards solving the issue of context relevance, it
suffers from scalability issues.

4.3 Constructing concepts using FCA

(Cimiano et al., 2005a) has 693 citations and is
the primary source for research on FCA from text
corpora. The algorithm was based on
Set-Theoretic approach that uses FCA to convert
a partial order to a concept hierarchy on the basis
of syntactic dependencies taken as features. With
NLTK, the Part of Speech (POS) tags are
extracted, separated into chunks, reduced to
base-form (lemmatized), smoothed to overcome
data sparseness, weighted, and only those terms
with values above a threshold are converted into a
formal context (Ganter and Wille, 1999). FCA
(Ganter and Wille, 1996) is then applied to this
context to transform into a partial order, which is
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then compacted to remove abstract concepts and
get the final concept hierarchy. This algorithmic
approach uses pseudo-syntactic dependencies to
extract concepts from the parse tree. Hence, it
significantly outperforms Guided Clustering and
C-PANKOW in terms of precision. This
algorithm forms clusters and also provides an
intentional description for them, leading to better
understanding. However, this algorithm does not
identify labels that describe the intention of a
specific cluster, resulting in sparsely populated
concepts. In addition, it is inefficient as
construction of a separate concept lattice for
every document is time expensive. Thus while it
is more efficient than Clustering, it loses out to
C-PANKOW in efficiency. However, the greater
precision does shows that enriching contextual
features using pseudo-syntactic dependencies is a
viable alternative that outperforms enriching from
parse trees.

4.4 Word2Vec-based algorithm

Word2Vec, a 2-layer neural network has also been
used to build a sample ontology learning system
(Wohlgenannt and Minic, 2016). The neural nets
are trained on the linguistic context by Word2Vec,
using two methods: Continuous Bag of Words
(CBoW) and skip grams. CBoW is used to
predict the context of a word, given the word,
while skip grams predict the context given the
word as input. Word2Vec allows vector
operations, and is trained to output high quality
similar terms given any input term. The
Word2Vec model can be trained on the Google
News corpus on any other large corpus.

The algorithm provided higher percentage of
relevant concepts that can be used to enrich the
ontology. In addition to having greater precision
(60%) and efficiency than the previous
algorithms, this algorithm makes headway in
solving the issue of contextual relevance by using
CBoW and Skip Grams to train the model.
However, it does have a few drawbacks. Firstly,
for terms that aren’t encountered by the model in
training corpus, a word embedding is not
constructed, hence, concepts remaining
unclustered. Secondly, Word2Vec doesn’t have
any shared representations at sub-word levels. It
represents each word as an independent vector,
though there could be morphologically similar
terms. It also detects concepts that are too close

to the original term, like plurals and synonyms
which are unneccessarily added to the ontology as
separate concepts. Lastly, it necessitates manual
intervention after every iteration, unlike the
previous algorithms, which in turn means it
suffers from scalability issues.

5 Discussion

The Guided Agglomerative Clustering algorithms
used Wordnet and Hearst Patterns on corpora to
build its hypernym oracle. While Wordnet is able
to provide hypernyms for common nouns, it
cannot handle proper nouns and phrases, which
are often the primary focus while enriching
domain specific ontologies. Using Hearst Patterns
is inefficient too and results in a lot of noise, due
to pattern being matching being purely syntactic
with no attention paid to context. Though
C-PANKOW is able to improve on precision,
efficiency and also partially address the issue of
context relevance (using a mixture of
frequency-based mapping and document
similarity scores), it uses naive syntactic pattern
matching which results in selecting irrelevant
terms and dropping relevant ones. The
DYNAMO-MAS algorithm, despite solving
disambiguation and having better precision, has
serious limitations like data sparsity and
unscalability. FCA, which uses pseudo-syntactic
dependencies, was found to have better precision
than both Clustering and C-PANKOW. But
construction of a concept hierarchy is time
inefficient, which is where it loses out to
C-PANKOW. The Word2Vec algorithm was able
to improve the problems of efficiency, precision
and data sparsity by using word embeddings and
skip-grams, and was found to outperform
previously mentioned algorithms. However, this
algorithm also suffers from some shortcomings
like the inability to handle previously
unencountered words, selecting of too similar
terms, scalability issues due to manual
intervention etc. We used the ’Information
Security’ ontology (Ekelhart et al., 2006) based
on ISO 27001 for comparing the algorithms.
Figure 4 shows comparison of the metrics across
these algorithms. All these algorithms have an
area of improvement when the current concept
and its pronouns are being extracted from text. In
the previous approaches, the attributes and
relations were mapped to the pronouns and not
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Figure 4: Ontology Algorithms Comparison

the concept itself. To address this gap, the
algorithm needs to retain in memory the concept
being extracted, instead of using naive
pattern-matching approaches. Also, the analysis
of the shortlisted research papers in each category
state the declining research on Clustering and
Set-Theoretic algorithms, and an increasing in
research of learning algorithms.

5.1 Possible solution: Long Short Term
Memory Networks

The algorithms proposed above use either pattern
matching techniques, naive SVO
(subject-verb-object) triplet extraction techniques
or semantic similarity techniques for extracting
concepts. All of these techniques were at the
concept level, and though extension of algorithms
like C-PANKOW used Doc2Vec to gauge
similarity of documents, none of these algorithms
involved understanding of the text corpus to filter
out irrelevant data. Hence, we suggest a need to
incorporate Deep Learning to enrich ontologies.

We propose a Deep Learning solution using
Long Short Term Memory Networks (LSTMs) 5

to address the identified gaps. We explain our
reason for proposing an LSTM with the help of
an example.

”Cross-Frame Scripting (XFS) is a browser
based attack that combines malicious JavaScript
with an iframe while loading a legitimate site.
This attack is one of the most common attacks
against IE. This is due to it leaking keyboard
events across HTML framesets.”.

On passing these sentences to a
concept-relationship extraction system, such as
the ones described previously, a ”one-of”
relationship would be formed between ”This

5https://colah.github.io/posts/2015-08-Understanding-
LSTMs/

attack” and ”one of the most common attacks
against IE” and a ”due-to” relationship would be
formed between ”this” and ”leaking keyboard
events across HTML framesets”. However, in the
second sentence, ”This attack” refers to ”XFS
attack” (from the first sentence) and is the
concept identified and can be abstracted to
”browser based attack”. But in the third sentence,
the current concept has changed and ”this” refers
to ”attacks against IE”. Hence, normal concept
extraction techniques would not work for these
examples, since the current concept may change
every sentence. LSTMs can be trained to learn
optimal forget matrices that continually update
the cell state, thereby, enabling the model to
maintain the state of a concept (by addding new
concepts and removing old ones) for longer
durations. Thus, LSTMs can enable greater
semantic understanding as well as detection of
long ranging patterns, which theoretically should
improve precision.

6 Conclusion

We started this survey paper by describing the
need for enrichment of ontologies. We proceeded
to survey the existing domain literature in the
field of ontology learning from text and got a
subset of 166 research papers and 20 survey
papers. From shortlisted 101 papers, we narrowed
down to the 23 most relevant research papers.
These 23 papers were classified into four
categories based on the approach used for
ontology enrichment, namely Clustering,
Set-Theoretic, Web Corpus-based and
Learning-based Algorithms. We selected a
seminal paper from each category, based on
criteria like the date of publication, the number of
citations, relevance to our end goal etc. and then
described the approach of the algorithms. Next,
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we compared algorithms performance (context
relevance, precision and efficiency) on the
enrichment of Information Security ontology. We
found that with each trend, some of the gaps were
overcome but there still remained the problem of
retaining concepts to improve relevance in a
scalable manner. We proposed LSTMs as a
possible solution for concept retention, since they
use a memory state to partially remember/forget
concepts over long periods of time as require. In
future, we plan on implementing the proposed
LSTM model to improve precision and efficiency
of the state-of-the-art. We also plan to validate
further with complex ontologies, and extend our
concept enrichment model to the addition of
instances for building knowledge base.
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Abstract
Computationally analyzing Sanskrit texts
requires proper segmentation in the initial
stages. There have been various tools de-
veloped for Sanskrit text segmentation. Of
these, Gérard Huet’s Reader in the San-
skrit Heritage Engine analyzes the input
text and segments it based on the word
parameters - phases like iic, ifc, Pr, Subst,
etc., and sandhi (or transition) that takes
place at the end of a word with the initial
part of the next word. And it enlists all
the possible solutions differentiating them
with the help of the phases. The phases
and their analyses have their use in the
domain of sentential parsers. In segmen-
tation, though, they are not used beyond
deciding whether the words formed with
the phases are morphologically valid. This
paper tries to modify the above segmenter
by ignoring the phase details (except for a
few cases), and also proposes a probability
function to prioritize the list of solutions
to bring up the most valid solutions at the
top.

1 Introduction
Every Sanskrit sentence in the saṃhitā form
(continuous sandhied text) is required to be
segmented into proper morphologically ac-
ceptable words and the obtained result should
agree with syntactic and semantic correctness
for it’s proper understanding. The obtained
segmented text consists of individual words
where even the compounds are segmented
into their components. And there can be
more than one segmentation for the same
saṃhitā text. The segmented form does not
provide any difference in the sense of the text
when compared with the saṃhitā form except
for the difference in the phonology of the
words where it can be observed that the end

part of the initial word together with the first
letter of the next word undergoes phonetic
change. The saṃhitā form, in fact, represents
the text similar to a speech text because the
knowledge transfer, in the olden days, was
predominantly based on oral rendition. But
now, for extracting information from these
texts it is necessary that they be broken down
into pieces so that the intention of the text is
revealed completely without any ambiguity.
In order to understand any Sanskrit text,
this process of breaking down into individual
words is necessary, and it is popularly known
as sandhi-viccheda (splitting of the joint text)
in Sanskrit.

This process takes into account the mor-
phological analyses of each of the split-parts
obtained. As there is always a possibility
for multiple morphological analyses even
for individual words, considering only the
morphological validation might result in
enormous number of solutions for long
sentences. So, syntactical accuracy is also
measured to reduce the number of solutions.
Even then, there is always a possibility for
multiple solutions to remain, which cannot
be resolved further without the semantic and
contextual understanding of the sentence
(Hellwig, 2009). Owing to this, we find that
there is non-determinism right at the start of
linguistic analysis (Huet, 2009), since sandhi
splitting is the first step in the analysis of a
Sanskrit sentence.

This kind of non-determinism is also found
in languages like Chinese and Japanese, where
the word boundaries are not indicated, and
also in agglutinative languages like Turkish
(Mittal, 2010). In some of these languages
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like Thai (Haruechaiyasak et al., 2008), most
of the sentences have mere concatenation of
words. Possible boundaries are predicted us-
ing the syllable information, and the process of
segmentation starts with segmenting the syl-
lable first, followed by the actual word seg-
mentation. For Chinese though, their charac-
ters called hanzi are easily identifiable, and the
segmentation could be done by tagging (Xue,
2003), or determining the word-internal po-
sitions using machine learning or deep learn-
ing algorithms (like what is done in Ma et al.
(2018)). In the case of Vietnamese (Thang
et al., 2008), compound words are predomi-
nantly formed by semantic composition from
7000 syllables, which can also exist indepen-
dently as separate words. This is similar to
what can be observed in aluk samāsa in San-
skrit, which are rare in occurrence. For lan-
guages like English, French and Spanish where
the boundaries are specifically observed as de-
limiters like space, comma, semi-colon, full
stop, etc., segmentation is done using these
delimiters and is comparatively simple.

In all the above cases, we find that either
there are delimiters to separate the words, or
individual words are joined by concatenation
which ultimately rests the segmentation pro-
cess in the identification of boundaries. In the
case of Sanskrit though, these kinds of words
form a very small percentage. Rather, there is
the euphony transformation that takes place
at every word boundary. This transition can
be generally stated as u|v → w, where u is
the final part of the first word, v the first
part of the next word, and w the resultant
form after combining u and v. Here the parts
may contain at the most two phonemes. The
resultant w may contain additional phonemes
or may have elisions, but never are more
than two phonemes introduced. So this
transition or sandhi (external) occurs only at
the phoneme level, and it does not require any
other information regarding the individual
words used.1 But the reverse process of
segmentation does require a morphological
analyzer to validate the segments in a split.

1In the case of internal sandhi between preverbs
and verbs, the lexical knowledge of the preverb is re-
quired. And in some compounds (like those denoting a
saṃjñā), certain cases of retroflexion is permitted. But
in this paper only the external sandhi is considered.

And it is entirely up to the speaker or writer
to perform these transitions or keep the words
separated (called vivakṣā - speaker’s intention
or desire). But in most of the texts and
manuscripts, the sandhi is done throughout
the text. So, finding the split location alone
will not be enough to segment the texts
properly.

Having looked into some of the intricacies
of sandhi in Sanskrit, we can come up with a
mechanical segmentation algorithm that splits
a given text into all possible segments:

1. Traverse through the input text and mark
all possible split locations which could be
found in the list of sandhied letters.2

2. When a sandhied letter is marked, then
list all it’s possible splits.

3. Considering all the possible combinations
of the words formed after each of these
splits are allowed to join with the respec-
tive words (left word or right word), take
each of the words, starting from the first
word, to check for the morphological fea-
sibility. Keep in mind that the words thus
formed may also bypass the split loca-
tions, where they don’t consider the split
location present in between them.3

4. If the word is morphologically correct,
then consider it as a valid split word and
move on to the next split location, and do
step 3 until the last word of the sentence
is reached. The sequence of words thus
formed is the first solution. If the word is
not morphologically correct, move to step
5. If all the words formed in a single split
location, either on the left or on the right,
or both, are not morphologically correct,
then discard that split location and move
to step 3 for the next location.

2To get the list of sandhied letters, there is a list
of sūtras or rules for the joining of letters, available in
Pāṇini’s Aṣṭādhyāyī from which one can reverse ana-
lyze and obtain the list of sandhied letters.

3For example - rāmālayaḥ has split locations at 3
places - second, fourth (due to akaḥ savarṇe dīrghaḥ
in Aṣṭādhyāyī 6.1.101) and sixth-seventh (due to
eco’yavāyāvaḥ in Aṣṭādhyāyī 6.1.78) letters. So, rā is
one split word, as also rāma, which bypasses the split
location ā. Similarly, we can find other split words
also.
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5. Check the words formed from the subse-
quent splits and continue with steps 3 and
4 to obtain other solutions.

6. Trace back every split location, and per-
form step 5.

7. In this way, get all the possible combina-
tions of the split words.

Although this mechanical process looks
quite simple, the previously mentioned issues
like non-determinism do prevail. And systems
like the Sanskrit Reader in Sanskrit Heritage
Engine come up with better ways to try to
account these problems. The current paper
tries to update these efforts. It is organized
as follows: Section 2 gives the update on how
the segmentation for Sanskrit has been dealt
with in recent years. Section 3 discusses the
important features of The Sanskrit Heritage
Engine’s Reader. Section 4 explains in de-
tail the issues present in the Reader. The
modifications needed to be done, and the im-
plementation for this paper compose Section
5. It also quotes theoretically the reasons for
these modifications and provides the probabil-
ity function proposed in this paper. Section 6
describes the methodology of the implementa-
tion, and the results and observations are in
Section 7.

2 Current Methods
Achieving the correct segmentation computa-
tionally is as much difficult as it is manually.
A general approach would be the conversion of
the mechanical sandhi splitting process men-
tioned in Section 1 to a working algorithm, fol-
lowed by checking the statistics available for
the frequencies of the words and transitions.
But there has been a lot of better research
work, both rule-based and statistical, on com-
putational sandhi splitting in Sanskrit.

Huet (2003), as a part of the Sanskrit Her-
itage Engine, developed a Segmenter for San-
skrit texts using a Finite State Transducer.
Two different segmenters were developed - one
for internal sandhi, which is deployed in the
morphological analyser, and the other for ex-
ternal sandhi. The current paper focuses on
updating this external sandhi segmenter.
Mittal (2010) had used the Optimality The-

ory to derive a probabilistic method, and de-

veloped two methods to segment the input
text
(1) by augmenting the finite state transducer
developed using OpenFst (Allauzen et al.,
2007), with sandhi rules where the FST is used
for the analysis of the morphology and is tra-
versed for the segmentation, and
(2) used optimality theory to validate all the
possible segmentations.
Kumar et al. (2010) developed a compound

processor where the segmentation for the com-
pound words was done and used optimality
theory with a different probabilistic method
(discussed in section 5).
Natarajan and Charniak (2011) later mod-

ified the posterior probability function and
also developed an algorithm based on Bayesian
Word Segmentation methods with both unsu-
pervised and supervised algorithms.
Krishna et al. (2016) proposed an approach

combining the morphological features and
word co-occurrence features from a manually
tagged corpus from Hellwig (2009), and took
the segmentation problem as a query expan-
sion problem and used Path Constrained Ran-
dom Walk framework for selecting the nodes
of the graph built with possible solutions from
the input.
Reddy et al. (2018) built a word segmenter

that uses a deep sequence to sequence model
with attention to predict the correct solution.
This is the state of art segmenter with preci-
sion and recall as 90.77 and 90.3, respectively.
IBM Research team (Aralikatte et al.,

2018), had built a Double Decoder RNN with
attention as seq2(seq)2, where they have em-
phasized finding the locations of the splits first,
and then the finding of the split words. And
they have the accuracy as 95% and 79.5% for
finding the location of splits and the split sen-
tence, respectively.
Hellwig and Nehrdich (2018) developed

a segmenter using Character-level Recurrent
and Convolutional Neural Networks, where
they tokenize Sanskrit by jointly splitting
compounds and resolving phonetic merges.
The model does not require feature engineer-
ing or external linguistic resources. It works
well with just the parallel versions of raw and
segmented text.
Krishna et al. (2018) proposed a structured
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prediction framework that jointly solves the
word segmentation and morphological tagging
tasks in Sanskrit by using an energy based
model which uses approaches generally em-
ployed in graph based parsing techniques.

3 Heritage Segmenter
The Sanskrit Heritage Engine’s Segmenter was
chosen for further development, for three rea-
sons -

1. It is the best segmenter available online
with source code available under GPL.

2. It uses a Finite State Transducer, and
hence the segmentation is obtained in lin-
ear time.

3. It can produce all possible segmentations
that one can arrive at, following Pāṇini’s
rules for sandhi.

It analyses the given input and produces the
split based on three main factors:

1. Morphological feasibility: whether each of
the words observed as a split is morpho-
logically obtainable.

2. Transition feasibility: whether every
transition observed with each of the word
is allowed.

3. Phase feasibility: whether the sequence
of words have proper phase values. This
is a constraint on the POS of a word.
Although Sanskrit is a free word order
language, there are certain syntactic con-
straints which govern the word formation,
and the sequence of components within a
word follows certain well defined syntax.
The phase feasibility module takes care of
this. Figure 1 shows a part of the lexical
analyzer, developed by Goyal and Huet
(2013), that portrays these phases like Iic,
Inde, Noun, Root, etc.

Let us consider the sentence rāmālayo′sti,
as an example to understand these factors. It
can be observed that there are twelve possible
split solutions given in Table 1, from which, all
the observed split words are shown in Figure 2.

Other possible words like rā, mālayaḥ, etc.
are not taken as proper splits because they do

Figure 1: A simplified lexical analyzer

Solutions
rāma (iic) ālayaḥ (ālaya/āli masc) asti
rāma (iic) ālayaḥ (āli fem) asti
rāma (iic) alayaḥ (ali masc) asti
rāma (iic) a (iic) layaḥ asti
rāma (iic) alayaḥ (ali fem) asti
rāmā (fem) layaḥ asti
rāmā (fem) ālayaḥ (ālaya/āli masc) asti
rāmā (fem) alayaḥ (ali masc) asti
rāmā (fem) a layaḥ asti
rāma (rā) ālayaḥ (ālaya/āli masc) asti
rāma (rā) alayaḥ asti
rāma (rā) a (iic) layaḥ asti

Table 1: List of solutions for the sentence
rāmālayo′sti

not form proper words according to the mor-
phological analyzer present in the system. In
this way, morphological feasibility is checked.
In the same example, we find that, at the last
possible split location represented by o′, we
can split it as aḥ and a but not in any other
way.4 This is ensured by the transition feasi-
bility module.
The phase details like iic for rāma or pr for

asti, etc. are displayed along with the words.
These assignments of the phase information
to the words and their analysis are the jobs of
the phase feasibility module. To understand
these phases, look at Figure 3 (the first
solution for the sentence rāmālayo′sti). rāma
is the first split and has the phase iic. ālayaḥ
is the second split with two morphological
possibilities - ālaya and āli. And the transi-
tion between the first two words is - a | ā → ā.

4For the rules governing these transitions refer the
Aṣṭādhyāyī sūtra: atororaplutādaplute (6.1.113) and
haśi ca (6.1.114)
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Figure 2: The interface for choosing or reject-
ing the obtained split words for the example
rāmālayo′sti

Figure 3: The first solution for the sentence
rāmālayo′sti

The third split is asti with root as and phase
pr. And the transition follows the equation -
aḥ | a → o′. These transitions are taken care
of by the transition feasibility module and the
phases mentioned above are taken care of by
the phase feasibility module.

According to Goyal and Huet (2013),
sentences are formed by the image of the
relation R (sandhi rules) on Kleene closure of
W*, of a regular set W of words (vocabulary
of inflected words). The Sanskrit Heritage
Reader accepts a candidate sentence w, and
applies the inverted form of the relation R,
thus producing a set of words - w1, w2, w3,....
And each of the individual words are valid
according to the rules of morphology, and
their combination makes some sense.

The methodology followed in the Segmenter

proposed in Goyal and Huet (2013) starts with
using the finite state transducer for generat-
ing the chunks, instead of the traditional re-
cursive method over the sentence employed in
many sandhi splitting tools. The FST consid-
ers the phases as important characteristics of
the words. These phases correspond to a finite
set of forms.
To understand how a word is obtained, let

us first take a small example of how the sub-
stantival forms (subantas) are obtained. A
subanta is analysed as a nominal stem followed
by a suffix. The nominal stem can be either an
underived stem or a derived stem. In case of
a derived stem, the derivation of this stem is
also provided by the segmenter. A compound,
for example, has a derived stem which con-
tains a sequence of components followed by a
nominal suffix. And three phases are present
to represent the subantas:

1. Noun, that contains declined forms of au-
tonomous atomic substantive and adjec-
tive stems, from the lexicon

2. Ifc, non-autonomous and used as right-
hand component of a compound

3. Iic contains bare stems of nouns to be
used as left component

This sequence of Subst → Noun → Accept,
creates a noun word. And the sequence of
Subst → Iic+ → Ifc → Accept, creates a
compound word. These sequences can be
observed in Figure 1. In this way, forms
from these phases are selected, and gluing
them with sandhi rules, a word is obtained.
Considering all such possible phases in
Sanskrit, an automation transition graph is
formed and is used to traverse through to find
the possible split locations and words together.

4 Issues in Heritage Segmenter
The Segmenter is embedded in the Sanskrit
Reader which displays all the outputs with the
corresponding split word, it’s phase and the
transition involved with the subsequent word,
except when the number of outputs is huge, in
which case it shows only the summary. The
Reader shows the distinction between words
and phases based on verb, noun, iic, inde, etc,
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but not between some of the case-markers.
So, there is inconsistency in disambiguation:
sometimes the phase is used for pruning out
certain solutions, but in some cases, it is not.
For example, rāmovanaṅgacchati produces the
following 4 solutions:

Solution 1 :
[ rāmaḥ [rāma]m. sg. nom. �aḥ|v → ov�]
[ vanam [vana]n. sg. acc. | n. sg. nom. �m|g
→ ṅg�]
[ gacchati [gam]pr. [1] ac. sg. 3 ��]

Solution 2 :
[ rāmaḥ [rāma]m. sg. nom. �aḥ|v → ov�]
[ vanam [vana]n. sg. acc. | n. sg. nom. �m|g
→ ṅg�]
[ gacchati [gacchat ppr. [1] ac. [gam]]n. sg.
loc. | m. sg. loc. ��]

Solution 3 :
[ rāmaḥ [rā_1]pr. [2] ac. pl. 1 �aḥ|v → ov�]
present [ vanam [vana]n. sg. acc. | n. sg.
nom. �m|g → ṅg�]
[ gacchati [gam]pr. [1] ac. sg. 3 ��]

Solution 4 :
[ rāmaḥ [rā_1]pr. [2] ac. pl. 1 �aḥ|v → ov�]
[ vanam [vana]n. sg. acc. | n. sg. nom. �m|g
→ ṅg�]
[ gacchati [gacchat ppr. [1] ac. [gam]]n. sg.
loc. | m. sg. loc. ��]

The segmenter provides segmentation and
also does partial disambiguation. For exam-
ple, rāmaḥ is ambiguous morphologically and
the machine has correctly disambiguated the
alternatives. We see the noun analysis of it
in the first and second solutions, and the ver-
bal analysis in third and fourth solutions. But
we notice that the word vanam which is am-
biguous between two morphological analyses,
one with nominative case marker and the other
with accusative marker, is not disambiguated.
Goyal and Huet (2013) mention that the con-
sideration of a word’s similar declensions as
different might result in more ambiguity, and
the purpose of the segmentation is to find the
morphologically apt words and hence they are
taken as one.

If we look at these four solutions, at the
word level, all of them correspond to rā-

maḥ vanam gacchati. In order to decide the
correct solution among the four, we need to
do syntactico-semantic analyses that depend
solely upon the linguistic or grammatical in-
formation in the sentence (Kulkarni, 2013).

5 Proposed Modification

We notice that the use of phase information re-
sults in multiple solutions. In order to choose
the correct solution among them, one needs to
look beyond the word analysis and look at the
possible relations between the words. This is
the domain of the sentential parser. Only a
sentential parser can decide which of the seg-
mentations with phase information is the cor-
rect one. Thus we do not see any advantage
of having the phase information.
And in the interface, the system is not uni-

form in resolving the ambiguities. It uses cer-
tain morphologically different phases under a
single word, like vanam in section 4. Addition-
ally, in the options for selecting or rejecting
the words, sometimes the depth of the graph
goes so deep that, there is a chance to miss
some solutions.
Here we would like to mention that some

of the phase information is still relevant for
segmentation. And this corresponds to the
compounds. The phase information tells if
something is a component of a compound
or a standalone noun. There are a few
phases such as iic, iif, etc. that we do not ig-
nore. Barring these we ignore all other phases.

Therefore, we propose the following modifi-
cations in the segmenter:

1. Ignore the phase information that is ir-
relevant from segmentation point of view
and merge the solutions that have the
same word level segmentation.

2. Prioritize the solutions.

This is similar to the intention in Reddy
et al. (2018) where the morphological and
other linguistic details are not obtained, but
the segmentation problem is seen as an end in
itself.
This is also similar to what Huet (2009) did

as an update for Gillon (2009) to the com-
pound analyzer where Gillon (2009) uses the

110



dependency structure to get the tree form con-
sisting of all the parts of the compound word.
And Huet (2009) made the lexical analyzer to
understand the compound as a right recursive
linear structure of a sequence of components.
This made sure that only the compound com-
ponents are obtained, and not their relation-
ship with each other. This helps in easier and
faster segmentation, but the next level syntac-
tic analysis cannot be done without the rela-
tionship information of the components. Simi-
larly, the same approach has been extended to
all words, and not just compound words, and
the phase details are not considered as valid
parameters to distinguish solutions. Such so-
lutions were termed duplicates and hence re-
moved.

Once the duplicates are removed, prioriti-
zation needs to be done. Many probabilistic
measures have been proposed in the past to
prioritize the solutions.

Mittal (2010) calculated the weight for a
specific split sj as

Wsj =
(
∏m−1

i=1 (P̂ (ci) + P̂ (ci+1))× P̂ (ri))

m
(1)

where P̂ (ci) is the probability of the occur-
rence of the word ci in the corpus. P̂ (ri) is the
probability of the occurrence of the rule ri in
the corpus. And m is the number of individual
components in the split sj .

Kumar et al. (2010) uses the weight of the
split sj as

Wsj =
(
∏m

i=1 P̂ (ci))× (
∏m−1

i=1 P̂ (ri))

m
(2)

Natarajan and Charniak (2011) proposed a
posterior probability function, P̂ (s), the prob-
ability of generating the split s = ⟨c1...cm⟩,
with m splits, and rules r = ⟨r1, ..., rm−1⟩ ap-
plied on the input, where

P̂ (s) = P̂ (c1)×P̂ (c2|c1)×P̂ (c3|c2, c1)×... (3)

P̂ (s) =
m∏

j=1

P̂ (cj) (4)

P̂ (c1) is the probability of occurrence of the
word c1. P̂ (c2|c1) is the probability of occur-
rence of the word c2 given the occurrence of
the word c1, and so on.

Mittal (2010) and Kumar et al. (2010) follow
the GEN-CON-EVAL paradigm attributed to
the Optimality Theory. This paper considers a
similar approach but the probability function
is taken as just the POP (product-of-products)
of the word and transition probabilities of each
of the solutions, discussed in section 6.
And to prioritize the solutions, the follow-

ing statistical data was added from the SHMT
Corpus:5
• samāsa words with frequencies
• sandhi words with frequencies
• samāsa transition types with frequencies
• sandhi transition types with frequencies

6 Methodology

Every solution obtained after segmentation is
checked for the two details viz. the word and
the transition (that occurs at the end of the
word due to the presence of the next word),
along with the phase detail that is checked
only for those which correspond to the com-
ponents of a compound. For every solution s,
with output as

s = ⟨w1.w2....wn⟩

a confidence value, Ci, is obtained which is the
product of the products of transition proba-
blility (Pti) and word probability (Pwi) for the
word wi,

Ci =
n∏

i=1

Pwi × Pti (5)

The confidence value is obtained as follows:

• For every split word wi, it’s phase is
checked to know whether the obtained
word forms a compound or not.

• If it is a compound word, then it’s corre-
sponding frequency is obtained from com-
pound words’ statistical data, to calculate
the word_probability, P (wi)

• If it is not a compound word, then corre-
sponding frequency is obtained from the
sandhi words’ statistical data.

5A corpus developed by the Sanskrit-Hindi
Machine Translation (SHMT) Consortium under
the funding from DeItY, Govt of India (2008-
12). http://sanskrit.uohyd.ac.in/scl/GOLD_DATA/
tagged_data.html
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• For every transition associated with the
word, the transition’s corresponding fre-
quency is obtained from either the samāsa
transition data, or the sandhi transition
data, based on the phase of the word;
to calculate the transition_probability,
P (ti).6

• The confidence value for the word,
wi is thus obtained as the prod-
uct of word_probability and transi-
tion_probability word_probability ×
transition_probability:

Ci = Pwi × Pti (6)

• Finally the product of all such products
was obtained for a single solution as the
confidence value of the solution -

Ctotal =
n∏

i=1

Pwi × Pti (7)

The solutions are then sorted as decreasing
order of confidence values and the duplicates
are removed based on only the word splits.
The remaining solutions are displayed along
with their number and confidence values.

7 Observations
The test data contained on the whole 21,127
short sandhied expressions, which were taken
from various texts available at the SHMT cor-
pus. This data was a parallel corpus of sand-
hied and unsandhied expressions. In case there
are more than one segmentation possible, only
one segmentation that was appropriate in the
context where the sandhied expression was
found is recorded.

The above data was fed to both the old and
the modified segmenters. The results of the
old segmenter were used as the baseline. A
comparison was done on how the updated sys-
tem performed with respect to the old system.
The correct solution’s position in the old seg-
menter was compared with the correct solu-
tion’s position in the updated segmenter. Ta-
ble 2 summarizes the results.

The old segmenter was able to correctly pro-
duce the segmented form in 19,494 cases out

6If the frequency is not available for either the word
or the transition, then it is assigned a default value of
1.

of the 21,127 instances. Of these, 53.51% of
the solution was found to be in the first posi-
tion, 12% in second position, and 9.61% in the
third. All put together, 75.12% of the correct
solutions were found in the top three solutions.
Another important observation was that, the
entire number of solutions taken all together
was 2,40,942 for 21,127 test instances and the
average number of solutions was 11.4 with the
correct solution’s position averaging at 4.71.
The modified segmenter was able to cor-

rectly produce the segmented form in 19,494
cases, same as the old segmenter. And 89.27%
of the solution was found to be in the first po-
sition, 6.83% in the second position, and 2.2%
in the third. All put together, 98.3% of the
correct solutions were found in the top three
solutions. This has an increase of 23.18% from
the existing system. Also, the entire number
of solutions taken all together was 1,46,610 for
21,127 test instances, having a drastic reduc-
tion of 94,332 solutions. The average number
of solutions was 6.94, with the correct solu-
tion’s position averaging at 1.18.
It can be noted that the overall Recall was

0.92270554267 for both the machines. Since
only the statistics have been altered, the new
system doesn’t provide new solutions. Rather,
it has increased the chances of getting the so-
lution at the top three by 23.18%.
As we observe, the updated system reduces

the total amount of solutions and brings up
the most likely solutions. Also, we have more
than 90% recall in both the cases. The missed
out instances were either due to morphological
unavailability or owing to the failure of the
engine. Once the morphological analyzer is
updated, there will definitely be a boost in the
efficiency.

8 Conclusion

There are a few observations to be noted.
First, by just using the POP (product of prod-
ucts) of the word and transition probabilities,
we are able to obtain 98% precision. With bet-
ter probabilities, we will definitely have better
results. Second, this system can now be used
to mechanically split the continuous texts like
Saṃhita-Pāṭha of the Vedas or any other clas-
sical text to obtain the corresponding Pada-
Pāṭha, which may be manually checked for
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No. of Old Segmenter % Updated Segmenter %
Input text 21,127 - 21,127 -
Output text 21,127 - 21,127 -
Correct sol 19,494 92.27 19,494 92.27
Correct sol in 1st 10,432 53.51 17,403 89.27
Correct sol in 2nd 2,340 12.00 1,332 6.83
Correct sol in 3rd 1,874 9.61 429 2.20
Correct sol in 4th 937 4.8 164 0.84
Correct sol in 5th 703 3.6 73 0.37
Correct sol in sol > 5th 3,208 16.45 96 0.49
Incorrect sol 1,629 7.71 1,629 7.71
Entries with 1 solution 5,467 25.87 7,167 33.92
Entries with 2 solutions 3,320 15.71 4,002 18.94
Entries with 3 solutions 2,123 10.05 2,053 9.71

Table 2: A comparison of the performance of both the segmenters

correctness. Third, for mere segmentation, the
phase distinctions were ignored, and the ob-
tained solutions were prioritized. As stated
earlier in the previous sections, to proceed to
the next stage of parsing or disambiguation,
we need more than just the split words. Thus
this could be a proper base for working on how
the available segmented words, along with the
phase details, may be used for further stages
of analysis.
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Abstract

Neural network based word embeddings, such
as Word2Vec and GloVe, are purely data
driven in that they capture the distributional in-
formation about words from the training cor-
pus. Past works have attempted to improve
these embeddings by incorporating semantic
knowledge from lexical resources like Word-
Net. Some techniques like retrofitting modify
word embeddings in the post-processing stage
while some others use a joint learning ap-
proach by modifying the objective function of
neural networks. In this paper, we discuss two
novel approaches for incorporating semantic
knowledge into word embeddings. In the first
approach, we take advantage of Levy et al’s
work which showed that using SVD based
methods on co-occurrence matrix provide sim-
ilar performance to neural network based em-
beddings. We propose a sprinkling technique
to add semantic relations to the co-occurrence
matrix directly before factorization. In the sec-
ond approach, WordNet similarity scores are
used to improve the retrofitting method. We
evaluate the proposed methods in both intrin-
sic and extrinsic tasks and observe significant
improvements over the baselines in many of
the datasets.

1 Introduction

Neural Network based models (Mikolov et al.,
2013a; Pennington et al., 2014) have been hugely
successful in generating useful vector representa-
tion for words which preserve their distributional
properties in a given corpora. Improving the qual-
ity of word embeddings have led to better per-
formance in many downstream language tasks.
Considering the widespread uses of word embed-
dings, there have been a lot of interest in improv-
ing the quality of these embeddings by leverag-
ing lexical knowledge such as synonymy, hyper-

∗∗Equal Contribution

nymy, hyponymy, troponymy and paraphrase re-
lations. This is accompanied by the availabil-
ity of large scale lexical knowledge available in
WordNet (Miller, 1995) and Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013).

In this paper, we propose two simple yet pow-
erful approaches to incorporate lexical knowl-
edge into the word embeddings. First, we pro-
pose a matrix factorization based approach which
uses the idea of ‘sprinkling’ (Chakraborti et al.,
2006, 2007) semantic knowledge into the word co-
occurrence matrix. Second, we identify the weak-
nesses of the retrofitting model (Faruqui et al.,
2014) and propose a few modifications that im-
proves the performance. We demonstrate the
strength of the proposed models by showing sig-
nificant improvements in two commonly used in-
trinsic language tasks - word similarity and anal-
ogy, and two extrinsic tasks - named entity recog-
nition (NER) and part of speech tagging (POS).

2 Related Works

Learning of word embeddings that capture distri-
butional information has been vital to many NLP
tasks. Prediction-based methods such as skip-
gram (Mikolov et al., 2013a) and CBOW (Ben-
gio et al., 2003) use neural language modelling for
predicting a given word given its context words (or
vice-versa) and extract the learned weight vectors
as word embeddings. On the other hand, count-
based methods derive a co-occurrence matrix of
words in the corpus and use matrix factorization
techniques like SVD to extract word representa-
tions (Levy and Goldberg, 2014). GloVe (Pen-
nington et al., 2014) uses co-occurrence matrix to
train word embeddings such that the dot product
between any two words is proportional to the log
probability of their co-occurrence.

The models that incorporate lexical knowledge
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into the word embeddings can be broadly classi-
fied into two categories, namely post processing
and joint learning. Post processing methods such
as (Faruqui et al., 2014; Mrkšić et al., 2016) take
the pre-trained word embeddings and modify them
by injecting semantic knowledge. The retrofitting
method (Faruqui et al., 2014) derives similarity
constraints from WordNet and other resources to
pull similar words closer together. Whereas, the
counterfitting approach, (Mrkšić et al., 2016) also
tries to push the antonymous words away from
each other. These approaches consider only one-
hop neighbours’ relations. We improve upon
this by considering multi-hop neighbours as well
as use structural and information-based similar-
ity scores to determine their relative importance in
imposing similarty contraints to the word embed-
dings.

Joint learning approaches like (Yu and Dredze,
2014; Fried and Duh, 2014; Vashishth et al., 2018)
learn word embeddings by jointly optimizing dis-
tributional and relational information. For in-
stance, in Yu and Dredze (2014), the objective
function consists of both the original skip-gram
objective as well as prior knowledge from seman-
tic resources to learn improved lexical semantic
embeddings. The recent work by Vashishth et
al. (2018) uses Graph Convolutional Networks
(GCNs) to learn relations between words and out-
performs the previous methods in many language
tasks.

Sprinkling: Latent Semantic Indexing (LSI),
also known as Latent Semantic Analysis (LSA),
learns a distributional representation for words by
performing Singular Value Decomposition (SVD)
on the term-document matrix. However, the di-
mensions obtained from LSI are not optimal in
a classification setting because it is agnostic to
class label information of the training data. The
sprinkling method introduced by Chakraborti et
al., (2006) improves LSI by appending the class
labels as extra features (terms) to the correspond-
ing training documents. When LSI is carried out
on this augmented term-document matrix, terms
pertaining to the same class are pulled closer to
each other. An extension of this method, called
adaptive sprinkling (Chakraborti et al., 2007), al-
lows to control the importance of specific class la-
bels by appending them multiple times to the term-
document matrix. For instance, in case of double
sprinkling, we append the class labels twice to the

matrix thus improving the weakly supervised con-
straints imposed by class labels.

3 Proposed Models

In this section, we discuss the proposed models
to incorporate semantic knowledge into word em-
beddings.

3.1 SS-PPMI & DSS-PPMI
In this approach, we take advantage of Levy
and Goldberg’s work (2014) in which the authors
have shown that the objective function used in
Word2vec (Mikolov et al., 2013a) implicitly fac-
torizes a Shifted PPMI (SPPMI) matrix. While
there are many methods that attempt to inject se-
mantic knowledge into neural word embeddings,
to the best of our knowledge, we have not come
across any work that tries to inject semantic
knowledge into the SPPMI matrix. In its origi-
nal form, the SPPMI matrix captures only distri-
butional information. Hence, we are interested in
analysing the impact of injecting semantic knowl-
edge into the SPPMI matrix and the effectiveness
of the resulting word embeddings.

Inspired from (Chakraborti et al., 2006, 2007),
which exploits the class knowledge of the docu-
ments by ’sprinkling’ label terms into the term-
document matrix before matrix factorization, we
modify the SPPMI matrix by adding reachability
information from lexical knowledge bases such as
WordNet and PPDB. In the lexical graphs obtained
from these knowledge bases, words are connected
by edges representing relations such as synonymy,
hypernymy, etc. We say that a word v is reach-
able from another word u if and only if there ex-
ists a path between them in the lexical graph. More
formally, let n be the size of the vocabulary. We
define the reachability matrix Lk ∈ {0, 1}n×n to
be a zero-one square matrix with each element
Lk(u, v) indicating if word v is reachable from
word u within k hops in the lexical knowledge
graph.

We concatenate the reachability matrix with the
SPPMI matrix to obtain Sprinkled Shifted - Pos-
itive PMI (SS-PPMI). We then perform SVD on
this augmented matrix to obtain the enriched word
embeddings.

SPPMI = max(PMI − log(neg), 0) (1)

SS-PPMI = SPPMI ◦ Lk (2)

SS-PPMI ≈ UxΣxV
T
x (3)
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Embeddings = UxΣp
x (4)

where ◦ denotes the matrix concatenation opera-
tion, neg denotes the number of negative samples
and x denotes the lower rank approximation of the
SS-PPMI matrix. SS-PPMI matrix is of dimen-
sions n × 2n. Following the work of Levy et al.,
(2014), we have used p as 0.5 to obtain the word
embeddings.

The original motivation for sprinkling tech-
nique (Chakraborti et al., 2006) was that docu-
ments of same class are brought closer by ap-
pending the class labels to term-document ma-
trix. Likewise, words which have strong syntac-
tic relations such as synonymy or antonymy have
similar neighbourhood in graphs like WordNet.
This translates to these word pairs having similar
columns in the reachability matrix. Thus, append-
ing reachability matrix to SPPMI matrix would
bring such words closer.

We can further strengthen these constraint by
adding the reachability matrix multiple times as
done in adaptive sprinkling (Chakraborti et al.,
2007). We performed experiments adding reacha-
bility matrix twice and we call the resulting matrix
as Doubly Sprinkled Shifted - Positive PMI (DSS-
PPMI), which will be of dimensions n× 3n.

3.2 W-Retrofitting
Retrofitting was introduced by Faruqui et al.,
(2014) and is a method to add semantic infor-
mation to pre-trained word vectors. The post-
processing step modifies the word embeddings
such that the embeddings of words with seman-
tic relations between them are pulled towards each
other. Formally, given the pre-trained vectors Q̂ =
(q̂1, q̂2 · · · q̂n), and a knowledge base represented
by the adjacency matrix A, we need to learn new
vectors Q = (q1, q2 · · · qn) such that following ob-
jective ψ(Q) is minimized:

ψ(Q) =
i=n∑

i=1

(αi‖qi− q̂i‖2 +
j=n∑

j=1

βijAij‖qi−qj‖2)

(5)
The objective is a convex function and we can
find the solution using the efficient iterative update
method used in Faruqui et al., (2014):

qi =

∑j=n
j=1 Aijβijqj + αiqi
∑j=n

j=1 Aijβij + αi

(6)

The βij term is usually assigned as
degree(i)−1. This choice of assigning weights

Scores Datasets
Similarity RG65, WS353S, Simlex-999

Relatedness WS353R, TR9856
No Distinguishing MEN, RW, MTunk, WS353

Table 1: The characterization of scores given by differ-
ent word similarity datasets

can be done in a better way by learning from
semantic knowledge sourcea such as WordNet.

We propose a modification to the retrofitting
methods called W-Retrofitting (weighted
retrofitting), where we use WordNet-based simi-
larity scores to obtain a better setting of βij . For
two words wi and wj with WordNet similarity
score Sim(i, j), βij is obtained by normalizing
the similarity scores across neighbors and is
given as: βij = Sim(i,j)∑

j′ Sim(i,j′)
. Since a word

can have multiple synsets, the similarity score
is the maximum of the similarity scores of all
possible pairs of synsets, taking one each from
the two words. For information based similarity
measures like Lin similarity we compute mutual
information from a random subset of Wikipedia
corpus containing 100,000 articles. Further, we
extend our method to consider nodes which are
atmost 2 hops from given node when computing
weights.

4 Experimental Setup

4.1 Intrinsic Evaluation
We evaluate the proposed models on word similar-
ity and analogy tasks.
Word similarity: We use MEN (Bruni et al.,
2014), MTunk (Radinsky et al., 2011), RG65
(Rubenstein and Goodenough, 1965), Rare
Words(RW) (Luong et al., 2013), SimLex999
(Hill et al., 2015), TR9856 (Levy et al., 2015b),
WS353 (Finkelstein et al., 2002), WS353S
(Similarity), WS353R (Relatedness). Spearman
correlation is used as evaluation metric.
Analogy: We evaluated analogy task with Google
Analogy (Mikolov et al., 2013a), MSR Analogy
(Mikolov et al., 2013b) and Semeval2012 datasets.
We follow the standardized setup as explained in
(Jastrzebski et al., 2017).

4.2 Sources of Knowledge
We used two sources of semantic knowledge:
WordNet (Miller, 1995) and PPDB (Ganitke-
vitch et al., 2013). We used the same PPDB
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knowledge source used in Faruqui et al., (2014).
We used WordNet source knowledge from V.
Batagelj (2004). The relations considered are syn-
onymy, hypernymy, meronymy and verb entail-
ment. PPDB has 84467 nodes and 169703 edges,
WordNet source we used has 82313 nodes and
98678 edges.

We used the latest Wikipedia dump1 containing
6 Billion wikipedia articles to generate the SPPMI
matrix. We followed the same procedure as given
in Levy et al., (2015a) and chose the number of
negative samples to be default value of 5. In all of
our experiments, we chose embedding dimension
as 300, which is commonly used in the literature.

4.3 Baselines

We use the following baselines for comparison

1. GloVe: Our first baseline is the GloVe em-
beddings (Pennington et al., 2014) trained on
the Wikipedia corpus retrieved from Stanford
NLP group website2.

2. Retrofit: We apply the retrofitting technique
(Faruqui et al., 2014) on the GloVe embed-
dings where Wordnet or PPDB was as the
source of word relations.

3. SPPMI: We perform SVD on the Shifted
PPMI matrix (as mentioned in Section 3)
without sprinkling.

4. SynGCN (Vashishth et al., 2018): This work
uses Graph-convolution based methods to
impart relational information between words
and have shown state-of-art results in many
benchmarks. We directly report the available
results from the original paper which uses
same evaluation benchmarks.

4.4 Extrinsic Evaluation

To further test the effectiveness of the different
methods in grounding word meanings, we utilize
the embeddings in following tasks. The neural net-
work architectures used for each of the tasks are
same as that used in Vashishth et al., (2018).

1. Part-of-speech tagging (POS): This task
classifies each word of given sentence as
one of the part-of-speech tags. We use the
LSTM based neural architecture discussed in

1https://dumps.wikimedia.org/enwiki/latest/
2https://nlp.stanford.edu/projects/GloVe/

Reimers and Gurevych (2017) on the Penn
treebank dataset (Marcus et al., 1994).

2. Named-entity recognition (NER): The goal
of this task is to extract and classify named
entities in the sentences as person, organi-
sation, location or miscellaneous. We use
the model proposed in Lee et al., (2018)
on CoNLL-2003 dataset (Sang and Meulder,
2003).

5 Results and Analysis

5.1 SS-PPMI

Reachability Matrix is powerful in capturing
semantic information: We proposed a simple
sprinkling approach in which a zero-one matrix
captures the k-hop reachability information be-
tween words in a lexical knowledge graph. In
order to see how effectively the reachability ma-
trix captures the lexical knowledge, we performed
SVD on the reachability matrix and obtained the
word embeddings. Table 2 shows the performance
of the obtained embeddings on word similarity
task, The dimension of embedding used is 300.
Interestingly, we clearly observe that the embed-
dings obtained from the reachability matrix only
(without SPPMI matrix) compete strongly with
300 dimensional pretrained GloVe embeddings on
the similarity based datasets. The best perform-
ing model gives a Spearman correlation which is
0.19 more than GloVe in Simlex999. Similarly,
in RG65 and WS353S, the reachability based em-
beddings compete well with GloVe. Between the
choice of PPDB or WordNet as the lexical knowl-
edge sources, PPDB seems to be more helpful.
In general, the performance of reachability-based
embeddings increases with increasing the number
of hops on the similarity datasets.

In the case of relatedness datasets, the model
competes poorly with the baseline-GloVe. This is
quite expected as the reachability matrix doesn’t
capture any information about the word co-
occurrence. These observations have been foun-
dational to our proposed SS-PPMI and DSS-PPMI
methods.
SS-PPMI and DSS-PPMI provide significant
improvements in word similarity and analogy:
Table 3 provides the results with SS-PPMI and
DSS-PPMI approaches on word similarity task
with embedding dimension as 300. We clearly ob-
serve that the proposed models defeat the baseline
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Similarity Relatedness No Distinction
Lexical Knowledge Hops - k SimLex999 WS353S RG65 WS353R TR9856 WS353 MEN MTurk RW
Baseline - GloVe - 0.370 0.665 0.769 0.560 0.575 0.601 0.737 0.633 0.411

PPDB
1 0.507 0.461 0.433 0.127 0.273 0.336 0.284 0.181 0.465
2 0.529 0.567 0.512 0.128 0.261 0.362 0.304 0.261 0.506

WordNet
1 0.077 0.343 0.110 0.151 0.128 0.293 0.161 0.063 0.056
2 0.209 0.349 0.378 0.163 0.149 0.285 0.275 0.145 0.209

Table 2: Performance of the reachability-based embeddings on similarity datasets. Reported numbers are the
Spearman correlation coefficients.

Similarity Relatedness No Distinction
Method Lexical Knowledge hops SimLex999 WS353S RG65 WS353R TR9856 WS353 MEN MTurk RW
SPPMI - - 0.385 0.728 0.783 0.603 0.625 0.663 0.742 0.599 0.516

SynGCN - - 0.455 0.732 - 0.457 - 0.601 - - 0.337

SS-PPMI PPDB
1 0.386 0.728 0.782 0.604 0.625 0.663 0.742 0.599 0.516
2 0.398 0.733 0.775 0.619 0.628 0.669 0.743 0.610 0.521

DSS-PPMI PPDB
1 0.386 0.728 0.782 0.604 0.625 0.663 0.742 0.599 0.516
2 0.420 0.733 0.780 0.620 0.629 0.668 0.743 0.607 0.528

SS-PPMI WordNet
1 0.393 0.724 0.792 0.627 0.597 0.667 0.769 0.611 0.464
2 0.394 0.733 0.793 0.629 0.601 0.671 0.770 0.616 0.435

DSS-PPMI WordNet
1 0.393 0.724 0.792 0.627 0.597 0.667 0.769 0.611 0.463
2 0.394 0.739 0.804 0.638 0.599 0.677 0.771 0.619 0.414

Table 3: Results on word similarity datasets using SS-PPMI and DSS-PPMI embeddings

in all the datasets. The margin of improvement is
quite high in case of similarity datasets. We see
close to 0.21 increase in spearman correlation for
Simlex999, 0.04 increase in RG65. This is some-
what expected as we already saw that reachabil-
ity matrix contains lexical information. Interest-
ingly, we also saw improvements in relatedness
datasets where the sprinkling approaches perform
narrowly better than SPPMI based approach. In
other datasets like WS353, MEN we see improve-
ments of about 0.02 and 0.03 in spearman correla-
tion respectively. Overall, sprinkling significantly
improves the performance on word similarity task.

Overall, we observe that Double Sprinkling
method (DSS-PPMI) works better than SPPMI in
word similarity task. Increasing the number of
hops (k) in the reachability matrix improves the
performance in word similarity , in general.

Table 4 shows improvements provided by the
sprinkling methods on analogy datasets. We ob-
serve marginal improvements over baseline in
google and SemEval2012.

5.2 W-Retrofitting

We apply our W-retrofitting model to GloVe
(Pennington et al., 2014) embeddings trained on
Wikipedia corpus. We experimented with one
hop and two hop neighbors and several meth-
ods for similarity estimation: inverse path similar-
ity, Jaing-Conrath Similarity (Jiang and Conrath,
1997), Wu -Palmer Similarity (Wu and Palmer,

Method Graph hops Google SemEval
SPPMI-Baseline - - 0.337 0.176

SynGCN - 0.234

SS-PPMI PPDB
1 0.338 0.175
2 0.347 0.180

DSS-PPMI PPDB
1 0.338 0.176
2 0.343 0.188

SS-PPMI WordNet
1 0.122 0.166
2 0.121 0.165

DSS-PPMI WordNet
1 0.122 0.166
2 0.118 0.161

Table 4: Analogy results using proposed SS-PPMI and
DSS-PPMI approaches

1994), Leacock-Chowdorov Similarity (Leacock
and Chodorow, 1998) and Lin Similarity (Lin
et al., 1998). The neighbourhood information
for estimating similarity was obtained from either
WordNet or PPDB graphs. We found that Jaing-
Conrath Similarity works best for WordNet, in-
verse path similarity for PPDB. So, we report re-
sults for these similarity measures only.

Word Similarity: The performances of all our
models are either comparable or superior to base-
lines as seen in table 5. We see that using PPDB
knowledge source and path based similarity as
weights in the retrofit objective functions gives the
best performance and outperforms the baselines in
most benchmarks.

Analogy: Some of our models outperform
retrofitting baselines in Google analogy. In Se-
mEval task, we mostly outperform GloVe but
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Similarity Relatedness No Distinction
Method Lexical Knowledge Hops SimLex999 WS353S RG65 WS353R TR9856 MTurk WS353 MEN RW
GloVe-baseline - 0.37 0.665 0.769 0.56 0.575 0.633 0.601 0.737 0.411
SynGCN - - 0.455 0.732 - 0.457 - 0.601 - - 0.337
Retrofit-baseline

PPDB
1 0.496 0.7 0.825 0.585 0.601 0.675 0.631 0.764 0.431

W-retrofit(path)
1 0.509 0.71 0.824 0.583 0.584 0.669 0.641 0.773 0.417
2 0.422 0.628 0.788 0.519 0.525 0.63 0.562 0.722 0.372

Retrofit-baseline
Wordnet

1 0.434 0.693 0.774 0.557 0.574 0.642 0.607 0.766 0.387

W-retrofit(jcn)
1 0.432 0.685 0.772 0.543 0.568 0.64 0.6 0.764 0.353
2 0.399 0.73 0.785 0.528 0.579 0.634 0.616 0.764 0.389

Table 5: Word Similarity results for W-Retrofitting approach

retrofitting baseline on WordNet gives the best
score. The results are summarised in table 6

Similarity Graph Hops Google SemEval
GloVe 0 0.717 0.164
SynGCN - 0.234
Retrofit-baseline

PPDB
1 0.451 0.171

path
1 0.448 0.167
2 0.248 0.151

Retrofit-baseline
WordNet

1 0.603 0.184

jcn
1 0.701 0.161
2 0.693 0.155

Table 6: Analogy results for W-Retrofitting

Model SimLex999 WS353S RG65
SPPMI 0.276 0.624 0.671

Retrofitting 0.336 0.624 0.752
W-Retrofitting 0.429 0.656 0.747

Reachability Matrix 0.561 0.567 0.664
Sprinkling 0.591 0.748 0.821

Model WS353R TR9856 MTurk
SPPMI 0.509 0.527 0.626

Retrofitting 0.479 0.534 0.623
W-Retrofitting 0.521 0.548 0.631

Reachability Matrix 0.194 0.325 0.283
Sprinkling 0.638 0.629 0.619

Model WS353 MEN RW
SPPMI 0.562 0.691 0.359

Retrofitting 0.545 0.708 0.350
W-Retrofitting 0.595 0.726 0.384

Reachability Matrix 0.376 0.325 0.506
Sprinkling 0.682 0.771 0.560

Table 7: Comparison with various baselines for word
similarity and relatedness.

5.3 Overall Comparison on Word Similarity
In order to make fair and direct comparison be-
tween Sprinkling and Retrofitting, we applied
retrofitting and W-retrofitting (using inverse-path
similarity over PPDB graph) on the 300 dimen-
sional SPPMI vectors. Table 7 provides the best
results of the models on each of the word simi-
larity and analogy datasets. We make the follow-
ing observations. W-Retrofitting does much better

Method Graph Hops NER POS
SPPMI-Baseline 82.3 92.9

SS-PPMI PPDB
1 83.4 93.3
2 84.7 93.4

DSS-PPMI PPDB
1 82.3 93.5
2 87.3 93.4

SS-PPMI Wordnet
1 83.5 92.8
2 83.9 93.2

DSS-PPMI Wordnet
1 83.2 93.2
2 83.5 93.1

Table 8: Results on Extrinsic Evaluation tasks using
SS-PPMI and DSS-PPMI embeddings

Method Graph Hops NER POS
GloVe - 89.1 94.6
SynGCN - 89.5 95.4
Retrofit-baseline

PPDB
1 88.8 94.8

path
1 88.7 95
2 89.2 95.1

Retrofit-baseline
Wordnet

1 88.2 94.5

jcn
1 88.9 95
2 89.4 95.3

Table 9: Results on Extrinsic Evaluation tasks using
W-Retrofitting

than Retrofitting in similarity datasets, as what we
saw with GloVe embeddings. The source of the
improvement comes comes from two things: in-
clusion of two-hop neighbor information and the
intelligent choice of weights from WordNet in W-
Retrofitting.

Using only the Reachability Matrix provides
very good scores in similarity based datasets, but
doesn’t capture relatedness information at all. Us-
ing sprinkling approach, we manage to obtain em-
beddings that have optimal combination of simi-
larity and relatedness information and this makes
it perform better than all the other baselines in sim-
ilarity, relatedness and analogy tasks.

5.4 Evaluation on Extrinsic tasks
The results on extrinsic tasks (discussed in Sec-
tion 4.4) are given in Tables 8 and 9. In the case of
sprinkling methods, we see that there is a clear in-
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crease in scores for both the extrinsic tasks from
using the proposed SS-PPMI matrix over using
only the SPPMI matrix. We also see that models
using PPDB perform better. One reason why we
do not compare scores of sprinkling based meth-
ods with that of GloVe and Retrofitting based ones
is that the vocabulary size(number of nodes) in
PPDB or Wordnet graphs are lower than that for
GloVe. We also didn’t consider punctuation sym-
bols in SPPMI unlike GloVe.

In the case of W-retrofitting, scores from the
proposed W-Retrofitting model using jcn weights
on wordnet graph are very similar to SynGCN
model inspite of SynGCN being a more complex
model with a lot of hyperparameters. We also
see that the other methods of W-retrofitting have
comparable performance to SynGCN. We observe
improved performance by considering upto 2 hop
neighbours over methods considering just 1 hop
neighbours. It is quite interesting to see that the
proposed light-weight retrofitting model competes
strongly with the more complex SynGCN method
as shown by the results in Table 9.

6 Conclusion and Future Work

In this paper, we proposed two simple yet pow-
erful approaches to incorporate lexical knowl-
edge into word embeddings. The first approach
is a matrix factorization method that ‘sprinkles’
higher order graph information into the word co-
occurrence and we show that it significantly im-
proves the quality of the word embeddings. Sec-
ond, we proposed a simple modification to the
retrofitting method that improves it performance
visibly. We showed the improvements of the pro-
posed models over baselines in a variety of word
similarity and analogy tasks, and across two pop-
ular lexical knowledge bases.

For extrinsic tasks, W-retrofitting showed com-
parable performance to the state-of-art SynGCN
model, (Vashishth et al., 2018) inspite of Syn-
GCN being a more sophisticated model with lots
of parameters that constitute the weights of Graph
Convolutional layers and linear layers of neu-
ral network used as well as many hyperparame-
ters needed for training the neural network (such
as number of GCN layers and their dimensions,
learning rate, number of epochs, etc.).

In our sprinkling approach, we didn’t consider
any importance weighting for different relations.
One promising direction that can be experimented

in future is to use wordnet similarity scores or a
combination of co-occurrence and lexical infor-
mation as importance values in the reachability
matrix. We could also use ‘adaptive sprinkling’
(Chakraborti et al., 2007) to give more importance
to relations of specific sets of words.

The more recent methods that achieve the state-
of-art results in a variety of language tasks uti-
lize pre-trained models such as Elmo (Peters et al.,
2018), BERT (Devlin et al., 2018) and XLNet
(Yang et al., 2019). These models that learn con-
text dependent word embeddings are pre-trained
for different language tasks and are later fine-
tuned for specific tasks. Another direction of re-
search we would like to explore is to study the
improvements gained by using our proposed mod-
els to initialize the word embeddings before pre-
training these models.
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Abstract 

India is one of unique countries in the 

world that has the legacy of diversity of 

languages. English influence most of these 

languages. This causes a large presence of 

code-mixed text in social media. Enormous 

presence of this code-mixed text provides 

an important research area for Natural 

Language Processing (NLP). This paper 

proposes a novel Attention based deep 

learning technique for Sentiment 

Classification on Code-Mixed Text 

(ACCMT) of Hindi-English. The proposed 

architecture uses fusion of character and 

word features. Non-availability of suitable 

word embedding to represent these Code-

Mixed texts is another important hurdle for 

this league of NLP tasks. This paper also 

proposes a novel technique for preparing 

word embedding of Code-Mixed text. This 

embedding is prepared with two separately 

trained word embeddings on romanized 

Hindi and English respectively. This 

embedding is further used in the proposed 

deep learning based architecture for robust 

classification. The Proposed technique 

achieves 71.97% accuracy, which exceeds 

the baseline accuracy. 

1 Introduction 

Languages used in India belong to several 

language families.  Historical presence of British 

on Indian soil has led to a very high influence of 

English language on many of these Indian 

languages. People belonging in a multi-lingual 

society of India, gives rise of a large amount of text 

in various social media (Patra, 2018). Inclusion of 

English is very common in these texts. Essentially, 

an utterance in which a user makes use of grammar, 

                                                           
1https://en.wikipedia.org/wiki/List_of_languages_by_number

_of_native_speakers_in_India 

lexicon or other linguistic units of more than one 

language is said to have undergone code-mixing 

(Chanda, 2016). Hindi is the widely spoken 

language of India and used in various media. The 

number of native Hindi speakers is about 25% of 

the total Indian population; however, including 

dialects of Hindi termed as Hindi languages, the 

total is around 44% of Indians, mostly accounted 

from the states falling under the Hindi belt1. This 

community contributes a large amount of text on 

social media. The form of Hindi language used in 

Social Media is mixed with English and are 

available in roman scripts. According to the study 

(Dey, 2014) most common reason for this kind of 

code mixing in a single text is ‘Ease of Use’. The 

code-mixed Hindi and English language poses 

various types of challenges (Barman, 2014), which 

makes the text classification task on code-mixed 

text, an exciting problem in NLP Community. 

Despite a wide research on classification of code 

mixed texts, there remains open opportunities with 

two major aspects; first technique of preparing 

word embedding on Code-Mixed texts and second 

utilization of character and word features together 

to improve the accuracy. This research targets these 

two open points for exploration. 

2 Related Work 

Various research works have tried to tackle these 

challenges.  Recent work of Prabhu (2016) utilizes 

character level LSTMs to learn sub word level 

information of social media text. Then this 

information is used to classify the sentences using 

an annotated corpus. The work is very interesting 

and achieves good accuracy. However the work 

does not intend to capture the information related 

to word level semantics. This provides a further 

scope of research to study the impact of word 

Robust Deep Learning Based Sentiment Classification of Code-Mixed Text 
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embedding based approach on classification of 

code-mixed text. Sharma (2015) used an approach 

of lexicon lookup for text normalization and 

sentiment analysis on Code-Mixed text. Pravalika 

(2017) used lexicon lookup approach for domain 

specific sentiment analysis. These lexicon lookup 

based approaches lack capability to handle 

misspelled words and wide variety of these code 

mixed texts. Recent work (Lal, 2019) have used 

BiLSTM based dual encoder networks to represent 

the character based input and additional feature 

network to achieve good accuracy on code-mixed 

texts. Recent work (Yenigalla, 2018) has explored 

the opportunity of using both character and word 

embedding based feature to handle unknown 

words for text classification on monolingual 

English only text corpora. However, this approach 

is not common for Code-Mixed text, primarily 

because of the non-availability of word embedding 

for the Code-Mixed texts.  

3 Dataset  

We have considered Hi-En Code-Mixed dataset2, 

shared by Prabhu (2016) as a baseline for this 

research.  

3.1 Description 

The dataset was collected from public Facebook 

pages of famous Indian personalities i.e. Salman 

Khan and Narendra Modi. The data is present in 

Roman script. The dataset contains 3879 

comments. Each data is annotated with a 3-level of 

polarity scale i.e. Positive, Neutral and Negative.  

The dataset contains 15% negative, 50% neutral 

and 35% positive. Table 1 shows some example of 

code-mixed texts dataset.  

 

Example Approx. meaning 

in English 

Polarity 

Sir yeh tho sirf aap 

hi kar sakte hai. 

Great sir 

Sir only you can do 

it. Great Sir 
Positive 

Kuch nahi karoge 

tum india ke liye 

You won’t do 

anything for India 
Negative 

Humari sabhayata 

humari pehchaan ... 

Our civilization is 

our identity 
Neutral 

Table 1:  Example from Hi-En Code-Mixed dataset. 

                                                           
2 https://github.com/DrImpossible/Sub-word-LSTM 

3.2 Challenges  

Transliteration of phonetic languages, like Hindi, 

into roman script creates several variations of the 

same word. For example, “बहुत” in Hindi which 

means “more” in English can be transliterated as 

“bahut”, “bohoot” or “bohut” etc. 

The Romanized Code-Mixed text, available on 

social media imposes additional challenges of 

contraction of phrases. For example, ‘awsm’ is 

shortened form of ‘awesome’; ‘a6a’ is contracted 

from ‘accha’ etc. Romanized code-mixed text also 

contain sentences with non-grammatical constructs 

like ‘Bhai jaan bolu naa.. yar’ as well as non-

standard spelling such as ‘youuuu’, ‘jaaaaan’ etc. 

The phonetic similarity of various words across 

participant languages in the Code-Mixed text 

increases the challenge by introducing 

disambiguation for meaning of a word. For 

example, “man” in English means ‘an adult human 

male’ where as in Hindi it means ‘mind’. 

Large availability of clean corpora has given a rise 

in various kinds of research for Mono-lingual texts 

like English. On the other hand, the limited 

availability of clean & standard Code-Mixed 

corpus restricts wide spectrum of experiments, 

which depends on word-embedding based input. 

 

3.3 Character Set 

The dataset is cleaned of any special characters for 

this research. Final character set is of 36 characters 

including 26 English letters and 10 numbers. Final 

character set is: 

abcdefghijklmnopqrstuvwxyz0123456789 

  

4 Proposed Method 

The proposed method consists of two major parts. 

First one is preparing a suitable word-embedding 

of code-mixed text and later one is a robust deep 

learning architecture for classification on code-

mixed text. 

4.1 Word-Embedding 

There are three main aspects for preparing word 

embedding for Hindi-English Code-Mixed Texts. 

First is preparation of a corpus of Hindi Romanized 

text. Second one is preparing word embedding by 

choosing a right algorithm of word embedding. 
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Third, is to ensure that words from both participant 

languages which are similar has nearby 

representation. To address the first aspect, we use 

Indic transliteration3  on large Hindi-English 

corpus4 where the Hindi text is present in 

Devanagari5 script also contains English content. 

In this way, we achieve the Hindi-English Code-

Mixed corpus in Roman Scripts. Figure 1 depicts 

the process of generating the desired corpus. 

 

Figure 1: Corpus Preparation for Hi-En 

Code-mixed Text in Roman Script. 

We hypothesize that the transliterated corpus 

represents a new language of Romanized Hindi. As 

discussed earlier there are various challenges of 

Romanized representation of Code-Mixed text 

such as presence multiple homo-phonic 

representations of a single word etc., so we have 

chosen fastText (Bojanowski, 2017) word 

representation as best method to train word 

embedding. This addresses the second aspect of 

previously discussed task of preparing word 

embedding. Once the corpus is generated, we have 

trained word embedding with fastText6. This 

trained embedding is capable of providing the 

vectorized representation of a Romanized Hindi 

word. On the other side, an utterance in the Code-

Mixed corpus also contains English words as well. 

For example, the 1st utterance in the Table 1 

contains two phrases, where 1st phrase contains the 

Romanized Hindi words and the 2nd phrase 

contains English words. This is the third and final 

aspect, discussed as a part of task of word 

embedding. Now to represent such an utterance 

using word embedding, we need the bi-lingual 

word embedding which include Romanized Hindi 

and English words as well. To cater to this 

requirement, we have used the proposed method 

(Smith, 2017) to represent bi-lingual 

representation of word from two monolingual 

representations. SVD is used to learn a linear 

transformation (a matrix), which aligns 

monolingual vectors from two languages in a 

single vector space7. In this experiment, we 

                                                           
3 https://github.com/sanskrit-coders/indic_transliteration 
4 https://www.kaggle.com/pk13055/code-mixed-hindienglish-

dataset 
5 https://en.wikipedia.org/wiki/Devanagari  

considered two monolingual word embedding(s). 

First is the trained word embedding of Romanized 

Hindi. Second one is the pre-trained & published8 

English word-embedding (Mikolov, 2018), which 

is trained on Wikipedia corpus. 

4.2 Model Architecture 

We prepare Attention based deep learning 

architecture for Classification of Code-Mixed 

Text (ACCMT) which uses learning from both 

character and word based representation. The 

proposed architecture consists of two major parts. 

The first part learns the sub-word level features 

from input character sequences. The other parts 

uses prepared word embedding as input and learn 

the word level features. 

 

 
 

The first part is similar as the baseline 

implementation Prabhu (2016), which is inspired 

by research work of Kim (2016). This part is 

independent of word vocabulary, which helps to 

resolve important issues in code mixed text like 

non-standard spelling, phrasal contraction etc. 

6 https://fasttext.cc/docs/en/python-module.html 
7 https://github.com/Babylonpartners/fastText_multilingual 
8 https://fasttext.cc/docs/en/pretrained-vectors.html  

Transliteration 
हिन्दी 

(Devanagari) & 

English Code-

Mixed Corpus 

Hi-En (Roman) 

Code-Mixed 

Corpus 

Character 

Embedding 

Convolution 1D 

Max pool 

LSTM 

LSTM 

LSTM 

LSTM 

Word 

Embedding 

Concatenation 

128 Dim 

Filter Len = 3 

Pool Len = 3 

300 Dim 

300 Dim 

300 Dim 128 Dim 

128 Dim 

Softmax 3 Classes 

Prediction 

Attention Attention 

Dense (relu) 512 Dim 

128 Dim 

Attention 

Dense (relu) 

Figure 2: Attention based deep learning 

architecture for Classification of Code-Mixed 

Text (ACCMT) 
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Even though this representation lack word level 

semantic interpretability, the assumption is that 

character n-gram serve semantic functions e.g. 

‘cat+s=cats’. 

Formally a Sentence S is made of sequence of 

characters [𝑐1, … , 𝑐𝑙]where 𝑙 is sentence length. 

𝑄 ∈ ℝ𝑑 × 𝑙
 is the representation of sentence where 

𝑑 being the dimension of character embedding. We 

perform the convolution of 𝑄 with filter 𝐻 ∈

ℝ𝑑 × 𝑚
 of length m. This operation provides a 

feature map 𝑓 ∈ ℝ𝑙−𝑚+1
. Convolution is shown 

with ‘∗’ Operator in equation 1. 

 

𝑓 =  𝑄 ∗ 𝐻          (1) 

 

Next max-pool operation of p features from f 

brings sub-word representation y. 

𝑎𝑡 =  𝜏0 × tanh(𝜏𝑢𝐶𝑡  ̃ + 𝜏𝑓𝐶𝑡−1 ̃ ) 

𝑊ℎ𝑒𝑟𝑒, 𝐶𝑡  ̃ = tanh(𝑊𝑐[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑐) 

 𝜏𝑜 =  σ(𝑊𝑜[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑜) 

𝜏𝑢 = σ(𝑊𝑢[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑢)  

                   𝜏𝑓 =  𝜎(𝑊𝑓[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑓)       (2) 

 

Here 𝑦𝑡 represents the input at current timestamp. 

Output from LSTM is 𝑎𝑡at time 𝑡. 𝜏𝑜, 𝜏𝑢, 𝜏𝑓 are 

respectively the output, input and forget gates of 

LSTM cell. 𝐶𝑡  ̃is the cell state at time 𝑡. 

The second part is designed with intention to 

capture features for the word level semantic 

representation to counter the limitation of previous 

part of the architecture. For this purpose LSTM is 

used as well, because LSTM has performed very 

well (Bhasin, 2019; Tang, 2015) in various 

sentiment analysis and other text processing tasks. 

Formally a Sentence 𝑆 is made of sequence of 

words [𝑝1, … , 𝑝𝑙] where 𝑙 is word length of 𝑆. 𝑄 ∈

ℝ𝑑 × 𝑙
 is the representation of sentence where d 

being the dimension of word embedding. Now 𝑝𝑡, 

word at time 𝑡 is passed to memory cell of LSTM 

and the output follows similar of equation (2). 

We have introduced two separate attention layers 

over the LSTM output of Character based side and 

Word based side respectively. The intention of 

applying the attention is to infer the dominating 

features from character representation as well as 

word representation respectively. We have used 

                                                           
9 https://pypi.org/project/keras-self-attention/  

self attention (Vaswani, 2017) for our 

implementation9. Formally, the attention can be 

depicted as equation (3). 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 𝑑𝑘⁄ )  (3)  

 

The 𝑄, 𝐾 & 𝑉 is same and that is the output of the 

previous layer. The final output after attention of 

sub-word level representation through character 

embedding part and learnt features from the word 

embedding part are concatenated as late fusion to 

feature represent of the input sentence. The joint 

feature is passed through another attention layer. 

This layer is intend to figure out the dominating 

learnt feature among word and character based 

learnt features. Following this layer, we add two 

consecutive fully connected layers with ReLU 

non-linearity. The final output of the last dense 

layer is passed through a Softmax layer to predict 

the sentiment.   

Formally late fusion of learnt character features 𝑓𝑐 

& word features 𝑓𝑤  is 𝑓s =  (𝑓𝑐 , 𝑓𝑤) to represent 

jointly learnt features of sentence S. Then s is input 

to dense layers with 𝑔 as ReLU non-linearity. 

Output 𝑎1 is passed through second dense layer to 

get output a2. 

 

             𝑎1 = 𝑔(𝑊1 × 𝑓𝑠 +  𝑏1) 

𝑎2 = 𝑔(𝑊2 ×  𝑎1 +  𝑏2)                                  (4) 

 

Further, final layer is formalized as equation 5. 

𝜎 =  𝑒𝑎2 ∑ 𝑒𝑎2
𝑖⁄                                        (5) 

5 Experimental Setup 

This research used Keras on python for all required 

implementations. The baseline dataset is divided 

into 3 splits i.e. training, validation and testing. 

Initially the dataset is randomly divided into 80-20 

train-test split. Further train is randomly divided 

into 90-10 train-validation unlike the baseline 

implementation which splits 80-20 as train-

validation. The results are reported over the test 

split here. 

We have experimented with various possible  

values of hyper parameters and the best set of 

hyper parameters is shown in the Fig 2. As 

discussed earlier first part of the architecture is 

meant for character based input. Here a single 
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sentence is considered to be of sequence of 200 

characters. Characters beyond 200 are ignored for 

sentence having more than 200 characters. A 

sentence with less than 200 characters is zero 

padded. Point need to mention is that we have 

considered space also as valid character input. For 

the second part of the network we have use word 

embedding of different dimensions for example 

100, 200 and 300. However it achieved best 

accuracy with 300 dimensional word-embedding. 

While training the fastText Word-Embedding, 

‘minn’ & ‘maxn’ parameters were set to 2 and 10 

respectively. For word based input, a sentence of 

length 40 words is considered. A sentence with 

lesser than 40 words is zero embedding padded 

whereas words beyond 40 are ignored if sentence 

is having more than 40 words. Also we empirically 

found that having two stacked  LSTM layers 

similar to Prabhu (2016) gave optimal 

performance.  

We have used default Keras implementations of 

Categorical Cross Entropy for loss functions in 

different experiments. Available implementation of 

Focal Loss10 is used during few experiments. The 

intention of apply focal loss (Lin, 2017) is to check 

the robustness of the proposed ACCMT 

architecture with respect to different loss function. 

Of late Focal Loss has migrated from Object 

Detection to various other tasks, for example 

speech emotion recognition Tripathi (2019) etc. 

We wanted to experiment and capture the impact 

of Focal Loss on Classification of Code-Mixed 

text. Default Keras implementation for adam 

optimizer is used for experiments. On the other 

hand learning rate of 0.0008 and a decay of 

0.000012 is set for RMS Prop in various set of 

experiments. Dropout at Character-LSTM part is 

set to 0.2 and Word-LSTM is set to 0.4, where as 

the dropout of dense layers are set to 0.4. We have 

used the available implementation of attention 

layer in our code for model architecture. 

The model is trained over 50 epochs and batch size 

of 64 with 10-fold cross-validation. During each 

fold, the best model is picked based on validation 

accuracy. The experiments are conducted in the 

Anaconda environment on a machine with Intel 

Core i5 processor and NVIDIA processor for GPU 

acceleration, 16 GB of RAM and a 1 TB of HDD 

with Windows 10 Operating System. The 50 

                                                           
10 https://github.com/mkocabas/focal-loss-keras  

epochs of training of ACCMT takes 25 minutes in 

average. 

6 Results and Analysis 

We have conducted all experiments in the 

computing environment mentioned in above 

section. In the same environment, the 

implementation of Prabhu (2016) attained 

maximum accuracy of 66.29% across 5 different 

executions. Whereas the best performance of 

ACCMT is 71.97% exceeds the baseline 

performance by 5.68% in the same computing 

environment. To understand the impact of attention 

on the classification of code-mixed text, we have 

also experimented without attention. We have 

removed three attention layers from the ACCMT 

and created a deep learning architecture which uses 

only fusion of character and word features. This 

architecture showed a maximum of 69.845% 

accuracy on the same dataset. This implies that 

attention has improved accuracy with 2.125%. We 

also compared against Yenigalla (2018) which 

gave an accuracy of 64.3%. Table 2 showed the 

accuracy and F1 score of all experiments. 

 

Experiments 
Results 

Accuracy F1 

Yenigalla (2018) 64.3% 62.2 

ACCMT  

(adamax + Focal Loss) 
70.10% 68.1 

ACCMT  

(RMS prop + categorical 

cross entropy) 

69.75% 67.5 

ACCMT (adamax + 

categorical cross entropy) 
71.97% 70.93 

ACCMT (RMS Prop + 

Focal Loss) 
70.32% 68.71 

Table 2:  Results of ACCMT on Hi-En Code Mixed 

dataset with different loss-function and initializers. 

7 Conclusion 

This paper shows the architecture of attention 

based deep learning architecture (ACCMT) which 

does fusion of character and word feature to 

develop a robust classifier for code-mixed text. The 

proposed ACCMT architecture performs well on 

the Hi-En code-mixed dataset and outperforms the 

baseline accuracy. A major contribution of this 

paper is the technique of training word embedding 

for code-mixed text. This technique is used for 
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generating word embedding for Hindi-English 

code mixed corpus, which is required in this 

research work. This proposed technique is very 

easy to implement for other code-mixed languages 

as well and will be helpful for generating word 

embedding for low resource code-mixed languages 

majorly Indian languages e.g. Bengali, Tamil and 

Malayalam etc. This also opens up opportunities of 

research on other code-mixed languages. This 

work also shows the impact of attention for the 

classification of code-mixed text. Lal (2019) 

showed that introduction of feature network has 

improved the accuracy significantly. The 

integration of such feature network in ACCMT is 

considered for future course of improvement for 

the on-going research. 
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Abstract
In recent years Opinion Mining has become
one of the very interesting fields of Lan-
guage Processing. To extract the gist of
a sentence in a shorter and efficient man-
ner is what opinion mining provides. In
this paper we focus on detecting aspects
for a particular domain. While relevant re-
search work has been done in aspect detec-
tion in resource rich languages like English,
we are trying to do the same in a relatively
resource poor Hindi language. Here we
present a corpus of mobile reviews which
are labelled with carefully curated aspects.
The motivation behind Aspect detection is
to get information on a finer level about the
data. In this paper we identify all aspects
related to the gadget which are present on
the reviews given online on various web-
sites. We also propose baseline models to
detect aspects in Hindi text after conduct-
ing various experiments.

1 Introduction
Over the last decade people tend to search
for products online rather than physically on
stores. This has resulted in a surge of online
forums where reviews are available on various
products, electronic gadgets being one of the
more popular ones. But reading so many long
reviews is very time consuming and there is no
uniformity on the parameters of reviews. To
solve this, research work has been done in this
area in the form of Aspect Detection which
helps to point out the key specifications of the
product in a structured format. But the work
is limited to only worldwide languages as En-
glish and French. For a multi-lingual coun-
try like India, we are still far away in getting
these information in the native language. We
aimed at creating a dataset in Hindi which has
the highest number of native speakers. The

dataset is annotated with aspects for mobile
reviews.

An aspect is a word in a sentence which has
some polarity associated with it. The aspect
should hold major meaning of the sentence.
Following examples will state what aspect is:

S1 : शाओमी रडेमी 4ए को पहली बार हाथ म

ें

लेने पर

यह आपको मेटल बॉडी का बना लगेगा ।

S1 : Xiaomi redmi 4A ko pehli baar hath m
lene par yeh aapko metal body ka bana lagega.

Aspect1 : "मेटल बॉडी" (metal body) which
falls under the "िडज़ाइन" (design) category.
The aspect shows importance by indicating
how the mobile is built.

S2: शाओमी रडेमी नोट म

ें

2 गीगाहट्ज

र्

़ ऑक्टा - कोर

क्वालकॉम स्नपैड

र्

ैगन 625 पर्ोसेसर का इस्तेमाल ह

ु

आ है।

S2: Xiaomi Redmi note m 2 gigahertz octa-
core qualcomm snapdragon 625 processor ka
istemal hua hai. Aspect:"ऑक्टा - कोर क्वालकॉम

स्नपैड

र्

ैगन 625" (Octa core qualcomm snap-
dragon) which falls under the "स्पेिसिफकेशन"

(specification) category . The aspect tells
specifically tells the details of product.

S3: अफसोस यह िक आप उन्ह

ें

हटा नहीं सकते ।

S3: Afsos yeh ki aap unhe hata nahi sakte.
Aspect : ”NULL” as there is no word which
tells about any detail of the product. Hence,
it is classified under no aspect category.

2 Related Work

Major work has been done in Aspect Detec-
tion when it comes to resource rich languages
like English. The work of Aspect Detection
has also been followed by Sentiments analy-
sis which plays a major part in Opinion min-
ing. In 2014 SemEval-Task 4, Maria Pontiki
(2014) provided the first dataset which con-
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Aspect Class In Hindi Aspect Class In Roman Count
सॉफ्टवेयर software 52

स्पेिसिफकेशन और फ़ीचर Specification aur feature 360
हमारा फ़ैसला hamara faisla 9

कैमरा और बैटरी लाइफ camera aur battery life 5
स्पेिसिफकेशन और सॉफ्टवेयर specification aur software 137

कैमरा camera 76
परफॉमे

र्

ंस performance 826
लुक व बनावट look vah banawat 26
बैटरी लाइफ battery life 1
हमारा फैसला hamara faisla 300
कैमरा परफॉमे

र्

ंस camera performance 16
िडज़ाइन design 138

िडज़ाइन और लुक design aur look 168
NULL NULL 352

स्पेिसिफकेशन specification 139
िडज़ाइन और िबल्ड design aur build 390
िडज़ाइन और िडस्प्ले design aur display 49

स्पेिसिफकेशन , सॉफ्टवेयर और परफॉमे

र्

ंस specification, software aur performance 40

Table 1: Class Set

sisted of English reviews annotated at sentence
level with their aspects followed by their po-
larity. Some of the systems that emerged who
targeted this task were Zhiqiang Toh (2014),
Chernyshevich (2014); Joachim Wagner and
Tounsi (2014); Giuseppe Castellucci (2014),
Shweta Yadav (2015). However, almost all
these systems are related to some specific lan-
guages, especially English. In 2016, SemEval
released new datasets of similar domains(mo-
bile, laptop, restaurant) 1 but in multiple lan-
guages. In 2016, the datasets were released in
English, Arabic, Chinese, Dutch, French, Rus-
sian, Spanish and Turkish.

But this area of field is largely unexplored
in Indian languages due to the unavailabil-
ity of high quality datasets and other tools
and resources required. The datasets which
were created by research groups mainly by
Aditya Joshi (2010); Balamurali A R (2011,
2012) were very less in size and low in qual-
ity. Also Google transolator was used to cre-
ate data in Indian languages (Akshat Bakli-
wal, 2012) but dataset created was not rich
enough to perform aspect detection with high

1http://alt.qcri.org/semeval2016/task5/
index.php?id=data-and-tools

efficiency. Moreover the datasets available
in Hindi were not domain specific which also
added to poor results in past.

3 Data Creation

As mentioned, earlier our work is on a spe-
cific domain. To build our corpus we scrapped
data from various online forums with reviews
on mobile phones. We extracted the text from
the HTML data with the help of Beautiful-
Soup library 2 in python. As our language was
Hindi, online reviews were very less for which
we tried both dynamic and manual crawling of
data.

After crawling over 8 websites, we were able
to get over 381 reviews. We retrieved 294 mo-
bile reviews(37410 sentences) in a HTML for-
mat after extensive removal of noisy reviews.
We had 294 HTML files which had raw data
between different HTML tags. There was no
uniformity in the reviews, even after extrac-
tion and tokenization of these reviews,

2https://pypi.org/project/beautifulsoup4/
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Unclean reviews 381
Unclean sentences 37410

Clean reviews 294
Clean sentences 2000

Total tokens 34359

Table 2: Corpus Details

Many reviews had proper headings like
specifications, performance, price, design un-
der which two-three paragraphs of text was
present. But there were many reviews without
any headings. To make it uniform and bring it
to sentence level rather than paragraph level,
we assigned the heading as labels to every sen-
tence appearing under that heading in the re-
view. This was our first annotation strategy.
While assigning heading as aspects, there were
certain sentences which had no heading above
them. Such sentences were labelled as NULL.
After this initial annotation, we had 18 classes
of aspects in total. After doing analysis on our
18 classes, we observed a lot of overlapping be-
tween different classes. Some classes had the
same name, but due to spelling variations they
were assigned different labels. Table 3 gives
a clear picture about the overlapping between
different classes. We show the counts of highly
frequent overlapping class pairs.

Class1 and Class2 Over-
lap
Count

स्पेिसिफकेशन और फ़ीचर,

स्पेिसिफकेशन और सॉफ्टवेयर

(specification aur feature),
(specification aur software)

441

िडज़ाइन और लुक, िडज़ाइन और

िबल्ड (design aur look), (de-
sign aur build)

418

स्पेिसिफकेशन और फ़ीचर,

स्पेिसिफकेशन (specification
aur feature, specification)

410

िडज़ाइन, िडज़ाइन और िबल्ड

(design), (design aur build)
387

स्पेिसिफकेशन स्पेिसिफकेशन

और सॉफ्टवेयर (specifica-
tion), (specification aur
software)

336

Table 3: Overlapping Between Initial Classes

The following decisions to club different
classes and provide them a single label were
taken based on the percentage of overlapping.

• सॉफ्टवेयर(software), स्पेिसिफकेशन और फ़ीचर

(specification aur feature), स्पेिसिफकेशन

और सॉफ्टवेयर (specification aur software),
स्पेिसिफकेशन, स्पेिसिफकेशन , सॉफ्टवेयर और

परफॉमे

र्

ंस (specification, specification, soft-
ware aur perfomance) clubbed under one
single class called स्पेिसिफकेशन (specifica-
tion).

• कैमरा और बैटरी लाइफ (camera aur battery
life), कैमरा (camera), , कैमरा परफॉमेर् ंस (cam-
era performance) were clubbed under a
class कैमरा (camera).

• लुक व बनावट (look wh banawat), िडज़ाइन

(design), िडज़ाइनऔर लुक (design aur look),
िडज़ाइनऔर िबल्ड (design aur build), िडज़ाइन
और िडस्प्ले (design aur display) categorized
under one class िडज़ाइन(design).

• कैमरा (camera),कैमरा परफॉमेर् ंस (camera per-
formance), कैमरा और बैटरी लाइफ(camera
aur battery life) were categorized under
one class कैमरा (camera).

• NULL and हमारा फैसला(hamara faisla)
were merged as into a single class NULL.

After eliminating all these redundancies, we
finally had 5 classes or aspects for our mobile
reviews.

Aspect Class Count
िडज़ाइन (design) 298
स्पेिसिफकेशन(specification) 585
NULL 489
परफॉमे

र्

ंस(performance) 459
कैमरा(camera) 169

Table 4: Classwise Distribution

Two annotators were involved in this task.
We obtained a Fleiss‘ 3 score of 0.87 for inter
annotator agreement.

4 Experimental Setup
The main task was to predict aspects in ev-
ery sentence in a review. We used different

3https://en.wikipedia.org/wiki/Fleiss'
_kappa
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Classifier Feature P R F1-Score
MNB word uni 0.65 0.60 0.62
MNB word uni+bi 0.62 0.63 0.63
MNB char 2gram 0.72 0.65 0.67
MNB char 2-3gram 0.75 0.73 0.74
MNB char 2-4gram 0.74 0.74 0.74
MNB char 2-5gram 0.73 0.75 0.74
MNB word uni+char2-5gram 0.74 0.74 0.74
MNB word uni+bi+char2-5gram 0.73 0.75 0.74
SVM word uni 0.65 0.64 0.65
SVM word uni+bi 0.70 0.66 0.67
SVM char2gram 0.73 0.71 0.72
SVM char2-3gram 0.75 0.73 0.74
SVM char2-4gram 0.77 0.75 0.75
SVM char2-5gram 0.77 0.75 0.76
SVM word uni+char2-5gram 0.74 0.73 0.73
SVM word uni+bi+char2-5gram 0.75 0.73 0.74

Table 5: Results Of Models After 5-fold Cross Validation

classifiers for the prediction task. We mostly
experimented with machine learning models
with 5-fold cross-validation as we had limited
amount of data at our disposal.

4.1 Feature Engineering
Feature engineering is critical in designing ac-
curate models. The features used in design-
ing our supervised learning models are detailed
here.
TF-IDF Vectors

• Word n-grams - This feature deals with
the presence or absence of certain se-
quence of words. The value of n used var-
ied from 1 to 2.

• Character n-grams - This is similar to
word n-grams where a sequence of charac-
ters is extracted from the text. The value
of n used varied from 2 to 5.

4.2 Machine Learning Approach
We created baseline with two classifiers

• Support Vector Machines (SVM)

• Multinomial Naive Bayes (MNB)

These two classifiers were implemented using
the sklearn (Pedregosa et al., 2011) library.
We used different feature set in both the clas-
sifiers.

5 Results

The results are shown in table 5. Classifiers
and their corresponding features are detailed
in this table. We used precision, recall and
macro F1-score as the evaluation metric for
checking the performance of our models. The
words ‘uni’, ‘bi’ refer to the word unigrams and
bigrams respectively. char ‘a-b’ gram denotes
the combination of character n-grams where n
lies in {a, a+ 1, a+ 2, .., b}

6 Observation

From table 5, we observed that both the classi-
fiers equally perform well on the data. We also
observed that character n-grams models are
superior than word n-gram models. Combina-
tion of word and char n-gram TF-IDF vectors
do not significantly improve the performance.

From the values of confusion matrix, we ob-
served that class स्पेिसिफकेशन(specification) has
overshadowed classes NULL and कैमरा(cam-
era). It shows that our model is not able
to predict between the umbrella class and the
child class accurately.

7 Conclusion and Future Work

We annotated aspects for mobile reviews writ-
ten in Hindi as a part of this work. We
also presented baseline models for automatic
aspect identification in mobile reviews. The
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baseline models will help us to annotate more
reviews semi-automatically and can then be
integrated to improve our systems. We will
explore more into neural network architec-
ture and word embeddings. The next task
in this area would be to annotate polarity of
the aspects. We can also explore identifying
the most informative reviews (Mishra et al.,
2017).
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Abstract

Automatic extraction of disaster-related events
and their arguments from natural language text
is vital for building a decision support system
for crisis management. Event extraction from
various news sources is a well-explored area
for this objective. However, extracting events
alone, without any context provides only par-
tial help for this purpose. Extracting related
arguments like Time, Place, Casualties, etc.,
provides a complete picture of the disaster
event. In this paper, we create a disaster do-
main dataset in Hindi by annotating disaster-
related event and arguments. We also obtain
equivalent datasets for Bengali and English
from a collaboration. We build a multi-lingual
deep learning model for argument extraction
in all the three languages. We also compare
our multi-lingual system with a similar base-
line monolingual system trained for each lan-
guage separately. It is observed that a single
multi-lingual system is able to compensate for
lack of training data, by using joint training
of dataset from different languages in shared
space, thus giving a better overall result.

1 Introduction

The ability to extract real time news of disaster
events automatically, can potentially help in bet-
ter decision-making for planning and coordination
of disaster relief efforts. Event extraction from text
entails the extraction of particular types of events
along with their arguments. Information obtained
from extracted event mentions provides a more
structured and clear picture when augmented with
related arguments like Time, Place, Participant,
Casualty etc. In a language rich world where each
event is documented in multiple languages, argu-
ment extraction in multi-lingual setting stands as a
crucial task.
Extraction of events from news is a well ex-

plored area in Natural Language Processing. Com-

petitions such as ACE2005 (Doddington et al.,
2004) and TAC-KBP2015 (Mitamura et al., 2015)
have investigated the area and provided a large
body of literature on event extraction from news
articles. Event extraction was done on ACE2005
dataset by Ji and Grishman (2008) by combining
global evidence from related documents with local
decisions. Hou et al. (2012) introduced a method
of event argument extraction based onCRFsmodel
for ACE 2005 Chinese event corpus. Event and its
arguments were extracted by Petroni et al. (2018),
for the purpose of extracting breaking news. Al-
though extraction of events is quite well examined,
there is a scarcity of work in extraction of detailed
arguments for disaster domain like casualties, rea-
son, after-effects etc.
In this paper we create and publish a dataset

annotated for events in disaster domain, for three
different languages, i). Hindi, ii). Bengali and
iii). English. This dataset is annotated for the
task of argument extraction by expert annotators.
We build a ‘mono-lingual’ deep learning system,
based on CNN (Convolutional Neural Network)
and Bi-LSTM (Bi-Directional Long Short Term
Memory) for the task of argument extraction. In
order to leverage the information from all the lan-
guages while training, and improve the perfor-
mance of the system, we build a ‘multi-lingual’ ar-
gument extraction system. This is done by adding
separate language layers for each language to our
‘mono-lingual’ system. To bring the datasets of all
the languages to the same vector space, we make
use of ‘multi-lingual’ word embeddings. We show
that by training our model in this way we are able
to utilize the dataset of all the three languages and
improve the performance of our system for most
arguments in the three languages. We also in-
vestigate how the syntactic difference of the lan-
guages is handled by our system. Through analy-
sis, we show that ‘multi-lingual’ training is espe-
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cially helpful in improving the performance when
some argument is under-represented in the ‘mono-
lingual’ training data.

1.1 Problem Definition
Argument extraction entails classifying each word
in the sentence into some argument or not argu-
ment. Therefore, it has been formulated as a se-
quence labelling task. Given a sentence of form
w1, w2, ..., wn, the task is to predict the sequence
of event-arguments, of the form l1, l2, ..., ln. Six
different types of arguments were annotated in the
dataset: i). Place, ii). Time, iii). Reason, iv). Ca-
sualties, v). Participant and vi). After-effects. To
label multi-word event-arguments, IOB-style en-
coding is used where B, I and O denote the begin-
ning, intermediate and outside token of an event.

• Input Hindi Sentence: गृह मंśालय मुंबई के बम
ȟव्फोटȋ के मǩेनजर इस बात कɏ ȟवशेष तौर पर जांच कर
रहा है ȟक अWरधाम मंȟदर और १९९३ के मुंबई बम ȟव-
ĥफोटȋ के फसलȋ कɏ ŠȠतȟŌया के ɴप मȅ तो यह हमले
नहȂ ɷए

• Translation: In view of the Mumbai bomb
blasts, the Home Ministry is specially inves-
tigating the fact that these attacks did not take
place as response to the Akshardham Tem-
ple and the 1993 Bombay bomb blasts

• Output: O O I_Place O O O O O O O O O
O O O O O O O I_Place I_Place O I_Time O
I_Place O O O O O O O O O O O O O O

2 Related Works

A major task in information extraction is detec-
tion of event triggers, event classification and
event argument extraction. Recent works on
event trigger detection and classification discuss
efficient feature representation techniques which
can help in event extraction. Nguyen and Gr-
ishman (2015) proposed a convolutional neural
network for event extraction which automatically
learns features from text. Chen et al. (2015) in-
troduced dynamic convolutional neural network
(DMCNN), which adopt a dynamic multi-pooling
layer in accordance with the event triggers and
its arguments. In 2016, Nguyen and Grishman
(2016) improved their CNN model by introducing
the non-consecutive convolution by skipping irrel-
evant words in a sequence. Feng et al. (2018) de-
signed a combined model of LSTM’s and CNN’s
which helped in capturing both sequence level and

chunk level information from specific contexts.
Nguyen and Grishman (2018) explored graph con-
volutional network over dependency trees and en-
tity mention-guided pooling. For low resource
languages, Liu et al. (2018) came up with Gated
Multi-Lingual Attention (GMLATT) and Lin et al.
(2018) developed a multi-lingual multi-task archi-
tecture alleviating data sparsity problem in related
tasks and languages.

Previously, in event argument extraction re-
searchers have experimented with pattern based
methods (Patwardhan and Riloff, 2007; Chambers
and Jurafsky, 2011) and machine learning based
methods (Patwardhan and Riloff, 2009; Lu and
Roth, 2012) most of which utilise the various kinds
of features obtained from the context of a sen-
tence. Higher level representations such as cross-
sentence or cross-event information were also ex-
plored by Hong et al. (2011) and Huang and Riloff
(2011). Maximum Entropy based classifiers were
applied for event and argument labeling by Ahn
(2006); Chen and Ji (2009); Zhao et al. (2008). The
disadvantage withME classifier is that it gets stuck
in local optima and fails to fully capture the con-
text features. To overcome this Hou et al. (2012)
proposes a event argument extraction system based
on Conditional Random Fields (CRF) model that
can select any features and normalizing these fea-
tures in overall situation helps in obtaining opti-
mal results. While, these models can get affected
by the error propagated from upstream tasks, a
joint model can help us utilise the close interac-
tion between one or more similar tasks. Li et al.
(2013) presented a joint model for Chinese Corpus
which identifies arguments and determines their
roles for event extraction using various kinds of
discourse-level information. On ACE2005 dataset
Sha et al. (2018) proposed a dependency bridge re-
current neural network (dbRNN) built upon LSTM
units for event extraction. They use dependency
bridges over Bi-LSTM to join syntactically simi-
lar words. A tensor layer is applied to get the var-
ious argument-argument interactions. Event trig-
gers and arguments are then jointly extracted util-
ising a max-margin criterion. Nguyen et al. (2016)
presented a GRU model to jointly predict events
and its arguments.

We introduce two systems for the task of event
argument extraction. First is our monolingual sys-
tem built using CNN (Convolutional Neural Net-
work) and Bi-LSTM (Bi-Directional Long Short
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Term Memory). To exploit the information from
related languages, we develop a second system
that can use information from all the languages for
training. This multi-lingual system is built by us-
ing shared vector space of embeddings while train-
ing, and by using separate language layers for each
language to accommodate for diversity in syntax of
the languages.

3 Methodology

In this paper, we propose that joint training of
IE system on different language datasets, using
‘multi-lingual’ word embeddings and language
layers helps in better extraction of arguments. This
is particularly true when the dataset is limited in
size. To corroborate our claim, we device two dif-
ferent systems, i). monolingual baseline system,
and ii). multi-lingual system. The ‘monolingual
baseline’ system only takes input data (sentence
wise) from one language and extracts the argu-
ments. For word representation, it uses monolin-
gual word embeddings. The ‘multi-lingual’ argu-
ment extraction system uses separate language lay-
ers and multi-lingual word embeddings for joint
training on all the three languages.

3.0.1 Monolingual Word Embedding
The monolingual word-embeddings that are used
in our experiments are also known as fastText1. It
was proposed by Bojanowski et al. (2017), and is
based on the skipgram model. However instead of
using one-hot vector encoding for each word while
training, a vector representation of a word that con-
siders character n-grams occurring in the word is
formed. To get this representation, the n-grams
from all thewords for ‘n’ greater than 2 and smaller
than 7 are extracted. After this, a dictionary of all
the extracted n-grams is created. A given word w,
can now be denoted by Γw ⊂ {1, ...., G} i.e the set
of n-grams appearing in the word; where G is the
size of the n-gram dictionary. With each n-gram
in G, a vector representation zg is associated. A
word represention is obtained by summing up all
the n-grams, as described in Equation 1:

Vw =
∑

g∈Gw

zg (1)

The continuous skip-gram model used these word
vectors Vw, to obtain word-embedding representa-

1https://github.com/facebookresearch/
fastText

tions of words. The main advantage of this tech-
nique is that, even in the absence of some word
in the training corpus, some representations of the
word is still obtained as the n-gram representation
of words is considered. This skip-gram model is
trained using Wikipedia data dump of each lan-
guage. The dimension of the word vector to is set
to 300.

3.0.2 Multi-lingual Word Embedding
Multi-lingual embeddings are obtained by learn-
ing a mapping matrix W , between source em-
beddings X = {x1, x2, x3..., xn} and target em-
beddings Y = {y1, y2, y3, ..., yn} without cross-
lingual supervision.Adversarial training was used
in this method proposed by Conneau et al. (2017).
A discriminator is trained to discriminate be-
tween a randomly sampled element from WX =
{Wx1, ...,Wxn} and Y . At the same time W is
trained to prevent the discriminator from making
correct prediction. Thus making it a two-player
game, where the discriminator tries to maximize
its capability of identifying the origins of an em-
bedding, and W aims to prevent the discrimina-
tor from doing so by makingWX and Y as indis-
tinguishable as possible. The W matrix is trained
with near orthogonality constraint, to ensure that
while transforming the source vector to the tar-
get vector space, the angles and distances between
words in the embeddings are not distorted during
transformation. To achieve this near orthogonality
constraint, weight updation for W is done using
Equation 2.

W ← (1 + β)W − β(WW T )W (2)

Here, β was set to 0.01 for the transformation.
For our experiments we trained mapping matrices
Whindi and Wbengali that map the Hindi and Ben-
gali word embeddings to the vector space of En-
glish embeddings.

3.1 Monolingual Baseline Model

The ‘monolingual baseline’ model (c.f Figure 1) is
based on Bi-Directional Long Short TermMemory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) and Convolutional
Neural Networks (CNN) (Kim, 2014). The in-
put to the model is a sentence, represented by
a sequence of monolingual word embeddings.
Since Bi-LSTM and CNN take sequences of equal
lengths, the shorter sequences are padded by zero
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Figure 1: monolingual baseline model for argument ex-
traction

vectors. This sequence is passed through Bi-
LSTM and CNN having filter size 2 and 3. The
Bi-LSTM gives contextual representation of each
word, while the CNN extracts the ‘bi-gram’ and
‘tri-gram’ features for the sequence. These fea-
tures are concatenated and passed through a fully
connected layer. This layer gives shared represen-
tation for the task of argument extraction. Since
the arguments in the dataset are not mutually ex-
clusive (E.g: Place or Participant argument can
also be a part of Reason or After-effect argument),
we have different layers to predict different argu-
ments independently. We have 6 different fully-
connected layers in parallel, each of them special-
ized for detection of one of the 6 arguments. ‘Soft-
max’ is used after each of the final layers to classify
the representation into I, O or B of an argument.

3.2 Multi-lingual Model
For multi-lingual system, we build a model based
on the baseline model, by adding separate lan-
guage layers (L1, L2 and L3) for each language
(c.f Figure 2). A layer Li and its subsequent lay-
ers are only trained when input data is also of lan-
guage Li. We represent the input sentence as a
sequence of multi-lingual word embeddings, and
padding with zero vectors is used to make the se-
quence equal in length. Similar to the ‘monolin-
gual baseline’ model, Bi-LSTM, CNN and a fully
connected layer is used. This fully connected layer

Figure 2: Multi-lingual baseline model for argument
extraction

produces shared language and task representation
as output. Three separate language layers for the
languages Hindi, Bengali and English are used in
parallel. These language layers decode the lan-
guage specific representation from shared repre-
sentation. After each language layer we have 6
fully connected layers for each of the 6 arguments.
‘Softmax’ classifier is used to classify the repre-
sentation into I, O or B of an argument.

4 Dataset and Experiments

In this section, we describe the dataset used and the
experiments conducted.

4.1 Dataset

To create the dataset, we crawled news articles
in disaster domain from popular news websites in
Hindi. These news articles were annotated by three
annotators, with good language abilities and hav-
ing satisfactory knowledge in the relevant area.
The guidelines for annotation used were similar to
the guidelines given by TAC KBP 2017 Event Se-
quence Annotation Guidelines2. We recorded that
the annotators had Kappa agreement score of 0.85

2https://cairo.lti.cs.cmu.edu/kbp/2017/
event/TAC_KBP_2017_Event_Coreference_and_
Sequence_Annotation_Guidelines_v1.1.pdf
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Argument Hindi Bengali English
Time 3,953 11,042 822
Place 12,410 10,576 3,018
Reason 1,573 1,744 544
Casualties 12,171 15,870 4,823
Participant 2,264 4,311 639
After-effects 13,355 9,731 274

Table 1: Distribution of number of arguments inHindi,
Bengali and English datasets

on average. We also obtained equivalent dataset
in Bengali and English language from a collabora-
tion. The total dataset is comprised of 2,191 doc-
uments (Hindi: 922, Bengali: 999 and English:
270). It contains 44,615 sentences (Hindi: 17,116,
Bengali: 25,717 and English: 1,782). The six ar-
guments in the dataset and their distribution in the
three languages are detailed in the Table 1.

4.2 Experiments
We conduct two separate experiments to show that
dataset from different languages (L1 and L2) can
be leveraged to improve the performance of ar-
gument extraction system of a different language
(L3). First we conduct experiment to obtain base-
line results on ‘mono-lingual’ setup. Next, we per-
form experiment using the combined dataset of all
the three languages using ‘multi-lingual’ argument
extraction model.

4.2.1 Monolingual Experiment
This experiment is conducted separately on each
dataset using the ‘monolingual baseline model’
(c.f. Figure 1) and monolingual fastText embed-
dings. The results of this experiment is used as
a baseline, against which the results of the other
experiment is compared. The following set-up
is used for the experiment: i). learning rate:
1 × 10−2, ii). batch size: 32, iii). optimizer:
Adam (Kingma and Ba, 2014), iv). loss func-
tion: Binary cross-entropy. The best model based
on validation-set accuracy was saved after 100
epochs.

4.2.2 Multi-lingual Experiment
This experiment is conducted on the combined
dataset of three languages, using the ‘multi-lingual
model’ (c.f Figure 2). Multi-lingual word em-
beddings (described in Section 3.2) were used for
word representation in all the three languages, in
this experiment. The same experimental set-up

used for the ‘monolingual baseline’ experiment, is
also used for this experiment. The training of mul-
tilingual system was done batch wise, i.e. each
language branch was trained for one batch alter-
natively. The number of steps per epochs was de-
cided by the number of batches needed to complete
one epoch of the largest training set, among the dif-
ferent language datasets.

5 Results and Analysis

In this section, we discuss the results obtained for
the two experiments described in Section 4.2. We
also provide analysis of the results. F1-Score is
used as an evaluation metric, and all the results
reported are 5-Fold cross-validated. The results
for both, ‘monolingual’ and ‘cross-lingual’ exper-
iments are reported in Table 2. From the results,
it can be observed that F1-score for Hindi and En-
glish datasets improve formost arguments (5 out of
6 arguments), while the results for Bengali dataset
improves for three out of the six arguments.
We also test the statistical significance of each

increment in F1-Score for argument extraction.
The ‘p-values’ obtained after ‘t-test’ are shown in
Table 3. It can be seen that most improvements in
F1-score are statistically significant.
It is observed that multi-word Time arguments

are better captured by ‘multi-lingual’ model than
by the ‘monolingual baseline’ model. An example
of this can be seen in the following sentence:

• Hindi Text: एसएसपी संतोष कुमार Ȯस�ह ने बताया
ȟक रȟववार रात को जलालपुर पर तैनात पुȢलसकȸम�यȋ ने
बाइक पर सवार दो युवकȋ को रोकने कɏ कोȡशश कɏ

• Transliteration: esesapee santosh kumaar
sinh ne bataaya ki ravivaar raat ko jalaalapur
par tainaat pulisakarmiyon ne baik par savaar
do yuvakon ko rokane kee koshish kee

• Translation: SSP Santosh Kumar Singh said
that on Sunday night, policemen stationed
at Jalalpur tried to stop two youths riding on
bikes.

In the aforementioned sentence the actual phrase
denoting time is ‘रȟववार रात’ (Sunday night). How-
ever the ‘monolingual’ model only detects ‘रȟववार’
(Sunday) as the Time argument. However, after
multi-lingual training the entire time phrase is cor-
rectly detected. This is because the lack of train-
ing data for multi-word time arguments in Hindi,
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Mono-lingual Multi-lingual
Argument Hindi Bengali English Hindi Bengali English
Time 0.60 0.86 0.56 0.61 0.85 0.58
Place 0.58 0.61 0.57 0.56 0.59 0.55
Reason 0.01 0.19 0.14 0.16 0.22 0.20
Casualties 0.58 0.73 0.62 0.59 0.71 0.63
Participant 0.35 0.50 0.30 0.41 0.53 0.32
After-effects 0.25 0.28 0 0.30 0.35 0.13

Table 2: Results (F1-Scores) for ‘mono-lingual’ and ‘multi-lingual’ experiments on Hindi, Bengali and English
datasets: 5-Fold cross-validated

Argument Hindi Bengali English
Time 0.46 n/a 0.03
Place n/a n/a n/a
Reason 0.03 0.18 0.04
Casualties 0.39 n/a 0.10
Participant 0.01 0.11 0.54
After-effects 0.04 0.09 0.01

Table 3: The ‘p-values’ obtained for each improvement
in results from the baseline ‘mono-lingual’ to ‘multi-
lingual’ experiment (n/a is used for instances where no
improvement was observed)

is supplemented by training data from Bengali and
English.
Another interesting observation is that, for Ca-

sualty argument of English dataset, the ‘monolin-
gual’ system often confuses people as casualties,
even when they are not. An example of such ob-
servation is as follows:

• Actual: Over 200000 people in 36 villages
located 6 miles (10 km) from the volcano
were advised to evacuate immediately.

• Monolingual Prediction: Over 200000 peo-
ple in 36 villages located 6 miles (10 km)
from the volcano were advised to evacuate
immediately.

• Multi-lingual Prediction: Over 200000 peo-
ple in 36 villages located 6 miles (10 km)
from the volcano were advised to evacuate
immediately.

In the above example the phrase ‘200000 peo-
ple’ does not denote casualty, however the ‘mono-
lingual’ model confuses it as casualty. This is due
to the lack of training data in English to learn the
difference between some count of people and ac-
tual casualty. However, after ‘multi-lingual’ train-

ing the model is able to make this distinction cor-
rectly.
The F1-score for Place arguments for all the

datasets, is better for the ‘monolingual baseline’
model. This is because Place argument is present
in good numbers for all the datasets, therefore there
are enough instances for proper training of deep
learning model, even in monolingual setting. Us-
ing ‘multi-lingual model’ for such cases is of lit-
tle help. Furthermore, the syntactic difference be-
tween languages confuses the system, thus degrad-
ing the performance of the ‘multi-lingual’ system.
A good example of this phenomenon is show be-
low:

• Actual: Three youths lost their lives when
the car they were travelling in collided with
a truck near Gaddoli village of Naraingarh
in Ambala.

• Monolingual Prediction: Three youths lost
their lives when the car they were travelling
in collided with a truck near Gaddoli village
of Naraingarh in Ambala.

• Multi-lingual Prediction: Three youths lost
their lives when the car they were travelling
in collided with a truck near Gaddoli village
of Naraingarh in Ambala.

It can be observed that the ‘monolingual base-
line’ model predicts the entire phrase describing
the Place argument correctly. However the pre-
diction by ‘multi-lingual model’ misses the prepo-
sition ‘in’, which is present between ‘Naraingarh’
and ‘Ambala’. The same sentence can be written
in Bengali as follows:

• Bengali Transliteration: Ambālāra
nārāẏanagaṛēra gāddali grāmēra kāchē
ēkaṭi ṭrākēra sāthē ṭrēnēra mukhōmukhi
saṅgharṣē tinajana yubaka prāṇa hārāẏa.
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The phrase ‘in Ambala’ is represented by a sin-
gle word ‘Ambālāra’, in Bengali. This difference
in syntax between languages, makes the ‘multi-
lingual’ system miss the word ‘in’ thus degrading
the performance of the system.
The best improvement in F1-score is observed

for the arguments Reason and After-effects for the
English language. This is because these two ar-
guments have least support in the dataset, and
thus multi-lingual training helps by mitigating the
scarcity in training examples. The same phe-
nomenon can also be observed for Reason argu-
ment which has a low support in Hindi dataset.
Thus through our analysis we can conclude that,
‘multi-lingual’ training can help in improving the
performance of the system for low support classes.
However, it can also cause confusion and deterio-
rate the performance for high support classes.

6 Conclusion

In this paper we create a dataset for argument ex-
traction for disaster domain, for three languages
Hindi, Bengali and English. We then build a deep
learning model for extraction of these argument in
each language separately. Since the data is limited
in size, we build another model that leverages data
from all the languages. To make use of different
language datasets, we first bring the word embed-
dings of all the three languages to the same vector
space. We also use separate language layers to ac-
commodate divergence in syntax of the languages.
Through our experiments we show that training in
shared vector space by using ‘multi-lingual’ sys-
tem helps in improving the performance of low
support arguments. We also show that the for
high support arguments, the syntactic difference in
language can sometimes overcome the benefit of
‘multi-lingual’ training and cost in performance of
our proposed ‘multi-lingual’ system.
In future we would like to explore how to handle

these syntactic differences so that the performance
can be further improved. It would also be interest-
ing to explore the range of languages that can be
trained successfully in a multi-lingual setting.
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Abstract

Code-mixed texts are widespread nowadays
due to the advent of social media. Since these
texts combine two languages to formulate a
sentence, it gives rise to various research prob-
lems related to Natural Language Processing.
In this paper, we try to excavate one such
problem, namely, Parts of Speech tagging of
code-mixed texts. We have built a system that
can POS tag English-Bengali code-mixed data
where the Bengali words were written in Ro-
man script. Our approach initially involves
the collection and cleaning of English-Bengali
code-mixed tweets. These tweets were used
as a development dataset for building our sys-
tem. The proposed system is a modular ap-
proach that starts by tagging individual tokens
with their respective languages and then passes
them to different POS taggers, designed for
different languages (English and Bengali, in
our case). Tags given by the two systems are
later joined together and the final result is then
mapped to a universal POS tag set. Our system
was checked using 100 manually POS tagged
code-mixed sentences and it returned an accu-
racy of 75.29%.

1 Introduction

A Parts-of-Speech (POS) Tagger is a piece of soft-
ware that reads the text in some language and as-
signs parts of speech tags, such as noun, verb, ad-
jective, etc., to each word/token. POS Tags are
useful for building parse trees, which may be used
to build textbfNamed Entity Recognizers (NER)
or Dependency Parsers. POS Tagging is also use-
ful for building lemmatizers, which are used to
reduce a word to its root form. POS taggers for
widely spoken languages have been developed in
abundance. But such resources are very scarce for
low resourced languages.

On the other hand, code-mixing is simply a mix
of two or more languages in communication. Due

to the emergence of social media, a lavish amount
of digital code-mixed data is generated. This is be-
cause people nowadays are very comfortable with
multilingualism. This phenomenon has produced
a section of researchers, who contemplate code-
mixed texts as being a new language.

As mentioned earlier, since POS tagging sys-
tems for low resourced languages are hard to come
by, developing one that will cater to code-mixed
text is trivial. POS tagging systems, if devel-
oped for Code-Mixed data, can lead to decipher-
ing many complex Natural Language Processing
(NLP) tasks and hence, we attempt to develop the
same in this reported work. We try to focus on
creating a POS tagger for English-Bengali code-
mixed data, as languages such as Bengali are mor-
phologically rich in nature.

Our method includes scraping of code-mixed
English-Bengali tweets on Twitter and cleaning
them. The Bengali words in these tweets were
in Roman script. These cleaned tweets were used
as a development dataset for building our system.
Our system starts with tagging individual tokens
of a tweet with their respective languages, either
English, Bengali or Unknown. This step will give
rise to segments/sub-sequences of the tweet, writ-
ten in the same language. It is to be noted that
tokens tagged as Unknown were discarded. The
segments will then be passed to two POS taggers,
one designed for English and the other designed
for Bengali. The output from the POS taggers will
then be joined together to get the final POS tagged,
code-mixed tweet. Since the POS tagging mod-
ules of English and Bengali use different tag sets,
we further map the tags to a manually defined uni-
versal POS tag set. This step produces a final POS
tagged tweet with uniform tags. The architecture
of the proposed model is shown in Figure 1.

The remainder of the paper is organized as fol-
lows. Section 2 documents a brief state-of-art on
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Figure 1: Architecture of the proposed model.

this domain. Section 3 defines the data preparation
steps. Section 4 defines the pipeline which helps
us in POS tagging the code-mixed tweets. This
will be followed by the results in Section 5 and
concluding remarks in Section 6.

2 Related Work

In the past few years, a lot of significant work
has been done in the field of Parts of Speech tag-
ging. The first significant POS tagger came in
the early Nineties which was a rule-based tagger
(Karlsson et al., 2011). One of the English rule-
based taggers had an accuracy of 99.5% (Samuels-
son and Voutilainen, 1997). POS taggers based on
statistical approaches were also used during this
time, which was based on statistical models like
bi-gram,tri-gram and Markov Models (DeRose,
1988; Cutting et al., 1992; Dermatas and Kokki-
nakis, 1995; Meteer et al., 1991; Merialdo, 1994).
Subsequently, POS tagger based on both statistical
methods and a rule-based approach was proposed
by Brill (1992).

Use of Conditional Random Fields for the de-
velopment of POS taggers was proposed by Laf-
ferty et al. (2001), Shrivastav et al. (2006) and Sha
and Pereira (2003). Nakamura et al. (1990) used
neural networks for POS tagging for the first time.

POS taggers for the Bengali language was also
built by Seddiqui et al. (2003). This POStag-
ger was built on the analysis of the Bengali mor-
phemes. Other works have been done in Bengali
POS tagging by Hasan et al. (2007) and Danda-
pat et al. (2007) which were rule-based and semi-
supervised.

Pimpale and Patel (2016) attempted to tag code-
mixed data using Stanford POS tagger. He trained
the POS tagger on constrained data of Hindi, Ben-
gali, and Telugu, mixed with English. They gar-
nered accuracy figures of 71%. Similarly, Sarkar

(2016) used the HMM model on constrained code-
mixed data and achieved an accuracy figure of
75.60%.

Pipeline architecture for POS tagging of code-
mixed data was first used by Barman et al. (2016).
The training data was very low in their case and
the LID (language identification) and translitera-
tion models used were based on Support Vector
Machines (SVM) and manual transliteration. Our
approach also used pipeline architecture similar
to theirs, but our model does not require any an-
notated data to train the system. Also, the LID
and transliteration modules, in our case, have been
fully trained with much larger data, using Deep
Learning architecture.

3 Data Preparation

We decided to use a development dataset for build-
ing our system. It is to be noted that this data was
used to build the proposed system and not to train
it. Since code-mixed data consisting of English
and Bengali language are difficult to find, we de-
cided to scrape such data from Twitter. The col-
lected tweets contained multiple degrees of noise
and hence, it needed to be cleaned before using it
to develop our future systems. After cleaning the
tweets, they were subjected to a Language Tag-
ger module that tagged every token of the tweet
with their corresponding language (English, Ben-
gali, and Unknown, in this case).

3.1 Tweet Scraping and Cleaning

Initially, we had to assemble the development
data, consisting of English-Bengali code-mixed
data, that will be used to build the POS tagger
model. For this, we scraped tweets from Twitter,
as it is a social media handle with a huge reposi-
tory of such data. Our tweet scraper module used
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the Twint module1, a python package that helps to
scrape tweets. The program was fed with a list of
Bengali (Romanized) keywords that will be used
to scrape the tweets. Later, the Twint object iter-
ates the keywords and recovers tweets correspond-
ing to the same keywords.

Using this method, 5,148 code-mixed tweets
containing English and Bengali (Romanized)
words were collected. The collected tweets were
noisy and hence we needed to clean it beforehand
to proceed. The cleaning module was a manifold
approach that involved cleaning links, smileys,
Emojis, Hashtags, and Mentions (Usernames).

3.2 Language Tagging and Segmentation

We observed that there is no end-to-end POS tag-
ger available that can jointly tag English and Ben-
gali tokens. Thus we decided to segment the
cleaned tweets, into Bengali and English. This
was done so that tokens in different language seg-
ments can be tagged with their respective POS
tags, separately.

For segmenting the tweets, the words needed to
be tagged with their corresponding language. To
develop such a Language Tagging (LT) model, we
collected 11,060 Romanized words of Bengali and
7,223 words of English. We developed a binary
classification model that takes as input, the tokens
of a tweet (in character embedding) and outputs
the language of the word to either English or Ben-
gali. Tokens (in character embedding) were fed
to a stacked LSTM of size 2. The output vectors
from the LSTM cells were then fed to a fully con-
nected layer, which then mapped the words to its
specific language. For the given model, Activation
was kept as Sigmoid, Optimizer used was Adam
and Loss used was Binary Crossentropy. Batch
Size was kept at 30. The program was executed
for 30 epochs and the model was validated using a
validation split of 0.2.

The architecture of the language tagging mod-
ule is shown in Figure 2. The model returned a
validation accuracy of 91%. It is to be noted that,
characters apart from alphabets and numbers were
tagged as Unknown’. Tweets with no language
tag and only unknown tags were discarded. An
example of language tagging is shown in Table 1.
Statistics of the tweets after cleaning and language
tagging are shown in Table 2.

After the language tagging is done, a segmenta-

1https://pypi.org/project/twint/

One hot embedding
(Character Level)

Embedding Layer

LSTM 1

LSTM 2

Dense Layer

Input Words

Output

Figure 2: Language Tagging Module.

I loved the golpo and khabar
ta khub nice chilo .

I\en loved\en the\en golpo\bn and\en
khabar\bn ta\bn khub\bn nice\en chilo\bn .\un

Table 1: Example of Language Tagging.

tion module partitions the code-mixed input into
segments concerning its language tags. In our
case, segments are sub-sequences of the instance,
written in the same language. An example of seg-
mentation is shown below, where strings in brack-
ets denote segments;

1. (Movie)En (ta bhalo chilo)Bn (but mid point)En
(e amar khub)Bn (boring)En (lagte shuru korlo)Bn.
2. (I had to go)En (karon o khub)Bn (urgently)En
(daklo amaye)Bn.

3.3 Language Switch Analysis
Language tagged tweets were then analyzed to
examine switching patterns. For this, the tweets
were tokenized and a list of bigrams was extracted.
Since the tokens of the tweets are tagged with their
specific language, we could find out the count of
bigrams with respect to EN-EN (both tokens of bi-
agram are in English), BN-BN (both tokens of bi-
agram are in Bengali), EN-BN (fist token of bia-
gram is in English and second in Bengali) and BN-
EN (fist token of biagram is in English and second
in Bengali).

4 Parts of Speech Tagging

After the data preparation step, the language
tagged segments are passed to the corresponding
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Particulars Number
No. of tweets before LT 5,148
No. of tweets after LT 5,012

No. of tokens before LT 1,44,17
No. of tokens after LT 1,41,47

No. of tweets with no language tag 136
Table 2: Statistics of tweets after cleaning and

Language Tagging.

Switch Count Freq >500 Freq >1000
EN-BN 17,758 199 88
BN-EN 17,562 166 53
EN-EN 43,859 539 203
BN-BN 16,535 98 39

Table 3: Language Switch Analysis.

language POS tagger for the final tagging. Two
different POS tagging systems were used for En-
glish and Bengali. For POS tagging the English
Segments we used the Stanford POS tagger2 and
the output was recorded.

For the Bengali segments, we used a tagger de-
veloped by Das et al. (2014). They trained the tag-
ger on 10,000 Bengali (Devanagari) POS tagged
sentences and tested it on 2,000 Bengali (Devana-
gari) sentences. Their model returned 92% accu-
racy. To use their model, we had to transliterate
the Bengali segments into its corresponding De-
vanagari script. The model developed to do the
same is described in Section 4.1.

4.1 Bengali Transliteration
To develop the transliteration system, we ini-
tially collected 22,781 Romanized Bengali words
and manually transliterated them to its Devana-
gari counterpart. We developed a Sequence-to-
Sequence model that takes as input the Romanized
Bengali words and outputs the Bengali words in
the Devanagari script. The embedding used in this
model was at the character level.

The model consists of two parts: an Encoder
and Decoder. The encoder takes as input, Ro-
manized Bengali characters, creates one-hot vec-
tors of the same and passes this to the Embedding
layer. The output of the embedding layer is given
to a stacked LSTM cell, which produces a context
vector of the input word. The Decoder module
takes as input the Bengali characters in Devana-
gari script, creates a one-hot vector of the same
and passes it to an embedding layer. The output of
the embedding layer is given to a stacked LSTM
cell which is initialized with the state of the en-
coder module. The stacked LSTM cell then pro-

2https://nlp.stanford.edu/software/tagger.shtml

duces Bengali characters (in Devanagari script) as
output, with an offset of a one-time step. The acti-
vation of the model was selected as Softmax, Op-
timizer used was Adam and Loss used was Sparse
Categorical Crossentropy. Batch Size was kept at
1024. The program was executed for 50 epochs
and the model was validated using a validation
split of 0.1.

The validation accuracy of the model was
recorded as 87%. The architecture of the model
is shown in Figure 3.
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LSTM layer 2
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r D
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Figure 3: Back transliteration model

The transliterated segments are then fed to the
Bengali POS tagger and the corresponding outputs
are recorded.

After POS tagging both the English and Bengali
segments, the results are joined together to get a
POS tagged code-mixed tweet.

4.2 Mapping to Universal POS Tag Set

The final POS tagged code-mixed tweets need to
be generalized to a universal system because the
POS tags of the Bengali and English POS taggers
are different. This is because English and Bengali
POS taggers have different grammar and thus use
different POS tag sets. To simplify this situation,
we use a universal POS tag set that comprises the
tags as showed in Table 4. The table shows the
universal tags in bold and italics while the other
texts define the universal tag.

For mapping the English POS tags to this uni-
versal POS tag set we use map tag which is an
inbuilt tool of NLTK. It maps the English tags to
these tags based on some pre-defined rules.

The mapping of the Bengali POS tags (Stanford
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POS Univ.Tag POS Univ. Tag
Adjective ADJ Adposition ADP

Determiner DET Noun NOUN
Pronoun PRON Verb VERB
Adverb ADV Conjunction CONJ

Numeral NUM Particle PRT
Punctuation SYM Other X

Demonstrative DEM Intensifier INTF
Reduplicative RDP

Table 4: Universal tag set, where text in bold and
italics denote the tag and the text above define the tags

POS tags) to the universal POS tag set is shown in
Table 5. Here, text in bold and italics denotes the
universal tag, while the other defines the Stanford
POS tags.

Syst. Tag Univ. Tag Syst. Tag Univ. Tag
NN

NOUN
VM VERBNNP VAUX

INTJ JJ ADJPRP PRON QF
WQ RB ADVDEM DEM NEG
PSP ADP RP PRT
CC CONJ INTF INTF
QC NUM RDP RDP

SYM SYM UN UN
DET DET Other X

Table 5: Mapping of Bengali POS tags to the universal
tagset. Text in bold and italics denotes the universal
tag, while the other defines the Stanford POS tags

Finally, the POS tagged segments (mapped to the
universal POS tagset) are recorded as the final out-
put.

5 Results

Since there is no automated evaluation metric
present to assess the quality of POS tagging a
code-mixed sentence, we hired a linguist who was
proficient in both Bengali and English. The lin-
guist was asked to prepare a test data compris-
ing of 100 English-Bengali code-mixed sentences.
Further, the linguist was asked to POS tag the
tokens, based on the universal POS tagset, sepa-
rately. The linguist was told to look into the con-
text of the sentence while tagging the tokens. This
approach was used to properly
• tag ambiguous words, such as ’to’, which oc-

curs in both English and Bengali.
• tag words in the switching point.

The same test data was tagged using our system as
well. To calculate the agreement between the man-
ual annotation and system annotation, we used
Krippendorff’s Alpha (Krippendorff, 2011), and

the metrics and the confusion are shown in Table
6

POS
Tag

Man.
Tag

Syst.
Tag

Diff. &
Conf.

NOUN 522 538 16 ADJ VERB
VERB 286 259 27 NOUN PRON
ADJ 169 141 28 NOUN VERB

PRON 104 118 14 ADJ ADV
ADV 93 63 30 VERB ADV
SYM 59 60 1 NUM

CONJ 58 49 9 NOUN VERB
DET 54 53 1 VERB
ADP 54 49 5 PRT
PRT 21 18 3 ADJ
DEM 10 11 1 NOUN
NUM 9 9 0
INTF 3 6 3 VERB
RDP 1 1 0
UN 0 606 606

K’s \alpha
(Interval) 0.7522

Table 6: Agreement Analysis between manual tagged
and system tagged POS tags

Inter-system annotation agreement scores
described in Table 6 evaluates the overall system.
To dive deeper, we evaluated every sentence of
the test data. This was done using two methods.

Method 1:
For a code-mixed sentence, the POS tag of every
token in the same manually annotated sentence
as compared to the POS tag of every token in
the same system annotated sentence. scoreA was
calculated as

scoreA =
# matched POS tags with manual tagged sentence

# tokens in the manually annotated sentence

Method 2: POS tagging of tokens that
lie in the language switching point,i.e.,
wordEnglish ↔ wordBengali, is of utmost im-
portance as the context of the two words may
change. As a result, POS tags may also differ. In
this context, scoreB was calculated by multiplying
0.25 to scoreA and taking the absolute value of its
log value, if POS tags (for the language switching
point) in the manually annotated sentence and
the system annotated sentence, match. The
multiplying factor was kept at 0.25 as there can be
four bigrams, i.e., EN-EN, BN-BN, EN-BN, and
BN-EN.

If there is more than one switching point and
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the POS tags match, the multiplying factor was
repeated for the number of switching. So, if there
are two switching points, and the POS tags match,
scoreA will be multiplied by 0.25 and 0.25 to get
scoreB.

scoreB = |log(scoreA ∗ (0.25)n)|
, where n denotes the number of language switch-
ing points present and the trailing * denote that the
formula holds true if certain conditions are met.

With the help of the above methods, ScoreA and
ScoreB were calculated for every sentence and fi-
nally, the average for the whole test data was cal-
culated. With method 1, our algorithm garnered
accuracy of 72.72% and with method 2, the accu-
racy increased to 75.29%.

6 Conclusion

In this work, we have devised a modular sys-
tem that can POS tag English-Bengali code-mixed
sentences. The system uses sub-modules to per-
form the same. Owing to the fact, that the sub-
modules can be trained for any given language,
the proposed approach can be used to tag a va-
riety of code-mixed data involving any two lan-
guage pairs.

The system can be enhanced further if the sub-
modules can be trained using more annotated data.
E.g., if the POS tagger for the Bengali language
could have been trained using more data, the
problem of tagging untrained tokens with ’UN’
tags could have been solved. Also, the problem
of wrongly tagging tokens, e.g., tagging NOUN
as ADJ, VERB and tagging PRON as NOUN,
VERB, etc., could have been solved. This would
have made the Bengali POS tagging module more
robust. The same applies to the transliteration
module as well.

In the future, we would like to develop an
end-to-end system, so that the errors of one sub-
module do not propagate to the other sub-modules.
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Abstract
English-Hindi machine translation systems
have difficulty interpreting verb phrase el-
lipsis (VPE) in English, and commit er-
rors in translating sentences with VPE. We
present a solution and theoretical backing
for the treatment of English VPE, with
the specific scope of enabling English-Hindi
MT, based on an understanding of the
syntactical phenomenon of verb-stranding
verb phrase ellipsis in Hindi (VVPE). We
implement a rule-based system to perform
the following sub-tasks: 1) Verb ellipsis
identification in the English source sen-
tence, 2) Elided verb phrase head identi-
fication 3) Identification of verb segment
which needs to be induced at the site of el-
lipsis 4) Modify input sentence; i.e. resolv-
ing VPE and inducing the required verb
segment. This system is tested in two
parts. It obtains 94.83 percent precision
and 83.04 percent recall on subtask (1),
tested on 3900 sentences from the BNC
corpus (Leech, 1992). This is competi-
tive with state-of-the-art results. We mea-
sure accuracy of subtasks (2) and (3) to-
gether, and obtain a 91 percent accuracy
on 200 sentences taken from the WSJ cor-
pus(Paul and Baker, 1992). Finally, in or-
der to indicate the relevance of ellipsis han-
dling to MT, we carried out a manual anal-
ysis of the MT outputs of 100 sentences
after passing it through our system. We
set up a basic metric (1-5) for this evalu-
ation, where 5 indicates drastic improve-
ment, and obtained an average of 3.55.

1 Introduction
Verb phrase ellipsis is a particularly frequent
form of ellipsis, both in speech and in text.
English VPE is the elimination of a non-finite
verb phrase, introduced by an auxiliary or the
particle ‘to’(Kenyon-Dean et al., 2016).

We observe that state-of-the-art MT sys-
tems often cannot correctly interpret and
translate sentences with VPE. For example,
(elliptical phrase and site of ellipsis are in bold
and italics respectively):

Ram cooked the food quickly, but
Shyam did not →

*Ram
Ram-ERG

ne
-

jaldi
quickly-ABL

se
-

khana
food-OBJ

banaya,
cook-PT,

lekin
but

Shyam
Shyam-ERG

ne
-

nahi
not

diya.
give-PT

(created example)

In our initial analysis, we find that Google
Translate could translate only 6/50 VPE sen-
tences, taken from the WSJ corpus, correctly
from English to Hindi. This motivated us to
identify and resolve VPE in English and give
this modified sentence to the machine trans-
lation system to check whether it improves
the quality of translation. We used our MT
system Anusaaraka for this purpose.1

We present a rule-based approach that
performs three sub-tasks in order to solve this
problem: 1) ellipsis identification 2) identifi-
cation of the antecedent head verb 3) addition
of necessary auxiliaries and/or complements
to the head verb. Finally, it modifies the
input sentence by inducing the identified verb
segment at the site of ellipsis. We tailor this
algorithm for the purpose of English-Hindi
MT, and therefore provide a special treatment
to compound verbs (including phrasal verbs),

1https://ltrc.iiit.ac.in/Anusaaraka/anu_
home.html
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serial verbs, and verb complements in English.

Our solution is based on an understanding
of verb phrase ellipsis in Hindi. Hindi does not
exhibit VPE in the same manner as English;
however, it exhibits a phenomenon called
verb-stranding verb phrase ellipsis (VVPE)
(Manetta, 2018). This means that a verbal
phrase, including objects and other arguments,
may be completed elided, stranding the head
verb, which then appears at the site of ellipsis.

We propose that English VPE can be trans-
ferred into Hindi VVPE in order to improve
MT results on the modified sentence. For
this, we claim that it is enough to identify the
head verb antecedent in the English sentence,
and perform an analysis to support the claim.

Finally, we want to see that MT systems
indeed perform better on statements with el-
lipsis after our treatment. Since we want to
test the performance of the MT on a very spe-
cific facet: i.e. the elliptical clause, we do not
utilize standard evaluation metrics but set up
and define our own scale, and perform a man-
ual analysis of 100 sentences. This evaluation
dataset is meant to be merely indicative of the
benefits of ellipsis handling for MT. The re-
sults are explained below.

2 Background and Our
Contribution

There have been several previous works
addressing the problem of antecedent head
resolution for VPE in English. Cheung et al
adapt the Margin-Infused-Relaxed Algorithm
(MIRA) for target detection and antecedent
resolution and obtain an accuracy of 65
percent (Kenyon-Dean et al., 2016). Nielson,
2005, re-implements Daniel Hardt’s VPE-RES
algorithm on the Penn Treebank to obtain a
highest Head Overlap success of 85.87 percent
and a lower Exact Match success, about 78
percent on the Brown corpus (Nielsen, 2005)
(Hardt, 1992). Liu et al, 2016 experiment
with various joint modelling techniques, and
obtain a recall of 83.46 percent for boundary
identification (Liu et al., 2016). Earlier
works include Daniel Hardt’s linguistically
motivated rule-based system, that eliminates

impossible antecedents by looking at be-do
conflicts, contained antecedents and assigned
scores based on co-reference of the noun
subjects and clausal relationships, such as ‘as’
constructions. (Hardt, 1992)

The necessity for tools to deal with VPE
is widely recognized in literature, for the
purposes of information extraction, finding
event co-occurrence, etc (Kenyon-Dean et al.,
2016). In the context of MT, a possible
solution is to identify the antecedent, or the
source verb phrase, and induce it at the site
of ellipsis to gain a legitimate, simplified sen-
tence. This solution functions by reiterating
the antecedent at the site of ellipsis. By
breaking the link between the ellipsis and the
antecedent, we give the MT two independent
clauses, which it can translate without error.

Indeed, the previous works listed above
are aimed at identifying the antecedent
verb phrase, which includes compulsorily a
head verb, and optionally its arguments and
adverbials. While it is important to pick up
arguments and adverbials of the head verb for
the purpose of comprehension, there are some
problems that it introduces: namely, it must
often disambiguate by context and therefore
can be a great source of error, and in the
context of MT, it might make the output
sentence clumsy and unnatural.

Since we are looking at antecedent head
resolution from a particular angle i.e. trans-
forming the English sentence containing
VPE in order to align with Hindi VVPE
and therefore help the MT, our problem
does not require us to find the antecedent
boundary of the head verb, while we do
provide an additional treatment of certain
verb constructions in English according to the
manner in which they would be translated
into Hindi. As far as we are aware, this
is the first attempt to tailor English VPE
resolution in the context of English-Hindi MT.

3 Ellipsis in English

Verb phrase ellipsis in English is introduced
by an auxiliary. We consider five classes of el-
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lipsis depending upon the auxiliary at the site
of ellipsis: 1) to_be, 2) to_have, 3) to_do, 4)
modals, and 5) to_particle ellipsis. Cheung et
al include a sixth class: the do-so anaphora,
while acknowledging that modals and Do-
X anaphora are not technically auxiliaries
(Kenyon-Dean et al., 2016). We have cho-
sen to identify ellipsis introduced by modals,
however, because 1. the behaviour of the for-
mer is identical with ellipsis by true auxil-
iaries, 2. Likewise, we observe that it poses a
problem to state-of-the-art MT English-Hindi
systems. We do not identify Do-X anaphora
in this system, however, since this is simply
a pronominalization of the antecedent rather
than eliding. These have a different treatment
than VPE – for example, they may be directly
pronominalized in Hindi as well, rather than
transferred into VVPE. Indeed, MT systems
are able to do this:

Although Mr. Azoff won’t produce
films at first, it is possible that he
could do so later, the sources said →

haalaanki,
although,

shree
Mr.

azoph
Azoff

pahalee
first

baar
time

philmon
film-PL-POSS

ka
-

nirmaan
production

nahin
not

karenge,
do-F.M,

lekin
but

yah
this

sambhav
possible

hai
is

ki
that

vah
he

baad
later-POST

mein
-

aisa
this

kar
do

sake
can

(Taken from WSJ corpus)

There are certain constraints on the an-
tecedent, depending upon the auxiliary at the
site of ellipsis. For example,

1. Auxiliaries of the form to_be require an-
tecedents with to_be auxiliaries.

2. All non-to_be forms of ellipsis do not
have an antecedent with a to_be auxil-
iary, except for gerunds, which are per-
missible.

4 Antecedent Resolution in the
Context of MT

We know that state-of-the-art machines can-
not interpret VPE.(Voita et al., 2019). Trans-
lation to Hindi from English requires a predic-
tion of the elided English verb. An elided VP

consists of a head verb, optionally along with
its object arguments and adverbials.
For example, it is clear that the adverbial is

interpreted as part of the VP in the following
sentence:

I could walk quickly, at that age,
across traffic-filled roads, but
now I cannot. (created example)

One solution to eliminate errors due to VPE,
is to identify the antecedent and induce it at
the site of ellipsis entirely, as a preliminary
step before translation, thus eliminating the
ellipsis entirely. However, this naive approach
has the following issues:
1. Making the decision of whether to import

a particular adjunct is complicated, and
might be governed by semantic context,
and (when verbal), by emphasis.

2. Reiterating the entire verb phrase at the
site of ellipsis may sound clumsy and un-
natural, and make for a worse translation.

Identifying the boundaries of the elided verb
phrase is a much harder task than identify-
ing the antecedent head verb. We note, for
example, the consistent drop in Exact Match
accuracy in Neilson’s study of Hardt’s algo-
rithm over different corpora (Nielsen, 2005)
– sometimes dipping as much as 30 percent
lower. The matter is not as simple as picking
up the entire verb sub-tree - always importing
all arguments and adjuncts is not permissible,
since the correct interpretation often depends
on surrounding knowledge. For example, in

Ram would have liked to eat out
with you on Sunday afternoon, but
he can’t.
(created example)

There are more than one interpretations of
what Ram can’t do: eat out, eat out with you,
or eat out with you on Sunday afternoon. A
native speaker selects one of these in context.
If we are seeking to eliminate ellipsis with our
system, we must select one of these interpre-
tations to paste at the site of ellipsis, or the
whole verb phrase. We may also not adopt in-
termediate policies such as importing noun ob-
jects but not adjuncts, because this risks plac-
ing undue emphasis on certain arguments, and
may result in an incorrect semantics.
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The second problem with this strategy is
that it may render sentences, after pasting,
clumsy, unnatural or nonsensical, as illus-
trated, respectively, by the following exam-
ple, taken from the WSJ corpus (Bos and Spe-
nader, 2011).

The Volokhs were afraid that they’d
end up like a friend of theirs
who’d applied for a visa and
waited for 10 years, having
been demoted from his profes-
sion of theoretical mathemati-
cian to shipping clerk. They
didn’t (end up like…shipping clerk)

5 Hindi VVPE
Verb-stranding verb phrase ellipsis is the phe-
nomenon wherein a verb is stranded at a site of
ellipsis, and its internal arguments are elided.
Manetta establishes, by various diagnostics,
that Hindi-Urdu do exhibit VVPE. For exam-
ple,

1. Ram-ne
Ram-ERG

Chomsky-ka
Chomsky-GEN

naya
new

lekh
writing

do
two

baar
time

paRha.
read-PFV.M.SG

Ram read the new paper by Chomsky
twice.

2. Raj-ne
Raj-ERG

bhi
also

paRha.
read-PFV.M.SG

Raj also read (the paper twice).
(Manetta, 2018)

Here, ‘paRha’ provides access to the in-
ternal arguments i.e. the direct object and
the adverb via VVPE. Manetta supports her
analysis theoretically and by a survey across
native speakers.

This provides us an intuition for a solution
for our larger problem: that is, instead of
disambiguating the antecedent boundaries
to resolve English VPE as simplification for
English-Hindi MT, we may provide the Hindi
clause containing ellipsis only the head verb,
which has access to the internal arguments
of the antecedent. If we induce the head
verb at the site of ellipsis in the English

before translating, now, then we create a
valid, syntactical Hindi sentence with all the
interpretations of the original sentence intact.
We illustrate with an example:

a (Original sentence) Ram would have liked
to eat out with you on Sunday afternoon,
but he can’t.

b (With induced head verb) Ram would
have liked to eat out with you on Sunday
afternoon, but he can’t eat.

c Ram
Ram-ERG

ko
-

aapke
you-ERG

saath
with

Sunday
Sunday

dopahar
afternoon-ERG

ko
-

baahar
out

khana
to-eat

accha
good

lagta
feel

tha,
would-have,

lekin
but

vah
he

nahi
not

kha
eat

sakta.
can-M.SG

Resolving the ellipsis in (b) we get an English
sentence with ‘eat’ at the previous site of el-
lipsis, that means that Ram is incapable of
eating. However, (c) in Hindi, that similarly
has ‘eat’ at previous site of English VPE, is
a perfectly acceptable translation of the orig-
inal sentence, exhibiting VVPE. In (c) the
stranded verb ‘kha’ (eat) has access to the in-
ternal arguments ‘aapke saath’, (with you),
‘Sunday dopahar’ (Sunday afternoon), etc.,
and therefore it carries all the interpretations
of the original. This is the core idea of the
system.

6 Dealing with Multi-Word Verbs
in English

While we do not require to identify the bound-
aries of the head verb, we do need to identify
all the components of the verb. This may be
required in several cases, such as phrasal verbs,
idioms, or serial verbs.

6.1 Compound Verbs
These can be categorized into phrasal verbs
and prepositional verbs. The former is a class
of verbs that consists of a head verb and a
preposition, like ”take over”, ”get around” or
”sink in”. Since phrasal verbs are opaque, we
require to pick up its preposition to maintain
the correct sense in which it appears. For ex-
ample, in
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She hasn‘t got over her old failures as
yet, although she should.
(created example)

We want the stranded segment to be ”get
over”, not simply ”get”.

Prepositional verbs are also verbs followed
by a preposition e.g ”stare at”, ”care for”, but
they are different from phrasal verbs in cer-
tain ways. Their meaning is derived primarily
from the head verb. We can see that in the
first case, ”stare at”, it would admissible to
strand simply ”stare”, although in the subse-
quent case, the sense of ‘care’ changes without
the preposition. It is necessary, therefore, to
pick up the prepositional verb as a unit.

6.2 Verbal Complements
In general, when the head verb has verb com-
plement arguments, it is not necessary to pick
them up, because the stranded head verb in
Hindi will have access to them. For example,

a Aditya wants to eat dosa, although
Varun doesn‘t. (verb complement: to eat)

b Aditya
Aditya

dosa
dosa

khaana
to-eat

chahta
want-PSG

hai,
-,

haalanki
although

Varun
Varun

nahi
not

chahta
wants-PSG

hai.
-

(b) is a legitimate translation of (a), with the
stranded verb ”wants”. However, this treat-
ment assumes that the sequence of comple-
ments in the head verb lexically translate into
a sequence of simple verbs in Hindi. This
might not be the case.

a Aditya has to go home, but Varun
doesn‘t.

b *Aditya
Aditya-ERG

ko
-

ghar
home

jaana
to-go

padega,
has-asp,

lekin
but

Varun
Varun-ERG

ko
-

nahi
not

padega.
have-asp.

The reason we cannot strand is because
‘padega’ (has: obligation aspect) is an aux-
iliary of ‘jaana’ (to go) in the Hindi sen-
tence, not the head verb of the compound verb
”jaana padega” (has to go). The head here is
”jaana”, and therefore it must be induced in
the site of ellipsis. Therefore, with the En-
glish verb ”has”, among others, we must also
pick up its complements to induce at the site

of ellipsis. To generalize, we require the com-
plement cE of a head verb hE, when hE + cE
results in a VV or verb-light verb complex in
Hindi.

6.3 Serial Verbs
Examples of serial verbs in English are

a I’ll go see if she’s okay

b Why don’t you run get a taxi?
These can be treated as verb-complement
series, as the Stanford Universal Dependency
Framework treats them. Hindi also treats
the verb complex as a head verb followed by
complements. Taking the first example, it is
acceptable to strand ”jaati” (go) from this
sentence, in:

a Main
I

jaati
go-P.FSG

hu
-

dekhne
to-see-ERG

ke
-

liye
for

ki
whether

vah
she

theek
okay

hai
is

ki
or

nahi.
not.

Vah
He

nahi
not

jaayega.
will-go

7 Algorithm to Identify Ellipsis and
Head Verb of Antecedent

We are using a dependency tree of the input
sentence for all tasks.

7.1 Identification: Rules and Results
We assume that each word w in the input
sentence that belongs to our five classes, is a
site of ellipsis. Then we go through a process
of elimination. We have a different set of rules
for each class.

Some of the basic criteria for elimination in-
clude:
1. w is a copula (for to_be)

2. w is an auxiliary child of a verb (for
to_be, to_do, to_have, modals)

3. w has a direct object noun child (for
to_be, to_do, to_have, modals)

4. w is not an xcomp child (for to_particle)
We perform part 1 of our two-part testing at
this stage. These rules, tested on 3900 sen-
tences from the BNC corpus (Leech, 1992),
give us a precision of 94.83 percent and a
recall of 83.04 percent.
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7.2 Antecedent Head Resolution:
Algorithm

If we find an ellipsis, then we perform 2 sub-
tasks:
1. Find the head verb

2. Supplement the head verb
7.2.1 Finding the Head Verb
We collect all the verbs in the input, elim-
inating according to the constraints on
to_be/non-to_be ellipsis discussed in Section
3. We use a score-based approach, as does
Hardt (Hardt, 1992).

Here are the features that we look at, for
verb v as a candidate for ellipsis e:
1. Positive scores for noun subjects matching

in number, negative score for noun sub-
jects not matching in ‘passivity‘, positive
score if both noun subjects are proper,
positive score for identical noun subjects.

2. Negative score if e belongs to the comple-
ment clause child of v. For example, in:
He told me that he had passed the exam,
and then he told me that John hadn‘t.
”told” gets ruled out as the clause ”John
hadn‘t” is a complement child of ”told”.

3. Negative score if v belongs to the comple-
ment clause child of e.

4. Positive score if v has an auxiliary in the
same class as e. For example:
Sita could walk while texting, but now she
can‘t.

5. Finally, we assign a positive score to the
first verb that we obtain by backtrack-
ing up the dependency tree from e, if it
is contained in our candidate verbs. This
gives us the correct antecedent head sev-
eral times, even when it is far away. It
captures clausal relationships between an-
tecedent verb and e, such as as…as, …than,
which Hardt also mentions in their scor-
ing algorithm.

6. We then evaluate the scores. If there is a
clash, we choose the closest verb, advan-
taging forward ellipsis to backward ellip-
sis, as the latter is widely acknowledged
to be much rarer than the former.

7.2.2 Supplement Main Verb
As we said earlier, the head verb might need
to be supplemented before it is ‘stranded’. For
example, in:

Both banks have been battered, as
other Arizona banks have, by falling
real estate prices.

The above algorithm will identify ”battered”
as the head verb; however, we do need to
supplement it with the auxiliary ”been”, to
create a grammatical verb after inducing.

We perform three sub-tasks in supplement-
ing the main verb v:

1. Add auxiliaries: we add any auxiliaries of
v, after skipping the first if any that be-
longs to the same class as e. For example,
we skip the auxiliary ”have” in the above
example.

2. Add particles: here, we check whether v is
part of a phrasal verb/prepositional verb,
and add the preposition(s) if so. The de-
pendency tree marks particle dependants
of the verb: however, since it doesn‘t al-
ways do so, we maintain and import a list
of common phrasal verbs/prepositional
verbs for reference.

3. Add verb complements. Similarly, we
maintain and import a list of verbs of
which verb complements, if any, we need
to pick up, since they result in non-
strandable verbs in isolation in Hindi:
”let”, ”have”. These also include verbs
which may not always give a correct lex-
ical translation in isolation, e.g. ”feel”,
”seem”, for which it is safer to also induce
the complements.

The lists above can always be augmented, of
course. Currently, our system does not deal
with idioms, but one solution that we suggest
is to maintain a list of frequently occurring
idioms and induce them as a whole.

8 Results and Error Analysis for
Antecedent Head Resolution

In part 2 of our testing, we tested this system
on 200 sentences from the WSJ corpus and got
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an accuracy of 91 percent on antecedent head
resolution. Here are some errors, and their
analysis:

Mr. Dinkins also has failed to allay
Jewish voters‘ fears about his associ-
ation with the Rev. Jesse Jackson,
despite the fact that few local non-
Jewish politicians have been as vo-
cal for Jewish causes in the past 20
years as Mr. Dinkins has.

Here, the algorithm identifies “failed” in-
stead of “been”. It awards “failed” for common
noun subject, common auxiliary and being the
first verb upon backtracking, whereas “been”
is only awarded for common auxiliary.

But Sony also says in its filing that
the Warner contract “doesn‘t require
that Guber and Peters take any affir-
mative steps to produce motion pic-
tures; it simply rewards them when
they do and prohibits them from
producing for another entertainment
company.”

Here the algorithm identifies “rewards” as the
source verb instead of “take”. It awards “take”
for noun subject number, “require” for com-
mon auxiliary, and “rewards” by backtrack-
ing. Finally, it resolves the tie by choosing
“rewards” which is the closest.

Now they know who you mean and
you know who you mean - but no one
else does.

The algorithm gives “mean” instead of
“know”. “mean” gets awarded for noun
subject number, and “know” is awarded for
backtracking; however, “mean” wins the tie
since it is the closest.

There are errors introduced by the POS tag-
ger; for example, in:

A good half-hour into breakfast at
the Palmer House, Mr. O’Brien
looks up from his plate after Mr.
Straszheim says something about
people who believe interest rates are
about to nosedive - ”I’m one of
them who hope they will, with 6 bil-
lion in debt on the books.

“nosedive” is not recognized as a verb, similar
to, in another examples, “program-trade”,
and “move”.

There are errors introduced by the parser:

The text by Patrick O‘Connor is
a tough read, but the pictures
make her magnetism clear and help
explain why Ernest Hemmingway
called Baker, “The most sensational
women anybody ever saw – or ever
will.”

Here, the algorithm wrongly identifies “called”
as the antecedent main verb, instead of “saw”.
The clause “or ever will” is labelled a conju-
gate dependent of the noun Baker, instead of
a conjunct of the verb “saw”. If this had been
so, “saw” would have got scores for a common
subject (“anybody”) and being the verb ob-
tained upon backtracking.

“A lot of people think I will give
away the store, but I can assure you
I will not,” he says.

The algorithm identifies “assure”. This would
be avoided if the dependency marked “I will
not” as a complement clause of “assure” – how-
ever the dependency misses this relation. If
“assure” was given a penalty on this grounds,
the next highest candidate is indeed the cor-
rect one: “give”.

9 Evaluation of Effect on MT
outputs

We now show that inducing the head elliptical
verb makes the input sentence easier for the
MT system to comprehend. We perform a
manual analysis of 100 sentences with ellipsis,
taken from the WSJ corpus: we create a
“before” and “after” translation pair for each,
and compare to identify improvements. This
was done by two fluent speakers of Hindi and
English. We define a scale (1-5) to quantify
this improvement:

5: Improvement from incoherent to per-
fect translation of ellipsis, and surroundings
4: The meaning is fairly clearer than it was in
the original
3: The translation is as good or as bad as it
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originally was
2: The meaning is fairly more obscure than it
originally was
1: The sentence is rendered completely
incoherent from an original good translation

We add some flags to further nuance this
scale: we also mark the translations for
fluidity, i.e. if the translation while rendered
better is still not fluent (f) or if the transla-
tion while not making the meaning clearer is
rendered more fluent (F), and for the overall
meaning of the entire sentence – i.e. beyond
the clauses of the antecedent and the ellipsis.
These markers, however, are only for excep-
tional cases, since most of the translations we
got, both “before” and “after” were not fluent.

The average score over 100 sentences was
found to be 3.55, with 18 cases of correct non-
fluent sentences, and 5 cases of incorrect sen-
tences with especial improvement in fluency.

These are the large-scale sources of lack of
improvement that we found:

1. Sentences that the MT cannot translate
overall due to other complexities such as
nested clauses, etc., for which its output
is close to gibberish, show little to no
improvement with addition of the ellipti-
cal verb. These sentences passed through
a system that can handle them, some-
times Google Translate, almost always
show high improvement with the addition
of the verb. We had about 35 such sen-
tences, all marked 3, sometimes marked
for improvement or deterioration in flu-
ency.

2. Most sentences of the type ”as did”, as in
‘X ate apples as did Y’ fail to show any
improvement and often show a deteriora-
tion in fluency. This is because the pro-
cessed sentence is rendered ungrammati-
cal and perhaps more incomprehensible.
Again, Google Translate often shows im-
provement on these sentences from ”be-
fore” to ”after”.

An example of the first instance is:

(1) American Enterprise Institute scholar
Norman Ornstein in the Oct. 21

TV Guide on ”What TV News
Doesn’t Report About Congress –
and Should”

The system induces the elliptical verb com-
plex ”report”. Both Anusaaraka and Google
output incorrect translations for the original
sentence, although Google shows errors only
due to the ellipsis. Therefore, it is able to im-
prove its translation after we induce the ellip-
tical verb:

(2) amerikee
American

entarapraij
Enterprise

insteetyoot
Institute-POS

ke
-

vidvaan
scholar

norman
Normal

orsteen
Ornstin-ERG

ne
-

teevee
T.V.

gaid
guide

mein
in

”kaangres
“Congress-ERG

ke
-

baare
about-in

mein
-

kya
what

teevee
T.V.

riport
report

nahin
not

hai
does

-
–

aur
and

riport
report

karanee
does

chaahie”:
should”

(Score: 5)
Whereas Anusaarak outputs:

(3) American
American

Enterprise
Enterprise

sansthaan
institute

vidvaan
scholar

vastushaili
Norman

Ornstein
Ornstein

par
on

T.V.
TV

guide
guide

mein:
in

“TV
“TV

samaachaar
news

vat
what

congress
congress

about
about

report
report

nahi
not

does..
does…

aur
and

haal
recently

likhta
Writes-MSG

hai
-

chahiye”
should-inf.”

(Score: 3f, for deterioration in fluency)

The original gives a similarly incorrect
output, though not quite as ungrammatical.
This output, even after the elliptical verb has
been added, conveys little to no meaning in
Hindi.

Here are some micro-level sources of non-
improvement:

1. When an antecedent verb is being used id-
iomatically, the MT system may interpret
it literally when stranded in the elliptical
clause, even if it catches the correct sense
in the antecedent clause, possible because
the former construction is more unusual.

2. In general, the VVPE construction fails
if the system makes two different lexical
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interpretations in the antecedent and el-
liptical clause. This may be for different
reasons: e.g. on transitive verbs, since
they appear in the elliptical verb with-
out their objects, which is unnatural. The
MT system will possibly attempt to catch
an intransitive sense of the verb in such a
situation. However, this is only in certain
few cases of such verbs.

An example of both of the above is:

During the takeover, Mr. Hahn said
he would put his account up for re-
view if WPP’s bid were successful,
but he didn’t.

The system induces the elliptical verb com-
plex ”put up”. Both Anusaaraka and Google
output incorrect translations for the original
sentence, although Google interprets the id-
iomatic meaning of ”put up” correctly. There-
fore, it is able to improve its translation after
we induce the elliptical verb:
Anusaaraka makes error type 1 (literal in-

terpretation of verb):
(4) Vah

He
punarvalokan
review-ERG

ke
-

liye
for

uska
his

hisaab
account

uthega
lift-MSG

yadi
if

vap
WPP-ERG

ke
-

neelaam
auction

ki
of

boli
bid

saphal
successful

the
be-PL

toh
then

adhineekaran
takeover-ERG

ke
-

dauran,
during,

shreemaan
Mr.

Hahn
Hahn-ERG

ne
-

kaha,
said,

parantu
but

vah
he

nahi
not

utha
lift-PST

tha.
- .

(Score: 3)
Google makes error type 2 (different lexical

interpretation). In this case, it is minor, be-
cause the meaning of the sentence is restored
from the original.
(5) adhigrahan

takeover-ERG
ke
-

dauraan,
during,

shree
Mr.

haahan
Hahn-ERG

ne
-

kaha
said

ki
that

agar
if

vah
DET

wpp
WPP-POSS

kee
-

bolee
bid

saphal
successful

rahee,
stays,

to
then

vah
he

sameeksha
review-ERG

ke
-

lie
for

apana
his

khaata
account

rakh
put

dega,
give-asp,

lekin
but

usane
he-ERG

nahin
not

daala.
put.

(Score: 4)

We note here that these figures are depen-
dent upon how well the base translation sys-
tem can translate the original. We performed
the same analysis on samples from this dataset
with Google Translation and got consistently
better results per each batch of 10, and an
average of 3.7. This indicative exercise is in-
tended to give an idea of why targeted VPE
handling for specific language pairs holds sig-
nificance in bettering MT results.

10 Future Work
The concept and the system that we have in-
troduced above, for handling ellipsis in a tar-
geted manner to improve English-Hindi MT,
are still in their nascent stages. There are
three primary entry points for future work:
firstly, the conceptual negotiation of the phe-
nomenon in English and Hindi. We have de-
cided, as we explain, only to induce the main
verb. While this gives satisfactory results most
of the times, it also fails in some cases: it might
help, for example, to make a decision to induce
object arguments in these cases. Secondly, the
identification of VPE in English, and the an-
tecedent resolution. We are already dealing
with complex verbs, verbal complements etc.
in a certain manner, but this treatment in-
vites further and more rigorous work, both in
terms in nuance with the treatment, and how
exhaustive we are with the lists that we have
drawn up, introducing, for example, treatment
of idioms. Thirdly, the application of our
system as over the input, before it is passed
through the MT. There are certain problems
that may be solved by pipelining this ellipsis
handling differently into the MT system: we
leave this to future investigation.
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Abstract

In this paper we present a deep multi-task
learning framework for multilingual event and
argument trigger detection and classification.
In our current work, we identify detection and
classification of both event and argument trig-
gers as related tasks and follow a multi-tasking
approach to solve them simultaneously in con-
trast to the previous works where these tasks
were solved separately or learning some of the
abovementioned tasks jointly. We evaluate the
proposed approach with multiple low-resource
Indian languages. As there were no datasets
available for the Indian languages, we have
annotated disaster related news data crawled
from the online news portal for different low-
resource Indian languages for our experiments.
Our empirical evaluation shows that multi-
task model performs better than the single task
model, and classification helps in trigger de-
tection and vice-versa.

1 Introduction

Event Extraction is an important task in Natu-
ral Language Processing (NLP). An event can be
an occurrence happening in certain place during
a particular interval of time. In text, the word or
phrase that describes an event is called event trig-
ger. Argument of an event refers to the attributes
such as the location, time of occurrence of the
event, participants involved and so on. Therefore
event trigger detection, event trigger classification,
argument trigger detection and argument trigger
classification are the four important sub-tasks of
event extraction. In our current paper, we have
solved all the four problems using a Multi-task ar-
chitecture. Multi-task learning (MTL), which es-
sentially means performing more than one related
task simultaneously, has been proven to be effec-
tive for various NLP tasks in recent times (Ruder,
2017). The key idea behind MTL is that the in-
ductive transfer of knowledge, learned for a par-
ticular task, can help to improve the performance

of another task by means of parameter sharing be-
tween tasks. According to Caruana (1997), “MTL
improves generalization by leveraging the domain-
specific information contained in the training sig-
nals of related tasks”. In our current work, we
have identified detection and classification of both
event and arguments as two related tasks. As both
event and argument trigger detection are sequence
labelling problems, we have merged those two
sub-tasks into one and used a single loss function.
For the same reason, we have merged event and ar-
gument trigger classification task into one task and
used another loss function. Thus in our proposed
architecture, even though we have two main tasks
for learning shared representation, we have basi-
cally solved four sub-tasks viz. event trigger de-
tection, event trigger classification, argument de-
tection and argument classification. Our proposed
architecture has two variants which are further dis-
cussed later in this paper. As we are working with
low-resource languages which have data sparsity
issue, we have proposed amulti-task, multi-lingual
architecture which is trained on both Hindi and
Bengali data. Due to unavailability of training data
in these two languages, we have annotated disaster
related news data crawled from online news portals
for our experiments.

2 Related Works

Being a very important problem in NLP, Event
Extraction has already been explored by the re-
search community for a long time. Some fea-
ture based approaches have decomposed the en-
tire event extraction task into two sub-tasks and
solved them separately (Ji and Grishman, 2008;
Hong et al., 2011; Liao and Grishman, 2010).
But the main problem of this approach is error
propagation which is dealt by Riedel and McCal-
lum (2011a), Riedel and McCallum (2011b), Li
et al. (2013), Venugopal et al. (2014) using a joint
event extraction algorithm. However both of the
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above approaches have used hand-designed fea-
ture. Nguyen and Grishman (2015) propose a
Convolutional Neural Network (CNN) for auto-
matic feature extraction. Chen et al. (2015) in-
troduce a dynamic multi-pooling CNN which uses
a dynamic multi-pooling layer according to event
triggers and arguments in multi-event sentences,
to capture more crucial information. In another
work, Nguyen and Grishman (2016) propose a
skip-gram based CNN model which allows non-
consecutive convolution. Ghaeini et al. (2016)
propose a forward-backward Recurrent Neural
Network (RNN) to detect event triggers which can
be in the form of both words or phrases. Feng et al.
(2018) propose a language independent neural net-
work which uses both CNN and Bi-LSTM for
Event detection. Liu et al. (2016) propose to im-
prove the performance of event detection by using
the events automatically detected from FrameNet.
Though these neural based systems perform well,
they still suffer from error propagation issue. To
overcome this issue, Nguyen et al. (2016) pro-
pose a joint framework with bidirectional RNN.
However Liu et al. (2017) observe that joint model
achieves insignificant improvements on event de-
tection task. They analyze the problem of joint
models on the task of event detection, and propose
to use the annotated argument information explic-
itly for this task. Yang and Mitchell (2016) also
propose a joint model for event and entity extrac-
tion but in document level instead of sentence level
in contrast to most of the previous works. In recent
years Liu et al. (2018a) introduce a cross language
attention model for event detection where they fo-
cus on English and Chinese. Liu et al. (2018b) pro-
pose a novel framework to jointly extract multiple
event triggers and arguments. Sha et al. (2018)
propose a novel dependency bridge RNN which
includes syntactic dependency relationships. De-
pendency relationship is also used by Nguyen and
Grishman (2018). They investigate a CNN based
on dependency trees to perform event detection.
Orr et al. (2018) present a Gated Recurrent Unit
(GRU) based model that combines both temporal
structure along with syntactic information through
an attention mechanism. Event extraction task has
also been addressed in specialized tracks dedicated
in Text Analysis Conference (TAC). Event extrac-
tion in disaster domain in English language is re-
ported in (Tanev et al., 2008; Yun, 2011; Klein
et al., 2013; Dittrich and Lucas, 2014; Nugent

et al., 2017; Burel et al., 2017). However, signif-
icant attempt to build event extraction system in
Indian languages is lacking. In recent times, some
of the works are reported in (SharmilaDevi et al.,
2017; Sristy et al., 2017; Kuila and Sarkar, 2017;
Singh et al., 2017). To the best of our knowledge,
this is the first attempt to solve four important sub-
tasks of event extraction viz. event trigger detec-
tion, event trigger classification, argument trigger
detection and argument trigger classification si-
multaneously in amulti-task, multi-lingual setting.

3 Task Description and Contributions

In this paper, we propose a multi-task, multi-
lingual trigger detection and classification method
for Hindi and Bengali in Disaster related news
data. For a given Hindi/Bengali sentence, we per-
form the following tasks simultaneously:
(a) Event Trigger Detection: Word or phrase that
describes an event is called event trigger. Detect-
ing event triggers is a sequence labeling task. But
we formulate our current approach as a multi-class
classification task as in (Chen et al., 2015; Ghaeini
et al., 2016).
(b) Event Trigger Classification: Here the task is
to classify each event trigger into predefined types.
(c) Argument Detection: Arguments are entities,
times or values related to an event. Here the task
is to detect such trigger words or phrase.
(d) Argument Classification: Classify each argu-
ment trigger into predefined argument roles.
Argument detection is also a sequence labeling
task. Like event detection, we also formulate this
task as a multi-class classification problem. In
most of the previous works, both event and ar-
gument detection are considered as two separate
tasks. However in our current work, we combine
both the tasks into a single task based on our ob-
servation. Detailed analysis of news articles reveal
the fact that each type of event triggers along with
its corresponding arguments follow a particular
pattern in a sentence. In the first example, the sen-
tence contains Place argument ȟदġली (Delhi) and
Time argument शाम 6 बजे (6pm). Each type of ar-
gument is followed by a type specific post-position
(‘मȅ’ for Place argument and ‘के’ for Time argu-
ment). In second example the sentence contains
event specific argument like Magnitude (7.2) of
earthquake along with Place argument इंडोȠनशया
(Indonesia). This type of patterns are often seen
in news documents. So it is intuitive to consider
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(a) Proposed System 1 (MT1) (b) Proposed System 2 (MT2)

Figure 1: Architecture of Our Proposed Models

both event and argument trigger detection as a sin-
gle task. For classification also, we merge both the
event trigger classification and argument trigger
classification as a single task. In this way, we learn
all the four above mentioned tasks simultaneously
using two loss functions. We perform our experi-
ments using both Hindi and Bengali news datasets
in mono-lingual as well as multi-lingual settings.
We compare our multi-task learning (MTL) re-
sults with single-task learning (STL) results for the
above mentioned mono-lingual and multi-lingual
settings. For most of the cases we are getting 2%
to 7% performance improvement in detection task.
However for classification task, we see that the
performance improves for some of the classes and
for the remaining classes, the model does not per-
form at par with the other classes. Two contribu-
tions of our paper are

• A multi-task, multi-lingual approach for
event extraction in Hindi and Bengali for dis-
aster domain. Our proposed system has two
variants - (a) The classification output help-
ing in detection (MT1). (b) The detection
output helping in classification (MT2). Both
the architectures are discussed in methodol-
ogy section.

• Provide a benchmark setup for event extrac-
tion in Hindi language.

The following examples show that each type of
event and argument trigger is followed by seman-
tically similar kind of words in a sentence. We
highlight the event trigger and different types of
argument triggers using different colour codes for
better readability.

1. Example-1 : ȟदġली मȅ शाम 6 बजे के आसपास
ओलावृȠǸ शुɴ ɷई।
Transliteration : dillee mein shaam 6 baje
ke aasapaas olaavrshti shuroo huee.
Translation : The hailstorm started around
6pm in Delhi.

2. Example-2 : इंडोȠनशया मȅ 7.2 कɏ तीŨता का भू-
कंप आया।
Transliteration : indoneshiya mein 7.2
teevrata ka bhookamp aaya.
Translation : There was a 7.2 magnitude
earthquake in Indonesia.

3. Example-3 : शुŌवार को अफगाȠनĥतान मȅ ɷई Ƞव-
ĥफोट मȅ 7 लोग मारे गए हȈ।
Transliteration : shukravaar ko apha-
gaanistaan mein huee visphot mein 7 log
maare gae hain.
Translation : 7 people have been killed in an
explosion in Afghanistan on Friday.

4 Methodology

Our proposed models take sentence of the form
[w0,w1,...,wn] as input. It produces two outputs
for two main tasks namely detection (both event
and argument) and classification (both event and
argument). The detection task predicts the event
or argument label (li) for each word (wi) where
li∈ I,O,B 1. As we formulate detection as a multi-
class classification task even though it being a se-
quence labeling task, we use softmax classifier at

1 The encoding scheme is according to IOB2, where I in-
dicates the tokens that appear within trigger, B denotes the
beginning of a trigger and O denotes the outside of an event
trigger. The B is used only when two events of the same type
appear in consecutive sequence (Ramshaw andMarcus, 1999)
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Hindi Bengali Multi-Lingual
Train Test Train Test Train Test

# of Document 681 194 799 199 1480 393
# of Sentences 12680 3077 20922 4635 33602 7712
# of Words 206882 50227 227234 45171 434116 95398
# of Event Triggers 5952 1533 7149 1602 13101 3135
# of Argument Triggers 36806 9244 44262 9058 81068 18302

Table 1: Dataset Statistics

the final layer. For classification task also, we
use softmax classifier at the final layer to clas-
sify event and argument trigger into their prede-
fined types. We employ a hard parameter sharing
strategy (Caruana, 1993). We use a shared Bidi-
rectional Long Short-Time Memory (Bi-LSTM)
(Schuster and Paliwal, 1997) to capture the contex-
tual information of eachword. Figure 1a illustrates
the design of first variant of our proposed architec-
ture. Here the classification output of each word
is concatenated with the corresponding represen-
tation resulting from the shared Bi-LSTM and fed
as input to the final detection layer of that word.
This is done with the intuition of improving the
detection results with the help of classification out-
put. For example if a word is classified as ‘None’
then it has higher chance of being outside event or
argument trigger boundaries. In subsequent sec-
tions, we call this architecture as MT1. Figure 1b
illustrates the design of second variant of our pro-
posed architecture. Here the detection output of
each word is concatenated with the corresponding
representation of the shared Bi-LSTM and fed as
input to the final classification layer. This is done
with the intuition of improving the classification
results with the help of detection output.

4.1 Embedding

Each word of the input instance is converted
to a numeric representation with the help of fast-
Text (Grave et al., 2018) word embeddings having
dimension 300 (de). The pre-trained word vec-
tors are downloaded from fastText website2. To
learn a mapping between mono-lingual word em-
beddings and obtain cross-lingual embeddings in
order to bridge the language gap between two lan-
guages, we use the existing alignment matrices3
which align monolingual vectors from two lan-

2https://fasttext.cc
3https://github.com/Babylonpartners/

fastText_multilingual

guages in a single vector space (Smith et al., 2017).
In order to handle Out-of-Vocabulary (OOV)

words in the monolingual setting, we obtain their
word embedding vectors from fastText’s .bin file.
Separate vocabularies for OOV words are created
for Hindi and Bengali respectively. We create
separate .vec file for the two OOV vocabularies.
We similarly transform these vectors of two dif-
ferent languages in a shared space using the ex-
isting alignment matrices3. It is seen that the per-
formance has significantly improved using cross-
lingual embeddings for OOV words compared to
the method of using zero vectors for representing
them.

5 Datasets and Experiments

5.1 Dataset

Words
Event &
Argument

Trigger Detection

Event &
Argument

Classification
इंडोȠनशया B_Arg Place

मȅ O None
7.2 B_Arg Magnitude
कɏ O None
तीŨता O None
का O None
भूकंप B_Event Earthquake
आया O None

Table 2: Sample annotation for the sentence given in
Example-2 in Task Description and Contribution Sec-
tion

Since there is a lack of annotated data for our
task, we create the datasets by crawling online
Hindi and Bengali news articles and then annotate
them following the TAC KBP4 guidelines. For an-
notation, three annotators were employed. We es-
timate the inter-annotator agreement ratio by ask-

4https://www.nist.gov/tac/
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ing all the three annotators to annotate 5% of total
documents. The multi-rater Kappa (Fleiss, 1971)
agreement ratio of 0.82 and 0.85 was observed for
Hindi and Bengali news documents respectively.
For both the languages, news documents are

crawled from online news portal. Every sentence
of news documents was pre-processed for four
sub-tasks of event extraction viz. event trigger
detection, event trigger classification, argument
detection and argument classification. Table 2
presents an example of sample annotation. For de-
tection, we use IOB21 format (Ramshaw and Mar-
cus, 1999). Our proposed Hindi dataset has two
types of disaster events namely natural disaster and
man-made disaster which are further classified into
twenty seven sub-types. Each event trigger be-
longs to one of the twenty seven classes, which
can be found in Table 8. Every event has multiple
arguments of different roles. Hindi dataset con-
tains eleven types of arguments excluding Type ar-
gument type. Bengali dataset also contains eleven
type of arguments excluding argument type In-
tensity. Table 5 contains all the argument types.
Some of the argument types common to both Hindi
and Bengali, irrespective of the event types, are
Place, Time, Casualties and After-effect. Some of
the arguments are specific to some particular event
types. For example, Magnitude and Epicentre are
event specific arguments related to Earthquake.
Table 1 presents the dataset statistics for training
and the test set of Hindi and Bengali, respectively.

5.2 Experimental Setup

Epochs 300
# LSTM units 100
Loss function
for Detection categorical_crossentropy

Loss function
for Classification categorical_crossentropy

Optimizer Adam

Table 3: Hyper-parameter Settings

For implementing the deep learning models
Python based library Keras (Chollet et al., 2015)
with Tensorflow (Abadi et al., 2015) backend is
used. All the models are trained for 300 epochs.
Training is done using a learning rate of 0.001
and ‘Adam’ optimizer is used for fast convergence.
The data is fed to the neural network in batches of
32. ‘Checkpoints’ are used to save the best weights

of the model based on training accuracy. Table 3
shows the hyper-parameter settings used in the im-
plementation of both the variants of our proposed
model. For evaluation precision, recall and F1-
score are used as the metrics. However in result
tables (refer Table 4, Table 5, Table 6, Table 7 and
Table 8) only F1-score is reported.

6 Results and Analysis

Table 4, Table 5 and Table 8 show the experi-
mental results for event and argument trigger de-
tection, argument role classification and event trig-
ger classification respectively, where ST denotes
Single task, MT1 denotes Multi-task 1, MT2 de-
notes Multi-task 2 and SP denotes support count.
Table 4 shows that multi-task model 1 (MT1) per-
forms well as compared to single task (ST) model
for all language settings. For each language set-
ting, performance improvement is maximum in
case of I_Event tag. We find that it is 7.3% for
Hindi, for Bengali it is 11.5% and for multi-lingual
setting it shows improvement of 6.5%. Analyz-
ing the predictions of all the variants of our system
reveal that words are usually miss-classified more
between the Beginning (B) and Inside (I) tag type
of either event or argument instead of events get-
ting miss-classified as argument triggers. Thus we
can conclude that the system produces near correct
prediction of event and argument trigger in most of
the cases, only issue being that it sometimes fail to
determine the correct trigger boundary. Figure 2a
and Figure 2b show the confusion matrix obtained
by MT1 in trigger detection and trigger classifica-
tion in the multilingual setting.

6.1 Comparison With Separate Event and
Argument Trigger Detection System

We also perform separate experiments to eval-
uate our proposed approach with the earlier pro-
posed approaches of separately detecting event and
argument triggers from sentences. Table 6 shows
the F1-score achieved in event trigger detection
and Table 7 shows the F1-score obtained in ar-
gument trigger detection for both the Hindi and
Bengali datasets. The evaluation shows that there
is not any significant loss in performance in si-
multaneous detection of event and argument trig-
gers compared to individual trigger detection even
though there is a marginal improvement in detec-
tion of the tag I_Event for Bengali in the argument
detection model compared to the model which per-
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Hindi Bengali Multi-Lingual
ST MT1 MT2 SP ST MT1 MT2 SP ST MT1 MT2 SP

B_Event 0.57 0.59 0.59 929 0.63 0.65 0.64 1111 0.61 0.61 0.61 2040
I_Event 0.41 0.44 0.42 594 0.52 0.58 0.55 491 0.46 0.48 0.49 1085
B_Arg 0.48 0.5 0.48 2476 0.57 0.57 0.58 2658 0.52 0.53 0.51 5134
I_Arg 0.49 0.49 0.46 6747 0.64 0.65 0.65 6400 0.56 0.57 0.55 13147

Table 4: Trigger Detection (Events and Arguments) Results

Hindi Bengali Multi-Lingual
ST MT1 MT2 SP ST MT1 MT2 SP ST MT1 MT2 SP

Participant 0.35 0.42 0.38 539 0.43 0.43 0.41 816 0.36 0.41 0.36 1355
Epicentre 0.59 0.46 0.29 22 0.48 0.27 0.46 49 0.4 0.2 0.35 71
After Effect 0.3 0.35 0.31 2828 0.36 0.36 0.35 1648 0.32 0.31 0.33 4476
Reason 0.14 0.1 0.12 354 0.26 0.21 0.20 280 0.16 0.16 0.18 634

Magnitude 0.56 0.6 0.62 40 0.52 0.51 0.44 25 0.47 0.56 0.54 65
Place 0.57 0.58 0.56 2369 0.61 0.59 0.61 1588 0.58 0.57 0.56 3957

Casualties 0.58 0.59 0.58 1969 0.73 0.73 0.72 2578 0.65 0.66 0.65 4547
Name 0.26 0.32 0.27 67 0 0 0 9 0.25 0.3 0.23 76
Type - - - - 0.20 0.20 0.24 29 0.19 0.11 0.37 29

Intensity 0.54 0.44 0.4 191 - - - - 0.45 0.33 0.27 191
Time 0.65 0.66 0.63 804 0.84 0.85 0.84 2029 0.79 0.77 0.78 2833
Speed 0.18 0.11 0 17 0.36 0.31 0.46 4 0.19 0.36 0.27 21

Table 5: Argument Role Classification Results

(a) Trigger Detection (b) Trigger Classification

Figure 2: Confusion Matrix : MT1 in Multilingual Setting.

Hindi Bengali
B-Event 0.56 0.63
I-Event 0.42 0.55

Table 6: Result of Event Trigger Detection as Only
Task.

Hindi Bengali
B-Arg 0.49 0.57
I-Arg 0.49 0.64

Table 7: Result of Argument Detection as Only Task.
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Hindi Bengali Multi-Lingual
ST MT1 MT2 SP ST MT1 MT2 SP ST MT1 MT2 SP

Armed
Conflicts 0.2 0.4 0.31 7 0.22 0.16 0.22 126 0.21 0.19 0.24 133

Avalanches 0.57 0.61 0.62 30 - - - - 0.51 0.57 0.57 30
Aviation
Hazard 0.35 0.43 0.46 43 0.56 0.47 0.34 34 0.48 0.34 0.41 77

Blizzard 0.49 0.6 0.51 19 0 0 0 7 0.44 0.41 0.6 26
Cold Wave 0.53 0.48 0.53 26 0.50 0.50 0.50 4 0.52 0.45 0.49 30
Cyclone 0.4 0.49 0.36 20 - - - - 0.51 0.45 0.45 20

Earthquake 0.69 0.73 0.66 115 0.75 0.74 0.68 87 0.71 0.63 0.71 202
Epidemic - - - - 0.33 0.33 0.33 61 0.34 0.3 0.3 61

Fire 0.27 0.26 0.25 114 0.68 0.68 0.66 120 0.44 0.45 0.48 234
Floods 0.56 0.6 0.7 27 0.40 0.67 0.50 1 0.64 0.77 0.66 28

Forest Fire 0.32 0.31 0.29 63 - - - - 0.33 0.3 0.24 63
Hail Storms 0.41 0.46 0.39 41 - - - - 0.45 0.52 0.46 41
Heat Wave 0.39 0.48 0.39 66 0.33 0.24 0.43 9 0.36 0.37 0.41 75
Hurricane 0.53 0.6 0.38 35 - - - - 0.48 0.47 0.45 35
Industrial
Accident 0.21 0.21 0.17 113 0 0.25 0 3 0.17 0.18 0.15 116

Landslide 0.43 0.38 0.44 69 0.74 0.71 0.59 9 0.47 0.5 0.46 78
Normal
Bombing 0.18 0.2 0.22 9 0.61 0.62 0.58 292 0.57 0.55 0.56 301

Pandemic - - - - 0.26 0.23 0.25 87 0.17 0.29 0.32 87
Riots 0.29 0.38 0.31 32 0.26 0.31 0.23 44 0.28 0.2 0.24 76

Shootout 0.49 0.49 0.44 110 0.56 0.54 0.52 177 0.51 0.52 0.5 287
Storm 0.2 0.22 0.29 24 0.45 0.42 0.42 26 0.43 0.32 0.34 50
Suicide
Attack 0.64 0.64 0.68 154 0.57 0.62 0.56 123 0.6 0.59 0.58 277

Surgical
Strikes 0 0 0 2 0.40 0.36 0.44 64 0.41 0.38 0.36 66

Terrorist
Attack 0.61 0.61 0.62 95 0.32 0.37 0.34 147 0.47 0.48 0.49 242

Tornado 0.43 0.49 0.35 32 0.57 0.4 0.57 4 0.43 0.38 0.43 36
Train

Collision 0.52 0.44 0.53 72 0 0 0 1 0.46 0.4 0.5 73

Transport
Hazards 0.13 0.18 0.18 79 0.49 0.47 0.43 127 0.4 0.36 0.37 206

Tsunami - - - - 0.17 0.17 0.17 10 0.32 0.13 0.12 0.32
Vehicular
Collision 0.56 0.52 0.49 93 0.43 0.45 0.48 39 0.44 0.48 0.46 132

Volcano 0.5 0.42 0.52 33 - - - - 0.48 0.45 0.43 33

Table 8: Event Trigger Classification Results

forms simultaneous detection of both triggers.

6.2 Error Analysis

In the following Input Example 1, čवालामुखी
Ƞवĥफोट (jvaalaamukhee visphot\volcanic erup-

tions) is a multi-word event trigger. The tags as-
signed for this trigger are B_Event and I_Event re-
spectively. In Input Example 2, the event trigger
Ƞवĥफोट (visphot\eruptions) is tagged as B_Event.
For the first case, all the variants of the sys-
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tem predict the event trigger correctly but for the
later case, our single task detection system (ST)
and multi-task system 2 (MT2) predict it as out-
side event and argument trigger boundary (O) but
multi-task system 1 (MT1) predicts it as inside
event trigger (I_Event) rather than beginning of
event trigger (B_Event). Thus we can see that all
the variants miss-classify the trigger tag with MT1
being able to produce partially correct prediction
as it, at least, classifies it to be of event type. How-
ever the classification result of the said event trig-
ger in example 2 is correctly predicted byMT1 but
it is wrongly predicted by MT2. Here we can see
that the classification task is helping in detection
task.

1. Input Example 1 : अमरɍका मȅ čवालामुखी Ƞव-
ĥफोट को लेकर रेड अलटă जारɍ ।
Transliteration : amareeka mein jvaalaa-
mukhee visphot ko lekar red alart jaaree.
Translation : US issues red alert for volcanic
eruptions.

2. Input Example 2 : उġलेखनीय है ȟक बीते कुछ ȟदनȋ
से माउंट अगुंग čवालामुखी मȅ छोट-ेछोटे Ƞवĥफोट हो रहे
ह।ै
Transliteration :ullekhaneey hai ki beete
kuchh dinon se maunt agung jvaalaamukhee
mein chhote-chhote visphot ho rahe hai.
Translation : It is notable that in the last few
days, small eruptions in the Mount Agung
Volcano.

We provide below a detailed error analysis of
the results achieved in classification task (refer to
Table 5 and Table 8).

1. In the classification task (refer to Table 5), er-
ror analysis reveals that the performance is
affected mainly due to two cases : (a) when
the Support count of a trigger type is less, (b)
when each trigger mention in a sentence is
long, i.e. it consists of numerous words.
For example, Participant, Time, Place, Ca-
sualties and Intensity have better F1-score as
the trigger mentions corresponding to these
types are in the form of short phrases as
well as these types have larger support count.
However, roles like After Effect and Rea-
son have comparatively lower performance as
these trigger mentions appear in sentences in
the form of long phrases. Even though Mag-
nitude has less support count, performance is

better compared to the other roles as the trig-
ger mention is in the form of a single word
comprising of a numeric figure.

In Table 8, we observe the following drawbacks
which can possibly lead to erroneous output.

1. We find that performance decreases for sim-
ilar types of events. For example, types like
Fire, Forest Fire and Industrial Accident are
of similar type. We see that the performance
of these types is low inHindi as all of them are
present in the dataset, thereby getting miss-
classified. However in Bengali dataset, we
find Fire performs relatively better as there
does not exist any sentence having event trig-
ger of type Forest Fire and Industrial Acci-
dent.

2. In Hindi dataset, we find that type Transport
Hazard is seen to be misclassified with type
Train Collision and type Vehicular Collision,
therby leading to poor performance. For Ben-
gali dataset, there hardly exists any trigger of
type Train Collision and event trigger of type
Vehicular Collision exists in small number.
Thus Bengali dataset performs much better
for Transport Hazard.

7 Conclusion and Future Works

In this paper, we present a multi-tasking, multi-
lingual architecture for simultaneous detection and
classification of event and argument triggers. We
have proposed two variants where in each one of
them, one task is helping another related task. Our
results show that related tasks can definitely share
information between them. We also compare our
approach with separate models which can be em-
ployed for event and argument trigger detection re-
spectively.
Other future works include developing an end-

to-end systemwhich will consist of amulti-tasking
system such that given a sentence as input, event
and argument triggers will be extracted from it and
if there exists any link between the extracted event
and argument, then the output of the system will
be positive and otherwise negative.
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Abstract

Existing supervised solutions for emotion
classification demand large amount of emo-
tion annotated data. Such resources may not
be available for many languages. However, it
is common to have sentiment annotated data
available in these languages. The sentiment in-
formation (+1 or -1) is useful to segregate be-
tween positive emotions or negative emotions.
In this paper, we propose an unsupervised ap-
proach for emotion recognition by taking ad-
vantage of the sentiment information. Given
a sentence and its sentiment information, rec-
ognize the best possible emotion for it. For ev-
ery sentence, the semantic relatedness between
the words from sentence and a set of emotion-
specific words is calculated using cosine sim-
ilarity. An emotion vector representing the
emotion score for each emotion category of
Ekman’s model, is created. It is further im-
proved with the dependency relations and the
best possible emotion is predicted. The results
show the significant improvement in f-score
values for text with sentiment information as
input over our baseline as text without senti-
ment information. We report the weighted f-
score on three different datasets with the Ek-
man’s emotion model. This supports that by
leveraging the sentiment value, better emotion
annotated data can be created.

1 Introduction

An emotion or a feeling represents a state of
mind for any person. Various researchers have
put-forward classification of emotions into vari-
ous categories such as Plutchick emotion model
with 8 basic emotions (Plutchick 1980), the Ek-
man’s Model with six basic emotions – anger, dis-
gust, fear, happy, surprise, sadness (Ekman 1972)
and so on. Users easily share their experiences,
opinions, and emotions on various topics, prod-
uct reviews on social platforms such as Twitter,
Facebook, Whatsapp. Understanding the emo-
tions expressed in such short posts can facilitate

many important downstream applications such as
an emotion-aware chatbots, analysis of user re-
views, personalized recommendations, a help to
psychologically ill patients, and so on. Therefore,
it is important to develop the effective emotion
recognition models to automatically identify emo-
tions from such text or messages.

The task of emotion detection is typically
modelled as supervised multi-class classification
or multi-labelled classification task. Supervised
models need very large annotated data. Such
datasets may not be readily available and are
costly to obtain (Jianfei Yu, 2018). In case
of unavailability of annotated data, unsupervised
learning approaches (A Agrawal, 2012; Milagros
Fernández-Gavilanes, 2015) can be an ideal solu-
tion for the emotion recognition.

However, we assume that text annotated with
sentiment information (positive, negative or neu-
tral) is easily available. Sentiment classification
predicts positive or negative sentiment polarity of
a sentence whereas emotion classification labels
the sentence at fine-grain level with one of the
emotions, such as happy, surprise, anger, fear, dis-
gust, sadness etc. Happy and surprise emotion
are termed as the positive sentiment emotions and
anger, disgust, fear, sadness as the negative senti-
ment emotions. For example in the sentence,

Passed an exam by two points . . . (+1)

The sentiment information provided with sentence
in above example, helps to confirm that the sen-
tence is made with positive emotion such as hap-
piness, surprise etc rather than the negative emo-
tions.

A close friend of mine have not contacted me long
time. . . . (-1)

Sentiment value of−1 shows exclusion of positive
emotions by reducing chances of emotion recog-
nition system being confused them with positive
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emotions. The sentiment information helps to nar-
row down choices to one of the negative emotions
for the sentence and it must be sadness, fear, anger,
or disgust.

Therefore, we aim to use this sentiment infor-
mation along with the sentence to create the emo-
tion labelled dataset by recognizing emotion in un-
supervised way. To be precise to create the emo-
tion labelled resources with help of available sen-
timent labelled resources, as a further fine grained
emotion analysis task.

In this paper, we propose an unsupervised ap-
proach based on A Agrawal (2012), with our mod-
ifications as discussed later in detail. We use the
sentiment labelled data that is the sentence and
the respective sentiment information as input and
recognize the best possible emotion for the same.
This approach uses word-embeddings to represent
the words in the sentences as well as emotion-
specific words. The cosine similarity measure
is used to calculate the semantic relatedness be-
tween a sentence and the emotion-specific words.
The vector representing score for every emotions
category is calculated for each sentence and then
emotion-score is modified using dependency rela-
tions of open-class words from that sentence.

The rest of the paper is organized as follows.
The section 2 describes related supervised, unsu-
pervised and hybrid approaches previously pro-
posed in the literature. The section 3 discusses the
methodology of proposed system. Section 4 briefs
on the experimental set up, datasets used as well
as modifications done to the dataset as required for
experimentation. The results are discussed in sec-
tion 5.

2 Related Work

The state of the art approaches for emotion Recog-
nition task is supervised approach. The labeled
training data is a crucial resource required for
building such systems. Due to the lack of a large
human annotated datasets, many emotion classi-
fication tasks have been performed on text data
gathered from social media such as twitter, and
the hash-tags, emojis or emoticons are used as the
emotional labels for the same.

As the unsupervised approaches do not need
the annotated dataset, different unsupervised ap-
proaches are also performed by researchers.

A Agrawal (2012) found open-class words which
they named as NAVA words that is Noun, Adjec-
tive, Verb, Adverb words. Pointwise Mutual In-
formation (PMI) based model with syntactic de-
pendencies is used to perform emotion recog-
nition. Shoushan Li and Zhou (2015) created
a Dependence Factor Graph (DFG) as learning
model based on label dependence and context de-
pendence. The hybrid approaches use the un-
supervised approaches for feature creation, pat-
tern extraction which are later used by supervised
classification models for emotion classification.
Carlos Argueta (2015) had proposed an unsuper-
vised graph-based approach for boot-strapping the
Twitter-specific emotion-bearing patterns and then
used them for classification task. Li and Xu (2014)
used predefined linguistic patterns to extract emo-
tion causes and considered them as features for
classification using SVM.

Jianfei Yu (2018) have used transfer learning
approach for sentiment classification task and then
emotion classification task. Also few researchers
have contributed towards creation of emotion-
aware embedding. Distant supervision and Re-
current Neural Network (RNN)-based approach is
proposed for learning emotion-enriched represen-
tations.(Ameeta Agrawal, 2018)

3 Proposed System

The emotion recognition framework for unsuper-
vised approach is as shown in Figure 1. The in-
put sentence is pre-processed to get the open-class
words from that sentence. The second step is
to compute the semantic relatedness using cosine
similarity between word embedding of words in
sentence and emotion-specific words. The module
three modifies the emotion score for every emo-
tion from vector computed at module 2. Later,
module 4 averages over emotion vectors of all
words of a sentence to find resulting emotion
present in that sentence.

Let S be the sentence, S =< w1, w2, · · ·, wn >
and Ss be the respective sentiment value (+1 or -1
or 0). Let E be the set of possible emotions from
selected emotion model such as E = {e1, e2, · ·
·, em} . To every emotion category, we have as-
signed few affect bearing words which represent
that emotion. Table-1 shows few affect-bearing
words used for each emotion category. The aim is
to predict the best possible emotion Es belongs to
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E for the sentence S. Eventually, one of the emo-
tions from the Ekman’s emotion model- Anger,
Disgust, Fear, Happy, Sadness and Surprise will
be predicted for every sentence.

Figure 1: Overview of System

3.1 Computing Semantic Relatedness using
Cosine Similarity

We have used pre-trained word embedding as
they better represent co-occurrence information of
words. The words in a given sentence and the
emotion-specific words are represented using their
respective word embedding and the semantic relat-
edness between them is found using cosine simi-
larity. Let A and B be word vector representation
for 2 words then:

sim(A,B) = cos(θ) = A·B
||A||·||B||

3.2 Computing Vector of Scores for Emotion
Categories

The emotion score vector for every open-class
words {w1, w2, · · ·, wn} of a sentence is created.
The length of the emotion vector is six values cor-
responding to six emotions of Ekman’s model.

The emotion vector for a word wi is computed
by finding cosine similarity of word wi with ev-
ery emotion-specific word from each emotion cat-
egory. Let there be m emotion categories and
{EW1, EW2, · · ·, EWm} be sets of l emotion-
specific words for each emotion ej . Then the emo-
tion score ES for wi is calculated as:

ES(wi, ej) =
l∑

k=1

sim(wi, EW
k
j ) (1)

∀j = 1 . . .m

An emotion score vector EV for every word
is created using a sentiment value and an emo-
tion scores of corresponding emotions with given

Emotion Emotion Words
Anger anger, angry, annoy, irritate, frus-

trate
Disgust disgust, hate, dislike, ill, sick

Fear fear, worry, terrify, afraid, frighten
Happiness happiness, happy, love, joy, glad
Sadness sadness, sad, hurt, cry, bad
Surprise surprise, amazing, astonish, won-

derful, incredible

Table 1: Few affect-bearing words used

sentiment value. So, an emotion-score vector for
word wi is,

EVwi = {ES(wi, e1), ES(wi, e2), . . . , ES(wi, em)}
(2)

Here, the sentiment value plays a crucial role.
As we consider the Ekman’s emotion model,
happy and surprise emotions are emotion with
positive sentiment. The emotions such as fear, dis-
gust, angry and sadness are emotions with nega-
tive sentiment. Hence,
if sentiment = +1 then,

EVwi = {ES(wi, happy), ES(wi, surprise), 0, 0,

0, 0} (3)

if sentiment = −1 then,

EVwi = {0, 0, ES(wi, anger), ES(wi, disgust),

ES(wi, fear), ES(wi, sadness)} (4)

3.3 Re-scoring Scores in Emotion Vector of a
Word

With the intuition that dependency relationship
can contribute more towards emotion detection,
we use these relations of open class words to mod-
ify the emotion vector EV of the dependent word.
The Stanford’s coreNLP dependency parser is
used for finding dependencies between the open-
class words that is noun, adjective, verb and ad-
verb which are considered for further processing.

Let sd(w1, w2) be a syntactic dependency rela-
tion between word w1 as dependent and word w2

as modifier. For example, in adjectival modifier
relation amod(life, happy), dependent word is life
and modifier word is happy. We find these syn-
tactic dependencies of sentence at the time of pre-
processing itself and use dependency relations for
the re-scoring purpose.
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Let D be the dependent word from sentence S
and M be the respective modifier word from sen-
tence S. Then the emotion vector Dp of pth word
is modified by taking average over emotion vec-
tors of the dependent word Dp and its modifier
word Mp. This will help in strengthening every
emotion score related to that word wi of sentence
S. (A Agrawal, 2012)

EVDp =
EVDp + EVMp

2
(5)

3.4 Processing Emojis
With growing usage of social media, many times,
text messages are accompanied with suitable
emoji. Hence, emoji as input can contribute to-
wards detecting emotion. Every emoji is being
assigned CLDR short name by Unicode Common
Locale Data Repository to describe that emoji. For
example, grinning face, beaming face with smiling
eyes and so on. Same procedure as mentioned in
section 3.1 to 3.3 is followed for creating emotion
vector MEV for every emoji.

3.5 Computing Emotion Vector for Sentence
The emotion vector SEV for the sentence S is cal-
culated by taking average over emotion vectors
EVwi of all words from that sentence,and emoji
emotions vector MEV .

3.6 Resultant Emotion Prediction
The emotion vector of text S is :

SEV =< Se1 , Se2 , . . . , Sem >

where the emotion vector for emoji, if present in
sentence is:

MEV =< Me1 ,Me2 , . . . ,Mem >

and

SEV =
1

n

n∑

i=1

EVwi +MEV (6)

the best possible predicted emotion Es for S as:

Es = argmax(Sei) (7)

∀i = 1 . . .m

4 Experimental Setup

The datasets used for testing and recognizing emo-
tions are ISEAR dataset (ise), Twitter Emotion
Corpus (Mohammad, 2012) and Semeval-2018
Affect in Tweets English Test dataset (Saif M. Mo-
hammad, 2018).

ISEAR dataset (ise) The “International Sur-
vey on Emotion Antecedents and Reactions”
dataset published by Scherer and Wallbott is built
by collecting questionnaires answered by people
with different cultural backgrounds (Bostan and
Klinger, 2018). A total of 7,665 sentences labeled
with single emotions. The labels are joy, fear,
anger, sadness, disgust, shame, and guilt.

Twitter Emotion Corpus (Mohammad, 2012)
is prepared with emotion-word hashtags as emo-
tion labels. These are termed as noisy labels as
labelled by users. This corpus contains 21050 sen-
tences labelled with one of the emotions from Ek-
man’s emotion model.

Semeval-2018 Affect in Tweets English Test
dataset (Saif M. Mohammad, 2018) is gold
standard multi-labelled dataset with 3259 tweets
annotated with multiple emotions. The emo-
tion labels are anger, anticipation, disgust, fear,
joy, love, optimism, pessimism, sadness, surprise,
trust. Every emotion is labelled as 0 or 1 to show
presence of that emotion. If all are 0 then tweet is
considered to be neutral.

4.1 Modification in Datasets for Testing
Few modifications are incorporated before using
them for testing and experiments.

4.1.1 Mapping of Emotion Labels to
Ekman’s Emotion Model

Not all of these datasets are labelled with the Ek-
man’s emotions. The researchers follow differ-
ent emotion models such as the Plutchick model,
the Parrot’s emotion model. Also few researchers
use emotion categorization as per requirement of
the system and the data. Hence, we have mapped
these emotion labels to one of the best suitable Ek-
man’s emotion as shown in Table-2

This mapping is coarse-grain mapping as the
Ekman’s model represents six basic emotions -
Happy, Surprise, Anger, Disgust, Fear and Sad-
ness and all other emotions can be mapped in these
emotions directly.

4.1.2 Labeling Datasets with Sentiment
Values

Not all the above mentioned datasets are anno-
tated with sentiment values. Hence, to illustrate
this problem definition, we labelled these datasets
with sentiment value, based on already available
emotion labels to the sentences.
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Sr
No

Dataset Name Happy Surprise Anger Fear Disgust Sadness

1 ISEAR dataset Happy – Anger Fear Disgust Sadness
2 Semeval-2018

Task-1 Affects in
Tweets English
Dataset

Anticipation,
Joy, Love,
Optimism,
Trust

Surprise Anger Worry – Pessimism,
Sadness

3 Twitter Emotion
Corpus

Joy Surprise Anger Fear Disgust Sadness

Table 2: Mapping of original emotion labels to Ekman’s emotions

The sentences from datasets with positive emo-
tions such as happy, love, joy, surprise etc are la-
belled with positive (+1) sentiment value. And the
sentences with negative emotions such as anger,
disgust, fear, sadness etc are mapped to negative
(-1) sentiment value.

Now, the datasets are in the required format for
further processing and testing. The format of ev-
ery testing example is:

< sentence, sentiment value, emotion >.

While testing the system, the sentence and the
sentiment value from modified datasets are con-
sidered as input and best possible emotion is rec-
ognized. Later, these predicted emotions are com-
pared with these emotion labels for checking the
accuracy of the system.

4.2 Experiments

• The sentence is pre-processed to remove the
stopwords, hyperlinks, hashtags, usernames
and the special characters if any. Also part of
speech tagging is done to obtain open-class
words that is noun, verb, adjective, and ad-
verb. The NLTK PoS tagger and the Wordnet
word categories are used to perform the same.
As the closed-class words do not contribute
towards emotions, they are not considered for
further processing. The syntactic dependen-
cies are retrieved for given input sentence us-
ing Stanford coreNLP dependency parser.

• We have experimented on different datsets
mentioned in Table-2 using different pre-
trained word embeddings such as Google
Word2Vec (Tomas Mikolov, 2013), Glove
(Jeffrey Pennington and Manning, 2014), and
FastText (Joulin et al., 2016)

• The experiments are performed on the text
with sentiment information and without sen-
timent information too. The weighted F-
score, precision and recall are used as metrics
to evaluate the accuracy of system.

5 Results and Discussions

As shown in Table-3, the experiments are per-
formed in two different ways, first by consider-
ing only text/sentences as input and secondly by
considering text and its sentiment value as input.
The experiments conducted with only sentences as
input, serves here as baseline against experiments
using sentences with sentiment information.

The sentence with respective sentiment infor-
mation as input shows significant improvement in
weighted F-score value. The results are shown in
the Table-3. It is observed that Google Word2Vec
word vectors performs better than other word em-
bedding.

The Semeval-2018 Task-1 dataset (Saif M. Mo-
hammad, 2018) is multi-labelled dataset. The an-
notated emotions are assigned independently. This
task is multi-class emotion recognition so we con-
sider prediction ’correct’ even if one of the as-
signed emotions is predicted by our system.

It is visible in Table-4 that sentences with sen-
timent value as input, the F-score of every indi-
vidual emotion category has been improved dras-
tically. This shows better prospects for such emo-
tion recognition and conversion process for new
resource creation with fine-grained labeling from
the sentiment to the emotion.

The recall values for datasets using Google
Word2Vec are shown in Table-5 for illustration.
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Sr No Word Embedding ISEAR dataset Twitter Emo-
tion Corpus

Semeval-18
Task-1 Dataset

w/o Sen-
timent
Value

with
Senti-
ment
Value

w/o Sen-
timent
Value

with
Senti-
ment
Value

w/o Sen-
timent
Value

with
Senti-
ment
Value

1 Google Word Vectors 0.37 0.56 0.32 0.52 0.52 0.76
2 GLOVE vectors 0.23 0.33 0.25 0.45 0.38 0.67
3 Fast Text Word Vec-

tors
0.34 0.49 0.30 0.49 0.51 0.74

Table 3: Weighted F-score using different word embedding and with / without Sentiment Value

Sr No Method (Input) Anger Disgust Fear Happy Sadness Surprise
ISEAR Dataset

1 Sentence 0.35 0.27 0.43 0.45 0.33 –
2 Sentence and Sentiment Value 0.45 0.39 0.51 0.97 0.52 –

Twitter Emotion Corpus
3 Sentence 0.21 0.11 0.28 0.55 0.14 0.10
4 Sentence and Sentiment Value 0.32 0.18 0.42 0.79 0.55 0.15

Semeval-2018 Task-1 Affects in Tweets Dataset
5 Sentence 0.40 0.43 0.39 0.66 0.51 0.21
6 Sentence and Sentiment Value 0.67 0.65 0.53 0.92 0.76 0.32

Table 4: Emotion category-wise F-score for emotion recognition using Google Word2Vec vectors

Recall values in case of the method with senti-
ment information has increased by approximately
50% than method without sentiment values. This
shows significant improvement in correctly pre-
dicting emotion on use of sentiment information.

The Table-6 illustrates the confusion matri-
ces for results of emotion recognition on ISEAR
dataset. It can be seen that positive emotions and
negative emotions are rarely confused with each
other by using sentiment information. The re-
call and precision is also increased for every emo-
tion. Yet emotions belonging to the same senti-
ment value need to be achieved with better accu-
racy. The emotion ’surprise’ is not part of emotion
labels for ISEAR so 0s in row for ’surprise’.

Conclusion

The proposed system suggests the way for creation
of a resource from the available resources. The use
of more easily available sentiment labelled data
for creating emotion annotated data is significant.
The use of sentiment information for recognizing
the emotion is good example of fine-grain labeling

task.

The proposed approach shows much better ac-
curacy for text labelled with sentiment value than
the baseline as text without sentiment information.
The use of sentiment information helps to segre-
gate at initial level between emotions with the dif-
ferent polarity.

As the word vectors are based on distributional
hypothesis, they may have higher cosine simi-
larity for opposite words, for example, ‘happy’
and ‘sad’. The synonyms may have very low
cosine similarity value. This can affect overall
accuracy of the system. The rare words may not
contribute much and very common words may get
very high cosine similarity with opposite words
too. Hence, it is necessary to select better list
of emotion-specific words. More processing and
linguistic information may be added to improve
the accuracy of this system.

175



Sr No Method (Input) Anger Disgust Fear Happy Sadness Surprise
ISEAR Dataset

1 Sentence 0.29 0.19 0.37 0.81 0.26 –
2 Sentence and Sentiment Value 0.43 0.26 0.52 0.94 0.65 –

Twitter Emotion Corpus
3 Sentence 0.22 0.12 0.21 0.78 0.10 0.10
4 Sentence and Sentiment Value 0.37 0.20 0.34 0.94 0.55 0.10

Semeval-2018 Task-1 Affects in Tweets Dataset
5 Sentence 0.30 0.33 0.49 0.76 0.45 0.89
6 Sentence and Sentiment Value 0.59 0.57 0.70 0.92 0.82 0.92

Table 5: Emotion category-wise Recall values for emotion recognition using Google Word2Vec vectors

Without Sentiment Information With Sentiment Information

Table 6: Confusion Matrix for ISEAR dataset using Google Word2Vec Vector
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Abstract

This paper proposes a metric to quantify
lexical complexity in Malayalam. The met-
ric utilizes word frequency, orthography
and morphology as the three factors affect-
ing visual word recognition in Malayalam.
Malayalam differs from other Indian lan-
guages due to its agglutinative morphology
and orthography, which are incorporated
into our model. The predictions made by
our model are then evaluated against reac-
tion times in a lexical decision task. We
find that reaction times are predicted by
frequency, morphological complexity and
script complexity. We also explore the
interactions between morphological com-
plexity with frequency and script in our
results. To the best of our knowledge, this
is the first study on lexical complexity in
Malayalam.
Keywords: lexical processing, visual word
recognition, lexical complexity, Dravidian
languages

1 Introduction

The task of visual word recognition is re-
lated to language processing at the level of a
word/lexical item. A word can be analyzed at
several linguistic levels, and the word recogni-
tion task helps us understand the role of these
levels in relation to processing, memory and
attention. In psycholinguistics, previous work
on this topic focuses on understanding the in-
dividual variables that affect the lexical pro-
cessing of words. If we can quantify the in-
fluence of variables ranging from orthographic
features to semantic factors on the cognitive
processing of words, it would help us in un-
derstanding the critical factors underlying vi-
sual word recognition (and pattern recogni-
tion, more generally). The resulting model of

word recognition can be evaluated against hu-
man judgements.

Models of word recognition are especially
relevant for eye-tracking studies, where they
have been extensively explored (Rayner and
Duffy, 1986). Word recognition models have
also been used to understand reading disabili-
ties such as phonological and surface dyslexia
(Balota et al., 2006). For these studies, it is
crucial to tease apart the effect of various fac-
tors that affect the task of reading. Previous
research has shown that the eye gaze duration
is affected by frequency, orthography, mor-
phology and phonology, among others. Apart
from these studies, an understanding of lexi-
cal complexity is also an interesting topic for
study on its own.

In this paper, we explore the case of Malay-
alam and in particular examine three factors
that could predict word complexity in the lan-
guage: frequency, orthography and morphol-
ogy. The role of variables that determine word
recognition in Malayalam has not been ex-
plored, as it has been for Hindi (Husain et al.,
2015; Verma et al., 2018). Quantifying these
factors in a model of lexical complexity can
help us in developing norms that are useful in
areas such as reading studies and word gener-
ation for lexical decision tasks. Further, this
would contribute towards cross-linguistic com-
parison of these factors from a different lan-
guage family. To the best of our knowledge,
this is the first work that examines lexical com-
plexity in Malayalam.

2 Lexical Complexity

The task of visual word recognition involves
the cognitive processing of visual information
and comparing it with a particular internal
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mental representation of a word. This rep-
resentation itself may be at the graphemic,
phonemic, morphemic and lexical semantic
level, all of which have been shown to affect
word recognition (Balota et al., 2006). In the
sections that follow, we describe the three fac-
tors that are included in our study.

2.1 Word Frequency
The effect of word frequency is robust and
has been well studied across word recogni-
tion tasks (Balota et al., 2006). High fre-
quency words tend to be recognized faster than
low frequency words. In eye tracking studies
high frequency words have lower gaze duration
and fixation measures. We would expect that
frequency would have a similar effect on the
Malayalam data, where high frequency would
contribute towards a lower lexical complexity.

2.2 Morphology
A word may be composed of a single mor-
pheme e.g. boy or more than one e.g. fun-
nily: funny+ ly. The role of morphology in
word recognition is at a sub-lexical level. Mor-
phology as a measure is particularly relevant
for an agglutinative language such as Malay-
alam, which also exhibits productive word
compounding e.g. Just the word മരം (mara)
“tree” has a number of morphological forms
such as

മരȮിൽ (marattil) - in the tree
മരȮിെʾ (marattinṟe) - of the tree

മരƴൾňിടയിͭെട (maraṅṅaḷkkiṭayilūṭe)
- through the trees

മരെňാ̶കൾ (marakkeāmpukaḷ)
- tree branches

Early studies that looked at the effect of
morphology on lexical access have suggested
that polymorphemic words (i.e. words con-
sisting of more than one morpheme) are de-
composed into their component parts during
online processing. This process would find the
root first (e.g. funny and on finding it, proceed
to search stored affix-stem combinations till
funnily is retrieved (Taft and Forster, 1975).
In a morphologically-rich language such as
Malayalam, we would expect that this would
be an important factor in lexical processing.

2.3 Orthography
The visual processing of words involves pro-
cessing at the orthographic level as well. This
implies that the writing system of various lan-
guages will influence recognition. A writing
system–whether alpha-syllabic, logographic or
alphabetic has been shown to influence read-
ing times (Katz and Frost, 1992). Sub-lexical
properties such as letter features and their in-
teractions with the words themselves can also
influence word complexity, which needs to be
accounted for in the model.

3 Method
In order to compute the lexical complexity
metric, token frequency, morphology and or-
thography were included as our variables. Be-
low, the methods for computing the values for
each of these variables are discussed.

3.1 Corpus
In order to compute our metric for Malay-
alam, we first obtained a corpus from the
Leipzig Corpora Collection containing 300,000
sentences from Malayalam Wikipedia articles
and 100,000 sentences from Malayalam news
crawl (Goldhahn et al., 2012). The corpus was
then preprocessed by removing punctuation
and special characters, and then tokenized us-
ing whitespace. The text was also normal-
ized to remove inconsistencies in spelling us-
ing the Indic NLP Library1 and this resulted
in 4,711,219 tokens and 762,858 unique types.

3.2 Word Frequency Metric
The corpus was used to collect counts for each
word and then scaled them between 0 and 1,
which was then inverted such that the most
frequent tokens have a value closer to 0 and
the less frequent tokens will have a value ap-
proaching 1. This score indicated the relative
frequency of each word in this corpus, and the
idea that highly frequent words are much eas-
ier to process than those that have lower fre-
quency.

3.3 Morphology Metric
Our morphology metric required us to obtain
information about the root and the morpho-

1https://anoopkunchukuttan.github.io/indic_
nlp_library/
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logical affixes for a given word. Given the rich
morphology and compounding processes in the
language, we had to make use of a two-step
process to compute our scores.

First, SandhiSplitter (Devadath et al., 2014)
was used to split tokens that are compound
words into their constituent component words.
For example, consider the compound word
കാരണമായിരിňണം (kAraNamAyirikkaNaM)

കാരണമായിരിňണം⇒കാരണം+ആയിരിňണം
kāraṇamāyirikkaṇaṁ ⇒ kāraṇaṁ+āyirikkaṇaṁ
“must be the reason” ⇒ “reason”+“must be”

As a second step, these results were passed
through IndicStemmer2, a rule-based stemmer
for Malayalam, which further decomposed the
words into stems and affixes. As an example,
the word േലഖനƴхെട (lēkhanaṅṅaḷuṭe) mean-
ing “Of articles”. is decomposed into the stem
േലഖനം (lēkhanaṁ) meaning article with the
suffix -ƴൾ ( ṅṅal) indicating plural and --ുെട
(uṭe) indicating the Genitive case. In our met-
ric we only considered suffixes as in Malayalam
usually contains always suffixes being added to
the end of the stem.

After this two-step process, we are able to
obtain the stems and suffixes for a given word.

Morpheme Count
By simply summing the number of stems
and suffixes, the total number of morphemes
contained in each word is computed. For
example, the word സ̵ɉ̰ɮി͆ം (sampat-
samr�d’dhiyuṁ) meaning “prosperity” is a
compound word split into constituent words
സ̵Ȯ് (sampatt) meaning “richness” and
സ̰ɮി͆ം (samr�d’dhiyuṁ) meaning “and plen-
tiful”. സ̰ɮി͆ം (samr�d’dhiyuṁ) is further
stemmed to stem word സ̰ɮി (samr�d’dhi)
meaning ”plentiful” and suffix -ും (uṁ) mean-
ing ”-and”. സ̵Ȯ് (sampatt) is a root word.
Thus, the number of morphemes in this case is
three, counting the two stems and one suffix.

Based on this pre-processing, we then calcu-
late the total number of morphemes for each
whole word and then scale this number be-
tween 0 and 1 to give a morpheme score. We

2https://github.com/libindic/indicstemmer

note that there could be several different ways
to compute the morpheme score, as affixes
themselves are not all alike. In this prelimi-
nary study, it was not immediately apparent
how the differing costs for various affixes could
be calculated. Additionally, fine-grained infor-
mation regarding the morphological properties
of the affixes (e.g. whether they were inflec-
tional or derivational) was not easily obtained
with existing tools and resources. In future
work, we plan to explore this possibility by en-
hancing the morphological analyzer’s output.

3.4 Orthography Metric
Malayalam is an alphasyllabic writing system
that has its source in the Vatteluttu alphabet
from the 9th century. Its modern alphabets
have been borrowed from the Grantha alpha-
bet. It consists of 15 vowels and 36 consonant
letters.

We devised a script score based on complex-
ity of the script in the following three ways:-

Mismatch in Spoken and Visual Order
In the alpha-syllabic script of Malayalam,
vowels may either appear as letters at the be-
ginning of a word or as diacritics. Consonants
themselves are understood to have an inher-
ent schwa, which is not separately represented.
The diacritics will appear either left or right of
the consonant it modifies. If it appears to the
left, there will be a discrepancy in the phone-
mic and the orthographic order, as the vowel
will always be pronounced after the consonant,
but read before the consonant actually appear
in the text. For example:

ക +െ◌ = െക
ka + .e = ke

Here the vowel violates the order in which
it is spoken. Similarly: ക +േ◌ = േക (ka + ē
= kē), as seen in േകൾŉക (kēḷkkuka) mean-
ing “hear”. Such inconsistencies in spoken and
visual order have been shown to incur a cost
in Hindi word recognition (which is also an
alpha-syllabic script) (Vaid and Gupta, 2002).

In order to capture the lexical processing
cost for such a discrepancy, we give a penalty
of 1 every time it occurs in the word.
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Diacritic Appearing Above or Below
In Malayalam, the diacritic may also appear
above or below a consonant. In such a case,
we we give a penalty of 0.5 to the word. For
example the symbol ◌് also known as virama
is used to replace the inherent schwa sound of
consonants with ŭ. As in ക + ◌് = ക് (ka +
virama = ku)

Ligatures and Consonant Clusters
A penalty of one is assigned for every two let-
ters that form a composite glyph. For exam-
ple: മʗി (mantri) = മന് + Ƀി (man + tri)
where the new composite glyph is ʗ (ntra).

With the above complexity rules in place,
the total penalty cost for each whole word is
calculated. Then the total penalty for each
word is scaled linearly to between 0 and 1 to
give us an orthographic score.

3.5 Evaluation of the Complexity
Metric

In order to evaluate our lexical complex-
ity metric, we used a lexical decision task
paradigm to collect reaction times for a sam-
ple of Malayalam words. More complex words
would result in longer reaction times, and vice
versa. This would help us evaluate whether
our lexical complexity model could predict re-
action times for the given set of words.

We used a well-understood experimental
paradigm in the form of a lexical decision task.
In such a setup, a participant will see a word
stimuli on a screen which they have to classify
as either a word or a non-word using a button
press. The response time (RT) is calculated
from the point the word appears on the screen
to the point where the participant presses the
response button.

Materials
Our task consisted of a balanced set of 50
Malayalam words and 50 pseudowords. Pseu-
dowords follow the phonotactics of the lan-
guage, but have no lexical meaning (i.e. are
not legitimate words). In order to select words
for the task, two sets of 25 words were ran-
domly sampled from the unique tokens ob-
tained from the Leipzig Corpus. The first
set was randomly sampled from words with
a frequency score between the range of 0.1 to

Figure 1: Stimuli word shown for 2500ms. The first
word is a proper Malayalam word (“vivaraṅṅaḷ”
meaning “information”) hence the correct response
is to press the ‘a’ key. The second word is non-word
(vamittaṁ) and therefore, the correct response is
to press ‘l’ key.

0.4 to obtain high frequency words as calcu-
lated by the metric. The second set was cho-
sen similarly but with frequency score between
the range of 0.7 to 0.9 to yield low frequency
words. If the sampled word turned out to be
an English word written in Malayalam or hap-
pens to be a proper noun, it was replaced with
another until both sets had 25 words each.

The pseudowords were constructed in keep-
ing with the phonotactics of Malayalam. Both
the pseudowords and the valid words were con-
strained in length between 6 and 14 characters.
Note that we do not take into consideration
the reaction times for the pseudowords; they
are simply distractors for the participants.

Participants

Participants included 38 students from S.N.
College, Kerala, who volunteered for the
study. Participants included 20 females and 18
males between the ages of 18 and 23 (mean age
of 19.7). All participants were native speak-
ers of Malayalam and had formal education in
Malayalam upto grade 10.
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Figure 2: Heat plot showing correlation between
the three variables in our test data

Procedure
Participants were tested individually on a
computer running the lexical decision task on
the JsPsych stimulus presentation software
(De Leeuw, 2015). Each participant was asked
to press either the ‘a’ key or the ‘l’ key for
word and non-word respectively. The order
of words and pseudowords was randomized for
each participant. Participants were instructed
to read the word presented and respond with
the appropriate button press. Each trial con-
sisted of a word that was presented for 2500ms.
A fixation cross was placed in the center for
1600ms between each trial. The first 10 trials
were practice trials from a word set different
from the study. This enabled participants to
get familiarized with the task.

4 Results
The trials belonging to those who scored be-
low 70% in word-non-word accuracy were ex-
cluded, which brought the number of partici-
pants to 35.

We fit a linear model using the lm function
in R. Log reaction times were used with fre-
quency, script and morph as the covariates.
Figure 2 shows that the three variables are not
highly correlated in our test set.

Table 1 shows the results of the regression
analysis. The main inference we can draw
from the result is that the variables Script,
Morphology and Frequency have a significant
effect (all p-values < 0.05) on (reaction times)
RTs, such that a high cost of script, morph
and frequency leads to higher RTs.

In addition, the results also indicate a

Estimate Std. Error t-value p-value
(Intercept) 4.30 0.679 6.35 0
Script 9.157 3.76 2.43 0.015 *
Freq 2.87 0.96 2.97 0.003 **
Morph 1.91 0.71 2.67 0.007 **
Script:Freq -3.171 5.77 -0.55 0.58
Script: Morph -7.64 4.1 -1.873 0.06 .
Freq: Morph -1.79 1.03 -1.743 0.08 .
Script:Freq:Morph 0.28 6.31 0.045 0.96

Table 1: Results for all three variables and their in-
teractions. Script and Morphological Complexity
as well as Frequency and Morphological Complex-
ity show a significant interaction

marginal interaction between Script and Mor-
phology (p=0.06), such that an increase in the
script complexity leads to larger increases in
RTs for morphologically simpler words (Cost
<0.9) compared to morphologically complex
words (Cost >0.9) (see Figure 3). There is
also a marginal interaction between Morphol-
ogy and Frequency (p=0.08) such that an in-
crease in the frequency cost leads to higher re-
action times in morphologically complex words
as compared to morphologically simpler words
(see Figure 4).

Figure 3: Interaction between Morphological Com-
plexity and Script Complexity
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Figure 4: Interaction between Morphological Com-
plexity and Frequency Cost. Note that a low
Frequency Cost corresponds to a high Frequency
Count for a word

5 Discussion
Our results replicate the robust effects of fre-
quency on lexical processing in Malayalam.
As frequency is a known predictor of reaction
times, we expected to find a significant effect
for frequency, but we particularly wanted to
understand the effect of morphology and or-
thography on word recognition in Malayalam.
Orthographic complexity as captured by dia-
critic placement and ligatures also has a sig-
nificant effect on lexical processing. Similarly,
we also find an effect for morphological com-
plexity in terms of the number of morphemes
in a word.

The interactions in our model point to an in-
teresting relationship between high frequency
words and morphological complexity. It ap-
pears that the effect of frequency cost becomes
more pronounced in more complex words. In
other words, low frequency words lead to
higher reaction times particularly when they
are morphologically complex. Perhaps this is
because the cost of lexical decomposition is
higher in these words. On the other hand, the
effect size of script is weaker and becomes visi-
ble only when the word is morphologically sim-
ple. When the word is morphologically com-
plex, this effect is not very apparent.

This work points to many interesting future
avenues for exploring lexical complexity in an
agglutinative language like Malayalam. Par-
ticularly, the effect of morphological complex-
ity on factors like frequency need to be ex-
plored more thoroughly. In the future, we plan
to carry out experiments with a larger set of

items for the lexical decision task, as this was
a preliminary study. We also plan to exper-
iment with other measures of morphological
complexity that take into account information
about the type as well as the number of mor-
phemes.
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Abstract

Complex NLP applications, such as machine
translation systems, utilize various kinds of
resources namely lexical, multiword, domain
dictionaries, maps and rules etc. Similarly,
translators working on Computer Aided Trans-
lation workbenches, also require help from
various kinds of resources - glossaries, termi-
nologies, concordances and translation mem-
ory in the workbenches in order to increase
their productivity. Additionally, translators
have to look away from the workbenches for
linguistic resources like Named Entities, Mul-
tiwords, lexical and lexeme dictionaries in or-
der to get help, as the available resources
like concordances, terminologies and glos-
saries are often not enough. In this paper
we present Kunji, a resource management sys-
tem for translation workbenches and MT mod-
ules. This system can be easily integrated
in translation workbenches and can also be
used as a management tool for resources for
MT systems. The described resource manage-
ment system has been integrated in a trans-
lation workbench Transzaar. We also study
the impact of providing this resource manage-
ment system along with linguistic resources
on the productivity of translators for English-
Hindi language pair. When the linguistic re-
sources like lexeme, NER and MWE dictio-
naries were made available to translators in
addition to their regular translation memories,
concordances and terminologies, their produc-
tivity increased by 15.61%.

1 Introduction

NLP applications - machine translation systems
and translation workbenches (which can have mul-
tiple MT systems integrated), are complex in na-
ture as they are built with various complex het-
erogeneous NLP modules. These complex NLP
applications are compute and knowledge intensive

in nature and require various types of resources at
different levels of processing.

The translators using the translation work-
benches have to look for various resources - glos-
saries, terminologies, concordances and transla-
tion memory in order to supplement their trans-
lation tasks. It is still hard to maintain consistency
while maintaining high productivity. Sometimes,
the aid the translators get from the resources is
not enough and they have to look for linguistic re-
sources - Named Entities, lexical, bilingual, Mul-
tiwords and lexeme dictionaries - offline or online
for the correct and appropriate meaning of a given
phrase or word leading to additional cognitive load
on translators.

In MT system, when MT modules execute on
the given input, various types of resources namely
lexical, bilingual, domain, multiword dictionaries,
paradigms, maps files and rules are required at var-
ious stages of the processing. With the exploration
of Sampark and Anusaaraka MT systems (ILMT,
2009; Chaudhury et al., 2010), it has been found
that the resources can be used in a more efficient
way in the both systems. These resources are
developed by by NLP researchers who face re-
source management issues like exporting, import-
ing, storage etc. For a large scale NLP applica-
tion development, inefficient storage and manage-
ment of these resources can become a bottleneck
for productivity.

For the translation tasks and MT applications’
development for Indian languages, the above men-
tioned issues become more critical as the digital
content available in Indian languages are way less
compared to other languages. As Hindi is one of
the top 5 spoken languages of the world but still
its digital content available on the web is less than
0.05% while the content of the other Indian lan-
guages are still lower. Hence the need of a re-
source management system arises which can ad-
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dress the issues of both translators as well as MT
modules’ development.

In this paper, we present a resource manage-
ment system named Kunji, which addresses the is-
sues related to resources of both translation work-
benches and MT system development for Indian
languages. It can be used in translation work-
benches to facilitate the translators to use ad-
ditional linguistic resources - domain, lexical,
named entities, multiword and WSD dictionaries
- along with the terminologies, concordances and
glossaries. It facilitates the translators in two ways
- i) reduction of their repetitive load by provid-
ing searching and filter mechanism and ii) reuse
of their previously translated words, phrases and
sentences by providing the provision of personal
and domain dictionaries. It shifts the problem of
recall to recognition which causes less cognitive
load on translators by providing them provision
to search the corresponding terms and recognize.
It also facilitates the NLP researchers to manage
the resources for MT modules in a robust manner
while addressing their issues of management, ex-
port, import, formats and efficient search etc. It
also lets them evaluate and verify their work from
other senior expert. Such system facilitates the
large scale MT applications development by mak-
ing the resources available to multiple modules
and their facilitation to process and reuse them ef-
ficiently in an MT system.

Additionally we performed an experiment to
study the impact of providing this resource man-
agement system along with linguistic resources
on the productivity of translators. The described
resource management system, Kunji, has been
integrated in the translation workbench Tran-
szaar (Ahmad et al., 2018). The resources with
linguistic features like lexeme, NER and MWE
dictionaries have been provided in Kunji to facil-
itate translators in addition to their regular trans-
lation memories, concordances and terminologies
for English-Hindi language pair. We observed
that the productivity of the translators increased
by 15.61% when the resources with linguistic fea-
tures were provided to the translators in addition
to their regular resources (translation memories,
glossaries, concordances and terminologies).

In this paper, background and motivation for
Kunji is described in Section-2 followed by re-
lated work in Section-3. The detailed architecture
and functionality of Kunji is described in Section-

4. Section-5 describes the experiment performed
on Kunji followed by its results and discussion in
Section-6. In Section-7, we conclude our work.

2 Background and Motivation

In current scenario, various translation work-
benches(CAT tools) are available. Some of them
offer the resources like translation memories(TM),
concordances, terminologies and glossaries to
translators but there is a lack of the resource man-
agement systems which provide the provision by
which a translator can use additional linguistic re-
sources like NE, MWE and lexeme dictionaries.
Additionally there is a lack of the provisions of
reuse, management and verification of these re-
sources which can lead a process to improvement
and development of the MT systems.

There are several tools for resource develop-
ment but they are built with separate purposes
and languages as they are for task specific. Like
for annotators they have separate tools in In-
dian languages like Sanchay (Singh, 2008) but
it is desktop based application. Some tools like
GATE (Cunningham, 2002) addresses the some of
the problems faced by NLP researchers while de-
veloping NLP resources but it is desktop based ap-
plication.

It motivated us to develop Kunji, a resource
management tool, which facilitates the translators
in translator workbenches as well as MT system
development process. It tries to address the issues
faced by both translators as well as MT module
developers. It allows the translators to use and
manage the linguistic resources along with their
terminologies and glossaries.

3 Related Work

There are some translation workbenches with
separate resource management systems such as:
Smartcat 1, Memsource 2 and Matecat (Federico
et al., 2014) are web based CAT tools, provide cen-
tral resources management for a project but they
do not provide the provision for the linguistic re-
sources. CASMACAT (Alabau et al., 2014) is
a translation workbench which is web based and
offers advanced functionality for computer-aided
translation. It offers TMs but it also lacks the
provision for the linguistic resources. PET (Aziz
et al., 2012) is a tool to postedit to for evaluating

1https://www.smartcat.ai
2https://www.memsource.com
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the quality of translations. It evaluates the efforts
required in translations in order to be fixed. SDL
Trados, MemoQ3 and Anubis (Jaworski, 2013) are
CAT tools which are not web based and both lack
the provision to use linguistic resources.

Brat (Stenetorp et al., 2012) is basically a web
based annotation tool which focuses mainly on
text annotations to enhance annotators productiv-
ity by closely integrating NLP technology into the
annotation process. It doesnt address the issues
in resources management with respect to trans-
lators and large scale NLP application develop-
ment. Creating language resources for NLP in
Indian languages (Sangal and Sharma, 2001) de-
fines a novel idea in which the development of
lexical resources is linked with an example NLP
application like MT then it can act as a test bed
for the developing resources and provide constant
feedback. Sanchay (Singh, 2008) provides an ex-
tra layer of easily customizable language encod-
ing support for less computerized languages along
with an editor named Sanchay with different types
of fonts and language encoding supports but it is
desktop based application. GATE (Cunningham,
2002) enables users to develop and deploy the lan-
guage engineering tools and resources in a robust
manner. It is a desktop based tool which supports
many NLP and information extraction tasks in
multiple languages. Nancy et al (Ide and Romary,
2009) presents an abstract data model and its im-
plementation for linguistic annotations. Annomar-
ket (Dimitrov et al., 2014) described a cloud-based
open platform for text mining, which aims to assist
the development and deployment of robust, large-
scale text processing applications.

We see that in some translation workbenches,
the resource management systems for TM, Termi-
nologies and glossaries are available but they don’t
provide the provision for linguistic resources as
well.

4 Kunji : Resource Management System

We propose Kunji-a Resources management Sys-
tem, which is a web based system based on mi-
croservices architecture. It can be easily inte-
grated to a translation workbench and provides
a mechanism to facilitate translators to use and
manage the various types of resources (i.e. like
terminologies, glossaries and domain dictionaries
along with linguistic resources(lexeme dictionar-

3https://www.memoq.com/en

ies, NERs, MWEs etc.)). It does not only facilitate
the translators but also facilitates the MT modules
development by facilitating language researchers
to manage the language engineering resources in
a robust manner for various language processing
tasks and evaluate them which boosts the process
of large scale MT development.

4.1 Microservices Based Architecture and
NLP Applications

Microservices (Thönes, 2015) based approach is
an architectural concept of developing an appli-
cation or software systems according to which
a functionality or process can be developed, de-
ployed and tested independently. An application
is divided into set of such modular components
or functionalities in which each functionality is an
independent or disjoint from the others’ in the ap-
plication. In this approach, each functionality or
component has a proper structured interface which
is called API and is used to communicate with the
corresponding module. It helps to overcome the
drawbacks of monolithic approach.

The complex NLP applications- especially MT
systems or translation workbenches are knowl-
edge and compute intensive in nature. So manage-
ment and development of the resources for them
requires deep knowledge of corresponding do-
main, nature of language while implementing al-
gorithm for it requires knowledge of both streams
NLP and computer science. For the development
of the resource management tools for a transla-
tion workbench, the requirements of translators
need to be understood. Many existing NLP ap-
plications for resource management follow mono-
lithic design and hence static in nature. In NLP,
for building scalable, distributed resource manage-
ment systems , microservices based architecture
can overcome the barriers of the monolithic archi-
tecture.

4.2 Architectural requirements
Various NLP applications - CAT tools have been
analyzed for their resource management, their pro-
cedures to utilize different kinds of resources. For
the translation workbenches, various aspects like
their reuse, verification and sharing of resources
in a projects among various translators which are
linked to a project. In MT modules, the procedures
to access, management and reuse of the resources
have been analyzed along with their functional and
development requirements. We figured out the fol-
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lowing Architectural requirements for the system
which are given below:

4.2.1 Microservices based architecture and
Web based tool:

The need of microservices based architecture arise
to overcome the barriers imposed by monolithic
architecture which also facilitates the creation of
the dynamic web based tool for the same. In such
paradigm, every functionality of the resource man-
agement system will be exposed as an indepen-
dent service which can be utilized by the resource
management in translation workbenches in order
to facilitate the translators. It can also facilitate
the NLP resource management for large scale MT
development.

Today is the era of the web, everything we see
and work on is on web or is exposed as a web
based service or tool. Due to mobile and internet
evolution, many people are internet friendly even
non-technical people. So in order to make people
use and develop resources in more efficient way it
is a major need to make it available in web as a
form of web-tool which will also makes the appli-
cation platform independent.

4.2.2 Facilitation in translation workbench:
The resources management system should be de-
signed in such a way so that it should be able
to integrate in the translation workbench in order
to facilitate translators to increase their productiv-
ity. So that translators can manage and use their
own private dictionaries, domain dictionaries, ter-
minologies among with the project or task specific
dictionaries.

4.2.3 Support for linguistic resources in
translation workbenches:

It should support the translators to use, reuse and
manage the linguistic resources like NE, MWE
and lexeme dictionaries dictionaries as well.

4.3 Our Architecture

We explored the various aspects of NLP resources
management and the ways in which they can be
utilized in a translation workbenches to aid the
translation tasks to translators as well as their facil-
itation to NLP researchers and annotators towards
development of large Scale MT systems. Taking
such requirements in consideration, we designed
the architecture of the system such that it is a col-
lection of independent microservices for each of

Figure 1: Kunji : Architecture

the functionality which can be deployed indepen-
dently. We resolve the problem of monolithic ar-
chitecture by exposing each functionality as a mi-
croservice which can be executed and interacted
via RESTful API.

4.3.1 Kunji : Architecture Explanation
The architecture has been shown in Fig. 1 follow-
ing with it’s explanation.

• Application logic : It is the block or portion
containing the complete functionality of the
system. Hence the system’s functionalities
are structured, designed and implemented in
the functional way independently.

• In-Memory Resource Loading : The differ-
ent types of resources are required in differ-
ent modules of MT as well as for providing
help in the translation workbenches. Their
loading from database at each execution pro-
cess makes process slow as well as it imposes
an unnecessary load to the system. Hence the
services of the system are designed in such
a way that resources load at the time of the
starting of the service not at the time of invo-
cation of the service.

• REST APIs : REST(Representational state
transfer) API is basically an approach or tech-
nology for communications which is used in
developing web services. It provides many
methods such as HTTP or HTTPs for imple-
mentation. We expose each of the function-
ality of the resource management system as a
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microservice with REST API interface to in-
teract with. The APIs are created for create,
add, import, export, delete, link, update and
verify.

• UI The simple UI has been created with the
HTML5 and JavaScript

4.3.2 Structure of Resources
First the configuration of a resource is defined fol-
lowed by the corresponding entries of the data in-
side the resource as follows:

• Configuration of a resource : It contains the
following fields as given below in the Table-
1:

Resource Configuration Fields
resourceId
resourceName
resourceType
domain
subDomain
srcLang
tgtLang
project
client
description
createdBy
modifiedBy
creationDatetime
lastModifiedDateTime

Table 1: Resource configuration.

First the configuration of the resource is cre-
ated as the configuration mentioned in Table-
1:

• A data record of a resource will look like as
mentioned in Table-2 :

It contains the record with its target value and
category and other required fields.

• Explanation: First the configuration of a
particular resource type is created then its
corresponding data entries can be created.
So after the resources are created then we
read the corresponding configuration of the
resource and load it in memory in order to
make process efficient.

Resource Record Fields
resourceId
source
target
category
gender
subCategory
createdAt
modifiedAt
createdBy
modifiedBy
description
verfiedFlag

Table 2: Resource Record Details.

4.3.3 Technologies used
For the controller part, for complete in-memory
based architecture and for creating the micro-
services we used Java servlets with Apache-
Tomcat-9 web server.

For the storage of the resources we used
MongoDB-3.6.

For UI portion of the management system
HTML5 along with CSS and Ajax have been used.

4.3.4 Features:
This resource management system has been in-
tegrated with two translation workbenches Tran-
szaar (Ahmad et al., 2018). The features of the re-
source management system are given as follows:

• Addition of the resources in single and bulk
mode.

• Editing and updating of the resources and
their corresponding meta data.

• Provision to export and reuse the resources in
various tools.

• Search: N-gram dynamic search mechanism.

• Easy import the resource in a translation
workbench.

• Provision to develop and manage resources
with linguistic features.

• Provision to verify them with a senior lan-
guage expert of the corresponding language.
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4.3.5 Process Flow

By using Kunji, translators can get aid in their
translation tasks while using translation work-
bench. We demonstrated it with facilitating the
translation workbench transzaar with Kunji. In
kunji, they can create or import and use various
kinds of resources like terminologies, bilingual
and glossary dictionaries. Consider a scenario
where a translator working on the workbench has
some domain terminology dictionaries and wants
to get help in his/her translation tasks. Then he
can simply take that dictionary text file with source
and target tab separated in each line in it. These
resources can be imported/uploaded in the Kunji
with the user metadata i.e. username, domain, lan-
guage pair, and project etc.. So when translator
opens his translation tasks and do editing then he
can get the appropriate meanings of the terms or
words of source text from terminology dictionary
uploaded in Kunji. Those words are highlighted in
source pane and on clicking them we can get ap-
propriate meanings of the terms. Kunji facilitates
a user working on workbench to add, import, ex-
port, update, n-gram search and edit the resources.

Possible types of the resources which can be up-
loaded are terminologies, glossaries, domain and
bilingual dictionaries etc. Kunji also facilitates
translator to import and use linguistic resources
namely lexemes, named entities(NE), multiword
dictionaries which can be helpful in selecting the
correct form of the meaning of a word they should
use.

4.4 Benefits of Kunji

It helps the translators by allowing them to search
and look-up into their corresponding user specific
or system specific resources, terminologies, glos-
saries which they can link with their translation
tasks of a project to increase their productivity.
Repetitive tasks are also facilitated by search or
look up of a term which repeats many times in the
task from the dictionaries and hence their consis-
tency for given translation task would not be af-
fected.Translators can import and use the linguis-
tic resources like lexeme, NE and MWE dictionar-
ies which can be helpful to decrease their cognitive
load like selecting the correct form of the mean-
ing of a word they should use. An experiment
has been performed and is explained in Section-
5 which would show how the linguistics resources
can be beneficial for translators when we use this

resource management system with a translation
workbench.

Kunji also provides various aspects for man-
aging and developing resources for MT applica-
tion development. For NER and MWE, it pro-
vides provisions of category and subcategories
like person/location/organization or Idiom/multi-
word phrases/Domain terms etc. Similarly, it also
provides the ways to create different types of do-
main dictionaries according to the need. So the de-
velopment process of MT can be hugely facilitated
by using this NLP researchers-linguists, annota-
tors and and NLP module developers can be ben-
efited. It addresses issues like encodings, fonts,
usage of the common resources and lexical dictio-
naries for multiple tools, import and export etc so
using such tool can enhance their productivity.

5 Experiment

The described resource management system -
Kunji has been integrated in translation work-
benches Transzaar (Ahmad et al., 2018). We study
the impact of providing this resource management
system in CAT tool-Transzaar along with linguis-
tic resources on the productivity of translators for
English-Hindi language pair. The various types
of resources namely terminologies, glossaries, TM
along with linguistic resources like lexeme, NE
and MWE dictionaries were made available in the
resources management tool in the workbench.

5.1 Experimental setup

We setup the experiment of translation tasks from
the news data of “The Hindu” news website 4.

5.1.1 Data Set
For the experiment, 20 news stories from The
Hindu news paper From national domain have
been taken. The data stories have been divided
into 4 sets with each set containing 5 stories. The
details of the data sets are given in Table 3 and
Table 4.

We integrated the Kunji, the resource manage-
ment system to the Tanszaar and integrated the
resources namely terminologies, glossaries, TM
along with linguistic resources like lexeme, NE
and MWE dictionaries were made available in the
resources management tool in the workbench. We
divided the experiment of translation tasks into 6
scenarios which are described in Table 5.

4https://www.thehindu.com
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Set No Paras Words Sentences Avg words per para Avg paras per story Avg sentences per para Avg sentences per story
Set1(5 stories) 42 1180 65 28 8.5 1.54 13
Set2(5 stories) 64 1722 87 26.9 12.8 1.36 17.4
Set3(5 stories) 59 1553 83 26 11.8 1.4 16.6
Set4(5 stories) 54 1238 74 23 10.8 1.37 14.8

Table 3: Data sets description-1

Total words in dataset 5693
Total sentences in dataset 309
Total paras in dataset 219
Average no. of sentences in each data set 15.45
Average sentence length 18.34 tokens
Average paras in complete data set 11
Average para length 26 tokens

Table 4: Data sets description-2

Scenarios Description
Scenario-1 Manual Translation
Scenario-2 Post-editing in GT on Text editor
Scenario-3 GT with Transzaar without Kunji
Scenario-4 GT with Transzaar and Kunji

(onlyTM, Terms, Glossaries)
Scenario-5 GT with Transzaar and Kunji

(only linguistic resources)
Scenario-6 GT with Transzaar and Kunji

(TM, Terms, Glossaries and linguistic resources)

Table 5: Description of Various scenarios : Here GT
refers to Google translation output

We have chosen the English-Hindi language
pair for our experiment and created the translation
tasks from the dataset for each of the mentioned
scenarios in Table 5 and assigned them to the four
translators. The translation tasks have been as-
signed in such a way that no translator would re-
peat the same set again in a given scenario.

6 Results and Discussion

The results of experiments are given in Table 6 and
Table 7. Each cell in the Table 6 presents the total
time taken(in hours) by corresponding translator
in the post-editing of the each set. The cells in the
last row present the average time taken on all sets
in the corresponding scenario. Table 7 presents per
sentence time taken by each translator(in minutes)
in the 6 different scenarios given in Table 5.

From Table 6 and Table 7 we see the impact
of a translation workbench with and without the
availability of different kinds of resources. We
observed the translation data with professional
translators in Table 6 and Table 7. Scenario-3 is
when we use a workbench without any resources.
Compared to Scenario-3, in Scenario-4 we use

the workbench with translation resources but ex-
clude linguistic resources. We observe that the
productivity is significantly improved by 29.93%.
When we contrast this with Scenario-5 where only
linguistic resources are used then the productiv-
ity is only improved by 17.12% over Scenario-3.
When we use all the resources including linguis-
tic resources then the productivity is improved by
45.54% as compared to Scenario-3. Hence, we see
that the productivity is improved additionally by
15.61% over Scenario-4 when the resources with
linguistic features are made available for the trans-
lators in the workbench along with TM, Terms and
Glossaries. From the above mentioned results, it
is evident that the translators’ productivity is posi-
tively affected when they get help from the utiliza-
tion of resources with linguistic features in CAT
tool.

The scenario-wise time consumed per sentence
translation by each of the translators is presented
in Table 7. It is observed that the productiv-
ity of each translator increases when we go from
Scenario-1 to Scenario-6. For each translator, it
is observed that their productivity increases as
they use the translation workbench with resources.
Their productivity significantly increase by more
than 66% in scenario-6 i.e. when the linguis-
tic resources are made available for the trans-
lators in the workbench along with TM, Terms
and Glossaries. In scenario-6, the correspond-
ing productivity of the translators are increased
by 66%, 71.6%, 71.3% and 68.2% respectively.
We also see the significant improvement in pro-
ductivity when we go from scenario-4(workbench
with translation resources but exclude linguistic
resources) to scenario-6((workbench with transla-
tion resources but including linguistic resources).

There are some observations of the translators
about the data set. The Set-1 is the toughest of
all four sets. It is evident from table-7 that, trans-
lators took most time in translation of this set in
each of the scenario. The Set-4 is the easiest of
the sets as less time is consumed in its translation.
Translators found the linguistic dictionaries (lex-
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Set No Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5 Scenario-6
(Total Time (Total Time (Total Time (Total Time (Total Time (Total Time

in hours) in hours) in hours) in hours) in hours) in hours)
Set1 1.986(U1) 1.211(U2) 1.16(U3) 0.826(U2) 0.96(U4) 0.702(U21)
Set2 1.733(U4) 1.12(U1) 1.064(U2) 0.734(U1) 0.858(U3) 0.563(U4)
Set3 1.464(U3) 0.8431(U4) 0.835(U1) 0.5925(U4) 0.6864(U2) 0.421(U3)
Set4 1.158(U2) 0.702(U3) 0.64(U4) 0.443(U3) 0.565(U1) 0.33(U2)

Avg Time Taken in the scenario 1.585 0.97 0.9236 0.647 0.766 0.503

Table 6: Results of Experiment

Scenarios Total Time
taken
by U1
per sent.
(in min.)

Total Time
taken
by U2
per sent.
(in min.)

Total Time
taken
by U3
per sent.
(in min.)

Total Time
taken
by U4
per sent.
(in min.)

Scenario-1 1.84(S1) 0.938(S4) 1.058(S3) 1.195(S2)
Scenario-2 0.78(S2) 1.03(S1) 0.569(S4) 0.61(S3)
Scenario-3 0.6(S3) 0.733(S2) 1.07(S1) 0.52(S4)
Scenario-4 0.506(S2) 0.76(S1) 0.359(S4) 0.43(S3)
Scenario-5 0.41(S4) 0.49(S3) 0.59(S2) 0.88(S1)
Scenario-6 0.64(S1) 0.267(S4) 0.304(S3) 0.38(S2)
Improvement
(in %)

66% 71.6% 71.3% 68.2%

Table 7: Scenario-wise Results of Experiment with Professional Translators

eme, named entities and MWE ) very helpful in
the translation. For example the meaning of the
word ”dreaded” contains two senses in different
contexts in Hindi. The lexeme dictionary aided
the translators in disambiguation of word senses.

7 Conclusion

We have proposed a resource management sys-
tem which addresses the issues of the translators
as well as MT system development. Using Kunji,
a translator can utilize, reuse and manage his re-
sources which can be shared across projects and
can be used further. Also the NLP researchers get
benefited using it in their resources management
in MT system development so that the resources
can be utilized and managed in an efficient way.

It also provides the mechanism which allows a
translator to get help from the linguistic resources-
lexeme, NER and MWE dictionaries in addition to
their regular translation memories, concordances
and terminologies. We performed experiments
which show the effect of the linguistic resources
in the productivity of the translators. We see that
their productivity increased by 15.61% when they
use linguistic resources along with their regular

TM, terminologies and glossaries as mentioned in
Table 6 and Table 7. We hope to extend this system
by analyzing the impact of more complex NLP
module like Morphological analyzer in the trans-
lation pipeline.
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Johannes Thönes. 2015. Microservices. IEEE soft-
ware, 32(1):116–116.

192



D M Sharma, P Bhattacharyya and R Sangal. Proc. of the 16th Intl. Conference on Natural Language Processing, pages 193–200
Hyderabad, India, December 2019. c©2019 NLP Association of India (NLPAI)

Identification of Synthetic Sentence in Bengali News using Hybrid
Approach

Soma Das
soma_phd_2018july@iiitkalyani.ac.in

Indian Institute of Information
Technology Kalyani,
West Bengal, India

Sanjay Chatterji
sanjayc@iiitkalyani.ac.in

Indian Institute of Information
Technology Kalyani,
West Bengal, India

Abstract

Often sentences of correct news are either
made biased towards a particular person or a
group of persons or parties or maybe distorted
to add some sentiment or importance in it. En-
gaged readers often are not able to extract the
inherent meaning of such synthetic sentences.
In Bengali, the news contents of the synthetic
sentences are presented in such a rich way that
it usually becomes difficult to identify the syn-
thetic part of it. We have used machine learn-
ing algorithms to classify Bengali news sen-
tences into synthetic and legitimate and then
used some rule-based postprocessing on each
of these models. Finally, we have developed
a voting based combination of these models
to build a hybrid model for Bengali synthetic
sentence identification. This is a new task and
therefore we could not compare it with any ex-
isting work in the field. Identification of such
types of sentences may be used to improve
the performance of identifying fake news and
satire news. Thus, identifying molecular level
biasness in news articles.

Keywords: Synthetic Sentence, Engaged
Reader, Machine Learning technique, Rule Base
Approach

1 Introduction

The Bengali language is rich in terms of the usage
of its words. It is also a relatively free word order
language. By changing the order of the same set of
words, the author can add some emphasis to some
part of the sentence. It is usually observed that the
Bengali sentences are frequently distorted like this
way. The number of ways English sentences can
be distorted is much less than the number of ways
a Bengali sentence can be. But all the distorted
sentences not necessarily have added biasness or
emphasis.

Some readers take the inherent meaning of the
sentences without getting into involved in the bi-
ased part of it. They can take out an overview of
the text. But often, an engaged reader gets engaged
with the writer’s views. Sometimes it is not so
harmful or it is preferred to be an engaged reader.
For example, to get the full flavour of a literary
work, the reader has to be engaged. But often it
is not desirable. For example, in a piece of politi-
cal news, it is not recommended to engage a reader
without his concern. So, it is essential to notify the
reader about synthetic sentences.
Often sentences of correct news are either made

biased towards a particular person or a group of
persons or parties or maybe distorted to add some
sentiment or importance in it. We refer such types
of sentences as synthetic sentences. Engaged read-
ers often are not able to extract the inherent mean-
ing of synthetic sentences. In Bengali, the news
contents of the synthetic sentences are presented
in such a rich way that it usually becomes difficult
to identify the synthetic part of it.
In this paper, we wish to identify the synthetic

sentences in Bengali news automatically. We use
the linguistic features in multiple Binary Machine
Learning Classifiers to decide whether it is syn-
thetic or legitimate. Then analyzing a confusion
matrix, we apply a set of rules. Finally, we com-
bine these models using a voting-based approach.
We test this hybrid technique in a Bengali news
corpus covering the news in Politics, Sports, En-
tertainment, and Social domains. The final hybrid
technique is able to provide 86% accuracy.
The rest of the paper is organized as follows.

Section 2 illustrates a background study related to
synthetic news detection. Section 3 and Section 4
discuss how we have prepared the experimental
dataset and model building part. Section 5 shows
the results of different steps. Finally, Section 6
presents concluding remarks of the task.

193



2 Related Work

There are some works in the detection of fake
news. They detect fake news in a news corpus
Bovet and Makse (2019); Batchelor (2017); Shu
et al. (2017); Conroy et al. (2015) that is, mislead-
ing news stories which come from non-reputable
sources. These papers mainly focus on fake news
from four perspectives: the false knowledge, its
writing style, its propagation patterns, and the
credibility of its creators and spreaders.
Rubin et al. (2016) describes three types of fake

news in contrast to reporting. These are - serious
fabrications (uncovered in mainstream or partici-
pant media); large-scale hoaxes; humorous fakes
(news satire, parody).
Zellers et al. (2019) discussed the threats posed

by automatically generated propaganda articles
that closely mimics the style of real news. They
have designed a language model-based system
called Grover for the controllable generation of
text from the title of the news. Humans may find
this generated text to be more trustworthy com-
pared to the actual news article. Such type of fake
news called neural fake news is discriminated best
using the generator system itself.
Bradshaw and Howard (2017) compared the

teams who spread manipulated information, also
called disinformation through social media and
news across 28 countries including India. These
types of fake news are created manually to influ-
ence the voters and domestic audiences purposely.
Melford and Fagan (2019) designs a Global Disin-
formation Index (GDI) to combat the disinforma-
tion.
Another essential type of fake news is created by

proliferating stylistic bias in the text. Pérez-Rosas
et al. (2017) have used linguistic features in Sup-
port Vector Machine (SVM) to detect these fake
news in some English newspapers. Rubin et al.
(2016) discriminated between synthetic and legiti-
mate news using 5 features namely Absurdity, Hu-
mor, Grammar, Negative Affect, and Punctuation.

3 Dataset Preparation

We evaluate our proposed framework on two
datasets, Kaggle Bengali news, and Online Ben-
gali news. For the time being, we are not using the
name of the newspapers to avoid the controversy.
In total, we have 25K news covering seven dif-
ferent domains, namely Kolkata, State, National,
Sports, Entertainment, World, and Travel. Each

Figure 1: Bengali News Dataset Distribution in
Kolkata, State, National, Sports, Entertainment, World,
and Travel Domains

news contains on an average of 15 sentences. The
distribution of the Bengali news dataset in the
seven domains is shown in Fig. 1

3.1 News Content Features
The structure of the news dataset is listed below:

1. Source: Author or publisher of the news ar-
ticle.

2. Domain: The domain of the news is de-
fined in this field. In this dataset, we have
seven different domains viz, Kolkata, State,
National, Sports, Entertainment, World, and
Travel.

3. Headline: Short title text that aims to catch
the attention of readers and describes themain
topic of the article

4. Body Text: Main text that elaborates the de-
tails of the news story, there is usually a sig-
nificant claim that shapes the angle of the
publisher.

Depending on these raw content attributes, dif-
ferent kinds of feature representations can be built
to extract discriminative characteristics of synthe-
sis news. The news content we are looking at
mostly be linguistic-based features, discussed in
the following section.

3.2 Preprocessing of News Sentences
The overall framework of the machine learning-
based classifier is divided into three parts: Clean-
ing of raw text, feature extraction and synthetic

194



news classification. The collected news sentences
are annotated manually as a legitimate or synthetic
sentence. It is difficult to deal with raw news due
to noise. The noisy news includes:

• Keyphrases: - িনজসব্ পৰ্িতেবদন, ওেয়ব েডস্ক:, এই
িবষেয় অন�ান� খবর, বু�েরা, িডিজটাল েডস্ক, সূেতৰ্র
খবর
Different publication media use the men-
tioned key phrases which are actually not part
of the news. We remove these phrases from
the news sentences.

• English Sentences: News contains some
English sentences along with Bengali sen-
tences. The following English sentence is
highlighted inside a Bengali sports news,
e.g.,”Delhiites get a bite of #ViratKohli quite
literally at #MadameTussauds PC States-
man pic.twitter.com/FNLARdIQi6 - Bharat
Sharma (sharmabharat45) June 7, 2018”,
”ISIS,” ”JNU”. We remove such non Ben-
gali sentences from our dataset.

• Stop Words: Stop words are described as the
most common words that occur in any corpus
of a particular language. At the preprocess-
ing step, we remove stop words such as - 'এ',
'এবং', 'আর' from the sentences. Here we cre-
ated a stop word list of 360 words and then
these words are removed from the corpus.

• Word Stemming: Word stemming is applied
to map the words with different endings to
a single one such as চ�ােলেঞ্জর,চ�ােলঞ্জ becomes
চ�ােলঞ্জ. Bengali is a very inflectional language
for which stemming is required for further
processing.

• Other: News contains emoticons, symbols,
and pictographs. We remove them by using
Unicode.

By using the above-mentioned list of phrases,
we preprocess the raw news and generate a clean
text for further processing.

3.3 Annotation Guideline

We have annotated Bengali news sentences into
two categories: synthetic and legitimate. In this
section, we discuss the method we have followed
in tagging with some examples.

• Example-1: এই সম্পৰ্দােয়র এক সদেস�র মেত,
২০১৫ সােল আেমিরকােত এবং ২০১৭ সােল ইংল�ােন্ড
সভা কেরিছেলন পৰ্ধানমন্তৰ্ী।
[According to a member of this community,
the Prime Minister had a meeting in the
United States in 2015 and England in 2017.
]
In this sentence, it is claimed that the state-
ment is taken from somebody, but the name
is not mentioned explicitly. This is why, we
consider such types of sentences as synthetic.
If the name of the claimer is added, then it is
converted to legitimate.

• Example-2: সুপার ওভােরও েখলার েশষ না হওয়ায়
বাউন্ডািরর সংখ�ার িভিত্তেত ইিন্ডয়ােক চ�ািম্পয়ন
েঘাষণা কের েদওয়া হয়।
[India was declared champion on the basis of
the number of boundaries as the game did not
end in the Super Over. ]
The cause-effect sentence of Example-2 is
considered legitimate as it is based on a true
fact cause, and the relation is an established
relation: if a game does not end in Super Over
then go for a number of boundaries.

• Example-3: সুপার ওভাের উেত্তজনা, িশষ� িনশােমর
ছক্কা েদেখ েশষ িনঃশব্াস গ‌ুরুর।
[Tension in the Super Over, the master re-
leases last exhale after seeing the six of the
disciple Neesham.]
In the cause-effect sentence of Example-3,
the cause is a true fact, but the relationship is
based on an assumption or probability. There
is no rule in the environment to state that one
will die after seeing one’s six. Therefore this
sentence is tagged as synthetic.

• Example-4: সম্ভবত মন খারােপর কারেন, েবাল্ট
তার েসরা পারফরম�ান্স িদেত পারলনা।
[Probably due to distress, Bolt could not give
his best performance.]
This is also a cause-effect sentence. In this
sentence, the cause is not a true fact as a prob-
ability is associated with it. Though, the rela-
tion ”if somebody is in distress, then he will
not be able to give his best performance” is
an established relation this sentence has syn-
thetic property.

• Example-5: The phrases containing synthetic
adjectives have a synthetic property like: মন
ভাঙা েবাল্ট বলেলন
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[broken heart Bolt told ]
We observed that verbs carry the best clue
about the synthetic property. Therefore we
have created a clue verb list and used it as
a feature. But there are some adjectives, ad-
verbs, nouns, which can also be considered a
clue. We considered them during annotation.

• Example-6: িকন্তু, আমরা তাঁেদর আশাপূরণ করেত
পািরিন।
[But we could not meet their hope.]
This sentence talks about an abstract mental
state (hope). It is not defined how to measure
whether it is met or not. Therefore, this is a
synthetic sentence.

• Example-7: তবু মণীশ পােন্ডর শতরােনর েসৗজেন�
বড় রান তুেল েফেল ভারতীয়।
[Yet by courtesy of CenturionManish Pandey
India built a big score.]
Here, the word ‘yet’ makes this sentence syn-
thetic, as it means it would not be possible
without him. But it is not correct as others
are not tested. Dropping this word leads to a
legitimate sentence.

4 Proposed System

After preprocessing of the raw news, the news is
tokenized and segmented into sentences level. In
this paper, we create a hybrid approach by com-
bining Binary Machine Learning Classifiers using
the Voting approach and then postprocessing with
a Rule-Based approach. The proposed system is as
follows:

1. For machine learning, features are gener-
ated from the sentences, and after that,
we apply supervised machine learning al-
gorithms, namely Support Vector Machine,
Naive Bayes, K Nearest Neighbors, Random
Forest, Decision Tree, and Logistic Regres-
sion.

2. According to the results of supervised algo-
rithms, we are creating some rules based on
the mismatched outputs.

3. Lastly, we are combining the supervised algo-
rithms using a voting approach. We are giv-
ing a higher preference for synthetic tagging.
If among the six classifiers, 3 classifiers tell
the sentence is synthetic and 3 classifiers tell
it is legitimate, then we annotate it as syn-
thetic. However, if more than 3 classifiers tell

that the sentence is legitimate, then it became
legitimate.

In this paper, we consider synthetic news clas-
sification for independent sentences as each sen-
tence carries some synthetic or legitimate property.
Our approach is to use a committee of classifiers,
each trained on a set of text features. The entire
list of features is presented in this section.

4.1 Feature Selection in Synthetic
Classification

Feature Selection of any classification problem
takes a crucial part. Each sentence is represented
by a feature vector which contains numerical fea-
tures that represent the occurrence frequency or
weight of a feature or binary features (occurrence
or non-occurrence of a feature) or a ternary feature.
The features are listed below:

1. Punctuation: Various punctuation is used to
indicate different types of sentiments. The
use of punctuation can help the synthetic
news detection algorithm to differentiate be-
tween funny, entertaining, deceptive, and
truthful texts. This feature has two values (bi-
nary) - Exclamation (!) and Question Mark
(?). This feature is used because, according
to our observation the exclamatory sentences
and question sentences are more prone to be
synthetic. This feature helped us to improve
the precision of synthetic sentence identifica-
tion.

2. Named Entities: News tells a story related
to a particular incidence. Legitimate news
is having the property of some person telling
something or making comments. Named En-
tities are used many times inside news. We
have observed that the sentences having a
Named Entity mostly become a legitimate
sentence. This is because even if an incidence
is false or synthetic, but it is told by a particu-
lar person we consider it to be true. Consider
the example: ”a person x told that he is prob-
ably sick”. Here the ‘probably’ word makes
the statement synthetic. But the sentence is
legitimate as the person x has actually told
it. Thus, use this binary feature (there exist
a Named Entity or not) may be helpful to pre-
dict synthetic news sentence.
To find the named entity in the news sentence,
we manually annotate 42k words from 6k
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news sentences to train CRF++ model. Here,
we are using POS tag as a feature of CRF++ to
find the presence of named entity in the sen-
tence. To get the POS tag we have used some
of the features proposed by Dandapat et al.
2007 which are available with us. Along with
the POS tag the Bengali gazetteer list of 1200
names is also used in training the CRF++
model. Then the model is tested with our 530
news examples and we get 94.3% accuracy.
We have used this Bengali gazetteer list as a
binary feature (presence or non-presence of
named entity).

3. Domain-specific Clue Verb: We have seen
that maximum synthetic sentences have some
verbswhich carry some indication for the sen-
tence to have synthetic property. Similarly,
some verbs are indications of the legitimate
property of the sentence. Theses verbs are
defined as Clue Verbs. We are attempting to
make a list of words for Legitimate sentences
and another for synthetic sentences manually.
By analyzing a large corpus, we make a list as
shown in 1, which is not exhaustive.

We have considered this clue verbs as a
ternary feature as follows. If there is a Legit-
imate Clue Verb then it is 1 (we do not need
to consider Synthetic Clue Verb); if there is
no Legitimate Clue Verb, but there is a Syn-
thetic Clue Verb then it is 2, and if there is nei-
ther Legitimate Clue Verb nor Synthetic Clue
Verb then it is 3. The value 1 indicates that
the sentence is a strong candidate for being
legitimate; the value 2 indicates that the sen-
tence is a strong candidate for being synthetic
and the value 3 indicates that there is no clue
about its property. According to our observa-
tion, this feature is the most effecting feature
in the classification task.

4. TF-IDF: TermFrequency - Inverse Document
Frequency (TF-IDF) of a term is used to de-
note its importance. TF(w,d) denotes the raw
count of the word (w) in a news document (d)
and IDF(w,D) is a measure of how much in-
formation the word (w) provides, i.e., if it is
usual or rare across all news documents (D).
Finally, TF-IDF is defined as follows.

tf_idf(w, d,D) = tf(w, d)× idf(w,D)
(1)

Thus, TF-IDF is used to determine the im-
portance of words in news domain. We have
combined the TF-IDF of words of the input
sentence to calculate the importance of sen-
tence in news domain. Considering that the
synthetic sentences carry more importance
we have used it as a feature in our task.

4.2 Machine Learning-Based Classification
Synthetic news sentence classification may be
done at the document level, sentence level, and
phrase level. We are considering the news article
is based on an actual fact. Some of its sentences
are synthesized by the author to attract the engaged
reader. Our objective is to identify those synthetic
sentences. So, in this paper, sentence-level classi-
fication is considered where an independent sen-
tence is classified as synthetic sentences and legit-
imate sentences.
A supervised binary classifier algorithm may be

used to identify the synthetic sentences. Several
supervised machine learning techniques have been
examined in the paper to classify the sentences into
classes. Those are Support Vector Machine, Naive
Bayes, K Nearest Neighbors, Random Forest, De-
cision Tree, and Logistic Regression (LR). We
have considered the Punctuation feature, Named
Entity feature, clue verb, and TF-IDF feature, as
discussed in Section 4.1.
The Confusion Matrix is one of the most intu-

itive metrics used for finding the correctness and
accuracy of the model. The Confusion Matrix in
itself is not a performance measure as such, but
almost all of the performance metrics are based
on the Confusion Matrix and the numbers inside
it. The confusion matrix is a table with two di-
mensions (“Actual” and “Predicted”), and sets of
”classes” in both dimensions.
The following terms are associated with a con-

fusion matrix.

• True Positive (TP): when predicted synthetic
sentences pieces are actually annotated as a
synthetic sentence;

• True Negative (TN): when predicted legiti-
mate sentences pieces are actually annotated
as true sentences;
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Label Clue Verb
Legitimate বলেছন [Says-H], জািনেয়েছন [Said-H],জানান [Said-H ], বলেলন [Said-H],ঘোষণামতো [Declaration], কথা

বেলন[Speak-H]কথা বলেলন [Speak-H], জানান[Tell me], জানােলন[Told], েঘাষণা করেলন[Announced]
Synthetic খিতেয় েদখা[Check it out], খিতেয় েদেখন[Check it out],খতিয়ে েদখা হয়[Is checked ], পৰ্শ্ন কেরেছন

[Asked-H], পৰ্শ্ন কের [Asked-H], পৰ্শ্ন করা হেয়েছ[Asked-H], পৰ্শ্ন করা[Asked-H], পৰ্শ্ন হেয়েছ [The ques-
tion has been], পৰ্শ্ন উেঠেছ [The question arises], কথা িছল [There was talk], কথা েদওয়া[Promise-H],
কথা িদেয়িছল[Promised-H], কথা িদেয়িছেলন[Promised-H],কথা িদেয় রােখনিন[Didn't talk], পৰ্শ্ন উঠেত শ‌ুরু
কেরেছ[The question has started to arise], আস্থা েনই[Not confident], মেন করা হেচ্ছ[It seems ],
চ�ােলঞ্জ িনেয়েছন [Have taken up the challenge ], চ�ােলঞ্জ েছােড়ন[Throw the challenge], চ�ােলঞ্জ
েনওয়া [Take up the challenge], চ�ােলঞ্জ েছাড়া[Throw the challenge], চ�ােলঞ্জ[challenge-H ],মেন করা
হেচ্ছ[It seems], পৰ্মািণত হেব[Will prove], নীিত িনেয়েছ[Policy taken], সিকৰ্য় ভােব পেথ নামেত েদখা
িগেয়েছ[Actively shown on the way down], দািব <Null verb>[Claim-H], খবর চাউর হেয় যায়[The
news goes sour], আতেঙ্কর ছাপ <Null Verb>[The impression of terror], আতেঙ্কর ছাপ েনই[No sign
of panic], তদারিক কেরন[Take care], েফর সতকর্ কের েদন[Warns again], দািব তুেলিছেলন[Claimed-H],
তবু সব্িস্ত িছল[Yet there was relief], েদখেছন স্থানীয়রা[The locals are watching], আস্থা েনই[Not con-
fident], আশব্াস িদেয়েছন[Assured-H], আশঙ্কা[Fear], আশঙ্কা কেরেছন[Have feared], আশঙ্কা করা[Do not
be afraid], আশঙ্কা করল[Apprehensive], রেয়েছ বেল[Say there is], েদওয়ার অিভেযাগ[The charge to
give], চাঙ্গা হেয় ওেঠ[Became stronger], অিভেযাগ তুলেলন[Complain-H], অিভেযাগ করল[Complained-
H], অিভেযাগ করা হেয়েছ[The complaint was made], অিভেযাগ[Complain-H], কড়া বাতর্া[Strong
message], রুেখ দাঁিড়েয়িছেলন [Standing in the stands], রুেখ দাড়ান-H[Stand up], রুেখ দাড়ােলন-
H[Stand up], েতােপর মুেখ-H[Under the cannon], মােঠ নামােচ্ছন-H[Getting down on the field],
সব্ীকৃিত িদেয়েছন[Recognized], সব্ীকৃিত েদওয়া[recognition-H], সব্ীকৃিত িমলেল[Acceptance-H], িবচােরর
মুেখামুিখ[Facing trial], অিভেযাগ উঠল[The complaint arose], অিভেযাগ উঠা[Complaints-H arise], বেল
অিভেযাগ[Complain-H], একাংেশর দািব ছাপ <Null Verb>[Part claim impression], একাংেশর মত[Like
a part], উেস্ক িদল[Instigated-H], কীেসর ইিঙ্গত[What a hint], জানা িগেয়েছ[Got it]

Table 1: List of Clue Verb [H: Honorific]

• False Negative (FN): when predicted legiti-
mate sentences pieces are actually annotated
as synthetic sentences;

• False Positive (FP): when predicted synthetic
sentences, pieces are actually annotated as le-
gitimate sentences.

We have created a separate set of 106 sentences
to create the Confusion Matrix. The Confusion
Matrices of all the Binary Classifier techniques for
these sentences are shown in Fig. 2.

4.3 Rule Based Postprocessing
After analyzing the errors in the confusion matrix
of the Binary Classifier techniques, as shown in
Fig. 2, we have formulated an initial set of rules.
These rules are used in the postprocessing step to
correct some of the errors. The rules we formu-
lated are discussed below.

1. If the topic of the news sentence is clubbed
with old news of different topic, then it is con-
sidered as synthetic. Consider the following
example.
সারদা মামলায় রেমশ গাঁধীেক িনেজেদর েহফাজেত
েনওয়ার পের এ বার েরাজ ভ�ািলর দুই কতর্ােক
েগৰ্ফতার করল তারা|

[After taking Ramesh Gandhi in their custody
in Sarada case now they arrested two heads of
Rose Valley]
In this sentence, the leading news on arrest-
ing two heads of Rose Valley is clubbed with
old news of different topics. Therefore it is
considered synthetic.

2. If in the news sentence the reason for an in-
cidence is written abstractly, then it is con-
sidered as synthetic. Consider the following
example.
শাসকদেলর েগাষ্ঠীেকান্দেলর জন� েসামবার চািষেদর
নিথপতৰ্ জমা েদওয়ার িশিবর েবড়ােবিড় েথেক সের
েগল িসঙু্গর িবিডও অিফেস|
[Due to infighting in the governing party
Monday the camp for submitting documents
of farmers is moved from Beraberi to Singur
BDO office.]
We have prepared an initial list of abstract
reasons. In this sentence, the reason ”infight-
ing” is not concrete. Therefore it is consid-
ered synthetic.

3. If there is an incomplete list of names, mat-
ters, topics, or any other thing in the sentence,
then it is considered as synthetic. Consider
the following example.
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Figure 2: Confusion Matrix after Applying 6 Binary Classifiers on 106 Sentences[ X axis denotes predicted value
and Y axis denotes actual value and both cases 0 indicates legitimate sentence and 1 indicates Synthetic Sentence ]

এজন� বধর্মান, কল�াণী এবং অন�ান� িকছু
িবশব্িবদ�ালয়েক আেবদন জানােত বলেলন িশক্ষামন্তৰ্ী|
[For this, the education minister asked the
Bardhaman, Kalyani and some other univer-
sities to apply.]
In this sentence, the phrase ”some other uni-
versities” indicates that an incomplete list is
used. Therefore it is considered synthetic.

4. If a sentence contains a legitimate clue verb,
then it is classified as a legitimate sentence.
But with the clue verb if there exists an ad-
verb, then the sentence becomes synthetic.
Consider the following sentence.
িশক্ষার সবর্স্তের িশক্ষকিশিক্ষকােদর হািজরায় িবেশষ
নজর েদওয়ার কথা িতিন বারবার বেলেছন
[He has repeatedly said to pay special atten-
tion to the attendance of teachers in all levels
of education. ]
In these sentences, an adverb is used with the
clue verb. Therefore it is considered as syn-
thetic.

5. If in the sentence there exist any phrase in
Double Quotation indicating a comment, then
it is a legitimate sentence irrespective of the
property of the comment. Consider the fol-
lowing example.
িতিন জানান, "এই িবষেয় সকেলর জন� একিট
সাধারণ িনয়মাবলী থাকেল ভাল হয়"
[He said, ”it is better to have a general rule for
everyone in this regard”.]
This sentence tells the comment made by
some entity. Therefore it is considered legiti-
mate.

5 Experimental Result

Various evaluation metrics have been used to eval-
uate the performance of machine learning models.
We want to test the performances of our models
in terms of Accuracy, Precision, Recall, and F1-
Score. These metrics are commonly used to eval-
uate the machine learning models and enable us
to evaluate the performance of a classifier from
different perspectives. The results of the k-fold
cross-validations for each of our hybrid models are
shown in section 5.1.
Then we have applied the voting approach to

combine the models and then the rules. The final
accuracy of this hybrid system is discussed in sec-
tion 5.2.

5.1 Classification Performance of Individual
Hybrid Machine Learning Models

Firstly, we have tested the six binary classifiers
namely Logistic Regression, KNearest Neighbors,
Support Vector Machine, Naive Bayes, Decision
Tree, and Random Forest. We have used 530 sen-
tences annotated as legitimate or synthetic. These
sentences are folded into Training and Test data in
the proportion of 80:20.
We have used k-fold cross-validation (k = 5)

and calculated the above metrics in each of the k-
folds for each model. Then, we have manually
applied the rules on all the six prediction models.
We prepared a comparison chart of the final per-
formances of these six individual hybrid systems
which is given in Fig. 3.
In Fig. 3, the dark gray colour bars indicate the

k-fold cross-validation results of the binary clas-
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Approach Accuracy Precision Recall F1-Score

Logistic Regression based Hybrid System 0.82 0.67 0.82 0.74
Combined Model based Hybrid System 0.86 0.86 0.87 0.85

Table 2: Performances of different approaches for Synthetic Sentence classification

Figure 3: Classifier Result

sification. The light gray colour bars indicate the
result we got after applying the rules on the best
output of the corresponding technique. The result
shows that the rules improved the Support Vector
Machine and LR based techniques most. The Lo-
gistic Regression based technique combined with
the rules gave the highest accuracy up to this stage.
We are getting highest around 82% accuracy by
applying rules on the Logistic Regression based
model.

5.2 Classification Performance of Combined
Hybrid Machine Learning Model

Finally, we have used a voting based combination
of these six machine learning classifiers. If a sen-
tence is tagged as synthetic by 3 or more classifiers
then we consider it to be synthetic. Otherwise, it is
considered to be legitimate. Then, we have applied
the rules on the combined classifier. The final re-
sult of this hybrid system is shown in Table 2.

6 Conclusion and Future Scope

In this paper, we defined and compared synthetic
and legitimate sentences and highlighted many in-
teresting differences between these two categories.
We then utilized these differences as features to de-
tect synthetic sentences. We have proposed a hy-
brid approach that can detect synthetic news. To
the best of our knowledge, our work is the first at-
tempt to detect synthetic news at the Bengali news
sentence level. In the future, we want to extend
it to use semantic features in the Machine Learn-
ing model and calculate the degree of synthetic
property in the synthetic sentences. Then we want

to compare the renowned Bengali newspapers in
terms of the usage of different types of synthetic
sentences.
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Abstract
Self-deprecating sarcasm is a special category
of sarcasm, which is nowadays popular and
useful for many real-life applications, such as
brand endorsement, product campaign, digi-
tal marketing, and advertisement. The self-
deprecating style of campaign and marketing
strategy is mainly adopted to excel brand en-
dorsement and product sales value. In this pa-
per, we propose an LSTM-based deep learning
approach for detecting self-deprecating sar-
casm in textual data. To the best of our
knowledge, there is no prior work related to
self-deprecating sarcasm detection using deep
learning techniques. Starting with a filtering
step to identify self-referential tweets, the pro-
posed approach adopts a deep learning model
using LSTM for detecting self-deprecating
sarcasm. The proposed approach is evaluated
over three Twitter datasets and performs sig-
nificantly better in terms of precision, recall,
and f-score.

1 Introduction

Over a decade, the popularity of the micro-
blogging platform, Twitter, has significantly in-
creased for analyzing its content for varied real-
world applications. The information extracted
from Twitter can shed light on numerous applica-
tions, such as text categorization, sentiment analy-
sis, election campaign and result prediction, open-
source intelligence, and event detection. How-
ever, the contents available on Twitter in the
form of tweets are short and limited to maxi-
mum 280 characters. Moreover, tweets are in-
formal and mainly consist of misspelled words,
slangs, bashes, acronyms, shortened words, non-
literal unstructured phrases, and emoticons. Due
to existence of such volumunious informal texts in
the form of tweets text information processing is a
challenging task. Moreover, analysis of the tweets
has become more challenging due to presence of

figurative language, especially sarcasm. The main
role of a sarcastic tweet is to reverse the actual po-
larity and alter the literal semantics. However, the
computational detection of sarcasm benefits many
applications, especially opinion mining and sen-
timent analysis systems (Bouazizi and Ohtsuki,
2015).

The online Macmillan dictionary defines sar-
casm1 as “the activity of saying or writing the op-
posite of what you mean, or of speaking in a way
intended to make someone else feel stupid or show
them that you are angry”. Sarcasm is the most
seen figurative language category over online so-
cial media platforms. The presence of sarcasm
in tweets is dramatically rising and computational
detection of sarcasm is a challenging and interest-
ing task. It is widely covered by researchers in re-
cent years, but the study on different categories2 of
sarcasm, such as self-deprecating sarcasm, is very
limited. Self-deprecating sarcasm3 is a special cat-
egory of sarcasm in which users mainly apply sar-
casm over themselves using disparage, ridicule,
and contemptuous remarks in a sarcastic style us-
ing humor. It is defined as a “sarcasm that plays
off of an exaggerated sense of worthlessness and
inferiority”. For example, the phrase love going to
the office on Sunday in the text “Really, I always
love going to the office on Sunday” represents a
self-deprecating sarcasm.

Nowadays, self-deprecating sarcasm has be-
come a new style of product marketing and cam-
paign strategy. It is mainly used for product en-
dorsement purposes. This new marketing and
campaign strategy is mainly used to excel the busi-

1https://bit.ly/2WsUkUk (last accessed on 15-
Nov-19)

2https://literarydevices.net/sarcasm/
(last accessed on 15-Nov-19)

3https://bit.ly/2vwjtid (last accessed on 15-
Nov-19)
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ness growth, but without losing the brand value
(Kamal and Abulaish, 2019). The main aim of
this strategy is to draw the attention of the cus-
tomer towards the brand. As per the American
marketing association4, “self-deprecating adver-
tising means consumers can see a different side
to brands, making them more relatable and down-
to-earth”. Interestingly, after an in-depth analysis
of tweets, we found that there are many tweets in
which users refer themselves. We consider such
tweets as self-referential or self-deprecating. For
example, “Really, I just love it” is a self-referential
tweet. Our analysis further reveals that some
of the self-referential tweets are self-deprecating
using sarcasm, i.e., in these tweets users under-
value, criticize, insult, and disparage themselves
using sarcastic phrases. We consider all such self-
referential tweets as self-deprecating sarcasm.

In this paper, we propose a deep learning
approach using Long Short-Term Memory
(LSTM) to detect self-deprecating sarcasm in tex-
tual data like tweets. Initially, after preprocess-
ing, we first identify self-referential tweets from
the dataset based on a set of patterns, and rest of
tweets are filtered out. The main motivation be-
hind the filtration of the non-self-referential tweets
is to increases the overall efficiency of the self-
deprecating sarcasm detection process. In brief,
the main role of the self-referential tweets identi-
fication module can be summarized as follows:

• Identification of explicit self-referential
tweets: After an in-depth analysis across all
the datasets, we identify a set of patterns
followed by the self-referential tweets. Table
1 presents a set of regular expression based
patterns and it is categorized as specific
patterns and generic patterns. The specific
patterns are based on tags and tokens present
in the tweet which indicate self-referential
nature of the tweet. On the other hand,
generic patterns are based on the presence of
first person singular/plural personal pronoun.
These patterns are found as strong indicator
of self-referential tweets. We consider such
self-referential tweets as explicit, otherwise
implicit.

• Identification of clusters from explicit self-
referential tweets: We identify explicit self-

4https://bit.ly/2EEuQGQ (last accessed on 15-
Nov-19)

referential tweets clusters based on over-
lapping contents (i.e., tri-grams) and using
Jaccard similarity between the explicit self-
referential tweets.

• Pattern-mining from clusters: Once the ex-
plicit self-referential tweets clusters are iden-
tified, we fetch the most frequent substring
(i.e, tri-gram) as a referential pattern from
each cluster.

• Identification of implicit self-referential
tweets: If an implicit tweet matches with the
referential pattern of any cluster, then it is
considered as a self-referential tweet.

• Merge with explicit tweets: Finally, all
identified implicit self-referential tweets are
merged with explicit tweets to generate a list
of the self-referential tweets.

Once the list of self-referential tweets is gener-
ated, it is passed to the model learning and classi-
fication module for self-deprecating sarcasm de-
tection. To this end, each self-referential tweet
is converted into an input vector, it is fed to pre-
trained GloVeword embedding, and model learn-
ing and classification task is accomplished using
LSTM for detecting self-deprecating sarcasm.

This remainder of this paper is organized as
follows. Section 2 presents a brief review of
the state-of-the-art techniques and approaches for
computational sarcasm detection. It also high-
lights the uniqueness of our proposed approach
over the existing state-of-the-art techniques. Sec-
tion 3 presents the functional details of the pro-
posed approach, including model learning and
classification using LSTM. Section 4 presents the
experimental and evaluation results. Finally, sec-
tion 5 concludes the paper and discusses future re-
search directions.

2 Related Work

Automatic sarcasm detection is considered as a
classification task (Zhang et al., 2016), and the
main task is to classify any piece of texts as sar-
casm or non-sarcasm. Tsur et al. (2010) ap-
plied semi-supervised approach to detect sarcasm
in Amazon product reviews. Davidov et al. (2010)
applied the same approach to detect sarcasm in
tweets and product reviews. González-Ibánez
et al. (2011) considered lexical and pragmatics
features to detect sarcasm on Twitter datasets.
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Riloff et al. (2013) identified sarcastic contrast-
based patterns and considered words with pos-
itive sentiment and negative phrases in a tweet
containing sarcasm. Liebrecht et al. (2013) dis-
cussed the role of hyperrbole in sarcasm detection.
Ptácek et al. (2014) detected sarcasm in English
and Czech tweets. Bharti et al. (2015) proposed
rule-based algorithms based on some patterns for
sarcasm detection. They also highlighted the im-
portance of hyperbole in sarcastic texts. Bamman
and Smith (2015) extracted extra-linguistic infor-
mation based on the context of the instances for
sarcasm detection.

Rajadesingan et al. (2015) applied three ma-
chine learning classifiers – Support Vector Ma-
chine (SVM), logistic regression, and decision tree
for sarcasm detection, considering the behavioral
modeling-based approach. Ghosh et al. (2015)
proposed SemEval-2015 (task-11) and considered
sarcasm, irony, and metaphor for sentiment analy-
sis in Twitter data. Joshi et al. (2015) discussed the
role of incongruity for sarcasm detection. Bouaz-
izi and Ohtsuki (2016) considered a pattern-based
approach. Mishra et al. (2016) considered lexical-
and contextual-based features. Joshi et al. (2016)
proposed word-embedding related features using
Word2Vec5.

Recently, deep learning models have been used
as a popular technique for sarcasm detection prob-
lem. Zhang et al. (2016) applied a bi-directional
gated recurrent neural network for sarcasm de-
tection. They considered syntactic and seman-
tic information and extracted contextual features.
Amir et al. (2016) applied content- and user
embedding-based Convolutional Neural Network
(CNN) model. Ghosh and Veale (2016) con-
sidered CNN, LSTM, and Deep Neural Network
(DNN) for sarcasm detection. Poria et al. (2016)
considered features, such as sentiment, emotion,
and personality and applied SVM and CNN classi-
fiers. Tay et al. (2018) considered attention-based
neural model for sarcasm detection. Hazarika
et al. (2018) proposed a contextual sarcasm detec-
tor using CNN-based textual model in which con-
text and content related information are used for
sarcasm detection. Recently, Dubey et al. (2019a)
converted sarcastic texts into non-sarcastic inter-
pretation using encoder-decoder, attention, and
pointer generator architectures. Dubey et al.

5https://code.google.com/archive/p/
word2vec/ (last accessed on 15-Nov-19)

(2019b) detected sarcasm in numerical portion of
tweets using CNN and attention network.

Though sarcasm detection is widely covered by
the researchers, studies related to the varied cat-
egories of sarcasm are still not explored. Re-
cently, Abulaish and Kamal (2018) noticed the use
of self-deprecating sarcasm in Twitter, mainly for
the purpose of brand endorsement and sales cam-
paign. They considered self-deprecating sarcasm
as a special category of sarcasm in which users
express sarcasm over themselves. They also pro-
posed a rule-based and machine learning-based
approach for detecting self-deprecating sarcasm
detection in Twitter. The proposed work in this
paper is new LSTM-based deep learning approach
for self-deprecating sarcasm detection in textual
data.

3 Proposed Approach

In this section, we discuss the proposed LSTM-
based deep learning approach for self-deprecating
sarcasm detection. Figure 1 presents the work-
flow of the proposed approach. It can be seen
from this figure that besides data crawling and data
pre-processing, the main functionalities of the pro-
posed approach are self-referential tweets detec-
tion, and self-deprecating sarcasm detection using
deep learning technique. Further details about all
functional modules are presented in the following
sub-sections.

3.1 Data Crawling

The data crawling module aims to retrieve En-
glish tweets using Twitter’s REST API and it is
implemented in Python 2.7. We have consid-
ered tweet ids provided as a part of two benchmark
datasets – Ptácek et al. (2014) and SemEval-20156

to curate tweets using our data crawling module.
In addition, we have also created our own Twitter
dataset containing tweets crawled for the period
1st April 2019 to 19th May 2019.

3.2 Data Pre-Processing

The data pre-processing module aims to apply var-
ious pre-processing tasks on the curated tweets
to produce fine-grained data for self-deprecating
sarcasm detection. The pre-processing consists
of data cleaning (removal of dots, retweets, num-
bers, hashtags, emoticons, @mention, URL’s, am-

6https://bit.ly/34OnGgB (last accessed on 15-
Nov-19)
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Figure 1: Work-flow of the proposed approach

persands, double quotes, and extra white spaces)
and lower-case conversion. Thereafter, spacy7 is
used to tokenize the tweets and generate POS tags
for each token.

3.3 Self-Referential Tweets Identification

After an in-depth analysis of the datasets it is
observed that all tweets are not self-referential
or self-deprecating in nature. To this end, this
module presents a filtration mechanism to gen-
erate a corpus of self-referential tweets. The
non-self-referential tweets are filtered from
further consideration because they rarely contain
a self-deprecating sarcasm. Motivated by Zhao
et al. (2015), identification of self-referential
tweets is performed using the following sequence
of steps.

(i) Identification of Explicit Self-Referential
Tweets:
In this step, we identify the self-referential tweets
that have explicit pattern in the text and these
tweets are considered for further processing to
mine implicit patterns (signals) of self-referential
behavior in tweets. The explicit self-referential
tweets have certain patterns, which can be defined
using the regular expressions given in Table 1. The
tweets from the pre-processed corpus are matched
using these regular expressions to identify the ex-
plicit self-referential tweets. The pattern for ex-
plicit nature of self-referential tweets are of two
types – specific and generic.

The specific patterns are based on either se-
quential order of tokens and tags, or sequential
order of tokens. If any of the specific pattern

7https://spacy.io/ (last accessed on 15-Nov-19)

Patterns Category
UH (i |my) Specific
(we | i) [love] (it | when) Specific
when (my | our) Specific
(am | are) [still] Specific
(i |my |me |mine |myself ) Generic
(we | are | us | our | ourselves) Generic

Table 1: Regular expressions to identify explicit self-
referential tweets

from table 1 founds in the pre-processed tweets,
then it is added to the explicit set, otherwise it
is checked further from generic patterns. The
generic patterns are based on the first person sin-
gular/plural personal pronoun, such as ‘i’, ‘we’,
and their objective and possessive cases, such as
‘my’, ‘me’, ‘mine’, ‘myself ’, ‘are’, ‘our’, ‘us’,
and ‘ourselves’. The first person singular/plural
personal pronoun and its grammatical variants are
strong indicator for a tweet to be referred as self-
referential.

If any of the token from the pre-processed tweet
matches with any generic patterns, then such
tweet is considered as explicit self-referential
tweet, and added to the explicit set of self-
referential tweets, Es. Otherwise, the tweet is
added to the set of implicit tweets, It. Further, the
identified explicit tweets are modeled as a undi-
rected weighted graph and given to a clustering
algorithm for further processing, which is defined
in the next step.

(ii) Identification of Clusters from Explicit
Self-Referential Tweets:
This step clusters the tweets in Es to identify the
near-duplicate (similar) explicit self-referential
tweets. To this end, first Es tweets are modeled
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as an undirected graph, where each node of the
graph represents a tweet and edge represents the
similarity between the underlying pair of nodes.
The similarity between two tweets (nodes), say ti
and tj , is calculated using Jaccard coefficient to
observe the overlapping set of tri-grams between
the tweets, as defined in equation 1, where Ti and
Tj represents the set of tri-grams for tweets ti
and tj , respectively. We choose tri-grams in our
experiment because self-deprecating phrases in a
tweet generally contain at least three words. We
create an edge between a pair of near-duplicate
tweets if the Jaccard similarity based on set of
tri-grams is greater than a threshold 0.6 as defined
in (Zhao et al., 2015). Thereafter, depth first
search algorithm is applied on the constructed
graph to extract clusters (connected components),
where each cluster represents the set of identical
explicit self-referential tweets. The extraction
process only extract clusters having atleast three
tweets.

J(ti, tj) =
|Ti ∩ Tj |
|Ti ∪ Tj |

(1)

(iii) Pattern-Mining from Clusters:
Following the cluster identification process in the
previous step, this step mines frequent patterns
from the extracted clusters. To this end, the
occurrence probability of every pattern of each
cluster is computed and patterns having proba-
bility greater than 0.8 are regarded as patterns.
For example, if a cluster has 5 tweets and a
tri-gram “great way start” occurs in four out of
5 tweets, then it can be regarded as a frequent
pattern (tri-gram). This procedure is repeated for
every pattern in each cluster to extract the list
of frequent patterns. Thereafter, the duplicate
frequent patterns identified from two or more
clusters are filtered to generate unique set of
frequent patterns P .

(iv) Identification of Implicit Self-Referential
Tweets:
The first step of this whole procedure held tweets
which have no explicit pattern as self-referential
tweets, called implicit tweets. This step will im-
prove the recall of the self-referential tweets iden-
tification process. This step matches the identified
patterns from previous step in implicit tweets to
extract implicit self-referential tweets. To this end,

first an implicit tweet is tokenized in to tri-grams
and thereafter these set of tri-grams are matched
with the set of frequent patterns P using Jaccard
similarity. Finally, a tweet that has Jaccard simi-
larity greater than a threshold 0.6 is considered as
a implicit self-referential tweets. This procedure is
repeated for every tweets of It to generate a set of
implicit self-referential tweets, Is. For example,
table 2 presents 3 example implicit self-referential
tweets identified from It.

Pattern matched implicit self-referential tweets
1. great way start nothing.
2. waking with stomach pains best way start day.
3. battling cousin always great way end day.

Table 2: Implicit self-referential tweets identified from
It

(v) Merging of Implicit and Explicit Tweets:
Finally, in this step, the identified implicit self-
referential tweets are added to the set of explicit
self-referential tweets to generate a final set of
self-referential tweets i.e. S = Es ∪ Is. In
the remaining paper, this curated corpus of self-
referential tweets is used for experimental evalua-
tion.

3.4 Model Learning and Classification

In recent years, deep learning has become an
emerging trend in the field of text mining and nat-
ural language processing. The semantic model-
ing of textual data using deep learning approaches
has drawn significant attention among the research
community. Various neural network-based models
including CNN, LSTM, and DNN are used for di-
verse text modeling applications such as document
classification, machine translation, speech recog-
nition, and so on. Detection of self-deprecating
sarcasm is one such application that is largely
unexplored. To this end, we modeled the self-
deprecating sarcasm detection as a deep-learning
problem.

On analysis, it is found that the long sequence
of words or phrases plays an important role to
construct a self-deprecating sarcastic patterns,
such as love being ignored, office on sunday,
and happy to be late in a tweet. Therefore, to
model the long-sequences based self-deprecating
sarcastic pattern, LSTM seems a perfect fit. Using
model learning through LSTM, a self-referential
tweet is classified as a Self-Deprecating Sarcasm
(SDS) or Non Self-Deprecating Sarcasm (NSDS).
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A detailed discussion about the model learning
and classification is presented in following sub-
section.

Input Layer:
In this layer, a self-referential tweet, containing
n words, is given as an input. In this manner,
each self-referential tweet is converted to a
self-referential input vector where every word is
replaced with its index value of the dictionary,
i.e., SεR1×n. Further, each self-referential input
vector is padded and converted in the matrix form.
The padding is used to make every input of same
length. Thereafter, padded input vector is passed
to the next layer (i.e., embedding layer).

Embedding Layer:
In the padded vector from the input layer, all
the words are replaced with their corresponding
representation vector or embeddings. In this
paper, we have used pre-trained GloVe 200-
dimensional embeddings trained on a Twitter
corpus of 27 billion tokens. As a result of this
procedure, the self-referential input tweet matrix
is converted to SεRL×D, where L is the maxi-
mum tweets length and D represents embedding
dimension.Thereafter, the embedding layer output
is passed to the LSTM layer.

LSTM:
Hochreiter and Schmidhuber (1997) proposed
LSTM architecture, which is a type of RNN. It
is easier to train an LSTM model in comparison
to an RNN model. Moreover, it also overcomes
the vanishing gradient problem while back prop-
agation through time. In LSTM, the long term
temporal dependencies can be easily captured be-
tween two time steps using the memory cell. Fig-
ure 2 presents the architecture of LSTM, where
each memory cell consists of input gate it, forget
gate ft, and output gate ot. These digital gates are
responsible for memory update mechanism, and it
acts as a function for the current input xt and pre-
vious hidden state ht−1.

An LSTM model is trained using equations 2,
3, 4, 5, 6, and 7. Equations 2 and 3 present in-
put and forget gates, whereas equations 5, 6, and
7 present output gate, new cell state, and hidden
state, respectively.

it = σ(Wi[ht−1, xt] + bi) (2)
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Figure 2: The architecture of LSTM

ft = σ(Wf [ht−1, xt] + bf ) (3)

qt = tanh(Wq[ht−1, xt] + bq) (4)

ot = σ(Wo[ht−1, xt] + b0) (5)

ct = ft � ct−1 + it � qt (6)

ht = ot � tanh(ct) (7)

In equation 4, the non-linear activation function
– tanh is used to squash the value between -1 and
1, and it plays a role for cell state to forget the
memory. On the other hand, non-linear activation
function, sigmoid (σ) generates an output in
the interval [0, 1]. LSTM works as the gating
function for the three gates, which are discussed
in the previous paragraph. Since it has a value in
interval [0, 1], the information across the gates are
either passed completely or not.

FC and Output Layers:
The output from the LSTM layer is passed to the
fully connected dense layer followed by a sigmoid
activation function. We have used binary cross-
entropy as the loss function, used 40 epochs for
training the model, batch-size of 256, verbose is
2, and adam as an optimizer. The dataset is di-
vided into training and testing parts for experimen-
tal evaluations wherein 80% of the data is used for
training and remaining 20% is used for testing pro-
cedure.

4 Experiments Setup and Results

In this section, we discuss the experimental evalu-
ation of the proposed approach.
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4.1 Experimental Settings

We have implemented the experimental setup
for data crawling, data pre-processing, and self-
referential tweets identification tasks in Python
2.7, model training and classification tasks in
Python 3.5, and used Keras neural network
API for LSTM model. Table 3 presents the hyper-
parameters values of LSTM model used in the pro-
posed approach.

Hyper-parameters Value
Embedding dimension 200
Padding sequences 20
Spatial dropout (after embedding layer) 0.4
Number of neurons 256
Dropout (after LSTM layer) 0.4

Table 3: Hyper-parameters values for LSTM model
used in our proposed approach

4.2 Datasets

The proposed approach is evaluated over three
Twitter datasets including two benchmark datasets
by Ptácek et al. (2014) and SemEval-2015. The
authors released only tweet-ids for these bench-
mark datasets due to privacy concerns. Therefore,
a crawler is developed in Python 2.7 to curate
tweets corresponding to provided tweet-ids us-
ing Twitter REST API. However, few tweets were
deleted or protected and, as a result, we were un-
able to crawl all the tweets. A brief statistics about
these two datasets is given in the first two rows of
table 4. Apart from the two benchmark datasets,
we curated a Twitter dataset from 1st April to 19th
May 2019 using “#sarcasm” hashtag. We refer this
dataset as Twitter-280 and its statistical sum-
mary is given in the third row of table 4. Simi-
larly, we crawled non-sarcastic tweets using two
#not, #hate hastags. Table 5 presents the statistics
of identified self-referential tweets after the self-
referential tweets identification module. Table 6
presents the final statistics of the balanced and un-
balanced datasets generated from table 5.

Datasets #Sarcasm #Non-sarcasm Total
(#tweets)

Ptácek et al. (2014) 53088 98195 151283
SemEval-2015 1526 2366 3892
Twitter-280 13786 14949 28735
Total (#tweets) 68400 115510 183910

Table 4: Statistics of the crawled datasets

Datasets #Sarcasm #Non-sarcasm Total
(#tweets)

Ptácek et al. (2014) 29580 37767 67347
SemEval-2015 761 1609 2370
Twitter-280 6971 7017 13988
Total (#tweets) 37312 46393 83705

Table 5: Statistics of identified self-referential tweets
by the self-referential tweets identification module

4.3 Evaluation Metrics

This section discusses the standard data mining
metrics – precision, recall, and f-score, which are
used to evaluate the proposed approach. Formally,
these metrics in terms of True Positives (TP), False
Positives (FP), and False Negatives (FN) are de-
fine in equations 8, 9, and 10, where TP is de-
fined as the number of correctly classified as SDS
tweets, FP is defined as number of NSDS tweets
misclassified as SDS tweets, and FN is defined
as number of SDS tweets misclassified as NSDS
tweets.

Precision (π) =
TP

FP + TP
(8)

Recall (ρ) =
TP

FN + TP
(9)

F-score (F1) =
2× π × ρ
π + ρ

(10)

4.4 Evaluation Results

This section presents the experimental evaluation
results over the three datasets discussed in sub-
section 4.2. All the experimental evaluations are
performed using an LSTM model trained on 40
epoch. Table 7 presents the performance eval-
uation results of our proposed approach using
the LSTM model on balanced and unbalanced
datasets in terms of three evaluation metrics. On
analysis, it can be observed from this table that
in terms of all the three evaluation metrics, the
proposed approach performs comparatively bet-
ter on balanced datasets and shows slightly lower
performance on unbalanced datasets. Another in-
teresting observation from this table is that, in
terms of all the three evaluation metrics, proposed
approach performs best on Ptácek et al. (2014)
dataset. Further, table 7 shows that the proposed
approach performs comparatively better on the
balanced version of our created dataset.
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Datasets #Sarcasm #Non-sarcasm Total
(#tweets)

Ptácek et al. (2014) Balanced 14500 14500 29000
Unbalanced 5750 23000 28750

SemEval-2015 Balanced 500 500 1000
Unbalanced 250 1100 1350

Twitter-280 Balanced 5000 5000 10000
Unbalanced 500 2000 2500

Table 6: Statistics of the balanced and unbalanced datasets generated from table 5

Datasets Evaluation results
π ρ F1

Ptácek et al. (2014) Balanced 0.93 0.94 0.93
Unbalanced 0.92 0.89 0.90

SemEval-2015 Balanced 0.86 0.84 0.85
Unbalanced 0.93 0.75 0.83

Twitter-280 Balanced 0.90 0.92 0.93
Unbalanced 0.89 0.86 0.88

Table 7: Performance evaluation of our proposed
approach using LSTM on balanced and unbalanced
datasets presented in table 6

4.5 Comparative Analysis

To be the best of authors knowledge there is no
prior work on self-deprecating sarcasm detection
using deep learning approach. However, a rule and
machine learning-based approach was presented
by the authors in Abulaish and Kamal (2018) and
proposed approach is compared with that one.
In Abulaish and Kamal (2018), authors consid-
ered Ptácek et al. (2014) dataset to detect self-
deprecating sarcasm in tweets. We implemented
Abulaish and Kamal (2018) to evaluated its ef-
ficacy over the three datasets. Figures 3 and 4
present the comparative performance evaluation of
the proposed approach with Abulaish and Kamal
(2018) in terms of precision, recall, and f-score
over balanced and unbalanced version of all the
three datasets, respectively.

It can be observed from figures 3 and 4 that
the proposed LSTM-based deep learning approach
outperforms Abulaish and Kamal (2018) in terms
of precision, recall, and f-score on both balanced
and unbalanced datasets. However, Abulaish and
Kamal (2018) reported slightly better performance
in terms of precision and f-score results on Ptácek
et al. (2014) dataset.

5 Conclusion and Future Work

In this paper, we have proposed a new approach
using LSTM-based deep learning for detecting
self-deprecating sarcasm in textual data. The
self-deprecating sarcasm is a special category of

sarcasm in which users apply sarcasm on them-
selves. One of the major applications of this work
is to promote self-deprecating marketing strate-
gies. The proposed approach is evaluated over
three Twitter datasets, including two benchmark
datasets, and the experimental results are promis-
ing. It also performs significantly better than one
of the state-of-the-art methods, which used rule-
based and machine learning techniques for self-
deprecating sarcasm detection. Exploring new
patterns and consideration of multimedia contents
for self-deprecating sarcasm detection seems one
of the promising directions of future research.
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Tomás Ptácek, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on czech and english twitter. In

Proceedings of the 25th International Conference on
Computational Linguistics (COLING), Dublin, Ire-
land, pages 213–223.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu.
2015. Sarcasm detection on twitter: A behav-
ioral modeling approach. In Proceedings of the
8th Association for Computing Machinery Interna-
tional Conference on Web Search and Data Mining
(WSDM), Shanghai, China, pages 97–106. ACM.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra D. Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive sen-
timent and negative situation. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing (EMNLP), Seattle, Washing-
ton, USA, pages 704–714. Association for Compu-
tational Linguistics.

Yi Tay, Anh Tuan Luu, Siu Cheung Hui, and Jian
Su. 2018. Reasoning with sarcasm by reading in-
between. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), Melbourne, Australia, pages 1010–1020. As-
sociation for Computational Linguistics.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views. In Proceedings of the 4th International Asso-
ciation for the Advancement of Artificial Intelligence
Conference on Weblogs and Social Media (ICWSM),
Washington, DC, USA, pages 162–169. AAAI.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Tweet sarcasm detection using deep neural network.
In Proceedings of the 26th International Confer-
ence on Computational Linguistics (COLING), Os-
aka, Japan, pages 2449–2460.

Zhe Zhao, Paul Resnick, and Qiaozhu Mei. 2015. En-
quiring minds: Early detection of rumors in social
media from enquiry posts. In Proceedings of the
24th International Conference on World Wide Web
(WWW), Florence, Italy, pages 1395–1405.

210



D M Sharma, P Bhattacharyya and R Sangal. Proc. of the 16th Intl. Conference on Natural Language Processing, pages 211–219
Hyderabad, India, December 2019. c©2019 NLP Association of India (NLPAI)

Unsung Challenges of Building and Deploying Language Technologies for
Low Resource Language Communities

Pratik Joshi1 Christain Barnes2∗ Sebastin Santy1 Simran Khanuja1

Sanket Shah1 Anirudh Srinivasan1 Satwik Bhattamishra1

Sunayana Sitaram1 Monojit Choudhury1 Kalika Bali1†
1 Microsoft Research, Bangalore, India

2 Stanford University

Abstract

In this paper, we examine and analyze the
challenges associated with developing and
introducing language technologies to low-
resource language communities. While do-
ing so, we bring to light the successes and
failures of past work in this area, challenges
being faced in doing so, and what they have
achieved. Throughout this paper, we take a
problem-facing approach and describe essen-
tial factors which the success of such technolo-
gies hinges upon. We present the various as-
pects in a manner which clarify and lay out the
different tasks involved, which can aid organi-
zations looking to make an impact in this area.
We take the example of Gondi, an extremely-
low resource Indian language, to reinforce and
complement our discussion.

1 Introduction

Technology pervades all aspects of society and
continues to change the way people access and
share information, learn and educate, as well as
provide and access services. Language is the
main medium through which such transforma-
tional technology can be integrated into the so-
cioeconomic processes of a community. Natural
Language Processing (NLP) and Speech systems,
therefore, break down barriers and enable users
and whole communities with easy access to infor-
mation and services. However, the current trend in
building language technology is designed to work
on languages with very high resources in terms of
data and infrastructure.

Also, as Machine Learning (ML) and NLP prac-
titioners, we get caught up in an information-
theoretic view of the problem, e.g., focusing
on incremental improvements of performance on
benchmarks or capturing accurate distributions

∗Work done during internship at Microsoft Research
†Email: kalikab@microsoft.com

Figure 1: The points represent the disparity between
number of wikipedia articles in comparison with the
number of native speakers for a particular language.

over data, and tend to forget that the raison d’łtre
of NLP is to build systems that add value to its
users (Ruder, 2019). We want to build models
that enable people to read the news that was not
written in their language, ask questions about their
health when they do not have access to a doctor,
etc. And while these technology applications are
more and more ubiquitous for languages with a
lot of data, a larger majority of languages remain
resource-poor and bereft of such systems. As dis-
cussed in the United Nations e-government survey
(Nations, 2014), one of the most important obsta-
cles to e-inclusion, particularly among vulnerable
groups with little education, is language. Thus, by
excluding these languages from reaping the ben-
efits of the advancements in language technology,
we marginalize the already vulnerable groups even
further.

India is a highly multilingual society and home
to some of the largest language communities in the
world. 6 out of 20 most-spoken (native) languages
in the world are Indic. Ethnologue (Simons and
Fennig, 2017) records 461 tongues in India out of
6912 worldwide (6%), the 4th largest belonging
to any single country in the world. 122 of these
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languages are spoken by more than 10,000 peo-
ple. 29 languages have more than 1 million speak-
ers, which include indigenous tribal languages like
Gondi and Mundari, some without a supported
writing system or script. Despite the large num-
bers of users, most of these languages have very
little data available. Figure 1 shows that as com-
pared to some of the much lesser spoken languages
like German, Indic languages are severely low re-
sourced. In a vast country like India, access to
information thus becomes a huge concern. This
lack of information means that not only do these
communities not have information in domains like
agriculture, health, weather etc., which could im-
prove their quality of lives, but they may also not
be aware of their basic rights as citizens of the
country.

In this paper, we take the position that the cur-
rent direction of advanced language technology to-
wards extremely high data requirements can have
severe socio-economic implications for a majority
of language communities in the world. We focus
on specific aspects of designing and building sys-
tems and applications for low resource languages
and their speech communities to exemplify viable
social impact through language technology. We
begin by discussing the aspect of information ex-
change, which is the core motivation behind en-
abling low-resource language communities. We
then steer our analysis towards the design and cre-
ation of an interface for people in these communi-
ties to simplify and enrich the process of informa-
tion exchange. Finally, we gather insights about
how to deploy these technologies to ensure ex-
tensive impact by studying and taking inspiration
from existing technological deployments.

We use Gondi, a South-Central Dravidian lan-
guage in the vulnerable category on UNESCO’s
Atlas of the Worlds Languages in Danger (Mose-
ley, 2010), as an example wherever possible. Spo-
ken by nearly 3 million people (India, 2011) in
the Indian states of Chhattisgarh, Andhra, Odisha,
Maharashtra and Karnataka, it is heavily influ-
enced by the dominant state language. However,
it is also one of the least resourced languages in
India, with very little available data and technol-
ogy.

We believe that the components discussed in the
sections below encapsulate the spectrum of issues
surrounding this field and that all future discus-
sions in this area will also fall under the umbrella

of these categories. We believe that by focusing
on Gondi, we will not only empower the Gondi
community but more importantly, understand and
create a pipeline or framework which can serve
as a clear guide for potential ventures which plan
on introducing disruptive language technologies in
under-served communities.

2 Information Exchange

The primary element in communication is infor-
mation exchange. People living in less connected
areas are often unable to get the kind of informa-
tion they need, due to various socio-economical
and technological barriers. As a result, they miss
out on crucial knowledge required to improve their
well-being. There are three co-dependent aspects
woven into the fabric of information exchange -
access of information, quality and coverage of the
information and methods to create and digitize
available knowledge (generation).

2.1 Access
This section refers to past work and current ven-
tures of making digital resources adequately avail-
able and accessible to people.

2.1.1 Making Information Accessible to
People

Less-connected and technologically underdevel-
oped areas often suffer from the limited accessi-
bility of up-to-date information. Providing more
individuals access to the online repositories of in-
formation can often help them improve their well-
being.

There are some situations particularly during
natural calamities where the absence of notifica-
tions about potentially disaster-prone areas can re-
sult in life and death situations of individuals. Peo-
ple in regions with sparse connectivity often fall
victim to these incidents due to lack of timely up-
dates. Using technical platforms to support the
spread of information to these regions is an impor-
tant goal to keep in mind. LORELEI (Strassel and
Tracey, 2016) is a DARPA funded initiative with
the goal of the building of technologies for deal-
ing and responding to disasters in low resource
language communities. Similar initiatives in India
would be capable of saving lives.

The daily function and health of individuals
in a community can be influenced positively by
the dissemination of relevant information. For
example, healthcare and agricultural knowledge
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can affect the prosperity of a rural household,
making them aware of potential solutions and
remedies which can be acquired. There has
been a considerable body of work focused on
technology for healthcare access, which includes
telemedicine (Brauchli et al., 2005) and remote di-
agnosis (Surana et al., 2008). While the use of
telecenters to spread information on agricultural
practises has been employed, persuading users to
regularly use the telecenters (Ramamritham et al.,
2006) is a challenge, which could be addressed
by the use of language technologies to simplify
access. VideoKheti (Cuendet et al., 2013) is an
example of a voice-based application which pro-
vides educational videos to farmers about effective
agricultural practices. Similar studies have been
carried out to assess the effectiveness of voice-
activated applications for farming (Patel et al.,
2010). There are considerable challenges, how-
ever, to ensure that these solutions are inclusive
and accessible to low-literate and less-connected
users.

Similarly, there are situations where there are
certain rights and duties which an individual as
a citizen of India is entitled to. Some communi-
ties have long been exploited and ill-treated (Gan-
guly and Chaudhary, 2003), and providing them
information regarding their rights as well as accu-
rate news could foster a sense of solidarity within
the community and encourage them to make their
voice heard. An extensive study on the impact
of CGNet Swara (Marathe et al., 2015) showed
that this citizen journalism platform inspired peo-
ple in rural communities, gave them a feeling of
being heard, and provided a venue to voice their
grievances. There are also other promising ven-
tures such as Awaaz De (Patel et al., 2010) and
Gram Vaani (Moitra et al., 2016) which aim to
boost social activism in a similar manner.

2.1.2 Making more digital content available
The process of enabling more low-resource lan-
guage communities with tools to access online
information alone is not sufficient. There need
to be steps taken to make more of the content
which exists online interpretable to people in these
communities. For example, The Indian Consti-
tution and other similar official communications
from the government are written in 22 scheduled
languages of India. Lack of access to other re-
lated documents deprives them of basic informa-
tion. This is where building robust machine trans-

lation tools for low resource languages can help.
Cross-language information retrieval makes ex-
tensive use of these translation mechanisms (Zhou
et al., 2012) where information is retrieved in a
language different from the language of the user’s
query. McNamee and Mayfield (2002) describes
a system making use of minimal resources to per-
form the same.

There is huge potential for language technolo-
gies to be involved in content creation and infor-
mation access. Further, more accurate retrieval
methods can help the user get relevant information
specific to their needs and context in their own lan-
guage.

2.1.3 Making NLP models more accessible to
low resource languages

Often, many state-of-the-art tools cannot be ap-
plied to low-resource languages due to the lack of
data. Table 1 describes the various technologies
and their presence concerning languages with dif-
ferent levels of resource availability and the ease
of data collection. We can observe that for low re-
source languages, there is considerable difficulty
in adopting these tools. Machine Translation can
potentially be used as a fix to bridge the gap.
Translation engines can help in translating docu-
ments from minority languages to majority lan-
guages. This allows the pool of data to be used
in a number of NLP tasks like sentiment anal-
ysis and summarization. Doing so allows us to
leverage the existing body of work in NLP done
on resource-rich languages and subsequently ap-
ply it to the resource-poor languages, thereby fore-
going any attempt to reinvent the wheel for these
languages. This ensures a quicker and wider im-
pact.Wan (2008) performs sentiment analysis on
Chinese customer reviews by translating them to
English. They observe that the quality of ma-
chine translation systems are sufficient for senti-
ment analysis to be performed on the automati-
cally translated texts without a substantial trade-
off in accuracy.

2.2 Generation

This section refers to the generation of digital con-
tent which enriches online repositories with more
diverse sets of information.

2.2.1 Digitization of Documents
There is a need to generate digital information and
content for low-resource languages. It not only
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Technology Availability of technology for
the resource status of a language

Data/Expertise Requirement

High Moderate Low No Linguistic
Expertise

Unlabeled
Data

Labeled
Data

Input/Output Support
Font & Keyboard ? ? ? ? ? ? ? ? ? ?? ? ? ?

Speech-to-Text ? ? ? ?? ? ?? ? ? ?

Text-to-Speech ? ? ? ?? ? ? ? ? ??

Text Prediction ? ? ? ? ? ? ?? ? ? ?

Spell Checker ? ? ? ? ? ? ?? ? ? ? ??

Grammar Checker ? ? ? ?? ?? ? ? ? ??

Local Language UI
? ? ? ? ? ? ?? ? ? ?

Information Access
Text Search ? ? ? ?? ? ? ? ? ? ??

Machine Translation ?? ? ? ?? ? ? ?

Voice to Text Search ? ? ? ? ? ? ? ?

Voice to Speech Search ?? ? ? ? ? ? ? ? ?

Conversational Systems
?? ? ? ? ? ? ? ? ? ? ?

Table 1: Enabling language technologies, their availability and quality ( ? ? ? - excellent quality technology, ??
- moderately good but usable, ? - rudimentary and not practically useful) for differently resourced languages,
and their data/knowledge requirements (? ? ? - very high data/expertise, ?? - moderate, ? - nominal and easily
procurable). This information is based on authors’ analysis and personal experience.

benefits the community by creating digital con-
tent for their needs, but it also provides data which
can be used to train data-driven language technolo-
gies, such as ASRs, translation systems, and opti-
cal character recognition systems. Efforts to dig-
itize content in India have been conducted in the
past few years. The Government of India launched
the Digital India initiative 1 in 2015, which aims
to digitize government documents in one of In-
dia’s 120+ local languages. Such initiatives have
evidently been useful before. For instance, the
IMPACT project 2 by the European Union was a
large scale digitization project which helped push
a lot of innovative work towards OCR and lan-
guage technology for historical text retrieval and
processing. IMPRINT is a similar initiative cre-
ated by the Ministry of Human Resource Devel-
opment (MHRD) to drive further research towards
addressing such challenges.

The recent advancements in OCR technologies
can propel efforts to digitize more handwritten
documents. Such initiatives are already being un-
dertaken to digitize and revive historical languages

1http://www.digitalindia.gov.in/
2http://www.impact-project.eu/

in Japan (Clanuwat et al., 2018). Digital India
library is a project that aims towards digitizing
books and making them available online. Apart
from printed books, a lot of ancient literature is
written on palm leaves. The Regional Mega Scan
Centre (RMSC) at IIIT Hyderabad has digitized
over 100,000 books, one-third of which are in In-
dian Languages and additionally, they have also
digitized text from scans of palm leaves. More ini-
tiatives such as these will help preserve and revive
a number of languages that are part of the Indian
heritage.

2.2.2 Crowdsourcing

Data collection via crowdsourcing can be a chal-
lenge for low resource languages, primarily due
to the expensive nature of the task coupled with
the lack of commercial demand for such data.
Thus, collecting this data at low cost becomes
an important priority. Project Karya is a crowd-
sourcing platform which provides digital work to
low-income workers. Although the data quality
can be a concern, promising results have shown
otherwise. Chopra et al. (2019) tested the qual-
ity of crowdsourced data in rural regions of In-
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dia, tasking individuals with the digitization of
Hindi/Marathi handwritten documents. A 96.7%
accuracy of annotation was yielded, proving that
there is potential in this area. Recently, collec-
tion of Marathi speech data is also being con-
ducted. In a similar fashion, Navana Tech3, a
startup, has been collecting data in mid and low-
resource languages of verbal banking queries so
that they can be integrated into various banking
application platforms for financial inclusion. Such
crowdsourcing platforms not only act as a poten-
tial data for low-resource communities, they also
benefit low-income workers by increasing their
current daily wage. Such ventures would enhance
the inclusion of such workers in the digitization
process, something which aligns with the aims of
the Digital India mission.

The collection of data in an extremely low-
resource language like Gondi can be particularly
tricky, additionally considering the fact that Gondi
does not have an official script. Pratham Books 4

is a non-profit organization which aims to democ-
ratize access to books for children. They recently
hosted a workshop where they trained members of
the local community to translate books on Story-
Weaver5, their open-source publication platform.
At the end of this workshop, approximately 200
books were translated from Hindi to Gondi (De-
vanagiri script). This was the first time children’s
books were made available in Gondi, and it also
sparked the creation of parallel data for Hindi-
Gondi translation systems.

3 Interface

The design of a user-friendly interface plays a very
crucial role in ensuring that the deployed technol-
ogy encompasses all strata of society. It is often
seen that a majority of target users have not had
the privilege of education, and show varying lev-
els of literacy, both foundational and digital. In
such scenarios, text-based modalities pose several
limitations from both the user and designer per-
spectives, and graphical user interfaces have been
the preferred choice in these applications. Thies
et al. (2015) reports that text-based interfaces
were completely redundant for illiterate users and
severely error-prone for literate but novice users.
Further, several languages do not have unique key-

3https://navanatech.in/
4https://prathambooks.org/
5https://storyweaver.org.in/

board standards or fonts, and some do not have a
script at all (Boyera, 2007).

To overcome these issues with text, speech as
a modality has also been deployed with varying
success. ‘CGNet Swara’, a citizen-run journal-
ism portal, uses a phone-based IVR system to ed-
ucate illiterate users (Mudliar et al., 2013). Avaaj
Utalo allows users to make simple phone calls to
ask questions or browse questions and answers
asked on agricultural topics (Patel et al., 2010).
Spoken Web is another application wherein users
can create voice sites analogous to websites which
can then be easily accessed through voice inter-
action on mobile phones (Kumar et al., 2010).
These serve to provide farmers with relevant crop
and market information. An attempt to leverage
the complementarity of voice and graphic-based
inputs was made by VideoKheti, a mobile sys-
tem with a multi-modal interface for low-literate
farmers providing agricultural extension videos on
command in their own language or dialect (Cuen-
det et al., 2013). They report that people in these
communities find it difficult to use softkey type
keyboards that are extremely common on mod-
ern smartphones. Instead, they proposed a system
comprising of large buttons, graphics and some
voice input. Such a system for delivering infor-
mation to farmers was made and they showed that
the farmers were very comfortable using it. Their
results also show that a speech interface alone was
not enough for that scenario, except in cases where
the search list was long and the results were de-
pendent on keywords or short phrases. Similarly,
the Adivasi Radio App 6, based on text-to-speech
(TTS) technology, is developed to read out writ-
ten reports in Gondi, one of the main tribal lan-
guages in Chhattisgarh. Bolo is another mobile
application which uses a very simple interface to
improve children’s literacy in India. Project Karya
also proposes to divide massive digital tasks into
microwork and crowdsource this work to millions
of people in rural India via phones 7.

While voice might solve the foundational liter-
acy problems, the lack of digital literacy is often
more challenging to overcome. Mondal (2019)
demonstrate the use of an app to teach the Mundari
language to children. The app comprised of a se-
ries of games designed with the help of the com-
munity. The content was delivered in the Bangla

6AdivasiRadio - Google Play
7Project Karya
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script, which was what the children were taught in
school. Their study noted that children from such
communities found the usage of a smartphone to
be difficult.

Relying on voice-based systems also poses a
few challenges. It is not easy to build robust
ASR systems for these languages due to severe
lack of data, dialect variations and several such
constraints. An attempt to resolve this was made
with the development of the SALAAM ASR (Qiao
et al., 2010) which uses the acoustic model of
an existing ASR and performs a cross-lingual
phoneme mapping between the source and target
language. This, however, is limited to recognition
of a very small set of vocabulary, but finds use due
to its’ cost-effective and low resource setting.

4 Deployment and Impact

After developing technologies to provide informa-
tion, and ensuring that the applications are de-
signed in such a way that they are accessible
to the population, the technology must be effec-
tively deployed. Specialized applications are use-
less if they are not deployed properly in a way
that accesses their end-users. When deploying
a specially developed technology, the application
must be deployed with consideration of the exist-
ing community dynamics. For any deployment to
be successful, it usually must be able to be pur-
posefully integrated into the lifestyle of commu-
nity members - or have strong utilization incen-
tives if it is a transformative technology. In this
section, we will review examples of technology
dissemination to low-resource/rural communities,
and the impacts of effective deployment. While
some technologies that we examine are not de-
ployed utilizing low-resource languages specifi-
cally, the types of rural communities and villages
in which they are deployed are analogous to the
contexts in which low-resource languages exist,
and clear parallels can be drawn.

Integrating the usage of a language technology
intervention into a community in a low-resource
context requires much more simply introducing
the technology. Unlike hardware interventions and
innovations like solar panels or new agricultural
tools, language technologies often rely on the de-
livery, exchange, and utilization of information,
which is much less tangible than physical solu-
tions. This is especially for people with limited
previous exposure to digital technology. Upon

observing a selection of language-based interven-
tions that were deployed in low-resource contexts,
we observed that the most successful deployments
of technologies tended to have three components
of success. They: 1) Initially launched by seed-
ing with target communities, 2) Worked closely to
engage the community itself with the technology
and information, and 3) Provided a strong incen-
tive structure to adapt the technology - this incen-
tive could be as simple as payments or as complex
as communicated benefits from the technology.

4.1 Case Studies

In this section, we will be reviewing and
comparing three separate technological systems,
Learn2Earn (Swaminathan et al.), Mobile Vaani
(Moitra et al., 2016), and the Climate and Agri-
culture Information Service (CAIS)(Christensen
et al., 2019), and see how they utilized the
rules of successful deployment outlined above.
Learn2Earn, developed by Microsoft Research, is
a simple IVR based mobile language technology
app which uses quizzes to educate people and
spread public awareness campaigns, launched ini-
tially in rural central India. Mobile Vaani is a
large-scale and broad community-based IVR me-
dia exchange platform, developed by the NGO
Gram Vaani. It currently has over 100,000 unique
monthly active users, and processes 10,000 calls
per day across the three Indian states of Bihar,
Jharkhand, and Madhya Pradesh. Finally, the
CAIS system is an SMS-based information deliv-
ery system designed for farmers who live in a ru-
ral, low-resource and no connectivity agricultural
village on the Char Islands in the Bangladeshi
Chalan Beel Wetland. This application provides
weather data and agricultural advice to farmers
on a periodic basis and was developed by a col-
laboration between mPower and two local NGOs.
After designing the platform in accessible ways,
each deployment process began with the seeding
within a target community within itself. All ex-
amples that we studied became successful only af-
ter a small scale launch of their product. These
launches occurred in different ways but were all
based on targeting a starting group of users and in-
centivizing them to utilize and share the product.
The initial users were people who were somewhat
fluent in the technology (either through training or
existing knowledge), and who knew of or had spe-
cialized needs that the technology could address.
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4.1.1 Learn2Earn

Learn2Earn was built as a tech-enabled informa-
tion dissemination system; its original information
awareness campaign centred on informing farmers
about their rights as guaranteed in Indias Forest
Rights act. Because of the nature of their mes-
sage content and delivery, the researchers decided
to seed the platform with a single advertisement on
an existing IVR channel already utilized by farm-
ers. This advertisement reached 150 people, and
provided them with distinct financial incentives to
both call the platform, and invite friends to the
platform. While only 17 of the original listeners
of the advertisement went on to call the number,
those respondents were members of the relevant
community (farmers who were familiar with IVR
technology) and were networked through family
and friendships to additional ideal users of the
platform. Within 7 weeks, the incentive structure
allowed the platform to spread from the original
17 users to over 17,000, with little influence from
the platform respondents. (Swaminathan et al.)

4.1.2 Mobile Vaani

Mobile Vaani initially tried to launch in 2011
by encouraging employees from their partner
NGOs to distribute their platform. The platform
was initially imagined as a voice-based, inclu-
sive medium for communities to express their
grievances and communicate with each other dig-
itally. The initial employees who recruited for the
platform were not from the community but did
work closely with them regularly. While there
was some initial success in the launch, the mobile
Vaani Team were unable to grow at a significant
pace because they informed the end-users about
their intended design and usage of the technology,
which set unrealistic expectations of the platform
in the minds of the participating users after the
technology could not be used in the exact way that
it was encouraged. A few months later, the plat-
form decided to re-launch and expand by recruit-
ing a series of trained and compensated volunteers
from a variety of communities that they hoped to
engage. During the second launch, the commu-
nity members were able to learn about the plat-
form, and adapt it to their specific use cases. The
platform began to gain popularity during a teach-
ers strike in the state of Jharkhand where a specific
use case for expressing grievances powered by the
community arose.

4.1.3 CAIS
The CAIS platform launched in direct collabora-
tion with the NGO partner for the village ev-
ery available farmer registered their name, num-
ber, and crop type with the NGO partner and
consequently the target population was integrated
from the start. As the programs grew, each en-
gaged with the community on a high level. In the
case of all three platforms, a specific population,
and a very specific understanding of that popula-
tions needs had to be identified before the plat-
form could be relatively effective. Even after the
deployment of the platform, care and close inte-
gration with community systems had to be done.
The village in which CAIS worked had a system
of self-empowerment groups, that had been orga-
nized by the NGO. Each group had a leader; and
while not every villager in each group had a ba-
sic phone, every group leader did. Consequently,
the researchers behind CAIS worked to ensure that
every group leader was engaged in with CAIS and
that they would relay their CAIS informational up-
dates to the villagers that they lead. Similarly,
the CAIS researchers worked closely with village
leaders to determine who was able to access the
information in SMS form and deployed informa-
tional physical posters as a substitute to those por-
tions of the village population who could not. This
intensive work led to the successful adaptation of
technology to the benefit of the farmers yields.
The researchers behind the Vaani system also con-
tinued to expand the system through a local net-
work of volunteers. (Moitra et al., 2016)

4.1.4 CGNET Swara
CGNet Swara, which we introduced earlier in this
paper, also increased their initial participation by
engaging with the wider community by holding in-
person training and awareness sessions. They have
conducted over 50 workshops, and have trained
more than 2,000 members of various communities
(Marathe et al., 2015). Outreach activities such as
these also allowed an increased spread of aware-
ness via word-of-mouth. From these examples, it
is clear to see that community engagement is the
absolute key to spreading technology. Incentives
both monetary and situational are a huge way that
these platforms were able to engage their initial
users. Incentives served to empower individuals to
become champions of the platform and increased
the enabled them to use their knowledge of the
community and existing peer networks to deliver
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the technology where it was needed. All plat-
forms used incentives of some sort; Learn2Earn
used a direct payment for recruitment + participa-
tion, and also delivered relevant topics to the users.
Mobile Vaani provided financial incentives to the
volunteers who mobilized to evangelize the prod-
uct. CAIS did not provide monetary incentives but
instead brought technology that had an actionable
and tangential impact on the daily lives of farmers.
With the deployment of these technologies, direct
needs of the population were solved.

5 Conclusion

The boost in recent advancements in NLP research
has started breaking down communication and in-
formation barriers. This, coupled with in-depth
studies on the socio-economic benefits of enabling
less-connected communities with technology, pro-
vides a strong argument for increasing investment
in this area. It is promising to observe increased
innovation and steady progress in the empower-
ment of rural communities using language tools.
Increased exposure to the challenges and works
in this area can catalyse developments in improv-
ing inclusion and information dissemination. We
hope that this paper will provide pointers in the
right direction for potential ventures that plan on
introducing disruptive language technologies to
marginalized communities.
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Abstract

Word representation using the distributional
information of words from a sizeable
corpus is considered efficacious in many
natural language processing and text mining
applications. However, distributional
representation of a word is unable to capture
distant relational knowledge, representing
the relational semantics. In this paper,
we propose a novel word representation
approach using distributional and relational
contexts, DRCoVe, which augments the
distributional representation of a word using
the relational semantics extracted as syntactic
and semantic association among entities
from the underlying corpus. Unlike existing
approaches that use external knowledge
bases representing the relational semantics
for enhanced word representation, DRCoVe
uses typed dependencies (aka syntactic
dependencies) to extract relational knowledge
from the underlying corpus. The proposed
approach is applied over a biomedical
text corpus to learn word representation
and compared with GloVe, which is
one of the most popular word embedding
approaches. The evaluation results on various
benchmark datasets for word similarity and
word categorization tasks demonstrate the
effectiveness of DRCoVe over the GloVe.

1 Introduction

Understanding contextual semantics of words is
crucial in many natural language processing (NLP)
applications. Recent trends in text mining and
NLP suggest immense interest towards learning
word embedding or word representation in a
vector space from a large corpus, which could
be useful for a variety of applications like
text classification (Lai et al., 2015), clustering
(Wang et al., 2015), and sentiment analysis
(Tang et al., 2014). In addition, researchers

are devising methods to learn phrase-, sentence-,
or document-level embeddings for various NLP
applications. Word embeddings capture implicit
semantics and hence attracted many researchers
to explore and exploit a tremendous amount of
available unstructured corpora for efficient word
representation by employing mainly unsupervised
learning approaches. Further, the growth and
availability of domain-specific massive text corpora
can be exploited to learn domain-specific word
representation.

Although different approaches for learning word
embeddings have been proposed in the prior
works, they are mostly based on distributional
representation of words, considering the neighbors
of a word within a fixed context window. These
algorithms map sparse representation of words to
a lower dimensional vector space where words
with similar context appear nearby each other.
However, distributional representation of words
learned by these algorithms suffer from two
important limitations – (i) unable to capture the
relational semantics of rare co-occurring words
within the corpus, and (ii) unable to capture the
relational semantics of words that are outside
the purview of the context window. The first
limitation is that a large corpus, though represents
different contextual information, may have rare
co-occurrence of two words because it might
not be large enough to possess sufficient count
of the co-occurrence of semantically similar
word pairs. To overcome this limitation,
researchers have incorporated knowledge into
these distributional word representations from
external knowledge bases (KBs). In this direction,
semantically related words in terms of relations
like synonymy, hypernymy, and meronymy from
KBs like WordNet (Miller, 1995), Freebase
(Bollacker et al., 2008) have been used to learn
better representation of words (Alsuhaibani et al.,
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Figure 1: An exemplar dependency parse tree generated by the Stanford parser using DependenSee 3.7.0

2018; Celikyilmaz et al., 2015). This makes
these approaches dependent upon the external KBs
to enhance the efficacy of word representation.
Although KBs provide significant information
about word relations, they are scanty with limited
entries for each word and does not represent any
contextual information. In addition, since KBs
are manually curated and maintained, they are not
comprehensive.

The second limitation is that the distributional
word representations are unable to capture the
relational semantics of words due to their
dependence on the fixed context window, and
hence ignore the semantic associations between
words that are outside the purview of the context
window. For example, in the sentence, “cholera
is an infectious disease characterized by watery
diarrhea, vomiting, severe dehydration, and muscle
cramps”, the word pairs (cholera, dehydration)
and (cholera, cramps) have long-range dependency.
However, both dehydration and cramps are
semantically associated with cholera as they
are its symptoms. In case of fixed context
window size, e.g. 5, such long range dependency
relationships will not be captured. Further, if we
increase the size of the context window, it will
adversely impact the embedding representation due
to the inclusion of irrelevant and weak contextual
words. Additionally, in case of domain-specific
corpus for learning word embedding, the semantic
relation between cholera and dehydration, or
cholera and cramps would be very vital because
dehydration and muscle cramps are the symptoms
of cholera. These relational semantics can be
captured by dependency grammar that shows
syntactic and semantic relationships between words
of a sentence. To this end, Levy and Goldberg
(2014a) presented a dependency-based word

representation learning approach to incorporate
the syntactic contexts instead of linear contexts.
However, existing literatures have no approach
that learn word representation using syntactic
contexts extracted from inter-relationships of words
based on the dependency tuples generated by the
language-parser. For example, in figure 1, the
syntactic contexts using only the head and modifier
words of the dependency tuples generated by the
parser shows direct dependency relation between
cholera and disease through nsubj dependency
relation; but, it doesn’t not show any relational
semantics between cholera and watery, diarrhea,
vomiting, dehydration, and cramps as they are
not directly linked to cholera by any dependency
relations. Therefore, extraction of such relations
to augment word representations would be very
helpful for various domain-specific NLP tasks such
as classification of disease-related documents or
texts. To the best of our knowledge, in the existing
literatures, no such approach exists that utilizes
the relational semantics extracted from a large
corpus to enhance the distributional representation
of words.

In this paper, we present an augmented approach,
DRCoVe, to use both text corpus and an extracted
repository of semantically related triplets from
the corpus to learn efficient word representation.
The proposed approach first initializes the word
representation to low-dimensional real-valued
vectors generated from the singular value
decomposition (SVD) of positive pointwise mutual
information (PPMI) matrix of the underlying
corpus and the relational semantic repository.
The initial word vectors from the corpus are
augmented using vectors from the relational
semantic repository, provided the words from the
corpus occur in the vocabulary of the relational
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semantic repository. In the proposed approach, we
implement a modified GloVe (Pennington et al.,
2014) objective function for cost optimization
to incorporate vector representations from the
relational knowledge repository with the initial
vectors from the corpus. In brief, the main
contributions of this paper can be summarized as
follows.

• We propose DRCoVe, a novel approach
of learning and augmentation of word
representation from a corpus that can handle
both long- and short-range dependencies
among words.

• The model combines the benefits of
point-wise mutual information, singular value
decomposition, and neural network-based
updation.

• Compared to existing approaches, the
proposed model performs considerably better
on different benchmark datasets.

Rest of the paper is organized as follows. Section
2 presents a brief review of the existing works on
learning word representations. Section 3 presents
background details of the concepts used in this
paper. Section 4 presents the detailed description
of the proposed model. Section 5 presents the
experimental details and evaluation results. Finally,
section 6 concludes the paper and provides future
directions of research.

2 Related Works

Recently, a number of different learning algorithms
have been proposed to learn the low-dimensional
dense representation of words generally called
word embedding used in different NLP tasks such
as named entity recognition (Collobert et al.,
2011), sentiment analysis (Tang et al., 2014).
In this regard, two popular word representation
models: continuous bag of words (CBOW) and
skip gram (SG) (Mikolov et al., 2013a) models
based on neural networks have gained momentum
in learning distributed word representation by
exploiting the local context of words co-occurring
within a given context window. The CBOW
predicts the target word given the surrounding
context words while SG predicts the surrounding
context words given the current word. Similarly,
GloVe (Pennington et al., 2014) is another popular
method of learning word representation based on

global co-occurrence matrix that predicts global
co-occurrence between target and context words by
employing randomly initialized vectors of desired
dimensions. These models learn embeddings only
from the corpus without incorporation of any
external knowledge. However, in this direction,
numerous studies (Yu and Dredze, 2014; Xu et al.,
2014; Alsuhaibani et al., 2018) have attempted
to incorporate the relational information from
KBs for word representation. In Yu and Dredze
(2014), the authors proposed an approach to
jointly learn embeddings from a corpus and a
similarity lexicon (synonymy) by assigning high
probabilities to words that appear in the similarity
lexicon using joint objective functions of relation
constraint models (RCM) and CBOW. Similarly, Xu
et al. (2014) used the relational and categorical
information as regularization parameters to the SG
training objective function to improve the word
representation. The CBOW based models normalize
target word probabilities for the whole vocabulary,
hence, computationally very expensive for large
corpora.

In Ghosh et al. (2016), the authors proposed
vocabulary driven skip-gram with negative
sampling (SGNS) to learn disease-specific word
vectors from health-related news corpus by
incorporating disease-related vocabulary. Most of
the proposed word representation approaches are
based on either of the two models (CBOW or SG),
or their variants (SGNS, SGHS) of Word2Vec
algorithm either by linearly combining additional
objective functions or adding as regularizers.
Alsuhaibani et al. (2018) used WordNet to
extract eight different types of relations such
as synonymy, antonymy, hypernymy, meronymy,
and so on to learn joint embeddings. They used
a linear combination of GloVe and KB-based
objective functions. All the discussed and
existing approaches ignore the relational semantics
between the words, which are outside the purview
of context-window.

3 Background and Problem Definition

This section presents the notations and the
background details of the important concepts used
in the proposed approach.

Notations: Suppose a corpus C has n number
of documents d1, d2, . . . , dn, and D represents
the collection of target and context words pairs
(w, c) obtained from C for a given context
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window size l, where context words of a
target word wi are the surrounding words
wi−l, . . . , wi−1, wi+1, . . . , wi+l. In addition,
assume that Vw and Vc represent word and context
vocabularies respectively for corpusD. We assume
that n(w,c) represents the total count of (w, c) pair
in D such that the target word w and context
word c appear together within the context window
l, nw and nc denote the occurrence of w and c
respectively in D such that nw =

∑
ĉ∈Vc n(w,ĉ)

and nc =
∑
ŵ∈Vw n(ŵ,c). The association between

every pair of target and context words of Vw and
Vc is presented in a matrix M such that each row
of the matrix represents the vector of a target word
w ∈ Vw and each column represents vector of
a context word c ∈ Vc and every element Mi,j

represents the association between the ith target
word wi and jth context word cj . Further, assume
a relational semantic repository Rl consisting of
all the relational semantic triplets extracted from
the corpus C. In addition, assume V represents the
vocabulary of Rl. In the paper, alphabets w and c
in bold typeface represent vectors.

GloVe: It is a neural network-based machine
learning algorithm to learn an efficient lower
dimensional dense representation of words in an
embedding space. It uses global co-occurrence
matrix to learn distributed representation of
words from a text corpus. Initially, it creates
co-occurrence matrix M with rows representing
target words for which we want to learn word
representation and the columns represent the
context words co-occurring with the target words
in the corpus within a given context window. In
M , each entry, say, Mi,j represents the sum of the
reciprocal of the distance of co-occurring target and
context words. GloVe implements weighted least
square regression objective function to minimize
the loss Jg as given in equation 1, where f(Mw,c)
is the weight function to find weight between a
target word w and context word c as given in
equation 2, and bw and bc are the bias terms for the
underlying target and context words respectively.
In the equation 2, α = 0.75 is a hyper-parameter
and xmax = 100. The objective of GloVe is to
minimize the squared difference between the inner
product of word and context vectors w and c, and

the logarithm of their co-occurrence count in D.

Jg =
1

2

∑

w∈Vw

∑

c∈Vc

f(Mw,c)(wT ·c+bw+bc− log(Mi,j))
2

(1)

f(Mw,c) = min {(Mw,c/xmax)α, 1} (2)

In GloVe, learning process starts by assigning
random vectors of desired dimensions to the target
and context words and then updating them during
the learning process with an objective to reduce the
weighted least square loss as given in equation 1.

Pointwise Mutual Information: In the existing
literature, researchers have used different metrics
such as co-occurrence count in GloVe to represent
the association between a word and context pair
(w, c). However, simple frequency count is not
the best measure of association as it does not
incorporate any contextual information. The
pointwise mutual information (PMI) is another
measure of association and better as compared to
co-occurrence count. It measures how often two
events co-occur compared to what we would expect
if they were independent as defined in equation 3
(Jurafsky and Martin, 2018). There can be target
and context word pairs (w ∈ Vw and c ∈ Vc)
which do not appear together within the given
context window l in the corpus and for such pairs
n(w,c) = 0, and therefore PMI(w, c) = log(0) =
−∞. To avoid this situation, positive pointwise
mutual information (PPMI) has been used in which
negative PMI values are mapped to zero as given in
equation 4. In addition, Bullinaria and Levy (2007)
showed that PPMI performs better than PMI in
finding semantic similarity. PPMI measures are
widely used to find semantic similarity, however,
these matrices are highly sparse and need huge
computational resources. One measure is to convert
such sparse vectors into low dimensional dense
vectors to improve computational efficiency and
generalization. In this regard, dimensionality
reduction is a way to find low dimensional dense
vectors using matrix factorization techniques such
as SVD.

PMI(w, c) = log

Å
P (w, c)

P (w) ∗ P (c)

ã
= log

Å
n(w,c) ∗ |D|
nw ∗ nc

ã

(3)

PPMI(w, c) = max {PMI(w, c), 0} (4)
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Singular Value Decomposition: It is a
dimensionality reduction method which
decomposes a symmetric matrix Mm×n into three
matrices U , Σ, and V such thatM = U ·Σ ·V . The
matrices U and V are orthogonal matrices while Σ
is a diagonal matrix of singular values. To obtain d
dimensional vectors, the matrix M is decomposed
to Um×d, Σd×d, and Vd×n corresponding to top d
singular values. The d-dimensional rows of matrix
W = U ·

√
Σ are dense vectors which are the

approximate representative of high dimensional
rows of M . The matrix W is considered as
a dense vector representation of words, while
the matrix C = V T ·

√
Σ can be considered as

context representation. The matrices W and C
thus obtained are used as initial word and context
representations respectively. These resulting
representations need to fulfill minimization of
error in matrix decomposition.

4 Proposed Approach

This section presents the detailed description of the
proposed approach, starting from the mechanism
to generate initial word representation from the
corpus, their augmentation through relational
semantics, and finally, adaptive updation of word
vectors. A detailed description of each step of the
proposed approach is presented in the following
subsections.

4.1 Initial Vector Representation

To learn word representation of desired dimension,
we first need to initialize the vectors for each target
and context words pair of the corpus that can be
further augmented using their relational semantics
and updated based on the weighted least square
loss minimization process. Before neural-based
approaches, distributed word representations were
based on count-based vectors such as tf-idf and
SVD-based vectors. Recent advancements in neural
network-based word representation have shown
significant improvement in its performance in
various NLP tasks. The neural network-based word
representations are based on prediction (Mikolov
et al., 2013b,a) of either the target word given the
context within the specified context window or vice
versa. However, recent studies (Levy and Goldberg,
2014b; Levy et al., 2015) have shown that the
neural network-based embedding learned using
Word2Vec or GloVe models are comparable in
performance with the traditional representation

of vectors obtained through the decomposition
of PPMI matrix. Therefore, to incorporate
the benefits of traditional decomposition-based
vectors, the proposed approach generates initial
word representation using vectors obtained from
SVD-based factorization of PPMI matrix. To this
end, we first create a co-occurrence matrix M
considering the co-occurrence count of every (w, c)
pair of target and context words from Vw and
Vc respectively that is further mapped to a PPMI
matrix Mp. Thereafter, the Mp is factorized using
SVD to generate initial low dimensional dense
vector representations of target and context words
as W = U ·

√
Σ and C = V T ·

√
Σ, respectively

from the corpus that incorporate the distributional
semantics. Similarly, the same process is repeated
for relational semantic repository Rl to generate
the initial vector representation of target and
context words as Ŵ = U ·

√
Σ and Ĉ =

V T ·
√

Σ, respectively from Rl. The initial
vectors of target and context words from the
corpus are further augmented using the vectors
generated from the relational semantic repository.
A detailed description of the augmentation process
is described in the following section.

4.2 Objective Function Augmentation

To minimize the decomposition error we followed
the GloVe approach of optimization of the initial
representation of vectors. GloVe method learns
continuous word representation from a corpus
using the global co-occurrence matrix. However,
Glove does not incorporate any additional or
domain-specific knowledge and suffers from two
important limitations as discussed in section 1.
Therefore, during optimization we performed
the augmentation of initial word representation
from the corpus by merging with the initial
word representation from the relational semantic
repository. To augment the additional information
during learning, we define an augmented objective
function Ja similar to GloVe as given in equation
5, where f(pw,c) is the weight function to assign
weight between every pair (w, c) of target and
context words as given in equation 6, and bw and
bc are the bias values for w and c respectively,
and pw,c is the PPMI value between w and c. In
equation 6, α is a hyper parameter and we used
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0.75 as its value as used in GloVe.

Ja =
1

2

∑

w∈Vw

∑

c∈Vc

f(pw,c)(w
′T ·c′+bw+bc− log(pw,c))

2

(5)

f(pw,c) = min

ßÅ
pw,c/ max

∀w,c∈D
(pw,c)

ãα
, 1

™

(6)
Thereafter, we employed the relational

semantics from the extracted relational semantic
repository Rl consisting of vocabulary V to
augment the learning process. The input corpus
C consist of target and context words pairs
(w, c) ∈ D. Based on V , we grouped the (w, c)
pairs of D into three categories – D∧, D∼, and
D⊕ such that

• D∧ = {(w, c) : w ∈ V ∧ c ∈ V}, i.e. both
the target and context words belongs to V

• D∼ = {(w, c) :∼ (w ∈ V ∧ c ∈ V)}, i.e.
neither target nor the context word belongs to
V

• D⊕ = {(w, c) : w ∈ V ⊕ c ∈ V}, i.e either
the target or the context word belongs to V

We need to consider each of these (w, c) pair
categories especially while merging to generate
augmented word representation.

In case of D∧, as both the target and context
words belong to V , we considered the merged
vectors from the corpus and the relational semantic
repository corresponding to target and context
words such that w′ = 0.5 ∗ (w + ŵ) and c′ =
0.5 ∗ (c + ĉ), where w and c are the initial vectors
from corpus and ŵ and ĉ are the initial vectors from
relational semantic repository. For category D∼,
we considered the initial vectors from the corpus
only as neither of the two words belongs to V ,
hence, we have w′ = w and c′ = c. Similarly,
in case of D⊕, as either of the two words belongs
to V but not both, we took the merged vector for
target or context word depending upon which word
belongs to V . In this case, if target word belongs
to V , we take w′ = 0.5 ∗ (w + ŵ) and if context
word belongs to V , we consider c′ = 0.5 ∗ (c + ĉ).

4.3 Adaptive Updation of Parameters
We performed the parameter updation during
learning process based on a well-known gradient
descent technique called AdaGrad (Duchi et al.,

Table 1: Concept categorization performance with l = 5,
and d = 100

Word Embeddings AP BLESS Battig ESSLI 1a ESSLI 2b ESSLI 2c

GloVe W 0.1940 0.21 0.0999 0.4090 0.575 0.3333

GloVe Merged 0.2213 0.21 0.1062 0.4318 0.55 0.3555

DRCoVe W 0.1890 0.235 0.0995 0.4318 0.45 0.377

DRCoVe C 0.1990 0.26 0.1062 0.4772 0.475 0.4222
DRCoVe Merged 0.1965 0.245 0.1081 0.4545 0.5 0.4

Table 2: Concept categorization performance with l = 5,
and d = 200

Word Embeddings AP BLESS Battig ESSLI 1a ESSLI 2b ESSLI 2c

GloVe W 0.1815 0.205 0.0982 0.4318 0.55 0.3777

GloVe Merged 0.2039 0.225 0.1049 0.4545 0.525 0.3777

DRCoVe W 0.1940 0.23 0.1013 0.4090 0.475 0.3777

DRCoVe C 0.2064 0.215 0.1060 0.4090 0.475 0.3777

DRCoVe Merged 0.2068 0.225 0.1009 0.4318 0.45 0.4

2011), which is an adaptive gradient update
algorithm to perform gradient-based learning. The
gradients are computed as follows:

δJ
δw′=gt,w′=

∑
c∈Vc f(pw,c)(w

′T ·c′+bw+bc−log(pw,c))·c′

(7)

δJ
δc′=gt,c′=

∑
w∈Vw f(pw,c)(w

′T ·c′+bw+bc−log(pw,c))·w′

(8)

δJ
δbw

=gt,bw=
∑

c∈Vc f(pw,c)(w
′T ·c′+bw+bc−log(pw,c))

(9)

δJ
δbc

=gt,bc=
∑

w∈Vw f(pw,c)(w
′T ·c′+bw+bc−log(pw,c))

(10)
AdaGrad algorithm is suitable for dealing

with sparse data as it performs larger updates for
infrequent words, and smaller updates for frequent
words. The update equation is shown as follows:

w′t+1
= w′t − η»∑t

τ=1 g
2
τ,w′
∗ (gt,w′) (11)

where, w′ is the a merged target word vector, gt,w
is the gradient at time t, and g2τ,w is the squared
gradient at time τ for the target word vector w′.
Similarly, updates for context word and biases are
performed according to the following equations.

c′t+1
= c′t − η»∑t

τ=1 g
2
τ,c′
∗ (gt,c′) (12)

bt+1
w = btw −

η»∑t
τ=1 g

2
τ,bw

∗ (gt,bw) (13)

bt+1
c = btc −

η»∑t
τ=1 g

2
τ,bc

∗ (gt,bc) (14)
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Table 3: Concept categorization performance with l = 10,
and d = 100

Word Embeddings AP BLESS Battig ESSLI 1a ESSLI 2b ESSLI 2c

GloVe W 0.204 0.215 0.1032 0.4091 0.525 0.3778

GloVe Merged 0.2113 0.22 0.1095 0.4308 0.525 0.3778

DRCoVe W 0.2015 0.25 0.0996 0.4091 0.475 0.3778

DRCoVe C 0.2139 0.22 0.1017 0.4318 0.475 0.4222
DRCoVe Merged 0.199 0.225 0.1047 0.4091 0.45 0.3556

Table 4: Concept categorization performance with l = 10,
and d = 200

Word Embedding AP BLESS Battig ESSLI 1a ESSLI 2b ESSLI 2c

GloVe W 0.1965 0.2150 0.1076 0.4090 0.55 0.4222

GloVe Merged 0.2313 0.22 0.1106 0.4140 0.625 0.4

DRCoVe W 0.2064 0.225 0.1026 0.4545 0.475 0.355

DRCoVe C 0.1965 0.23 0.1085 0.4014 0.525 0.4

DRCoVe Merged 0.2114 0.225 0.1122 0.4245 0.45 0.432

5 Experimental Setup and Results

The DRCoVe is evaluated on different benchmark
datasets using two evaluation tasks – word
similarity and concept categorization. This
section presents a brief description of corpus
and relational semantic repository used in the
evaluation process, experimental setup, and finally
presents the evaluation results.

5.1 Corpus and Relational Semantic
Repository

The DRCoVe is evaluated on a biomedical
text corpus crawled from PubMed1, an online
repository of millions of citations and abstracts
related to biomedicine, health, life and behavioral
sciences, and bioengineering. The abstracts
are the source of rich information related to
diseases, symptoms, pathogens, vectors, and
their transmission and etiologies. PubMed
provides access to the abstracts of documents
through axis 2.1.6.2 API2. The crawled corpus
C consist of 16,337 PubMed documents related
to four diseases – cholera, dengue, influenza,
and malaria. In addition, a relational semantic
repository Rl is created by extracting relational
triplets <arg1, relation, arg2> based on typed
dependencies generated by Stanford parser3 that
are filtered using MetaMap4 to identify meaningful
disease-symptom triplets. The repository Rl is
used to augment the learning process of word
representation. We have extracted the association
between the diseases and symptoms using the

1https://www.ncbi.nlm.nih.gov/pubmed/
2http://axis.apache.org/axis2/java/core/
3http://nlp.stanford.edu/software/lex-parser.shtm
4https://metamap.nlm.nih.gov/

approach defined in (Parwez et al., 2018; Abulaish
et al., 2019).

5.2 Experimental Setup
The documents of the corpus C are tokenized and
processed by removing numbers, punctuations, and
stop words. We experimented with the context
window size l of 5 and 10 (i.e. for l = 5, the context
words are the 5 preceding and 5 succeeding words
to the target word) to extract the context words from
the corpus. The co-occurrence matrix is created
using the co-occurrence frequencies of the target
and context words pair within the corpus. The
co-occurrence matrix is further mapped into PPMI
matrix, which is further factorized using SVD to
get the initial word vector of desired dimension
d ∈ {100, 200}. A similar procedure is repeated
for relational semantic repository Rl and initial
vectors are generated for the target and context
words. Thereafter, initial word representation of
corpus is augmented using the word representation
of relational semantic repository which is then
optimized using the objective function defined in
equation 5. We used a stochastic gradient-based
algorithm AdaGrad with the learning rate η =
0.05 for optimization. The proposed algorithm
is executed for 50 iterations to converge into an
optimum solution. As a result, we obtain two sets
of enhanced embeddings, one for the target words
of vocabulary Vw and another for the context words
of vocabulary Vc. It has been shown that when the
two embeddings of a word are combined by taking
an average of the corresponding word vectors, the
resultant embedding performs better (Pennington
et al., 2014). We have presented results for both
the word and context representation in addition to
their merged representation.

5.3 Evaluation Results and Comparative
Analysis

The quality of the learned word vectors based on
DRCoVe is evaluated using concept categorization
and similarity prediction tasks.

Concept Categorization: We evaluated the
quality of learned word embedding based on
concept categorization. It is the grouping of
concepts from a given set of concepts into different
categories. It evaluates the word representation
by clustering the learned vectors into different
groups. The performance is assessed based on
the extent to which each cluster possesses concepts
from a given category. The evaluation metric is

226



Table 5: Word similarity performance with l = 5, and d = 100

Word Embeddings MTurk RG65 RW SCWS SimLex999 TR9856 WS353 WS353R WS353S

GloVe W 0.1869 -0.0650 0.1881 0.27104 0.0407 0.1259 0.2288 0.1411 0.2404

GloVe Merged 0.1976 -0.0675 0.1891 0.2844 0.0354 0.1275 0.2269 0.1447 0.2300

DRCoVe W 0.2327 0.1726 0.1513 0.29 0.0737 0.1347 0.2881 0.2338 0.2702

DRCoVe C 0.2049 0.1368 0.1555 0.2964 0.0780 0.1454 0.2961 0.2467 0.2762
DRCoVe Merged 0.2270 0.1839 0.1284 0.2982 0.0907 0.1382 0.2690 0.2458 0.2324

Table 6: Word similarity performance with l = 5, and d = 200

Word Embeddings MTurk RG65 RW SCWS SimLex999 TR9856 WS353 WS353R WS353S

GloVe W 0.1915 -0.0430 0.1877 0.2837 0.0383 0.1263 0.2420 0.1542 0.2471

GloVe Merged 0.2043 -0.0567 0.1894 0.2842 0.0316 0.1275 0.2314 0.1462 0.2374

DRCoVe W 0.1919 0.087 0.1563 0.3019 0.0739 0.1468 0.2949 0.2260 0.2662

DRCoVe C 0.2152 0.1336 0.1544 0.3007 0.0811 0.1405 0.3120 0.2385 0.2966
DRCoVe Merged 0.2038 0.1390 0.1347 0.2977 0.0915 0.1412 0.2833 0.2272 0.250

called purity and it is 100% if the given standard
category is reproduced completely. On the other
hand, purity reaches to 0 when cluster quality
worsens. The DRCoVe is evaluated based on
concept categorization using 6 different benchmark
datasets: AP, BLESS, Battig, ESSLI 1a, ESSLI 2b,
and ESSLI 2c. The evaluation and comparison
results on different combination of context window
size and dimensionality over 6 benchmark datasets
are given in tables 1, 2, 3, and 4 respectively. It
can be observed from the tables that for concept
categorization task, except ESSLI 2b, in most of the
cases, DRCoVe embedding performs better than
the GloVe embeddings.

Word Similarity: To evaluate learned vectors
on word similarity task, we computed cosine
similarity between learned embedding of word
pairs and evaluated it based on average similarity
rating assigned by human annotators to these word
pairs from the benchmark datasets. The idea
here is that the learned embeddings encapsulate
semantics of the words if there is greater
extent of correlation between the similarity score
computed from the learned word vectors and the
similarity score assigned by the human annotators.
We calculated Spearman’s rank correlation
coefficient between the cosine similarity of learned
embeddings and human rated similarity of word
pairs. We used 9 different benchmark datasets –
MTurk, RG65, RW, SCWS, SimLex999, TR9856,
WS353, WS353R, and WS353S for evaluation.
In addition, we also compared the quality of
learned representation in terms of similarity task
with the two variants of GloVe: GloVe W and

GloVe Merged. The evaluation and comparison
results on different combination of context window
size and dimensionality on the benchmark datasets
for word similarity are given in tables 5, 6, 7,
and 8 respectively. On analysis of tables, it can
be found that the context and merged vectors of
DRCoVe are significantly better as compared to
GloVe word vectors and merged vectors except
RW, where GloVe is better.

6 Conclusion and Future Direction

Word embeddings learned from diverse sources
using methods like GloVe as the distributional
representation of words have been employed to
resolve numerous natural language processing
problems with considerable accuracy. However,
these distributional representations are unable to
capture the relational semantics of distant words
and the words with rare co-occurrences in the
corpus. In this paper, we have proposed DRCoVe,
an augmentation approach of distributional word
representations from a corpus with relational
semantic information extracted from the corpus
to learn enhanced word representation. We
compared the proposed model based on semantic
similarity and concept categorization tasks on
different benchmark datasets and found that the
word representation learned by DRCoVe shows
better performance than the GloVe model in most
of the datasets. The learned word representations
could be useful for various NLP tasks like text
classification or concept categorization. Learning
word representations over much larger corpus
and evaluation of their efficacy for short texts
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Table 7: Word similarity performance with l = 10, and d = 100

Word Embeddings MTurk RG65 RW SCWS SimLex999 TR9856 WS353 WS353R WS353S

GloVe W 0.2223 -0.0625 0.1852 0.3013 0.0469 0.1341 0.2429 0.1776 0.2795

GloVe Merged 0.2267 -0.0524 0.1863 0.3102 0.0411 0.1351 0.2393 0.1693 0.2774

DRCoVe W 0.1930 0.0937 0.1637 0.2951 0.0538 0.1396 0.3179 0.2304 0.3250

DRCoVe C 0.2309 0.1241 0.1639 0.2989 0.0441 0.1383 0.3310 0.2506 0.3336
DRCoVe Merged 0.2085 0.1404 0.1393 0.3140 0.0599 0.1372 0.3033 0.2341 0.2760

Table 8: Word similarity performance with l = 10, and d = 200

Word Embeddings MTurk RG65 RW SCWS SimLex999 TR9856 WS353 WS353R WS353S

GloVe W 0.2209 -0.0759 0.1855 0.2943 0.0401 0.1321 0.2448 0.1755 0.2742

GloVe Merged 0.2262 -0.0613 0.1863 0.3023 0.0351 0.1347 0.2398 0.1659 0.2779

DRCoVe W 0.2040 0.0890 0.1734 0.3162 0.0775 0.1425 0.3029 0.2278 0.3101

DRCoVe C 0.2377 0.1539 0.1755 0.3125 0.0793 0.1408 0.3134 0.2364 0.3236
DRCoVe Merged 0.1848 0.1445 0.1244 0.3088 0.0970 0.1363 0.2545 0.2230 0.2219

like tweets classification seems one of the future
directions of research.
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Abstract

Fake news detection is a very prominent and
essential task in the field of journalism. This
challenging problem is seen so far in the field
of politics, but it could be even more chal-
lenging when it is to be determined in the
multi-domain platform. In this paper, we
propose two effective models based on deep
learning for solving fake news detection prob-
lem in online news contents of multiple do-
mains. We evaluate our techniques on the
two recently released datasets, namely Fake-
News AMT and Celebrity for fake news detec-
tion. The proposed systems yield encouraging
performance, outperforming the current hand-
crafted feature engineering based state-of-the-
art system with a significant margin of 3.08%
and 9.3% by the two models, respectively. In
order to exploit the datasets, available for the
related tasks, we perform cross-domain analy-
sis (i.e. model trained on FakeNews AMT and
tested on Celebrity and vice versa) to explore
the applicability of our systems across the do-
mains.

1 Introduction

In the emergence of social and news media, data
are constantly being created day by day. The data
so generated are enormous in amount, and of-
ten contains miss-information. Hence it is neces-
sary to check it’s truthfulness. Nowadays people
mostly rely on social media and many other on-
line news feeds as their only platforms for news
consumption (Jeffrey and Elisa, 2016). A sur-
vey from the Consumer News and Business Chan-
nel (CNBC) also reveals that more people are rely
on social media for news consumption rather than
news paper 1. Therefore, in order to deliver the
genuine news to such consumers, checking the

1https://www.cnbc.com/2018/12/10/social-media-more-
popular-than-newspapers-for-news-pew.html

truthfulness of such online news content is of ut-
most priority to news industries. The task is very
difficult for a machine as even human being can
not understand news article’s veracity (easily) af-
ter reading the article.
Prior works on fake news detection entirely rely on
the datasets having satirical news contents sources,
namely ”The Onion” (Rubin et al., 2016), fact
checking website like Politi-Fact (Wang, 2017),
and Snopes (Popat et al., 2016), and on the con-
tents of the websites which track viral news such
as BuzzFeed (Potthast et al., 2018) etc. But these
sources have severe drawbacks and multiple chal-
lenges too. Satirical news mimic the real news
which are having the mixture of irony and absur-
dity. Most of the works in fake news detection fall
in this line and confine in one domain (i.e. poli-
tics). The task could be even more challenging and
generic if we study this fake news detection prob-
lem in multiple domain scenarios. We endeavour
to mitigate this particular problem of fake news
detection in multiple domains. This task is even
more challenging compared to the situation when
news is taken only from a particular domain, i.e.
uni-domain platform. We make use of the dataset
which contained news contents from multiple do-
mains. The problem definition would be as fol-
lows:
Given a News Topic along with the correspond-
ing News Body Document, the task is to classify
whether the given news is legitimate/genuine or
Fake. The work described in Pérez-Rosas et al.
(2018) followed this path. They also offered two
novel computational resources, namely FakeNews
AMT and Celebrity news. These datasets are
having triples of topic, document and label (Le-
git/Fake) from multiple domains (like Business,
Education, Technology, Entertainment and Sports
etc) including politics. Also, they claimed that
these datasets focus on the deceptive properties of
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online articles from different domains. They pro-
vided a baseline model. The model is based on
Support Vector Machine (SVM) that exploits the
hand-crafted linguistics features. The SVM based
model achieved the accuracies of 74% and 76% in
the FakeNews AMT and Celebrity news datasets,
respectively. We pose this problem as a classifi-
cation problem. So the proposed predictive mod-
els are binary classification systems which aim to
classify between fake and the verified content of
online news from multiple domains. We solve the
problem of multi-domain fake news detection us-
ing two variations of deep learning approaches.
The first model (denoted as Model 1) is a Bi-
directional Gated Recurrent Unit (BiGRU) based
deep neural network model, whereas the second
model (i.e. Model 2) is Embedding from Lan-
guage Model (ELMo) based. It is to be noted that
the use of deep learning to solve this problem in
this particular setting is, in itself, very new. The
technique, particularly the word attention mecha-
nism, has not been tried for solving such a prob-
lem. Existing prior works for this problem mostly
employ the methods that make use of handcrafted
features. The proposed systems do not depend on
hand crafted feature engineering or a sophisticated
NLP pipeline, rather it is an end to end deep neural
network architecture. Both the models outperform
the state-of-the-art system.

2 Related Work

A sufficient number of works could be found in
the literature in fake news detection. Nowadays
the detection of fake news is a hot area of research
and gained much more research interest among the
researchers. We could detect fake news at two lev-
els, namely the conceptual level and operational
level. Rubin et al. (2015) defined that conceptually
there are three types of fake news: viz i. Serious
Fabrications ii. Hoaxes and iii. Satire. The work
of Conroy et al. (2015) fostered linguistics and fact
checking based approaches to distinguish between
real and fake news, which could be considered as
the work at conceptual level. Chen et al. (2015)
described that fact-checking approach is a verifica-
tion of hypothesis made in a news article to judge
the truthfulness of a claim. Thorne et al. (2018) in-
troduced a novel dataset for fact-checking and ver-
ification where evidence is large Wikipedia cor-
pus. Few notable works which made use of text as
evidence can be found in (Ferreira and Vlachos,

2016; Nie et al., 2018).
The Fake News Challenge 2 organized a compe-
tition to explore, how artificial intelligence tech-
nologies could be fostered to combat fake news.
Almost 50 participants were participated and sub-
mitted their systems. Hanselowski et al. (2018)
performed retrospective analysis of the three best
participating systems of the Fake News Challenge.
The work of Saikh et al. (2019) detected fake news
through stance detection and also correlated this
stance classification problem with Textual Entail-
ment (TE). They tackled this problem using sta-
tistical machine learning and deep learning ap-
proaches separately and with combination of both
of these. This system achieved the state of the art
result.
Another remarkable work in this line is the ver-
ification of a human- generated claim given the
whole Wikipedia as evidence. The dataset, namely
(Fact Extraction and Verification (FEVER)) pro-
posed by Thorne et al. (2018) served this purpose.
Few notable works in this line could be found in
(Yin and Roth, 2018; Nie et al., 2019).

3 Proposed Methods

We propose two deep Learning based models to
address the problem of fake information detection
in the multi-domain platform. In the following
subsections, we will discuss the methods.

3.1 Model 1

This model comprises of multiple layers as shown
in the Figure 1. The layers are A. Embedding
Layer B. Encoding Layer (Bi-GRU) C. Word level
Attention D. Multi-layer Perceptron (MLP).
A. Embedding Layer: The embedding of each

word is obtained using pre-trained fastText
model3(Bojanowski et al., 2017). FastText
embedding model is an extended version of
Word2Vec (Mikolov et al., 2013). Word2Vec
(predicts embedding of a word based on given
context and vice-versa) and Glove (exploits
count and word co-occurrence matrix to predict
embedding of a word) (Pennington et al., 2014)
both treat each word as an atomic entity. The
fastText model produces embedding of each word
by combining the embedding of each character
n-gram of that word. The model works better
on rare words and also produces embedding for

2http://www.fakenewschallenge.org/
3https://fasttext.cc/
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Figure 1: Architectural Diagram of the Proposed First System

out-of-vocabulary words, where Word2Vec and
Golve both fail. In the multi-domain scenario
vocabularies are from different domains and there
is a high chance of existing different domain
specific vocabularies. This is the reason for
choosing the fastText word vector method.
B. Encoding Layer: The representation of each
word is further given to a bidirectional Gated
Recurrent Units (GRUs) (Cho et al., 2014) model.
GRU takes less parameter and resources compared
to Long Short Term Memory (LSTM), training
also is computationally efficient. The working
principles of GRU obey the following equations:

z = α(xtU
z + st−1W

z) (1)

r = α(xtU
r + st−1W

r) (2)

h = tanh(xtU
h + rt · st−1W

r) (3)

r = (1− z) · h+ z · st−1 (4)

In equation 1, z is the update gate at time step
t. This z is the summation of the multiplications
of xt with it’s own weight U(z) and st−1 (holds
the information of previous state) with it’s own
W(z). A sigmoid α is applied on the summation
to squeeze the result between 0 and 1. The task of
this update gate (z) is to help the model to estimate
how much of the previous information (from pre-
vious time steps) needs to be passed along to the
future. In the equation 2, r is the reset gate, which
is responsible for taking the decision of how much
past information to forget. The calculation is same
as the equation 1. The differences are in the weight
and gate usages. The equation 3 performs as fol-
lows, i. multiply input xt with a weight U and st−1

with a weight W. ii. Compute the element wise
product between reset gate rt and st−1W. Then
a non-linear activation function tanh is applied to
the summation of i and ii. Finally, in the equa-
tion 4, we compute r which holds the information
of the current unit. The computation procedure is

Figure 2: Word Level Attention Network

as follows: i. compute element-wise multiplica-
tion to the update gate zt and s(t−1). ii. calculate
element-wise multiplication to (1-z) with h. Take
the summation of i and ii.
The bidirectional GRUs consists of the forward
GRU, which reads the sentence from the first word
(w1) to the last word (wL) and the backward GRU,
that reads in reverse direction. We concatenate the
representation of each word obtained from both
the passes.
C. Word Level Attention: We apply the atten-
tion model at word level (Bahdanau et al., 2015;
Xu et al., 2015). The objective is to let the
model decide which words are importance com-
pared to other words while predicting the target
class (fake/legit). We apply this as applied in Yang
et al. (2016). The diagram is shown in the Fig-
ure 2. We take the aggregation of those words’
representation which are multiplied with attention
weight to get sentence representation. We do this
process for both the news topic and the corre-
sponding document. This particular technique of
the word attention mechanism, has not been tried
for solving such a problem.

Uit = tanh(Wwhit + bw) (5)
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αit =
exp(uTituw)∑
t exp(u

T
it
uw)

(6)

si =
∑

t

αithit (7)

First get the word annotation hit through GRU
output and compute uit as a hidden representa-
tion of hit in 5. We measure the importance of the
word as the similarity of uit with a word level con-
text vector uw and get a normalized importance
weight αit through a softmax in 6. After that, in 7,
we compute the sentence vector si as a weighted
sum of the word annotations based on the weights
αit . The word context vector uw is randomly ini-
tialized and jointly learned during the training pro-
cess.
D. Multi-Layer Perceptron: We concatenate the
sentence vector obtained for both the inputs. The
obtained vector further fed into fully connected
layers. We use 512, 256, 128, 50 and 10 neurons,
respectively, for five such layers with ReLU (Glo-
rot et al., 2011) activation in each layer. Between
each such layer, we employ 20% dropout (Srivas-
tava et al., 2014) as a measurement of regulariza-
tion. Finally, the output from the last fully con-
nected layer is fed into a final classification layer
with softmax (Duan et al., 2003) activation func-
tion having 2 neurons. We use Adam (Kingma and
Ba, 2014) optimizer for optimization.

3.2 Model 2

We propose another approach whose embedding
layer is based on Embedding for Language Model
(ELMo) (Peters et al., 2018) and the MLP Net-
work, which is same as we applied in Model 1.
The diagram of this model is shown in the Figure
3.

Embedding Layer: Embedding from Language
Model (ELMo) has several advantages over the
other word vector methods, and found to be a good
performer in many challenging NLP problems. It
has key features like i. Contextual i.e. represen-
tation of each word is based on entire corpus in
which it is used ii. Deep i.e. it combines all layers
of a deep pre-trained neural network and iii. Char-
acter based i.e. it provides representations which
are based on character, thus allowing the network
to make use of morphological clues to form robust
representation of out-of-vocabulary tokens during
training. The ELMO embedding is very efficient
in capturing context. The multi-domain datasets
are having different vocabularies and contexts, so

Dataset # of Examples Avg.words/sent Words Label

FakeNewsAMT 240 132/5 31,990 Fake
240 139/5 33,378 Legit

Celebrity 250 399/17 39,440 Fake
250 700/33 70,975 Legit

Table 1: Class Distribution and Word Statistics for Fake
News AMT and Celebrity Datasets. Avg: Average,
sent: Sentence

we make use of such a word vector representation
method to capture the context. News topics and
corresponding documents are given to Elmo Em-
bedding model. This embedding layer produces
the representation for news topic and news con-
tent.
After getting the embedding of the topic and the
context, we merge them. The merged vector is
fed into a five layers MLP (same as the previous
model). Finally, we classify with a final layer hav-
ing softmax activation function.

4 Experiments, Results and Discussion
and Comparison with State-of-the-Art

Overall we perform four sets of experiments.
In the following sub-sections we describe and
analyze them one by one after the description of
the datasets used.
Data: Prior datasets and focus of research for fake
information detection are on political domain. As
our research focus is on multiple domains, we
foster the dataset released by Pérez-Rosas et al.
(2018). They released two novel datasets, namely
FakeNews AMT and Celebrity. The Fake News
AMT is collected via crowdsourcing (Amazon
Mechanical Turk (AMT)) which covers news
of six domains (i.e. Technology, Education,
Business, Sports, Politics, and Entertainment).
The Celebrity dataset is crawled directly from
the web of celebrity gossips. It covers celebrity
news. The AMT manually generated fake version
of a news based on the real news. We extract
the data domain wise to get the statistics of the
dataset. It is observed that each domain contains
equal number of instances (i.e. 80). The class
distribution among each domain is also evenly
distributed. The statistics of these two datasets is
shown in the following Table 1.

The news of the Fake News AMT dataset was
obtained from a variety of mainstream news web-
sites predominantly in the United States such
as the ABCNews, CNN, USAToday, New York
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Figure 3: Architectural Diagram of the Proposed Second Model

Dataset System Model Test Accuracy(%)

FakeNews AMT Proposed Model1 77.08
Model2 83.3

(Pérez-Rosas et al., 2018) Linear SVM 74

Celebrity Proposed Model1 76.53
Model2 79

(Pérez-Rosas et al., 2018) Linear SVM 76

Table 2: Classification Results for the FakeNews AMT
and Celebrity News Dataset with Two Proposed Meth-
ods and Comparison with Previous Results

Training Testing Accuracy(%)
FakeNewsAMT Celebrity 54.3
Celebrity FakeNewsAMT 68.5

Table 3: Results Obtained in Cross-Domain Analysis
Experiments on the Best Performing System.

Times, FoxNews, Bloomberg, and CNET among
others.

Multi-Domain Analysis: In this section, we
do experiments on whole Fake News AMT and
Celebrity datasets individually. We train our mod-
els on the whole Fake News AMT and Celebrity
dataset and test on the respective test set. As
the datasets is evenly distributed between real and
fake news item, a random baseline of 50% could
be assumed as reference. The results obtained by
the two proposed methods outperform the baseline
and the results of Pérez-Rosas et al. (2018). The
results obtained and comparisons are shown in the
Table 2. Our results indicate this task could be ef-
ficiently handled using deep learning approach.
Cross-Domain Analyses: We perform another set

of experiment to study the usefulness of the best
performing system (i.e. Model2 ) across the do-
mains. We train the model2, on FakeNews AMT
and test on Celebrity and vice-versa. The results
are shown in the Table 3. If we compare with the in
domain results it is observed that there is a signif-
icant drop. This drop also observed in the work of
Pérez-Rosas et al. (2018) in machine learning set-
ting. This indicates there is a significant role of a
domain in fake news detection, as it is established
by our deep learning guided experiments too.
Multi-Domain Training and Domain-wise Test-

ing: There are very small number of examples
pairs in each sub-domain (i.e. Business, Technol-
ogy etc) in FakeNews AMT dataset. We combine
the examples pairs of multiple domains/genres for
cross corpus utilization. We train our proposed
models on the combined dataset of five out of six
available domains and test on the remaining one.
This has been performed to see how the model
which is trained on heterogeneous data react on
the domain to which the model was not exposed at
the time of training. The results are shown in Exp.
a part of the Table 4. Both the models yield the
best accuracy in the Education domain, which in-
dicates this domain is open i.e. linguistics proper-
ties, vocabularies of this domain are quite similar
to other domains. The models (i.e. Model 1 and 2)
perform worst in the Entertainment and the Sports,
respectively, which indicate these two domains are
diverse in nature from the others in terms of lin-
guistics properties, writing style, vocabularies etc.
Domain-wise Training and Domain-wise Test-
ing: We also eager to see in-domain effect of
our systems. The FakeNews AMT dataset com-
prises of six separate domains. We train and test
our models, on each domain’s dataset of Fake
News AMT. This evaluates our model’s perfor-
mance domain-wise. The results of this experi-
ment are shown in the Exp. b part of the Table
4. In this case both the models produce the high-
est accuracy in the Sports domain, followed by the
Entertainment, as we have shown in our previous
experiments that these two domains are diverse in
nature from the others. This fact is established by
this experiment too. Both the models produce the
lowest result in the Technology and the Business
domain, respectively.
Visualization of Word Level Attention: We take

the visualization of the topic and the correspond-
ing document at word level attention as shown
in the Figure 4 and 5, respectively. The aim is
to visualize the words which are assigned more
weights during the prediction of the output class.
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Domain Exp. a Exp. b
Model1 Model2 Model1 Model2

Business 74.75 78.75 63.56 68.56
Education 77.25 91.25 65.65 70.65

Technology 76.22 88.75 64.3 65.35
Politics 73.75 88.75 64.27 69.22

Entertainment 68.25 76.25 65.89 71.2
Sports 70.75 73.75 67.86 71.45

Table 4: Result of Exp. a (Trained on Multi-domain
Data and Tested on Domain wise Data) and Exp. b
(Trained on Domain wise Data and Tested on Domain
wise Data)

Figure 4: Word Level Attention on News Topic

In these Figures, words with more deeper colour
indicate that they are getting more attention. We
can observe, the words secretary, education in 4
and President, Donald in 5 are the words hav-
ing deeper colour, i.e. these words are getting
more weight compared to others. These words are
Named Entities (NEs). It could be concluded that
NEs phrases are important in fake news detection
in multi domain setting.

4.1 Error Analysis
We extract the mis-classified and also the truly
classified instances produced by the best perform-
ing system. We perform a rigorous analysis of
these instances and try to find out the pattern in the
mis-classified instances and the linguistics differ-
ences between those two categories of instances.
It is found that the model fails mostly in the En-
tertainment followed by the sports and the Busi-
ness domain etc. To name a few, we are showing
such examples which are actually ”Legitimate”,
but predicted as ”Fake” the Table 5 and which are
actually ”Fake”, but predicted as ”Legitimate” the
Table 6. It is observed that both the topic and doc-
ument are having ample number of NEs. It needs
further investigation in this font.

5 Conclusion and Future work

In this article, we propose two deep learning based
approaches to mitigate the problem of fake news
detection from multiple domains platform. An-
tecedent works in this line pay attention on satir-

Figure 5: Word level Attention on News Document, A
Part of it is Shown Due to Space Constraint.

ical news or made use of the content of the fact-
checking websites, which was restricted to one do-
main (i.e. politics). To address these limitations,
we focus to extend this problem into multi domain
scenario. Our work extends the concept of fake
news detection from uni-domain to multi-domain,
thus making it more general and realistic. We eval-
uate our proposed models on the datasets whose
contents are from multiple domains. Our two pro-
posed approaches outperform the existing models
with a notable margin. Experiments also reveal
that there is a vital role of a domain in context of
fake news detection. We would like to do more
deeper analysis of the role of domain for this prob-
lem in future. Apart from this our future line of
research would be as follows:

• It would be interesting for this work to en-
code the domain information in the Deep
Neural Nets.

• BERT (Devlin et al., 2019) and XLNet (Yang
et al., 2019) embedding based model and
make a comparison with fastText and ELMo
based models in the context of fake news de-
tection.

• Use of transfer learning and injection exter-
nal knowledge for better understanding.

• Handling of Named Entities efficiently and
incorporate their embedding with the normal
phrases.

• Using WordNet to retrieve connections be-
tween words on the basis of semantics in the
news corpora (both topic and document of
news) which may influence in detection of
Fake News.
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Domain Topic Content

Entertainment Chris Pratt responds to body
shamers telling him he’s too thin

Big or small Chris Pratt has heard it all. These days the
”Guardians of the Galaxy” star 37 is taking flak for
being too thin but he’s not taking it lying down. Pratt
who has been documenting the healthy snacks he’s eating
while filming ”Jurassic World 2” in a series of
”What’s My Snack” Instagram videos fired back – in his
usual tongue-in-cheek manner – after some followers
apparently suggested he looked too thin. ”So many
people have said I look too thin in my recent episodes of
#WHATSMYSNACK he wrote on Instagram Thursday.
Some have gone as far as to say I look ’skeletal.’
Well just because I am a male doesn’t mean I’m
impervious to your whispers. Body shaming hurts.”

Business Banks and Tech Firms Battle Over
Something Akin to Gold: Your Data

The big banks and Silicon Valley are waging an escalating
battle over your personal financial data: your dinner bill last
night your monthly mortgage payment the interest rates you
pay. Technology companies like Mint and Betterment have
been eager to slurp up this data mainly by building services
that let people link all their various bank-account and
credit-card information. The selling point is to make
budgeting and bookkeeping easier. But the data is also
being used to offer new kinds of loans and investment
products. Now banks have decided they aren’t letting
the data go without a fight. In recent weeks several
large banks have been pushing to restrict the sharing
of this kind of data with technology companies according
to the tech firms. In some cases they are refusing to pass
along information like the fees and interest rates
they charge. Both sides see big money to be made
from the reams of highly personal information created
by financial transactions.

Table 5: Examples of mis-classified instances from Entertainment and Business domain. Examples are originally
”Legitimate” but predicted as ”Fake”.

Domain Topic Content

Sports Slaven Bilic still has no support of
West Ham’s owners

”West Ham’s owners have no faith in manager Slaven Bilic
as his team won only six of their 11 games this year
according to Sky sources. Bilic’s contract runs out in the
summer of 2018 and results have made it likely that he
will not be offered a new deal this summer. Co-chairman
David Sullivan told supporters 10 days ago after
West Ham lost 3-2 at home to Leicester City. Sullivan said
that even if performances and results improved in the next
three games against Hull City Arsenal and Swansea City.
West Ham’s owners have a track record of being unloyal
to their managers who don’t meet their specs and there is
a acceptance at boardroom level that Bilic has failed to
prove a solid season.”

Education STEM Students Create
Winning Invention

STREAMWOOD, Ill. (AP) – A group of Streamwood High
School students have created an invention that is
exciting homeowners everywhere - and worrying
electricity companies at the same time. The kids
competed in the Samsung Solve for Tomorrow
contest, entering and winning with a new solar panel
that costs about $100 but can power an entire home
- no roof takeover needed! The contest won the
state-level competition which encourages teachers
and students to solve real-world issues using science
and math skills; the 16 studens will now compete in a
national competition and, if successful, could win a
prize of up to $200,000.

Table 6: Examples of mis-classified instances from the Sports and Education domain. Examples are originally
”Fake” but predicted as ”Legitimate” .
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Abstract

This paper presents a novel approach de-
signed to answer questions on a reading
comprehension passage. It is an end-to-
end system which first focuses on compre-
hending the given passage wherein it con-
verts unstructured passage into a struc-
tured data and later proceeds to answer
the questions related to the passage us-
ing solely the aforementioned structured
data. To the best of our knowledge, the
proposed model is first of its kind which
accounts for entire process of comprehend-
ing the passage and then answering the
questions associated with the passage. The
comprehension stage converts the passage
into a Discourse Collection that com-
prises of the relation shared amongst logi-
cal sentences in given passage along with
the key characteristics of each sentence.
This model has its applications in aca-
demic domain and query comprehension in
speech systems among others.

1 Introduction
The Samajh-Boojh1 system which we have
built focuses on the basic principles behind uti-
lization of rules in order to capture the seman-
tics of the given passage which is in the De-
vanagari script. The current trend is towards
incorporating machine learning in the ques-
tion answering models but they come with a
downside of requiring huge quantity and vari-
ety of training data to achieve decent accuracy.
Whereas the proposed model is rule-based and
hence eliminates the need for extensive train-
ing data while still providing 75% accuracy.

The Samajh-Boojh system answers 11 types
of questions (Table 1) using approximately 25

∗equal contribution
1Samajh-Understanding and Boojh-Analysis,

which translates to reading comprehension in Hindi.

rules. This sheds light on the fact that, with
substantially less number of rules a wide range
of questions can be answered. It is an exten-
sion to Prashnottar model (Sahu et al., 2012)
which could handle 4 types of questions using
4 rules. The system can be classified into two
parts, the comprehension part and the ques-
tion answering part, these two parts together
ensure that the system behaves similar to the
way humans approach the questions which are
asked based on reading comprehension pas-
sage. The comprehension part of the sys-
tem converts the given passage whose inherent
structure cannot be grasped by the machine
to a structured and machine extractable data
called Discourse Collection. The Discourse
Collection is then sent to the QA system as an
input along with the query to obtain the rel-
evant answer. This feature sets the proposed
model apart from the commonly used informa-
tion retrieval and extraction based techniques.

The Panchatantra collection2 comprising of
65 short stories was used to experiment on
the model. This dataset had variety of sto-
ries with different lengths. The questions on
each of these stories were framed by multiple
annotators and best of which were picked to
validate the system. The answers given by the
annotators were used as gold data to measure
the quality of the system.

2 Architecture and Design
The Samajh-Boojh System is broadly classi-
fied into two parts: comprehension part and
question answering part. The system works
similar to human approach of answering read-
ing comprehension questions. The system

2https://www.hindis-
ahityadarpan.in/2016/06/panchatantra-complete-
stories-hindi.html
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takes passage and queries corresponding to the
passage as the input, and returns answers to
the questions. In subsequent sections we dwell
deeper into these parts and see how they func-
tion.

2.1 Reading Comprehension Part
The reading comprehension part of the sys-
tem is responsible for structuring the story
into a Discourse Collection which contains
the characteristics of the story. This struc-
ture is inspired by Thorndyke’s Story Gram-
mar (Thorndyke, 1977). Discourse Collection
is comprised of the following components:

Episode_Id: Unique key associated to
the sentence. Its incrementally assigned as
we parse the sentences. In Discourse Collec-
tion, we associate each logical sentence as an
episode.

Original_sentence: The WX version of
the logical sentence found in the story.

Time: The time setting in which the
episode took place. If the Original_Sentence
doesn’t specify the time, this field is populated
from the previous episode’s Time value. De-
fault is ‘tbd: to be decided’

Location: The place in which the episode
took place. If the Original_Sentence doesn’t
specify the location, this field is populated
from the previous episode’s Location value.
Default is ‘tbd: to be decided’

Karta: The karta (doer) of the logical sen-
tence is given as the value. This is obtained
from the dependency parser3.

Karta_Adpos: The Adpos (adjective
and prepositions) associated with the Karta
to frame the answers during the question-
answering stage.

Karma: The karma of the logical sentence
is populated in this column.

Karma_Adpos: The Adpos (adjective
and prepositions) associated with the Karma
to frame the answers during the question-
answering stage.

Anaphora_Resolved_Sentences: The
logical sentence in which the anaphora is re-
placed with noun.

Root_Node_Sentences: The words of
the logical sentences are replaced with their

3https://bitbucket.org/iscnlp/parser/src/mas-
ter/README.rst

roots. For this we used the shallow parser 4.
Given: The sentence which is related to the

current sentence.
New: The current sentence which is having

the Given sentence as a prerequisite.
Parser_Output: The output of the de-

pendency parser.
The overview of the Reading Comprehen-

sion system is seen in Figure 1. The pas-
sage is given as the input to Logical Sen-
tence Module to break it into logical sen-
tences, the split passage is given as input to the
Discourse Generator module which contains
Graph Maker Module, Anaphora Res-
olution Module, Root Node Resolution
Module and Discourse Information Filler
Module. The final output of these four mod-
ules is the Discourse Collection which is the
output of comprehension system. The individ-
ual modules of the reading comprehension sys-
tem along with detailed working is explained
in the forthcoming sections.

Logical Sentences Module

Even though the passage can easily be split
into words, sentences and paragraphs when
given as the input, it’s a challenge to extract
the semantics. We break the sentences based
on the generic punctuation marks such as full
stop, comma, semicolon, question mark, ex-
clamation mark and conjunctions such as और,

िक, पर, कर, िफर, इसीिलए, तब, तो, क्योंिक, क्य

ू

ंिक,

लेिकन, परंतु, िकन्तु.
When splitting the sentences by the split

words, we noticed the tags were improper at
some instances. Example:
S1:राम घर जाना चाहता था पर नहीं जा पाया।

T1: Ram wanted to go home but couldn’t go.
S2:राम घोड़े पर बैठा था।

T2: Ram sat on the horse.
Here the word पर translates to ‘but’ and ‘on’,

we want to split the sentence into two parts
only in S1 and not in S2. The POS tags us-
ing Dependency Parser3 give ‘PSP’ tag, hence
making it difficult to differentiate on which पर

to split the sentences. To resolve this issue we
decided to see the context of the given split
word and then make the decision. The logic
for deciding whether to split or not is given

4http://ltrc.iiit.ac.in/analyzer/hindi/index.cgi
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Figure 1: Comprehension Design

below:
If the word before the split word is verb ie.
having POS tag as ‘VM’ or ‘VAUX’ then we
split the sentence into two parts and popu-
late the Discourse Collection with two episodes
each containing the split sentences as Origi-
nal_Sentences(OS).
In the Figure 2, we see in the sample passage
that apart from the full stops, the sentences
are split at ‘taba/तब’ and ‘para/पर’ resulting
in 5 episodes.

Graph Maker
The Original_Sentence which was populated
in Logical Sentence Module is sent through the
dependency parser 3 and the parser output is
stored in the Discourse Collection of the cor-
responding episode. From the parser output,
if there exits any k7t relation, it is stored in
the ‘Time’ slot of the episode. If there exists a
k7p relation, it is stored in the ‘Location’ slot
of the episode. The word with k1 relation is
stored in the ‘Karta’ slot of the episode along
with the ‘lwg__psp’ as case marker of the
Karta and word with relation ‘nmod__adj’ as
the Karta adjective, the case marker and ad-
jective with Karta word are called Karta_ad-
pos and stored in the corresponding episode.
The word with k2 relation is stored in Karma
slot of the episode. The child nodes of the
Karma in dependency tree who have the rela-
tions ‘lwg__psp’ and ‘nmod__adj’ are stored
as Karma_Adpos.

Anaphora Resolution Module
We use the Original_Sentence from the
episode to resolve the anaphora and store it
in Anaphora_Resolved_Sentence(ARS) of the
corresponding episode. We used the algorithm
mentioned in Dakwale(2014) to resolve the
anaphora. This algorithm is a right fit as it

uses rules from the dependency parser3.
We see in Figure 2 that the the word ‘vaha/वह’
translates into rAma in episode 2 and billI in
episode 4 based on the context, ‘usE/उसे’ and
‘vO/वो’ are resolved into rAma in episode 2
and 5.

Root Node Resolution Module

The root of a word is important when we are
comparing two sentences. We convert each
word in Anaphora_Resolved_Sentence of the
episode into its root form and store it as
Root_Node_Sentence(RNS) for correspond-
ing episode. We used the IIIT Parser4 and
the output was parsed through the SSF for-
mat mentioned in Bharati(2007) and the root
form of the words were extracted.
In episode 2 the word ‘gaya’ changes to ‘ja’ in
Figure 2.

Discourse Information Filler

Discourse is when we look beyond the scope of
a sentence and use information between their
relation. Here we fill the ‘Given’ and ‘New’
values of the episode. The default values are
‘tbd: to be decided’. If the passage sentence
has split words mentioned in section 2.1, the
sentence is split into two episodes such that,
the second episode will contain the first split
sentence as ‘Given’ in its Discourse Collection
and second split sentence as the ‘New’. Our
assumption and complexity is limited to iden-
tifying a co-dependency between two sentences
if they are separated by split words.
The output of this stage will give the Dis-
course Collection. Episode 2 in the Figure 2,
has ‘Given’ and ‘New’ values populated since
it has the word ‘taba/तब’ (translation: then).
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Passage:

rAma Eka acchA ladkA thA. vaha Eka
dina pAThaSAlA jA rahA thA taba usE
Eka billI dikhI. rAma usakE pAsa gayA
para vaha bhAga gaI aura vO dukhI hO gayA

Discourse Collection:

{
”0”: {

”OS”: ”rAma Eka acchA ladkA thA”,
”karta”: ”rAma”,
”kartaadj”: [”rAma”, ”acchA”],
”ARS”: ”rAma Eka acchA ladkA thA”,
”RNS”: ”rAma Eka acchA ladka thA”

}
”1”: {

”OS”: ” vaha Eka dina pAThaSAlA jA
rahA thA”,

”time”: ”din”,
”location”: ”pAThaSAlA”,
”karta”: ”rAma”,
”ARS”: ”rAma Eka dina pAThaSAlA jA

rahA thA”,
”RNS”: ”rAma Eka dina pAThaSAlA jA

rahA thA”
}

”2”: {
”OS”: ”usE Eka billI dikhI”,
”time”: ”din”,
”location”: ” pAThaSAlA”,
”karta”: ”billI”,
”given”: ” rAma Eka dina pAThaSAlA jA

rahA thA”,
”new”: ”rAma Eka billI dikhI”,
”ARS”: ”rAma Eka billI dikhI”,
”RNS”: ”rAma Eka billI dikha”
}

”3”: {
”OS”: ” rAma billI pAsa gayA”,
”time”: ”din”,
”location”: ” billI pAsa”,
”karta”:”rAma”,
”ARS”: ”rAma billI pAsa gayA”,
”RNS”: ”rAma billI pAsa jA”
}

”4”: {
”OS”: ”vaha bhAga gaI”,
”time”: ”din”,
”location”: ” billI pAsa”,
”karta”: ”rAma”,
”given”: ” rAma billI pAsa gayA”,
”new”: ”billI bhAga gaI”,
”ARS”: ”billI bhAga gaI”,
”RNS”: ”billI bhAga jA”
}

”5”: {
”OS”: ”vO dukhI hO gayA”,
”time”: ”din”,
”location”: ” billI pAsa”,
”karta”: ”rAma”,
”given”: ”billI bhAga gaI”,
”new”: ”rAma dukhI hO gayA”,
”ARS”: ”rAma dukhI hO gayA”,
”RNS”: ”rAma dukhI hO jA”
}

}

Figure 2: Discourse Collection
The passage and its corresponding discourse collection
is shown here. Only the populated values are shown,
rest all are ‘tbd-to be decided’ except for parser_out-
put. OS-original_sentence, ARS-Anaphora_Re-
solved_Sentence, RNS-Root_Node_Sentence

Question
Type Question Words

Karta ‘kisnE’ ‘kisakE’
‘kauna’ ‘kisasE’

Karma ‘kisakO’ ‘kisakI’
Time ‘kaba’ ‘samaya’ ‘dina’
Loc ‘kahA ’
Recipient ‘kisE’
Adj_Noun ‘kaisA’ ‘kaisI’
Intf ‘kitnA’ ‘kitnE’
Kya ‘kyA’
Kiske ‘kiskE’
Kiska ‘kiskA’ ‘kiskI’

GivenNew ‘kara’ ‘bAda’ ‘phalE’
‘kyoM’

Table 1: Types of Questions.

2.2 Question Answering Part

The Question-Answering part of this model
takes Discourse Collection which was output
of the Reading Comprehension part, as the in-
put along with the query related to the passage
and returns the answer as the output. The
brief overview of the system is shown in Fig-
ure 3. The query is fed in the Devanagari for-
mat and the answer is given in the same. The
working of this system is seen in following sec-
tions.

Question Analyzer Module
This module takes the Devanagari format of
the input query and returns the type of the
question along with key word relevant to the
query. This format is similar to that found in
QLL (Vargas-Vera et al., 2003).

We tag the questions based on the question
words into 11 major categories shown in Ta-
ble 1. This list can be expanded as per the
required answers from the question word. For
example,
Q1: गांव म

ें

िकतने मुगे

र्

रहते थे?

T1: How many chickens were there in the vil-
lage?
The answer expects the quantity of the chick-
ens. So, we place it into ‘Intf’ category

We now see each type of question in detail
and see how they are handled:
Karta: It involves the question words which
requires the answer as the doer. िकसने बदंर को
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Figure 3: Question Answering Design

परशेान िकया? (Who troubled the monkey?)
Karma: The question which requires the an-
swer as the act of the sentence. बल्ी िकसको

िदखी? (Who saw the cat?)
Time: The question which expects the an-
swer as the time. सूरज कब घर आया? (When
did Suraj come home?)
Loc: The question word which requires an-
swers as the location. िकताब कहाँ राखी थी?

(Where was the book kept?)
Recipient: The question which expects the
answer of the receiver.िकसे चोट लगी थी? (Who
got injured?)
Adj_Noun: The question which requires the
answer as the adjective of particular noun.राम
कैसा लड़का था? (What kind of boy was Ram?)
Intf: Question which requires the answer as
the quantity of a particular entity. एक गांव म

ें

िकतने लोग थे? (How many people stayed in the
village?)
Kya: When the answer is supposed to de-
scribe or explain the situation. श्याम ने खाने

म

ें

क्या खाया? (What did Shyam have for his
meal?)
Kiske: When the question requires the en-
tities involved with mentioned subject as the
answer. सीता िकसके साथ खेल रही थी? (With
whom was Sita playing?)
Kiska: The question is seeking the possessive
trait of the entity mentioned. यह िकताब िकसकी

है? (Whose book is this?)
GivenNew: The question that gives an ac-
tivity and requests for the consequence of the
activity falls in category of GivenKnown. The
questions which describe an activity and ex-
pects the cause of the activity as the output,
it falls in category of NewKnown.
Example:
क

ु

छ लड़कों ने एक िबल्ी को तंग िकया और वह परशेान हो

गयी (Some boys troubled a cat and the cat got

Question
Type Output Format

Karta [‘Karta’]
Karma [‘Karma’]
Time [‘Time’]
Loc [‘Loc’]
Recipient [‘Recipient’]

Adj_Noun
[‘Adj_Noun’, one word
before the question
word]

Intf [‘Intf’, one word after
the question word]

Kya [‘Kya’]

Kiske [‘Kiske’, one word after
the question word]

Kiska [‘Kiska’]

GivenNew
[‘GivenNew’, the infor-
mation which is either
new or given]

Table 2: Output of the Question Analyzer.

angry)
Given Known:
िबल्ी तंग होने के बाद क्या ह

ु

आ? (What Happened
after the cat was troubled?), Given Info from
the question: िबल्ी तंग ह

ु

ई(Cat was troubled)
Here, the answer is expected to be the conse-
quences of cat being troubled.
New Known:
िबल्ी परशेान क्यों हो गयी? (Why was the cat an-
gry?), new info from the question: िबल्ी परशेान

ह

ु

ई (cat is angry) Here, the answer is expected
to address the reasons why the cat was angry.
The output of the question analyzer module
for above mentioned question types is shown
in Figure 2.

There is a preference order given to these
question types, in cases of when two words
belonging to two different classes (in Table 1)
exist in same query. The observed overlaps in-
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clude: Time and Kya: in this case the question
type will be treated as Kya. Kya and Given-
New: in case of this overlap, the question type
will be treated as Kya.

Episode Selector Module
The input to this module is the output of the
Query Analyzer module (Table 2) and Dis-
course Collection(Figure 2) which is the out-
put of the Reading Comprehension stage of
our system. This is seen clearly in Figure
3. The episode is detected by using Jac-
card similarity between the Query(Q) and
Root_Node_Sentence(RNS) whose formula is
as follows:

Jaccard_Sim(Q,RNS) =
n(Q ∩RNS)
n(Q ∪RNS)

Where, n(Q ∩ RNS) is number of common
words in the Query and Root_Node_Sen-
tence and n(Q ∪RNS) is the total number of
words in Query and Root_Node_Sentence.

Algorithm 1 Weighted Jaccard Similarity
procedure JaccardSim(Q,RNS)

NounTags← {MNP,MNS,NN}
V erbTags← {VM}
V AuxTags← {V AUX}
AdTags← {JJ,RB}
Union← Q ∪RNS
Intersec← Q ∩RNS
JS ← 0
for all word ∈ Intersec do

switch POS(word) do
case ∈ AdTags

JS ← JS + 5

case ∈ V erbTagss
JS ← JS + 4

case ∈ NounTags
JS ← JS + 3

case ∈ V AuxTags
JS ← JS + 2

case default
JS ← JS + 1

end for
NormalisedJS ← JS/|Union|
return JS,NormalisedJS

end procedure

We have modified the formula to give better
results. The formula is our version of weighted

Jaccard similarity, wherein, we take the POS
tags of the words which are common between
the Query and the Root_Node_Sentence,
and give more weightage to the word if it
is less frequent, rather than focusing on
frequently occurring words, which don’t
capture the similarity between the Query and
Root_Node_Sentence such as prepositions.
We have given the priority to rare words
based on their POS word tags. Priorities of
POS tags as given as Adjective/Adverb >
Verb > Noun > Auxillary Verb > Others.
The respective POS tags from the parser are:
(JJ/RB) > (VM) > (NN/NNS/NNP ) >
(V AUX) > Others. We call this as the
Jaccard_Score between the episode and
the Query, if we divide Jaccard_Score
by (Q ∩ RNS), we get Normalized_Jac-
card_Score.
After calculating the Jaccard_Score and the
Normalized_Jaccard_Score for each episode
in Discourse Collection, we take the episode
which has the highest Jaccard_Score, if two
episodes have highest Jaccard_Score, we
compare their Normalized_Jaccard_Score
and choose the higher valued episode as our
chosen episode. The pseudo code is given in
Algorithm 1.
The Output of this module is the
Episode_Id(from the Discourse Collec-
tion) which has maximum similarity to the
Query.

Rule Based Natural Language
Generator Module
This Module generates answer for a given
query. It takes the episode chosen by the
Episode Selector, Discourse Collection, and
the query as input and generates the answer
according to the query type.
Answer for various question types(Table 2) is
generated as follows:
Karta: We extract the Karta from the
Discourse_Collection for the chosen episode
along with Karta_Adpos(Karta_Adjective
and Karta_Case_Markers) and give the
answer as Karta_Adjective + Karta +
Karta_Case_Marker. The answer to the
question kIsnE zyAma kO kalama dI? [Karta
Question Type] answer will be rAma nE (refer
Figure 4).
Karma: We extract the Karma from the
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Figure 5: Karma

Discourse_Collection for the chosen episode
along with Karma_Adpos(Karma_Adjective
and Karma_Case_Markers) and give the
answer as Karma_Adjective + Karma +
Karma_Case_Marker. If the ‘Karma’ slot
of the Discourse_Collection isn’t populated,
the Anaphora_Resolved_Sentence of the cho-
sen episode is returned. The answer to the
question siMha ne kiskO apnA dosta banAyA?
[Karma Question Type] answer will be cUhE
kO (refer Figure 5).
Time: If the Parser_Output of the given
episode contains the ‘k7t’ relation between two
nodes, then the child node is the output. If
there doesn’t exist any ‘k7t’ relation, then ‘k7’
relation is used and the child node is the an-
swer. If either of these aren’t existing, then
time is extracted from the ‘Time’ slot of the
Discourse_Collection of the given episode and
is displayed as the answer. The answer to
the question sIta kaba pathzAlA gayI? [Time
Question Type] answer will be subah (refer
Figure 6).
Loc: If the Parser_Output of the given
episode contains the ‘k7p’ relation between
two nodes, then the child node is the output.
If there doesn’t exist any ‘k7p’ relation, then
‘k7’ relation is used and the child node is the

sIta subah pathzAlA

gayI
k7p

k7t
k1

Figure 6: Loc and Time

answer. If either of these aren’t existing, then
location is extracted from the ‘Loc’ slot of the
Discourse_Collection of the given episode and
is the answer. The answer to the question sIta
kaha gayI? [Loc Question Type] answer will
be payhzAla (refer Figure 6).
Recipient: The main verb(MV) is extracted
from the Parser_Output of the Episode. If the
MV shares relation ‘k4’ with a child we return
that child as the answer. If there doesn’t exist
any child with ‘K4’ relation, we check for any
child nodes of the MV with ‘k4a’ relation and
return that as the answer. The answer to the
question rAma ne kisE kalama dI? [Recipient
Question Type] answer will be zyAma (refer
Figure 4).
Adj_Noun: From Table 2, we can see
that the output is the Noun whose Adjec-
tive is asked in the question. Let the Noun
whose adjective is asked be MN. We take
the Parser_Output of the chosen episode and
check for the child nodes of the MN who have
relation ‘nmod__adj’ and return the child
node as the answer. The answer to the ques-
tion kalama kaisI hai? [Adj_Noun Question
Type] answer will be suNdara (refer Figure 8).
Intf: From the 2, we can see that the
Noun(MN) whose quantity is asked is returned
along with the classification of the question.
To get the answer we take the Parser_Out-
put of the chosen episode and search for the
MN, then we check for child nodes of MN
who have relation ‘intf’ with MN, lets call the
child ‘NounIntf’, we then check child nodes
who have relation ‘nmod__adj’ with MN, lets
call it ‘NounAdj’. If ‘NounIntf’ and ‘NounAdj’
exist, we return the answer as NounIntf +
NounAdj and MN as the answer. If ‘NounAdj’
doesn’t exist, we just return NounIntf + MN
as the answer. The answer to the question
rAma ne kitnE kalama dIyE? [Intf Question
Type] answer will be Eka (refer Figure 4).
Kya: We extract the Main Verb (MV) from

245



ud

kauvA
talAza

meM ki

pAnI

k7 k1

r6

lwg_psp lwg_psp

Figure 7: Kiske

suNdara

r6
kIkalam

rAma

hai

nmod_adj

k1

lwg_psp

Figure 8: Kiska, Adj_Noun

the Parser_Output of the Discourse Collection
of the chosen episode. We then check if either
of ‘k1s’, ‘pof’, ‘k2’ relations exist between the
MV and its children. If it exists, we check
if the child is mentioned in the question, if
it isn’t mentioned in the question, we return
child Node as the answer. If no child exists
with above mentioned relations or if it exists
and the child has occurred in the question it-
self then, we check if the ‘Given’ slot of the
discourse Collection is populated for the next
episode and return the value in ‘NEW’ slot of
the Discourse Collection as the answer. The
answer to the question rAmA nE kyA dIyA?
[Kya Question Type] answer will be kalama
(refer Figure 4).
Kiske: From Table 2, we observe that subject
whose entity is asked is known. We consider
this subject as Main Noun(MN), we check the
children of MN who have relation ‘k7’ and re-
turn it as the answer. If this relation doesn’t
exist, we check for children with ‘r6’ relation
and return it as the answer. ‘r6’ and ‘k7’
are called SambandhRelations in Panninian
Grammar (Bharati et al., 1995). The answer
to the question kauvA kiske talAza meM udA?
[Kiske Question Type] answer will be pAnI (re-
fer Figure 7).
Kiska: We extract the Main Verb(MV) from
the Parser_Output of the Discourse Collection

for the particular episode. We check the chil-
dren of MV which have relations in order, ‘k2’,
‘k7’, ‘r6’. The answer to the question yaha
kalama kiskI hai? [Kiska Question Type] an-
swer will be rAma (refer Figure 8).
GivenNew: We can see from Table 2, the in-
formation of GivenNew is given as the output
of the Query Analyzer step. If the question
is ‘Given Known’ (Refer 2.2), we choose the
episode based on the highest Jaccard similar-
ity (mentioned in 2.2) between the ‘Given’ slot
of the Discourse Collection and the query. The
Episode which gets the highest score, is the
chosen episode and we return the ‘New’ slot
value as the answer. Similarly for the ‘New
Known’ (Refer 2.2) we choose the episode
based on the ‘New’ slot and the answer is in
‘Given’ slot of the same episode. The answer
to the question jaba rAma billI kE pAsa gayA
taba kyA huA? [GivenKnown Question Type]
the answer is billI bhAga gaI. (refer Figure 2)
Default: In case an unknown question type
is encountered or no answer has been given
for the above question types, we return the
Anaphora_Resolved_Sentence of the chosen
episode as the answer.

3 Experiments

Panchatantra is a collection of fables. It
has five parts, Mitra-Bheda (The loss
of friends), Mitra-laabha (The winning
of friends), Kakolukiyam (on crows and
owls), Labdhapranasam(Losing what you
have gained) and Apariksitakarakam (Ill-
Considered actions). We have chosen a corpus
of 65 stories from the tales across all parts of
Panchantantra to test our system.

We collected the stories from the link men-
tioned in footnote2 and fixed the syntax (punc-
tuation and spellings). We annotated 440
questions for the above stories and assigned
the question types, the ideal episode to be se-
lected from the Discourse Collection and the
correct answer for each of the questions. While
annotating the questions, we made a conscious
effort to involve more questions in type ‘Kya’
and ‘GivenNew’ (refer Table 4), since they
are versatile concepts and we intended to test
them extensively against the rules we format-
ted as the other types are more or less intuitive
on the dependency parser tags3. We randomly
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Story Original
Sentence

Anaphora
Resolved
Sentence

Root
Node
Sentence

1 3/7 5/7 5/7
2 7/11 7/11 11/11
3 3/6 3/6 4/6
4 3/5 4/5 4/5
5 1/8 3/8 4/8
6 1/3 2/3 2/3

Table 3: Episode selection accuracy

selected 10 stories from the corpus along with
the questions and generated rules based on
linguistic heuristics, to avoid overfitting. We
then verified the rules on the remaining sto-
ries.
Out of 440 questions, 72 more questions were
rightly answered on using weighted Jaccard
similarity when compared to normal Jaccard
similarity. That is, 16% episodes were rightly
selected when weighted Jaccard similarity was
used instead of normal Jaccard similarity on
our model.
We also compared episode selection accuracy
by including modules mentioned in figure 1
on 6 random stories which are different from
the previously selected stories. The results
can be seen in table 3 for the same. It can
be observed that the weighted Jaccard sim-
ilarity accuracy improved consistently as we
added the Root Node Resolution and then
the Anaphora Resolution modules. The be-
low example demonstrates the improvement in
episode selection accuracy for different mod-
ules:
Question: राम क्या खा रहा था? [Translation:
What was Ram eating?]
Original Sentence: उसने आम खाया. [Transla-
tion: He ate a mango] Jaccard Score: 0
Root Node Sentence: वह आम खा [Translation:
He eat mango] Jaccard Score: 4
Anaphora Resolved Sentence: राम आम

खा[Translation: Ram eat mango] Jaccard
Score: 7
Overall accuracy of the answers based on ques-
tion Types is Shown in Table 4. The fig-
ure clearly shows good accuracy for major-
ity of the questions. Since the ‘Kya’ and
‘GivenNew’ format of the questions are ver-
satile and the answers can be subjective, the

Question Type Questions Accuracy
Karta 35 94.3%
Karma 7 100%
Time 7 100%
Loc 45 100%
Recipient 15 100%
Adj_Noun 15 100%
Intf 15 100%
Kya 179 71.6%
Kiske 13 84.62%
Kiska 5 100%
GivenNew 33 63.7%
Total 440 75.45%

Table 4: Accuracy of the answers

accuracy for these categories cannot be com-
parable to the direct question types whose
answers are obtainable through dependency
parser tags solely. Overall accuracy of the sys-
tem is 75.45%.

4 Future Work

This model currently doesn’t answer कैसे [How]
types of questions, which can be included in
future.
Currently we don’t resolve synonyms and
antonyms to answer the questions, which when
done, can improve Episode Selection algorithm
and also aim at answering complex questions.
The current model assumes the passage to be
in chronological order. We can improve the
model if we capture the relative time of the
episode to suite the passages which don’t fol-
low the chronological order.
Versatile questions such as ‘GivenNew’ and
‘Kya’ can be improved by increasing the scope
of answer retrieval to multiple sentences or
episodes around the selected episode unlike
the single episode range implemented in our
model. This will in-turn also increase the
scope of model to include longer and complex
texts.

5 Conclusion

Reading Comprehension is a complex task,
which involves comprehending the passage and
answering the questions following the pas-
sage. Once, we are able to structure this un-
structured data(passage), we can answer the
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questions relatively well without complex ap-
proaches. The rules in linguistic are intuitive
and are capable of answering complex ques-
tions. Since it’s rule based, there is no require-
ment of large data to obtain promising results.
In the model we managed to get 75% accuracy
with just 65 stories and managed to answer
wide range of answers. This model is versa-
tile and can be extended to other Indian lan-
guages provided the dependency parser (simi-
lar to one we used3) exists.
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