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Preface

Natural Language Processing (NLP) research has evolved from the era of punch cards and batch
processing, in which the analysis of a sentence could take several minutes, to the era of Google and
the likes of it, in which millions of webpages can be processed in matter of milliseconds. NLP enables
computers to perform a wide range of natural language related tasks at all levels, ranging from parsing
and opinion mining, to machine translation and speech recognition. Research in Natural Language
Processing (NLP) has taken a noticeable leap in the recent years. Tremendous growth of information
on the web and its easy access has stimulated large interest in the field. With the ongoing growth of
the World Wide Web and social media, there is a drastic increase in online data. As the amount of data
increases the mechanisms to process these unstructured data and to extract meaningful information from
it becomes more challenging. These challenges and difficulties can be overcome with the advanced NLP
techniques. Deep learning architectures and algorithms are making impressive advances in NLP. Recent
NLP research is now increasingly focusing on the use of new deep learning methods.

Indic language processing presents formidable challenges to achieving multilingualism and
multiculturalism in the Indian subcontinent. One of the first and most obvious challenges is the
multitude and diversity of languages: India is a land of diverse culture with around 33 major languages
and 1,652 dialects from half-a-dozen different language groups. Indic Language Processing involves
developing software in Indic Scripts/ languages, Input methods, Localization of computer applications,
Web development, Internationalized Domain Name (IDN), OCR, Spell-checkers, Speech applications
etc. Research on Indian language technology has thrived in the past few years, with ICON (International
Conference on Natural Language Processing), being the premier conference in this field.

This volume contains papers selected for presentation in technical sessions of 15th International
Conference on Natural Language Processing (ICON-2018) and short communications selected for
poster presentation. We are thankful to our excellent team of reviewers from all over the globe who
deserve full credit for the hard work put in for reviewing the high quality submissions with rich technical
content. From 152 submissions, 30 papers have been finally selected, 16 for oral and 14 for poster
presentation, representing a variety of new and interesting developments, covering a wide spectrum of
NLP areas and core linguistics.

We are deeply grateful to Dr. Pushpak Bhattacharyya, Director and Professor of Computer Science and
Engineering, IIT Patna, India and Mr. Sanjeev Gupta, Flipkart, Bangalore, for delivering the keynote
lectures at ICON-2018. We would also like to thank the members of the Advisory Committee and
Programme Committee for their support and co-operation in making ICON 2018 a success.

We thank Prof. Sanjay Dwivedi and Dr. Sarika Jain, Chair, Student Paper Competition and Dr. M D
Kulkarni and Dr. Rajeev R R, Chair, NLP Tools Contest for taking the responsibilities of the events.

We are also grateful to Dr. Anil Kumar Singh for devoting his precious time to shape this volume in its
present form. His timely help enable us to release this volume in time.

We convey our thanks to Balwant Singh, Dharwinder Singh, Rakesh Dawra from Punjabi University
Patiala and P V S Ram Babu from International Institute of Information Technology (IIIT), Hyderabad
for their dedicated efforts in successfully handling the ICON Secretariat. We heartily express our
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gratitude to the dedicated team of volunteers at Punjabi University Patiala and the entire staff of
Research Centre for Technical Development of Punjabi Language Literature and Culture, Punjabi
University Patiala for working tirelessly day and night for the success of the conference.

We also thank all those who came forward to help us in this task. We apologize if we have missed some
names.

Finally, we thank all the researchers who responded to our call for papers and all the participants of
ICON-2018, without whose overwhelming response the conference would not have been a success.

December 2018 Gurpreet Singh Lehal
Patiala Dipti Misra Sharma

Rajeev Sangal
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Abstract

In a world of proliferating data, the abil-
ity to rapidly summarize text is grow-
ing in importance. Automatic summariza-
tion of text can be thought of as a se-
quence to sequence problem. Another area
of natural language processing that solves
a sequence to sequence problem is ma-
chine translation, which is rapidly evolv-
ing due to the development of attention-
based encoder-decoder networks. This
work applies these modern techniques to
abstractive summarization. We perform
analysis on various attention mechanisms
for summarization with the goal of devel-
oping an approach and architecture aimed
at improving the state of the art. In par-
ticular, we modify and optimize a trans-
lation model with self-attention for gener-
ating abstractive sentence summaries. The
effectiveness of this base model along with
attention variants is compared and ana-
lyzed in the context of standardized eval-
uation sets and test metrics. However,
we show that these metrics are limited in
their ability to effectively score abstractive
summaries, and propose a new approach
based on the intuition that an abstractive
model requires an abstractive evaluation.

1 Introduction

The goal of summarization is to take a textual
document and distill it into a more concise form
while preserving the most important information
and meaning. To this end, two approaches have
historically been taken; extractive and abstractive.
Extractive summarization selects the most impor-
tant words of a given document and combines
and rearranges them to form a final summarization

(Nallapati et al., 2017). This approach is restricted
to using words directly from the source document
and so is unable to paraphrase. Abstractive algo-
rithms generate a summary from an attempt to un-
derstand a document’s meaning, allowing for para-
phrasing much like a human may do. Abstractive
approaches are more difficult to develop than ex-
tractive ones because an intermediate representa-
tion of knowledge is required. As such, dominant
techniques of summarization have been extractive
in nature, with wide-ranging solutions utilizing
statistical, topic-based, graph-based, and machine
learning approaches (Gambhir and Gupta, 2017).
With the potential for generating more coherent
and insightful summaries, abstractive approaches
are gaining in popularity fueled by novel deep
learning techniques (See et al., 2017). The ab-
stractive summarization process includes convert-
ing words to their respective embeddings, com-
puting a document representation, and generat-
ing output words. Neural networks have recently
been shown to perform well for every step (Dong,
2018).

In deep learning models, attention allows a de-
coder to focus on different segments of an input
while stepping through output regions. In the re-
lated sequence to sequence task of machine trans-
lation, attention was introduced to the existing
encoder-decoder model (Bahdanau et al., 2014).
This resulted in large improvements over past sys-
tems due to the ability to consider a larger window
of context during the output generation. Progress-
ing this further, Vaswani et al. (2017) showed that
multi-headed self-attention can replace recurrence
and convolutions entirely. As the areas of machine
translation and abstractive summarization are re-
lated both structurally and semantically, the devel-
opments in machine translation may inform the di-
rection of research in abstractive summarization.
In this paper, we apply these advancements and
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develop them further in pursuit of sentence sum-
marization. In any attempt at summarization, the
resulting text must be much more condensed than
the original. In this task, all generated summaries
are constrained to a fixed maximum length so that
tested models must learn how to decide what in-
formation should be reproduced.

2 Related Work

Successful sentence summarization approaches
have classically used statistical methods. TOP-
IARY (Zajic et al., 2004) detected salient top-
ics that guided sentence compression while us-
ing linguistic transformations. MOSES, a statis-
tical machine translation system, also performed
well when directly used for summarization (Koehn
et al., 2007). Attention mechanisms have been
shown to improve the results of abstractive sum-
marization. Rush et al. (2015) improved over clas-
sic statistical results by using a neural language
model with a minimal contextual attention en-
coder. After the primary model training, an ex-
tractive tuning step was performed on an adja-
cent dataset. A related extension of this used a
convolutional attentive encoder and experimented
with replacing the decoder language model with
RNN variants. LSTM cells and RNN-Elman both
showed improved ROUGE scores (Chopra et al.,
2016). An attentive encoder-decoder was also em-
ployed by Zeng et al. (2016) with one RNN ar-
chitecture to re-weight another to improve context
across the input sequence. Their decoder used at-
tention with a copy mechanism that differentiated
between out of vocabulary words based on their
usage in the input. Nallapati et al. (2016) con-
tinued progress on encoder-decoder architectures
by employing a bidirectional GRU-RNN encoder
with a unidirectional GRU-RNN decoder. Im-
posing dynamic vocabulary restrictions also im-
proved results while reducing the dimensionality
of the softmax output layer. Pointer-generator net-
works encode with a bidirectional LSTM and de-
code with attention restriction. A coverage vec-
tor that limits the attention of words previously at-
tended over is maintained (See et al., 2017).

Recently, summarization has made progress at
the paragraph level due to reinforcement learning.
A recurrent abstractive summarization model used
teacher forcing and a similarity metric that com-
pared the generated summary with the target sum-
mary (Paulus et al., 2017). The architecture con-

Figure 1: Transformer-based network architec-
ture. The multi-headed attention mechanisms con-
tain various recall options similar to and that ex-
pand upon Vaswani et al. (2017).

tained a bi-directional LSTM with intra-attention.
Actor-critic reinforcement learning was used by
Li et al. (2018) to produce the highest scores for
sentence summarization. One important consid-
eration when optimizing purely on the test met-
ric is that while overall recall is improved, higher
ROUGE scores do not necessarily correlate with
the readability of summaries.

3 Models

Encoder-decoder architectures provide an adapt-
able structure for the development of systems that
solve sequence to sequence problems. The en-
coder maps the input sequence to a latent vector
representation. The decoder takes this representa-
tion, called the context vector, and generates the
output sequence. The models and their variants
that follow are structured as such. We select a base
architecture that provides a strong foundation on
which to analyze the effect of self-attention vari-
ants.

3.1 The Transformer
The Transformer architecture as proposed by
Vaswani et al. (2017) is notable for performing
state of the art Machine Translation, and is more
efficient to train than past systems by orders of
magnitude. This is made possible by replacing
sequence aligned recurrence with parallel self-
attention. The sequence order is preserved in the
self-attention modules by including positional em-
beddings. Instead of incremental values, the posi-
tional embeddings are determined by position on
a sinusoidal time series curve. Further, masking
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of the decoder self-attention is performed, mak-
ing the output of the next token dependent on that
which has already been generated. Multi-headed
self-attention is used in both the encoder and de-
coder. These mechanisms map a query vector to
a key-value vector pair which results in an output
vector. Tying together the encoder and decoder
is a third multi-headed attention mechanism. The
query comes from the self-attentive output of the
decoder, and the keys and values from the self-
attentive output of the encoder. In the work done
by Vaswani et al. (2017), all attention heads used
scaled dot-product attention, which is computa-
tionally efficient as multiple query, key, and value
vectors can be implemented as a combined matrix.
Scaled dot-product attention also defines the struc-
ture for the self-attention mechanisms we present
below.

attention = softmax(
QKT

√
d

)V (1)

Many other attention mechanisms exist beyond
the base dot-product attention. We analyze the
performance of these mechanisms in the context
of abstractive summarization. Changing the way
the query, key, and value vectors interact allows
an attention mechanism to learn different relation-
ships between sequence elements.

Relative dot-product attention uses scaled dot-
product attention, but instead of using absolute po-
sitional encodings, uses a relative positional en-
coding. These relative encodings learn to relate
the elements of the query to both the elements of
the keys and values (Gehring et al., 2017). The en-
codings can be distance-limited to a context win-
dow in the vector sequences.

Local attention divides the key-value vectors
into localized blocks (Liu et al., 2018). Each
query is strided over a corresponding block with a
given filter size. Blocks can contain positions both
prior to and following a given position, thereby not
masking any element based on absolute position.
Self-attention is performed over each block in iso-
lation.

Local masked attention adds a mask to the
blocks of local attention. Blocks in a future se-
quential position are masked from the query but all
elements within a block remain visible to a given
query position. Intuitively, masking future posi-
tions forces a mechanism to attend to current and
past positions, which may be an important restric-

tion of the attention distribution.
Local block masked attention masks both previ-

ous blocks and future blocks for a query position.
Further, future positions within individual blocks
are masked.

Dilated attention also divides the key-value vec-
tors into blocks, but introduces a gap in between
each block. Each query position is limited to a
context window of a specified number of blocks
both preceding and following the memory posi-
tion.

Dilated masked attention performs the same
operations as dilated attention and masks future
memory positions within each block.

4 Evaluation

The standard test metric for automatic summary
generation is ROUGE, or Recall-Oriented Under-
study for Gisting Evaluation (Lin, 2004). Be-
fore the ROUGE metrics were introduced, hu-
man judges were used for summary evaluation.
Human judges provide an ideal evaluation, but
are impractical for regular use. ROUGE allows
for automatic comparison of generated summaries
to target summaries, where target summaries are
human-generated. Limited-length recall is com-
monly reported using ROUGE-1, ROUGE-2, and
ROUGE-L. ROUGE-1 and ROUGE-2 compare
unigram and bigram overlap, respectively. This
generalizes to ROUGE-N for n-gram overlap.
ROUGE-L determines the longest common subse-
quence (LCS). Evaluation quality of summariza-
tion models can be directly compared to previ-
ous work because the same metrics were reported
for past models by Rush et al. (2015), Zeng et al.
(2016), Nallapati et al. (2016), Li et al. (2018), and
others. These metrics allow for reasonably accu-
rate comparison of summary generation models,
but inherent problems exist. One critical limitation
is that ROUGE does not consider equivalent para-
phrasing or synonymous concepts. Since ROUGE
works at the word level, meaning can only be cap-
tured and compared in a binary manner; either a
word appears in the generated summary or it does
not.

ROUGE 2.0 was proposed to alleviate this prob-
lem as well as remove the expectation that gen-
erated summaries need to be identical to the tar-
get summary (Ganesan, 2015). As pointed out by
Rush et al. (2015), even the best human evalua-
tor scored just 31.7 ROUGE-1 on the DUC2004
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Target Endeavour astronauts join two segments of International Space Station.
Gen1 Endeavour astronauts join two sections of International Space Station.
Gen2 Endeavour astronauts remove two segments of International Space Station.
Gen3 Endeavour astronauts join two segments of International Space Station.

Sentence ROUGE-1 ROUGE-2 ROUGE-l Cos-Sim WMD VERT
Gen1 88.89 75.00 88.89 0.979 0.418 94.77
Gen2 88.89 75.00 88.89 0.924 0.512 91.08
Gen3 100.00 100.00 100.00 1.000 0.000 100.00

Table 1: Highlighted differences between ROUGE and VERT scoring. Notice that an incorrect word re-
placement (Gen2) scores the same as a reasonable word replacement (Gen1) in ROUGE. VERT discounts
the score of Gen2 accordingly. Gen3 is included to show the perfect scores for an identical summary.

dataset. This illustrates the idea that two sum-
maries do not need to be the same in order for
both to be of high quality. Thus, a more appropri-
ate approach to summary comparison may be to
evaluate the semantic similarity between the gen-
erated and target summaries instead of using iso-
lated word counts. ROUGE 2.0 captures seman-
tic similarity using a synonym dictionary while
still evaluating n-grams and LCS. While this ad-
dresses the word-level shortcoming of the origi-
nal ROUGE metrics, similarity is still fixed to a
discrete list of acceptable alternatives, which does
not fully capture phrase substitution. A further im-
provement could be to evaluate the semantic simi-
larity between two entities on a continuous scale.

4.1 VERT Metric

To improve the quality of summary evaluation, we
introduce the VERT metric1, an evaluation tool
that scores the quality of a generated hypothesis
summary as compared to a reference target sum-
mary. VERT stands for Versatile Evaluation of Re-
duced Texts. VERT compares summaries on their
underlying semantics rather than word count ra-
tios. To calculate a VERT score for a summary
pair, a similarity sub-score and dissimilarity sub-
score are calculated and functionally combined.
Naturally, a higher similarity score and a lower
dissimilarity score leads to a higher, better VERT
score. The similarity sub-score considers the se-
mantics of each summary taken at the document
level. A sentence embedding vector is synthe-
sized for both generated and target summaries, and
the cosine similarity between these two vectors

1Our VERT implementation is made publicly avail-
able at: https://github.com/jacobkrantz/
VertMetric

provides the similarity score. The sentence em-
beddings are generated using InferSent, an open-
source neural encoder trained on natural language
inference tasks (Conneau et al., 2017). InferSent
was chosen because it has been shown to general-
ize well for use in various problems requiring sen-
tence representations. The dissimilarity sub-score
operates at the individual word level rather than at
the sentence level. An aggregate Euclidean dis-
tance is calculated between the words of the gen-
erated summary and the words of the target sum-
mary. This is done using the word mover’s dis-
tance (WMD) algorithm, a measure of how far
document A must travel to match document B
within a word vector space (Kusner et al., 2015).
Stop words are discarded prior to the distance cal-
culation as their effect on the distance between
documents is negligible.

4.2 Sub-Score Motivations

A consideration would be to use just one of the
two sub-scores as they are independent calcula-
tions. However, both the InferSent cosine similar-
ity and WMD are made more robust by the pres-
ence of the other score. WMD is unaffected by
word ordering, whereas the encoder of InferSent
maintains sequential input. To illustrate, suppose
the target sentence is “go right and then left” and
the generated sentence switches the order, stat-
ing “go left and then right.” WMD gives this a
perfect distance of 0.0 but the InferSent similar-
ity more accurately discounts the score by 4.3%.
On the other hand, when longer summaries are
compared, InferSent embeddings begin to lose the
effect of individual words because the word em-
beddings are replaced with a singular embedding.
This is less of a problem for WMD. Finally, the
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similarity sub-score uses GloVe embeddings2 pre-
trained on Common Crawl while the dissimilarity
sub-score uses Word2Vec3 trained on the Google
News dataset. Using different word embeddings
provides resistance to potential learned represen-
tation biases.

4.3 Formula Specification
The similarity sub-score is defined as
sim(s1, s2) = cos(encode(s1), encode(s2))
and the dissimilarity sub-score is defined as
dis(s1, s2) = min(wmd(s1, s2), α). The
maximum dissimilarity value α is the default
distance when all of the generated words are
out of vocabulary. Without this default, sum-
maries with no words to compare would have
an infinite distance and too strongly influence
VERT score averages. Resulting sub-score values
range as such: 0.0 ≤ sim(s1, s2) ∈ R ≤ 1.0,
and 0.0 ≤ dis(s1, s2) ∈ R ≤ α. We seek
to combine these scores such that the final
VERT score can be treated as a percentage:
0.0 ≤ V ERT (s1, s2) ∈ R ≤ 1.0. Further,
sim(s1, s2) and dis(s1, s2) should be given equal
weight in the final VERT score. To satisfy both
criteria, we present the VERT equation:

V ERT (s1, s2) =

1

2
(1 + (sim(s1, s2)−

1

α
dis(s1, s2)))

(2)

where α = 5.0. The dissimilarity is normalized
by α and the outer linearity, as multiplied by 1

2 ,
shifts the range from [−1.0, 1.0] to [0.0, 1.0]. For
the choice of α, we observe an empirical distance
ceiling of 5.0 in Table 2. Incorporating this ceil-
ing gives both sub-scores equal precedence while
removing the necessity of a nonlinearity, such as
normalization by the hyperbolic tangent.

4.4 Hyperparameters and Baseline
The similarity sub-score uses a pre-trained In-
ferSent encoder for reproducibility, and thus needs
no hyperparameter adjustments. The dissimilarity
requires just the hyperparameter α to specify the
maximum threshold of WMD and can stay at the
default value of 5.0. With the same value used to
normalize the dissimilarity, VERT is straightfor-
ward to use with just this single hyperparameter.

2https://nlp.stanford.edu/projects/
glove/

3https://code.google.com/archive/p/
word2vec/

WMD Summary Count
0→ 1 74
1→ 2 860
2→ 3 2858
3→ 4 2150
4→ 5 58
5+ 0

Table 2: WMD among human summaries on
DUC2004. For each article, every human sum-
mary was held out as the target to compare the
other human summaries to resulting in 6000 com-
parisons.

Metric Pearson P-Value
ROUGE-1 0.3039 0.0319
ROUGE-2 0.2577 0.0708
ROUGE-L 0.3071 0.0300
VERT 0.3681 0.0085

Table 3: Pearson correlation coefficient between
automatic metrics and human evaluation of re-
sponsiveness.

To provide a scoring reference, we test each hu-
man summary of DUC2004 on VERT using the
same holdout process as done in Table 2. The av-
erage similarity sub-score is 0.7488, the average
dissimilarity sub-score is 2.7170, and combined
the average VERT score is 0.6027.

4.5 Comparison to Human Evaluation

To evaluate the effectiveness of VERT, we cal-
culate the correlation between VERT scores and
scores given by human judges for generated sen-
tence summaries. Using the relative dot-product
attention model, 50 summaries are generated on
the DUC2004 dataset and evaluated with the
VERT metric by averaging the VERT scores be-
tween the four target summaries. We then con-
duct an experiment in which two human eval-
uators score the 50 generated summaries based
on the DUC 2006 Responsiveness Assessment4.
The primary consideration of responsiveness is the
amount of information in the summary that relates
to the original sentence. The evaluators score the
level of responsiveness on a 5-point Likert scale,
with 5 being the best possible. Table 3 shows that
VERT correlates with human judgment of respon-

4 https://duc.nist.gov/duc2007/
responsiveness.assessment.instructions
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siveness stronger than all three standard ROUGE
metrics.

5 Experiments

5.1 Experiment Setup

The environment and evaluation of all models
strictly follows the precedent set by Rush et al.
(2015). For both training and testing, we extract
sentence-summary pairs from news articles. The
first sentence of each article is treated as the sen-
tence to be summarized, while the headline of the
article acts as the target summary.

5.2 Datasets

The training data comes from the Gigaword
dataset, which is a collection of about 4 million
news articles (Graff et al., 2003). It is necessary to
discard certain article-headline pairs as some news
articles open with a sentence that poorly relates to
the headline, such as a question. Preprocessing
tasks includes filtering, PTB tokenization, lower-
casing, replacing digit characters with #, and re-
placing low-frequency words with UNK. Eval-
uation for hyperparameter tuning is performed
on the DUC2003 dataset5. Testing is done on
the DUC2004 dataset6 where the summaries are
capped at a length of 75 bytes. For both DUC2003
and DUC2004, each article has four target sum-
maries to be compared against. For processing Gi-
gaword, we used the same data provided by Rush
et al. (2015), but both DUC datasets had to be pre-
processed according to the tasks specified. Certain
sentence-summary pairs within DUC 2004 poorly
relate to each other due to the fact that the human-
generated summaries used the context of the entire
DUC article to decide on an adequate summary.
Since this shortcoming is present across all mod-
els attempting sentence summarization on DUC,
we made no effort to remove these difficult pair-
ings from the test set.

5.3 Base Implementation

For the hyperparemeter specification, models used
8 attention heads and a dimension of 2048 for
the dense feed forward layers. Cross entropy was
used for the loss function, and optimization was
performed with the Adam optimizer using a vari-
able learning rate to encourage final convergence.

5https://duc.nist.gov/duc2003/tasks.
html

6https://duc.nist.gov/duc2004/

Dataset # Articles Sent Len Sum Len
Gigaword 3803957 31.4 8.3
DUC2003 624 32.7 11.2
DUC2004 500 31.3 11.7

Table 4: Comparison of general dataset details.
Sentence and summary lengths are reported as the
average word count. Gigaword has noticeably
shorter target summaries than either DUC dataset.
To counteract the models generating too short of
summaries, we augment the beam search decod-
ing probabilities to encourage longer summaries.

Training required approximately 25 epochs. A
promising feature of using an attention-based ar-
chitecture is that the models used here are capa-
ble of being trained in approximately 4 hours on a
single GPU, whereas recent state of the art recur-
rent summarization models have been mentioned
to take 4 days (Rush et al., 2015). We imple-
mented these models using the Tensor2Tensor7 li-
brary backed by TensorFlow. A strong local min-
imum exists when training, which closely relates
to extracting the first n words of the input text up
to 75 bytes. Such a trivial approach produces rel-
atively high ROUGE scores simply due to the nat-
ural similarity between target summaries and in-
put sentences. Diversity of attention can be en-
couraged by varying the learning rate and modify-
ing the attention mechanism itself. For the decod-
ing step, beam search is used with a beam size of
8. This results in ROUGE scores that are higher
than a more simple greedy inference. Decoding
to a fixed length of 75 bytes does not align easily
with word-level decoding, so for the implemen-
tation we approximate the cutoff by limiting the
summary sequence to 14 words.

6 Results

6.1 Attention Comparisons
For each of the attention mechanisms described
above, we performed a full scale analysis of
their performance by training each model on the
Gigaword dataset and evaluating on DUC2004.
For each experiment, the foundational architec-
ture was held constant. We modified both the en-
coder self-attention and decoder self-attention to
perform as specified by the given attention mech-
anism. In Table 5, the model that used scaled

7https://github.com/tensorflow/
tensor2tensor
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Mechanism RG-1 RG-2 RG-L VERT-S VERT-D VERT
s-dot-prod 25.72 8.51 23.08 0.73523 2.76307 59.13
rel-s-dot-prod 27.05 9.54 24.44 0.73876 2.73907 59.55
local 1.93 0.00 1.93 0.02084 5.00000 1.04
local-mask 25.72 8.54 23.30 0.73361 2.77857 58.89
local-blk-mask 14.13 2.75 12.63 0.67226 3.18881 51.73
dilated 0.01 0.00 0.01 0.09509 3.66543 18.10
dilated-mask 19.06 5.23 17.45 0.68682 3.04922 53.85

Table 5: Comparison of attention mechanisms using DUC2004. RG represents ROUGE-Recall, VERT-S
is the InferSent cosine similarity sub-score, and VERT-D is the average WMD sub-score.

Model RG-1 RG-2 RG-L VERT
TOPIARY (Zajic et al., 2004) 25.12 6.46 20.12 -
ABS (Rush et al., 2015) 26.55 7.06 22.05 58.49
RAS-LSTM (Chopra et al., 2016) 27.41 7.69 23.06 -
MOSES+ (Koehn et al., 2007) 26.50 8.13 22.85 -
RAS-Elman (Chopra et al., 2016) 28.97 8.26 24.06 -
ABS+ (Rush et al., 2015) 28.18 8.49 23.81 59.05
RA-C-LSTM (Zeng et al., 2016) 29.89 9.37 25.93 -
words-lvt5k-1sen (Nallapati et al., 2016) 28.61 9.42 25.24 -
S-ATT-REL (ours) 27.05 9.54 24.44 59.55
AC-ABS (Li et al., 2018) 32.03 10.99 27.86 59.67

Table 6: ROUGE-recall scores of compared models on DUC2004. Sorted by ROUGE-2 score. ABS,
ABS+, and AC-ABS VERT scores were calculated using summaries provided by their respective authors.

dot-product attention acted as the baseline (s-dot-
prod). The highest performing mechanism was
relative scaled dot-product attention, showing that
relative positional encodings can be more insight-
ful than absolute encodings. This demonstrates
that token generation may rely more heavily on
the relationships between surrounding words than
relationships at a global sequential level. Lo-
cal masked attention attained marginally higher
ROUGE-2 and ROUGE-L scores than scaled dot-
product attention. However, scaled dot-product at-
tention scored noticeably higher with VERT, pri-
marily due to the similarity sub-score. This sug-
gests the scaled dot-product model is better than
the local-mask model when considering the sum-
mary semantics across an entire sequence. Both
local and dilated attention mechanisms repeated
the same words regardless of input sentence; both
masked counterparts did not have this problem.

We found a high dependence on batch size dur-
ing the training process. Models would not con-
verge when batch sizes were at or below 2000 to-
kens per batch. The batch size used to train the
above models was 8192 tokens. Dilated attention

and dilated-mask attention models were trained at
lower batch sizes due to higher memory require-
ments. This may have negatively effected results.

6.2 Model Comparisons

We compare our best model with past work by
comparing published ROUGE scores. Slight vari-
ances may be present in the reported metrics due
to potential differences in data preprocessing rou-
tines. In Table 6, we compare our best model
with that of published results. The relative dot-
product self-attention model (S-ATT-REL) beats
all ROUGE scores of ABS, but has a lower
ROUGE-1 when ABS is tuned with an extrac-
tive routine on DUC2003 (ABS+). S-ATT-REL
is comparable to but lower than certain mod-
els when it comes to ROUGE-1 scores. How-
ever, over the longer subsequence comparisons of
ROUGE-2 and ROUGE-L, S-ATT-REL performs
very well. This can be attributed to the ability of
self-attention mechanisms to retain a strong mem-
ory over past elements of the input and decoded
sequences. Only the actor-critic method (AC-
ABS) beats S-ATT-REL in all tested categories.
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6.3 Qualitative Discussion
The summaries generated by our best model are
strongly abstractive, illustrated by Example S(1)
in Figure 2. Example S(2) showcases the abil-
ity to utilize long range recall. From the apposi-
tive phrase, the model determined that Hariri was
the prime minister of Lebanon and adjusted the
morphology of the country for succinctness. The
model also determined Hariri was resigning based
on the words “bowing out”. Occasionally, atten-
tion heads are misdirected and attend to words
or phrases that do not contain the primary mean-
ing. This occurred in Example S3 with was in-
correctly modified by the inclusion of “not”. The
generated summaries exhibit information beyond
what was directly in the input sentence; Example
S5 correctly identifies Premier Romano as Italian
which greatly improves the informedness of the
summary. A primary strength of the self-attentive
model is incorporating abstract information from
all segments of the input sentence. This is sug-
gested in the long subsequence ROUGE scores
above, and seen clearly in qualitative analysis.

An assessment of linguistic quality8 was per-
formed alongside the DUC Responsiveness As-
sessment. This followed the same procedure de-
tailed in Section 4.5. Questions pertained to gram-
maticality, non-redundancy, referential clarity, and
structure and coherence. Grammaticality scored
4.48, non-redundancy scored 4.95, referential clar-
ity scored 4.7, and structure and coherence scored
4.53. All scores averaged between “Good” and
“Very Good”. Non-redundancy is nearly perfect,
likely because the summaries are too short for
redundancy to be of issue. The referential clar-
ity scored high as well, which can be associated
with the performance of the self-attention over the
words already decoded.

7 Conclusion

The effect of modern attention mechanisms as ap-
plied to sentence summarization has been tested
and analyzed. We have shown that a self-attentive
encoder-decoder can perform the sentence sum-
marization task without the use of recurrence or
convolutions, which are the primary mechanisms
in state of the art summarization approaches to-
day. An inherent limitation of these existing sys-
tems is the computational cost of training associ-

8https://duc.nist.gov/duc2007/
quality-questions.txt

Figure 2: Examples of generated summaries by
the relative dot-product self-attention model.

ated with recurrence. The models presented can
be trained on the full Gigaword dataset in just 4
hours on a single GPU. Our relative dot-product
self-attention model generated the highest qual-
ity summaries among our tested models and dis-
played the ability of abstracting and reducing com-
plex dependencies. We also have shown that n-
gram evaluation using ROUGE metrics falls short
in judging the quality of abstractive summaries.
The VERT metric has been proposed as an alter-
native to evaluate future automatic summarization
based on the premise that an abstractive summary
should be judged in an abstractive manner.
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Abstract 

An attempt has been made to annotate a 

Khasi corpus with Part-of-Speech (POS) 

tags, using the Bureau of Indian Standards 

(BIS) POS tagset prepared by the POS Tag 

Standardization Committee of the 

Department of Information Technology 

(DIT), New Delhi, India for annotating 

Indian language corpora. This is the first 

initiative taken for Khasi- an understudied 

and under-resourced language, in 

developing an annotated corpus and POS 

tagger essential for language technology. 

This article highlights the challenges and 

issues that surfaced during annotation, and 

the decisions that were taken when tagging 

features characteristic of Khasi that are 

absent from mainstream Indian languages. 

A Hidden Markov Model (HMM) POS 

tagger is then constructed, taking into 

consideration the information provided by 

the morphological features of the Khasi 

language. The results of training and 

testing the Khasi HMM POS tagger are 

compared with the results of a Khasi 

baseline tagger, and a Khasi tagger 

constructed using Natural Language 

Toolkit (NLTK). 

1 Introduction 

Construction of resources is necessary for natural 

language processing and this article describes the 

process initiated in the development of an 

annotated corpus and POS tagger for Khasi, which 

are basic resources required for natural language 

applications such as parsing, information retrieval, 

question and answering, etc.  

Standard guidelines in annotating text corpora 

are essential when an attempt is made to annotate 

a corpus from scratch as is the case with Khasi. 

The benefits of annotating the corpus using the 

prescribed standard such as Bureau of Indian 

Standards (BIS) (Chaudhary et al., 2010) for 

Indian languages will facilitate the corpus in inter 

linguistic analysis and study. The annotated Khasi 

corpus has been constructed from a collection of 

Khasi literature of prose and fiction genre and it 

comprises of 3,984 sentences which include 

86,087 tokens out of which 75,736 are tokens 

excluding punctuation and 5,313 word types. The 

applied BIS tagset for Khasi is given in Table 1 

and Table 2. The questions and issues that 

emerged when annotating the corpus and their 

proposed suggestions are discussed in section 6. 

The construction and analysis of the Khasi HMM 

POS tagger and the comparison of its results with 

the Khasi baseline tagger and the Khasi NLTK 

tagger are given in section 7. 

2 Related Work 

POS tagging is the process of automatically as-

signing a part of speech to each word present in a 

corpus. These part of speech tags are assigned 

from a specific tagset applicable to the language. 

Current POS tagging accuracy is about 96%-97% 

for languages such as English, French, etc. 

(Güngör, 2010). Approaches to tagging algorithms 

are either rule-based taggers or stochastic taggers. 

The most widely used tagger in rule-based tagging 

is the Transformation Based Learning (Brill, 

1995) often called the “Brill tagger”. This 

approach also uses machine learning to learn the 

rules form the data and achieved 96.6% accuracy 

when trained and tested on the WSJ corpus. On 

the other hand, stochastic taggers utilize the 

availability of lexicons and corpora and one such 

learning approach is the Hidden Markov Model 

(HMM) which has obtained high accuracies in 

POS tagging. For example, the most available 

tagger and highly accurate is the TnT tagger 

(Brants, 2000). Its influence comes from its 

sensitive dealing with unknown words and 

smoothing. Another HMM tagger is the HunPos 

trigram tagger (Halácsy et al., 2007) which unlike 

TnT, provided mechanisms where a language 

morphological features can be tweaked into the 
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tagger and achieved 98.24% accuracy for 

Hungarian when compared to TnT’s 97.42% on 

the same corpus. However, the TnT tagger 

remains one of best performing taggers across 

different languages (Plank et al., 2016).  

According to the 2001 Indian census, the 

language families present in India are Indo-Aryan, 

Dravidian, Austro-Asiatic, Tibeto-Burmese and 

Semito–Hamitic. Among these language families, 

Indo-Aryan and Dravidian are the two major 

family groups of India comprising approximately 

97% of India’s population. A recurring pattern 

with stochastic POS taggers developed for Indian 

languages, is that they have to content with small 

size training data and language specific tagsets. 

Reported tagging accuracies for Indian languages 

range from 69%-96% and some of the POS 

taggers developed for Indo-Aryan (Hindi), Tibeto 

Burman (Manipuri and Kokborok) and Dravidian 

(Tamil) families are as follows.  

Apart from English, Hindi is the official 

language of India. It is a morphologically rich 

language, and one POS tagger (Singh et al., 2006) 

developed for Hindi has taken advantage of this 

feature to compensate the lack of annotated 

corpora by utilizing extensive morphological 

analysis along with a high-coverage lexicon and 

decision tree based learning algorithm where the 

size of the corpus used is 15,562 words, and 

achieved POS tagging accuracy of 93.45%. 

Another POS tagger (Shrivastava and 

Bhattacharyya, 2008) for Hindi that does away 

with the need of a morphological analyzer and 

structured lexicon, uses the HMM approach where 

a list of all possible suffixes in Hindi is employed 

to perform stemming on a corpus of 66,900 words 

and achieved 93.12% accuracy. On the other hand 

a rule based Hindi POS tagger (Garg et al., 2012) 

reported an accuracy of 87.55%.  

In the absence of tagged corpora, a 

morphologically driven POS Tagger for Manipuri 

(Singh and Bandyopadhyay, 2008) achieved 69% 

accuracy tested on 3,784 sentences. A Manipuri 

POS tagger (Singh et al., 2008) using condition 

random field and support vector machine trained 

on 39,449 tokens and tested on 8,672 tokens 

reported 72.04% and 74.38% accuracies 

respectively. Another condition random field 

Manipuri POS tagger (Nongmeikapam and 

Bandyopadhyay, 2012) used for transliterating 

from Bengali script to the Meitei Mayek script 

achieved a precision of 74.31%, a recall of 

80.20% and an F-measure of 77.14%. POS 

taggers developed for Kokborok, another resource 

constrained language (Patra et al., 2012), include 

rule based tagger with 69% accuracy and 

stochastic taggers using condition random field 

and support vector machine with 81.67% and 

84.46% accuracies respectively.  

POS taggers for Tamil include rule based 

(Selvam and Natarajan, 2009) with 85.56% 

accuracy, and a morpheme based language model 

(Pandian and Geetha, 2008) involving 35 tags and 

a test set of 43,678 words with 95.92% accuracy. 

3 Concise Overview of BIS 

The BIS standard has been prepared to work for 

languages even beyond Indo-Aryan and Dravidian 

families and the guidelines have been formulated 

taking into account existing tagsets designed 

under various projects such as the Indian 

Language Machine Translation (ILMT) POS 

tagset (Bharati et al., 2006), Microsoft Research 

India Indian Language POS  (Baskaran et al., 

2008) and others. Taking into consideration the 

existence of various language families in India, 

the tagset has been designed to be all 

accommodating. The annotation follows a layered 

approach where the linguistics features can be 

incorporated in layers such as morphology in one 

layer, part of speech in another layer, syntactic 

analysis in another layer and the others in different 

layers, and within each layer there is a hierarchy 

of categories. Extensibility is a key feature of the 

tagset where a top category or a sub category can 

be added to the existing hierarchy if the language 

under question requires one. On the other hand, a 

tag may not be utilized if it is not required even if 

it exist in the BIS tagset. The POS tagging has to 

be carried out on text that have been pre-

processed, where each token in the corpus is a 

single lexical item and any morphological analysis 

required should have been processed by a 

morphological analyzer. In total, the tagset has 11 

top level categories with very few categories 

having two levels of subtypes, reflecting the 

coarse nature of the tagset. 

4 Brief Introduction to Khasi Language 

Khasi is classified under the Mon-Khmer branch 

of the Austro-Asiatic language family (Diffloth, 

2018). It is the associate official language of the 

state of Meghalaya, India and according to the 
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2011 Indian census there are approximately 1.4 

million speakers in Meghalaya and Assam, 

placing it less than 1 percent of India’s population. 

Khasi is an analytic and non-inflectional language 

exhibiting derivational morphology which 

contributes to the partial agglutinative behavior of 

the language (Nagaraja, 2000). 

Khasi is written in the Latin script comprising 

of 23 letters where the letters c, f, q, v, x, z have 

been removed with the addition of the diacritic 

letters ï and ñ and the diagraph ng which is 

adopted as a single letter.
1
 

5 Khasi Corpus Construction 

A corpus is designed to represent a particular 

natural language or language variety by virtue of 

the range of text included and the sampling from 

each text used in collecting the data contained in 

the corpus (Xiao, 2010). Due to the unavailability 

of any corpus in Khasi, the required corpus has to 

be built from scratch which consumes time and 

effort. The data collected for the current corpus 

are samples from the prose and fiction genre of 

Khasi literature that are prescribed for studies in 

higher secondary, graduation, and post-graduation. 

The selection of Khasi literature is compelled by 

the fact that though newspapers are easily 

available online, they are not accepted by 

language experts as a representation of the 

language because of the lack of consensus on how 

the language should be written in terms of its 

grammar and orthography. On the other hand, it is 

also observed that in most instances, the written 

literature does not conform to any single standard 

when it comes to orthography even within text 

written by the same author. To cite a few examples 

the preposition ïa (to) is written as ïa or ia, where 

the word is written with the letter i with diaeresis 

or without it. Other examples are the words duai 

(pray) where it is also written as duwai, mynmied 

(night) which it is also written as mynmiet, etc. 

Another category of a nominal that do not follow 

a uniform orthography are doublets. These are two 

nouns that occur together having the same 

semantics and are often used more for their 

stylistic value. A few examples are ki-mrad ki-

mreng (animals),  ki khun-ki kti (children) , u-kñi-

u-kpa (ancestor) where the hyphen (-) is used 

according to the author’s style.  

                                                           
1
 http://www.ciil-lisindia.net/Khasi/Khasi.html 

 

In analyzing natural language in digital format 

it is necessary that the characters, words and 

sentences are clearly identified before any natural 

language processing task can be carried out. This 

process of dividing a text document into words 

and sentences is called text segmentation. Khasi 

utilizes the Latin script for writing and like 

English the whitespace is used to marked word 

boundaries. The data for analysis is pre-processed 

manually where each word is separated by a space 

and each sentence is marked with an end of 

sentence marker such as a period (.), a question 

mark (?) or an exclamation mark (!). Thus the 

words identified are also called tokens and these 

tokens include punctuations. This implies that the 

punctuations are not attached with a word but are 

delimited with a whitespace. The only exception 

is the use of apostrophes (’) and the hyphens (-). 

The apostrophe is used to marked contractions 

such as bar’bor (everytime), and the hyphen to 

form compound words such as Khasi-Khara (the 

Khasis); the reduplicated forms often used with 

adverbs such as khah-khah (regularly) where these 

punctuations are also part of the tokens. The 

corpus is then manually tagged using the BIS 

tagset shown in Table 1 and Table 2. 

6 Annotating Khasi using BIS tagset 

This section discusses the challenges and the 

issues faced when tagging Khasi and the decisions 

that were taken on encountering features prevalent 

in the language. The grammatical characteristics 

of the language taken into consideration are with 

references to the works of various contributors on 

the Khasi language (Rabel, 1961; Bars, 1973; 

Henderson, 1976; Nagaraja, 1985; Jyrwa, 1989; 

Roberts, 2005; War, 2011) 

6.1 Personal Pronouns 

The structure of personal pronouns in Khasi is 

simple except in the case of third person singular 

and plural forms. Apart from their basic 

functionality, third person singular and plural 

personal pronouns such as: /i/ ‘singular, neutral’, 

/u/ ‘singular, masculine’ /ka/ ‘singular, feminine’ 

and /ki/ ‘common, plural’ also function as number 

and/or gender markers. The personal pronoun i 

when used, indicates reverence or refers to 

diminutive objects. They are also described as 

articles, determiners, gender indicators and 

pronominal markers. It is mandatory that every 

noun in Khasi is preceded by pronominal markers 
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(PM) which are third person personal pronouns. 

Exceptions where the pronominal marker is 

dropped are in vocative sentences, optionally in 

locative phrases where inanimate nouns are used, 

 

  Categories    

Sl. 

No 
Top Level 

Subtype 

(Level 1) 

Subtype 

(Level 2) 
Label 

Annotation 

Convention 
Example(s) 

1 Noun   N N  

1.1  Common  NN N_NN jingsuk 

‘peace’ 

ksew 

‘dog’ 

1.2  Proper  NNP N_NNP Melam, 

Shillong 

1.3  Nloc  NST N_NST sha-lor 

LOC-top 

‘on top’ 

 

2 Pronoun   PR PR  

2.1  Personal  PRP PR_PRP nga 

1S 

‘I’ 

2.1.1   Pronominal PRP_M PR_PRP_M ka kot 

PM book 

‘a/the book’ 

2.1.2   Auxiliary AUX PR_PRP_AUX nga-n 

1S-FUT 

‘I will’ 

2.2  Reflexive  PRF PR_PRF lade 

‘self’ 

2.3  Relative  PRL PR_PRL u-ba 

3SM-that 

‘he that’ 

2.4  Wh-word  PRQ PR_PRQ u-ei 

3SM-who 

‘who’ 

2.5  Indefinite  PRI PR_PRI ka-no ka-no 

3SF-whoever 

3SF-whoever 

‘whoever’ 

3 Demonstrative   DM DM  

3.1  Deictic  DMD DM_DMD ka-ta 

3SF-out of 

sight 

‘that’ 

4 Verb   V V  

4.1  Main  VM V_VM bam 

‘eat’ 

4.2  Auxiliary  VAUX V_VAUX lah 

‘can’ 

4.2.1   Infinitive VINF V_VAUX_VINF ban 

‘to’ 

5 Adjective   JJ JJ bakhraw 

‘great’ 

Table 1: Khasi BIS Tagset 
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and when nouns immediately follow a verb- they 

blend with the verb and cease to be nouns (Jyrwa, 

1989). Another functionality of these pronominal 

markers is their occurrence before a verb (also 

called subject enclitic (Jyrwa, 1989)) indicating 

subject verb agreement and highlighted in bold in 

the example below. 

 

ka    Iba    ka    ai    ka   kot 

PM   Iba    PM   give PM  book 

‘Iba gave the book’ 

 

Ideally, tagging them as pronominal markers will 

be appropriate in highlighting the fact that they 

stand in agreement with the head noun, but there 

are instances where their occurrences can also be 

  Categories    

Sl. 

No 
Top Level Subtype (Level 1) 

Subtype 

(Level 2) 
Label 

Annotation 

Convention 
Example(s) 

6 Adverb   RB RB suki-suki 

‘slowly-

slowly’ 

7 Conjunction   CC CC  

7.1  Coordinating  CCD CC_CCD bad 

‘and’ 

7.2  Subordinating  CCS CC_CCS namar 

‘because’ 

       

8 Particles   RP RP  

8.1  Default  RPD RP_RPD noh 

PRT 

8.2  Classifier  CL RP_CL tylli 

8.3  Interjection  INJ RP_INJ wa, ada 

8.4  Intensifier  INTF RP_INTF shuh, eh 

8.5  Negation  NEG RP_NEG ki-m 

3PL-will not 

‘they will not’ 

8.6  Possessive  POS RP_POS la  

POS 

9 Quantifiers   QT QT  

9.1  General  QTF QT_QTF shi  

‘one’ 

9.2  Cardinals  QTC QT_QTC wei ‘one’ 

9.3  Ordinals  QTO QT_QTO banyngkong  

‘first’ 

10 Residuals   RD RD  

10.1  Foreign  RDF RD_RDF a word not 

written in 

Khasi 

10.2  Symbols  SYM RD_SYM #, $ 

10.3  Punctuation  PUNC RD_PUNC ; , 

10.4  Unknown  UNK RD_UNK  

10.5  Echowords  ECH RD_ECH lyngaiň 

11  Preposition  IN IN na 

‘from’ 

Table 2: Khasi BIS Tagset cont... 
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quite far from the head noun which is not feasible 

for machine learning purposes in disambiguating 

them from personal pronouns. Therefore, the new 

tag PR_PRP_M representing a pronominal marker 

is applied only to pronouns occurring before a 

noun only and not for subject enclitic. The 

existing personal pronoun tag PR_PRP has been 

maintained for subject enclitic.  

Another problem is the personal pronouns 

attached with the suffix -n or -m such as ngan (I 

will), ngam (I will not), etc. For instance ngan 

indicates tense equivalent to English (will) and 

(shall) and ngam indicates tense and negation 

(will not) and (shall not). As per BIS guidelines, 

any morphological analysis required must have 

been carried out before tagging, such that each 

token is a lexical item and requires no further 

processing. If morphological analysis is applied to 

these pronouns, we now have ngan (I will) 

mapping to nga ‘first person, singular’ and yn 

(will) an auxiliary verb. Ngam on the other hand 

will have two mappings-- a) (I will not) mapping 

to ‘first person, singular’ and ym (will not) an 

auxiliary verb and b) ngam (drown) which is a 

verb. Since this analysis is applicable to a finite 

number of words, a morphological analyzer is not 

employed, and specifically when these words 

function as pronouns in the corpus, they are given 

a newly created tag PR_PRP_AUX which is a 

sub-type of the personal pronoun category. It may 

be mentioned that these words do not function as 

pronominal markers. 

6.2 Multi-functionality of la 

The word la in Khasi can function as a past tense 

marker or an auxiliary verb or particle or a 

possessive particle or a subordinating conjunction. 

When la functions as an auxiliary verb or a past 

tense marker, it has been tagged as an auxiliary 

verb V_VAUX because their occurrences in 

sentences are syntactically similar. The BIS tagset 

has provisions for subordinating conjunction and 

particle but not for possessive marker. While 

tagging, the tags applied for subordinating 

conjunction and particle are CC_CCS and 

RP_RPD respectively. Again, keeping in mind 

BIS extensibility feature, a new sub-type of the 

particle category RP_POS is created to 

accommodate la functioning as a possessive 

particle. 

6.3 Tagging of Adverbs 

The BIS tagset specifies that only manner adverbs 

should be tagged as RB such as ïaid suki suki 

(walk slowly). It appears that no BIS tag is 

appropriate for adverbs such as ruh (also), ju (in 

the habit of, used to), etc. In order to maintain 

minimalism of new tags in the BIS tagset, in the 

present corpus any occurrences of such words are 

still tagged as RB. 

6.4 Absence of Prepositions in BIS Tagset 

BIS has incorporated postpositions with the tag 

PSP which is a prevalent feature in the Indo-

Aryan and Dravidian families but absent in Khasi. 

Khasi utilizes prepositions and in order to 

accommodate them, a new top level category is 

constructed with tag IN. 

6.5 Nouns of Location Space and Time 

(Nloc) 

The BIS tagset clearly states that only a finite 

number of nouns of location, space and time that 

can also function as postpositions are tagged as 

N_NST. The question was, whether this category 

is also applicable to Khasi or not. From the 

literature and the data in the corpus, it came to 

attention that a certain group of words in Khasi 

can function as a noun or a preposition or as an 

adverb depicting the behavior mentioned in the 

BIS specification. These are compound words 

comprising of a preposition (ha/na/sha) and a 

bound or a free element. These words are also 

referred as prepositional adverbials such as halor 

(on top), sharum (downwards/south), etc. The 

conclusion that was brought forward in the BIS 

tagset specification is to facilitate machine 

learning and simultaneously avoid confusion in 

annotation- therefore in the present corpus they 

have been uniformly tagged as N_NST 

irrespective of their function. 

6.6 Tagging Compound Words and 

Imitative 

Compounds in Khasi are primarily formed when a 

space or a hyphen separates the elements of the 

compound word, or they are collocated. For 

example, khia thew (graceful), bai-sngi (wage) 

and metbneng (planets). The compound word that 

is written as a single word or where the elements 

of the compound are separated by hyphens is 

tagged by taking its grammatical function in the 

sentence.  
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7 Applying the Hidden Markov Model 

for POS tagging 

7.1 POS Tagging 

During POS tagging, each word in the corpus is 

automatically tagged with its part of speech. 

Therefore, given an input string of words and a 

tagset the output of a POS tagger should be the 

best possible tag for each word. For example, 

using the BIS tags for Khasi from Table 1 and 

Table 2, a sentence in Khasi is tagged as follows. 
Tiap\RB tang\RB shu\RB poi\V_VM 

ha\IN bri\N_NN ,\RD_PUNC u\PR_PRP_M 

slap\N_NN u\PR_PRP sdang\V_VM 

hap\V_VM .\RD_PUNC 

‘Immediately when he reached the 

field the rain started falling’ 

7.2 Hidden Markov Model Approach  

Given a tagset, in this instance the BIS tagset in  

Table 1 and Table 2, and a sentence of n words 

 W= w1,w2,...wn, the POS tagger has to find the 

sequence T= t1, t2...tn, where T is a set of tags 

from the tagset that satisfies the following 

equation. 

𝑎𝑟𝑔𝑚𝑎𝑥𝑇 ∏ 𝑃(𝑤𝑖|𝑡𝑖)𝑃(𝑡𝑖|𝑡𝑖−1 … 𝑡𝑖−𝑘)𝑛
𝑖=1  (1) 

In other words the best possible tag sequence is 

a sequence that maximize the lexical P(W|T) and 

transition P(T) probabilities. Since the tags are 

hidden and only the words are observed we have a 

hidden Markov model where states represent the 

tags and the outputs are the observed words. In the 

lines of Brants (2000) TnT tagger, a second order 

Markov model is used where k=2 in equation 1 

and adding tags t-1, t0, and tn+1 for beginning of 

sentence and end of sentence markers. Equation 1 

is now calculated as follows.  

𝑎𝑟𝑔𝑚𝑎𝑥𝑇(∏ 𝑃(𝑤𝑖|𝑡𝑖)𝑃(𝑡𝑖|𝑡𝑖−1, 𝑡𝑖−2)𝑛
𝑖=1 )𝑃(𝑡𝑛+1|𝑡𝑛) (2) 

Using an annotated corpus, the probabilities in 

equation 2 are estimated using the maximum 

likelihood estimation. 

𝑃(𝑤𝑖|𝑡𝑖) =
𝑓(𝑤𝑖,𝑡𝑖)

𝑓(𝑡𝑖,)
  (3) 

𝑃(𝑡𝑖|𝑡𝑖−2, 𝑡𝑖−1) =
𝑓(𝑡𝑖−2,𝑡𝑖−1,𝑡𝑖)

𝑓(𝑡𝑖−2,𝑡𝑖−1)
 (4) 

where f(w,t) is the number of occurrences of 

words w with tag t and f(t1,t2,...tm) is the number 

of occurrences of the tag sequence t1,t2,...tm. 
We can compute equation 2 for each possible 

tag sequence of length n and then take the 

sequence with the highest probability. However 

the complexity of this algorithm is exponential to 

the number of words. An efficient algorithm 

operating in linear time is the Viterbi (Rabiner, 

1989) algorithm which is used here to determine 

the optimal sub paths rather than keeping track of 

all paths during execution. The trigram tagger 

given in equation 2 has one problem and that is 

data sparsity. Any trigram instance in the test set 

may not have occurred in the training set implying 

that equation 4 will give zero probability and in 

turn give rise to zero probability tag sequences. 

Considering N as the total number of tokens in the 

training corpus, from equation 4 the maximum 

likelihood estimation can be calculated as follows 

𝑇𝑟𝑖𝑔𝑟𝑎𝑚 �̂�(𝑡𝑖|𝑡𝑖−2, 𝑡𝑖−1) =
𝑓(𝑡𝑖−2,𝑡𝑖−1,𝑡𝑖)

𝑓(𝑡𝑖−2,𝑡𝑖−1)
 (5) 

𝐵𝑖𝑔𝑟𝑎𝑚 �̂�(𝑡𝑖|𝑡𝑖−1) =
𝑓(𝑡𝑖−1,𝑡𝑖)

𝑓(,𝑡𝑖−1)
 (6) 

𝑈𝑛𝑖𝑔𝑟𝑎𝑚 �̂�(𝑡𝑖) =
𝑓(𝑡𝑖)

𝑁
  (7) 

As suggested in Jurafsky and Martin (2009), 

linear interpolation can be used and we now 

estimate the probability as  

𝑃(𝑡𝑖|𝑡𝑖−2, 𝑡𝑖−1) = 𝜆3�̂�(𝑡𝑖|𝑡𝑖−2, 𝑡𝑖−1) + 𝜆2�̂�(𝑡𝑖|𝑡𝑖−1) +
                                𝜆1�̂�(𝑡𝑖)  (8) 

where 𝜆1 + 𝜆2 + 𝜆3 = 1 

In order to approximate the value of λ Brants 

(2000) version of deleted interpolation is used for 

setting the λ’s. 

7.3 Using Morphology in Handling 

Unknown Words  

As mentioned in section 4, Khasi exhibits 

derivational morphology in the form of 

agglutination by adding affixes to word base to 

derive other words.  These affixes can be easily 

separated from the root and the focus here are on 

the prefixes attached to Khasi nouns and verbs. 

Khasi words reveal that words with prefixes such 

as jing-, nong- and maw- always map to common 

nouns (N_NN). Words with prefixes such as pyn- 

and ïa- excluding the preposition ïa, always map 

to verbs (V_VM). It may be noted that pynban 

(cause to press) which is a verb can also function 

as an adverb (nonetheless). 

In the training and test data,  the words having 

prefixes jing- are mapped to pseudo-word 

_JING_, nong- to pseudo-word _NONG_, maw- 

to pseudo-word _MAW_, pyn- are mapped to 

pseudo-word _PYN_ and ïa- excluding 

preposition ïa, are mapped to pseudo-word _IA_. 
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This mapping is carried out for data in the training 

set and in the test set, to estimate the probabilities 

of unknown words having these prefixes. 

In order to handle unknown words not having 

the above mentioned prefixes, low frequency 

words in the training data are mapped to pseudo-

word _UNK_.  Similarly, words in the test set that 

were unseen in the training data are also mapped 

to pseudo-word _UNK_. Since the corpus size is 

relatively small, it is observed that words 

occurring only once in the training set account to 

49.1% of the training data. Therefore low 

frequency is taken to be less than or equal to a 

selected value γ and in this tagger γ=1.   

After the mappings are done, the HMM 

parameters are evaluated as mentioned earlier 

where the pseudo-words _JING_, _PYN_, 

_NONG_, _IA_ and _UNK_ are treated like 

regular words. This mapping is carried out to 

ensure that the probability of P(wi|ti) is never zero. 

7.4 Testing and Evaluation  

The corpus has been divided into training set and 

test set. The training set consists of 3,984 

sentences comprising of 86,087 tokens and 5,313 

word types. The test set consists of 402 sentences 

which include 8,565 tokens and 1,110 word types. 

The test set is a sample from a book not included 

in the training set. 

The data has been tested using a baseline 

tagger, an NLTK tagger, and the HMM POS 

Tagger and the results are shown in Table 3. As 

proposed by Jurafsky and Martin (2009), the 

baseline tagger tags the words in the test data with 

their most frequent tag obtained from the training 

data.  

NLTK (Bird et al., 2009) also provides taggers 

such as the trigram tagger, bigram tagger, default 

tagger and regular expression tagger. Taking into 

account the morphological features of Khasi 

mentioned in section 7.3, an NLTK tagger for 

Khasi was constructed where an NLTK trigram 

tagger backs off to a bigram tagger, the bigram 

tagger backs off to a unigram tagger and the 

unigram tagger backs off to a Khasi regular 

expression tagger. The Khasi regular expression 

tagger tags words with prefixes jing-, nong-, and 

maw- as common nouns (N_NN), words with 

prefixes pyn- and ïa- as verbs (V_VM) and 

defaults to the most common tag  which is the 

common noun (N_NN).   Words having frequency 

less than or equal to 1 in the training data and 

unseen words in the test data are also mapped to 

the pseudo-word _UNK_ to handle unknown 

words. However, the words having the above 

mentioned prefixes are not mapped to _UNK_ 

since the tagger eventually backs off to the Khasi 

regular expression tagger. Additionally, Table 3 

also highlights results of the NLTK bigram tagger 

which backs off to a unigram tagger and an NLTK 

trigram tagger which backs off to a bigram tagger. 

 

 

 

 

 

 

 

 

7.5 Some Common Tagging Errors 

The confusion matrix in Table 4 highlights in 

percentage some of the common tagging errors 

present in the tagger. The most common and 

difficult to disambiguate is when proper nouns are 

tagged as common nouns, and when nouns follow 

verbs- the tagger tags them as adverbs. Another 

case when verbs are tagged as nouns and vice 

versa are often the case of pronouns tagged as 

pronominal markers and vice-versa as mentioned 

in section 6.1.  

8 Conclusion 

Developing language technology tools for an 

under-resourced language such as Khasi has been 

challenging and simultaneously exhilarating to 

discover the nitty-gritty of the language in the way 

 Accuracy 

Baseline Tagger 86.76% 

NLTK Bigram Tagger 88.23% 

NLTK Trigram tagger 88.64% 

NLTK Tagger 89.7% 

HMM POS Tagger 95.68% 

Table 3: Results 

 RB V_VM N_NN PR_ 

PRP 

PR_ 

PRP 

_M 

N_NN 6.2 3.8    

V_VM 3.2  4.9   

N_NNP   17.6   

PR_PRP     3.8 

PR_ 

PRP 

_M 

   2.7  

Table 4: Confusion Matrix 
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studies such as this one exposes. The performance 

of the HMM tagger conditioned with the features 

intrinsic in the language has shown that it also 

provides good performance as reported in the 

literature relating to HMM POS taggers. This 

work, being a new initiative, annotating the corpus 

and developing the tagger, is limited by available 

resources; however, increasing the size of the 

annotated corpus for further analysis will be a 

good step forward. 
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Abstract

Significant information about psycho-
physiological state of an infant is em-
bedded in the cry signal. Few studies
are carried out for identifying and ana-
lyzing this information. But the infant
cry-cause recognition task using compu-
tational classification models is not at-
tempted yet. In our earlier works, the
characterization of infant cry signals for
different cry-causes were studied. In this
study, we aim to recognize different cry-
causes using machine-learning based clas-
sifiers. A dataset (ICSD2) was especially
collected for this study. Acoustic features
F0 contour, sub-band spectral energies and
MFCCs are extracted using the known sig-
nal processing methods. The infant cry-
cause recognition task is explored using
k-nearest neighbour (kNN), feed-forward
neural network (FFNN) and convolutional
neural network (CNN) classifiers. A 55-
dimensional feature-set is used for kNN
and FFNN classifiers. The CNN classi-
fier is used for learning the suitable rep-
resentations of MFCCs and delta MFCCs
features, especially for imbalanced data-
sets of cry-cause categories. Performance
using the FFNN classifier is better than
primary classification results obtained us-
ing manual feature selection and few state-
of-art results. Performance results us-
ing the MFCC features and FFNN clas-
sifier are better for cry-cause recognition.
This paper shall be helpful towards infant
cry-cause recognition and acoustic feature
representation using deep neural networks
further.

1 Introduction

The advent of the research on paralinguistic
speech analysis is traced back to the middle of
the 20th century, notably through the statements
given by Crystal, that defined it as “vocal factors
involved in paralanguage” (Crystal, 1974). Al-
though, with no formal connection to the linguis-
tics, the potential of the meaningful information
contained within the acoustics of an infant cry, has
already started convincing medical practitioners,
parents, care-givers, etc., about its diagnostic im-
portance.

Major work in Paralinguistic research, for in-
stance academic challenges are being directed to-
wards objectives like speech emotion recogni-
tion (Schuller et al., a,b). Although these efforts
streamline state specific discoveries for paralin-
guistic, but as an outcome they lead to limited
growth for understanding relevant techniques and
useful resources for the applications that do not
involve linguistic information within the acoustic
signal, and hence the development remains largely
application specific. It is this aspect that the work
done in this paper attempts to address.

Tools like short-time spectrograms and cross-
correlograms have been used towards majority of
the infant cry acoustic analysis, leading to spec-
tral and inter-segmental cross-correlation analysis
in (Neustein, 2010; Petroni et al., 1994; Sharma
et al., 2017). Attempts involving Fundamental
frequency (F0) contour by implementing Welch’s
method, autocorrelation, FFT, and modZFF, have
been observed to be crucial for characterising ex-
citation source within an infant cry in (Petroni
et al., 1994; Cohen and Lavner, 2012; Sharma
et al., 2017; Sharma and Mittal, 2017b; Mittal,
2016b,a). ZFF along-with dominant frequency
analysis is used to analyze shouted speech in (Mit-
tal and Vuppala, 2016; Mittal and Yegnanarayana,

20



2013). Also, evaluation of base-line features like
pitch, formants and MFCCs, along-with popular
classification techniques like SVM and k-NN, in-
cluding the neural network based classifiers like
feed-forward and convolutional neural networks
as well in (Galaviz and Garcı́a, 2005; Reyes-
Galaviz et al., 2008; Sahak et al., 2010; Zabidi
et al., 2010; Cohen and Lavner, 2012; Lavner
et al., 2016), have resulted in insightful observa-
tions.

Spectral information from higher order cumu-
lants, along-with base-line features like MFCC,
LPC and PLP, was observed to elucidate the non-
linearity towards classifying Normal vs. Patho-
logical cry sounds in (Chittora and Patil, 2015).
Authors in (Orozco et al.) attempted to classify
infant cries into Hunger or Pain, by individually
evaluating linear prediction coefficients and sig-
nal intensity using a feed-forward neural network.
A duration-thresholding based pre-processing step
of cry sound segmentation along-with sequen-
tial forward floating feature selection approach,
was taken up in (Chang et al., 2017) and com-
pared with the results from (Abdulaziz and Ah-
mad, 2010) for evaluating spectro-temporal fea-
tures for a dataset with 490 cry samples, towards
cry-cause classification as Hunger, Lack of sleep
or Pain.

A pressing concern in this field is the short-
age of publicly available datasets of infant cries
for categorical studies. Another direct challenge
posed is about the disparateness of the categories
being studied. The work has been done for a
variety of causes ranging from pathologies like
Asthma to disorders like Asphyxia, Ventricular
septal defect (VSD), Upper respiratory tract in-
fection (URTI), etc., in (Wahid et al., 2016; Chit-
tora and Patil, 2015). This diversifies not only
the utility of the characteristic feature-set, but also
the understanding about the approaches suitable
for a class specific study. All these challenges
are resonated with the limitations imposed by the
unavailability of infant cry dataset in public do-
main. It is this lack of understanding and common
frameworks with respect to the resources and tech-
niques, that the fundamental approach adopted
in this work and the observations made thereof,
towards infant cry acoustic analysis and cause
recognition, is motivated from.

The rest of the paper is organised as follows.
Signal processing methods used and features ex-

amined are stated in Section 2. Infant cry corpus
collection and organization is discussed in Section
3. This is followed by the description of the exper-
imental setup in Section 4. Acoustic analysis of
the infant cries is described in Section 5. The ob-
servations related to the evaluation of crying cause
classification are stated in Section 6. Section 7
provides a detailed account of the key results ob-
tained. Finally, the paper is summarized and con-
cluded in Section 8.

2 Signal processing methods used and
Features examined

2.1 Signal processing methods used

1. Short-time Fourier analysis: Frequency do-
main processing of a signal, considered
for short-time durations (Oppenheim et al.,
1989).

2. Autocorrelation: Provides a measure of self-
similarity over time (Haykin, 1989).

3. Filter-bank spectral analysis: Critical fre-
quency band based spectral content analy-
sis (Bourlard and Dupont, 1997) and (Lyons,
2012).

4. Cepstral analysis: Obtaining Cepstral coeffi-
cients as features representing speech sound
production system characteristics in que-
frency domain (Chang et al., 2017).

2.2 Features explored

1. F0 contour: Functionals like Standard-
deviation (devF0) and Mean (meanF0) of
F0 contour are computed at the cry segment
level.

2. Sub-band spectral energy (SSE): The ratios
between the 4th sub-band to 1st and 2nd sub-
bands, i.e., (εX4:1) and (εX4:2), commonly
denoted as SSEr are computed.

3. Mel frequency cepstral coefficients: A to-
tal of 52 coefficients, including MFCCs
(MFCC), delta MFCCs (∆MFCC), and
their Standard-deviations, (MFCCdev) and
(∆MFCCdev) respectively, with 13 coeffi-
cients each are computed.

3 Infant Cry Corpus (IIIT-S ICSD2)

An infant cry dataset IIIT-S ICSD2, having a to-
tal of 104 subjects (50 Male and 54 Female), age
ranges for whom lie between 2 days and 6 years
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Figure 1: Spectrogram for Pain cry, depicting
arched excitation contour (Marked by arrows) and
consistently high spectral energy (Marked by rect-
angle box).

is collected for this study. From a total of 7 cate-
gories noted for the data-collection at the clinic, 4
are specifically focussed upon, for acoustic analy-
sis and cause classification. Amongst these, Pain
and Stranger’s anxiety are the most prominent rea-
sons that induced crying during the hospital vis-
its for majority of infants. Whereas, Discom-
fort and Environmental change were other impor-
tant cry categories for which the data is collected.
On-going and historical medical conditions, par-
ent’s inputs and infant’s present health status as
adjudicated by the doctor, formed the basis of
ground truth categorization. Due to the category-
wise constraint of cry sample count in the data
set, these categories are aggregated to form higher
level classes, Severe and Non-severe, for the study
in this work. Further corpus details can be referred
from (Sharma and Mittal, 2017a).

4 Experimental setup

4.1 Acoustic Analysis

Cry signals are recorded at 48 kHz and 24 bit cod-
ing rate. The short-time analysis of the cry signal
is done by considering Frame size of 30 ms and
frame shift of 10 ms. Denoising of the computed
fundamental period is done using median filtering
of order 5. For filter-bank analysis, 6 sub-bands
covering the successive spectrum ranges of 1 kHz
each, starting from 100 Hz up-to 6 kHz are con-
sidered. The order of the Mel scale cepstrum is set
as 13. Feature extraction and conversion into vec-
tor format is done using MATLAB R2017a and
Python routines.

4.2 Cause Classification

Classifier models are implemented using statis-
tics and machine learning, parallel processing and
neural network toolboxes, in MATLAB R2017a.

Figure 2: Spectrogram for cry due to Environmen-
tal change, depicting monotonous excitation con-
tour (Marked by arrows) and lesser spectral energy
in higher spectrum (Marked by rectangle box).

The neuron count in the Hidden layer of the
Feed-forward neural network has been empirically
evaluated, based upon the following conventions
(Heaton, 2008),

• Inc < Hnc < Onc,
• Hnc = 2

3(Inc +Onc) and
• Hnc < 2∗Inc.

where, Inc, Hnc and Onc are the neuron count for
input, hidden and output layers respectively. Con-
volution neural network architecture based eval-
uation is done using Keras routines with Tensor
flow as backend in IPython environment. Adopted
from the task on environmental sounds classifica-
tion (ESC) (Salamon and Bello, 2017), the CNN
has 4 convolution layers, each followed by a relu
activation layer, with max-pooling of size (2,2)
and dropout after every set of 2 conv-activation
layers, dropout being 15 and 20 % respectively.
Next is a fully connected layer with 256 neurons
with relu activation and a 50 % dropout. Finally
the output layer neurons are activated using soft-
max function.

5 Acoustic analysis of Infant Cry

The primary experiments are focussed upon vali-
dating the acoustic characteristics observed from
the cry spectrograms, as shown in Fig. 1 and 2.
It is observed that the cry signals having major-
ity of the cries with relatively less deviation of
the F0 contour and more stability (Fig. 2), are
mostly observed for the causes that are less se-
vere in nature, as can be observed from the F0

contour plotted in the Fig. 4 (sub-plot (b)) for an
Environmental change case. Cries due to Discom-
fort and Environmental change fall under this cat-
egory. Whereas, the presence of arc-shaped exci-
tation contours within a cry event as depicted in
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Figure 3: Comparison of (a) input signal, (b) F0 contour (using autocorrelation), (c) Sub-band spectral
energy ratio of 4th to 2nd sub-bands and (d) ∆ MFCCdev for Pain cry.

Figure 4: Comparison of (a) input signal, (b) F0 contour (using autocorrelation), (c) Sub-band spectral
energy ratio of 4th to 2nd sub-bands and (d) ∆ MFCCdev for cries due to for Environmental change.

Fig. 1 indicate causes that are severe in nature.
Cries due to Pain and Stranger’s anxiety exhibit
such behaviour, which can be validated from the
F0 contour of a Pain cry, as shown in Fig. 3 (sub-
plot (b)).

For the Pain category, the spectral intensity ap-
pears to be more across the spectrum, as com-
pared to that of the Environmental change. This
effect can also be observed from the cases de-

picted in Fig. 1 and 2, for Pain and Environmen-
tal change respectively, wherein the spectral inten-
sity is consistently observed to be either equiva-
lent or more, for higher sub-bands as compared
to the lower ones for severe categories as that for
pain. Whereas, the same is observed to fade away
for the core cry segment progressions for the non-
severe cases like Environmental change. The pres-
ence of higher spectral intensity within the 4th
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Figure 5: Confusion matrix for the 2 layered Feed-
forward neural net based classification, with 90
hidden neurons.

filter-bank for pain category as observed from the
experiments, is also demonstrated by comparing
the filter-bank energy ratios of 4th sub-band to 1st

and 2nd sub-bands, for 85 Severe and 30 Non-
sever cases. The average ratios for Severe cate-
gory are found to be higher, at 6 and 39 respec-
tively, whereas they are observed to be much lower
at 2 and 12 for Non-severe categories. The de-
crease in the spectral intensity for the cries from
the latter set of categories with respect to the sub-
band spectral energies could possibly be attributed
to the effect of hypo-phonation induced from the
voice effects like soft shrill. Sub-band spectral en-
ergy ratios, plotted for the cases for Pain and Envi-
ronmental change cries, as shown in Fig. 3 and 4
(sub-plots (c)) respectively, with the average ratio
value for the former category being significantly
higher than that for the latter, distinctly character-
ize cries as either Severe or Non-severe.

Although, infants are hardly capable of mim-
icking the linguistic vocalizations being actively
used in their surroundings in their infancy, they
do develop profound effects of paralinguistic like
intonations that characterize their cultural back-
grounds (Mampe et al., 2009). In an attempt
to capture such time-varying spectral characteris-
tics, MFCCs are found to divulge the cause spe-
cific characteristics effectively when subjected to

distinctive classification. The qualitative differ-
ence can be easily observed by comparing the
∆MFCCdev plots (Fig. 3 and 4, sub-plots (d))
for the cases from Pain and Environmental change
categories, the average value of which is observed
to be higher for Severe as compared to that for
Non-severe cases. This implies greater modula-
tions within vocalizations in the core crying re-
gions of the bouts, captured by the dynamic func-
tionals modelling the time-varying system charac-
teristics.

6 Crying cause classification

6.1 Using conventional machine learning
techniques

The cry-cause recognition by classification is first
attempted using technique k-nearest neighbour. It
is observed that meanF0 , devF0 , SSEr have lim-
ited performance, with relative biasing towards
class Severe. Whereas, MFCC features are ob-
served to be facilitating predictions with at least
30 % true positive rates for class Non-severe with
∆MFCCdev giving the highest rate of 34 %,
which is significantly greater than the performance
for the rest of the features, without using any en-
semble classification technique, with an overall
accuracy of 80 % and true positive classification
rates of 96 % and 34 % for both classes respec-
tively, with Cosine k-NN based classification. It
is important to note that this performance is ob-
tained while evaluating the data-set with signifi-
cantly skewed instance distribution, dominated by
Severe class instances. This effect is taken into
consideration by evaluating ensemble techniques
like RUS boosting that takes such imbalance into
consideration while evaluating the classification,
which resulted in a base-line performance of 65
%. In addition to this, the problem of instance im-
balance is further addressed by performing data-
augmentation for audio data-set, while evaluating
CNN based classification, which is discussed in
further sub-sections.

6.2 Using Feed-forward neural network
Neural network based classification performs with
average overall accuracy of 87.64 % with accept-
able true positive prediction rates of 92.96 % and
68.68 % for the respective classes. Empirical eval-
uation elucidated that with the increasing no. of
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Table 1: Comparison of CNN based classification performances; (a) Configurations detail format:
height×width (kernel), n1-n2-n3-n4 (No. of filters in 4 layers) and (b) Datasets (Augmented).

(a) Configurations (b) Datasets (c) Accuracy (%) (c) Val. (%) (d) Test (%)

2×2, 32-32-64-64
Cry-3 57 68 63

ESC-12 49 66 62

4×3, 12-12-16-16 Cry-3 62 60 65

Average 56 65 63

Table 2: Comparison of best results of several State-of-the-Art for 2/Similar class and the Proposed
(3rd observation) approach; Classifier abbreviations (c) Feed-forward neural network (FFNN), Scaled
conjugate gradient (SCG) and Radial basis function network (RBFN); References in (a): 1(Orozco et al.),
2,5(Wahid et al., 2016), 3(Abdulaziz and Ahmad, 2010) and 4(Ours).

(a) Database (No. of infants) (b) Features (c) Classifier (d) Accuracy (%)

47 Hunger, 47 Pain1 LPC, Intensity FFNN (SCG) 74.70

350 Hunger, 192 Pain2 MFCC, LPCC, Dynamics RBFN 86.54

88 Pain, 88 Non-Pain3 MFCC, LPCC FFNN (SCG) 91.43

85 Severe, 30 Non-severe4 Pitch, SSE, MFCC, Dynamics FFNN (SCG) 93.90
879 Deaf, 157 Normal5 MFCC, LPCC, Dynamics RBFN 99.42

hidden layer neuron count and epochs, for which
the neural network converges, the cross entropy er-
ror reduces. Neural network with 90 Neurons in
the hidden layer outperformed all other configu-
rations converging at 35th epoch, giving 93.9 %
accuracy rate, with 95.3 % and 90 % as true posi-
tive rates for the respective classes, the confusion
matrix for which can be observed from Fig. 5.

6.3 Using convolutional neural network
(CNN)

Primary objective of evaluating a CNN is to
examine the spatial pattern recognition capabil-
ity along-with popular data-augmentation tech-
nique, while addressing the concerns of imbal-
anced dataset, for the task of infant cry-cause
recognition. The original data sub-set is aug-
mented 4 times using techniques like adding white
noise, shifting the sound, followed by stretching
using the factors 0.8 and 1.2. Also evaluated is the
ESC-10 dataset (Piczak, 2015), to examine feature
learning towards robust inter-class classification.
Main data-sets evaluated are Cry-3 (600), having
Normal (200), Severe (200) and Non-severe (200)
cry instances with 50 min. of recordings, and
ESC-12 (2400) with Cry-3 instances along-with
9 additional environmental sound classes (210
min.).

Classification without any data-augmentation
obviously resulted in poor performance with 34 %
test accuracy. Data-augmentation helped increase
the performance by approx. 30 %, which is signif-
icant. The key performances from the experimen-
tation can be observed from the Table. 1, with con-
figuration details specified as {height×width (ker-
nel), n1-n2-n3-n4 (No. of filters in 4 layers)} and
augmented data-sets. Second observation having
tall filters with dimensions 4x3 and No. of filters
as 12, 12, 16 and 16, with the Cry-3 (augmented)
dataset, giving an overall accuracy of 62 % with 60
% validation and 65 % test accuracy outperforms
other similar evaluations.

7 Results and Discussion

The results from feed-forward neural network are
compared with some popular State-of-the-Art ap-
proaches (Table 2). With the available set of re-
sources for cry analysis, a simple approach to ob-
serve and classify the infant cries as either Se-
vere or Non-severe in this work, establishes perfor-
mance up-to 93.9 %, outperforming conventional
approaches and several similar/2-class classifica-
tion attempts made earlier.

CNN based results do not produce optimal per-
formance results, as against the ones already re-
ported in (Zabidi et al., 2017), while significant
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fine-tuning of network hyper-parameters still be-
ing required with the current setup. It does give
insights regarding the efficacy of data augmenta-
tion for such scenarios, and using small but taller
filters, that capture both the localized and spec-
tral acoustic patterns, relevant in case of infant cry
sounds analogous to the additional effect of tem-
poral progression of speech utterances too.

8 Summary and Conclusion

A multi-class dataset of infant cries is used to-
wards the infant cry-cause analysis and classifi-
cation. Excitation source and production system
characterising features are evaluated. It is estab-
lished, that F0 contour, sub-band spectral energy
and MFCCs can distinctly characterize cries w.r.t.
different causes and severity.

The significant differences in the average pitch,
excitation contour patterns and spectral intensity
variations across the frequency spectrum and the
filter banks thereof, all for different cry-causes un-
der consideration is established. Non-neural net-
work based classifications yield ≈ 50 % true posi-
tive rates, which provided baseline for the current
work. Whereas, MFCCs and related derivatives
have shown promising performances with an av-
erage classification accuracy of 76.9 %, and also
the highest accuracy of 80 % for ∆ MFCCdev,
suggesting the utility of the time-varying devia-
tion in the rate of change of the system character-
istics represented by theMFCC coefficients. The
required non-linearity is observed to be modelled
best by the feed-forward neural networks with ac-
curacy up-to 93.9 %. Convolutional neural net-
works are observed to learn discriminative feature
representations that helped provide improvement
upon the initial baseline obtained.

The qualitative analysis of the cry acoustics
led to several observable patterns that can be re-
fined using better cry signal processing. Such pat-
terns are also significantly being explored within
the speech recognition community that is in-
volved with utilizing the localized spatial pattern
recognition using the convolutional neural net-
works, but primarily towards the task of automatic
speech recognition or speech emotion recognition.
Acoustic signal like cry, which is devoid of any
linguistic content but full of unconventional non-
linguistic utterances, can also be investigated us-
ing such techniques.
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Abstract

Text-to-Speech synthesis systems are built
using training over recorded speech and corres-
ponding text. To achieve a natural sounding
TTS system, it is very important to use correct-
ly pause marked text data in the training phase.
Similarly, pause marked text data along with
duration of each pause is needed to build a
pause prediction model. In this paper, we pro-
pose a method to mark the pauses automatically
at appropriate positions in the text data corres-
ponding to the recorded speech. This approach
makes use of automatic speech recognition and
text correction methods. With this approach, we
save large amount of human effort without
compromising much on the accuracy. We de-
scribe the experiments and results for three In-
dian languages: Hindi, Marathi, and Odia. The
system can easily be extended to other languag-
es.

1 Introduction

While developing text-to-speech synthesis (TTS)
systems for a language, there is constant endeavor
to achieve higher intelligibility and naturalness.

There are two widely used techniques to build a
Text-to-Speech Synthesis system: 1) Unit selec-
tion based speech synthesis (Hunt and Black, 1996),
and 2) Statistical parametric speech synthesis (Zen
et al., 2009; Ghone et al., 2017). Time aligned
prompt files are the primary input for develop-
ment of both kinds of synthesis systems. Intelligi-
bilityof TTS output primarily depends on the ac-
curacy of these time aligned prompt files. These
files are prepared using suitable segmentation al-
gorithms like HMM (Prahallad et al., 2006),
group delay (Prasad et al., 2004), hybrid segmen-
tation (Shanmugam and Murthy, 2014), etc. and it
requires speech (wave) and corresponding tran-
scription text files as input. Hybrid segmentation
works better for Indian Languages (Shanmugam
and Murthy, 2014). Further, it is also observed

that we get better alignment, if a grapheme nota-
tion (e.g., comma) corresponding to the silence
region in speech file is inserted into the text file.

One of the important factors of naturalness of
synthesized speech is the presence of pauses at
appropriate places. Pause also affects the intended
meaning of speech sound. Pause prediction model
is used to generate TTS output with proper paus-
es. This model predicts the position of pauses in
the text utterance, which has to be synthesized.
There are two ways to build a pause prediction
model: 1) Rule Based, and 2) Data Driven Statis-
tical Method. The rule-based approach requires
availability of linguistic tools like Part of Speech
(POS) tagger, morphological analyzer, shallow
parser, etc. However, there is a lack of these tools
with reasonable accuracy for Indian languages.
That is why the data driven approach is a better
choice for most of the Indian languages (Ghosh
and Rao, 2012
Sarkar and Rao, 2015). Pause marked text along
with the duration information is used as training
data to build the pause prediction model.

Apart from the above use cases, the pause
marked text and the duration information would
be primary resource for any research or study re-
lated to pause marking and pause duration analy-
sis in NLP domain.

The text utterance of the speech data does not
always reflect the actual pauses taken by the
speaker, as while recording, the speaker takes
many pauses even if there is no grapheme indica-
tion in the text file. In order to insert the grapheme
notation to indicate a pause in text utterance, cor-
responding to the pause in recorded speech, it is
necessary to carefully listen to the recorded
speech and insert pause marks at appropriate plac-
es in the text manually. This is a time consuming
and costly task, also prone to inconsistency.
Apart from this, finding duration of the identified
pause is also a tedious task.

Attempts have been made to insert pause marks
in the text and find its duration by forced align-
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ment of the speech file with the text prompts us-
ing the HMM tool (Sarkar and Rao, 2015);
(Nguyen. 2015). EHMM (Prahallad et al., 2006.)
is a tool present in festvox to implement it. How-
ever, it is not so promising for Indian Languages,
because it requires a great amount of post
processing and manual correction. Similar obser-
vation has been made by Nguyen (2015):
“EHMM could deal with pause insertion, but it
often failed to predict the pause appearance or
pause duration in the speech corpus”.

In this paper, we describe our approach to iden-
tify pause boundary in the text using Automatic
Speech Recognition (ASR) and text correction
methods. The ASR system is built using the same
speech and text data. We split the speech file into
multiple segments using silence region as a deli-
miter. We pass each segment into ASR System to
recognize the corresponding text. Once the text
for each segment is recognized, we concatenate
each segment using pause marker (comma) as the
separator to regenerate the text sentence. As the
output of our ASR system is not expected to be
accurate, we need to do post processing of regene-
rated text sentence to correct it. Regenerated text
sentence is corrected using a devised method and
original text.

We also describe our analysis to decide the
minimum silence duration to be considered as a
pause. The same is used as the threshold to split
the speech file.

We have integrated all the components togeth-
er and released the bundle as an open-source tool
under GPL license. This tool is available at:
https://github.com/TTS-cdac-mumbai/.

The rest of the paper is organised as follows:
Section 2 describes the ASR system and section 3
discusses silence duration analysis. In section 4,
system flow has been presented and results &
analysis is given in section 5. Section 6 concludes
the paper with a brief summary of the work and
future direction.

2 Pause Marking with ASR System

We develop the ASR system with text data and
speech files that are created for TTS. We use kaldi
toolkit (Povey et al., 2011) to build ASR system.
It uses Hidden Markov Models (HMMs) and
Gaussian Mixture Models (GMMs) to model
acoustic features. The language-building tool
IRSTLM (Bertoldi and Cettolo, 2008) is used to

build Language Model. We transformed the TTS
data to the format required by kaldi toolkit. Uni-
fied parser (Baby et al., 2012) is used for lexicon
preparation. It works for 9 Indian Languages, viz.,
Hindi, Marathi, Tamil, Telugu, Malayalam, Kan-
nada, Guajarati, Odia, and Bengali. We split the
speech files into multiple segments and pass each
segment to the developed ASR system, which
outputs the corresponding text. Further, the gener-
ated text segments are concatenated with pause
mark (comma) inserted at the end of each seg-
ment. We observe that the output of ASR contains
significant amount of errors primarily due to inac-
curacy of ASR. Therefore, the ASR output is
processed for correction.
For the correction process, we have two inputs: 1)
Sentence generated using ASR output (we call
this A) containing some errors, but with right
pause mark information represented by a comma,
and 2) Original sentence (we call this O) which
was referred for speech recording, but without
pause mark information. Using these, a correct
sentence with right pause mark information is
generated using the following method.

First, apply word level tokenization to the
original sentence O. Using the tokenized output,
word level n-grams are generated, where n starts
from 1 and goes maximum up to the length of
sentence. For example,
Sentence: ABC PQR XYZ
Generated n-grams: ABC (1-gram), ABC PQR (2-
gram), ABC PQR XYZ (3-gram), PQR (1-gram),
PQR XYZ (2-gram), XYZ (1-gram).
Then, the pause marked sentence A, generated
using ASR output is split into independent chunks
by considering the pause marker as a separator.
Now each chunk is processed to find out the near-
est n-gram from the list of n-grams using mini-
mum character level edit distance as measured by
Levenshtein (1966). Nearest n-grams found for
all the chunk units are then combined using a
pause marker (comma) to generate a correct sen-
tence. This corrected sentence is expected to have
correct text content and the pause information.
The generated correct sentence is then compared
with the original sentence by neglecting the pause
markers. If the match indicates that the performed
correction has generated the right sentence, then
the process of correction ends. If the match fails,
the process of correction is repeated using un-
matched corrected sentence and the original sen-
tence. In this second iteration of correction, the
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only difference is in the process of finding a near-
est n-gram from the list of n-grams for a chunk.
This time instead of just the chunk under consid-
eration, previous chunk is also pre-fixed to it as a
context. This combined piece of string is now
used to find the nearest n-gram for the purpose of
correction. Upon finding the nearest n-gram, the
pre-fixed chunk is removed from the same. This is
expected to give us a correct n-gram, which we
might have missed in the previous iteration. The
following is pseudo code for the described method

Input
orSentence =Original text sentence without all-
pause mark information
asrOutPut = Erroneous text sentence generated
using ASR output with right pause mark

Algorithm
ngrams = createNgrams(orSentence)

pPhrases = splitIntoChunks(asrOutPut)
correctedSentence = blank
FOR phrase IN pPhrases do

correctedSentence = correctedSentence
+ pauseMarker
+ nearestNgramFromNgramList(phrase)

IF correctedSentence without pauseMarkers doesn't
match orSentence

asrOutPut =  correctedSentence
pPhrases = splitIntoChunks(asrOutPut)
correctedSentence = blank
FOR phrase IN pPhrases do

correctedSentence = correctedSentence
+ pauseMarker
+ (nearestNgramFromNgram-

List(previousPhrase+phrase)
- previousPhrase)

RETURN correctedSentence

ASR system was trained with various duration of
speech data and it is observed that it works prop-
erly even with just one hour of speech data.

Example:
 without comma marked sentence of

Marathi language
मला वाटलं क पाणी मा या हाता खाल वास घेत
होते.

 Comma inserted using  system
मला वाटलं, ए पाणी मा या हाता खाल , वास घेत
होते.

 Final corrected sentence comma marked
मला वाटलं, क पाणी मा या हाता खाल , वास घेत
होते.

This algorithm works properly even there is
repetition of word or phrase in sentences.

3 Silence Duration Analysis

Deciding the duration of silence, which can be
considered as threshold (i.e., any silence shorter
than it should not be considered as pause) is a
non-trivial task. There are two ways to handle it:
1) Considering the threshold taken by other re-
searchers, and 2) Trying to devise a method to
decide threshold.

Vadapalli, et al. (2012) did an experiment by
considering three different values, i.e., 25 ms, 50
ms, and 80 ms as threshold. Campione and
Véronis (2002) tried to distinguish silent pause
with occlusives and suggests to consider 200ms
of silence duration as pause. It states: "Silent
pause shorter than 200 ms are very difficult to
discriminate from occlusives and taking them into
account requires enormous manual effort." In or-
der to verify the claim, we did the following
analysis.

Hindi text content of five paragraphs detailed
as in table 2 was prepared. Nine different speakers
were asked to read aloud these contents in natural
way and the same were recorded.

The recorded speech and corresponding text
were given to three new persons. They were in-
structed to listen to the speech files and manually
put pause mark on the text files wherever they feel
appropriate. It is observed that minimum silence
duration which was considered as pause by all
three speakers is around 180-200 millisecond.

Distinction between pause and occlusive is
also crucial. Occlusives are those silences which
occur even within words as a beginning part of the
stop consonants, e.g. in the word "vaakya", occlu-
sive silence occurs in the beginning part of the
phone [k]. We did analysis of our recorded data
and found that occlusives of various lengths like,
60ms, 90ms, 136ms, 170ms are there. Some
words having relatively long occlusive are given
in the following table:

Word Occlusive
Point

Silence
duration(ms)

व त य(vaktavya) va-ktavya 170

मतदान(matdaan) ma-tdaan 138
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नेपाल(nepaal) ne-paal 136

Table 1: Example words with occlusive

Following figures of wave files showing the oc-
clusive silence illustrates our point.

Figure 1: Occlusive silence in the wave file for
word "vaktavya"

Figure 2: Occlusive silence in the wave file for the
word "matadan"

Figure 3: Occlusive silence in the wave file for the
word "nepal"

In this analysis, we find two deciding factors 1)
Minimum silence duration that was considered as
pause by listeners and 2) Silence duration that can
be distinguished clearly from occlusives. Based
on these factors, we decided to consider silence
duration of 200 ms as threshold to consider a
pause mark.

Even for normal text, reading speech rate and
duration of silence varies from speaker to speaker.
Therefore, we tried to find more specific threshold
for individual speaker based on the speech rate of
speaker. We calculated the duration of each si-
lence part present in our data. It was observed that
there was very wide range of silence durations
starting from 10 ms to 2000 ms present in the
speech. We ignored the following:

 Silence durations less than 50 ms, which
are generally not easily perceived.

 The longest 5% of silence durations,
which are mostly exceptional cases, like
1042 ms, 1008 ms, 998 ms, 1111 ms.

Speech Rate (Syllable Rate), Arithmetic
Mean (AM) and Geometric Mean (GM) of si-
lence duration for all the 9 speakers is calcu-
lated (Table 1). From these results, no direct
relation between GM and speech rate, and
AM & speech rate can be established and
nothing can be said about the minimum si-
lence duration to consider as pause.

Speaker
List

Arithmetic
Mean
(AM)

Geometric
Mean (GM)

Speech
Rate

Speaker 1 141.24 92.6 3.88
Speaker 2 131.87 98.2 4.59
Speaker 3 103.98 100.73 4.67
Speaker 4 135.51 105.93 4.31
Speaker 5 127.51 107.26 4.73
Speaker 6 119.06 109 5.1
Speaker 7 112.22 114.42 4.27
Speaker 8 137.17 115.12 3.74
Speaker 9 159.85 128 3.54

Table: 2 AM, GM and Speech Rate

4 System Flow

The complete system flow for pause boundary
detection and pause duration, takes speech data
and corresponding text file as input and generates
the following outputs:

1. Text file having content with proper
pause marks

2. An error report giving hint about the
doubtful places, which needs to be manu-
ally verified.

The system flow is depicted in the flow chart 1.

Figure 4: System flow chart

ASR

Start

End

Studio
Recording

Split
wavefiles

Sentence file
generation with
comma separation

N-gram
based text
correction

Comma
marked text

Wave files

Wave chunk

Text chunk

Text

31



5

5 Results & analysis

We evaluated and analysed performance of the
method in the following way.

5.1 Accuracy of text correction algorithm

As we mentioned, ASR output at sentence level is
not perfect as it contains some addition, deletion,
and change of words. Therefore, we apply the text
correction algorithm and get significant improve-
ment. The following table shows text improve-
ment in two iterations. Correct sentence is the re-
generated sentence, which is exactly same as
original sentence (excluding pause marks).

Lan-
guage

Total
No of
Sen-
tences

% Cor-
rect
Sen-
tence
in
ASR
o/p

% Cor-
rect Sen-
tences
(Itera-
tion1)

% Cor-
rect
Sen-
tences
(Itera-
tion 2)

Hindi 2318 38 85.03 89.94

Odia 3570 49 81.45 88.01

Marathi 1889 45 89.35 93.06

Table 3: Text Correction Algorithm Accuracy

5.2 Accuracy of pause marking by the system

System has been tested with 4 sets of TTS training
data:

1. Language: Marathi, Gender: Male
2. Language: Hindi, Gender: Male
3. Language: Hindi, Gender: Female
4. Language: Odia, Gender: Male

The TTS training data is available at IITM web-
site(www.iitm.ac.in/donlab/tts/) and each set of
data contains pause marked text file. System gen-
erated text file (with pause mark) is compared
with manually pause marked text content. Given
below is the result in Table 4:

Language True
Positive

False
Negative

False
Positive

Marathi
male

95.51% 1.44% 3.02%

Hindi Male 91.06% 8.15% 0.38%
Hindi Fe-
male

97% 1.21% 1.3%

Odia Male 97.06 0.02% 0%

Table 4: Results

True Positive: Manually labelled as pause and
identified as pause by the system
False Negative: Manually labelled as pause and
identified as not pause by the system
False positive: Manually labelled as not pause and
identified as pause by the system.

True Negative is not calculated, as it is not mean-
ingful.

We observed that the text correction method is
unable to correct ASR outputs with missing text
for certain speech utterances. For example in the
following table, example 1 shows that word

' ीची' is completely missing from ASR output

and so was not corrected as expected. Whereas,

for other examples we can see that 'अंधार गे या'
is has almost similar utterance as 'सुधारले या'
and so the sentence was corrected as expected.
The same applies to other cases 3 and 4.

In the case of sentence 5 which is also not cor-
rected as expected, the error can be traced back
to the fact that if, the n-grams generated using
the original sentence contain some gram (other
than the expected) more near to the erroneous
word, that 'other' gram will be used as replace-

ment. We can see that, in case 5 'ही' should have

been replaced by the 'ठीक' (at edit distance 2

from ही) but as there was 'मी' (at edit distance 1

from ही) which is closer to 'ही', the 'मी' was pre-

ferred which is a wrong choice. Mechanism to
deal with such errors is being investigated.
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ASR
output

1. त ा, फ  वीर प नी, अथवा वीर माता हो यात

नाही, तर वीर ी हो यात आहे.

2. अधंार गे या सं कृतीची माती हरवले या ख￭ज याचा

धातु सारखा भास शतकांचे पाहा

3. ऊस पश सांग तजुला सांगुन काय गेला

4. मी ही दारावर या बेलने दचकून उठेल उंट या

वागतासाठी

5. ही माझे कपडे मी आ यावर धुवून टाक न

Original
Sentence

1. ीची त ा फ  वीर प नी अथवा वीर माता

हो यात नाही तर वीर ी हो यात आहे.

2. सुधारले या सं कृतीची माती हरवले या ख￭ज याचा

धातु सारखा भास शतकांचे पाप

3. तो पश सांग तुजला सांगुन काय गेला

4. तीही दारावर या बेलने दचकून उठेल तमु या

वागतासाठी

5. ठीक माझे कपडे मी आ यावर धुवून टाक न

O/P of
Correction
Method

1. त ा, फ  वीर प नी, अथवा वीर माता हो यात

नाही, तर वीर ी हो यात आहे.

2. सुधारले या सं कृतीची माती, हरवले या

ख￭ज याचा धात ुसारखा भास, शतकांचे पाप.

3. तो पश, सांग तुजला, सांगुन काय गेला.

4. तीही, दारावर या बेलने, दचकून उठेल, तुम या

वागतासाठी.

5. मी, माझे कपडे, मी आ यावर धुवून टाक न.

Table 5: Example outputs of Correction method

6 Conclusion

In this paper, we described the need of creating
correctly pause marked text data with an auto-
mated process that can be used in the training
phase of TTS building for achieving natural
sounding high quality synthetic speech. We pre-
sented the mechanism to detect pause boundaries
and duration of the pauses using ASR and cus-
tomised text correction method. We also de-
scribed methods to consider minimal pause dura-
tion that should work optimal. This would help
those who would implement it for other lan-
guages. We described the experiments and results

for Hindi, Marathi, and Odia, which looks promis-
ing. The system can readily be used for other lan-
guages and can contribute to further fine-tune and
even achieve higher accuracy.

Currently, this system is marking only one
type of pause. In future, we plan to work towards
using multiple types of pause marks e.g., short
pause, normal pause, and long pause. The basis of
categorisation may be the duration of silence re-
gion. We also intend to study further to establish
the relation between speech rate and silence dura-
tion threshold, which could be considered as
pause mark. Along with the silence region, other
factors like variation in intonation or energy may
also be considered as the deciding factors for
pause mark.
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Abstract

This paper reports our attempt to design
a corpus for table content summarization,
abstractive and extractive, where a table is
cited in a scientific document. We have
utilized 200 scientific publications in the
computer science field covering 10 dif-
ferent domains like machine learning, au-
tomatic summarization etc. to construct
the corpus. The dataset preparation for
this work has been extremely daunting
due to the nature of the data. The pre-
pared dataset has been used for training,
testing and evaluation. Manual annota-
tors have been employed to validate the
gold standard data in corpus. Moreover,
we have also proposed two systems based
on TF-IDF approach and Transition point
approach to generate an extractive sum-
marization system. The similarity score
between the system generated summaries
and gold standard data is calculated us-
ing standard metrics to evaluate the quality
of the generated extractive summary. Fi-
nally, we have documented our observa-
tion have presented an error analysis of the
system using standard metrics viz. BLEU
and ROGUE.

1 Introduction

Authors use various non-textual components to
represent information in a document or article.
The most commonly used entities are tables to
present findings or experimental results, graphical
forms and figures for describing a process or pre-
senting the output, flowcharts to depict the system
flow, etc. These elements are a source of vital in-
formation and hence the importance of retrieving
information from these components are increasing

rapidly over the years. Moreover, often the most
important experimental results and ideas in any ar-
ticle are presented using a table. A lot of time and
effort can be saved if a researcher can understand
the content of a table, without having to read the
entire paper. It may also allow the researcher to
examine more results that he would normally do.
Consequently summarization systems play a ma-
jor role in helping the reader extract critical infor-
mation automatically and intelligently.

Most recently a few noteworthy contributions
have been made in this area. ScienceDirect 1 is
offering a table/figure preview feature in some of
its articles. CiteseerX2 is providing intelligent in-
formation extraction like figures, citations, pseu-
docodes etc. Consequently, summarization system
becomes important to ease people in extracting the
information automatically and quickly.

Although, table content summarization systems
have many potential uses like summarizing a pa-
tient information from a table of symptoms and
potential diseases, weather prediction form a table
of daily weather reports, wikipedia infobox sum-
marization, analysis of games like cricket,from
their score tables etc., previous researches show
that the challenge is finding a suitable corpus that
can be used for training, testing and evaluating a
table summarization system.

In order to address this issue, we have been mo-
tivated to start our study by constructing a cor-
pus of table-content summarization in two forms,
namely, extractive and abstractive summary using
NLP based techniques. The techniques are, data
preparation, information extraction, module build-
ing and validations. Extractive summary is ob-
tained by extracting sentences from the article that
describe the table, and abstractive summary is ob-

1www.sciencedirect.com/
2citeseerx.ist.psu.edu/
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tained by extracting the captions associated with
each table.

To construct the corpora, we have considered
the following challenges and adopted feasible so-
lutions;

A. How to obtain and pre-process the dataset?
To address this challenge, we have downloaded
499 different tables from 200 computer science
publications which covers various domains like
Named Entity Recognition, Machine Translation,
Machine Learning etc. Most of the articles are
available in PDF format and hence we had to con-
vert them to text format using for further process-
ing purposes using PDFTextStream3.

B. How to extract the table caption as abstrac-
tive summary? Extracting a caption is a chal-
lenge as it is written in various formats throughout
different domains and writing styles. To address
this issue, we have observed that a caption sen-
tence for a table consists of FOUR parts. They are
<TABLE>, <INTEGER>, <DELIMETER> and
<TEXT>. Thus, to distinguish between a caption
and the rest of the sentences, we propose that any
sentence following the above-mentioned pattern is
a caption, and the caption can form the abstractive
summary of a table.

C. How to extract the reference text as extrac-
tive summary? Although captions provide details
about the information in a table, it is quite possible
that they might not contain enough information to
assist a reader to interpret the content fully. To ad-
dress this issue, we have extracted the text which
is referencing the table within the document. In
order to do so we have followed the same method
as mentioned in the previous challenge with a few
differences in the pattern. We have observed that
a sentence in the vicinity of the reference sentence
may provide accurate information about the con-
text in which a table is used. Hence, we have also
extracted and captured such contextually crucial
sentences.

D. How to validate the obtained summarized
output? The evaluation process of the system
has been divided into two parts, namely, accu-
racy of summary identification and quality eval-
uation. For validating the first part, we have taken
the assistance of two annotators namely, a man-
ual annotator, A1 and our system. The Cohen’s
Kappa agreement analysis technique is then used
to study the inter annotator agreement scores. For

37http://snowtide.com/PDFTextStream

evaluating the quality of the summaries generated,
we have employed a sentiment based similarity
technique which generated a similarity score be-
tween the system generated and reference sum-
maries which are again identified by A1. More-
over, the prepared corpus can be considered as a
gold standard dataset. This is so because, to de-
sign the corpus, we are using captions and texts
from the scientific publication written by the au-
thor himself.

E. How to present the output as a structured
corpus To address this challenge, we have pre-
pared an annotated corpus which contains infor-
mation about various tables and their related fea-
tures like abstractive summary, extractive sum-
mary, no. of rows, no. of columns etc.

The contributions of the task is to address the
above-mentioned challenges, and present an anno-
tated structured corpus with summarized output as
a standard dataset for table content summarization.

The overall structure of the paper is as follows.
Section 2 presents the related work carried out in
this domain. Section 3 and Section 4 describe the
dataset annotation in details and the model build-
ing. Section 5, Section 6 and Section 7 describe
the evaluation process. Finally Section 8 describes
the concluding remarks and future scope of the re-
search.

2 Related Work

Table construction methods in free text are simple
but the expressive capability is limited. The
markup languages like HTML provide very
flexible constructs for writers to design tables.
The flexibility also shows that table extraction in
HTML is harder than that in plain text. The task of
table extraction from text document in (Ng et al.,
1999) was recognizing table boundary,column
and row. These are defined as three separate clas-
sification problem and relies on sample training
texts in which the table boundaries, columns and
rows have been correctly identified by human
annotator.Machine learning algorithms are used to
build classifiers from the training examples, one
classifier per subproblem. This system is flexible
and easily adoptable to text in different domain
with different table characteristics. In (Wang
and Hu, 2002) machine learning based approach
has used for classification of table in HTML
document as either genuine or non-genuine table.
A set of novel features has defined which reflect
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the layout as well as content characteristics of
tables. For the table detection task , the decision
tree classifier is used as here features are highly
non-homogeneous.They also experimented with
support vector machine which shows the best
performance in text categorization.However, this
system misclassified a table due to the ambiguous
content e.g,a table contain many hyper-links
which is unusual for genuine table.This is case
where layout features and the kind of shallow
content features are not enough. Deeper semantic
analysis would be needed in order to identify the
lack of logical coherence.

An automated Table Extraction approach used
in (Tengli et al., 2004) that exploits formatting
cues in semi-structured HTML tables, learns lexi-
cal variants from training examples and uses vec-
tor space model to deal with non-exact matches
among labels.In (Chen et al., 2000) tables are
mined from large scale HTML texts. This
task composed of five modules:hypertext process-
ing,table filtering,table recognition,table interpre-
tation and presentation of results. Table filtering
module filters out impossible cases by heuristic
rules.Table recognition module recognize table by
the content of the cells.Table Interpretation mod-
ule interpret the table attribute-value relationship
either column wise or row wise.Presentation of
results module results the table in a sequence of
attribute-value pairs.

3 Dataset Construction

In order to prepare the corpus, we have uti-
lized scientific articles downloaded from digital li-
braries. This is so because it is observed that tables
play a major role in depicting results and observa-
tions within scientific papers. To the process , we
have downloaded 200 papers covering 20 differ-
ent type of domains in computer science ,like Au-
tomatic Summary, Machine Learning , Machine
Translation etc. The average number of sentences
in each document is approximately 202, exclud-
ing title, author names and section headings. Ta-
ble 1 shows the statistics of the corpus. The fol-
lowing steps illustrate the overview of the dataset
construction steps.

3.1 Caption Sentence Extraction as
Abstractive Summary

A well written caption can demonstrate the content
of a table coherently. Therefore, we have written
python scripts (python version 2.7) for extracting
the captions for all the tables. A caption can be
written in various formats depending on the do-
main and writing style. In order to deal with this
variation, we have developed a method to differen-
tiate caption sentences from other sentences in the
document. We have observed from various papers,
that a caption sentence consists of 4 parts. They
are <TABLE> which refer to the word Table, fol-
lowed by <INTEGER>, which is an integer that
refers to the table number in the paper. The integer
is followed by a <DELIMETER> which refers to
the delimiter at the end of the sentence like "."or
": ". Finally we have <TEXT> which is the de-
scription of the table content. If a sentence fol-
lows this pattern, we label it as a caption sentence
which then forms the abstractive summary content
of that table.

3.2 Relevant Sentence Extraction as
Extractive summary

Although a caption describes the content of a table
quite elegantly, studies have shown that captions
,on their own, are insufficient in describing an ele-
ment to a reader.To handle this issue, we have ob-
served that any table is referenced at least once in
the document. Thus to obtain a more comprehen-
sive understanding of the table under considera-
tion, we have extracted its reference text from the
corresponding scientific document. Our first step
was to segment the document text into sentences.
For identifying relevant sentences, we have fol-
lowed the same pattern as described for caption
extraction, with the difference in the fact that the
delimiter part is absent in such sentences. More-
over, when a table is referenced in the document,
the sentences which are within a certain proxim-
ity of the reference sentence, are very useful in
describing the context in which the table is being
mentioned. Keeping this in mind , we have as-
signed scores to each sentence depending on its
proximity level and distance to the reference sen-
tence. If the distance is within a certain threshold
length (+/-1), we have considered it as an impor-
tant sentence and included it in the summary.
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3.3 Data Annotation
Once the gold standard abstractive and extractive
summaries are generated, an annotated dataset is
constructed to create a structured, well defined and
easy to use corpus. Two separate approaches were
employed in order to construct a gold standard
dataset capable of automatic evaluation and also
to evaluate the efficiency of our system generated
output as extractive and abstractive summaries.
Firstly, an external annotator was employed, who
is well versed in the field of computer science.
This annotator was asked to manually identify the
abstractive caption based summary and extractive
summary only from the dataset. Secondly, our
system generated an output feature file with addi-
tional features besides the summaries. These fea-
tures are paper ID, table ID, no. of rows in a table,
no. of rows in a table, row attributes, column at-
tributes, and Table type (numeric, text or hybrid).

3.4 Evaluating the Quality of the System
The gold standard corpus consists of 200 papers
and 499 tables.The following subsection discusses
the evaluation process briefly.

3.4.1 Inter Annotator Agreement
To help us with our evaluation, a manual annota-
tor A1 is employed. Annotator A1 and our sys-
tem are then each arbitrarily provided with 100
separate documents each and instructed to identify
both the extractive and abstractive summaries sep-
arately. For both, a score "1" was assigned to each
of the sentences included in the summary and "0",
for the one’s which are not. In order to have an
idea about the degree of agreement , we selected
100 papers, whose output are generated by A1 and
another 100 papers whose output are generated by
my proposed system. These papers are then inter-
changed and the annotators were asked to either
agree (1) or disagree (0) with the other output.

Thus at the end we had 200 papers scored by
both annotators. Out of this, 20 tables were se-
lected, containing a total of 4040 summary sen-
tences each, for extractive and abstractive sum-
mary. This is then used for measuring the agree-
ment score between annotator A1 and the sys-
tem generated output using Cohen’s Kappa co-
efficient κ which is defined as

κ =
Pra − Pre
1− Pre

, (1)

Where Pra is the observed proportion of full

agreement between two annotators. In addition,
Pre is the proportion expected by a chance and so
indicates kind of random agreement between an-
notators.

The Cohen’s Kappa agreement analysis pro-
vides κ = 0.83 and κ = 0.81 for extractive and ab-
stractive summary agreement individually. Con-
sequently, higher κ proves that the agreement is
strong. The aim of this experiment was to evaluate
how well the proposed method is able to identify
the table content summary from the document.

3.4.2 Guidelines
The corpus contains separate folders for each of
the 200 scientific papers of the computer science
domain that we have processed.Table 1 gives a
statistics of raw data. Within each folder, there are
6 separate files.

• CSV, which contains separate CSV files de-
scribing the content of each table in that pa-
per.

• Annotation, which is the system generated
feature file description for all tables in that
paper.

• Document_PDF, which is the PDF version of
the paper.

• Document_TXT, which contains the text ver-
sion of the paper.

• Document_XML, which is the XML version
of the paper.

• Summary, which contains the manually iden-
tified extractive and abstractive summary for
each individual table of the paper.

Finally, a README file is included with the
corpus, which describes each aspect of all the files.

4 System Design

We have proposed two models for generating tem-
plates that represent the extractive summary of a
table. Our system produces a set of important
terms, from each of the downloaded scientific pa-
pers. These terms are then used to generate an ex-
tractive summary of the tables contained in that
paper. Finally, we have measured the similar-
ity score between the generated templates and the
gold standard summaries to evaluate the quality of
summary in the dataset. The systems are described
in the following subsection:
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Paper Type # Tables Type: Text Type: Numeric
Automatic Summary 50 21 29
Machine Learning 45 22 23
Machine Translation 55 19 36
NER 51 25 26
Question Answering 60 25 35
Sentiment Analysis 42 19 23
Speech Recognition 31 19 12
Text Classification 44 21 23
Text Segmentation 62 20 42
WSD 59 28 31
Total No.of Papers: 200

Table 1: Statistics of the Corpus

4.1 TF-IDF Based System

4.1.1 Unigram Approach

These terms are selected by the following method:

–Initially a corpus is prepared from which
gold standard extractive summaries for each table
are extracted from that corpus.
–A set of unique words are collected from the
gold standard dataset. Unique words are referred
to as the words that are frequent or common in the
reference summary.
–In the corpus there are 200 papers. For each
table, in each paper, the TF-IDF score of all the
terms are calculated excluding the stop words,non
alpha-numeric characters and unnecessary punc-
tuation. TF is the frequency of the term in that
paper and IDF is the number of sentences in the
paper where the term has occurred.
–Only those terms are considered that are within
the set of unique words and belong to the highest
scored terms for the template. These set of terms
are referred to as Template for match(TS).
Each table can have multiple extractive summaries
but there is only one TS for all the summaries of
a particular table. So, we ranked them in order to
see that with which extractive summary, the TS
matched better. We have used Textual entailment
method for ranking purpose.

4.1.2 Bigram Approach

A Bigram approach is also designed which takes
into account a bigram instead of unigram. In this
case, the TF-IDF score of a bigram is calculated
in the document. But,here we have used only
BLEU and ROUGE metrics for selecting terms in

TS, whereas, we used Cosine Similarity, BLEU
and ROUGE metrics in case of unigram. Also,
all these scores have been used as a background
knowledge in textual entailment which is used for
ranking of the gold standard extractive summaries.
In the evaluation section we have discussed which
approach is the best among these two for generat-
ing extractive summaries.

4.2 Transition Point Based System
Transition Point(TP) is a frequency value that
splits the vocabulary of a text into two sets of
terms(low and high frequency). (Urbizagástegui,
1999) in thier paper, used the transition point(TP)
to show its usefulness in text indexing. The mid-
frequency terms are closely related to the concep-
tual content of a document.

4.2.1 Unigram Approach
A documenti and its vocabulary Vi
={(wj,tfi(wj))|wj∈ Di},where tfi(wj)=tfij,let
TPi be the transition point of Di.A set of important
terms which will represent the document Di may
be calculated as follows:

Ri = {wj |((wj , tfij) ∈ Vi),
(TPi.(1− u) ≤ tfij ≤ TPi.(1 + u))} (2)

where u is a value in [0,1].Some experiments
presented in (Urbizagástegui, 1999) have shown
that u=0.4 is a good value for this threshold.TP is
obtained using the following formula:

TP =
−1 +√8× Ii + 1

2
(3)

where I1 represents the number of words with fre-
quency equal to 1.We consider that terms whose
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frequencies are closer to TP,are important terms
and hence will get a high weight for summariza-
tion.All other terms will get a weight close to zero.

4.2.2 Bigram Approach
The terms selected by the above method were en-
riched with the words which have similar charac-
teristics. This was done using a co-occurrence bi-
grams based formula in (López et al., 2007). We
have divided this bigram version of the system
into three subsystems, viz. Module-I, Module-II,
Module-III.

Formally, given a document Di made up of
only these terms selected by using the TP unigram
approach(Ri), the new important terms for Di will
be obtained in different way for three subsystems.
We have taken bigram of each document and cal-
culated their TF score. TF score is calculated as
number of times the bigram occurs in the docu-
ment.

4.2.3 Module-I:Left Approach
Module-I considers TF score of the bigram, whose
value is greater than one. In each of these bigram
, if the terms that belongs to Ri is in right most
position, then, we have considered the left term.
This term is the new term that is included for Di.
Formally, the new terms are generated according
to the following expression:

R′
i = Ri ∪ {w′|(wj ∈ Ri),

(v = w′ · wj), (v ∈ Di), (tfi(v) > 1)} (4)

4.2.4 Module-II:Right Approach
Module-II considers the right most term of the bi-
gram when the terms in Ri is in left most position.
Therefor, the new terms are obtained as follows:

R′
i = Ri ∪ {w′|(wj ∈ Ri),

(v = wj · w′), (v ∈ Di), (tfi(v) > 1)} (5)

4.2.5 Module-III:Left-Right Approach
Module-III is the integrated approach of Module-I
and Module-II. Here, we have considered both left
or right terms, whenever the terms in Di is present
in bigram. Formally,the new terms are obtained as
follows:

R′
i = Ri ∪ {w′|(wj ∈ Ri),

(v = wj · w′orv = w′ · wj), (v ∈ Di),

(tfi(v) > 1)} (6)

We only used a window of size one around each
term of Ri, and a minimum frequency of two for
each bigram was required as condition to include
new terms.

5 Evaluation

We have generated templates representing the ex-
tractive summary of a table using the above de-
scribed systems. Then, we have ranked the tem-
plates in order to see which template has matched
better with our gold standard summary. We have
measured the similarity score between reference
summary and templates using some standard met-
rics such as Cosine Similarity, ROUGE, BLEU.

6 Experiment and Results

In this work, we have proposed two systems, a
TF-IDF based and a Transition point based, for
generating extractive summaries.

In TF-IDF based system we have generated a
Template for Matching(TS) with the highest TF-
IDF scored terms. Now, the number of terms to
be considered for TS solely depends on the re-
sult. Therefore, we experimented by taking vari-
able number of such terms as shown in Table 2 and
Table 3 .

Transition Point based system has two ver-
sions, the unigram and the bigram approach.The
system based on unigrams, generates a set of
terms whose frequency is close to the transition
point. Similarity scores are then measured be-
tween the gold standard summary and system gen-
erated summary, using BLEU and ROUGE met-
rics. We have divided the bigram version of this
system into three systems. We have measured their
performance using the same similarity metrics and
compared them with each other. We have also
compared the unigram and bigram approach in the
following section. The results are shown in Table
4.

7 Observation

In the experiment section we have mentioned that
the experiments were done by changing the num-
ber of terms in Template for Matching (TS). It
was observed that for smaller number of terms, the
Cosine similarity and BLEU scores increased but
there was a decrease in ROUGE score. If observed
carefully, it can be seen that the top 10 terms give
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# Terms Cosine Similarity BLEU ROUGE
Precision Recall F-Measure

10 0.32 0.46 0.26 0.71 0.34
20 0.24 0.40 0.53 0.60 0.51
30 0.19 0.36 0.72 0.50 0.53

Table 2: Results obtained from TF-IDF unigram approach

# Terms BLEU ROUGE
Precision Recall F-Measure

10 0 0.003 0.009 0.004
20 0 0.003 0.009 0.004
30 0 0.002 0.1 0.003

Table 3: Results of TF-IDF bigram approach

Systems BLEU ROGUE
Precision Recall F-Measure

Unigram 0.044 0.36 0.47 0.08

Bigram
Module I 0.08 0.81 0.36 0.45
Module II 0.11 0.79 0.39 0.46
Module III 0.13 0.43 0.02 0.04

Table 4: Results obtained from Transition Point based system

Model Approach BLEU ROGUE
Precision Recall F-Measure

TF-IDF Unigram 0.46 0.26 0.71 0.34
Bigram 0 0.003 0.009 0.004

TP Unigram 0.044 0.36 0.047 0.08
Bigram 0.13 0.43 0.02 0.46

Table 5: Comparison between TF-IDF and Transition Point

highest cosine similarity and BLEU scores. How-
ever, when the top 30 terms are considered, it was
ROUGR which gave the highest score.

A comparison study has also been done between
the proposed TF-IDF and Transition point based
systems. The comparison is shown in Table 5 .
We have considered only the best results obtained
for each case. It is observed that in the TF-IDF
unigram approach, BLEU score is better and in
the Transition Point bigram approach, F-measure
is better. But, It can be safely inferred that over-
all TF-IDF approach outperforms the Transition
Point approach.

A set of unique words e.g.
size,obtained,accuracy,lists,experiments etc.
are collected from gold standard dataset for
improving the quality of the generated template.

We have tried to keep the words in template
that belong to the set of unique words. In case
of TF-IDF, we are able to include these unique
words. Therefore, TF-IDF results are much better
than Transition point based system.

8 Conclusion

In this work, we have presented our attempt to
generate a gold standard corpus for table content
summarization. While working it was found that
the preparation of structured corpus was one of
the greatest challenges. In the paper we have de-
scribed how we have resolved all these challenges
and prepared a corpus which is used for train-
ing,testing,evaluating a table summarization sys-
tem. Moreover, we have also developed two mod-
els for the quality evaluation of our corpus. As a
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future scope, we plan to increase the size of the
corpus as well as include semantic features along
with lexical we are planning to design a semantic
approach based system. .
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Abstract 

A shallow parser is constructed for 

Khasi an Austro-Asiatic language, 

where noun phrases and verb phrases 

are identified. Formulation of what 

constitutes a Khasi noun phrase or verb 

phrase is carried out manually and 

marked in a corpus consisting of words 

already tagged with their corresponding 

part-of-speech tags. The parser is the 

first of its kind for the language, where 

the training corpus comprises of 24,194 

chunks of noun and verb chunks out of a 

total of 3,997 sentences and 86,087 

tokens. The approach in developing the 

parser is taken as a tagging problem 

using the Hidden Markov Model 

(HMM) and the results obtained have 

shown that a shallow parser is an 

appropriate first step when there is lack 

of information with regards to other 

phrases and the possible existence of 

lexical or syntactic mistakes in the 

training corpus.  

1 Introduction 

Shallow parsing is a process where a text is 

divided into non-recursive syntactical units such 

as noun phrases, verb phrases, etc. Non-

recursive implies these phrases or chunks are 

non-overlapping and do not contain each other 

as proposed by Abney (1991). Shallow parsing 

has proven to be an alternative to full parsing of 

sentences, when only a subset of the 

information provided by a complete parser is 

sufficient for applications such as information 

retrieval, text summarization, etc. Further, it is 

also possible to enhance the corpus as and when 

information is available (Li and Roth, 2001), 

which is the current scenario with Khasi where 

only noun phrases and verb phrases have been 

annotated in the corpus. Khasi belongs to the 

Mon-Khmer branch of the Austro-Asiatic 

language family and spoken mainly in the state 

of Meghalaya. It is an analytic and partially 

agglutinative language having subject-verb-

object (svo) word order, unlike the majority of 

Indian languages which are subject-object-verb 

(sov). It is not inflected and demonstrates 

derivational morphology in terms of affixes 

attached to a base word. These affixes can be 

easily detected and separated in any given word. 

The training corpus and test data are the same 

data set utilized in the development of a Khasi 

POS tagger (Tham, 2018) where the sentences 

have been supplemented with noun and verb 

phrases. The identified noun and verb chunks 

are non-recursive in nature and the actual 

constituents proposed for Khasi are given in 

section 3. Since the approach in constructing the 

parser is taken as a tagging problem, a Hidden 

Markov Model (HMM) part-of-speech (POS) 

tagger for Khasi with 95.68% accuracy (Tham, 

2018) is also employed as a shallow parser, 

where only the data in the training corpus is 

altered to incorporate features relevant for 

parsing in the lines of Molina and Pla’s (2002) 

shallow parser for English. 

2 Related Work 

Abney (1991) is credited with the introduction 

of the existence of chunks and he used hand 

crafted cascaded finite state transducers to 

detect chunks and clauses. However, Church’s 

parser (1988) for detecting simple NPs can be 

attributed as the first statistical approach to 

noun phrase detection. Ramshaw and Marcus 

(1995) have approached chunking as a tagging 

problem by applying transformation based 

learning in detecting noun phrases and achieved 

recall and precision of 92% accuracy for base 

NP chunks while only 88% for tagging V and N 

chunks. Unlike Church’s noun phrases (Church, 

1988) which are simple, Ramshaw and Marcus 
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noun phrases include noun phrases formed with 

the use of conjunctions such as “and” and “or” 

or commas and where the possessive marker is 

treated as the first word of a noun phrase. 

Molina and Pla (2002) have also approached 

shallow parsing as another tagging problem by 

constructing what they termed as specialized 

HMMs where the learning and tagging 

procedures remain the same and adjustments 

have been made only to the training data and the 

output tags. These adjustments were carried out 

by varying the input and output combinations, 

and have reported results when there was an 

improvement from their baseline system 

comprising of the original training data and 

output tags. Their conclusion after comparing 

rule based systems, memory based systems, 

statistical systems, and combined systems was 

that combined systems gave better 

performances than individual systems with the 

exception of a Winnow system in some 

instances, but HMM systems also gave better 

performance than most systems, that too, 

requiring relatively less settings of information. 

Their overall performance reported an accuracy 

of Fβ=1as 92.19.   

In the Indian scenario, Singh et al. (2005) in 

their HMM chunker for Hindi, experimented 

with various tagging formats for chunk 

boundaries and chunk labeling and reported 

that for certain groups of words keeping only 

their POS tags improves accuracy than keeping 

both word and POS tag as tokens. They 

achieved a precision of 91.7% in chunk 

labelling. In the second contest conducted by 

International Joint Conference on Artificial 

Intelligence (IJCAI) on a Workshop on  

Shallow Parsing for South Asian Languages 

(Bharati and Mannem, 2007 ), POS and chunk 

annotated data comprising of 20,000 words of 

training data, 5000 words of development data 

and 5000 words of test data were provided for 

three Indian languages- Hindi, Bengali and 

Telegu. A total of eight teams participated 

using various approaches and PVS and Karthik 

(2007) is the only team that applies two 

learning techniques-HMM for chunk boundary 

detection and CRF for chunk labelling. They 

achieved best results in chunking for all the 

three languages Hindi, Bengali and Telegu 

with accuracy of 80.97%, 82.74% and 79.15% 

respectively. Tapping the morphological 

richness of a language, and justifying that a 

relatively small training corpus suffices, and 

avoiding the need of a large annotated corpus, 

a shallow parser for Marathi, Gune et al. 

(2010) achieved 97% accuracy for chunk 

identification using a 20,000 word size corpus.  

However, a recent noun phrase chunker for 

Marathi (Pawar et al., 2015) employed a CRF 

classifier for chunking. In this chunker, citing 

the lack of natural language processing (NLP) 

resources in India coupled with the fact that 

Marathi is a highly agglutinative language; the 

training corpus was generated automatically 

using Distant Supervision framework where 

the data is labeled according to some heuristic 

rules based on corpus statistics. Their reported 

F1 measure is 88.72%. 

3 Labeling Khasi noun and verb 

chunks 

According to Abney (1991), “a chunk consists 

of a single content word surrounded by a 

constellation of function words, matching a 

fixed template”. As mentioned earlier, this 

imply chunks that are non-overlapping and do 

not contain each other. In this study, only noun 

and verb chunks have been identified. The 

elements of a Khasi noun chunk are similar to 

the noun phrases put forward by Jyrwa (1989) 

without the post-modifiers, while a verb chunk 

is taken to be the main verb itself along with 

any pre-modifiers such as auxiliary verbs 

excluding post-modifiers such as adverbs. The 

noun chunks excludes pronouns in the lines of 

Abney’s (1991) definition of a chunk where 

pronouns are treated as orphans, and secondly, 

because they can also function as pronominal 

markers and subject enclitic (Jyrwa, 1989), for 

in such instances they do not syntactically 

function as noun chunks. 

The corpus used for labeling the noun and 

verb chunks is a corpus annotated with part of 

speech tags from the BIS tagset for Khasi 

(Tham, 2018).  The BIO labeling specified in 

Ramshaw and Marcus (1995) is followed for 

Khasi where each alphabet symbolizes the 

following: 

B-XX: label B for a word starting a chunk of 

type XX. 

I-XX: label I for a word inside a chunk of 

type XX.  

O: label O for a word outside of any chunk. 
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Issues that surfaced while labeling both noun 

and verb chunks are highlighted below: 

Basic noun phrase and the inclusion or 

exclusion of adjectives: According to Jyrwa 

(1989), the most basic noun phrase comprises 

of a number/gender marker also known as 

pronominal marker (PM), and a noun word 

followed by a subject enclitic (SE) as shown in 

example 1. Most of the abbreviations used in 

all the examples are in accordance with the 

Leipzig glossing rules
1
, except when 

mentioned accordingly. In Khasi, pronominal 

markers are mandatory except in few instances 

where they are dropped. In example 1 the basic 

noun phrases present in the sentence are - ka 

Banri ka, and ja. However, during labeling a 

noun chunk, the subject enclitic has been 

excluded and the noun chunk is labeled up to 

and including the head noun, and we are left 

with ka Banri as a noun chunk. This is 

analogous to English noun chunks which can 

contain determiners and adjectives as specified 

in Sang et al. (2000). In Khasi, adjectives can 

occupy different positions in a sentence and 

they are included in a noun chunk only if they 

precede or immediately follow the noun they 

modify as shown in example 2 and 3. 

Therefore the possible pre-modifiers included 

in a Khasi noun chunk are demonstratives, 

cardinal numbers, quantifiers, pronominal 

markers, distributive particles, and adjectives 

(Nagaraja, 1985; Jyrwa 1989).   

As mentioned earlier, instances where a 

pronominal is dropped are in vocative 

sentences, locative phrases and when a noun 

follows a verb (Jyrwa, 1989; Tham, 2018). In 

such cases a noun chunk comprises of the noun 

word without a pronominal marker. 
1. ka     Banri  ka  bam  ja  

PM   Banri  SE  eat   rice 

“Banri is eating rice” 

2. u    diengsohphan  bah 

PM  jackfruit          massive 

“a massive jack fruit” 

3. long kaba skhem jingmut  

be    REL  strong  mind   

                                                           
1
 http://www.eva.mpg.de/lingua/resources/glossing-

rules.php 

“be strong minded”  

Collocations of two or more nouns are part 

of the same noun chunk:  Collocation of two 

or more nouns is a common phenomenon in 

Khasi where the actual meaning is derived from 

the summation of the words such as example 4. 

In most instances the noun(s) act as post 

modifier (example 5) while in some instances it 

acts as pre modifier(example 6). They are 

therefore labeled under the same noun chunk. It 

may be noted, that verbs tagged as nouns 

contribute to such collocations and hence give 

rise to noun chunks.  Corpus analysis reflect 

that when a verb follows a noun it naturally 

becomes an element of the noun phrase 

comprising the noun in question  as seen in 

examples 7 and 8,  otherwise it is recommended 

that punctuation in the form of a comma (,) 

separates the noun and the following verb 

(example 9). However, when stylistic writing 

comes into play in the form of repetitions, then 

punctuation is not necessary as in example 10 

where sharai a verb follows the noun khynnah 

and repeated as a stylistic element after the 

noun blang, but its attachment is to the noun 

khynnah and not the noun blang.  

4. ka  bai   synniang   kur  

PM cost  fee           clan 

“clan donation” 

5. ka  shuki dieng 

PM chair  wood 

“wooden chair” 

6. kynja kam 

type   work 

“type of work”  

7. shympriah thoh shun 

finger        write lime 

“index finger” 

8. sngi pdiang khatduh 

day  accept   last 

“last day of acceptance” 
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9. na      une  u   lum, iohi baroh 

from  this PM  hill, see   all        

sawdong  

around 

“from this hill, we can see all 

around” 

10. khynnah sharai blang sharai masi 

youth     serve  sheep serve cows 

“shepherd” 

Labeling imitative noun chunks: Imitative 

words are group of words where the ancestor(s) 

and its successor(s) are associated phonetically 

in their pronunciation, and they are used more 

for their stylistic characteristic. When the 

ancestor and the successor are preceded with 

their own pronominal marker, then both are 

tagged as separate noun chunks (example 11), 

but instances where the pronominal marker 

occurs only before the ancestor and not the 

successor, then the phrase is taken as one noun 

chunk (example 12). Here the POS tags 

attached to each word are in accordance with 

the BIS tagset for Khasi (Tham, 2018). 

11. ka shnong ka thaw 

“village” 

ka/PR_PRP_M/B-NP 

shnong/N_NN/I-NP 

ka/PR_PRP_M/B-NP thaw/N_NN/I-

NP  

12. ki per soh per syntiew 

“orchard”  

ki/PR_PRP_M/B-NP per/N_NN/I-

NP soh/N_NN/I-NP per/N_NN/I-NP 

syntiew/N_NN/I-NP 

Inclusion and exclusion of the conjunction 

bad in a noun chunk: The conjunction bad is 

comparable to the English conjunction “and” 

and can also participate as an element in a noun 

phrase. In example 13 the conjunction is part of 

the noun chunk, but in example 14 it is 

excluded from the noun chunk because the 

pronominal marker precedes the second noun, 

indicating that acceptable pre-modifiers of noun 

chunks are the ones mentioned earlier without 

overlapping. 

13. i mei bad papa 

“mother and father” 

i/PR_PRP_M/B-NP mei/N_NN/I-

NP bad/CC_CCD/I-NP 

papa/N_NN/I-NP  

14. i mei bad i papa 

“mother and father”  

i/PR_PRP_M/B-NP mei/N_NN/I-

NP bad/CC_CCD/O 

i/PR_PRP_M/B-NP papa/N_NN/I-

NP 

 Possessive particle la labeled as an 

element of a noun chunk: One of the functions 

of la is as a possessive marker (Tham, 2018), 

and in the training corpus it has been labeled as 

a member of a noun chunk because 

syntactically when a noun phrase is the object 

of a preposition la can occur as the first element 

of a noun phrase (example 15) and the same can 

be said of la when the noun phrase is the object 

of a verb (example 16).  

15. ban wad jingiada     na    la     ki 

to   seek protection from POSS PM   

briew  

person 

 “to seek protection from his own 

people” 

16. ka  kyrngah  la      ka  khlieh 

3SGF shook  POSS PM head 

“she shook her head” 

 

Basic verb phrases:  The various forms of 

verb phrases present in the corpus are as 

follows. 

 A basic verb phrase can comprise only 

of the main verb or can also include 

any preceding auxiliaries. For eg. bam 

(eat) or la bam (have eaten).  
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 Instances where only an auxiliary verb 

exists without the main verb, the verb 

chunk includes only the auxiliary verb. 

For e.g. long in example 17. 

 Any two consecutive verbs are taken 

as two separate verb chunks. For e.g. 

sdang hap (starts falling). 

 The infinitive phrase comprising of the 

infinitive ban (to) up to the main verb 

which may include auxiliaries in 

between is considered as a separate 

verb chunk as shown in example 18. 

 The inclusion and exclusion of the 

conjunction bad as part of a verb 

chunk is in the lines of how noun 

chunks include the conjunction 

mentioned earlier.  

The rest of the tokens present in the corpus 

that are outside the mentioned chunks are 

marked with the O tag.  

17. ki    long ki   briew   kiba bha  

3PL  are   PM person REL good 

“they are good people” 

ki/PR_PRP/O long/V_VAUX/B-VP 

ki/PR_PRP_PM/B-NP 

briew/N_NN/I-NP kiba/PR_PRL/O 

bha/JJ/O 

18. ka      la      nang   ban shad 

2SGF AUX  knows to   dance 

“she knows how to dance” 

ka/PR_PRP/O la/V_VAUX/B-VP 

nang/V_VM/I-VP 

ban/V_VAUX_VINF/B-VP 

shad/V_VM/I-VP 

4 HMM shallow parser for Khasi 

Following the work of Molina and Pla (2002), 

where shallow parsing is considered as a 

tagging problem, a standard HMM algorithm 

has been employed in developing an HMM 

Shallow Parser for Khasi.  Molina and Pla 

(2002) have put forward a specialized HMM 

where alterations have been made in the training 

corpus while the training and tagging procedure 

remains intact. They have attained results at par 

with existing approaches especially when 

lexical information is added and achieved best  

𝐹𝛽=1 as 92.23. Similarly the Khasi HMM POS 

tagger (Tham, 2018) has been used as a parser 

where changes have been made only in the 

training corpus.       

Statistically, given a set of input symbols I 

and a set of output symbols C, tagging a 

sentence S=𝑠1,𝑠2... 𝑠𝑛 of n symbols where 𝑠𝑗 ∈ 

I ∀ 𝑠𝑗with output tags 𝑐1,𝑐2... 𝑐𝑛 where 𝑐𝑗 ∈ C 

∀  𝑐𝑗 is given by 

𝑎𝑟𝑔𝑚𝑎𝑥𝐶 ∏ 𝑃(𝑠𝑖|𝑐𝑖)𝑃(𝑐𝑖|𝑐𝑖−1 … 𝑐𝑖−𝑘)𝑛
𝑖=1  (1) 

Taking into account Markov’s assumptions a 

second order Markov model reduces equation 1 

to equation 2. 

𝑎𝑟𝑔𝑚𝑎𝑥𝐶(∏ 𝑃(𝑠𝑖|𝑐𝑖)𝑃(𝑐𝑖|𝑐𝑖−1, 𝑐𝑖−2)𝑛
𝑖=1 ) (2) 

The probabilities are then estimated from the 

training corpus using maximum likelihood 

estimation, and linear interpolation has been 

carried out to counter any data sparsity problem 

encountered as shown in equation 3. 

𝑃(𝑐𝑖|𝑐𝑖−2, 𝑐𝑖−1) = 𝜆3�̂�(𝑐𝑖|𝑐𝑖−2, 𝑐𝑖−1)   +
                                 𝜆2�̂�(𝑐𝑖|𝑐𝑖−1) + 𝜆1�̂�(𝑐𝑖) (3) 

 

Here �̂�(𝑐𝑖|𝑐𝑖−2, 𝑐𝑖−1), �̂�(𝑐𝑖|𝑐𝑖−1), �̂�(𝑐𝑖) are 

the trigram, bigram, unigram probabilities 

respectively, and 𝜆1 + 𝜆2 + 𝜆3 = 1.  

Further, Brants (2000) deleted interpolation is 

used for evaluating the λs and the Viterbi 

algorithm (Rabiner, 1989) is utilized to ensure 

an optimal path is taken when selecting the 

sequence with the highest probability.   

In this analysis, since no more than noun and 

verb chunks have been identified and the BIO 

tagging scheme is utilized, the total number of 

chunk tags (output symbols) is 2n+1 i.e. 5 

where n is the number of chunks. On the other 

hand, the input symbols involved words and 

their corresponding POS tags leading to a huge 

set of symbols. As suggested by Molina and Pla 

(2002) a specialization function 𝑓𝑠 can be 

applied on the manually tagged training data T 

to produce a new training data �̌�. Here the 

specialization function (equation 4) transforms 

every training pair <𝑠𝑖,𝑐𝑖> to <�̌�𝑖, �̌�𝑖> and 

therefore it changes the set of input symbols to 𝐼 

and the output symbols to �̌�.  
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𝑓𝑠 : T ⊂ (𝐼 × 𝐶)*
 → �̌� ⊂ (𝐼  × �̌�)* 

(4) 

4.1 Testing and Evaluation 

The transformations carried out for Khasi is 

accomplished by changing the input and output 

used for training. Initially for the baseline tagger 

only the POS tags are maintained as input 

symbols and the chunk tags as output symbols 

i.e. the training pair is <𝑝𝑖,𝑐𝑖> where 𝑝𝑖 is a 

POS tag and 𝑐𝑖 the chunk tag.  A sample input 

and sample output of the baseline HMM tagger 

is shown in example 19. The results of the 

tagger are then taken as the baseline results for 

the system (Table 1). In the next step, the POS 

tags are once more taken as input symbols, but 

the output symbols comprises of both POS tags 

and chunk tags (concatenated together with the 

period (.)). The new training pair is therefore 

<𝑝𝑖,𝑝𝑖. 𝑐𝑖>. Example 20 shows a sample output 

of the HMM shallow parser on the same input 

shown in example 19.  The test data consist of 

402 sentences which includes 2,210 noun and 

verb chunks and the tagging results are shown 

in Table 1, indicating that adding just POS 

information to the chunk category has 

dramatically improved the accuracy to 𝐹𝛽=1as 

95.51 as compared to the baseline of 𝐹𝛽=1as 

86.94.  

 

19. V_VM RB IN N_NN N_NN 

RD_PUNC (input) 

V_VM/B-VP RB/O IN/O N_NN/B-

NP N_NN/I-NP RD_PUNC/O 

(output) 

20. V_VM/V_VM.B-VP RB/RB.O 

IN/IN.O N_NN/N_NN.B-NP 

N_NN/N_NN.I-NP 

RD_PUNC/RD_PUNC.O (output) 

 

The individual results for noun and verb 

chunks are given in Table 2 and analysing the 

results reveals that in most cases where the 

chunks were not detected accurately are mainly 

due to the following:  

 

 When the noun chunk is the object of 

the preposition and the chunk contains 

an adverb as the first element then it 

fails to identify the adverb as the 

starting element of the noun chunk. 

 Non detection of conjunctions which 

are part of a noun chunk. 

 As mentioned in section 3 consecutive 

nouns are always considered as part of 

the same noun chunk, but in some 

instances this is not true. These 

phrases are semantically determined, 

which is difficult to detect at this stage 

of the parser. For instance in example 

21, shipara and kynthei are not part of 

the same noun chunk, but the tagger 

has placed both of them within the 

same noun chunk. 

21. ar   ngut ki khynnah shipara kynthei  

two CLF PM youth    sibling girl 

bad shynrang   

and boy 

 “two siblings, a girl and a boy” 

 Auxiliary verbs following another 

auxiliary verb tend to be tagged as part 

of a new verb chunk when they are 

actually elements of the previous verb 

chunk.  

 

 

 

 

5 Conclusion 

This work has initiated a corpus of noun and 

verb chunks, and an HMM shallow parser for 

Khasi which requires Khasi text tagged with 

their part of speech. The details of what 

constitutes a noun chunk or a verb chunk were 

highlighted keeping in mind that identifying a 

Khasi noun chunk or a verb chunk from a given 

text is a new initiative for the language. The 

results of the parser are encouraging and are in 

 Precision Recall 𝑭𝜷=𝟏 

Baseline  86.38% 87.51% 86.94 

Khasi 

Shallow 

Parser 

94.39% 96.65% 95.51 

Table 1: Results 

Chunk Precision Recall 𝑭𝜷=𝟏 

NP 93.4% 97.23% 95.28 

VP 95.34% 96.1% 95.72 

Table 2: Noun and Verb chunk 

results 
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parity with what is reported for English and 

other Indian languages and enhancing corpus 

size will facilitate further testing. In future, 

when analysis of other Khasi phrases is 

available, what will remain is incorporating the 

acquired information only in the corpus without 

the need of modifying the tagging algorithm. 
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Abstract

An important aspect of understanding nar-
rative text is identification of actors, its
mentions and coreferences among them.
Coreference Resolution in Hindi is a rel-
atively under-explored area. In this paper,
we focus on the task of resolving corefer-
ences of actor mentions in Hindi narrative
text. We propose a linguistically grounded
approach for the task using Markov Logic
Networks (MLN). Our approach outper-
forms two strong baselines on a publicly
available dataset and 4 other manually cre-
ated datasets.

1 Introduction

Narrative text describes related sequences of
events involving a set of actors and interactions
among them. The first step towards understand-
ing of narrative text is to identify the actors in-
volved and to resolve their coreferences. We de-
fine an actor to be an entity of type PERSON,

LOCATION, or ORGANIZATION. These actors are
referred in text through their mentions which
can be of three types: named entities, generic
noun phrases (NPs)1 and pronouns (Walker et al.,
2006).

In this paper, we aim to resolve coreferences of
actor mentions in Hindi narrative text. We assume
availability of gold-standard actor mentions and
their types; and focus only on resolving corefer-
ences among actor mentions. Unlike much of the
earlier work, we do not restrict the coreferences
to only pronouns (Anaphora Resolution) and their
nominal antecedents. In addition to pronouns, we
also consider generic NPs for coreference resolu-
tion. For instance, referring to the sample narrative

1A generic NP is a noun phrase which has a common noun
as its head-word.

[srdAr pV�l]A1 kA j�m [g� jrAt]A2 m�\ 1875 m�\ h� aA

TA। [v�]A1 [Jv�rBAI pV�l]A3 ev\ [lAXbA d�vF]A4

kF [cOTF s\tAn]A1 T�। [l�dn]A5 jAkr [pV�l]A1

n� b{Er-VrF kF pYAI kF aOr vAps aAkr
[ahmdAbAd]A6 m�\ vkAlt krn� lg�। [mhA(mA
gA\DF]A7 k� EvcAro\ s� þ�Ert hokr u�ho\n� [BArt]A8

k� -vt�/tA aA�doln m�\ BAg ElyA। -vt�/tA
aA�doln m�\ [srdAr pV�l]A1 kA sbs� phlA aOr
bwA yogdAn [K�XA]A9 s\Gq m�\ h� aA। [EksAno\]A10 n�

[a\g}�j srkAr]A11 s� BArF kr m�\ C� V kF mA\g kF।
jb yh -vFkAr nhF\ EkyA gyA to [srdAr pV�l]A1 ,
[gA\DFjF]A7 ev\ [a�y logo\]A12 n� [EksAno\]A10 s�
m� lAkAt kF aOr [u�h�]A10 kr n d�n� k� Ely� þ�Ert
EkyA।

Table 1: Sample Hindi narrative. Actor mentions
are marked with [. . . ] and mentions of the ith actor
are denoted by the subscript Ai.

in Table 1, we want to identify that various men-
tions like the named entities (srdAr pV�l, pV�l),
the pronouns ( v� , u�ho\n�) as well as the generic
NP (cOTF s\tAn) all refer to the same actor (sr-
dAr pV�l).

Coreference resolution is known to be a chal-
lenging NLP problem. Even for languages such
as English, which have good quality linguistic re-
sources and datasets, coreference resolution has
proved to be a hard problem (Ng, 2017). For lan-
guages which are relatively resource-poor such as
Hindi, the problem gets exacerbated.

Some of the approaches in coreference resolu-
tion in Hindi are adapted from coreference resolu-
tion approaches for English. For example, Dutta et
al. (2008) adapt the well-known Hobb’s algorithm
for Hindi. Certain approaches involve application
of linguistic knowledge for co-reference resolu-
tion. Agarwal et al. (2007) propose an approach
based on matching constraints for the grammati-
cal attributes of different words while Prasad and
Strube (2000) and Uppalapu and Sharma (2009)
apply centering theory (Grosz et al., 1995) for
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coreference resolution. Dakwale (2014) proposes
a hybrid approach based on dependency structure
and linguistics constraints to resolve pronominal
references. Mujadia (2017) proposes a hybrid
approach based on Paninian dependency gram-
mar, linguistic rules and resources like DBPedia
and word-embeddings to resolve nominal corefer-
ences.

Note that major focus of the work in coreference
resolution for Hindi has been on anaphora reso-
lution. Anaphora resolution is a subset of more
general coreference resolution problem. Anaphora
resolution focuses on connecting pronouns to their
antecedents which refer to the same entity. It does
not focus on connecting a generic NP to its an-
tecedent(s). Further, prior work for coreference
resolution in Hindi uses supervised learning algo-
rithms which need labeled training data to induce
the classifier(s).

To resolve coreferences among actor mentions
in Hindi narratives, we develop unsupervised
algorithms based on Markov Logic Networks
(MLN) (Domingos and Lowd, 2009). MLNs
combine first order logic rules with probabilistic
graphical models in a single representation. We
encode linguistic knowledge relevant to corefer-
ences in an MLN and use the inference in the MLN
for coreference resolution. Thus, the approach is
unsupervised, avoiding the need for labeled train-
ing data.

Major contributions of this work are: i) To
the best of our knowledge, this is the first at-
tempt at actor coreference resolution for Hindi
narrative text, ii) An unsupervised approach based
on Markov Logic Networks for coreference res-
olution in Hindi, and iii) A set of robust lin-
guistic rules encoded in MLN, despite the ab-
sence of good NLP pre-processing tools (e.g., no
constituency parser or semantic role labeller for
Hindi). The paper is organized as follows: Sec-
tion 2 describes the related work, Section 3 covers
the details of our MLN-based coreference resolu-
tion approach, Section 4 describes the experimen-
tal analysis and Section 5 concludes the work with
some pointers on future work.

2 Related Work

Coreference resolution is an extensively studied
problem in computational linguistics. Several au-
thors have proposed methods for coreference res-
olution. These methods can be broadly classified

into three types of approaches: i) rule based meth-
ods, ii) machine learning based methods and iii)
hybrid methods.

Rule based methods like the Hobb’s algo-
rithm (Hobbs, 1986) represent linguistic knowl-
edge about coreference in the form of rules which
are then used for coreference resolution. These
linguistically motivated rules try to model various
factors of coreference resolution such as gender
agreement, number agreement, semantic relations
like IS-A, semantic similarity, proximity or theo-
ries like centering theory based choice of referring
expression (Grosz et al., 1995). A key limitation
of such rule based approaches is that they require
extensive human efforts to represent and process
linguistic knowledge.

Machine learning based methods on the other
hand are “knowledge-poor” methods (See (Ng,
2017) for an overview ). These methods use
a labelled corpus to train models for corefer-
ence resolution. Recently, several authors have
proposed neural methods of coreference resolu-
tion, e.g. (Clark and Manning, 2016; Lee et al.,
2017). Though, neural methods have shown
promising coreference resolution results as com-
pared to other learning methods, they need a large
amount of labelled data and computational re-
sources. Hence, they can not be applied to low-
resource Indian languages for which a large coref-
erence annotated data is expensive to obtain.

In the context of coreference resolution in Hindi
texts several authors adapted methods for coref-
erence resolution in English. Dutta et al. (2008)
adapted the Hobb’s algorithm, while Prasad and
Srube (2000) and Uppalapu and Sharma (2009)
adapted centering theory based coreference reso-
lution for Hindi. Dakwale (2014) proposes a hy-
brid approach which first applies a set of rules
on syntactic information of sentences and then
incorporates grammatical and semantic informa-
tion into supervised learning methods to resolve
more ambiguous instances. It is important to note
that most of the work for coreference resolution
in Hindi are focused on resolution of pronomi-
nal references and not on generic NPs discussed
earlier. Recently, Mujadia (2017) proposes a
sieve-based hybrid approach for coreference res-
olution of pronouns as well as nominal refer-
ences. The approach uses a set of sieves using
Paninian Dependency Grammar, POS labels, mor-
phology and animacy features, linguistic resources
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like Hindi WordNet, DBpedia derived named dic-
tionary, Word2Vec and GloVe based word embed-
dings. However, this approach is supervised and
hence, needs a labelled dataset.

A recent work by Patil et al. (2018) is the
closest to our proposed approach. They use an
MLN-based approach for resolving actor mention
coreferences in English narrative text. They build
upon the output from Stanford CoreNLP corefer-
ence resolution, whereas we attempt to address the
problem from scratch.

3 Coreference Resolution using MLN

We propose a linguistically motivated approach
for resolving coreferences. As it is difficult and
effort-intensive to develop annotated datasets for
Hindi Coreference resolution, we develop an un-
supervised approach using Markov Logic Net-
works (MLN). MLNs combine logic with proba-
bilistic graphical models. MLN allows representa-
tion of linguistic knowledge characterizing coref-
erences, in the form of weighted first order logic
rules. Weight associated with each rule represents
its strength. An MLN is constructed for a nar-
rative which encodes multiple pieces of informa-
tion regarding actor mentions in the narrative. It
also includes the first order logic rules encoding
the linguistic knowledge. Inference in such an
MLN leads to the most likely coreference links
among the actor mentions, while ensuring maxi-
mum weighted satisfiability of the linguistic rules.

3.1 Predicates

We design several predicates which are needed to
represent the linguistic knowledge in the form of
first order logic rules. There are two types of pred-
icates:

• Evidence predicates: These predicates en-
code observed information regarding actor
mentions and their relationships in a given
narrative. Truth values are known for all
groundings of such predicates.

• Query predicates: Truth values for all or
some of the groundings of these predicates
are unknown. Inference in MLN is needed
to know the most likely truth values for these
predicates.

Table 2 describes in detail various predicates
used in the MLN rules.

3.2 Linguistic Rules

We express linguistic knowledge characterizing
coreferences in the form of first order logic rules in
the MLN. In addition to these rules, evidences are
provided to the MLN in the form of observed true
groundings of all evidence predicates in a given
narrative.
Ensuring Equivalence of Coreferences: The
query predicate Coref represents the coreference
relations among actor mentions, which is required
to be an equivalence relation. Hence, we include
following 3 rules:
Reflexivity: Coref(x, x).

Symmetry: Coref(x, y) ⇒ Coref(y, x).

Transitivity: Coref(x, y) ∧ Coref(y, x) ⇒ Coref(x, z).

Actor Type Consistency: A necessary condition
for any two actor mentions to be coreferences of
each other is that their Actor/Entity types should
be same. E.g., s\tAn (child) and sEmtF (committee)

can never be coreferences of each other because
actor type of the former is PERSON whereas actor
type of the later is ORGANIZATION. The rule is
expressed in first order logic as:
NER(x, t) ∧NER(y, w) ∧ (t 6= w) ⇒ ¬Coref(x, y)

Identical Actor Mentions: If Identical(x, y) is
true for any pair of actor mentions, then x and y
are likely to be coreferences. This is a high con-
fidence rule and hence is associated with infinite
weight.

Identical(x, y) ⇒ Coref(x, y).

Actual pairs of such actor mentions are provided
as evidences to MLN. E.g., In the sentence sr-
dAr pV�l -vt\/tA s�nAnF T�। (Sardar Patel was a

freedom fighter.)2, the actor mention -vt\/tA s�nAnF
(freedom fighter) is predicative nominal of the sub-
ject srdAr pV�l. Such actor mentions generally
refer to the same real life actor and these are often
connected through a copula verb. The evidence
provided here is:

Identical(srdAr pV�l, -vt\/tA s�nAnF)

There are some other copula-like verbs (such as
bn� (became)) which connect coreferent actor men-
tions. E.g., srdAr pV�l up-þDAnm\/F bn�। (Sar-

dar Patel became the Deputy Prime Minister.) Here, the
evidence would be:

Identical(srdAr pV�l, up-þDAnm\/F)

2The English translations are provided only for reading
help, the rules have to be interpreted for Hindi sentences only.

52



Evidence predicates:
NER(x, t) True iff actor mention x is of type t

PronounLike(x) True iff actor mention x is a pronoun or a definite mention
Identical(x, y) True iff actor mentions x and y appear in a linguistic relationship which indicates that x

and y are likely to be coreferences of each other
LexSim(x, y) True iff actor mentions x and y lexicall similar, i.e. they have little edit distance or one is

suffix/prefix of another
NonIdentical(x, y) True iff actor mentions x and y appear in a linguistic relationship which indicates that x

and y are not likely to be coreferences of each other
IsAntecedent(x, y) True iff actor mention y is an antecedent for x which is a pronoun or a definite mention
Query predicates:

Coref(x, y) True iff actor mentions x and y are coreferences of each other

Table 2: Predicates used in MLN rules

Lexically Similar Mentions: If x and y are lex-
ically similar then they are likely to be corefer-
ences. This rule is associated with a finite weight
of 10 (empirically decided using a development
dataset).

10.0 LexSim(x, y) ⇒ Coref(x, y).

Actual pairs of such actor mentions are provided
as evidences to the MLN. Following is an example
of such an evidence:

LexSim(srdAr pV�l, srdAr v¥BBAI pV�l)

Non-identical Actor Mentions: If
NonIdentical(x, y) is true for a pair of ac-
tor mentions (x, y), then x and y are unlikely to
be coreferences. This is a high confidence rule
and hence is associated with infinite weight.

NonIdentical(x, y) ⇒ ¬Coref(x, y).

Actual pairs of such actor mentions are provided
as evidences to MLN. There are several cases for
identifying non-identical pairs of actor mentions.

1. Conjunctions: When two actor mentions are
conjunctions of each other, then it is highly
unlikely that they are coreferences of each
other. E.g., srdAr pV�l aOr a�y n�tAao\
n� gA\DFjF s� m� lAkAt kF। (Sardar Patel and

other leaders met Gandhiji.) Here, evidence pro-
vided to the MLN is:

NonIdentical(srdAr pV�l, a�y n�tAao\)

2. Consecutive actor mentions: If any two ac-
tor mentions appear consecutively in a sen-
tence, then these mentions are less likely to
be coreferences of each other unless both are
nominal mentions. E.g., u�ho\n� EksAno\ kF
sm-yAao\ ko smJA। (He understood the diffi-

culties of the farmers.)

NonIdentical(u�ho\n�, EksAno\)

E.g., v� unk� ag}j T�। (They were his elder

brothers.)

NonIdentical(v�, unk�)

3. Noun modifiers: If an actor mention is mod-
ifying (connected through a “nmod” depen-
dency relation) another actor mention, then
it is unlikely that these mentions are corefer-
ences of each other. E.g., v� Jv�rBAI pV�l
kF cOTF s\tAn T�। (He was Jhaverbhai Patel’s

fourth child.)

NonIdentical(Jv�rBAI pV�l, cOTF s\tAn)

4. Arguments of a single predicate: If two ac-
tor mentions are arguments of a single ver-
bal predicate (except copula or copula-like
verbs), then it is unlikely that these men-
tions are coreferences of each other. In other
words, such arguments represent two distinct
semantic roles of a single verbal predicate.
“Semantic Role Labelling” (SRL) is itself a
difficult problem and there are no annotated
SRL datasets for Hindi. Hence, to find argu-
ments of verbs, we use dependency parsing
as a surrogate for full-fledged SRL. An actor
mention is said to be an argument of a verb
if the verb is ancestor of the actor mention in
dependency tree and there are no other actor
mentions on the path to the verb. E.g., Fig-
ure 1 shows dependency tree for the sentence
srdAr pV�l n� u�h� kr n d�n� k� Ely�
þ�Ert EkyA। (Sardar Patel inspired them not to pay

the taxes.) Here, for the verbal predicate EkyA,
srdAr pV�l (agent) and u�h� (patient) are
its arguments. For all pairs for such argu-
ments of a single verb, we add a soft rule in
the MLN indicating that the actor mentions in
the pair do not refer to a single real life actor.
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Figure 1: Dependency tree for the example sen-
tence

10.0 NonIdentical(srdAr pV�l, u�h�)

Antecedents: For each pronoun, we identify a cer-
tain “antecedent” nominal actor mention. The an-
tecedent mention may precede the pronoun in the
current sentence or be present in the previous sen-
tence. To ensure that there is only one antecedent
(y) for each pronoun (x), we add following rule
with infinite weight:
IsAntecedent(x, y) ∧ (y 6= z) ⇒ ¬IsAntecedent(x, z).

Also, the pronoun (x) is likely to be coreferent
of this antecedent (y). We incorporate this infor-
mation with the following rule. The rule is a soft
rule because it represents a weak assumption.

5.0 IsAntecedent(x, y) ∧ PronounLike(x)
∧¬PronounLike(y) ⇒ Coref(x, y)

Consider following text fragment from a narra-
tive: EksAn a\g}�j srkAr s� kr m�\ C� V kF
mA\g kr rh� T�। tb v� srdAr pV�l s� Eml�।
(The farmers were demanding a discount in the taxes from the

British government. During that time they met Sardar Patel.)

Here, for the pronoun v� (they), we consider Ek-
sAn (farmers) as its candidate antecedent which is
its closest preceding and type-compatible nominal
actor mention. Hence, for the given example, we
add following evidence to the MLN:

IsAntecedent(v�, EksAn)

It is important to note here that even though a\g}�j
srkAr (British government) is the closest nominal
actor mention for v� (they), it gets skipped on
grounds of type incompatibility (ORG vs PER-
SON). Also, this is an inter-sentence rule which
enables us to establish inter-sentence coreference
links.

In addition to pronouns, we identify antecedents
for certain nominal actor mentions which are sim-
ilar to “definite” mentions in English. These nom-
inal actor mentions are generally preceded by a
demonstrative pronoun. E.g., k�vl tFn EryAst�\
Cowkr us lOh p� zq n� sBF EryAsto\ ko
BArt m�\ EmlA EdyA (Leaving only three states, that

Iron Man was able to merge all others into India.) In this
example sentence, lOh p� zq (Iron Man) is a defi-
nite mention because it is preceded by a demon-
strative pronoun us (that). Hence, we find other
antecedent nominal mentions for lOh p� zq, one
of which is likely to be its coreferent.

3.3 Inference

First, an MLN is created for a given narrative
using the above-mentioned rules and evidences.
Then, we run marginal inference in this MLN for
the query predicate Coref(x, y). We select ac-
tor mention pairs (x, y) for which probability of
Coref(x, y) is above a certain threshold. These
pairs represent coreference links. We further add
additional links so as to ensure transitivity of
coreferences and get final coreference clusters.

4 Experimentation Details

In this section, we explain the datasets, ground
truth creation, the experimental setup, evaluation
methodology and results with their analysis.

4.1 Datasets

We select four narratives from Hindi Wikipedia
each corresponding to an important event or per-
son in India’s history and employ them as the
datasets for our experiments. Table 3 describes ba-
sic statistics about the four datasets.

The raw Wikipedia text contained multiple is-
sues which we corrected by performing some ba-
sic cleaning. The steps involved are as follows.

• Spelling correction: We observed multiple
instances of incorrect spellings for words
which we corrected manually by hand. For
instance, the word nbAv (nabaw) was used a
few times in place of intended word nvAb
(nawab).

• Spelling normalization: For difficult names
like EsrAj� dOlA (Sirajudaulah) a single
spelling was fixed and its multiple variations
were normalized to the chosen canonical
one. We also did this for names occurring
with incorrect spellings. For example, we
replaced the incorrect pF. vF. m�nn (P. V.

Menon) with the correct utterance vF. pF. m�nn
(V. P. Menon)

• Sentence splitting: The sentence end marker
in Hindi is the purn viram sign । which is
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Dataset #Sentences #Words #Actor
Mentions

sardar3 90 1459 305
plassey4 70 1214 243
shivaji5 70 1224 256
emergency6 56 1221 197

Table 3: Dataset details7

different from the English full stop (.) mak-
ing it an unambiguous sentence end marker.
Sentence splitting can thus be performed eas-
ily by splitting on “। ” i.e. the purn viram
followed by a space. However, at multiple
places in the Wikipedia text sentences were
either ending abruptly without an end marker
or the next sentence started right behind the
marker without any space. These cases were
handled by splitting sentences manually.

• Wiki meta-data removal: The narratives were
obtained directly from the Wikipedia articles
available on the web and hence, Wikipedia
meta-data such as reference numbers, bullets,
inline links, etc. were present. These un-
wanted characters were also removed.

Apart from the four Hindi Wikipedia based
datasets, we use another dataset IIITH Hindi
Coreference (Dakwale, 2014; Mujadia, 2017)
dataset. Unlike the earlier four datasets, corefer-
ence annotations were available for IIITH dataset.
However, we had to manually revise the annota-
tions due to the following reasons:

• The dataset contains annotations for non-
actor mentions as well. E.g., EPSm mho(sv
m�\ þkAf JA kF EPSm aphrZ kA BF
þFEmyr honA h{। is EPSm m�\ EbpAfA
bs� n� BF btOr aEBn�/F kAm EkyA h{।
(In the film festival, Prakash Jha’s film Apaharan also

has its premier. Bipasha Basu has acted in the movie

as a lead actress.) Hence, we discarded the non-
actor mentions like EPSm mho(sv (film festi-

val), EPSm (film) and aphrZ (Apaharan).

• The dataset did not annotate entity types
(PERSON, ORGANIZATION or LOCA-

3https://hi.wikipedia.org/wiki/v¥B BAI pV�l
4https://hi.wikipedia.org/wiki/ÚAsF kA phlA y� �
5https://hi.wikipedia.org/wiki/EfvAjF
6https://hi.wikipedia.org/wiki/aApAtkAl (BArt)
7The datasets and ground truth will be made available if

the paper gets accepted.

TION) for the mentions. Hence, we added
actor types for all the actor mentions.

We manually revised annotations for 10 news arti-
cles out of the 275 news articles contained in the
original dataset. These 10 new articles amounted
to 156 sentences, 3412 words and 463 actor men-
tions.

4.2 Developing Ground Truth
An important part in the development of the
ground truth is identification of actor mentions of
the three types: named entities, generic NPs and
pronouns for each dataset. The following tagging
guidelines were set for guiding the actor mention
identification.

• Tag all named entities occurring as sepa-
rate noun phrases. For example, The phrase
mhA(mA gA\DF (Mahatma Gandhi) needs to be
tagged in mhA(mA gA\DF k� EvcAro\ s� v�
þ�Ert h� e । (He was inspired by Mahatma Gandhi’s

thoughts.)

• Tag all named entities occurring as part of a
noun phrase even if the whole noun phrase
is not a PERSON, LOCATION or ORGA-
NIZATION. For example, bArXolF (Bardoli)

needs to be tagged in bArXolF s(yAg}h m�\
pV�l kA mh(vp� Z yogdAn rhA। (Patel had a

pivotal role in the Bardoli Satyagraha.)

• Tag all generic NPs and pronouns which re-
fer to PERSONs, LOCATIONs and ORGA-
NIZATIONs.

• Tagging of certain generic NPs needs to be
carried out depending on the context they oc-
cur in and the noun they modify. For ex-
ample, in the sentence up-þDAnm\/F sr-
dAr pV�l n� BArt ko joXn� kA kEWn
pEr�m EkyA । (Deputy Prime Minister Sar-

dar Patel performed the difficult hardwork for unit-

ing India.), the generic phrase up-þDAnm\/F
(Deputy Prime Minister) behaves as an adjecti-
val modifier to srdAr pV�l (Sardar Patel) and
hence, the whole phrase up-þDAnm\/F sr-
dAr pV�l (Deputy Prime Minister Sardar Patel)

gets marked as a single mention. However
in the sentence BArt k� up-þDAnm\/F sr-
dAr pV�l n� EryAst EvBAg kA gWn kFyA
। (India’s Deputy Prime Minister, Sardar Patel consti-

tuted the States Ministry.), the generic phrase up-
þDAnm\/F would be tagged separately as it is
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being modified by the phrase BArt k� (In-

dia’s). So, four segments should be marked
from the sentence namely BArt (India), up-
þDAnm\/F (Deputy Prime Minister), srdAr pV�l
(Sardar Patel) and EryAst EvBAg (States Min-

istry).

Another important part of the ground truth is an-
notating a canonical mention for each actor men-
tion to which it resolves to. Each canonical men-
tion represents a cluster of actor mentions in which
each mention is a coreference of other mentions.
Also along with each actor mention, the type of
the actor (PERSON, LOCATION or ORGANIZA-
TION) is also specified by the annotator.

Four annotators were employed for creation of
ground truth data. Each annotator tagged one
dataset and then cross verified it with one other an-
notator. Tricky cases were discussed and resolved
unanimously making sure the tagging guidelines
were met and all annotators agree.

4.3 Experimental Setup

To tune the set of rules and their weights in the
MLNs, we use the sardar dataset as a develop-
ment dataset. The rest three datasets are only used
for experimentation and reporting results. Also, as
the main aim of the paper is to perform corefer-
ence resolution, we use the mentions identified in
the text as a part of the ground truth as a starting
point and run the MLN based algorithm to resolve
these gold mentions.

To capture linguistic knowledge for predicates
of the MLN we need the dependency parse of
Hindi sentences. We used the Parsey Universal
parser8, available as part of the Google’s Syn-
taxnet toolkit, which is a state-of-the-art open
source dependency parser for 40 different lan-
guages.

For the implementation of the MLN, we use
the open source MLN inference engine known as
tuffy9 (Niu et al., 2011). It supports marginal and
MLE based inference. We use marginal inference
in tuffy implemented through the MC-SAT algo-
rithm with number of samples as 100. As this is
an approximate inference, we run the inference for
each narrative five times and report results aver-
aged over the five runs.

8https://github.com/tensorflow/models/
blob/master/research/syntaxnet/g3doc/
universal.md

9http://i.stanford.edu/hazy/tuffy/

Dataset Setting MUC B3 CEAFe Avg

sardar
B1 74.63 59.33 50.57 61.51
B2 70.55 69.67 63.57 67.93
MLN 73.35 71.98 66.05 70.46

plassey
B1 72.3 53.03 47.93 57.75
B2 62.36 61.39 62.74 62.16
MLN 68.09 63.33 63.31 64.91

shivaji
B1 71.92 57.01 55.50 61.48
B2 70.96 70.20 69.02 70.06
MLN 71.07 70.00 65.88 68.98

emergency
B1 70.14 46.25 45.17 53.85
B2 62.52 62.95 61.35 62.27
MLN 62.93 63.62 62.83 63.12

IIIT-H
B1 67.53 53.51 42.84 54.62
B2 59.24 50.42 38.81 49.49
MLN 64.25 55.88 45.00 55.04

Table 4: F1 measures according to various metrics

4.4 Baselines and Evaluation

We developed following baseline approaches for
Coreference Resolution of actor mentions:

1. B1: Here, a pair of actor mentions are said
to be coreferences of each other if: i) they
are lexically similar or ii) one of the mentions
is pronoun and other is its type-compatible
closest antecedent. Final coreference clusters
are obtained by getting a transitive closure of
such corefering pairs.

2. B2: This baseline uses the linguistic rules
proposed by Patil et al. (2018). None of
these rules capture any inter-sentence relation
among actor mentions.

We evaluated the output of our MLN based sys-
tem using three metrics widely used in the litera-
ture to report coreference resolution results. They
are the MUC (Vilain et al., 1995), the B3 (Bagga
and Baldwin, 1998) and the CEAFe (Luo, 2005)
metrics.

Table 4.4 reports the results obtained on the four
datasets. It is important to note here that the ap-
proach proposed is unsupervised. Hence, the ob-
tained accuracies are encouraging and entail fur-
ther exploration.

4.5 Analysis

In Table 4, we report the comparative performance
of our approach (MLN) with baselines. Our ap-
proach outperforms baseline B1 on all datasets
and baseline B2 (Patil et al., 2018) on 4 out of 5
datasets. Even though baseline B2 is also based
on MLN, our approach uses a richer set of rules
such as:
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• Using the antecedent rule which enables us to
link inter-sentential coreferences to a moder-
ate extent. However, baseline B2 only uses
intra-sentence rules.

• Finding antecedents not only for pronouns
but also for definite mentions

• Using SRL-like predicate-arguments for
identifying non-identical actor mentions

In general, English coreference resolution tech-
niques exploit gender and number compatibility in
addition to entity type compatibility. However, in
Hindi, we observed that gender and number com-
patibility do not hold in large number of cases. As
an example, the pronoun v� (they / he) may refer to
the singular mention srdAr pV�l (Sardar Patel) or
the plural mention EksAno\ (farmers) depending on
the context. This is an example of a Hindi-specific
phenomenon of using plurals to indicate respect
(aAdrATF bh� vcn). Similarly, the pronoun u�h�\
(him / her) may refer to either the masculine mention
s\jy gA\DF (Sanjay Gandhi) or the feminine mention
i\EdrA gA\DF (Indira Gandhi) depending on the con-
text.

We also observed that considering only the
nearest nominal actor mention as the antecedent,
is not always correct. For example, in the sentence
lAl� þsAd yAdv k� sAl� s� BAq yAdv n� un
pr glt EVkV EvtrZ kA aArop lgAyA (Lalu

Prasad Yadav’s brother-in-law Subash Yadav accused him of

incorrect candidacy allocation.), the pronoun un (him /

her) actually refers to lAl� þsAd yAdv (Lalu Prasad

Yadav) and not s� BAq yAdv (Subash Yadav) which is
the closest type-compatible actor mention. This
requires further exploration on using multiple pre-
ceding actor mentions as antecedents.

5 Conclusion and Future Work

In this paper, we focussed on resolving corefer-
ences of actor mentions in Hindi narrative text.
The proposed approach is linguistically grounded
and uses Markov Logic Networks (MLN). The
MLN framework proved to effective in represent-
ing various pieces of information characterizing
linguistic knowledge relevant to coreference res-
olution. Unlike neural or other supervised ap-
proaches, our approach does not need a large
amount of coreference annotated data. We also
contributed four new datasets annotated with ac-
tor mentions and their coreferences. Our approach

outperformed two baselines including a strong re-
cent one developed for English narrative text.

In future, we plan to build an end-to-end system
which first identifies actor mentions and then re-
solves coreferences among them. We also intend
to analyze the robustness of our rules in this sce-
nario of using predicted actor mentions.
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Abstract

We introduce a supervised deep learn-
ing model for Indian languages namely,
Hindi and Urdu which uses minimal syn-
tax and yet improves over the current base-
line for these languages significantly. We
progress with three different models in-
spired from the recent advancements in
this field. In the first model we make use
of sequence modeling to generate depen-
dency path embeddings and jointly learn-
ing the classification process i.e., Identi-
fication and Labeling of arguments. The
second model is a syntax-agnostic model
where we encode the full sentence using
a bi-directional LSTM encoder only using
the raw words/tokens. The third and the
final model adds dependency label to the
previous model making it syntax-aware
and performs very well compared to the
other models. Finally, we talk about evalu-
ation metrics and analysis of these models.

1 Introduction

Semantic role labeling (SRL) is one of the fun-
damental tasks in Natural Language Processing
(NLP) which aims to automatically learn about the
predicate-argument structure for each predicate
in given a sentence as the input. It is a type of
shallow semantic parsing which labels all the
involved constituents in a sentence pertaining to
each verb (predicate), answering queries such
as who did what to whom, when, and where
etc. Semantic roles for a predicate generally are
Agent, Patient etc., and adjuncts like Temporal,
Locative, Cause etc. Since SRL provides a
semantic analysis of a sentence, it can be used in
many fields of NLP. Applications of SRL have
been shown in topics like information extraction

(Bastianelli et al., 2013; Christensen et al., 2010),
question-answering (Pizzato and Mollá, 2008;
Shen and Lapata, 2007) and machine translation
(Liu and Gildea, 2010). SRL has been a trending
topic in the research areas of NLP and as a result
we have seen great contributions in the form
of systems and datasets for various languages.
Though much work has been done towards SRL
for resource-rich languages like English and
Chinese but SRL for Indian Languages (ILs) was
pioneered quite recently (Nomani and Sharma,
2016) . Following which another system was
recently published (Gupta and Shrivastava, 2018).
Both these systems are based on traditional
approaches towards SRL as seen in Gildea and
Jurafsky (2002) and Xue and Palmer (2004).
In this work, we try to apply relatively recent
approaches for SRL which include the use of
neural networks and find out which works to be
the best. Formally, we build three systems-
Model A: Encoding paths between constituents
and the predicate using LSTM
Model B: Encoding the whole sentence in a
bidirectional LSTM without using any syntax at
all.
Model C: Adding a syntactic feature to Model B
becoming syntax-aware.

Model A is an extension for the traditional
approach where we, (1) first perform Argument
Identification i.e., binary classification and (2)
then Argument Classification on the probable
arguments passed on by step 1. This is often
done by training classifiers like SVM on features
extracted from the training data. The features are
based on syntactic information which is crucial for
this approach (Punyakanok et al., 2008). In this
model, we find an embedding for the dependency
path between a constituent and the current predi-
cate and combine that with other features as used
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in earlier systems (Roth and Lapata, 2016). This
model performs slightly better than the current
baseline in ILs (Gupta and Shrivastava, 2018).
The gold data is a human-annotated corpus with
fully descriptive dependency trees, it has a few
chances of error. But in reality we would be given
a raw input sentence that would then be parsed
by the system and could bring in more error than
gold data and affect training badly. Results using
automatic parses in the first work (Nomani and
Sharma, 2016) verify this. So we apply the recent
advancements in SRL which are syntax-agnostic.
Model B takes the input as a raw sentence in form
of tokens and the only prior information is what
are the predicate(s) in this sentence. The sentence
is considered as a sequence and we perform SRL
as a sequence labeling task. Surprisingly, even
for such low resourced language as Hindi and
Urdu are, this outperforms Model A and hence
the previous baseline. Model C, along with the
words adds the dependency label as a feature in
the sequence and consequently performs even
better than Model B which can be attributed to the
use of syntactic feature(s). This makes it the best
system available for Hindi and Urdu.

2 Related Work

There are mainly two ways to approach seman-
tic role labeling. The first approach is a tradi-
tional one which uses some features extracted out
of the gold data. The gold data is a syntactic
parsed data with details such as constituent bound-
aries, syntactic categories, the whole tree struc-
ture of the sentence with syntactic relations, part-
of-speech(POS) tags for each token in the sen-
tence etc. These features are then used to train a
linear classifier like SVM for the tasks of Argu-
ment Identification and Argument Classification
subsequently (Xue and Palmer, 2004). These tasks
can also be done as a single multi-label classi-
fication task (Surdeanu and Turmo, 2005). The
best predicate-argument structure is chosen at in-
ference stage by techniques like integer linear pro-
gramming (Punyakanok et al., 2004) or dynamic
programming (Täckström et al., 2015). At this
stage, structural constraints may lead to improve-
ment in results (Punyakanok et al., 2008). These
constraints are either linguistically driven or they
exist as a result of the annotation process.

In the last few years, significant work has been
done towards fully syntax-agnostic approaches us-

ing deep neural networks. Collobert et al. (2011)
was the pioneer in introducing such an approach
which considers SRL as a sequence labeling task
using a convolutional neural network. It takes as
input the raw sentence and the constituent bound-
aries. Although, their approach could not beat
the best systems which were still using traditional
approaches. The breakthrough in syntax-agnostic
SRL was done by Zhou and Xu (2015) whose sys-
tem differs from Collobert et al. (2011) by us-
ing a Deep Bidirectional LSTM network which
takes only the predicates indices as input along
with the raw sentence. More recently, an end-to-
end semantic role labeler was built by He et al.
(2017) in which they first identify the predicate(s)
in a given input sentence and then for each iden-
tified predicate, label the arguments with respec-
tive boundaries in the sentence. In such mod-
els, the raw sentences tokens are first converted
to vector form embeddings taken from pre-trained
models. All the above was done for span-based
SRL. Marcheggiani et al. (2017) did a similar ap-
proach for dependency based SRL. In dependency
based SRL, the task it to label the head words of
constituents given the gold data has a dependency
tree structure. The data for both Hindi and Urdu
uniquely have a dependency parsed structure with
span-based labeling unlike other languages like
English, Chinese etc. where span-based SRL is
done for syntactic parses whilst head/dependency-
based SRL is done for dependency parses. Before
these systems became popular, neural networks
were used in syntax-aware systems also (FitzGer-
ald et al., 2015; Täckström et al., 2015; Roth and
Lapata, 2016).

The first one to work on SRL for ILs was
Nomani and Sharma (2016). They use simple
features like dependency labels, syntactic cate-
gories, head word of the chunk, head words POS
tag, Named entities etc. Gupta and Shrivastava
(2018) improved the labeler by introducing fea-
tures like word embeddings to address the data
sparsity issue, path from chunk1 to predicate and
post-positionals of the chunk. These fall under
the traditional approaches discussed above. Our
first model uses neural method but only to model
the dependency path and therefore it still majorly
relies on syntactic features. Vaidya et al. (2011)
has shown that the predicate-argument structure is

1Similar to previous work, we call a word-
span/constituent as a chunk.
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closely related to dependency relations. The same
was proven in the system by Nomani and Sharma
(2016) where dependency labels used alone gave
good F1-scores for both Hindi and Urdu. Though
when they used automatic labels, there is a huge
drop in results mainly due to errors in the depen-
dency parse. Dependency/Syntactic parsing in it-
self is a difficult problem and hence we build a
fully syntax-agnostic model to eliminate our re-
liance on syntax. Although, our third model shows
that syntax can still improve performance if it is
free from errors.

3 Models

3.1 General Pipeline

The general architecture of SRL is explained in
this section. The first step is to identify seman-
tic predicates in the input sentence. In English
propbank, there are both verbal and nominal predi-
cates (Hajič et al., 2009), whilst in Hindi and Urdu
only verbal predicates are present as of now. Next,
the system should disambiguate word-sense of the
predicate in consideration. Propbank has multi-
ple senses for verbs and each sense of the same
verb can have different labels. This step can be
used to improve training or it can just be used
at inference time by looking in the corresponding
frameset files, the specific roles a verb with given
sense can have. The next two steps are Argument
Identification and Argument Classification. Argu-
ment Identification is done because a high num-
ber of candidate arguments have the role NULL
which may affect the decision boundaries if a clas-
sifier is learned directly on full candidates (Xue
and Palmer, 2004). Argument Classification is
then done to label the remaining candidates which
are the most potential arguments from the previ-
ous step. For Hindi and Urdu, labeling is done
at the chunk/constituent level. A re-ranker using
integer linear programming or dynamic program-
ming can be applied as a last step to get the best ar-
gument structure for the sentence. For each pred-
icate, we have the identified arguments, each with
its scores for every role class. Now we may ap-
ply some constraints(structural/linguistic) on the
possible output structure and penalize some of the
outcomes. Finally we get the result with the best
possible predicate-argument structure.

3.2 Sequence Modeling and LSTM

The long short-term memory (LSTM) network is
an alternative architecture for a Recurrent neu-
ral network (RNN) where each block is a LSTM
cell/unit instead of a typical neuron. RNNs pro-
cess a sequence token by token where each block
is given the previous information plus the current
token information.
x and y are the input and output respectively, (t)

denotes the time step, wmf and wmf are the matrix
from input or recurrent layer to the hidden layer
and σ is the activation function. Without y(t−1)

term, the RNN model becomes a feed forward net-
work only with number of layers equal to sequence
length. RNN is shown in the equation below:

y(t)m = σ(
∑

f

wmf x
(t)
f +

∑

i

wmi y
(t−1)
i ) (1)

When we take one-hot encoded/binary-coded
features(as vector), the representation is not
effective since data for Hindi and Urdu is quite
sparse and vector size is large. To address this, we
experiment with recurrent networks to improve
the feature representation/encoding and reduce
its dimensionality. We use RNNs variant, the
LSTM network because it is known to handle long
range dependencies (Zhou and Xu, 2015) and in
a sentence, the current word is quite dependent
on distant words. Also, gradient parameters may
vanish or explode especially in processing long
sequences (Bengio et al., 1994). To resolve these
issues, long short-term memory (Hochreiter and
Schmidhuber, 1997) was presented.

LSTM Network. Long short-term mem-
ory(LSTM) (Hochreiter and Schmidhuber, 1997;
Graves et al., 2009) has a modified architecture
with respect to a simple RNN. Memory blocks
are used instead of the hidden neural units. The
memory block may contain several cells which
are activated three multiplicative gates: the input
gate, the forget gate and the output gate. These
changes improve the RNN model for sequence
modeling. Figure 1 shows a basic LSTM cell.
y is the output from memory block. h is the

hidden value which equals ′y′ from the basic RNN
model discussed above. c is the cells state value
for block m. Number of cells in a block is fixed
to be one. α, β and γ stand for the input, forget
and output gates activation values. All three mul-
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Figure 1: LSTM memory block with one cell.
(Graves et al., 2009)

tiplicative gates have different activation σ respec-
tively and the computations are done as follows:

h(t)m = σh(
∑

f

wmf,hx
(t)
f +

∑

i

wmi,hy
(t−1)
i )

α(t)
m = σα(

∑

f

wmf,αx
(t)
f +

∑

i

wmi,αy
(t−1)
i +wmα c

(t−1)
m )

β(t)m = σβ(
∑

f

wmf,βx
(t)
f +
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i

wmi,βy
(t−1)
i +wmβ c

(t−1)
m )

γ(t)m = σγ(
∑

f

wmf,γx
(t)
f +

∑

i

wmi,γy
(t−1)
i +wmγ c

(t)
m )

(2)

The gates allow the cells to store and access
information over long periods of time/long steps.
When the input gate is closed, the new coming in-
put information will not affect the previous cell
state. Forget gates remove some historical infor-
mation over time steps. The output gate should
be open for a cell, if rest of the network has to
access this cells stored value. In NLP related
problems, structural knowledge can be accessed
by training the sequences both forward and back-
ward so that the contextual information from left
as well as right can be incorporated for better in-
ference. Thus bi-directional LSTM (BiLSTM)
was proposed (Schuster and Paliwal, 1997). The
BiLSTM which we use is slightly different from

their’s. We take a LSTM layer to processes the se-
quence in forward direction whose output is taken
by the next LSTM layer as input, where the con-
nections are in backward direction. Pairs of these
forward and backward layers can be stacked to-
gether to make a Deep BiLSTM proposed in ear-
lier work (Zhou and Xu, 2015).

3.3 Model A - Path embedding model

This model closely follows the architecture of
PathLSTM (Roth and Lapata, 2016) and is shown
in Figure 2. Given a candidate chunk, first we find
the path from this chunk to the predicate being
considered and initialize its embedding as follows.
Each node in the path is represented as the head-
word embedding, POS tag of the chunk, depen-
dency relation with the parent chunk, all three con-
catenated. Note that this path makes connections
at the chunk level only and ends at the predicates
chunk. The head-word embeddings are pre-trained
embeddings computed similarly as previous work
(Gupta and Shrivastava, 2018). The POS tag and
dependency relation are given a one-hot vector ini-
tialization. Now, we use our sequence model to
compute the vector representation of this path.

This differs from the previous work (Gupta
and Shrivastava, 2018) as they represent each
distinct path as a one-hot encoded vector which is
probably not a very optimal way since the number
of distinct paths is quite high. For example,
in Hindi propbank, even considering only the
chunk POS categories2 in our dependency paths
from argument to predicate, nearly 2400 unique
paths are present in the training data. If we take
the dependency labels only in path (considering
direction as argument to predicate), there are
around 5900 distinct paths out of which major
paths are k1↑root, k2↑root, ccof↑root etc., which
occur for only 3.7%, 2.7% and 2.4% respectively
(root signifies the predicate). This implies, for
almost all paths amongst these, the training data
is very less to make any significant improvement
in learning from path as a feature. Further, using
one-hot implies that we assume that certain paths
are likely to impact role labeling in a similar way
which may not be true (Roth and Lapata, 2016).
Thus, some representation learning should be
done, instead of taking the full path as it is.

The dependency path is given to the LSTM

2Number of distinct POS categories at chunk level is 12.
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Figure 2: Model A - Path embeddings with LSTM

network as a sequence. The path is taken from the
argument chunk to the predicate chunk. Particu-
larly, an element xi corresponds to the head-word
of the chunk wi, followed by POS category of
chunk and then its dependency relation with the
next chunk in path, xi+1. The last blocks output
state from the network gives us the embedding of
this path. As shown in Figure 2, the embedding
of a dependency path, specifically is hn which
is returned by the LSTM layers last block after
the input of the last element of the sequence, xn,
which corresponds to the initialized encoding of
the predicate’s chunk.

We use syntactic categories, dependency roles
and head-word of chunks in the path because all of
them can affect the decision of role labeling (Roth
and Lapata, 2016; Gupta and Shrivastava, 2018).

Model A is depicted in Figure 2 and its com-
ponents are: (1) L is the LSTM network which
takes input of the length of our path where each
node is initialized as discussed above, (2) F is
the additional input layer which takes features
other than the path as input, (3) layer C concate-
nates two neural layers: the upper block is a lin-
ear neural layer which takes last node (hn) of
L (dependency path embedding) as input and the
lower block is another linear neural layer which
takes input from F, (4) layer A applies an acti-
vation function on the input it receives, and fi-
nally (5) S is a softmax classifier which produces
output for each class k ∈ K depending on the
task(identification or classification). This makes
a joint learning model which learns dependency
path embeddings and performs SRL as well. For-
mally, we are given a initialized dependency path
X with elements xi ∈ {x1, ..., xn} where n is the
length of the path and the features F as one-hot en-
codings. The LSTM formalization computes hid-
den embeddings at each step hi ∈ {h1, ..., hn} but

we only need the embedding hn which makes our
LSTM network slightly modified than the usual
one because gradient parameters will be updated
depending on just the last blocks output. We for-
malize the next layers as follows :

C = (WLhn + bL)|(WFF + bF )

A = relu(C)

Sk = Ak/
∑

k∈K
Ak

We perform the training for argument identifica-
tion and argument classification separately follow-
ing the findings from earlier work in English (Xue
and Palmer, 2004) as well as for Hindi and Urdu
(Nomani and Sharma, 2016). This also means that
different path embeddings are learned depending
on what the task is. The features F are taken as it is
from the current baseline (Gupta and Shrivastava,
2018) for ILs for making our comparison more ob-
vious. These features are - predicate word(verb)
root form, its suffix separately, head word of the
candidate chunk taken from pre-trained embed-
dings, candidate chunks vibhakti(post-positional),
head word POS tag, candidate chunks POS cate-
gory.

3.4 Model B - Syntax-agnostic deep model

This model takes the sentence as a sequence pro-
cessed word by word. A sequence say of length L
is processed np times if the number of predicates
in the sentence is np. Hence, the time complexity
of this model is O(npL). At each step in the se-
quence, the current words embedding and a binary
bit indicating whether word is itself the predicate
or not, is given as the input. These are the only
features needed to train our network.

Given a sentence-predicate pair (s, v) as the in-
put, we have to predict the output sequence y.
We have used IOB tagging (Collobert et al., 2011;
Zhou and Xu, 2015) for this problem. Therefore,
each yi ∈ y should belong to the set of IOB tags.
The set contains the tags, O - is given to words out-
side the argument chunk, Bk - is given to words at
beginning of the chunks and Ik - is given to the
words inside the chunks. k denotes the various
roles shown in section 4. Let the length of the se-
quence be n, where n = |s| = |y| . Our goal is
to find the highest scoring tag sequence y from all
the possible tag sequence for an input. Our model
uses a Bidirectional LSTM (BiLSTM) network to

63



learn a locally decomposed scoring function deter-
mined by the input:

∑n
t=1 logp(yt|s) . To incor-

porate constraints like IOB order, structural con-
straints(explained later in this section), we extend
the scoring function (He et al., 2017) with penal-
ization terms:

f(s, y) =
n∑

t=1

logp(yt|s)−
∑

c∈C
c(s, y1:t)

Given the input s and length-t prefix y1:t,
each constraint function c applies a non-negative
penalty on the scoring function f .

The model is depicted in Figure 3. The input
colored as red is the raw word, binary bit bi to
indicate whether word wi is the predicate. The
dotted box next to it is shown to incorporate
additional features if required, which is basically
our third model and not of use in this model.
The input is then embedded as the concatenation
of word embedding and the binary bit at the
embedding layer. The next layer is the beginning
of our BiLSTM network. Layer Lk is forward
if k is odd and backward if k is even. We chose
the number of layers as two for reasons given
in section 6. Recent best works (Zhou and Xu,
2015; Marcheggiani et al., 2017; He et al., 2017)
in English SRL have used up till 8 layers. Finally,
the output of this goes to a softmax layer to
compute a locally normalized distribution over
the output tags.

Constrained Decoding. The approach above
does not yet apply any constraints on the output
structure. We use A search over tag prefixes
to apply constraints on the output structure at
decoding time (He et al., 2017). We list some
example constraints as follows:
IOB Constraints: We need to ensure that our
system does not produce invalid IOB tagging
such as Bk tag followed by Ik tag or say I-ARG0
followed by B-ARG1 etc. We apply infinitely
high penalty for such transitions.
SRL Constraints: Though there have been no
constraints described in the data or in previous
work for Hindi and Urdu propbanks, but some
structural constraints have been applied for En-
glish SRL (Punyakanok et al., 2008; Täckström
et al., 2015). We only experiment with the Unique
core roles constraint, i.e., numbered arguments
(ARG-0,1,2,3) can occur at most once for each

Figure 3: Model B and C - 2 Layer BiLSTM
model.

predicate.

3.5 Model C - Syntax-aware deep model
We build a third model to see the effect of adding
syntax to Model B which is fully syntax agnostic.
Going with the findings by Nomani and Sharma
(2016) that dependency label alone gives great re-
sults, we go ahead with it as the only feature to
be used. In Figure 3, the red colored input with
dotted box is meant to incorporate any other fea-
tures and this is where we add dependency label.
Since the dependency parsing in Hindi and Urdu
propbanks is only till the chunk level, so a whole
chunk, i.e., all tokens inside are assigned the same
dependency relation label.

Formally, at the embedding layer, we now con-
catenate embeddings of the word, the binary bit
indicating if this word is the predicate and the de-
pendency role encoded as a one-hot vector. After
this, the training is exactly same as model B.

4 Dataset

We carry out our experiments on Hindi Propbank
and Urdu Propbank exactly on the sections used
in earlier work. We use the same train and test set
for both the languages. Hindi and Urdu propbank
are still in the process of annotation. These are
build on top of the respective treebanks which has
dependency parsed trees with parsing up till the
chunk level. The semantic label annotation is also
done at chunk level. Chunk boundaries, POS cate-
gories of tokens as well as the whole chunk, mor-
phology features etc. are already annotated in the
gold corpus. The treebanks and hence the prop-
banks (since it is build on treebank) of both lan-
guages are represented in the Shakti Standard For-
mat (Bharati et al., 2007). Gupta and Shrivastava
(2018) did a 5-fold cross validation on this data
and the results showed a very slight change with

64



respect to the train-test split used earlier (Nomani
and Sharma, 2016). This shows that the data dis-
tribution in the train-test splits is normalized and
hence, we don’t perform cross-validation on our
models in this work. They have also given a good
explanation about the data set but they missed to
give out any statistics about the data. Therefore,
we decided to provide full details on the data with
this work and show them in Table 1. The exact
data file names used for training and testing are
listed in section 8 of this paper.

Hindi train Hindi test Urdu train Urdu test
Sentences 1643 448 4657 1234

Tokens 36690 9827 133058 35532
Final Sentences 1300 358 988 309

Final Tokens 30141 8285 33374 10628
Propositions 2309 631 1192 391

Verbs 166 94 40 24
Arguments 5872 1620 3745 1207

ARG0 1185 320 433 137
ARG1 2046 559 624 210
ARG2 175 33 99 27
ARG3 4 0 14 2

ARG2-ATR 352 77 53 8
ARG2-GOL 61 13 4 9
ARG2-LOC 54 11 137 54
ARG2-SOU 46 14 79 33
ARGM-LOC 679 210 399 136
ARGM-MNR 350 106 67 21
ARGM-TMP 328 97 210 72
ARGM-ADV 131 38 194 52
ARGM-PRP 114 31 102 26
ARGM-DIS 94 34 25 10
ARGM-EXT 92 23 10 4
ARGM-CAU 83 29 46 4
ARGM-MNS 42 13 24 7
ARGM-DIR 20 8 6 2
ARGM-NEG 7 2 13 1
ARGM-PRX 2 1 1194 393
ARGM-VLV 0 0 0 0
ARGM-MOD 2 0 1 0

ARGA 0 0 1 1
ARGC 0 0 0 0

Table 1: Hindi and Urdu Propbank data statistics.

Final Sentences and Final tokens signify the
numbers after filtering out sentences with no pred-
icate. The total number of distinct verbs in full
Hindi and Urdu datasets after filtering are 186 and
46.

5 Experiments

Evaluation metrics. To compare Model A with
the previous works, we have used the same eval-
uation metric as used by them, which is to give
the results of the tasks of identification and clas-
sification separately. Since model B and C do
not perform identification and classification sep-
arately, we cannot compare this directly to results

of previous works and model A. We propose the
use of the evaluation script used for Carreras and
Màrquez (2005). It gives a more perceivable un-
derstanding of the results of a model since it com-
pares the actual sentences, one-to-one from the
gold corpus and from the predictions. Accord-
ing to the script, a prediction is counted correct
if and only if it has the exact same chunk bound-
ary and the same label. We also project the results
of Model A to test data sentences and evaluate it
with conll 2005 script to make a clear comparison
of all models we built.

5.1 Model A
We train different networks for argument identifi-
cation and classification using the PyTorch library
for deep neural networks. For direct comparison
with previous work, features other than path are
same as the ones used in previous work (Gupta and
Shrivastava, 2018) and evaluation metric is also
the same. The hyper-parameters of the model are
as follows:

Learning rate for identification is 0.001 and for
classification is 0.0001. Dropout rate is 0 for both
the tasks and hidden layer size of LSTM network
is 100 for both the tasks. Layer C is composed
of two neural blocks each of size 100, whose out-
put of size 200 is sent over to layer A after con-
catenation. We have used Cross Entropy function
to compute loss and Stochastic Gradient descent
(SGD) for optimizations. The model was run for
200 iterations for identification task and 300 itera-
tions for classification task. The results for Hindi
and Urdu are given in comparison with their cor-
responding state-of-the-art in Table 2 and Table 3
for identification and classification respectively.

Language Model Precision Recall F1-score
Hindi Gupta et. al 91.41 90.49 90.94

Our Model 93.35 93.29 93.32
Urdu Gupta et. al 92.05 91.49 91.76

Our Model 91.50 91.17 91.33

Table 2: Argument Identification results.

Language Model Precision Recall F1-score
Hindi Gupta et. al 65.04 66.62 65.80

Our Model 70.23 72.25 71.22
Urdu Gupta et. al 86.72 86.37 86.54

Our Model 85.57 85.52 84.73

Table 3: Argument Classification results.
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5.2 Model B and C

Our BiLSTM has only 2 layers - 1 forward LSTM
and 1 backward LSTM. The hidden dimension
is set to be 300. A softmax layer for predicts
the output distribution. All weight matrices of
the BiLSTM are initialized as random orthonor-
mal matrices as described in Saxe et al. (2013).
The pre-trained embeddings for both Hindi and
Urdu are taken from Fast-Text (Bojanowski et al.,
2017). Tokens that are not present in the pre-
trained model are given a randomly initialized em-
bedding. Size of the embedding is 300 for both
languages.
Training: We use Adadelta (Zeiler, 2012) as op-
timizer with ε = 1e6 and ρ = 0.95 which are
also the default parameters available in the pro-
posed paper. We use mini-batches of size 50. We
clip gradients with norm larger than 5 and set the
RNN-dropout probability to 0.1. All the models
are trained for 300 iterations without any early
stopping since we dont have a development data
to check the development loss. In the final model
we only use the IOB constraints.

6 Results and Analysis

The problem with Model A is that it also depends
on a feature template which can be language/data
specific. Hindi propbank was created automat-
ically while Urdu was purely human-annotated,
this is why Urdu’s dataset is better and thus it gives
better results. The Urdu verbs are also very less
in number as seen in Section 4 and thus the sys-
tem doesn’t have to learn a lot of predicates. Also,
the majority arguments in Urdu belong to ARGM-
PRX which is a complex noun-verb/adjective-verb
predicate but this class achieves the best F-score
and contributes heavily towards the results. This
also means that the data sparsity is low.

In Model A, We chose the path configuration
from argument chunk to predicate chunk because
it gave better results than the reverse path which is
also the actual dependency path. The first model
learns the path embeddings and performs only
slightly better than the previous work (Gupta and
Shrivastava, 2018). The difference in this model
and previous work is only that it uses LSTM to en-
code path while the previous work used a one-hot
encoding for this feature. Though, in our case it
provides only a slight gain. This can be attributed
to the fact that the data available for each unique
path is very less to learn a reliable embedding.

In Model B and C, number of layers is kept as 2
because increasing number of layers degraded per-
formance. The primary reason for this could be at-
tributed to less training points in data. We only use
IOB constraints since they gave a significant im-
provement in results whilst the Unique Core Roles
constraint did not. These models are overall the
best performers as they are in a way learning more
complex features from the whole sentence than the
pre-defined features used in model A.

Language Model Precision Recall F1-score
Hindi Gupta et al. 42.52 49.66 45.81

Model A 44.38 50.53 47.26
Model B 56.71 56.39 56.55
Model C 70.41 70.41 70.41

Urdu Gupta et al. 86.41 67.16 75.58
Model A 85.01 66.91 74.88
Model B 63.10 63.20 63.15
Model C 77.98 78.16 78.07

Table 4: SRL full task results evaluated using
conll-2005 shared task evaluation script.

7 Conclusion and Future Work

More data for both the languages can be helpful to
improve the performance further and get a better
analysis. A detailed report can then be achieved
on what quantity of data is actually required for
SRL in low-resource settings. Once more data is
available, analysis of results will give the reasons
why and how deep learning models perform better
than the traditional ones. Results of our paper have
shown that deep learning is performing very well
even in such low data. This shows that more com-
plex features have been missed when manually ex-
tracting features from a parsed sentence. Hence,
better feature engineering also lies in the future
scope of SRL for Indian Languages.

8 Data Sections

The names of the files in training set and test-
ing set of Hindi are provided in the following
link. https://github.com/ashg1910/
indian_srl
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Abstract

Given a particular domain, drawing out in-
formation from a vast amount of data is
not an easy task. Data may be adequate
and abundant but analysis of data requires
a great deal of work. Therefore, manual
construction of a knowledge base on any
particular domain is more time consuming
and it requires much human intervention.
The process can be semi-automated by ef-
fectively using word embedding to iden-
tify the semantics. The words can then
be clustered using hierarchical clustering.
This study proposes a novel approach on
how knowledge discovery can be semi-
automated for the restaurant domain by ef-
fectively identifying the optimal number
of clusters from hierarchical clustering of
words extracted from restaurant reviews.

1 Introduction

To understand a particular domain, identifying do-
main specific concepts is a must and a compre-
hensive knowledge base paves the way to do that.
As we are considering restaurant domain in our
research, we should identify concepts like food,
staff, atmosphere, sub categories of concepts and
the relationships among them. Since, identifying

these things manually and creating a knowledge
base based on them is an exhaustive process, au-
tomating it will be very convenient. This requires
a model which can capture meanings, similarities
and relationships of given data. As word vector
embedding models are capable of capturing se-
mantic relationships, the study proposes a novel
method to use them to identify concepts via hierar-
chical clustering by processing user reviews which
paves the way to build the knowledge base for the
restaurant domain.

Automating the construction of knowledge base
includes developing a computational model which
could capture not only the meaning but also the
relative meaning and similarity among the words
in a corpus which is also considered as an impor-
tant task in the field on Natural Language Process-
ing. This requirement can be modeled as a vec-
tor space which represents words as vectors with
high dimensions. These vectors are clustered us-
ing hierarchical clustering to obtain a hierarchy of
the concepts in the domain. In this research, we
have proposed a novel way of obtaining the opti-
mal number of clusters from the hierarchical clus-
tering using the silhouette score. Through the ob-
tained clusters, an ontology for the restaurant do-
main can be built which can be used in construct-
ing a comprehensive knowledge base.
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2 Background and Related Work

2.1 Word Vector Embedding
Word vector embedding is the NLP and feature
learning technique where the words from a vo-
cabulary are mapped to vectors of real numbers.
Word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), Latent Semantic Analysis (LSA)
and Latent Dirichlet Allocation (LDA) are popular
word vector models. Since LSA and LDA perform
analogy tasks poorly, Word2Vec and GloVe mod-
els were used in this research.

Word2Vec which is considered to be good in
analogy tasks (Pennington et al., 2014) is an Artifi-
cial Neural Network (ANN) based solution which
takes the surrounding words and target words into
consideration. There are two main architectures in
Word2Vec as Skip Gram (Melamud et al., 2015)
and Continuous Bag of Words (CBOW) (Goldberg
and Levy, 2014). In Skip Gram model the target
word is fed to ANN as the input to predict the con-
text words whereas in CBOW, a word is predicted
using the context words in surrounding. GloVe is a
model which uses matrix factorization method to
exploit statistical information which is similar to
LSA and LDA, but it combines the benefits of the
Word2Vec Skip Gram model to result a more ac-
curate prediction (Pennington et al., 2014) unlike
LSA and LDA.

2.2 Clustering
Clustering is the task of grouping objects based
on their characteristics such that they have high
intra-class similarity and low inter-class similar-
ity (Srivastava et al., 2000). Among all the clus-
tering methods, the consideration was focused on
hierarchical clustering. Among two types of hier-
archical clustering approaches which are divisive
(Savaresi et al., 2002) and agglomerative (Beefer-
man and Berger, 2000) the latter was preferred.

Obtaining the optimal number of clusters from
a dendrogram while preserving the cluster quality
is challenging. Knowing the optimal clusters is vi-
tal for the study as they represent the concepts in
the domain. Researchers have found many indices
which measure the quality of the clusters. In this
approach, the average silhouette index (Liu et al.,
2010) was used to measure the cluster quality from
which the optimal number of clusters were ob-
tained. The optimality of the clusters not only de-
pends on the number of overall clusters obtained,
but also the composition of the clusters plays a role

in aspect of quality. Fine tuning the word embed-
ding models assists the process of capturing the
semantics best and therefore improving the model
may result in improved cluster composition.

3 Methodology

This section provides a complete understanding of
the procedure that has been followed to conduct
the research. Each subsection below is a compo-
nent of the overall methodology.

3.1 Data Collection

Since the initial goal of the study was to build a
restaurant domain specific, comprehensive knowl-
edge base, the domain related data have been col-
lected using nearly a half a million of user reviews.
Since user reviews cover aspects like food, staff
and environment with respect to a restaurant those
reviews can be used as a reliable source.

3.2 Data Preprocessing

Three collections of data; user reviews, the
Stanford–10–million–word set and the w2v gbg
dataset were used. Reviews were preprocessed be-
fore generating the word embedding models. All
non–alphabetical characters and stop words were
removed (stop words carry insignificant meaning
compared to keywords in a domain) (Srividhya
and Anitha, 2010). All the letters were converted
to the lower case so as to prevent confusion when
recognizing similar words.

3.3 Frequent Noun Extraction

Domain related concepts can be identified by ana-
lyzing the most frequently occurring nouns in the
review text corpus. Therefore, to extract nouns in
the text, parts of speech (POS) tagging was per-
formed. To enhance the accuracy of noun extrac-
tion process, two different libraries were used for
POS tagging and a candidate word was labelled
as a noun only if both libraries recognized it as a
noun. Then, most frequently occurring ten thou-
sand nouns were selected by sorting the frequency
distribution of noun occurrence in the text cor-
pus in descending order and selecting the first ten
thousand nouns. Further, cosine distance between
word vectors of a given noun and a domain related
word was used to filter out closely related domain
specific nouns. A threshold was established from
which a noun was recognized as domain related if
the aforementioned distance was below the thresh-
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Data set Model
No.

Window
Size Context

Stanford G1 15 Symmetric
Stanford G2 20 Asymmetric
w2v gbg G3 15 Symmetric
w2v gbg G4 20 Asymmetric

Table 1: Variable Parameters of GloVe Models

Data set Model No. Architecture
w2v gbg W1 Skip Gram
w2v gbg W2 CBOW
Stanford W3 Skip Gram
Stanford W4 CBOW

Table 2: Variable Parameters of Word2Vec Mod-
els

old. These nouns were used later on for hierarchi-
cal clustering (Beil et al., 2002).

3.4 Word Embedding – Word2Vec and GloVe
Words that are related have similar vector repre-
sentations. Therefore, it is easy to identify rela-
tionships among words using word vectors. To ob-
tain word vectors, word embedding models which
were built using Word2Vec and GloVe algorithms
were used. When generating a word embedding
model, vector representation of a word differs
from model to model depending on the parameter
assignment. Therefore, few different models were
built and hierarchical clustering was performed.
Based on the quality of the dendrogram (discuss
later in topic 3.5), the most accurate model was
selected. Table 1 contains variable parameters of
Glove models. The parameters vector size = 300,
minimum word count = 5, and number of itera-
tions = 15 were kept fixed throughout different
GloVe models. Table 2 contains variable param-
eters of Word2Vec models. The parameters vec-
tor size = 300, window size = 5, and minimum
word count = 5 were kept fixed throughout differ-
ent Word2Vec models.

3.5 Hierarchical Clustering
Performing clustering on a data set will result clus-
ters with similar objects. Therefore, it is easy
to identify the concept that each cluster repre-
sents. Agglomerative hierarchical clustering was
performed on domain specific frequent noun set
(Beil et al., 2002). Since the exact number of con-
cepts required to explain the restaurant domain is

unknown, hierarchical clustering was used as it
does not require the number of clusters before-
hand. The rationale for choosing the agglomera-
tive approach was that it is less time consuming
compared to divisive.

When building the hierarchy, different linkage
methods and metrics can be used. Based on
them, for the same word embedding model, dif-
ferent visual representations (dendrograms) can be
obtained. Cophenetic coefficient (C) was used
to evaluate the dendrogram. It indicates how
much the dendrogram preserves the word similar-
ity compared to the actual word similarity. Accu-
racy of the dendrogram depends on the accuracy
of the model. Therefore, C can be used to mea-
sure the accuracy of the model too. As C increases
and approaches +1, the quality of the dendrogram
improves. The results are shown in the results sec-
tion.

3.6 Identifying Clusters
The most crucial step in the methodology is to
identify the optimal number of clusters. Even
though, flat clusters could be obtained by setting a
horizontal line at a required distance in the dendro-
gram, the optimality cannot be guaranteed. There-
fore, the overall cluster quality should be mea-
sured while obtaining the clusters. Silhouette in-
dex measures the quality of a cluster compared to
other clusters. Calculating scores for each and ev-
ery cluster and then finally averaging them results
in a measure which evaluates the overall cluster
setting. The method can be enumerated on all pos-
sible numbers of clusters and the number which
corresponds to the highest average score is treated
as optimal. In equation (1), avgSI(k) denotes the
average silhouette index for k number of clusters
and SI(i) denotes the silhouette index for the ith

cluster and in equation (2), kopt denotes the num-
ber of optimal clusters and n is the total number of
words considered (maximum possible clusters).

avgSI(k) =
1
k

k

∑
i=1

SI(i) (1)

kopt = argmax
2≤k<n

[avgSI(k)] (2)

4 Results

When clustering, models built with Stanford data
set produced some clusters with words that are un-
related with reference to the restaurant domain. E.
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Model
No. Average Complete Cosine

W1 0.7336 0.4996 0.5488
W2 0.4837 0.3919 0.3919
W3 0.4942 0.2493 0.4537
W4 0.3985 0.2319 0.0604
G1 0.2782 0.2782 0.0493
G2 0.3683 0.0239 0.0562
G3 0.3786 0.1936 0.1005
G4 0.4235 0.1326 0.1243

Table 3: Cophenetic scores for different linkage
methods

g. the word apple with words blackberry, mobile,
wifi, gsm etc. The reason is that word apple was
frequently used to represent the brand name Apple
in the data set. Since, this research is relevant to
the restaurant domain, we need to identify apple as
a fruit. Therefore, w2v gbg data set was attempted
which gave better results.

When the distance of two word vectors is ob-
tained via euclidean distance metric, the result in-
cludes a portion of the vector magnitude and the
direction both. The vector magnitude is affected
by the frequency of occurring the word in the text
corpus. The vector direction attempts to capture
the semantic meaning of the word. Since we are
interested at the semantic similarity/dissimilarity,
euclidean distance metric may not fully capture
the requirement. However, the cosine distance
captures the directionality of the vectors and there-
fore the distance result incorporates much more
semantic information of the words compared to
euclidean distance. According to Saraçli et al.
(2013), average linkage is the best method to gen-
erate the dendrogram. Table 3 summarizes the
cophenetic scores obtained for different models
under different linkage methods of dendrogram.

Based on the results in table 3, the most accu-
rate model for the hierarchical clustering is W1
with the highest cophenetic coefficient of 0.7336
with the parameters; algorithm = Skip Gram, vec-
tor size = 300, window size = 5, and minimum
word count = 5. Figure 1 and 2 depict dendro-
gram extracts of coffee types and alcoholic bever-
ages respectively.

The average silhouette index was calculated for
all possible numbers of clusters. The maximum
average index was reached with 1779 clusters with
the magnitude of 0.177. Therefore, the optimal

Figure 1: Dendrogram extract of coffee types

Figure 2: Dendrogram extract of alcoholic bever-
ages

number of clusters would be a number around
1780.

5 Conclusion and Future Work

This study has demonstrated the process of ob-
taining the optimal number of clusters through the
construction of hierarchical clustering of concepts
for the restaurant domain and it is assisted by word
embedding technique. Hence, the process is auto-
mated to a great extent while completely avoiding
the hassle caused by manually creating the knowl-
edge base. The proposed method is general and
flexible, and can be adapted to any other domain as
well. The research focuses on how more accurate
clusters/concepts can be obtained through hierar-
chical clustering. The average silhouette score has
been used to obtain the optimal number of clus-
ters. The procedure can be extended to obtain a
comprehensive knowledge base for the restaurant
domain by building an ontology from the identi-
fied clusters.
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Abstract

Part-of-speech (POS) tagging is consid-
ered as one of the basic but necessary
tools which are required for many Natural
Language Processing (NLP) applications
such as word sense disambiguation, infor-
mation retrieval, information processing,
parsing, question answering, and machine
translation. Performance of the current
POS taggers in Amharic is not as good
as that of the contemporary POS taggers
available for English and other European
languages. The aim of this work is to
improve POS tagging performance for the
Amharic language, which was never above
91%. Usage of morphological knowl-
edge, an extension of the existing anno-
tated data, feature extraction, parameter
tuning by applying grid search and the
tagging algorithms have been examined
and obtained significant performance dif-
ference from the previous works. We have
used three different datasets for POS ex-
periments.

1 Introduction

POS tagging is the process of assigning the part
of speech categories to each and every word in
a sentence. In many NLP applications such as
word sense disambiguation, information retrieval,
information processing, parsing, question answer-
ing, and machine translation, it is considered as
one of the basic but necessary tool that could
be utilized in computational linguistics analysis
and automation applications (Antony and Soman,
2011).
Existing POS tagger approaches can be classified
into: linguistic (rule-based), statistical/machine-
learning and hybrid approaches.

Linguistic approachs: Most POS taggers arrange
linguistic knowledge systematically as a set of
rules (or constraints) written by linguists that
range from a few hundred to several thousand,
and usually require a high cost for experts and
consume time (Màrquez et al., 2000).
Statistical/Machine Learning approaches:
These approaches use frequency or probability to
tag words in a text. With the simplest Statistical
tagger, the ambiguity of words established on
the probability that the word occurs alongside a
particular tag can be resolved. Statistical approach
involves some kind of learning (supervised or
unsupervised) parameters of the model from a
training corpus (Radziszewski, 2013).
Hybrid approaches: It includes transformation-
based approach that combines rule-based ap-
proach and statistical approach. These approaches
helps to achieve a significant improvement of
POS performance, since it can combine necessary
features from statistical and linguistic based
approaches (El Hadj et al., 2009).
Every human language poses its own challenges
and requires specific methods. Amharic is also
one of the families of morphologically rich
languages that has major challenges related to
POS tagging task.
All proposed POS taggers were based on ELRC
Tagset, developed by different individuals. This
paper addresses the various developments in
POS-taggers and POS-tagset for the Amharic
language, which is very essential computational
linguistic tool needed for many NLP applications.
We focused on extending existing annotated data
(ELRC tag-set), constructing new tag-set and
then implementing machine learning methods that
have been recently applied to solve POS problems
of Amharic Language.
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2 Previous work

Several attempts have been made in the past to
develop POS algorithms for Amharic Language.
Some of these works are as follows.
Getachew (2001), attempted to develop a Hidden
Markov Model (HMM) based POS tagger using
23 POS tags from 300 words. Since the tag-set
and data are very small, the tagger does not
have the capability of predicting the POS tag of
unknown words.
Adafre (2005), developed a POS tagger using
Conditional Random Fields (CRF) and abstract
tag-set consisting of 10 tags and obtained overall
accuracy of 74% on a manually annotated text
corpus of five Amharic news articles (1000
words). The small amount of annotated data leads
to drastic impact on tagging accuracy.
Gamback et al. (2009), compared three tagging
strategies; HMM, Support Vector Machines
(SVM) and Maximum Entropy (ME) using the
manually annotated corpus developed by Demeke
and Getachew (2006) at the Ethiopian Language
Research Center (ELRC) of Addis Ababa Univer-
sity. Since the corpus contained few errors and
tagging inconsistencies, they have cleaned the
corpus. They obtained the average accuracies (af-
ter 10-fold cross validation) of 85.56%, 88.30%,
and 87.87% for the HMM, SVM, and ME-based
taggers respectively for the ELRC tag-set.
Tachbelie and Menzel (2009), conducted POS
tagging experiments for Amharic using uncleaned
ELRC corpus in order to use POS information
in language modeling. They developed Tri-
grams’n’Tags (TnT) and SVM-based taggers and
compared in terms of performance, tagging speed
as well as memory requirements. The results
of their experiments show that with respect to
accuracy, SVM-based taggers perform better
than TnT-based taggers although TnT-based
taggers are more efficient with regard to speed
and memory requirements. This work lacked a
reference allowing for an evaluation of the quality
of the annotations that may highly affect the
performance of taggers.
Gebre (2010), attempts to improve the perfor-
mance of Amharic POS tagger based on CRF,
SVM, Brill and HMM. Cleaning up ELRC tag-set
to minimize the pre-existing tagging errors and
inconsistencies can increase the performance of
the POS tagger. With 10-fold cross validation
they have obtained average accuracy of 90.95%,

90.43%, 87.41%, and 87.09% for CRF, SVM,
Brill and TnT taggers respectively. Even though
they obtained good accuracy the precision and
recall reported in this paper is very far from the
average accuracy. For example, by using CRF
tagger they have obtained 60% recall and 67%
precision and using SVM 64% recall and 68%
precision.

3 Amharic Language

Amharic is the second most widely spoken
Semitic language in the world, after Arabic. It
is characterized by complex, productive morphol-
ogy, with a basic word-formation mechanism, root
and pattern (Shashirekha and Gashaw, 2016).
The typical clause order in Amharic is noun + ob-
ject + verb. Nouns may denote gender, number,
definiteness, case, and direct object status by af-
fixes prefixes and suffixes, predominately suffixes.
Amharic nouns may have a masculine or feminine
gender. Suffixes are added to denote a masculine
or feminine noun gender. Some nouns may have
both masculine and feminine gender, while other
nouns may only have one gender. The feminine
gender is used to indicate female as well as the
smallness (Degsew, 2014).

4 Proposed Approach

Sentence and word tokenization is performed for
unannotated Quran and Bible texts before part of
tagging process. Since Amharic annotated cor-
pus (ELRC) is limited with only news domain and
cleaned version of this dataset is not available,
ELRC data is cleaned. The tag-set in ELRC is
only 31 tags. It cannot give much information
to reliably develop NLP applications. Therefore,
ELRC tag-set is extended from 31 to 51 and then
new corpus is constructed from Quran and Bible
texts including the extended ELRC annotated data.
For training and testing algorithms, data should be
splited into training and test set, then morphologi-
cal features are extracted from the training set for
CRFSuit tagger only. After-all training and testing
are conducted on the three tagging algorithms for
each tag-set.
Particularly we applied machine learning ap-
proaches for the POS tagging task, and it can be
easily interpreted as a classification problem. In
this POS task, the limited set of tags are identi-
fied from three Corpora and the training examples
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are the occurrences of the words along with the
respective POS category in the context of appear-
ance. A general representation of the POS tagging
process is Shown in Figure 1.

We adopt CRF model, which has widely been

Figure 1: General framework of the proposed ap-
proach

used in several basic NLP tasks. It is a condi-
tional model that models the conditional probabil-
ity distribution of tags (t1...tk) given observation
sequences of words (w1...wk) in the sentences i.e.
P(t...tk|w1...wk). The probability of transition be-
tween tags is depends on the previous and next ob-
servations. This enables reasoning based on wide
contexts, which seems especially important in the
case of POS tagging tasks. For large and struc-
tured tag-sets, CRF work well with many features
that may be mutually dependent (Lafferty et al.,
2001).
Linear−chain CRF is the most popular class of
CRFsuit suitable for tagging. CRFSuit train-
ing consists of estimation of weight values. A
high weight value indicates that strong evidence
has been found to support the relation between
observations and tags as expressed by the fea-
ture (Radziszewski, 2013). Tagging with a
trained CRFsuit consists in finding a tag se-
quence that maximizes the conditional probabil-
ity. The optimization algorithms used in these
work is the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm (Saputro
and Widyaningsih, 2017) which is employed for
solving high-dimensional minimization problems
in scenarios where both the objective function

and its gradient can be computed analytically. L-
BFGS algorithm stores information about the spa-
tial displacement and the change in gradient and
uses them to estimate a search direction without
storing or computing the Hessian explicitly (Cop-
pola and Stewart, 2014).

4.1 Feature extraction
Since Amharic is morphologically rich language,
there are a lot of morphological features which
enables the POS tagger to predict correctly. In
a CRFSuit, each feature function is a function
that takes in as input: a sentence s, the po-
sition i of a word in the sentence, either the
word comes first/last, has hyphen, is current
word/previous word/next word digit, alphanu-
meric, prefix-1, prefix-2, prefix-3, suffix-1, suffix-
2, suffix-3, Previous-1 word tag, and Previous-2
word tag. For each such value configuration, a
separate function must be provided in advance. In
order to train and test the POS tagger, we define a
function that can extract all the above features and
then used to input in CRFSuit feature function.

4.2 Dataset description
The dataset used in this study are categorized in
to three, ELRC annotated corpus that contains
210,000 words (Demeke and Getachew, 2006), ex-
tended re-tagged corpus of ELRC, and the newly
annotated corpus of the Amharic translation of
Quran, and Bible.
In the first domain, the tag-set is based on 11 basic
tags, most of which have further been refined to
provide more linguistic information, thus increas-
ing the tag-set to 31.
Even though, (Gebre, 2010) cleaned ELRC tagged
corpus, we couldn’t get the cleaned one. There-
fore, we have enforced to clean again by following
the strategies used to clean in this work.
Since Amharic is morphologically complex lan-
guage, 31 tags of ELRC tag-set cannot give much
information to reliably develop NLP applications.
Some tags that may be critical depending on the
target application are missing. In detail, the limita-
tion of ELRC tag-set is reported by (Gebre, 2010).
Furthermore, we extended ELRC tag-set from 31
tags to 51 tags by adding S for those tags with
plural numbers such as Noun with plural num-
bers (NS) and the addition of preposition and con-
junction with adverbs then we called this dataset
ELRC-Extended. The third category is the ex-
tended ELRC tagset plus manually tagged Quran
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and Bible Documents by taking ELRC as a base,
we call this new dataset ELRCQB which contains
62 tags. ELRCQB dataset size is 33,940 sentences
(440,941 words). For Example the distribution of
ELRC-Extended tag-set is shown in figure 2.

Figure 2: ELRCExtended tag-set distribution

5 Experiments and Results

This section presents the experiments validating
the three machine learning algorithms (Brill, TnT,
and CRFSuit Taggers) implemented for Amharic
POS Tagging task. We use sklearn-crfsuite
which is a CRFsuite (python-crfsuite) wrapper
that provides scikit-learn compatible sklearn-
crfsuite.CRF estimator to train and test our POS
tagger. 10-Fold cross-validation is applied for
training and then evaluating all tagging techniques
for all three corpora. 10-fold cross-validation
data for all tagsets is shown on table 2 with the
information of known and unknown words of the
testing data for each fold.

The results obtained by applying the three
different tagging strategies are shown in Table
2. TnT tagger and Brill tagger performs almost
the same. CRFSuit Tagger achieves the best
scores of all three taggers. Because the features
extracted from the tag-sets enables the system to
predict the words tag even if it is not in training
data. To handle unknown words for Brill and TnT
tagger, we used n-gram tagger as back-of tagging
strategies that assign a maximum tag appeared in
the test set.

All approaches are evaluated using confusion
matrix. In this POS tagging problem, the confu-
sion matrix contains 62 rows and 62 columns, 52
rows and 52 columns, 31 rows and 31 columns for
ELRCQB, ELRC-Extended and ELRC tag-sets
of all tagger. But due to a large number of tags
that may not have good visibility, we showed
only the first top 20 tags of confusion matrix

for the best score. Confusion matrix helps to
indicate correctly classified and wrongly classified
elements of each class. For example, in figure 5
the proposed approach (CRFSuit Tagger), the tag
N, 9388 of 9930 are classified correctly but the
remaining 542 are misclassified as different tags.
The vertical lines associated with each confusion
matrix indicates the elements in the class with a
maximum number of elements predicted.

The base for our work is (Gebre, 2010), that
yields good performance for different machine
learning approaches using 10 fold cross-validation
technique, which is the overall accuracy of 90.95,
90.43, 87.41, 87.09 for CRF, SVM, Brill, and TnT
taggers respectively on cleaned ELRC tagset only.
Even though overall accuracy is reported as above
the precision and recall result reported in his work
is less compared to our precision and recall results
showed in table 3.
The main contribution of this work is extending
ELRC tagset, constructing new tagset from Quran
and Bible document and parameter tuning by
selecting the best parameter of Sklearn-CRFSuit
through grid searching which is C1:0.064 and
C2:0.002. We achieved the overall average
accuracy of 86.44, 95.87, and 92.27 for ELRC,
ELEC-Extended and ELRCQB tagsets respec-
tively. As the result indicated extending the
tag-set increased the performance by 9.43 which
is very significant. While the domain of the tag-set
increasing the number of unknown words also
increased and the style of writing in Quran and
Bible is different, then it creates misclassification.
Even though increasing the tag-set size has its
own advantage in machine learning approaches
in general, in this work the noise from domain
difference creates 3.6% performance difference
between ELRC-Extended and ELRQB tag-sets.

6 Conclusion

In this paper, we have described three machine
learning approaches for automatic tagging of
Amharic text processing. The models described
here are very simple and efficient for automatic
tagging. The extended and newly constructed tag-
sets have contributed to the high performance of
our proposed approach and it will contribute to the
reliable development of applications of machine
translation, information retrieval, information
extraction and speech synthesis/recognition. The
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Table 1: 10-Fold Cross Validation Data

Fold
# ELRC Words # ELRC Extended Words # ELRCQB Words

Training
Testing

Training
Testing

Training
Testing

Known Unknown Total Known Unknown Total Known Unknown Total
1 180788 18102 2744 20846 185091 18433 2646 21079 411643 27147 4245 31392
2 181435 17637 2562 20199 185447 18233 2490 20723 413002 26065 3968 30033
3 182222 17155 2257 19412 186381 17634 2155 19789 414879 24716 3440 28156
4 181722 17532 2380 19912 185532 18344 2294 20638 416764 22819 3452 26271
5 180956 18188 2490 20678 185089 18659 2422 21081 376787 57808 8440 66248
6 182679 16867 2088 18955 186892 17233 2045 19278 370077 64255 8703 72958
7 181368 17841 2425 20266 185415 18409 2346 20755 370601 63842 8592 72434
8 181189 17965 2480 20445 185100 18692 2378 21070 407013 30114 5908 36022
9 181735 17588 2311 19899 185747 18208 2215 20423 405709 31495 5831 37326
10 180612 18639 2383 21022 184836 19000 2334 21334 400840 33654 8541 42195
Average 181470.6 17751.4 2412 20163.4 185553 18284.5 2332.5 20617 398731.5 38191.5 6112 44303.5

Table 2: Average 10-Fold Accuracy of Brill, TnT and CRFSuit Taggers

Tagger
ELRC ELRC-Extended ELRCQB
Known
words

Unknown
words

Overall
Known
words

Unknown
words

Overall
Known
words

Unknown
words

Overall

Brill 89.185 25.97 81.627 99.997 46.206 93.876 97.359 33.409 88.539
TnT 89.889 25.969 82.25 99.997 46.214 93.877 97.491 33.409 88.661
CRFSuit 87.883 75.79 86.442 99.069 70.872 95.868 96.408 65.634 92.242

Table 3: CRFSuit Tagger Best score of Average precision, recall and f-1score on ELRC, ELRC-
Extended, and ELRCQB tag-set

Tag-set precision recall f1-score support
ELRC 0.902 0.898 0.899 20445
ELRC-Extended 0.97 0.97 0.97 21070
ELRCQB 0.951 0.951 0.951 36022

Figure 3: Confusion matrix of Top 20 Tags best score for ELRC tagset

best performances are achieved for the CRFSuit
learning model along with the important morpho-
logical features extracted from the training set.
All the tag-sets we have used in this work
lacks expert knowledge. Therefore, it should be
standardized to obtain enhanced performance.
It is very limited to identify names of people
and places, which is critical for information
extraction. The presence of a proper noun tag is

even more important in the context of Amharic,
but the idea of letter case distinction does not exist
and most Ethiopian names are just normal words
in the language. Thus, most proper nouns that are
easily recognized in English by the case of the
initial letter cannot be recognized in Amharic.
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Abstract 

Parallel corpus is a primary resource for most of 
the applications of Natural Language Processing 
(NLP) like Machine Translation (MT) and CLIR. 
Statistical Machine Translation (SMT) is a highly 
successful and popular approach of MT that can 
produce high-quality translation results using a 
huge amount of bilingual parallel corpus. This pa-
per primarily focuses on the development of Eng-
lish to Bodo SMT system using multi-domain 
English-Bodo Parallel Text Corpus (E-BPTC). 
The SMT system has been developed using the  
Phrase-based SMT approach for the different do-
mains of E-BPTC, namely Tourism, News, Health, 
General and Agriculture. The translation accuracy 
of the different domains of E-BPTC in the SMT 
has been evaluated using the Manual and Auto-
matic evaluation techniques. 

1 Introduction 

Machine translation is the most important appli-
cation of NLP that translates texts from one natu-
ral language to another automatically and quick-
ly. Nowadays, MT is a very challenging research 
task globally in the field of NLP. It is a very dif-
ficult task due to some challenges in natural lan-
guages like word order and word ambiguity. The 
approaches of MT can be classified into different 
categories (Antony, 2013; Islam & Purkayastha, 
2018) as shown in Figure 1.  

 
 
 
 
 
 
 
 

Figure 1: Approaches of MT  
 
     At present, the most popular and state-of-the-
art approaches of MT are SMT and NMT (Neur-

al Machine Translation). The SMT has gained 
tremendous potential globally in the research 
community as well as in the commercial sectors. 
In 1949, Warren Weaver introduced the first 
concepts of SMT approach (Kathiravan et al., 
2016). The SMT is the best technique of MT for 
reducing word ambiguity problems in the natural 
languages. It requires less linguistic knowledge 
and can reduce human efforts (Koehn, 2009). It 
is classified as Word-based SMT, Phrase-based 
SMT and Hierarchical Phrase-based SMT. 
 
     Bodo is one of the major spoken languages of 
North-East India (Islam et al., 2017). It is a rec-
ognized language of India and is an official lan-
guage of Bodoland Territorial Council (Assam). 
The Bodo language is written using Devanagari 
script. It is a low resource language and the word 
order of it is Subject+ Object + Verb.  
 
      English is an International human language 
and is primarily spoken by the people of many 
countries, such as Australia, United Kingdom 
and the United States. English is an associate 
official language of India (Islam and Purkayas-
tha, 2018). The English language is written using 
Latin script. It is a high resource language and 
the word order of it is Subject + Verb + Object.  

2 Related Work 

A large number of SMT systems and parallel 
corpora have been developed and constructed for 
popular natural languages as well as for Indian 
languages. Some of them are discussed below. 
 
2.1 Parallel Corpus   
Lots of parallel corpus has been built globally for 
popular natural languages. Some of the parallel 
corpora are briefly discussed as follows:     
 
Bible corpus: The corpus was constructed from 
the translation of the Bible. It is a multilingual 
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parallel text corpus and contains 100 natural lan-
guages. The corpus is freely available online1.  
 
English-Kazakh parallel corpus: The corpus 
was constructed at Al-Farabi Kazakh National 
University, Kazakhstan by (Kuandykova et al., 
2014) for the EnglishKazakh SMT system. 
 
Europarl corpus: The corpus was constructed at 
the University of Edinburgh, Scotland, UK by 
(Koehn, 2005) for the SMT system. The corpus 
is freely available online2.  
 
OPUS Corpus: The OPUS is a multilingual pa-
rallel corpus that contains 60 different languages. 
The corpus is freely available online3.  
 
UM corpus: The corpus was constructed at the 
University of Macau, China by (Tian et at., 
2014) for the SMT system. It is a multi-domain 
English-Chinese parallel text corpus.   

 
     Some of the parallel corpora which have been 
constructed for English and Indian natural lan-
guages are discussed as follows:   
  
TDIL corpus: The TDIL4 (Technology Devel-
opment for Indian Languages) programme has 
constructed different domains of parallel corpora. 
Some of the parallel corpora exist in this corpus 
are English-Assamese, English-Bodo, English-
Hindi, Hindi-Punjabi and Hindi-Urdu. 
  
EMILLE/CIIL Corpus: The EMILLE (Enabl-
ing Minority Language Engineering)/CILL (Cen-
tral Institute of Indian Languages) corpus was 
constructed jointly at Lancaster University and 
CIIL, Mysore, India. Some of the parallel corpo-
ra exist in this corpus are English-Hindi, English-
Bengali and English-Urdu (Baker et al., 2003). 
 
English-Punjabi parallel corpus: The corpus 
was constructed at Punjabi University, Patiala, 
India by (Jindal et al., 2017) for SMT system. 
 
English-Manipuri parallel corpus: The corpus 
was constructed at CDAC Mumbai, India by 
(Singh, 2012) for SMT system.  
 
2.2   SMT System 

 
A large number of SMT systems have been de-
veloped globally for popular languages. Some of 
the SMT systems are discussed as follows: 
    
    1http://christos-c.com/bible 
    2https://en.wikipedia.org/wiki/Europarl_Corpus 
    3http://opus.nlpl.eu  
    4http://tdil-dc.in/index.php?lang=en 

English to Arabic SMT system: The system 
was developed at MIT, USA by (Badr et al., 
2008) using the Phrase-based SMT (PBSMT) 
technique and Moses. The BLEU score was 28.9. 
 
English to Spanish SMT system: The system 
was developed at the University of California, 
Berkeley by (Nakov, 2008) using the PBSMT 
technique. The BLEU score was 21.92. 

English to Vietnamese SMT system: The 
system was developed at the University of Ulsan, 
Ulsan, Korea by (Phuoc et al., 2016) using the 
PBSMT technique and Moses. The BLEU score 
was 32.30. 

EnglishWelsh SMT system: The system was 
developed using the Phrase-based SMT approach 
by (Jones & Eisele, 2006) at Saarland University, 
Germany. The BLEU scores of the English to 
Welsh and Welsh to English SMT systems were 
36.16 and 42.22 respectively. 

French to English SMT system: The system 
was developed at Carnegie Mellon University, 
Pittsburgh, USA by (Hanneman et al., 2009) 
using the PBSMT approach and Moses.  

     Lots of SMT system has been developed for 
English and Indian natural languages. Some of 
the SMT systems are discussed as follows: 
 
Assamese to English SMT system: The system 
was developed at Gauhati University, Guwahati, 
India by (Baruah et al., 2014) using the PBSMT 
approach and Moses. The BLEU score was 9.72.  
 
English to Punjabi SMT system: The system 
was developed at the I. K. Gujral Punjab 
Technical University, Punjab, India by (Jindal et 
al., 2018) using the PBSMT technique.  

HindiEnglish SMT system: The system was 
developed at IIT Bombay, India by (Dungarwal 
et al., 2014) using the PBSMT technique.  
 
ManipuriEnglish SMT system: The system 
was developed at Jadavpur University, Kolkata, 
India by (Singh & Bandyopadhyay, 2010) using 
the Phrase-based SMT technique and Moses.  

3 Corpus Construction and Collection 

The different domains of English-Bodo parallel 
corpus which have been used to develop the Eng-
lish to Bodo SMT system are discussed below.   

 
3.1 Construction of Parallel Corpus 
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The construction of parallel corpus is a very la-
borious and difficult task. A GUI based E-BPTC 
(English-Bodo parallel Text Corpus) creator tool 
has been designed for constructing English-Bodo 
parallel text corpus. The tool has been designed 
primarily for typing the handwritten translated 
sentences of Bodo language of the corresponding 
given sentences of English language. In this tool, 
Unicode-based a Bodo hard keyboard and a Bo-
do soft keyboard have been designed for typing 
the texts of the Bodo language. The Bodo hard 
keyboard is used through the English hard key-
board. The General and News domains of Eng-
lish-Bodo parallel text corpus have been built us-
ing the E-BPTC creator tool. The constructed pa-
rallel corpora are discussed as follows: 
 
General domain E-BPTC: The corpus has been 
constructed using the E-BPTC creator tool. The 
screenshot of the creator tool for building the 
General domain E-BPTC is shown in Figure 2. 

 
 
 
 
 
 
 
 

Figure 2: Screenshot of the E-BPTC creator tool 
for constructing the General domain E-BPTC 

 
      The corpus contains English-Bodo parallel 
sentences which are generally used in our daily 
life like communication, meeting, teaching and 
interview purposes. The English sentences and 
their corresponding translated handwritten Bodo 
sentences have been collected from the various 
sources, such as dictionaries, books, corpora and 
the web. Total 6,500 English-Bodo parallel sen-
tences have been constructed in this corpus.  

News domain E-BPTC: The corpus has been 
constructed using the E-BPTC creator tool. The 
screenshot of the creator tool for building the 
News domain E-BPTC is shown in Figure 3. 

 

 

 

 

Figure 3: Screenshot of the E-BPTC creator tool 
for building the News domain E-BPTC 

      The corpus contains English-Bodo parallel 
sentences and the sentences have been collected 
mainly from the Educational news, General 
news, Political news and Sports news. The Eng-
lish sentences and their corresponding translated 
handwritten Bodo sentences have been collected 
from the different sources, such as English and 
Bodo Newspapers, corpora and the web. Total 
4000 English-Bodo parallel sentences have been 
constructed in this corpus. 

3.2 Collection of Parallel Corpus 

The different domains of English-Bodo parallel 
corpus which have been collected from the TDIL 
programme are described as follows: 
 
Agriculture domain E-BPTC: The corpus con-
tains English-Bodo parallel sentences. Total 
4000 English-Bodo parallel sentences have been 
prepared in this corpus.   

Health Domain E-BPTC: The corpus contains 
English-Bodo parallel sentences. Total 12,300 
English-Bodo parallel sentences have been pre-
pared in this corpus.   

Tourism Domain E-BPTC: The corpus con-
tains English-Bodo parallel sentences. Total 
9,200 English-Bodo parallel sentences have been 
prepared in this corpus. 

4. English to Bodo SMT System  

The English to Bodo SMT system has been de-
veloped using the Phrase-based SMT technique 
for the different domains of English-Bodo paral-
lel text corpus, namely Tourism, News, Health, 
General and Agriculture. The PBSMT is a per-
fect and widely used approach of MT nowadays. 
It needs a huge amount of bilingual parallel 
aligned corpus for the best translation results  
 
    The overall architecture of the English-Bodo 
Phrase-based SMT system is shown in Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Overall architecture of the SMT system 
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     The following operations have been per-
formed for the different domains of E-BPTC to 
train the English to Bodo SMT system. 
     
4.1 Corpus Preparation  
Corpus pre-processing is the most essential task 
to prepare a bilingual parallel corpus for training 
the SMT system using Moses (Koehn, 2016). 
The following steps have been performed for the 
different domains of E-BPTC to build the differ-
ent statistical models. 
 
Step 1: Tokenization has been performed for the 

parallel corpus to insert space between the 
words and punctuation.  

Step 2: True casing has been performed for the 
corpus to convert the first word of each 
sentence to their most probable casing. 

Step 3: Cleaning has been performed to remove 
the long sentences, empty sentences, extra 
spaces and misaligned sentences from 
both the English and Bodo corpora. 

 
4.2 Language Model  
The Language Model (LM) is an important com-
ponent of the SMT. It is built to measure the flu-
ency of the sentences of the target language. In 
this system, LM has been built for the different 
domains of Bodo corpus using the toolkit 
KenLM. The LM has computed the probability 
of the sentences of Bodo language P(B) using the 
3-gram modelling technique. It has computed the 
probability of a Bodo sentence as the probability 
of particular words P(w) using the Markov Chain 
Rule (Koehn, 2009) as shown in Eq. 1.  
P(B)=P(w1,w2,w3,.....,wn)                
=P(w1)P(w2|w1)P(w3|w1w2)P(w4|w1w2w3).............
................P(wn|w1w2...wn--1)                              (1) 
Where w1, w2, w3,………., wn are the words of 
the Bodo language. 
 
      The formula for calculating tri-gram proba-
bilities P(wn|wn-2wn-1) of the sentences of target 
language is shown in Eq. 2. 
 
                                                                         (2) 
 
Where Count (wn-2wn-1wn) indicates the number 
of occurrences of the sequence wn-2wn-1wn in the 
corpus.  
 
4.3 Translation Model  
Translation Model (TM) is the most important 
component of the SMT. It is used to confirm the 

adequacy of the translation results in the SMT 
system. The TM has calculated the probabilities 
of the English sentence (E) and the Bodo sen-
tence (B) based on the behaviour of the sen-
tences, i.e. P(E|B). It can be calculated as the 
sum over all probabilities of all possible align-
ments (A) between the words or phrases in two 
sentences of the English and Bodo languages 
(Brunning, 2010) as shown in Eq. 3. 
 
P(E|B) =                                                              (3)                                                                                                               
 
      
   The GIZA++ toolkit has been used in the SMT 
system for word or phrase alignment and to build 
the translation model for the different domains of 
E-BPTC. In the TM, a phrase translation table is 
created and the table ensures that the English 
phrases and the Bodo phrases are good transla-
tions of each other. An example of the word (or 
phrase) alignment in the English to Bodo Phrase-
based translation model is shown in Figure 5. 

  
 
 
 
 
 

Figure 5: Word alignment between English and 
Bodo sentences 

 
4.4 Decoder  
The decoder is an essential component of SMT. 
It can find out the maximum translation probabil-
ity using the output results of the LM and TM as 
shown in Eq. 4. The decoder uses a Beam search 
technique to find the best possible translation re-
sults (Koehn, 2004). 
 
P (E, B) = argmax P (B) *P (E|B)                   (4)                                                                 
 
Where P(B) is the output result of the LM and P 
(E|B) is the output result of the TM. 

5 Experimental Results 

The English to Bodo SMT system has been 
tested several times using the different numbers 
of English-Bodo parallel sentences for the differ-
ent domains of E-BPTC, namely Tourism, News, 
Health, General and Agriculture. It has achieved 
good translation results in the SMT system using 
the General domain E-BPTC. The English-Bodo 
parallel sentences which have been used to train, 
tune and test the SMT system for the different 
domains of E-BPTC are shown in Table 1. 
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Table 1: No. of sentences used for training, tuning 

and testing the SMT system 

6 Evaluation 

The Translation Accuracy (TA) of the different 
domains of English-Bodo parallel corpus in the 
English to Bodo SMT system has been evaluated 
using the Manual or Human and Automatic or 
Machine evaluation techniques. 
 
6.1 Manual Evaluation Technique 

 
The translation accuracy of the different domains 
of E-BPTC in the SMT system has been 
evaluated by a linguistic person Dr. Ismail 
Hussain, Assistant Professor, Dept. of Bodo, 
Gauhati University, Guwahati, India. He has 
evaluated the TA (in terms of percentage) based 
on the adequacy and fluency of the input English 
sentences and their corresponding translated or 
output Bodo sentences. The levels of TA of the 
different domains of parallel corpus in the SMT 
system are shown in Table 2. 
 
  
 
 
 
 
 
 

   Table 2: Levels of TA of the multi-domain  
E-BPTC (Approx) 

 
In the above table, the definition A means 
Translated Bodo sentences are very good to 
understand, B means Translated Bodo sentences 
are easy to understand but need a minor 
correction, C means Translated Bodo sentences 
are broken but are understandable, and D means 
Translated sentences are not understandable. 
 
6.2 Automatic Evaluation Technique  
 
The translation accuracy of the different domains 
of E-BPTC in the SMT system has been eva-

luated using the BLEU (Bilingual Evaluation 
Understudy) technique. The BLEU is a popular 
automatic and language independent evaluation 
technique. It can evaluate the best translation ac-
curacy in an SMT system. The BLEU score is 
computed based on the average of matching n-
grams between a proposed or candidate transla-
tion (in this case, Machine translated Bodo cor-
pus) and a reference or human translation (in this 
case, human translated Bodo corpus). The BLEU 
score seems to correspond well with the human 
judgment based on the fluency and accuracy 
(Uszkoreit, 2007). The BLEU scores of the dif-
ferent domains of E-BPTC are shown in Table 3. 
 
 
 
 
 
 
 
 

 
Table 3: BLEU scores of the different  

domains of E-BPTC 

7 Conclusion and Future Work 

In this paper, the English to Bodo SMT system 
has been developed using the Phrase-based SMT 
technique for the different domains of English-
Bodo parallel corpus, namely Tourism, News, 
Health, General and Agriculture. A GUI based 
E-BPTC creator tool has been developed for 
building the General and News domains of Eng-
lish-Bodo parallel text corpus. The translation 
accuracy of the different domains of E-BPTC has 
been evaluated using the Manual evaluation and 
BLEU techniques. The General domain E-BPTC 
has produced good translation results in the 
English to Bodo SMT system.  
 
      The SMT system can be extended by adding 
more number of good quality parallel sentences in 
the different domains of English-Bodo parallel 
corpus to achieve the best translation results. The 
accuracy of the translation results of the different 
domains of E-BPTC can be enhanced using the 
Machine transliteration technique in the SMT sys-
tem. The research work can be explored by devel-
oping bidirectional EnglishBodo MT system 
using the NMT approach for the different domains 
of English-Bodo parallel corpus like Agriculture, 
General, Health, News and Tourism.
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Abstract

Parts of Speech (POS) tagging and Named
Entity Recognition (NER) on handwritten
document images can help in keyword de-
tection during document image process-
ing. In this paper, we propose an approach
to detect POS and Named Entity tags di-
rectly from offline handwritten document
images without explicit character/word
recognition. We observed that POS tag-
ging on handwritten text sequences in-
creases the predictability of named enti-
ties and also brings a linguistic aspect to
handwritten document analysis. As a pre-
processing step, the document image is bi-
narized and segmented into word images.
The proposed approach comprising of a
CNN-LSTM model, trained on word im-
age sequences produces encouraging re-
sults on challenging IAM dataset.

1 Introduction

Information extraction from handwritten docu-
ment images has numerous applications, espe-
cially in digitization of archived handwritten doc-
uments, assessing patient medical records and au-
tomated evaluation of student handwritten assess-
ments, to mention a few. Document categorization
and targeted information extraction from various
such sources can help in designing better search
and retrieval systems for handwritten document
images. Keyword spotting (Fischer et al., 2012)
is used for automatic document categorization by
detecting the keywords or named entities directly
on handwritten document images rather than tran-
scribing to text to find keywords.

Semantic annotation of handwritten documents,
especially spotting keywords using POS tags or
NER is relatively a newer problem with very few

works emerging on this front. In this paper, we at-
tempt to fill the gap by proposing an approach for
POS tagging and NER without handwriting tran-
scription. The contribution of this work is to show
generalization with a similar or improved perfor-
mance of a unified end-to-end model without sep-
arating the sequence of sub-processes involved,
thereby avoiding error propagation. Identifying
named entities using noun phrases from POS tags
can also be greatly helpful for keyword-based doc-
ument retrieval. Detecting named entities irre-
spective of its structural and positional character-
istics (eg. uppercase or lowercase letters) is an ad-
vantage of our approach. As a pre-processing step,
we choose a handwritten dataset with segmented
words and POS tag annotations. It helped us focus
only on the aspect of POS and named entity tag-
ging on handwritten word images rather than the
problem of word segmentation from handwritten
documents.

Related Works: Several state-of-the-art NER
techniques were published in the literature using
handcrafted features (Ritter et al., 2011; Lample
et al., 2016). Transcription based models such
as (Romero and Sánchez, 2013; Prasad et al.,
2018; Carbonell et al., 2018) trained Handwritten
Text Recognition (HTR) and NER jointly, to miti-
gate the disadvantage of errors in the first module
affecting the next. But in historical handwritten
documents, handwriting recognition struggles to
produce an accurate transcription thereby reduc-
ing the accuracy of the whole system. Adak et
al. (Adak et al., 2016) described an approach to di-
rectly detect the named entities from the document
images. They used handcrafted features from
document images with LSTM classifier, thereby
avoiding the transcription step. The method relies
on handcrafted features like identifying capital let-
ters to detect possible named entities.
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Figure 1: Example of POS and NE tagging on a sentence chosen from IAM handwritten dataset.

2 Our Approach

We hypothesize that, with sufficient handwritten
document data and pre-processing, a deep learning
model will be able to predict POS tags and named
entities despite the inherent complexity, without
the need for transcription.

2.1 Direct learning using synthetic dataset

Deep learning architectures need large datasets to
attain decent results on image recognition tasks
and finding sufficient handwritten document im-
ages is a challenging task. Hence we first trained
the model on synthetic handwritten word images.
We used a standard parts-of-speech dataset to cre-
ate a synthetic handwritten dataset using artifi-
cial fonts, as described in (Krishnan and Jawa-
har, 2016). We used the same font for each sen-
tence and sufficient data augmentation in the form
of noise, translation, and rotation to resemble a
large real handwritten dataset. Our assumption is
that, with sufficient data, a deep learning model
can generalize well on the end-to-end task with-
out breaking it into sub-tasks (Liu et al., 2016).
For POS tagging on handwritten text, our first step
was to choose a model trained on word spotting
in handwritten document images. The use of deep
learning architectures to capture spatial features of
word images is widely discussed in (Krishnan and
Jawahar, 2016; Krishnan et al., 2016). The au-
thors used HWNet architecture trained on 1 mil-
lion word image dataset to make it robust to most
handwriting variations. We initially used the pre-

trained model (HWNet) to extract the features of
synthetic handwritten words and, later fine-tuned
a separate neural net on these features to clas-
sify POS tags. We considered this model was
our baseline for the best performance that can be
achieved using a pre-trained model on handwrit-
ten word images. In our alternate training scheme,
we directly train a deep model on word images to
classify POS tags. We observed that the model
performance was similar to HWNet feature-based
model which affirmed our assumption that trans-
lation into text or feature extraction sub-tasks may
not be required for POS tagging on handwritten
word images.

2.2 POS Tagging and NER

The model trained on the synthetic dataset is fine-
tuned on a real handwritten dataset. We tested var-
ious architectures (CNN, CNN-LSTM) for both
POS tagging and NER on a challenging handwrit-
ten document dataset. Some of them are discussed
below.

Deep CNN model for POS tagging: Convo-
lutional Neural Nets (CNN) are good in captur-
ing the intricate details of images, hence making
the model stable to inconsistencies like noise and
translation (Krizhevsky et al., 2012). We trained a
ResNet (He et al., 2016) model with 35 layers (val-
idated empirically) on the synthetic dataset and
fine-tuned it on IAM dataset for POS tagging task.
The ResNet-35 ends with a softmax layer that out-
puts the probability distribution over the class la-
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bels (POS tags). We trained the model with cross-
entropy loss function to predict the class labels.

CNN-LSTM model for POS tagging: The
probability of a transition between words may de-
pend not only on the current observation, but also
on past and future observations, if available (Laf-
ferty et al., 2001). Since sentences in handwrit-
ten document images are word image sequences,
we next used a combination of ResNet (CNN) and
LSTM layers for training a POS tagging model
on sequential information. We appended two lay-
ers of LSTM after ResNet-35 blocks and con-
verted the input to LSTM as time distributed se-
quence. Different sequence lengths were tested on
POS tags (classes). We report the performance of
changing sequence lengths in the results section.

Named Entity Recognition: We adapt the sim-
ilar architectures (CNN, CNN+LSTM) for the
problem of NER. Here the underlying CNN ar-
chitecture is ResNet-35. However, neither of the
models had higher accuracy as noticed in similar
experiments reported in (Toledo et al., 2016). We
observed that named entities are related to posi-
tion and distribution of POS tags in a sentence. We
trained a multi-output classification network with
architecture similar to POS model, with an extra
branch of dense layers from the first fully con-
nected dense layer, for named entity prediction.
Hence the model now has an independent output
with loss calculated from two sets of classes. As
described in section 3.1, named entities have class
imbalance problem. This is one of the reasons for
choosing outputs separated by multiple dense lay-
ers rather than a common layer training for multi-
class classification. We initially trained the net-
work simultaneously for both POS and NER. We
observed that though POS prediction accuracy re-
mained the same as independent POS training,

Named Entities Tags
Date DATE
Geopolitical Entity GPE
Organization ORG
Person Name PERSON
Nationalities or Religious
or Political Groups

NORP

Unrelated OTHERS
Not an Entity –

Table 1: Named Entities used for our analysis.

NER training did not give encouraging results.
Hence we first trained the model (ResNet + LSTM
+ dense layers) for POS tagging by freezing the
dense layers of NER. After the network achieved
satisfactory accuracy on POS tagging, we froze the
POS part of the network - including the ResNet-
LSTM layers and trained just the dense layers of
NER. We used altered class weights to tackle the
class imbalance problem. This method improved
the accuracy of NER better than any of the meth-
ods we have tried earlier.

3 Experimental Results and Discussions

Dataset: We used two different datasets, for
training and fine-tuning the models. For train-
ing, a synthetic handwritten dataset was generated
from chunking dataset of CoNLL-2000 shared
task (Tjong Kim Sang and Buchholz, 2000), ran-
domly using some of the 100 publicly available
handwritten fonts (Krishnan and Jawahar, 2016).
The chunking dataset contains sentences aligned
with 211727 text tokens along with their POS tags
in a separate train and test text files. This dataset
was initially used for training and validation. The
model is further fine-tuned on IAM handwritten
dataset (Marti and Bunke, 2002). The IAM dataset
contains 1539 forms written by 657 authors. The
forms are further segmented into 115320 words
and are annotated with POS tags. Though IAM
dataset contains segmented lines and sentences,
they are not properly annotated with text accord-
ingly which makes it difficult to demarcate the
individual sentences accurately. Hence we sep-
arated sentences based on pre-defined sentence
rules based on words and cross-validated them us-
ing python based NLP tool named “Spacy”.

Since the IAM handwritten forms have tran-
scripts, the text was fed into the Spacy for generat-
ing the ground truth named entities. Spacy tagged
sentences with 17 different categories of named
entities. Though we restricted the classes to 6
named entities by choosing most recurrent tags,
there was a class-imbalance problem. The list of
tags used in this work is shown in Table 1. The un-
related entities occupied 92% of the NER classes.
The IAM dataset is available as train, validation1,
validation2, and test partitions. We used the train-
ing set to fine-tune our models and validated them
against validation1 and validation2 sets.
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Experiments Precision Recall F1-score
Neural Net trained on HWNet features - CoNLL-2000 dataset
synthetic images (POS tagging).

92.4 87.2 89.7

ResNet trained on - CoNLL-2000 dataset synthetic images (POS
tagging).

94.2 84.5 89

ResNet trained on - CoNLL-2000 dataset synthetic images and
fine-tuned on IAM dataset (POS tagging).

75.4 64.8 69.7

ResNet + LSTM trained on - CoNLL-2000 dataset synthetic im-
ages and fine-tuned on IAM dataset (POS tagging).

76.2 66.8 71.2

ResNet + LSTM trained on - CoNLL-2000 dataset synthetic im-
ages and fine-tuned on IAM dataset (NER).

74 64.1 68.7

Table 2: List of conducted experiments with precision, recall and F1-scores.

3.1 Results and Discussion

As a baseline on the synthetic dataset, we ini-
tially extracted HWNet features on word images
from the fully connected layer and trained a multi-
layered perceptron on 36 POS classes provided by
CoNLL-2000 dataset. The model achieved an F1-
score of 89.7. We then trained a 35 layer ResNet
model which achieved an F1-score of 89. This was
our initial experiment to prove that a model can be
trained to classify POS tags directly on handwrit-
ten word images, rather than a feature based model
training.

POS tagging on IAM dataset: The ResNet
model trained and validated on the synthetic
CoNLL-2000 dataset is fined tuned on IAM
dataset. We initially trained directly on word
images to classify 58 POS tags without the se-
quence information. The architecture essentially
contained no LSTM layers. The ResNet model
achieved an F1-score of 69.7 on IAM test dataset.
We altered the architecture and dataset to include
sequence information. We replaced dense layers
succeeding the CNN layers with LSTM layers and
trained the model with varying sequence lengths
of 3, 64, 128 and 256 words. We observed that
ResNet-LSTM model trained on 128 word length
sequences performed best with an F1-score of 71.2
We attribute the decline of prediction accuracy on
IAM dataset compared to synthetic dataset due to
the following reasons. (i) Distortions in word im-
ages - We observed that most of the word images
are formed by concatenating individual characters.
(ii) Character distortions - characters such as ‘.’
and ‘,’ are displayed as ‘l’ in the dataset. (iii)
Proper nouns errors - proper nouns do not start
with capital letters. We also observed that 26% of

errors were due to the noun form of words (NN),
followed by adjectives (JJ) at 18% and conjunc-
tions (IN, TO) at 12%. Rest of the errors were due
to special characters, commas, and full stops.

NER on IAM dataset: Our models, training
methods and metrics are summarized in Table 2.
We used class weights to bias the training to-
wards named entity tags other than “unrelated”
class, to handle class imbalance problem. We ini-
tially trained IAM dataset words for two tasks in
parallel using the architecture described in Sec-
tion 2.2. But the accuracy of such model was
low on NER task. Our first observation was that
the errors caused by class imbalance were propa-
gated back to the complete model which impacted
the performance of both POS tagging and NER as
well. Hence we first trained the model on POS
tagging by freezing the NER layers, then we froze
the layers for POS tagging and trained the model
on NER. After 20 epochs, we fine-tuned the whole
model further using very low learning rate for 10
epochs. The ResNet-LSTM model gave F1-score
of 68.7 on NER on handwritten text.

4 Conclusion

A POS tagger and named entity recognizer for of-
fline handwritten unstructured documents, without
employing a character/word recognizer and an in-
dependent linguistic model, is presented in this pa-
per. Experiments conducted on IAM dataset have
resulted in an average F1-score of 71% on POS
tagging and 68% on NER task. The proposed
method is expected to work in other languages as
well since our method deals with the linguistic as-
pect of handwritten documents where POS tags
are identified first and then the NER.
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Abstract 

In the service industry, the shared services denote an 

accountable entity which started taking the lead over 

managed services for the past three decades. In shared 

services, resources are shared across different 

engagements or projects thereby making them cost-

efficient as they centralize back-office operations that 

are used by multiple divisions of the same company 

and eliminate redundancy. Quite often in shared 

services, people face issues with addressing multiple 

queries. In this paper, we have designed a new chat 

solution named as ECHAT which can answer the 

complex queries raised by the service engineers 

related to the product by employing Knowledge Graph 

and Deep Learning Algorithm. EChat would engage 

with the service engineers in natural language and 

would be available as any messaging platform to 

induce automation in the process. Related to this, we 

have introduced a new framework which explores 

different Natural Language Processing (NLP) 

methods to consider the position of the word, its 

relatedness and to generate random vector 

representation to avoid the false positives in 

responses. Moreover, the significance of our 

framework is that it can be implemented in any new 

environment with the available dataset to endure fast 

training and give more relevant and accurate answer 

to user queries. EChat has been evaluated and found 

that the accuracy in providing correct responses for the 

complex user queries will reach 91% on an average. 

1 Introduction 

Shared services represent business operations that 

are handled by multiple parties in an organization. 

Mainly there are two rationales for shared services 

set up in an industrial environment i) Less of a 

common resource ii) Improve Efficiency. 

Nowadays the industries are very cautious in 

handling the high operational cost, by allotting the 

only minimum required number of managers to run 

the departments with shared resources and also to 

maintain the efficiency through industrialization 

which is based on specialization and 

standardization. Shared services are more than just 

central organization or consolidation of similar 

activities in a location. It involves running service 

activities like a business deliverable for internal 

customers at a cost, quality and timeliness that is 

competitive with alternatives.   

       Recently by introducing automation through 

digitalization, most of the companies prefer to use 

chat application to handle the customer 

conversations with the help of a machine which are 

called ChatBots. Chatbots are expected to 

understand a user’s query and deliver prompt 

answers to solve the customer’s issues on a real-time 

basis. Regarding this, a chat interface is suitably 

designed to allow a bot to converse with multiples 

users in a simple, fastest and easiest way as possible. 

It clearly necessitates the need for chatbot to 

establish automatic conversation in the industry for 

shared service operations to speed up the present 

communication channel. 

       A chatbot is essentially a digital employee that 

can answer simple customer service questions 

autonomously in the present digital world. It is 

generally categorized into two types: Command-

based and AI-based. Command-based chatbot relies 

on a newly constructed database of replies and the 

relevant heuristics. The bots reply in a way by 

selecting an answer that matches the context of a 

query. It is not trained to extend for the creation of 

new texts and hence it can answer only a limited set 

of questions. In general, command-based chatbot 

can perform on its own limitations. On the other 

hand, AI-based or Machine Learning (ML)-based 

chatbots gives replies based on training and 

applying NLP techniques for understanding and 

interpreting the texts. These chatbots become 

smarter with time, learning from past questions and 

answers. Chatbots used for different purposes are 

typically limited to conversations regarding a 

specialized purpose and not for the entire range of 

human communication. 

       Based on the specific requirements in shared 

services, we have designed a new chat framework 

named as EChat which follows AI-based 
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implementations for service engineer’s conversation 

with developers relate to the product issues. It 

explores different NLP methods and ML techniques 

in introducing efficient custom-built chatbot to 

answer most of the customer queries and only very 

few are forwarded to human agent to exhibit details 

with the profundity of the issue based on the user 

requirement. We have evaluated the performances 

of EChat by implementing in a specific shared 

service of our company for managing a single 

product query.  

2 Related Works 

Shared services in any organization relate to the idea 

of sharing resources and communication within an 

organization or group. The goal of a shared services 

delivery model is to allow each business division to 

focus its limited resources on activities that support 

the division’s business goals. In this paper, we have 

introduced a chat solution (EChat) for establishing 

24*7 communication with service engineers. The chat 

interface design is the process that offers credible 

interaction between the user and the machine.  

       For texting dialects and SMS writing, 

Choudhury et al (2007) proposed a Hidden Markov 

Model for normalizing the text. A statistical 

classifier based normalization for text messages was 

introduced by Pennell and Liu (2010). These 

methods were used to study which character to 

delete and when to normalize the text by reversing 

the representations. Xi et al (2004) utilize a 

positioning function to choose the most applicable 

messages to client questions in newsgroup searches, 

but, in which the author feature demonstration is not 

feasible. An Enhanced language-independent 

approach of conversational agent for question 

answering using semantic web knowledge has been 

developed by Alexandru Dobrila (2010). Cui et al 

(2015) proposed to constrain morphologically 

similar words to have similar representations. 

Soricut and Och (2015) described a method to learn 

vector representations of morphological 

transformations, allowing to obtain representations 

for untrained words by applying pre-determined 

rules. Nishimura et al (2005) build up a learning 

base for a question-answering framework that 

answers compose ‘how’ questions. From these 

studies, we understand the feasibility and impact of 

applying the different statistical technique for 

processing the text in our proposed framework.  

       A popular language for creating chatbot is the 

Artificial Intelligence Markup Language (AIML). 

With the use of AIML, one can program a computer 

to give a specified set of answers to a specified set 

of questions. Thomas and Amrita (2016) build up an 

AIML and LSA based chatbot to solve the client 

requirements in managing E-business sites. 

Shahriare and Shamim (2015) demonstrated the 

audit of utilization of the chatbot which are created 

utilizing the AIML contents. It is very clear that 

AIML based chatbots are lightweight and 

productive to any work environment. We have used 

AIML in our proposed chat framework. 

       Vinyals and Le (2015) proposed a recurrent 

neural network sequence generation based chatbot 

to generate the optimal response. For text to speech 

systems, Sproat and Jaitly, (2016) proposed 

different Recurrent Neural Network architectures to 

normalize texts to correctly spoken form. Duplessis 

et al (2016) built a new chat application named as 

ChatterBot. The chatterbot focuses on the local 

coherence of dialogue. Indeed, it only takes into 

account the last user utterance to select its response. 

Since this application is very close to our approach, 

we have tried to compare our proposed chatbot with 

the chatterbot.  

       After considering the advantages and 

disadvantages, we have constructed a new AI-based 

chatbot using AIML by demystifying Deep Learning 

techniques in a new framework under the conversation-

oriented platform for efficient handling of extracted 

information. 

3 EChat Framework and Models 

We have built a new chat application and named it 

as EChat. It is entrusted in an intelligent way of 

question answering in shared service tasks. Users 

can enter their questions in the text area of user 

interface and our system processes the question and 

responds to the user’s queries with suitable 

resolutions/solutions. Some cases, it rationalizes the 

selection with a few additional questions. 

Figure 1.  EChat Framework 
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      The proposed framework of EChat is shown in 

Fig 1. It has three layers (i) User Interface (UI) layer 

(ii) Natural Language Processing (NLP) layer which 

performs all the needed text computation and (iii) 

data layer, where the historical data is available in 

the form of database. 

       The UI layer is significant to establish 

meaningful communication with users. It acts as the 

user interface between humans who are interacting 

to get the details using UI and NLP layer where the 

backend processing of texts happens. The UI layer 

is written in angular java script (angular JS), which 

sends the data to NLP layer written in Python. It can 

also acquire the data generated by the backend to 

display in UI.  To interface the angular JS with 

python, we have used flask server (Miguel 2014), as 

it is an efficient way of doing the integration.  

     The NLP layer forms the backend of the EChat. 

This layer utilizes the data already available in the 

form of queries and solutions from the database to 

answer the questions entered by the service 

Engineers. To answer the queries not present in the 

database, we utilize the text in other resources of the 

product.  

       To identify the context of the query, we have 

applied three different models (i) Support Vector 

Machines (SVM), (ii) Convolutional Neural 

Network (CNN) and (iii) Conditional Random Field 

(CRF). The above models were trained through the 

available dataset. Further, we used the above 

mentioned trained models to classify the context. As 

the size of the training dataset is small, the models 

built resulted in poor accuracy generation. Hence, 

we prefer to go with a model free approach to solve 

the problem.  

      Our approach is explained through two phases 

(i) training phase and (ii) testing phase. In training, 

we use the dataset available to generate features. In 

testing, we use the trained features and user input 

query to give the required solution. 

       For training, we performed the following 

operations on the dataset. First, we extract all the 

unique words from all the sentences and find out the 

position of the words in each sentence. Using the 

position of the words in each sentence as row and 

unique words as column we form a matrix that 

provides a useful information on the number of 

times a particular word present in a specific position. 

Next step is to assign a random number of 10 

dimensions for each unique word in the data. Here, 

we have to multiply the obtained random number of 

each word with the corresponding position of the 

word and further sum up the values to obtain 10-

dimension vector for each sentence in the dataset. 

Finally, we normalize the value obtained to 

standardize the values between to 0 to 1. In the end, 

we obtain a ten-dimensional vector for each query 

available in the database. 

      To test the chatbot designed, we first follow the 

steps by considering the importance of processing 

query sentences.  

a. Understand the importance of conjunctions 

present in the query sentence.  

b. To handle the case of the user query similar to the 

one in the dataset but with different vocabulary, we 

used a thresholding mechanism to transform the 

query to that one available in the dataset. For that, 

we apply the Euclidean distance measure to 

calculate query vector with possible queries 

available in the training phase. Here, if the distance 

between vectors is low, then it means that the query 

gets the exact match in the database. In this case, we 

can give the user a solution for the matching query 

in the database without any additional process. If the 

distance obtained is lower than a specific threshold, 

then we will ask the user to provide more 

information relevant to query words by questioning 

them with categorical questions. This can help in 

establishing a conversation-oriented platform in our 

chat application.  

c. To handle large distance values, we use trained 

CNN model from the knowledge graph to identify 

the context and pass on the solution to the user. Here 

we have used the other documentation available 

related to the product to pick the relevant answers. 

It the end, if both the cases failed to provide an 

answer then the specific question will be redirected 

to concerned service engineer to answer the query. 

     As discussed in the introduction, the proposed 

EChat built with intelligence system which helps 

users to get answers for some queries which are not 

available in the dataset used to train the model. For 

this, we consider the documentation of the product 

available in the knowledge database in the data layer 

and any other supporting documents belong to the 

product. First, we preprocess all the data by 

removing the stop words, punctuation etc. as with 

any traditional NLP exercise. Further, we extract the 

terms which are categorized as nouns and verbs by 

the inbuilt gensim [Radim and Petr, 2010] 

categorizer. In addition, we also consider the words 

which are important for the product, as there are 

chances that these words are not categorized as 

verbs or nouns in the general dictionary. These 

94



 
 

  4 

words are manually labeled as nouns or verbs to use 

them in the exercise. As the next step, we collect 

instances where these words are present in the 

system and create knowledge graph by connecting 

the nouns in the system. The knowledge graph 

relates the relation between the keywords in the 

form of the entire sentence.  

        Hence, to provide an accurate answer we need 

a model to identify the context of the query. It 

should be noted that the knowledge graph, in 

general, can have many nodes (as many as the nouns 

in the text) and also many edges (as many as the 

verbs in the text).  

      Finally, for the initial testing, we have been 

provided with a text database for one of the product 

as a sample set. As discussed, we have generated 

two databases relevant to text processing. (i) Query 

database and (ii) Extracted Knowledge database. As 

part of product usage, customers come up with their 

queries relevant for day-to-day functioning and the 

engineers should provide the solutions to persuade 

them. These conversations happened in the form of 

e-mail conversations. As part of a single query, it is 

possible to have two or more mail chains associated 

with this. This is because the engineers need more 

details from the customers related to their problem 

for giving an efficient solution. To create a database 

of the queries and solutions, we collect the first 

query mailed by the customer and the relevant 

solution proposed by the engineer. Also, we collect 

some other details as a category of the query, the 

time is taken to provide the solution etc. To tackle 

the non-availability of queries in the query database, 

we have generated a knowledge database by 

collecting the details from documentation and 

frequently answered questions of the product. In 

addition, we also collected documentation of the 

open source tools used for the development of the 

product for the efficient answering of the queries 

which are not present in the query database.  

4 Evaluation and Discussion 

There are many evaluation metrics available to 

measure the chatbot performances. One such 

important metric is accuracy. Accuracy is measured 

in terms of how many times the chatbot provides the 

correct answer for the user queries.  In addition to 

the accuracy, we also considered precision and 

recall measures, since we have used the 

classification model to understand the context 

present in the query. Here, precision is a percentage 

of relevant documents retrieved and recall is the 

percentage of retrieved relevant documents. We 

have calculated the discussed measures for both 

EChat and chatterbot and the details are provided in 

two different tables.    

         Table I: Accuracy Measurement 

       The performance of chatbots is evaluated based 

on the type of questions user queried to understand 

the effectiveness of the proposed EChat. We have 

evaluated EChat performances for three different 

types of queries (i) direct query, (ii) partial query 

and (iii) combined query (two queries in the 

database combined).  The same exercise will be 

done with chatterbot, a chatbot considered for 

comparison. The accuracies obtained for three 

different cases for both chatbots are reported in 

Table I. First case i.e. when the query is direct 

statement i.e. user’s query exactly matches the 

question stored in dataset then the proposed EChat 

and also the chatterbot delivers 100% accuracy. 

Further to the second case i.e. when the user enters 

a partial query, the chatterbot fails to provide better 

results as chatterbot searches for the closest match 

known statement to the query available in the 

database. However, the EChat generates better 

results due to the consideration of the position of the 

words in a query. Moreover, in the third case when 

the user combines two questions or statements from 

the dataset to form one single statement and pass it 

as a query. In this case, the system should return the 

answer to the question which forms the larger part 

of the combined statement. In the third case also our 

approach gives the better accuracy compared to 

chatterbot due to an intelligent implementation of 

the knowledge graph.  

   Table II: Average Precision and Recall Score 

       

       As already discussed, precision and recall 

values are calculated for three different queries as 

discussed. For each type, we calculate the precision, 

Query/Statement Chatterbot 

Accuracy 

EChat 

Direct statement 100% 100% 

Changing the position 

Of the statement 

40% 93.33% 

Combined two statement to 

form a single statement 

45.83% 87.5% 

Partial sentence as 

statement 

66.6% 83.33% 

Evaluation EChat bot Chatterbot 

Avg. precision 

score 

76.92% 61% 

Avg. recall score 89.42% 78.52% 
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recall and the values are averaged to obtain average 

precision and average recall for all the different 

types and the values are given in Table II. From the 

results, it is evident that the proposed chatbot 

performs exceedingly well compare to chatterbot in 

terms of precision and recall. In addition to the 

above measures, we have also tested our EChat 

which can deliver answers even if the queries are not 

similar to the queries present in the query dataset. In 

the domain testing, we found that 90% of times 

EChat returned correct answer using the words 

extracted from the documentation of the product. 

The accuracy can be improved if we use additional 

documents in addition to the documentation of the 

product. For this case, we skip the comparison as the 

chatterbot is not designed for the same.   

5  Conclusion and Future work 

We have developed EChat for shared services in 

industrial set up to address the queries raised by the 

service Engineers. We trained our dataset using 

query importance, sentence selection and keyword 

based probabilistic and knowledge-based models. 

Compared with the conventional chatbots like 

chatterbot, the proposed EChat has the strong ability 

to give more accurate and relevant answer to the 

user’s questions and also work with the human agent 

to handle inquiries that cannot be resolved 

programmatically. It also delivered good 

performance and delivered answers with higher 

accuracy. Further, to answer queries which are not 

present in the query database, we used the 

knowledge graph constructed from additional 

documents to supply answers. Future directions 

include automatic regeneration of answers in our 

conversational chatbot which provides the best 

experience to the users.  
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Abstract

Natural Language Generation (NLG)
is a challenging problem in the field
of Artificial Intelligence. The diffi-
culty stems from the natural language’s
flexibility to convey the same mes-
sage in different ways. Psycholinguists
have always believed that learning sim-
pler sentences early can lead to com-
plex sentence creation using the same
knowledge.This is also the intuition be-
hind curriculum learning. Thus, in this
paper, we investigate the use of cur-
riculum learning for natural language
generation. We show that curricu-
lum learning is a promising training
methodology for deep learning systems
for NLG. We show this by reporting im-
provements obtained using i) a partic-
ular curriculum strategy and ii) aug-
menting data using curriculum logic.
We use TGen, a deep learning based
NLG system, for experimentation. We
use 5 metrics for NLG evaluation and 8
metrics for readability evaluation. Our
quantitative and qualitative evaluation
shows that the system trained using
curriculum methodology produces bet-
ter quality text as compared to the sys-
tem trained on normal data.

1 Introduction
Natural language generation involves creating
a natural language(NL) sentence from a non-
linguistic input, which can be a structured
meaning representation (MR), statistical data
or a parse tree structure. An example of MR to
natural language is [name(Barbeque Nation),
eatType(restaurant)] → Barbeque Nation is a

restaurant. Ever since the pioneering work by
(De Smedt et al., 1996; Reiter and Dale, 2000),
this has been an active area of research (Gatt
and Reiter, 2009; Lampouras and Androut-
sopoulos, 2013; Kondadadi et al., 2013; Wen
et al., 2015b,a).

A major hurdle in applying traditional ma-
chine learning techniques for NLG is the pos-
sibility of having more than one correct sen-
tences for a given meaning representation. In
machine learning terminology, this implies two
things : First, there can be more than one cor-
rect label for a given input. Second, the set of
possible labels is infinite. Thus, computing the
loss function, which is a standard component
in many machine learning algorithms, is diffi-
cult (Lampouras and Androutsopoulos, 2013).
Therefore, most approaches default to tem-
plate based learning or guided learning mech-
anisms. The sentences generated using such
approaches feel artificial, as there is not much
variation in the generated sentences (Langk-
ilde and Knight, 1998; Deemter et al., 2005;
Manurung et al., 2008).

Deep learning has made tremendous strides
in different areas of Natural Language Process-
ing. Much of its success can be attributed to
two factors: its ability to lend itself to rep-
resentation learning and the emergence of set
of techniques which make effective training of
deep neural networks possible. Deep learning
has been successfully applied in several NLP
tasks : Part of Speech Tagging (Collobert and
Weston, 2008), Sentence Classification (Kim,
2014), Sentiment Analysis (Liu et al., 2015),
Sarcasm Detection (Joshi et al., 2016). Re-
cently, Wen et al. (2015b); Dušek and Jurcicek
(2016) etc. have investigated the use of deep
neural networks to generate natural language.

Humans learn better through an organized
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step-wise manner, exploiting already learned
concepts while learning new difficult concepts.
Tailoring training data in such a manner to
assist a machine learning system is known as
curriculum learning (Bengio et al., 2009; Fan
et al., 2017).

We intuit that an NLG system may learn to
form complex sentences by leveraging knowl-
edge of forming simple sentences. Thus, in this
paper, we raise the following question:

Does curriculum learning help improve the
output quality and performance of deep

learning based Natural Language Generation?
We investigate this question using TGen,

a sequence to sequence based natural lan-
guage generator (Dušek and Jurcicek, 2016).
We performed a quantitative evaluation of the
generated text. We also qualitatively evaluate
coverage of MRs and ambiguity factor of the
generated text. Our preliminary evaluations
provide the following evidence for a positive
reply to the above question:

• System trained using a length based cur-
riculum strategy performs better than
system trained using randomly shuffled
data.

• System trained using curriculum-
augmented data performs better than
system trained on original data.

The rest of the paper is organized as fol-
lows: Section 2 describes related work to the
problem. Section 3 provides the experimental
setup of our evaluation. Section 4 discusses
our quantitative and qualitative analysis fol-
lowed by conclusion and future work.

2 Related work
2.1 NLG and Deep Learning
Chang et al. (2015) experimented with deep
neural networks for sentence generation as
well as other related features for generation.
Wen et al. (2015a) used a joint recurrent
and convolutional neural network for dia-
logue generation. Lampouras and Vlachos
(2016) developed Locally Optimal Learning to
Search (LOLS) framework, which used imi-
tation learning to generate sentences. Wen
et al. (2015b) proposed a semantically condi-
tioned Long Short-term Memory(LSTM) for

language generation. It was trained to learn
from unaligned data.

Finally, Dušek and Jurcicek (2016) proposed
TGen, a sequence to sequence based encoder-
decoder architecture along with beam search
and a reranker to generate natural language
sentence from meaning representation. The
architecture combines sentence planning and
surface realization stages of generation and
produces strings using LSTM based sequence
generator.

These developments have led to a state
where current NLG systems are able to gener-
ate more natural and varied output in compar-
ison to earlier rule and template based gener-
ation. However, extremely large output space
still leaves a lot scope for improvement.

2.2 Curriculum Learning, Deep
Learning and NLP

The training criteria in most deep neural net-
works is non-convex. This adds two extra
challenges to the problem of learning: the
quality of the local minima obtained, and the
speed of convergence towards that minima.
Bengio et al. (2009) showed that curriculum
learning addresses both these challenges pos-
itively. They demonstrated the effectiveness
of curriculum learning for language modeling,
among other tasks. This effectiveness was
soon exploited by others. Shi et al. (2015)
experimented with RNN language model for
within-domain adaptation and limited data
within domain adaptation using curriculum
learning with improved outcomes. Cirik et al.
(2016) studied the performance of curriculum
learning on long-short term memory networks
for sentiment analysis task. Similarly, Sachan
and Xing (2016) showed that data ordering of
simple hand crafted questions improved per-
formance of question answering using deep
neural networks. Liu et al. (2018) also experi-
mented with curriculum learning approach for
natural answer generation. This motivated us
to explore NLG using curriculum learning.

Meaning
Representation

name[Alimentum], area[city centre],
familyFriendly[no]

Natural
Language

Alimentum is not a family-friendly arena
and is located in the city centre.

Table 1: Sample of input MR-NL utterance
pair used for training
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3 Experimental Setup
3.1 Data
3.1.1 Original Data
We used E2E-challenge dataset (Novikova
et al., 2017). It is from the restaurant
domain with around 42K sentences in the
form of dialogue act-based meaning represen-
tations(MRs) coupled with its natural lan-
guage utterances. The natural language text
of the MRs from the dataset show open vocab-
ulary with complex sentence structures and
varied discourse patterns. Thus we conclude
that this dataset is really good representative
of the real world NLG problem. A sample MR
and its NL utterance is shown in Table 1.

3.1.2 Creating curriculum-augmented
data

Meaning Representation (MR) Natural Language (NL)

name[Fitzbillies] Fitzbillies is a
restaurant .

name[Fitzbillies],
eatType[coffeee shop]

Fitzbillies is a
coffee shop .

name[Fitzbillies],
food[French]

Fitzbillies serves
french food .

name[Fitzbillies],
area[riverside]

Fitzbillies is located
in riverside .

name[Fitzbillies],
eatType[coffeee shop],
food[French]

Fitzbillies is a coffee shop
serving french cuisine .

name[Fitzbillies],
eatType[coffeee shop],
area[riverside]

In the riverside area is a
coffee shop named Fitzbillies .

name[Fitzbillies],
food[French],
area[riverside]

Fitzbillies serves french
food in riverside area .

name[Fitzbillies],
eatType[coffeee shop],
food[French],area[riverside]

Fitzbillies is a coffee shop
serving french food
in riverside area.

Table 2: Sample of Curriculum data cre-
ated from training MR: ”name[Fitzbillies],
eatType[coffeee shop], food[French],
area[riverside]”

We create the curriculum-augmented data
as follows. Let the original training set be
Soriginal. Let the TGen model trained on ran-
domly shuffled Soriginal be TGenoriginal. For
each MR of Soriginal, a set Scomb of all possible
MR combinations with name field as constant
factor is created. From this set Scomb, a sub-
set Suniq_comb of unique MR combinations is
created. This fills the MR field of the dataset.
To create the corresponding NL utterances, we
first pass Suniq_comb to TGenoriginal. The auto-
matically generated utterances are then man-
ually verified (for missing phrases correspond-
ing to MR tag) and added to Suniq_comb. This

fills the NL field of the dataset.
We then remove duplicates from the com-

bined set Soriginal + Suniq_comb to create our
training set Saugmented. The size of this
Saugmented dataset is 75K sentences. A sam-
ple of curriculum data is shown in Table 2.

3.2 Ordering Strategy
As discussed earlier, a major part of effec-
tiveness of curriculum learning comes from
the way data is ordered. We want the system
to first learn to form simple sentences, and
then move on to learning to form complex
sentences. We define simplicity of a sentence
in terms of the length of MR+NL. Thus in our
experiments, we use the following ordering
strategies:

- Shuffled: In this strategy, the data is
randomly shuffled. This strategy is a baseline
for comparison.
- Curriculum: In this strategy, the data is
sorted based on the length of MR + NL.

3.3 Training
The training data was preprocessed to delexi-
calize the name and near MR slots to reduce
the data sparsity, as recommended by Dušek
and Jurcicek (2016). A sequence represen-
tation of each MR sequence is then created
by joining the triplet information containing
type, slot name and value for each MR slot
and converted to a vector representation. We
chose the string mode of TGen where it com-
bines sentence planning and surface realization
stages of NLG architecture(Konstas and Lap-
ata, 2013). The TGen generator model was
trained using a LSTM based seq2seq encoder-
decoder architecture with 128 hidden units,
embedding size 50, learning rate as 0.001
and batch size 20 along with Adam optimizer
(Kingma and Ba, 2014). A reranker with
beam size 10 is used for generation(Bahdanau
et al., 2014).

We trained four different models as follows:

- Sys1: TGen trained on original data
(Soriginal) with shuffled ordering strategy.
- Sys2: TGen trained on original data
(Soriginal) with curriculum ordering strategy.
- Sys3: TGen trained on curriculum-
augmented data (Saugmented) with shuffled
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ordering strategy.
- Sys4: TGen trained on curriculum-
augmented data (Saugmented) with curriculum
ordering strategy.

3.4 Evaluation Metrics
We evaluated the quality (adequacy and
fluency) of generated text using automatic
evaluation metrics which measure the word-
overlap with respect to the reference sen-
tences - BLEU(Papineni et al., 2002),
NIST(Doddington, 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE (Lin, 2004) and
CIDEr (Vedantam et al., 2015) scores (as per
the E2ENLG challenge). These metrics cap-
ture the degree of intended content that is
transferred via the generated text.

We also evaluated the readability of the
generated text using the automatic evaluation
metrics which are:

1. The Flesch Reading Ease formula (FRE)
(Flesch, 1948) that calculates the reading
level of the content. It is scored from 1-100
with 100 being the easiest to comprehend and
1 being the hardest and confusing. A score of
60-70 is preferred for standard content.
2. The Flesch-Kincaid Grade Level (FKG)
(Kincaid et al., 1975) score captures the level
of content in the form of grade from 0-12 as
per the standard accepted globally.
3. SMOG Index (SMOG) (Mc Laughlin,
1969) suggests the years of education needed
to understand the piece of writing. The scores
range from 5-18.
4. Gunning FOG Formula (GFOG) (Gunning,
1969) estimates the years of formal education
needed to understand the text on the first
reading. It ranges from 6-18.
5. Automated Readability Index (ARI)
(Kincaid et al., 1975) is devised to gauge the
understandability of a text. The scores grade
the level needed to comprehend the text and
varies from 1-12.
6. The Coleman-Liau Index (CLI) (Coleman
and Liau, 1975) estimates the years of formal
education required to understand the text on
first reading with scores ranging from 1-12.
7. Linsear Write Formula (LWF) calculates
the readability based on sentence length and
no. of words with more syllables.
8. Dale-Chall Readability Score (DCRS)

(Chall and Dale, 1995) measures the compre-
hension difficulty while reading the text.

One can infer from above that the major
factors affecting these metrics are complexity
of the vocabulary and average sentence length.

4 Results and Analysis

4.1 Quantitative Analysis
Table 3 shows the adequacy and fluency scores
of the generated text. One can observe
that, with respect to a particular dataset, the
system trained using curriculum as ordering
strategy is performing better than the sys-
tem trained using shuffled ordering strategy
(Sys2 > Sys1 and Sys4 > Sys3). One can
also observe that, with respect to a particu-
lar ordering strategy, the system trained us-
ing curriculum-augmented data is performing
better than the system trained on original data
(Sys3 > Sys1 and Sys4 > Sys2). Overall,
the system trained on curriculum-augmented
data with curriculum as ordering strategy is
performing the best.

Dataset Original Curr-aug
Ordering Shuf Curr Shuf Curr

Sys1 Sys2 Sys3 Sys4
BLEU 0.60 0.61 0.61 0.64
NIST 7.90 7.84 8.07 8.39

METEOR 0.41 0.42 0.41 0.45
ROUGE_L 0.66 0.67 0.66 0.69

CIDEr 1.95 2.00 2.00 2.23

Table 3: Results of adequacy and fluency eval-
uation. {original, curr-aug} indicates whether
the training data was original or augmented.
{Shuf, Curr} indicates the ordering strat-
egy. Each value is the average of three runs.
Each jump is statistically significant(p-values
< 0.01)†

Next, we proceeded to measure the gains ob-
tained using curriculum techniques. In this re-
gard, we perform the remaining comparisons
between the system without any curriculum
learning component (Sys1) against the sys-
tem with both curriculum learning compo-
nents (Sys4).

We observed that Sys4’s percentage of
MR tag coverage in the generated text is
marginally higher (by 0.5953 percent points)
than Sys1’s coverage. Another observation
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Metric Sys1 Sys4 Ref
FRE 71.80 74.78 67.15
FKG 6.43 6.24 7.73

SMOG 6.9 18.7 11.6
GFOG 16.27 16.45 17.90

ARI 6.30 6.44 8.55
CLI 8.00 7.57 9.41
LWF 5.24 5.77 6.51

DCRS 7.85 7.85 8.23

Table 4: Results of readability evaluation. Ex-
cept FRE, the higher the score the better

was that the average sentence length of text
generated using Sys4 was greater the average
sentence length of text generated using Sys1
by 2.36 percent points.

This shows that quantitatively, curriculum
learning techniques can be helpful for deep
learning based NLG.

Table 4 shows the readability evaluation of
the generated text. The scores indicate that
Sys4 is generating relatively complex sen-
tences as compared to Sys1.

4.2 Qualitative Analysis
Now we highlight some of the aspects where
curriculum learning helped text generation.

MR
name[The Waterman], food[Fast food],
priceRange[moderate], customer rating[3 out of 5],
area[riverside], kidsFriendly[yes]

Sys1 Output
The Waterman is a kid friendly fast food
restaurant with a moderate price range.
It has a customer rating of 3 out of 5.

Sys4 Output

The Waterman is a kid friendly fast food
restaurant in the riverside area with a
moderate price range and a customer
rating of 3 out of 5.

Table 5: Example showing how Sys4 does
handle the tag area which is dropped by Sys1

Consider the example in table 5. Here,
it is evident that Sys1 did not cover the
area[riverside] term of the MR. Whereas,
Sys4 was able to accommodate it correctly.

Now, consider the example in table 6. Train-
ing data for both models included the Train-
ing MR and Training Reference, which had
food[French] and ’is a French Pub’. Now, the
test MR has food[English]. One may observe
that the Sys1 generated a phrase similar to
the reference, i.e. ’is a English Pub’. Note
that this is a slightly ambiguous phrase, and
can mean a pub serving English food or a pub

†We used Welch unpaired t test for significance
testing.

Training MR
name[The Plough], eatType[pub],
food[French], priceRange[moderate],
kidsFriendly[no], near[Cafe Rouge]

Training NL

The Plough is a French pub,
which is not kid friendly.
The price range is moderate
and is located near caffe Rouge.

Test MR
name[The Plough], eatType[pub],
food[English], priceRange[more than £30],
children-friendly[yes], near[Cafe Rouge]

Sys1 Output
of Test MR

The Plough is an english pub near
Cafe Rouge. It is child friendly and has
a price range of more than £30.

Sys4 Output
of Test MR

The Plough is a pub providing english food
in the high price range. It is located near
Cafe Rouge and is children friendly.

Table 6: Example demonstrating how Sys4
generates relatively unambiguous text

managed by English people. Whereas, Sys4 is
able to generate a relatively unambiguous ’is a
pub providing English food’ phrase. Sys1 also
has an ambiguous anaphora ’It’ (could mean
both The Plough or Cafe Rouge), which is not
the case with Sys4. Thus Sys4 is generating
better text here.

Using these examples, we qualitatively ar-
gue that curriculum system is better at NLG.

5 Conclusion and Future Work

In this paper, we proposed using curriculum
learning as a training methodology for deep
learning based natural language generation
systems. We argued that both curriculum
ordering strategy and curriculum augmented
data could help learning natural language gen-
eration. Our quantitative evaluation showed
that text generated using a system trained
with either curriculum ordering strategy or
curriculum-augmented data or both was bet-
ter in terms of both adequacy and fluency,
as well as readability when compared to a
system trained on randomly shuffled original
data. This was established via a set of different
evaluation metrics. Our qualitative evaluation
indicates that using curriculum led to better
coverage and less ambiguity. Thus we con-
clude that curriculum learning based training
methodology is indeed a promising method-
ology for deep learning based NLG systems.
In the future, we will investigate MR based
and vocabulary based approaches for designing
curriculum strategies and data-augmentation
for natural language generation.
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Abstract
In this paper, we propose a ma-
chine translation (MT) evaluation met-
ric based on paraphrase matching fuzzy
logic and the n-gram feature. Para-
phrase matching generally calculates
the relatedness between two strings by
considering the depth, content, and
structure in WordNet taxonomy. Vari-
ous metrics based on stem match ex-
ist for MT evaluation. Since a sen-
tence can be represented in different
forms using synonyms and morpholog-
ical structures, stem match is found
inadequate to evaluate the MT out-
put. Our proposed WupLeBleu evalu-
ation metric can handle this challenge.
Empirical evaluation on the benchmark
datasets show that our proposed metric
significantly improves the correlations
with respect to the human judgment.

1 Introduction

The usage of automatic evaluation metric
aims at evaluating the output quality of
machine translation (MT) systems quickly.
This is less expensive in comparison to the
evaluation carried out by the trained experts.
A few techniques were proposed for auto-
matic evaluation. Especially, BLEU metric
(Papineni et al., 2002) was widely used to
automatically evaluate the quality of machine
translation output. BLEU is an n-gram based
method. However, weakness of BLEU was
addressed in recent years (Ananthakrishnan
et al., 2007). Many other automatic MT
evaluation metrics like LeBleu (Virpioja
and Grönroos, 2015), METEOR (Lavie and

Denkowski, 2009), NIST (Doddington, 2002)
etc. were proposed to overcome the issues
of BLEU. To a huge degree, proposed Wu-
pLeBleu works on the principle of the fuzzy
matching logic of the n-gram words along
with the Wu-Palmer (WUP) similarity (Wu
and Palmer, 1994) using WordNet. WUP
similarity computes semantic relatedness of
word senses using the edge counting method
(Wu and Palmer, 1994).
We present an analysis of WupLeBleu with
various language pairs: Chinese-English,
Turkish-English, Czech-English, Russian-
English, Finnish-English, and German-
English.

1.1 Related Works

The most popular automatic MT evaluation
metric is BLEU that computes n-gram match-
ings of the candidate (C) with reference (R)
translation. It computes the overall precision
of n-grams by using geometric average along
with the brevity penalty. But, there are many
issues with the automatic evaluation of BLEU
metric, as it solely focuses on the n-gram
matchings. Researchers proposed NIST (Lin
and Hovy, 2003) to calculate the score based
on the information gain from each n-gram.
NIST evaluation assigns more score to the
n-gram which is more informative.METEOR
(Lavie and Denkowski, 2009) is based on ex-
plicit word-to-word matchings using the stem,
and synonym modules. RIBES was proposed
(Neubig et al., 2012) with the primary focus on
the word order of a sentence and by consider-
ing the brevity penalty for calculating the final
score with the help of Kendall’s correlation.
Very recently, researchers introduced LeBleu
(Virpioja and Grönroos, 2015) that considers
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fuzzy based matching and computes the sim-
ilarity score based on Levenshtein distance.
LeBleu uses arithmetic averaging for calculat-
ing the overall precision of score. LeBleu can-
not handle paraphrase or synonym. This is
regarded as one of the major drawbacks. The
proposed WupLeBleu is designed in such a way
so that it can properly handle all of the chal-
lenges like synonym matching, fuzzy matching
and morphological differences altogether.

2 Issues in Existing Machine
Translation Evaluation Metrics

Despite the fact that the BLEU is widely used
metric for MT evaluation, it experiences a few
shortcomings which we particularly intend to
address in our proposed metric.

1. BLEU, a precision based metric that
matches word n-grams of MT-translation
output with multiple reference transla-
tions simultaneously. Lack of attention to
recall within BLEU is a great shortcom-
ing. The ”Brevity Penalty” in the BLEU
metric does not satisfactorily compensate
for the absence of recall.

2. The n-gram matching focuses exact word
matches and all the matched words weigh
equally in BLEU. The geometric average
of n-gram scores produces a result of zero
if the individual n-gram scores are zero.

3. The correlation between BLEU score and
human evaluation is very poor (Anan-
thakrishnan et al., 2007).

For example, let us consider the candidate and
reference translations as stated below:
C: He who fears as a result of conquered is a
sound of defeat.
R: He who fears being conquered is sure of de-
feat.
Here, R and C refer to reference and can-
didate translation of phrase-based statistical
machine translation (PBSMT) system, respec-
tively. The computed BLEU score will be zero
for C, because of the absence of the four-gram
matchings in C1 when checked against the ref-
erence translations.
C: The 7th era are as yet battling for their
rights.

R: The seventh generation is still fighting for
their rights.
For example, both BLEU and LeBleu fail as
the n-gram matchings are absent. METEOR,
which considers only the precision of uni-gram
matchings calculates the score based on ex-
plicit word-to-word matching. The default
METEOR parameters prefer longer transla-
tions than the other metrics. Since precision
and recall are computed for uni-gram match-
ing, the high α values contribute more weight
to uni-gram recall than precision. This puts
METEOR in disadvantage position when be-
ing evaluated by the other metrics. The pri-
mary objective of our proposed WupLeBleu
metric is to overcome the problems as men-
tioned above. Consider the following exam-
ple. Here, both candidate and reference trans-
lations convey the same meaning, but with dif-
ferent vocabularies.

C: हर ःथान शांित छा गया।
ETL: har sthaan shaanti chha gaya.
ET: Every place has peace.
R: हर जगह सׂाटा छा गया।
ETL: har jagah sannaata chha gaya.
ET: Silence everywhere.
Here, ETL, ET are the English transliteration
and English translation, respectively. But, the
computed BLEU score would be zero, as exact
n-gram matchings are absent. Also, LeBleu
partially solves this problem by using the fuzzy
matching technique. But, WupLeBleu metric
has the power of solving a fuzzy n-gram match-
ing technique along with the WUP similarity.

3 Methodology

WupLeBleu calculates the score based on the
precision of n-gram matching with fuzzy logic
along with the WUP similarity score. The
WUP similarity score uses WordNet to im-
prove the correlation of automatic evaluation
metric with human evaluation. This score
provides the detailed idea of candidate words
with respect to reference words in terms of
synonyms and lemmas. The WUP similar-
ity method (Wu and Palmer, 1994) gener-
ally calculates the relatedness between the
two words by considering the depth, content
and structure of two strings in WordNet tax-
onomies. The similarity measure is computed
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based on the ratio of the information content
of the least common subsumer of the can-
didate and the reference string. LCH (Lea-
cock and Chodorow, 1998), the WUP simi-
larity (Wu and Palmer, 1994) and the path
length are three similarity measures that are
considered based on the path length (Peder-
sen et al., 2004) between C and R sentences.
LCH method calculates the minimum path be-
tween the source and the target string, and
then scales the minimum path by the max-
imum path length found in the hierarchy in
which they occur. The WUP similarity score
is calculated as the sum of the depth of LCS
(Least Common Subsumer) between the words
from C and R sentences. The path score is
equal to the inverse of the shortest path be-
tween two strings (Pedersen et al., 2004). The
final WUP similarity score is calculated based
on the above three measures.

WUP similarity = 2∗ depth(lcs)
(depth(s1) + depth(s2))

If the WUP similarity score is more than
the predefined threshold parameter δ, then
both the words are considered to be nearly
similar and their matching n-gram precision
is taken into account while calculating the
overall n-gram precision, else ignored. Fuzzy
matching works on the fact, that the n-gram
matching is said to be a fuzzy match if the
similarity score is more than the threshold
parameter ∂. The fuzzy based similarity
score is calculated as one minus letter edit
distance. The letter edit distance (levenshtein
distance) is a measure of the similarity
between two strings (Heeringa, 2004). The
distance (leva,b(i, j)) is calculated by the
required number of insertions, deletions, or
substitutions, to transform a source into
target string.

leva,b(i, j) =




max(i, j) if min(i, j) = 0

min





leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1ai ̸=bj

otherwise

The brevity penalty (BP) considers the total
number of characters rather than the words
present in reference and candidate transla-
tions. Overall precision is calculated by
combining the individual n-gram precisions

through arithmetic averaging.

BP =
{

1 c > r

e(1−(r/c) c ⩽ r

Here, the variables r and c refer to the total
number of characters in the reference and can-
didate translations respectively.

4 Experiments

We conduct the experiments on WMT 14
dataset (Machacek and Bojar, 2014) and Hi-
nEnCorp (Bojar et al., 2014) for five different
language pairs. At first, the WUP similarity
scores are calculated among the words of the
aligned sentence. If this WUP similarity score
is more than the tuned threshold parameter
δ, then two words are considered as a match-
ing. After fine tuning we found δ value as 0.80.
If there is a matching of more than one sin-
gle word pair, then the word pair with greater
WUP similarity value will be chosen as match-
ing. All synonyms, morphological structure,
and other representation of the words are cov-
ered by using this step. It then calculates the
similarity score which uses fuzzy logic. Ba-
sically, it calculates the Levenshtein distance
between the two strings. TH final score is then
computed by calculating the arithmetic aver-
age of the individual n-gram matchings multi-
plied by brevity penalty (BP).

5 Performance in WMT 14 Dataset

We also evaluate our proposed algorithm using
WMT 2014 dataset 1. The highest correlation
with human judgment is found for Hindi to
English (hi-en) and French to English (fr-en)
language pairs. After calculating the corre-
lation with human judgment on average, we
found the score as 0.951. This shows that our
proposed model stands out on top, considering
the average score. In most of the cases the pro-
posed metric achieves better correlation than
the standard metrics, shown in Table 1.
Main challenge in WUP similarity approach is
to tune δ. If this value is too small then syn-
onymous words may not be considered as sim-
ilar words. For large value of δ may cover dis-
tance words as similar one. For example, this

1http://www.statmt.org/wmt14/
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Table 1: Comparison: Correlation with different metrics in WMT 14 Dataset

Metric Pearson Correlation
de-en ru-en cs-en fr-en hi-en Average

WupLeBleu 0.931 0.882 0.985 0.973 0.984 0.951
LeBleu 0.892 0.896 0.912 0.971 0.969 0.928
LAYRED 0.893 0.843 0.940 0.973 0.976 0.925
BLEU 0.831 0.774 0.908 0.952 0.956 0.884
NIST 0.810 0.785 0.983 0.955 0.783 0.863
METEOR 0.926 0.792 0.980 0.975 0.457 0.826
TER 0.774 0.796 0.977 0.952 0.618 0.823

metric may identify ”foot-ball” and ”basket-
ball” as similar words which is not true.
We have done significance tests, and observe
that results are significant with 95% confi-
dence level (with p=0.1 which is < 0.05).

6 Evaluation with other Datasets

We evaluate the WupLeBleu for English to
Hindi (en-hi) translation. Due to the unavail-
ability of en-hi language in WMT dataset we
study the proposed evaluation score by us-
ing miscellaneous domain data sets from the
HinEnCorpora. We choose three systems:
Moses’s default configuration for SMT sys-
tem2, Google3 and Bing4 translator) for the
correctness checking of our proposed metrics.
We take 271877 and 1001 sentence pairs for
training and tuning of SMT, respectively. For
evaluation we use 1002 sentence pairs. After
detailed analysis (with 1002 sentence pair), we
achieve better Pearson correlation for the pro-
posed WupLeBleu. The Pearson correlations
are BLEU: 0.9103, METEOR: 0.9137, Lebleu:
0.9278 and WupLeBleu: 0.9434.
We also manually evaluate the F-beta scores

(Figure 1) for different automatic evaluation
metrics and compare their ratio (Figure 2) to
estimate how close these are to human evalu-
ation. It is clearly understood from Figure 2)
that LeBleu and proposed WupLeBleu’s eval-
uation preferences are closer to manual judg-
ment. WUP similarity makes WupLeBleu bet-
ter. We have added details of manual evalua-
tion in the additional sheet.

2http://www.statmt.org/moses/manual/manual.pdf
3https://translate.google.com/
4https://www.bing.com/translator

Figure 1: Ranking of correctness (hi-en)

Figure 2: Score ratio between dataset-1 and
dataset-2

7 Conclusion

In this paper we have proposed an automatic
MT evaluation metric, WupLeBleu. Based on
a large study and several experiments, we can
conclude that fuzzy logic based n-gram match-
ing with the WUP similarity method can per-
form more accurate MT evaluation than the
existing metrics. We believe that our proposed
approach that uses WUP similarity and fuzzy
logic has a higher similarity to human evalua-
tion. In future we will also evaluate the Wu-
pLeBleu metric on the other language pairs.
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Abstract

Humor is an essential characteristic of lan-
guage. It has been a topic of research in
linguistics and philosophy from historical
times. In computer science, computational
humor, as a part of Natural Language Pro-
cessing, is a growing area of research. So-
cial Media is rapidly growing as a platform
for communication but processing of so-
cial media, owing to its semantic perplex-
ity, is still a challenge. These two facts
lead us to present a novel dataset for hu-
mor classification which captures diversity
in humor on web resources. The large size
of this dataset is to meet the data require-
ments for modern machine learning algo-
rithms. This paper also deals with creating
a model for detecting and analyzing humor
in social media text extracted from eclectic
sources on the Internet.

1 Introduction

Humor is one of the most interesting aspects of
human language and behavior. Humans have an
innate sense of humor. They can understand, in-
terpret and create humor almost effortlessly. But
even though it is a part of our daily conversations,
computationally detecting and analyzing humor
remains a challenge. In recent years, the study of
humor has also developed into an area of compu-
tational research under computational linguistics
(Friedland and Allan, 2008; Mihalcea and Pulman,
2007; Kiddon and Brun, 2011).

Among all the theories of humor (Attardo,
2010), one of the most widely accepted is the ‘In-
congruity Theory’ (Morreall, 1986). It suggests
that humor is due to the mixing of two disparate in-
terpretation frames in one statement.It has recently
been formalized as a necessary condition for hu-

mor and used as a basis for the Semantic Script-
based Theory of Humor (SSTH) (Raskin, 2012).

Two fish in a tank. One turns to the other and
says: ”Do you know how to drive this?”

The incongruity theory can also be explained
as a theory of comprehension. As the joke grad-
ually evolves, two linear train of thoughts emerge,
leading to the obvious and latent meanings respec-
tively. As the joke nears its end, with a clever play
of words, the latent meaning becomes the dom-
inant one and ends up being the punch line of
the joke. In the preceding example, the first sen-
tence has two connotations. “Fish in a Tank” and
“Fish in a Tank”. By taking the first interpreta-
tion, reader assumes the tank in question to be a
fish tank. But the statement - ”Do you know how
to drive this?”, suddenly converts the connotation
to one where the ‘tank’ in question is an ‘armored
car’. This creates a sense of surprise and makes
the sentence humorous. Jokes based on the incon-
gruity theory use clever wordplay to elucidate hu-
mor in a sentence. They are also short in length,
making them particularly suitable for an automatic
learning setting. Such kind of humor is popular
among the ubiquitous social media websites, and
dedicated webpages. But it is essential to stan-
dardize this data before using it in an automatic
setting.

2 Related work

Previous work in computational humor had fo-
cused mainly on the task of humor generation
(Binsted and Ritchie, 1997; Stock and Strappar-
ava, 2003), and there has been a relatively recent
paradigm shift towards humor detection. Previ-
ous researchers (Purandare and Litman, 2006; Mi-
halcea et al., 2010) have used a set of linguis-
tic features to detect them (polysemy, alliteration,
antonyms and adult slang etc). Kiddon and Brun
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(2011) recognized a subproblem (Double Enten-
dre Identification) and constructed models to de-
tect sexual euphemisms or wordplay in sentences.
Similarly, Purandare and Litman (2006) analyzed
humorous spoken conversations from a classic
comedy television show - “FRIENDS”, by ex-
amining acoustic-prosodic and linguistic features.
Taylor and Mazlack (2004a,b) considered a re-
stricted set of all possible jokes that had wordplay
as a component and examined the limited domain
of “Knock Knock” jokes. Also, there have been
other interesting researches, such as by Yang et al.
(2015) where the authors developed models to ex-
tract humor ‘anchors’ from the sentences.

In the domain of humor-analysis on social me-
dia, Barbieri and Saggion (2014) developed au-
tomatic models to detect irony in sentences from
Twitter; models developed by Davidov et al.
(2010) did a semi-supervised recognition of sar-
casm on Twitter and Amazon reviews. By taking
the context of the tweet into account while classi-
fying, Bamman and Smith (2015) obtained higher
accuracies in detection of sarcasm in tweets.

There have not been many efforts to use deep
learning methods in humor detection, owing to the
subjectivity of the task and requirement of huge
amount of data. de Oliveira and Rodrigo (2015)
used RNN and CNN models to detect humor. But
this work was in the limited domain of Yelp Re-
views, and we have tried to extend this problem to
the language used in social media.

3 Dataset

As rightly specified by de Oliveira and Rodrigo
(2015), there is no large body of work on so-
called “computational humor”. Work that ex-
ists is largely in the pure NLP domain and uses
hand-written features and simplistic tree methods
or SVMs (Mihalcea and Strapparava, 2006; Yang
et al., 2015). This is because there is no such
labeled corpus of funny texts available for a de-
tailed semantic analysis. This problem can also
be attributed to the subjectivity of assigning a bi-
nary outcome onto something as complex as hu-
mor (Bamman and Smith, 2015).

We also felt that a dataset was needed that
contained balanced counts of positive and nega-
tive samples of humor. The previous dataset cre-
ated by Mihalcea and Strapparava (2005) contains
16000 one-liners, obtained through bootstrapping
method. Their work on this dataset in (Mihalcea

and Strapparava, 2006) obtained the state-of-the-
art accuracy in humor detection. de Oliveira and
Rodrigo (2015), have extracted sentences from
Yelp Review dataset. The 16000 one-liner dataset,
although containing balanced samples, was too
small to train a large network. The Yelp Review
was also inapplicable in this case as it contained
very long samples, extending for more than one
sentence. Hence, the authors created this new
dataset containing huge number of one-liner jokes,
containing 400,000 sentences extracted from ded-
icated humor pages on various social media web-
sites.

3.1 Our Dataset
This dataset contains 400,000 sentences extracted
from social media and humor-dedicated websites.
We used Reddit’s PRAW API1 Twitter’s REST
API2 (Makice, 2009) to extract samples from var-
ious humor-dedicated pages from these sources.
We also used Web Scraping (Munzert et al., 2014)
method to extract a large amount of sentences
from various dedicated websites like jokeofthe-
day.com, wocka.com, short-funny.com, oneline-
fun.com. Permission for scraping were taken from
website owners and maintainers whenever neces-
sary.

The negative samples were carefully chosen for
testing the model on multiple settings. The hy-
pothesis was that as the semantic similarity be-
tween the negative and positive samples increases,
the accuracy of classification decreases. The
sources for negative samples are:

1. News headlines from Reuters’ News Agency
website spanning a period of 5 years 3.

2. British National Corpus (Consortium et al.,
2012)

3. Proverbs (Extracted from an online proverb
collection)

4 Preprocessing and Balance

The sentences found on different sources were
slightly different in terms of style and content.
Thus, for the proper training of models, a stan-
dardization procedure was followed, which has
summarized below.

The sentences containing any sort of code-
mixing, image or hyperlink were removed.For

1https://praw.readthedocs.io/en/latest/
2https://developer.twitter.com/en/docs
3https://www.thomsonreuters.com/en.html
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standardizing the usage of punctuation, we limited
the number of punctuation marks to a max of three
repetitions concurrently. CamelCase words were
separated into distinct words (Friedl, 2002). Dig-
its were separated from the alphabets using regular
expressions. The non-humor samples were nor-
malized similarly. In the Reuters dataset, highly
repetitive phrases like ‘Stock Market value’ and
Breaking News were removed.

In order to cross-verify the integrity of the
dataset, we randomly sampled 100 instances of
humor from each source, and confirmed whether
they were indeed humorous or not.

The following table contains statistical informa-
tion about the Humor, Non-humor corpus and the
16000 sentences dataset (Mihalcea et al., 2010).
The statistics are in terms of Sentence Sequence
number (x-axis) vs Number of words (y-axis) of
each sentence. It can be inferred from the data pre-
sented that the distribution of the previous dataset
was much more balanced in terms of lengths of
jokes. We did not maintain such a balance in our
dataset as it would inhibit the model’s capacity of
capturing the kind of humor encountered in the
real world and the social media. We intentionally
included sentences of different lengths to aid di-
versity in the dataset.
HUMOR-

Minimum Length: 3
Maximum Length: 250
Mean: 30
Median: 22.16
Mode: 16
Population Variance: 698.28

NON HUMOR-
Minimum Length: 2
Maximum Length: 257
Mean: 11
Median: 10.69
Mode: 9
Population Variance: 22.92

16000 One-liners dataset
Minimum Length: 2
Maximum Length: 43
Mean: 15
Median: 14.94
Mode: 14
Population Variance: 14.76

5 Experiments

Humor detection has been recognized as a binary
text classification problem. But humor detection
is a difficult task. Detecting incongruity in humor

means that the model has to predict when a word is
being used for multiple meanings (polysemy), or
has to detect the change of focus in the sentence.

In order to classify the sentence based on the
presence of incongruity, we try and detect the
wordplay in the sentence by analyzing the rela-
tionships between the words. Word vector repre-
sentations of(Mikolov et al., 2013a,b) the words
were used to evaluate such relationships. In order
to find the sentence-embedding from the words,
two methods were used-

1. Unweighted averaging of the word vectors.

2. An RNN based language model (Cho et al.,
2014).

In order to optimize the results, we performed
experiments with both Word2Vec Skip Gram
model (Mikolov et al., 2013b) and a count based
GloVe Vector representation (Pennington et al.,
2014) and the results have been shown below.

A minimum frequency of five has been used for
creating these vectors. The window size for the
embeddings was set to be 10.

5.1 Classification
Our sentence embedding is a Bag-of-Words
(Zhang et al., 2010) vector averaging. We com-
pare this with a neural language modeling based
sentence embedding in the following sections.

5.1.1 Method of Averaging
Let ~xi ∈ <k be a k-dimensional (k = 100) vec-
tor corresponding to the i-th word in the sentence.
Then the sentence of length N can be represented
as

~Xi =
1

N

n=N∑

n=1

~xi (1)

The two classifiers used for the task are: Arti-
ficial Neural Networks (MLP) and Support Vector
Machines (Tong and Koller, 2001). For the MLP
classifier, as shown in Figure 1a, we used a 3 lay-
ered, densely connected network. The activation
function used for the hidden layers was ‘reLU’
(Rectified Linear Unit) (Equation 2) (Dahl et al.,
2013) (commonly known as reLU)

f(x) = max(x, 0) (2)

and a softmax function at the last layer. In the
SVM classifier, we used the rbf (Radial Basis
Function) as the kernel (Hsu et al., 2003) and
found the optimum parameters using an exhaus-
tive grid search.
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(a) MLP (b) LSTM

Figure 1: Network Architectures

5.1.2 Neural Language Model
The Recurrent Neural Network (RNN) (Cho et al.,
2014; Bengio et al., 2013) is a natural generaliza-
tion of feedforward neural networks to sequences
(Sutskever et al., 2014). Given a sequence of in-
puts (x1, ..., xT ), an RNN encoder encodes it into
a single vector c by iterating over the following
equation:

ht = f(xt, ht−1)

We use an LSTM (Hochreiter and Schmidhuber,
1997) layer instead of RNN to capture long-term
dependencies (Bengio et al., 1994).

The final encoded vector c results from the
equation c = q({h1, ...hTx}), (Cho et al., 2014)
where q({h1, ..., hT }) = hT for the case of
LSTMs , as presented by (Sutskever et al., 2014).
This encoded vector is used as the sentence em-
bedding for classification purposes. The model
was created using APIs by Tensorflow (Abadi
et al., 2015) and has been presented in Figure 1b.

The sentences were pre-padded up to the length
of 50 steps. We used stochastic gradient descent
(SGD) algorithm together with Adadelta (Zeiler,
2012) to train the model. In order to tackle the dif-
ficulty of different lengths of sentences, we also
used a variable-length vector (Dynamic Length
RNN) (Cho et al., 2014) and found better results.

5.2 Results

Technique Reuters BNC Proverbs
MLP 99.46% 75.6% 81.4%
SVM 96.2% 71.5% 78.6%
LSTM 74.20% 52.2% 55.6%

Table 1: Comparison of results obtained using dif-
ferent datasets as negative samples.

The dataset was split into 80%-10%-10% (train-
ing - validation - testing) sets to train and test
the model. Cross-validation was done through the

Technique Accuracy
Our Approach 95.8%

(Mihalcea et al., 2010) 96.89%
(Yang et al., 2015) 80.5%

Table 2: Comparison with other results from the
literature on 16000 One-Liners Dataset.

dataset and the results were averaged. The final
accuracy achieved was 99.46%.Empirically, it was
observed that pre-trained vectors performed much
better than the other freshly trained GloVe vectors
and Word2Vec (Rehurek and Sojka, 2011) vectors.
This can be attributed to the fact that they were
trained on a much larger dataset, hence they better
captured the substructures of the vector space.

As presented in table 1, LSTMs were not able
to classify the sentences as accurately as MLP and
SVM. We postulate that in order to perform well
at humor classification, a much larger dataset is re-
quired for training the LSTM model. In Table 2,
we report the efficacy of using different datasets
as negative samples. Since News’ headlines are
semantically most dissimilar from humorous sen-
tences, and the sentences from the BNC corpus are
most similar, the accuracy is the highest in the for-
mer case, and the lowest in the latter.

We also tested our model on the 16000 One-
Liners (Mihalcea and Strapparava, 2006) dataset,
and got comparable results. It should be noted that
since the humorous samples found in this dataset
were extracted from a different source. This sort
of cross-domain classification experiment proves
that this approach can be generalized.

6 Conclusion and Future work

We have presented a methodology for detecting
humor in social media text. A new dataset has
been created and used to train machine learn-
ing models that can detect humor in English sen-
tences. We are releasing this comprehensive
dataset that has been standardized to be used in
an NLP setting. We present our approach towards
humor detection, along with the results achieved.
Experimental results display the applicability of
the model. Since LSTMs did not give acceptable
results in classification, it would be interesting to
use ‘Attention’ (Bahdanau et al., 2014), and in-
crease the dataset size to train such a model. In
the future, we would also like to extend our work
in computational humor to humor generation.
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Abstract

Over the past decades, soft computing
and statistical techniques has acquired se-
rious attention for solving machine learn-
ing problems. A system consisting of hu-
man like capabilities can be developed us-
ing fuzzy logic. Moreover, evolutionary
techniques are often fit for approximating
solutions. With these potentials, we pro-
pose a supervised text summarization ap-
proach based on fuzzy rules and human-
engineered features. A data-driven fuzzy
rules generation system is modeled as a
discrete optimization problem and then
used to classify the sentences of document.
According to these classifications, the rel-
evant sentences are extracted for summary
generation. The experimental results on
DUC2006 dataset show the effectiveness
of the proposed model.

1 Introduction

The automatic text summarization (ATS) systems
are welcomed since the necessity to access large
amount of textual data has grown. The main ob-
jective of these systems is to fetch significant in-
formation from the document while maintaining
the user requirement (Mani, 2001) and challenge
is to produce high quality summary (Binwahlan
et al., 2010). According to Ferreira et al. (2013),
an ATS system generates concise form of single
or multiple documents. Although, a lot of work
has previously been done in the field of extractive
summarization, the challenges are still there.

In this paper, the proposed model focuses on ex-
tractive summary generation based on fuzzy logic
and text features. Most of the existing extractive
methods are based on finding the relevant sen-
tences using text features such as sentence posi-

tion and length (Erkan and Radev, 2004), exis-
tence of title words, frequent words, and proper
nouns in the sentence (Nenkova et al., 2006; Ed-
mundson, 1969). The scores of these features are
typically used to assign the score to sentences for
making decision on the relevancy of sentences.
However, decision with these scores sometimes
become fuzzy and low (Zha, 2002; Lin and Hovy,
2003; Murad and Martin, 2007). For example,
suppose there are two sentences s1 and s2 eval-
uated on the basis of two features f1 and f2 with
their weights 0.9 and 0.2, respectively. The fea-
ture’s scores of s1 are 0.1 and 0.9 and s2 are 0.3
and 0.0. According to these scores, both s1 and
s2 get 0.27 score and consists of equal priority for
selection. But if we observe, the feature f1, whose
score is negligible in s1, has much higher weight
in comparison to f2. Therefore, it would be ap-
preciable if s2 gets higher priority than s1. This
condition can be better handled with fuzzy logic
which motivates us to explore it for summariza-
tion.

Few of research works till date have been de-
voted to fuzzy based summarization schemes.
Binwahlan et al. (2010) proposed a fuzzy swarm
based summarization method where every sen-
tence is computed on the basis of their feature
scores adjusted by particle swarm optimization
generated weights. Their scores are then applied
to fuzzy logic for better classification in important
and unimportant sentences. Abbasi-ghalehtaki
et al. (2016) also applied fuzzy logic in the same
manner for summarization task where scores are
adjusted by hybrid genetic and particle swarm op-
timization algorithms. In these schemes, much
effort and time has been devoted to create fuzzy
rules through human experts. Moreover, the pro-
cessing with these huge set of rules is also time
consuming. It motivates us to generate a data-
driven optimal set of fuzzy rules. According
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to Binwahlan et al. (2009), fuzzy logic and swarm
intelligence could perform better in the field of
text summarization. Therefore, the optimization
power of particle swarm optimization (PSO) algo-
rithm in discrete form has been utilized to generate
fuzzy rules in this paper.

2 Problem formulation

In this section, we formally introduce our model as
follows. Suppose D = {s1, s2, . . . , sn} is a doc-
ument which consists of n number of sentences
where sm denotes mth sentence of the document.
At first, sentence segmentation, and stop word re-
moval steps are carried out. As a result, each sen-
tence sm = {w1, w2, . . . , w|sm|} is converted into
a set of keywords. Thereafter, we score the sen-
tences according to seven text features as given in
Table 1.

Text feature Description Formulation

f1 Title words (tw)
∑

tw∈sm (Count(gramN )

|tw|.|sm|

f2 Proper noun (pn)
∑

pn∈sm Count(gramN )

|pn|.|sm|

f3 Frequent words (fw)
∑

fw∈sm Count(gramN )

|fw|.|sm|
f4 Sentence position |n/2−m|

n/2

f5 Sentence length 1 − |AL(S)−|sm||
max(|sm|)

f6 Sentence similarity
∑n

m′=1,m 6=m′ (Sim(sm,s
m′ ))

|sm|

f7 Numerical data (nd)
∑

nd∈sm Count(gramN )

|nd|.|sm|

Table 1: Description of Text features

As a result, every sentence sm =
[f1, f2, . . . , f7] is converted into a vector of
seven elements where each element denotes the
score of jth feature of mth sentence in numerical
form. Next, we calculate the score of each
sentence sm using fuzzy inference system. This
system requires a set of if-then rules to process the
data which has been generated through training
corpus. As a result, every sentence has been
assigned a score and accordingly extracted the
sentence for summary generation.

3 Training data for summarization

Data-driven fuzzy rules generation model requires
a large corpus of documents with the labels indi-
cating linguistic informations for every text fea-
ture and their respective reference summaries.
Therefore, we have created an annotated data for
training. In this regard, we have extracted 90% of
documents from DUC2002 dataset. The 10% of
the dataset has been preserved for testing of sum-
marization model. At first, we pre-process the data

Initialization of fuzzy if-then rules

Binary representation of initial 
fuzzy rules

Sentence extraction

Fitness evaluation

Assign PBest and GBest

Update velocity and position 

Kmax ?

Extract fuzzy rules with fitness 
values

Fuzzification of fitness 
values

Pickup the top rules

Training document

Preprocessing

Feature extraction

Fuzzification

No

Yes

Figure 1: Data-driven fuzzy rules generation

and then compute the scores of text features as
given in Table 1. These scores of text features are
then used as input for fuzzification process. We
use trapezoidal membership function for each in-
put which has been described in Section 5. As a
result, every score is represented in the form of
linguistic information and every sentence is repre-
sented as a set of linguistic informations.

4 Fuzzy evolutionary learning approach

In this work, fuzzy evolutionary learning has been
used to find a set of significant fuzzy rules. The
fuzzy if-then rules are extracted as linguistic in-
formation with the association of fuzzy to discrete
PSO algorithm. The flow chart of fuzzy rules gen-
eration is illustrated in Figure1.

4.1 Rule encoding

At first, we encode the fuzzy rules. Three lin-
guistic informations (low, medium, and high) have
been used to represent each text feature in the
rule. These linguistic informations are encoded as
1: Low, 2:Medium, and 3:High. Therefore, if a
rule is, for example, ‘If f1 is Low, f2 is Medium,
f3 is low, f4 is High, f5 is High, f6 is High, f7
is Low then Sm is important ’. This rule can be
encoded as 1213331.

4.2 Initialization

The initial encoded form of if-then rules are gen-
erated randomly in the range of [0, 3] in the form
of population X = {x1, x2, . . . , xp}, where xq =
{xq,1, xq,2, . . . , xq,dim} denotes qth rule in the
swarm, each element of xq is denoted by xq,j ,
q = {1, 2, . . . , p} and j = {1, 2, . . . , dim}, and
population size p. In particular, we generate the
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MediumDiscrete representation
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Figure 2: Fuzzy rules representation

rules in the context of text features and seven text
features are considered here. Therefore, the dim
of every particle is seven. Next, since the elements
of every particle is in discrete form as shown in
Figure 2, the notion of discrete particle swarm
optimization (DPSO) proposed by Izakian et al.
(2010) is applied here. In particular, each particle
is converted into binary matrix form, as position
update with discrete values is an issue in PSO. In
the proposed method, every particle is converted
into 3 × 7 matrix as shown in Figure 2. Along
with this, the parameters used in DPSO algorithm
are also set.

4.3 Sentence extraction

After the initialization of rules, the sentences in the
training corpus that follows the rule described in a
particle are extracted. There can be any number of
sentences that follows a rule. These sentences are
then used for evaluation of the rule.

4.4 Fitness function

In this step, we use ROUGE-1 recall function as
the fitness function. It calculates the fitness value
by matching one to one gram between the system
summary and reference summary. It is defined as
follows.

Fitness(xq) =∑
s∈Sumref

∑
gram1∈sCountmatch(gram1)∑

s∈Sumref

∑
gram1∈sCount(gram1)

(1)

where Sumref represents the reference sum-
mary. Countmatch(gram1) represents the match-
ing grams between the selected set of sentences
and the reference summary. The solution having
the highest fitness value is marked as the global
best solution.

4.5 Particle update

Here, we explain the updation of the particles in
the matrix form. Similar to PSO, in DPSO, each
element in the matrix of a particle is calculated by

the Eq.2 and position of each matrix is updated on
the basis of velocity matrix as given in Eq.3.

V k+1
q (t, j) = V k

q (t, j) + c1r1(pbest
k
q (t, j)−

Xk
q (t, j)) + c2r2(gbest

k(t, j)−Xk
q (t, j))

(2)

xk+1
q (t, j) =

{
1, if (V k+1

q (t, j) = maxV k+1
q (t, j))

0, otherwise.
(3)

where V k+1
q (t, j) is the element of the tth row

and the jth column of the qth velocity matrix at the
(k+1)th iteration. xk+1

q (t, j) is the element of the
tth row and the jth column of the qth position ma-
trix at the (k+1)th iteration. c1 and c2 are positive
acceleration constants, and r1 and r2 are random
numbers belonging to [0,1]. Here, the position up-
dating equation represents that the value 1 is as-
signed to those element in a column whose cor-
responding velocity element has maximum value
in that column. If two velocity elements belongs
to maximum value in a column then any one has
been randomly chosen for assigning the value 1.

4.6 Termination of algorithm
If the number of user-defined iterations is over, all
the generated rules in the swarm which are evalu-
ated in the optimization process are extracted with
their fitness values. These values are again fuzzi-
fied in another class of linguistic information (im-
portant, average, and unimportant) in the same
manner as given in Section 5. Here, we again use
trapezoidal membership function for fuzzification.
Finally, all the rules which are identified as impor-
tant rules are extracted for summary generation. If
user-defined iterations is not over then new veloc-
ity vector is calculated again to update the velocity
using Eqs. 2 and so position matrix.

5 Summary generation

Once the fuzzy rules are generated, the summary
of test documents has been generated using fuzzy
inference system. Similar to training documents,
we pre-process the test documents and extract the
features of the sentences. Next, the following pro-
cess has been done to accomplish the summariza-
tion task.

5.1 Fuzzification
Three fuzzy set are considered for fuzzification:
low, medium, and high. For every input, say
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fj , we use trapezoidal membership function for
fuzzifing values of text features. Each membership
function consists of four parameters (α, β, γ, δ).
With these definitions, a trapezoidal membership
function µij(fj) → [0, 1] for ith fuzzy set on the
jth input variable can be defined with the condi-
tion αij ≤ βij ≤ γij ≤ δij as follows.

µij(fj) =





fj−αij

βij−αij
, if αij < fj < βij

1, if βij < fj < γij
δij−fj
δij−γij , if γij < fj < δij

0, Otherwise

(4)

5.2 Inference
In this step, the facts resulted in fuzzification
process are exploited with the generated data-
driven if-then rules to perform the fuzzy reason-
ing process. We again use trapezoidal member-
ship function for every output which is defined as
µ′i(αi, βi, γi, δi).

5.3 Defuzzification
It is the process of transforming the fuzzy results
obtained from inference process into crisp val-
ues which has been accomplished using centroid

method Z =
∑q

j=1 Zjuc(zj)∑q
j=1 uc(zj)

(Sivanandam et al.,

2007), where uc(Zj) represents the membership
in class c (output fuzzy set denotes to class of
sm) at value Zj (value obtained from fuzzy rules).
Hence, the final score of the sentence Z is ob-
tained by their all fuzzy scores and membership
degrees. According to these scores, top l sentences
are extracted and reordered according to the origi-
nal document for summary generation.

6 Evaluations and Results

The experiment for evaluating the proposed
method is conducted on the DUC2006 (Docu-
ment Understanding Conference) dataset. This is a
benchmark datasets in the field of text summariza-
tion that contain the document collections along
with reference (human generated) summaries.

The extensively used evaluation methods for
summarization system, are known as ROUGE (R)
(R-N, R-L, and R-SU), proposed by Lin (2004),
has been used in this study. We have computed
recall matrix for every evaluation method to show
the performance of the proposed method.

We have compared the performance of our
method with four other methods: MsWord, NN-
SE (Cheng and Lapata, 2016), FEOM (Song et al.,

Methods R-1 R-2 R-L R-SU
Proposed 0.482 0.239 0.401 0.312
MsWord 0.439 0.201 0.382 0.267
NN-SE 0.473 0.233 0.329 0.291
FEOM 0.477 0.224 0.417 0.303
UniRank 0.463 0.231 0.397 0.307

Table 2: Evaluation results on DUC2006

2011), and UniRank (Wan, 2010). MsWord is a
benchmark summarizer which is extensively used
for summarization. NN-SE is a deep learning
based method. FEOM is a fuzzy evolutionary
based method in which sentences of document is
clustered and elite sentences from each cluster are
extracted for summary generation. UniRank is a
graph based method which verify the mutual in-
fluence between two tasks for text summarization.

Table 2 shows the comparison between pro-
posed method and other methods using R-1, R-
2, R-L, and R-SU on DUC2006 dataset. We ob-
served that the proposed method performed bet-
ter in the case of R-1, R-2, and R-SU. However,
in the case of R-L, FEOM got better result and
was outperformed by 3.8%. The proposed method
obtains maximum improved results by 18.2% and
16.8% in case of R-2 and R-SU with Msword.
NN-SE got second position for R-1. It also per-
form slightly better than UniRank method in the
same case. By observing these results we found
that the performance of FEOM is very close to
proposed method. So, paired t-test experiment is
performed for these methods to find statistical dif-
ferences between their performances at 5% sig-
nificance level. We found p-value=0.042 which
shows the significant performance of the proposed
method. Overall, our proposed model achieves
better performance in comparison to other meth-
ods.

7 Conclusion

We explore fuzzy swarm intelligence based an ef-
fective model for fuzzy rules generation in the
context of text summarization. The effective op-
timization power of PSO bring a surge of interest
in this task. The proposed approach considerably
outperforms other methods on DUC dataset. For
future work, we are planning to enhance our rule
generation model by creating a large corpus for its
better training. We are also planning to apply our
model for multi-document summarization.
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Abstract
Dealing with healthcare data is becom-
ing difficult because decision-making be-
comes crucial to extract information from
a huge volume of medical concepts be-
ing evolved on daily basis. Moreover,
unstructured and semi-structured medical
corpora and lack of domain-experts fueled
more challenges in this research arena.
In order to face one of such challenges,
we have developed a baseline model of
Medical Recommendation System (MRS).
Primarily, MRS helps the experts (e.g.
medical practitioners and doctors) by sug-
gesting relevant diseases and symptoms
as well as their in-between similarities.
Here, we have used a content-based ap-
proach to identify similar types of diseases
and symptoms by employing two well-
known distance metrics, Manhattan and
Euclidean. Evaluation based on perplexity
score reveals that the performance of MRS
is equally well for identifying relevant dis-
eases and symptoms.

1 Introduction

During last few decades, medical information re-
trieval and extraction behavior are largely ob-
served in the web. A recent survey says that 59%
and 49% of U.S. and Indian internet users 1 are
looking for online health information e.g., dis-
eases, diagnosis, and treatments (Fischer et al.,
2014). Such information helps the doctors as well
as patients in their decision-making process for
treatment.

Besides, medical experts face difficulties in
identifying relevant information from the web due

1http://www.prmoment.in/category/pr-news/survey-
shows-that-49-of-indians-use-the-internet-for-health-
information

to information overloading (Sommerhalder et al.,
2009). In order to overcome such challenges, var-
ious domain-specific information extraction sys-
tems are essential to help personalized delivery by
identifying relevant information (Roitman et al.,
2010).

In the present task, we have developed a Medi-
cal Recommendation System (MRS), an informa-
tion extraction system that assists in recommend-
ing similar type of diseases as well as symptoms
with respect to a particular symptom and disease,
respectively. Therefore, we have employed two
similarity matrices, disease and symptom. The
disease similarity matrix contains similar diseases
which have common symptoms, whereas symp-
tom similarity matrix presents similar symptoms
with respect to common diseases.

In order to develop the similarity matrices
and prepare a disease-symptom relational matrix,
we have employed WordNet of Medical Events
(WME 3.0) (Mondal et al., 2016), a domain-
specific lexicon. Thereafter, the similarity ma-
trices and two well-known distance measurement
techniques namely Manhattan and Euclidean have
been used to build the proposed MRS. Addition-
ally, we have observed the following challenges to
design this recommendation system.

A. How to identify the categories of disease and
symptom for medical concepts?

B. How to detect the relation between diseases
and symptoms?

C. How to frame matrices of similar diseases
and symptoms?

D. How to recommend the disease and symptom
based on the number of user-provided symptoms
and diseases, individually?

E. How to evaluate the proposed MRS?
In order to address these challenges, we have

employed WME 3.0 lexicon and two well-known
similarity measurement techniques such as Man-
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hattan and Euclidean distance. Additionally, we
have prepared a disease-symptom matrix in the
presence of WME 3.0 lexicon and a Healthline re-
source 2. Finally, we have applied Latent Semantic
Indexing (LSI) method on the disease-symptom
matrix to identify the hidden relations between
them.

2 Background of the Work

2.1 Medical Concepts and their Categories
Assignment

The research on biomedical information extraction
is demanding to extract medical concepts and their
relations from the daily produced large amount
of unstructured and semi-structured medical cor-
pora. In order to present a structured corpus and
extract subjective information from corpora, we
have observed that the domain-specific ontologies
and lexicons are essential (Borthwick et al., 1998).
To this end, the standard vocabularies and on-
tologies, namely UMLS (Unified Medical Lan-
guage System), GATE (General Architecture for
Text Engineering), and SNOMED-CT (System-
atized Nomenclature of Medicine-Clinical Terms),
and lexicons namely MEN (Medical WordNet)
and WME (WordNet of Medical Event) were used
by the researchers (Smith and Fellbaum, 2004;
Kilgarriff and Fellbaum, 2000; Chaturvedi et al.,
2017; Mondal et al., 2015, 2016).

These ontologies and lexicons help to extract
the relevant information from the corpus such as
medical concepts, their categories, and relations
between them. Besides, the medical terms or con-
cepts extraction from a clinical corpus is treated
as an ambiguous task (Styler IV et al., 2014). A
group of researchers introduced a sense selection
and pruning strategy to expand the ontology in the
medical domain (Widdows et al., 2006).

Eklund (Eklund, 2011) developed an annotation
system to extract the relations as diseases for treat-
ments from the scientific medical corpus. Yao, et
al. (Yao et al., 2010) extracted relations such as
cures, prevents, and side effects, which describe
the distinctive nature of the biomedical text (med-
ical papers) (Abacha and Zweigenbaum, 2011;
Frunza and Inkpen, 2010). Franzen et al. (Franzén
et al., 2002) have annotated Yapex corpus with 200
medical abstracts to extract the category as pro-
teins. These ontologies are fundamentally look-
ing for extracting protein-protein interaction and

2http://www.healthline.com/

disease-treatment relations from corpora under a
BioText project (Rosario and Hearst, 2005).

2.2 Recommendation System
Since last decades, recommendation systems are
attracting in healthcare services along with the on-
line shopping systems (Ricci et al., 2015; Ado-
mavicius and Tuzhilin, 2005). The recommenda-
tion system provides support to extract the rele-
vant and novel information from the corpus and
increases the diversity of recommendation.

Adomavicius and Tuzhilin (Adomavicius and
Tuzhilin, 2005) generalized the recommendation
problem as a utility function u: C x S − > R,
where C is the set of users and S is the set of rec-
ommendable items. u(C, S) returns a real value
>= 0, where larger values presume a higher inter-
est of C in S and u(C, S) = 0 presumes no interest
of C in S. Initially, u is only a partially defined
function, where known item ratings are given via
users’ profiles.

In order to build a recommendation system
and compute u(C, S), primarily three approaches
are usually followed such as content-based,
collaborating-filtering, and hybrid. Content-based
approach presents a sparse matrix according to the
liking and disliking of the items of the user (Bal-
abanović and Shoham, 1997). On the other side,
the collaborating-filtering works with item-item
and user-user similarity matrix based techniques
with respect to the rating of the users (Cheung and
Tian, 2004). The hybrid approach helps to com-
bine the above-mentioned two approaches in an
effective way for improving the accuracy (Zhang
et al., 2017).

2.3 Medical Recommendation System
Recommendation is a useful technique that helps
to find the relevant item for the users. Primar-
ily, we have observed that the recommendation
system is used to overcome the information over-
loading challenges with various type of items such
as books, movies, and medical conditions namely
diseases and treatments. In the present work,
we have developed a Medical Recommendation
System (MRS) to recommend subjective informa-
tion from the textual content in healthcare ser-
vices (Paruchuri, 2016).

In connection to MRS, Eysenbach and
Jadad (Eysenbach and Jadad, 2001) developed
a healthcare recommendation system to link
the personal online accessible health records
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with general health information from evidence-
based resources. On the other hand, Roitman
et al. (Roitman et al., 2010) observed the per-
sonalized recommendation, a valid approach
to increase patient safety by avoiding so-called
adverse drug reactions (ADR) (Wiesner and
Pfeifer, 2014). We have also noticed that the
content recommendation merely supplies medical
information such as diseases and symptoms from
the web (Agarwal et al., 2013; Wendel et al.,
2013).

The earlier mentioned study motivates to build a
medical recommendation system for diseases and
symptoms using a content-based approach in this
research.

3 Dataset Preparation

This sub-section presents, how we have pre-
pared an experimental dataset which helps to
build the proposed Medical Recommendation Sys-
tem (MRS). In order to start with, we col-
lected the medical corpus from two different
resources namely SemEval-2015 Task-6 3 and
MedicineNet 4. Initially, we have converted all
the acquired texts from the resources into con-
text, which refers each sentence in a corpus. We
collected 3647 number of medical contexts from
both of the resources and prepared an experimen-
tal dataset with 2624 number of unique medical
contexts.

Thereafter, we have applied a well-defined med-
ical concept identification system developed by
Mondal et. al. (Mondal et al., 2016) to iden-
tify medical concepts from contexts. Thereafter,
to assign the categories of medical concepts, we
have employed an auto-categorization technique
developed by Mondal et. al. (Mondal et al.,
2017). They have annotated the medical concepts
into five different categories (diseases, symptoms,
drugs, human anatomy, and Miscellaneous Medi-
cal Terms (MMT), an unspecified and undetectable
category). Among all these categories, we have
selected only two primary frequent categories of
medical concepts such as diseases and symptoms
for the current research.

On the other hand, we have used healthLine 5

resource to recognize the relationship between the
assigned diseases and symptoms in a context for

3http://alt.qcri.org/semeval2015/task6/
4http://www.medicinenet.com/script/main/hp.asp
5http://www.healthline.com/

our experimental dataset. The relations help to
prepare a disease-symptom matrix, which con-
tains 5069 and 1124 number of unique diseases
and symptoms individually. The disease-symptom
matrix assists in designing disease-disease and
symptom-symptom matrices to recommend sim-
ilar diseases and symptoms for a particular dis-
ease and symptom, respectively. These matrices
are processed through a content-based approach
for building the proposed MRS system.

4 MRS Implementation

In order to implement the system, the pri-
mary required recommended information are sim-
ilar diseases and symptoms according to the
user-provided diseases and symptoms, individu-
ally (Mondal et al., 2018). Hence, we have pre-
pared one disease-disease and another symptom-
symptom similarity matrix from our experimen-
tal dataset. Thereafter, we have employed Man-
hattan and Euclidean distance techniques as a part
of the content-based approach to design the MRS.
MRS has been presented by two different types
of recommendation systems namely RSDS (rec-
ommendation for similar diseases and symptoms)
and RDS (Recommendation based on diseases and
symptoms). RSDS provides the similar type of
diseases and symptoms with respect to a particular
disease and symptom consequently. On the other
hand, RDS presents common diseases as well as
symptoms for a number of symptoms and diseases
supplied by users, individually. Both of the rec-
ommendation systems under MRS have been il-
lustrated in the following subsections.

4.1 Recommendation for Similar Diseases
and Symptoms (RSDS)

In order to recognize similar diseases as well as
symptoms for a particular disease and symptom
individually, we have developed a content-based
approach with the help of Euclidean and Manhat-
tan distance technique. Both of the techniques
have been applied to the disease-symptom (Di-
Sy) matrix for obtaining disease-disease (Di-Di)
and symptom-symptom (Sy-Sy) matrices, respec-
tively. Initially, the Di-Sy matrix presents rel-
evant (score 1) and non-relevant (score 0) be-
tween a disease and a symptom. The scores have
been assigned through the knowledge-based re-
lation between them as mentioned in our experi-
mental dataset. Unfortunately, we have observed
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that the scores are not assigning any partial re-
lations between them due to versatile nature of
medical concepts. Hence, we have used two dif-
ferent types of distance measurement techniques
namely Euclidean and Manhattan to assign the
fractional relations between diseases and symp-
toms. In the following paragraphs, we have il-
lustrated, how Euclidean and Manhattan distances
have been used to calculate the score.

Euclidean Distance: Euclidean distance refers
to the straight-line distance between two points
in Euclidean space (Greenacre and Primicerio,
2008). In this research, we have represented Di-
Sy matrix as a Euclidean space where diseases
and symptoms appear as points. Besides, we have
identified similar diseases as well as symptoms
based on similar symptoms and diseases respec-
tively, which presented as a content-based recom-
mendation system.

We have observed that the Euclidean distance
does not provide an adequate accuracy due to
the high dimension of disease and symptom vec-
tors (Charulatha et al., 2013). Therefore, we have
employed Manhattan distance to overcome the
mentioned challenge and improve the accuracy.

Manhattan Distance: Manhattan distance
function computes the distance between two items
by summing up the differences of their corre-
sponding components (Madhulatha, 2012). The
Manhattan distance helps to prepare another set of
Di-Di and Sy-Sy matrix to develop the proposed
RSDS system.

Thereafter, we have combined Euclidean dis-
tance (ED) and Manhattan distance (MD) for
both diseases as well as symptoms using equa-
tion 1 to identify the similar diseases and symp-
toms. We have selected a threshold value as >
3.00 to recognize the similar diseases and symp-
toms for a provided disease and symptom under
RSD.

SimilarityS = (w1 ∗ ED) + (w2 ∗MD) (1)

where w1 = 0.8 and w2 = 0.2 present the weight
for both of the techniques, individually.

On the other hand, the following subsection de-
scribes the development steps of another type of
recommendation system namely disease recom-
mendation using various symptoms and symptom
recommendation using various diseases.

4.2 Recommendation based on Diseases and
Symptoms (RDS)

In case of designing recommendation systems in
healthcare, we have observed that the identifica-
tion of a particular symptom or disease is very dif-
ficult with respect to a specific disease or symp-
tom, individually. Hence, we have developed a
recommendation system that identifies common
symptoms based diseases as well as common dis-
eases based symptoms as suggested by a group of
medical practitioners. These assumptions offer an
adequate accuracy for the proposed MRS.

Thereafter, the following algorithm assists
in recommending the common diseases for a
particular set of symptoms and vice-versa.

Step-1: Initially, we have presented symp-
tom vectors as SVDi−Sy respect to all diseases
from Di-Sy matrix.
Step-2: Take n number of input symptoms
(Si) and generate their corresponding symptom
vectors (SVi).
Step-2.1: If SVi ∈ SVDi−Sy :

SVi =< a1, ..., a5069 >,

where a refers 0 or 1.
Step-2.2: Else:

SVi =< b1, ..., b5069 >

where b presents only 0.
Step-3: Common diseases for all n number of
symptoms present by CD vector.

CD =
n⋃

k=1

SVk (2)

Step-4: CD vector helps to recommend common
diseases based on the value 1.

5 Evaluation

In order to validate both the recommendation sys-
tems under MRS, we have used perplexity distri-
bution approach on Di-Sy matrix, which has been
treated as a baseline. Perplexity presents a mea-
surement of how well a probability distribution or
probability model predicts a sample in informa-
tion theory. Equation 3 defines the perplexity of a
discrete probability distribution (PD).

PD = 2H̃r where H̃r = −
1

T
log2 p(w1, . . . , wT )

(3)
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where {w1, . . . , wT } is held out test data that pro-
vides the empirical distribution q(·) in the cross-
entropy using equation 4.

H̃ = −
∑

x

q(x) log p(x) (4)

and p(·) is the recommended system estimated
on a training set.

H(X) = E[− log(p(x))] (5)

H̃ = −
∑

x

q(x) log p(x) (6)

Perplexity provides a score of difficulty label
of the prediction problem, where information en-
tropy 6 measures the unpredictability. Equation 5
and equation 6 refer the entropy (H(X)) of random
variable X for linear and discrete domain individu-
ally. These equations help to calculate the perplex-
ity score for the different set of diseases as well
as symptoms of Di-Sy matrix. Table 1 shows the
distribution of perplexity scores for all sets of dis-
eases over symptoms that are initially indicated as
Di-Sy matrix and vice-versa.

# Diseases # Symptoms Perplexity Score
5069 (Overall) 1124 283.50
1-1267 (First Quarter) 1124 107.69
1268-2535 (Second Quarter) 1124 109.74
2536-3802 (Third Quarter) 1124 110.94
3803-5069 (Fourth Quarter) 1124 110.00
# Symptoms # Diseases Perplexity Score
1124 (Overall) 5069 86.00
1-281 (First Quarter) 5069 36.21
282-562 (Second Quarter) 5069 34.61
563-843 (Third Quarter) 5069 33.86
844-1124 (Fourth Quarter) 5069 36.89

Table 1: A detailed statistics of perplexity scores
for various combination of diseases over symp-
toms and vice-versa.

Symptoms
Ear-Discharge Breast-Pain Clubfoot

D
is

ea
se

s

asthma 0 0 0
HIV 0 0 0
Lung Cancer 1 1 1
Pneumonia 1 1 1
Narcolepsy 0 0 0
SVD for LSI Score 3.039 2.183 1.414

Table 2: A sample LSI output of the disease-
symptom matrix under MRS.

In addition to validate the output of the pro-
posed MRS, we have applied Latent Semantic In-
dexing (LSI) method. It helps to discover the

6http://pespmc1.vub.ac.be/ENTRINFO.html

hidden relation between diseases and symptoms
from the baseline Di-Sy matrix. Each disease and
symptom is presented as a vector with elements
corresponding to these symptoms and diseases, in-
dividually. Each element in a vector refers to the
weighted association between the concepts as the
category of diseases and symptoms. This method
assists in describing the efficiency of the prepared
Di-Sy matrix in the process of developing MRS
along with Singular Value Decomposition (SVD)
technique 7. Table 2 shows a sample output of
the disease - symptom matrix of MRS using the
BlueBit calculator 8.

The result indicates the developed RDS pro-
vides a better prediction over RSDS due to the
structure of our experimental dataset.

6 Conclusion and Future Work

In this article, we have attempted to build a
medical recommendation system (MRS) using
a content-based approach to better services in
healthcare. Our primary motivation behind this
research is to help the medical experts and non-
experts to understand the domain-specific knowl-
edge and their in-between relations. So, we have
distributed the overall task into four sub-tasks such
as 1) experimental dataset preparation, 2) a re-
lational matrix building namely disease-symptom
(Di-Sy), 3) development of similar diseases and
symptoms recommendation system (RSDS), and
4) symptoms based diseases and diseases based
symptoms recommendation system (RDS).

In order to prepare the experimental dataset
and baseline matrix, we have employed WME
3.0, a domain-specific lexicon, Healthline 9 re-
source. Thereafter, Euclidean and Manhattan dis-
tance techniques have been applied to various dis-
ease and symptom vectors as content-based rec-
ommendation system to build both RSDS and
RDS systems.

In future, we will try to improve the accuracy
of the proposed MRS by enriching the experimen-
tal dataset. We will also focus on design a rank-
ing based technique viz. collaborative filtering in-
stated of the applied content-based to recommend
the adequate output for the MRS.

7http://webhome.cs.uvic.ca/ thomo/svd.pdf
8http://www.bluebit.gr/matrix-calculator
9http://www.healthline.com/
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Abstract

Relevant information extraction in dis-
aster situation plays an important role
for crisis management. In this pa-
per we propose a deep learning based
method for event extraction in Hindi
from the man-made and natural dis-
aster related texts. The overall task
is to identify the event triggers from
text and then classify them into pre-
defined categories of interest. Our pro-
posed model follows an ensemble ar-
chitecture where we use Convolutional
Neural Network (CNN) and Bidirec-
tional Long Short-Term Memory (Bi-
LSTM) network as the base learning
models. We crawl the data from vari-
ous newswire sources, define the event
types and its annotation guidelines, an-
notate the datasets and then create a
benchmark setup for event extraction.
Experiments on 5-fold cross-validation
with approximately 80K token datasets
show the macro average and micro av-
erage F1-scores of 0.40 and 0.59, re-
spectively for event trigger detection
and classification.

1 Introduction
Event extraction is a very important task in
Natural Language Processing. Event is a
basic unit of knowledge representation, and
has been drawing growing attention of the
researchers and practitioners as an effective
mean for information organization. Event is
an occurrence that happens at a particular

place and at a particular time or time inter-
val. Different agencies and individuals intro-
duce a large amount of data in the web re-
lated to any particular event, by publishing
news reports in platforms like personal blogs,
web sites and news portals. The amount of
data is tremendous and hence retrieving rel-
evant information through manual process is
infeasible. Hence, there is a necessity to build
robust systems that would be able to mine the
desired information in an automated way. Ex-
tracting event triggers, classifying them into a
predefined set of categories and then associat-
ing arguments to these events plays an impor-
tant role in building an information extraction
system. In some of the domains such as disas-
ter, extracting relevant information in appro-
priate time is very important, in order to alert
both, the public and the government. Armed
with this effective information, post disaster
management activities can be carried out be-
cause it not only seeks public attention but
also the attention of government as well as
non-government agencies which are the key
players in post disaster management. Some
of the existing works focusing on English lan-
guage are reported in (Nugent et al., 2017;
Dittrich and Lucas, 2014; Yun, 2011; Klein
et al., 2013; Burel et al., 2017; Tanev et al.,
2008). In contrast, there has not been any
significant attempt to build event extraction
system in Indian languages. In recent times,
some of the works as reported in (Kuila and
Sarkar, 2017; Singh et al., 2017) focus event
extraction in Indian languages such as Hindi,
Tamil and Malayalam. These were mostly fo-
cused on extracting events from disaster re-
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lated tweets. Where as the first paper used
deep learning techniques to solve the prob-
lem, later one used classical machine learning
techniques such as Support Vector Machine
(SVM), Gradient Boosting and Random For-
est.

In our current work we propose a deep neu-
ral network based model for event extraction
that operates in two steps, viz. identification
of event triggers from text and then classify-
ing them into a set of predefined categories of
interest. Our focus is on Hindi language.

1.1 Problem Definition and
Contributions

Given a Hindi sentence of the form
w1,w2,w3,....wn, the task is to (i). iden-
tifying event triggers from text and (ii).
classifying event triggers into a set of prede-
fined categories.

(i) Predict the sequence of labels of the form
l1,l2,l3,....ln, where each label li corresponds
to wi and li∈ I,O,B. The tags I,O and B indi-
cate the inside, outside and beginning of entity
of an event 1. The example mentioned below
depicts the input sentence and output label se-
quence. Event triggers are boldfaced in input
sentence example.

• Input Hindi Sentence: गृह मंśालय मुंबई के
बम Ƞवĥफोटȋ के मǩेनजर इस बात कɏ ȟवशेष तौर पर
जांच कर रहा है ȟक अWरधाम मंȟदर और १९९३ के मुंबई
बम Ƞवĥफोटȋ के फैसलȋ कɏ ŠȠतȟŌया के ɴप मȅ तो यह
हमले नहȂ ɷए

• Transliteration: grih mantraalay mum-
bai ke bam visphoton ke maddenajar is
baat kee vishesh taur par jaanch kar raha
hai ki aksharadhaam mandir aur 1993
ke mumbai bam visphoton ke phaisa-
lon kee pratikriya ke roop mein to yah
hamale nahin hue

• Gloss: home/ ministry/ mumbai/ of/
bomb/ blasts/ of/ in_wake_of/ this/
talk/ of/ special/ modus/ on /investiga-
tion /do /stay /is / that /akshardhaam

1The encoding scheme is according to IOB2, where
I indicates the tokens that appear within trigger, B
denotes the beginning of a trigger and O denotes the
outside of an event trigger. The B is used only when
two events of the same type appear in consecutive se-
quence

/temple /and /1993 /of /mumbai /bomb
/blasts /of /decisions /of /reaction/ of
/form / in/ so/ this/ attack/ not/ hap-
pened

• Translation: In view of the Mumbai
bomb blasts, the Home Ministry is spe-
cially investigating the fact that these at-
tacks did not take place as response to
the Akshardham Temple and the 1993
Bombay bomb blasts.

• Output: O O O O I I O O O O O O O
O O O O O O O O O O O O I I O O O
O O O O O O I O O

(ii) Classify the detected event triggers into
predefined event types. For example, in
the above Hindi input sentence the boldfaced
event triggers belong to Terrorist_Attack
type.

The key contributions of our proposed work
lies in the following:

• Building a deep learning based event ex-
traction system in Hindi for disaster do-
main. Our proposed model is an en-
semble of both Convolution Neural Net-
work (CNN) (Kim, 2014) and Bidirec-
tional Long Short-Term Memory (Bi-
LSTM) (Schuster and Paliwal, 1997).

• Creating a benchmark setup for event ex-
traction in Hindi. This may be used as
a baseline model for further research to-
wards this direction.

2 Related Works
Event extraction is a well-known problem in
Natural Language Processing (NLP). Both the
feature based as well as neural network based
approaches have been used to solve this prob-
lem. Some of the feature based approaches
framed the entire event extraction task into
two subtasks, and solve each subtask sepa-
rately (Ji and Grishman, 2008; Liao and Grish-
man, 2010; Hong et al., 2011). The main dis-
advantage of this approach is the error prop-
agation. To overcome this problem (Li et al.,
2013) proposed a joint event extraction algo-
rithm which predicts both event triggers and
its arguments simultaneously. In (Yang and
Mitchell, 2016) both the approach are used i.e
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extracting event and entities jointly and that
also in document level. Chen et al. (Chen
et al., 2015) introduced a convolutional neu-
ral network (CNN) based word representation
model to capture meaningful semantic regu-
larities for words. CNN captures only the
most important information in a sentence but
may miss other valuable information. So for
multiple-event sentences, they proposed a dy-
namic multi-pooling CNN (DMCNN). DM-
CNN uses a dynamic multi-pooling layer ac-
cording to event triggers and arguments, to
reserve more crucial information. They re-
ported that their system significantly outper-
forms other state-of-the-art systems.

Event extraction task has also been ad-
dressed in specialized tracks dedicated in the
Text Analysis Conference (TAC). Many re-
search groups participated in the workshop
and submitted their works covering various
methods (classical supervised and deep learn-
ing models). We present here a brief survey
of the works that focused on deep learning
based methods. Frank et. al. submitted
a system at TAC KBP 2016 (Mihaylov and
Frank, 2016). They built a neural architecture
for event trigger detection, event type classi-
fication and event realis classification. They
used a Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) based system for detecting
event triggers from text. They carried out ex-
periments with various configurations includ-
ing using Part-of-Speech (PoS) and depen-
dency label embeddings as additional infor-
mation into deep neural network. They also
performed experiments with short-cuts to the
output layer and reported improvement in the
performance. The work reported in (Dubbin
et al., 2016) implemented two variants of event
detection systems. Their first system used
manually created rules and a set of a very rich
linguistic resources whereas their second sys-
tem used deep neural networks.

Event extraction in disaster situation is
very crucial as it assists in supplying relevant
information to the affected people and the var-
ious other stakeholders including the govern-
ment agencies. A real-time news event ex-
traction system was developed by Joint Re-
search Center of the European Commission
(Tanev et al., 2008). The developed system

could extract violent and disaster events accu-
rately from on-line news though their system
was linguistically lightweight. Another study
(Yun, 2011) described a rapid event detection
system of disaster events and showed how to
detect a target event from tweets. They used
features like location, time, keywords and fre-
quency of keywords in tweets. A prototype of
real-time multilingual natural disaster identi-
fication and monitoring system based on Twit-
ter was introduced by (Dittrich and Lucas,
2014). In (Nugent et al., 2017) the authors
compared a set of supervised learning methods
to event type classification on English news
data. Majority of the works have been car-
ried out mostly in English and some other
resource-rich languages. In contrast there has
been a very little works on event extraction
on resource-poor languages such as the Indian
ones. A deep learning based system was built
by (Kuila and Sarkar, 2017) for event extrac-
tion in Indian languages like Hindi, Tamil and
Malayalam. The system was built for han-
dling tweets. Event classification and location
prediction was done in (Singh et al., 2017) us-
ing traditional machine learning techniques.
Event extraction in Tamil language was re-
ported in (SharmilaDevi et al., 2017). They
extracted features and classified each word or
chunk into event and non-event class using
SVM. In another work (Sristy et al., 2017) for-
mulated the event extraction task as sequence
labeling problem and used Conditional Ran-
dom Fields(CRF) to extract events.

It is seen that most of the previous works
used tweets for event extraction and classifi-
cation but our focus is on more structured
newswire data, which are collected from differ-
ent on-line news portals in Hindi language. We
follow a pipelined approach where event de-
tection and event classification are tackled in
two consecutive steps. Each of the modules is
based on an ensemble of Convolutional Neural
Network (CNN) and Bidirectional Long Short-
Term Memory (Bi-LSTM).

3 Methodology

Our overall task consists of detecting the trig-
ger words and phrases from a given sentence,
and classifying these into different types. The
schematic diagram of the complete system is
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shown in the Figure 1.
We use these models in a pipeline to get the

final output. Each sentence is passed through
the ‘Trigger Detection Model’, the task of
which is to detect trigger expressions denoting
the events. Trigger refers to the textual con-
tent that corresponds to the tokens denoting
the events related information. The detected
triggers are then passed through ‘Trigger Clas-
sification Model’ which classifies the triggers
into different event types.

3.1 Word Embedding Representation
The proposed system uses word-embedding
vectors of size 300 to represent the words as
input to the models. The word embeddings
are trained using word2vec algorithm (Mikolov
et al., 2013) on Hindi Wikipedia dump. The
size of corpus is 323M and vocabulary size is
30,393 tokens. However the word-embeddings
are pre-trained and downloaded from github
page2. To represent Part-of-Speech (PoS)
tags, we use one-hot encoding representation.

3.2 Trigger Detection Model
We formulate the task of event trigger detec-
tion as a sequence labeling problem, i.e. for
each token in the sentence we need to de-
cide whether it denotes an event expression or
not. Our proposed model is ensemble in na-
ture where the base models are Bi-LSTM and
CNN (c.f. Figure 2).

The word embedding of each word is passed
through a Bi-LSTM model, and we obtain
an output representation for each word. The
word embedding of each word is passed
through CNN and convoluted features are ob-
tained. The one-hot vector representation of
PoS tag of each word is also passed through
a separate Bi-LSTM. We obtain the PoS in-
formation from the Hindi Shallow Parser 3.
We obtain an output representation of each
PoS tag. Finally, all these output represen-
tations are concatenated. This concatenated
feature is then passed through a Multi Layer
Perceptron (MLP) followed by a Softmax layer
which computes the probability distribution
over the possible tags of I_Event_Trigger or
O_Event_Trigger 4.

2http://github.com/Kyubyong/wordvectors
3http://ltrc.iiit.ac.in/analyzer/hindi/
4Here I and O denote the intermediate tokens of an

3.3 Trigger Classification Model
The input to this event trigger classification
model is the trigger expression or phrase and
the output is a possible class to be assigned
to that particular trigger. Our current work is
a multi-class classification problem that classi-
fies each trigger into seventeen possible classes.
Similar to trigger detection, we also use here
an ensemble network model consisting of Bi-
LSTM and CNN. The overall schematic dia-
gram of the classification model is depicted in
Figure 3. We pad each trigger phrase by the
placeholder ‘<pad>’, to make each phrase of
equal length. Word embedding of each word
is passed through a CNN to obtain the con-
voluted feature representation. These convo-
luted features are flattened and concatenated
with Bi-LSTM representation. This concate-
nated feature is then passed through a Multi
Layer Perceptron model followed by a Softmax
layer, which is used to obtain the probability
distribution over a set of seventeen classes.

4 Datasets and Experiments

In this section, we provide the description of
the datasets, experimental setup, results and
provide necessary analysis of the results.

4.1 Datasets
The news data are crawled from several Hindi
news portals. In the dataset there are 253
news documents consisting of 4,403 sentences.
In total 80,136 words are present among which
1,179 words are trigger words. All the news
documents are annotated by three annotators
who are from linguistic background and hav-
ing sufficient knowledge of the related area,
particularly the TAC-KBP event and entity
annotation guidelines. In order to measure
the inter-annotator agreement ratio, we asked
three annotators to annotate 5% of total docu-
ments. We found the multi-rater Kappa agree-
ment ratio of 0.85.

The news data crawled, belong to disaster
domain. Seventeen disaster event types in-
cluding both man-made and natural disaster.
The event types are: Terrorist_Attack, Storm,
Cyclone, Normal_Bombing, Earthquake,
Transport_Hazard, Floods, Land_Slide,

event expression and outside token, respectively.
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Figure 1: Schematic diagram of the overall system

Figure 2: Trigger Detection Model

Train_Collision, Armed_Conflict, Hurri-
cane, Shoot_Out, Riots, Aviation_Hazard,
Hail_Storm, Tsunami, Surgical_Strike.

While annotating the event triggers, the
above disaster types are used as classes, and
each event trigger is associated with one of the
seventeen classes. Thus our data contains the
event information as well as the fine-grained
class information of the event.

4.2 Experimental Setups
For implementing the deep learning models a
Python based library Keras 5 is used. We use
the IOB format (Ramshaw and Marcus, 1999)

5http://keras.io

Figure 3: Trigger Classification Model

6.
The trigger detection model (c.f. Figure 2)

has word-embedding vectors of size 300, and
one hot encoding of PoS tags of size 27 as in-
puts to the Bi-LSTM and CNN layers. The Bi-
LSTM layer with word embeddings as input
has 150 neurons and the Bi-LSTM layer with
encoded PoS tags as input has 20 neurons.
The CNN layer has 100 filters sliding over 2
words at a time. ‘Relu’ is used as an activa-
tion function for CNN and ‘dropout’ of 30%
is used between layers for regularization. The
multi-layer perceptron comprises of 150 and 75
neurons in the first and second layer respec-

6B, I and O denote the beginning, intermediate and
outside of an event trigger
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tively. ‘Softmax’ is used in the final layer for
classification of trigger and non-trigger words.

The input to the trigger classification model
(c.f. Figure 3) is also word-embedding vec-
tors of size 300. Similar to trigger detection
model, Bi-LSTM layer has 150 neurons and
CNN layer has 100 filters sliding over 2 words
at a time. The ’dropout’ and activation func-
tions used are the same as in the trigger detec-
tion model. The multi-layer perceptron com-
prises of 600 and 100 neurons in the first and
second layer respectively and ‘Softmax’ is used
in the final layer for classification of 17 event
classes.

Training is done using a learning rate of
0.001 and ’Adam’ optimizer is used for fast
convergence. The data is fed to the neural net-
work in batches of 32. ’Checkpoints’ are used
to save the best weights of the model based on
training accuracy.

For evaluation we use ‘Precision’, ‘Recall’
and ‘F1-Score’ as the metrics for event trigger
detection. We further use micro and macro
averaging of the precision,recall and F1-score
of each class for evaluating event classification
model. Macro-average computes the metrics
independently for each class and then takes
the average (hence treating all the classes
equally), whereas micro-average aggregates
the contributions of all classes to compute
the average metric. Thus in case of class
imbalance micro-average is a more preferred
criteria.

5 Results and Analysis

In this section we present the details of exper-
iments and the results that we obtain along
with necessary analysis.

5.1 Trigger Detection Model
For trigger detection we develop three differ-
ent variations of event trigger detection. First
model is based on Bi-LSTM. The word em-
bedding of each word in the sentence is con-
catenated with one hot vector of its PoS tag.
This is then passed through a Bi-LSTM. The
output representation of the Bi-LSTM is clas-
sified into event and non-event by Softmax at
the output layer.

The second model is based on CNN. The

input to the CNN is same as that of Bi-LSTM.
100 filters were used to obtain features with a
kernel size of 2. The convoluted features, thus
obtained, are classified using Softmax at the
output layer.

The third model is described in Section
3.2 (Figure 2). We also re-implement the sys-
tem of event extraction proposed in (Kuila and
Sarkar, 2017) and evaluate it on our dataset.
Their system uses two back to back CNNs and
then a Bi-LSTM in sequence.We demonstrate
the results of 5-Fold cross-validation in Table
1.

Precision Recall F1-Score
Bi-LSTM 0.74 0.71 0.72
CNN 0.70 0.69 0.69
Ensemble Model 0.74 0.75 0.74
Kuila et. al, 2017 0.68 0.75 0.71

Table 1: Results of different event trigger de-
tection models: 5-fold cross-validation

From the results in Table 1 it can clearly be
seen that the ensemble model performs better
than the individual Bi-LSTM and CNN mod-
els. The Bi-LSTM model treats the problem
as a sequence to sequence labeling task and it
tries to classify the current word by looking at
the context from both the directions as well as
the current input word. The CNN model has
a kernel size of 2, i.e. it tries to extract bi-
gram features that are relevant in classifying
a word into trigger or non-trigger. These two
approaches are combined through an ensemble
model that exploits both the contextual infor-
mation from Bi-LSTM and the bi-gram feature
extracted from CNN to make prediction. It is
able to make use of the strength of both the
models and optimize it to solve the problem.

5.2 Trigger Classification Model
For trigger classification we again build three
different models. Similar to the trigger de-
tection model we use Bi-LSTM, CNN and the
ensemble model (c.f. Figure 3) for trigger clas-
sification. We obtain the results in terms of
macro-averaging and micro-averaging of pre-
cision, recall and F1-score of each class.

Evaluation results of 5-Fold cross-validation
are shown in Table 2. Results show that the
ensemble model performs better than the in-
dividual models.

We present the detailed class-wise evalua-
tion results in Table 3 for the ensemble model.
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Macrop Macror Macrof1

Bi-LSTM 0.40 0.45 0.42
CNN 0.42 0.44 0.43
Ensemble Model 0.45 0.46 0.45

Microp Micror Microf1

Bi-LSTM 0.69 0.69 0.69
CNN 0.70 0.70 0.70
Ensemble Model 0.72 0.72 0.72

Table 2: Evaluation results of 5-fold
cross-validation for trigger classification.
Here, Macro-averaged Precision: Macrop,
Macro-averaged Recall: Macror, Macro-
averaged F1-Score: Macrof1, Micro-averaged
Precision:Microp, Micro-averaged Recall:
Micror, Micro-averaged F1-Score: Microf1

For the classes for which the performance are
very less are due to the less number of in-
stances for the respective class.

Class Precision Recall F1-Score
Terrorist_Attack 0.82 0.95 0.88
Storm 0.72 0.97 0.80
Cyclone 0.67 0.32 0.43
Normal_Bombing 0.20 0.22 0.21
Earthquake 0.44 1.00 0.62
Transport_Hazard 1.00 0.33 0.50
Floods 0.70 1.00 0.82
Land_Slide 1.00 1.00 1.00
Train_Collision 0.02 0.02 0.02
Armed_Conflict 0.01 0.01 0.01
Hurricane 0.00 0.00 0.00
Shoot_Out 0.70 0.95 0.72
Riots 0.40 0.15 0.21
Aviation_Hazard 0.33 0.18 0.23
Hail_Storm 0.02 0.20 0.04
Tsunami 0.20 0.20 0.20
Surgical_Strike 0.20 0.20 0.20

Table 3: Evaluation results of class-wise trig-
ger classification: 5-fold cross-validation. Here
we report macro scores.

5.3 Pipelined Model for Trigger
Detection and Classification

The final system (c.f Figure 1) uses both event
trigger detection model (c.f. Figure 2) and
event classification model (c.f. Figure 3).
Each document is divided into sentences, and
each sentence is represented by the sequence
of word-embeddings of its words. This se-
quence is passed through the trigger detection
model and triggers are obtained. These trigger
phrases are again represented as a sequence of
word-embeddings of its words. The trigger ex-
pressions so detected are passed through the
trigger classification model, and the appropri-
ate classes of triggers are obtained.

The macro and micro-averaged results of
5-fold cross-validation are shown in Table 4.

Precision Recall F1-Score
Macro-Averaged 0.35 0.48 0.40
Micro-Averaged 0.59 0.59 0.59

Table 4: Evaluation results of 5-fold cross-
validation

From Table 4 it can be clearly seen that
the performance in this pipelined model is less
compared to what are reported in the earlier
section. This is because the errors encoun-
tered in the trigger detection model are prop-
agated to the next stage, i.e. event classifica-
tion model. We also show the class-wise eval-
uation results obtained through 5-fold cross-
validation in Table 5.

Since a lot of triggers are not detected by
the trigger detection model (i.e. false nega-
tive cases), these triggers are not classified at
all. A number of false positives in the trigger
detection phase also contributes to the overall
classification error. These two factors causes
a degradation of the overall performance.

Class Precision Recall F1-Score
Terrorist_Attack 0.82 0.97 0.88
Storm 0.40 0.80 0.53
Cyclone 0.51 0.32 0.39
Normal_Bombing 0.77 0.35 0.49
Earthquake 0.63 0.20 0.4
Transport_Hazard 0.89 0.22 0.35
Floods 0.50 0.20 0.28
Land_Slide 0.67 0.32 0.60
Train_Collision 0.20 0.26 0.22
Armed_Conflict 0.01 0.01 0.01
Hurricane 0.00 0.00 0.00
Shoot_Out 0.20 0.61 0.30
Riots 0.36 0.20 0.25
Aviation_Hazard 0.30 0.18 0.22
Hail_Storm 0.02 0.20 0.04
Tsunami 0.1 0.1 0.1
Surgical_Strike 0.2 0.2 0.2

Table 5: Evaluation results of 5-fold cross-
validation for pipelined model. Here we report
macro scores.

5.4 Error Analysis
We analyze the errors for both trigger detec-
tion and trigger classification models. For er-
ror analysis we split the data into training set
(80% of data) and testing set (20% of data).
The training set contains 3,522 sentences and
the testing set contains 881 sentences.

5.4.1 Trigger detection model
Out of total triggers of 323 in the test data, 255
triggers are captured by our trigger detection
system. Few examples of the errors caused by
our system are as follows:
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1. The system sometimes confuses between
an actual event and a hypothetical event.

(a) Sentence-1: छǥीसगढ़ मȅ नĆसली हमले मȅ
3 जवान शहीद
Transliteration: Chhatteesagadh
mein naksalee hamale mein 3
javaan shaheed
Translation: 3 soldiers killed in
Naxal attack in Chhattisgarh

(b) Sentence-2: इन आतंकवाȟदयȋ कɏ ȟदġली मȅ
हमले कɏ योजना थी
Transliteration: In
aatankavaadiyon kee dillee mein
hamale kee yojana thee
Translation: These terrorists had
plans to attack Delhi

In the above example, Sentence-1 talks
about a real event but Sentence-2 talks
about a hypothetical event. However, the
system is unable to detect the real event
in Sentence-1 but detects the hypothet-
ical event in Sentence-2.

2. Long phrases used to describe an event
are being confused by the system.

(a) Sentence-3 अलबामा मȅ Ŗांसफॅमăरȋ मȅ बाȝरश
का पानी भर गया
Transliteration: Alabaama mein
traansaphairmaron mein baarish
ka paanee bhar gaya
Translation: Rain water was
flooded in transformers in Alabama

(b) Sentence-4 Ƞनचले इलाके मȅ मौजूद एकǲȡǘ
ȟŌस रॅȬब�सन ने फोन से बताया ȟक पानी तेजी से
भर रहा है
Transliteration: nichale ilaake
mein maujood ek vyakti kris raibin-
san ne phon se bataaya ki paanee
tejee se bhar raha hai
Translation: Chris Robinson, a per-
son in the lower area, told on the
phone that water is filling up fast.

In Sentence-3 the phrase मȅ बाȝरश का पानी
भर गया describes ‘flooding’, but this is
not captured by the system. However, in
Sentence-4, the phrase पानी तेजी से भर रहा है
is not used for an event, but the system

wrongly captures it as an event. This is
because both these phrases are very close

in meaning, and the context for proper
disambiguation is lacking.

3. Another major cause of error is the class-
imbalance problem. Out of a total 1,179
trigger words, 543 are of class Terror-
ist_Attack. On the other hand there are
only 5 trigger words of type Tsunami, 7
triggers of type Hail_Storm, 9 triggers of
type Aviation_Hazard and Riots, 14 trig-
gers of type Shoot_Out and 15 triggers
of type Hurricane. Uneven class distribu-
tion influences to the overall error. Bal-
ancing these classes may reduce such er-
rors.

5.4.2 Trigger classification model
The results of event classification model are
discussed in Section 5.2. The confusion matrix
after classification (by ensemble model) on the
test data can be seen in Figure 4.

Figure 4: Confusion matrix of classification by
event classification model (ensemble model)

From the confusion matrix it can be seen
that the system is confused between the types
that are very close to each other. Ter-
rorist_Attack is being confused with Nor-
mal_Bombing and Normal_Bombing is being
confused with Terrorist_Attack. We can also
see that Storm is being confused with Cy-
clone, Cyclone is being confused with Storm
while Hurricane is being classified to either
Storm and Cyclone. This is because the events
Storm, Cyclone and Hurricane are very close
in nature. Also the Hindi word used for all
the three is ‘तूफान’, which further confuses the
system.
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6 Conclusion and Future Works
In this paper we have presented a hybrid
deep learning approach based on Bi-LSTM
and CNN for event trigger detection and clas-
sification. As there was no readily avail-
able data, we have collected Hindi docu-
ments from the various web sources, anno-
tated data with event triggers and a prede-
fined set of categories. Preliminary evalua-
tion shows promising results. Experiments on
these datasets show that our proposed ensem-
ble model performs better compared to the in-
dividual model. This can be used as a bench-
mark setup for further research and devel-
opment in the related areas.pr We have also
performed detailed analysis to understand the
shortcoming of our proposed system. To fix
these errors we would like to explore ways in
which context could be added to the input.
This will help the system in making better in-
formed decision for trigger detection. To mit-
igate the class imbalance problem, we would
like to crawl enough documents relevant to the
specific classes that suffer from the data spar-
sity problem. Another future direction would
be to develop a stacked based classifier with
Bi-LSTM as a base followed by Conditional
Random Field (CRF).
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Abstract 

Named Entity Recognition (NER), a clas-
sic sequence labelling task, is an essential 
component of natural language under-
standing (NLU) systems in task-oriented 
dialog systems for slot filling. For well 
over a decade, different methods from 
lookup using gazetteers and domain ontol-
ogy, classifiers over hand crafted features 
to end-to-end systems involving neural 
network architectures have been evaluated 
mostly in language-independent non-
conversational settings. In this paper, we 
evaluate a modified version of the recent 
state of the art neural architecture in a 
conversational setting where messages are 
often short and noisy. We perform an array 
of experiments with different combina-
tions of including the previous utterance in 
the dialogue as a source of additional fea-
tures and using word and character level 
embeddings trained on a larger external 
corpus. All methods are evaluated on a 
combined dataset formed from two public 
English task-oriented conversational da-
tasets belonging to travel and restaurant 
domains respectively. For additional eval-
uation, we also repeat some of our experi-
ments after adding automatically translated 
and transliterated (from translated) ver-
sions to the English only dataset. 

1 Introduction 

Named Entity Recognition (NER) is a challenging 
and vital task for slot-filling in task-oriented dia-
logue models. We define a task-oriented dialogue 
system where a user and the system take turns ex-
changing information till some concluding action 
is performed related to user's query. Any task ori-
ented bot must figure out the correct intent and fill 
slots for requested task interactively until all re-
quired slots required for the related action are 

filled. For most domains and languages, a very 
small amount of supervised data is available. 
Generalizing from such small amount of data can 
be challenging as for some entities are open ended 
in what values they can assume like NAME while 
for some other entities like CITY or LOCATION 
it is very likely some values will appear very rare-
ly while training. As a result, a lot of hand-crafted 
features and domain-specific knowledge resources 
and gazetteers are used for solving this task. 

Unfortunately, collecting such resources is 
time-consuming for each new domain and lan-
guage making a cold start even harder. Most work 
for NER has been benchmarked on the popular 
CoNLL2003 dataset (Sang and Meulder, 2003), 
OntoNotes 5.0 and few other datasets. Only very 
recently high quality medium to large sized task-
oriented dialogue English datasets like DSTC2 
(Henderson et al., 2014), Frames (Asri et al., 
2017), etc. have been made available to focus on 
the challenge of dialogue state tracking. Some of 
these datasets also happen to have slots tagged 
hence making them suitable to benchmark NER 
systems. We combined two such datasets - 
DSTC2 (Restaurant table booking system) and 
Frames (Airline ticket booking system) to evalu-
ate our approaches in multi-domain multi-entity 
setting. We observed that in conversational da-
tasets, the systems usually yield longer informa-
tive messages and users often tend to provide in-
formation in multiple short messages. For exam-
ple, 

System: What city are you flying to? 
User: Paris 
In such cases, the immediately previous system 

utterance provides important context regarding the 
domain and slots to predict. Users also tend to 
make spelling mistakes which can create problem 
for models using words as unit features.  

In the past few years, end-to-end neural archi-
tectures (Huang et. al., 2015; Lample et al., 2016; 
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Ma and Hovy, 2016) with a CRF layer have 
shown promising results for NER. Our work is in-
spired from these models where we too use an 
end-to-end BI-LSTM-CRF based tagger network 
but also include an additional LSTM based con-
text encoder that encodes the system occurrence 
immediately before the user's query which we use 
to initialize the tagger network's initial state. We 
observe that this additional context improves F1 
score for all settings we test. Word embedding 
features (Mikolov et al., 2013; Pennington et al., 
2014) obtained using unsupervised training on a 
large corpora have also shown to improve results 
(Huang et. al., 2015; Lample et al., 2016; Ma and 
Hovy, 2016).  

Following that we too explore different initiali-
zations of word embeddings in our experiments. 
We also compute additional word representation 
from character level representations using Convo-
lutional Neural Networks (CNNs) and combine 
them with pre-trained word embeddings. To vali-
date that our models can work in language-
independent settings, we also present results after 
adding automatically translated (to Hindi) and 
transliterated (to English back from Hindi) ver-
sions of the datasets and find that results follow 
the same trends as results on the English only da-
taset.  

2 Related Work 

NER is viewed as a sequential prediction problem. 
Most work related to this task if often bench-
marked on CoNLL2003 and OntoNotes datasets. 
Early work includes typical models like HMM 
(Rabiner, 1989), CRF (Lafferty et al., 2001), and 
sequential application of Perceptron or Winnow 
(Collins, 2002). (Ratinov and Roth, 2009) high-
light design challenges involved in NER and 
achieve an F1 of 90.80 on CoNLL2003 using av-
eraged perceptron model trained on non-local fea-
tures, gazetteers extracted from Wikipedia and 
brown clusters extracted from large corpora. (Lin 
and Wu, 2009) get a better score using linear 
chain CRF with L2 regularization without any 
gazetteers but instead by obtaining phrase features 
from clustering a massive dataset of search query 
logs. (Passos et al., 2014) match their performance 
by using a linear chain CRF on hand-crafted fea-
tures and phrase vectors trained using a modified 
semi-supervised skip-gram architecture. (Luo et 
al., 2015) jointly model NER and entity linking 
tasks. They include hand-engineered features like 

spelling features, lexical clusters, shallow parsing 
features as well as stemming and large external 
knowledge bases. 

A shift in trend towards more neural based ap-
proaches can be traced back to (Collobert et al., 
2011b) proposed an effective deep neural model 
with a CRF layer on top, that requires almost no 
feature engineering and learns important features 
from word embeddings trained on large corpora. 
The model achieved near state of the art results on 
several natural language tasks including NER. 
(Santos and Guimaraes, 2015) modify this archi-
tecture to incorporate character level features 
computed using CNNs and report better F1 scores 
on both CoNLL2003 and OntoNotes. Coming to 
architectures that involve recurrent neural net-
works, (Huang et. al., 2015) test LSTM, BI-
LSTM, LSTM-CRF and BI-LSTM-CRF networks 
with word embeddings and hand-crafted spelling 
and context features for several sequence tagging 
tasks. (Lample et al., 2016) also use BI-LSTM-
CRF models but don't rely on any hand-crafted 
features and external resources. They use pre-
trained word embeddings and character level em-
beddings computed from another BI-LSTM net-
work as primary features. (Ma and Hovy, 2016) 
use similar architecture but compute character 
level embeddings using CNN layer instead of BI-
LSTMs. (Chiu and Nichols, 2015) also work with 
very similar BI-LSTM-CNN-CRF architecture 
with some extra character level features like char-
acter type, capitalization, and lexicon features. Fi-
nally, very recent work from (Peters et. al., 2018) 
show improvements on NER task by computing 
better contextualized word level embeddings fea-
tures.  

Our work is closely related to (Ma and Hovy, 
2016) in terms of the neural architecture such that 
we too work in an end-to-end setting and include 
character level features using a CNN. Although 
we experimented with different recurrent cell 
types for our models due to space limitations we 
present only BI-LSTM models. Our work mostly 
focuses on using conversational context as a 
source of additional features, determining optimal 
word embeddings representations for the task. 

3  Dataset 

We primarily use data from two publicly available 
dialogue datasets Maluuba Frames (Asri et al., 
2017) and Dialog State Tracking Challenge 2 
(DSTC2) (Henderson et al., 2014).  
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To evaluate the system for English we con-
structed first dataset DSTC-FRAMES-EN by 
combining the two datasets to get a total of 13599 
user-system utterance pairs and 7 entities 
(‘or_city’, ‘dst_city’, ‘budget’, ‘date’, ‘area’, 
‘food’, ‘price_range’). We split this data into 
12000 train samples and 1599 test samples with a 
total of 412 unique entities (with IOB-prefixes). 

We also check if our models can work with 
more than one language simultaneously. For this 
we translate DSTC-FRAMES-EN to Hindi using 
Google Translate (Wu et al., 2016) and further 
transliterate this translated version to Latin script 
using Polyglot transliteration (Chen and Skiena, 
2016). We combine all three to form an extended 
dataset DSTC-FRAMES-ENHI which contains a 
total of 37785 samples, 7 entities with 1106 
unique entities values (with IOB-prefixes). We 
split this combined dataset into 34000 training 
samples and 3785 test samples. 

4 Model Architecture 

4.1 Input Layer 

We use two kinds of input representations - word 
embeddings and character embeddings concate-
nated with word representations. 
Word Embeddings: Word Embeddings have a 
significant role in the increasing the performance 
of various neural inspired models as they exploit 
the syntactic and semantic understanding of a 
word. We conducted experiments with four differ-
ent (frozen) embeddings w.r.t. dimension size, 
demographics of training data and size of training 
data. 

Skip Gram Negative Sampling (SG300): We 
trained 300 dimensional word embeddings sepa-
rately using the SGNS (Mikolov et al., 2013) 
model. We restricted the training data to training 
set only for each experiment. 

Glove: We used the publicly available Glove 
embeddings1 (Pennington et al., 2014) trained on 
Wikipedia 2014 corpus with dimension sizes 50 
(G50W) and 300 (G300W) and another 300 di-
mensional embeddings (G300C) trained on a sig-
nificantly larger Common Crawl dataset.  
 
Character Embeddings (CHAR): Character lev-
el features can be useful to handle rare words and 
spelling errors which are usually OOV for word 
embedding models. To use this character-level 
                                                        
1 https://nlp.stanford.edu/projects/glove/ 

knowledge, we employ a convolutional neural 
network (CNN) with 30 filters of fixed window of 
size 3. We perform max pooling on output of con-
volution operations to generate 100 dimensional 
embeddings for each word. This character-level 
representation is then concatenated with the corre-
sponding word embedding and fed into the net-
work. Such character level embeddings have been 
shown to have potential to replace hand crafted 
character features. (Chiu and Nichols, 2015) 

4.2 Context Encoder (CE) 

The context encoder we implemented is a unidi-
rectional LSTM network. At every time step to-
kens from the latest system utterance are fed as 
inputs to the context encoder. The encoder updates 
its internal state thus transforming the system ut-
terance to a rich fixed sized representation which 
is then fed to the tagger’s forward hidden state. 
The context encoder enables the system to scale 
across various domain and language settings by 
maintaining the immediate history. 

4.3 Tagger 

The Tagger network is responsible for performing 
the NER on user utterances.  

Recurrent Neural Network (RNN): RNN 
(Elman, 1990; Ubeyli and ¨ Ubeyli, 2012) consists 
of a hidden state that depending on the previous 
hidden state and current input  continually updates 
itself at every time step. The output is then pre-
dicted on the basis of the new hidden state. 

Long Short Term Memory (LSTM): LSTMs 
(Hochreiter and Schmidhuber, 1997) a modifica-
tion to RNNs introduce additional gated mecha-
nisms to manage the vanishing/exploding gradient 
problems faced by RNN. 

Bidirectional LSTM (BI-LSTM): In NER, at 
a given time step we have access to both past and 
future inputs. This gives us an opportunity to im-
plement a BI-LSTM architecture. 

4.4 Conditional Random Fields (CRF) 

We add a linear chain CRF (Lafferty et al., 2001) 
network on top of the output states (concatenated 
forward and backward states at each time step) 
yielded by the tagger network to form BI-LSTM-
CRF model. This layer considers dependencies 
across output labels to compute the log likelihood 
of IOB sequence tags using Viterbi decoding algo-
rithm. 
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5 Experiments 

We evaluated the performance of 3 major recur-
rent neural cell (RNN, GRU, LSTM) types on 
DSTC-FRAMES-EN by constructing unidirec-
tional recurrent networks using these cells. The 
LSTM, GRU (Cho et al., 2014) based networks 
showed significant improvement over RNN archi-
tecture. The LSTM architecture displayed a mar-
ginal increase in performance in comparison to 
the GRU network. We thus conducted our further 
experiments by using the LSTM cell. 

All BI-LSTM networks presented are stacked 
two layers deep with each cell containing 64 hid-
den units. We train our models with Adam 
(Kingma and Ba, 2014) optimizer for up to 30 
epochs and use early stopping to avoid overfitting. 

Since there are no pre-trained Glove embed-
dings for Hindi and transliterated Hindi, we re-
stricted our set of experiments on DSTC-
FRAMES-ENHI to only SGNS embeddings we 
trained separately  

Choice of Architecture: As shown in 
Table 1 and Table 2, the character level embed-
dings helped increase the performance of the 
network by leveraging character level features 
and handling OOV tokens. With an addition of 
slightly more parameters the CRF layer boosted 
the system’s performance. The networks which 
included the context encoder showed significant 
improvements in comparison to their non-context 
encoder counterparts. 

Choice of word embeddings: From Ta-
ble 1, we can see that the G50W displayed better 
performance than SG300 owing to a larger cor-
pus of training data. The G300W being trained 
on the same training corpus as G50W exhibited 
improved results on account of larger dimension 
size. The best results were displayed by G300C 

which as trained on a larger and better suited 
style of data for our conversational settings. 

6 Conclusion and Future Work 

We presented results for NER from variants of the 
popular BI-LSTM architecture in a task-oriented 
conversational setting. Adding a CRF layer boosts 
performance at slightly extra computational cost. 
Our results show that context in form of system 
utterance just before the user query potentially has 
important information about domain and slots and 
including it further boosts performance. Although 
we only included just one utterance from conver-
sational history, including more conversation his-
tory can be helpful but can also be challenging as 
it might put pressure on the context encoder to ig-
nore already detected slots. Nevertheless, it re-
mains to be explored for future work. We also find 
that NER models also benefit from large pre-
trained word representations and character level 
representations.   

Model SGNS300 
BI-LSTM 84.867 
BI-LSTM-CE 86.242 
BI-LSTM-CHAR 85.119 
BI-LSTM-CHAR-CE 86.433 
BI-LSTM-CRF 85.342 
BI-LSTM-CRF-CE 86.790 
BI-LSTM-CHAR-CRF 85.643 
BI-LSTM-CHAR-CRF-CE 87.934 

Table 2: Macro Averaged F1 scores on the 
DSTC-FRAMES-ENHI dataset 

 Model SGNS300 G50W G300W G300C 
 BI-LSTM 86.928 88.138 89.388 90.057 
 BI-LSTM-CE 89.130 90.163 90.910 91.224 
 BI-LSTM-CHAR 87.465 89.089 89.442 90.551 
 BI-LSTM-CHAR-CE 89.412 91.087 91.342 91.880 
 BI-LSTM-CRF 87.782 89.529 89.871 90.627 
 BI-LSTM-CRF-CE 89.696 91.122 91.455 92.133 
 BI-LSTM-CHAR-CRF 88.276 89.628 90.971 91.079 
 BI-LSTM-CHAR-CRF-CE 90.036 91.705 92.042 92.864 

Table 1: Macro Averaged F1 scores on the DSTC-FRAMES-EN dataset 
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Abstract

Although people have the ability to en-
gage in vapid dialogue without effort, this
may not be a uniquely human trait. Since
the 1960’s researchers have been trying to
create agents that can generate artificial
conversation. These programs are com-
monly known as chatbots. With increasing
use of neural networks for dialog genera-
tion, some conclude that this goal has been
achieved. This research joins the quest
by creating a dialog generating Recurrent
Neural Network (RNN) and by enhancing
the ability of this network with auxiliary
loss functions and a beam search. Our cus-
tom loss functions achieve better cohesion
and coherence by including calculations of
Maximum Mutual Information (MMI) and
entropy. We demonstrate the effectiveness
of this system by using a set of custom
evaluation metrics inspired by an abun-
dance of previous research and based on
tried-and-true principles of Natural Lan-
guage Processing.

Introduction

Computer scientists have tried to build chatbots
for a long time, starting from the initial attempt
at building an artificial psycho-therapist called
Eliza (Weizenbaum, 1966). Because of the nature
of psychotherapy, even with its limited abilities,
Eliza was able to impress the populace at large, in
addition to the research community. Eliza worked
simply by pattern matching, and produced inane
responses when pattern matching failed to produce
a meaningful response.

The frame-based architecture used by (Bobrow
et al., 1977) in the GUS system was the predom-
inant approach to building dialog agents for sev-

eral decades. Apple’s SIRI and other digital as-
sistants have used this architecture (Bellegarda,
2013, 2014; Jurafsky and Martin, 2018). Such
speech-based conversation agents used a Partially
Observable Markov Decision Process (Sondik,
1971) in a frame-based architecture, to maintain
a system of beliefs and updated the system using
Bayesian inference. They also used reinforcement
learning (Sutton and Barto, 1998) as necessary.

Recently, researchers have started building
chatbots by training machine learning programs
on transcripts of conversations. Ritter, Cherry, and
Dolan (2011) presented a data-driven approach to
generating responses to Twitter status posts, us-
ing statistical machine translation, treating a status
post as a question and the response as its “transla-
tion”. Of late, researchers have built chatbots us-
ing Artificial Neural Networks (ANN) or Deep
Learning (Cho et al., 2014; Sutskever, Vinyals, and
Le, 2014). ANN-based Seq2Seq models have been
used by many recent chatbots (Vinyals and Le,
2015; Li et al., 2016b,a; Shao et al., 2017; Wu,
Martinez, and Klyen, 2018).

Although the Seq2Seq framework has shown
good results in dialogue generation, we believe
that the evaluation of the dialogues can be bet-
ter measured. The research presented in this pa-
per examines the role that various auxiliary loss
functions play in the quality of generated dialog
by RNNs when trained on several conversational
corpora. Our contribution lies in the detailed anal-
ysis of generated dialogues, using custom metrics,
as we change the auxiliary loss function. We be-
lieve that this is the first time such detailed analysis
of automatically generated dialogs has been car-
ried out. We use a simple RNN model for training
the conversation agents since our primary focus is
on auxiliary loss functions. We believe that this
approach will have general applicability in other
neural network architectures as well.
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Problem Statement

We define a dialogue as the sequence of text ele-
mentsD generated by the interaction between two
agents Q and A. Text elements are a sequence of
characters, t ∈ {c1, c2, ..., ci}, where ci is a char-
acter from used in the words of the conversation
vocabulary. Each elements ti is shown as qi or ai to
distinguish outputs from agents Q and A respec-
tively. A conversation is seeded with an initial text
element q1, andA responds with a follow-up state-
ment a1. As shown in Equation 1,

D = 〈〈q1, a1〉, 〈q2, a2〉, . . . , 〈qi, ai〉〉 (1)

the sequence grows with the continuous applica-
tion of functionR(t) as in Equations 2 and 3,

ai = R(qi) (2)

qi+1 = R(ai) (3)

which show that each element of the conversation
is generated from previous elements. The func-
tion R(t) is a forward pass through an RNN us-
ing sequence ti as input and is followed by a beam
search of the RNN output. We improve sequence
generation and the functionR(t) by incorporating
auxiliary loss functions during the beam search.

A typical loss function in the context of clas-
sification, computes error by comparing predicted
values with true values; the errors are propagated
backward during training. However, a Seq2Seq
model trains on a series of sequences without la-
beled answers, that is, without any knowledge of
what the truth is. Instead, these models rely on
minimizing the cross-entropy between the input
and the raw network output. No output sequences
are created during training.

We present auxiliary loss functions which are
applied after training during sequence generation
by the beam search. Each path through the answer
space represents a single possible choice for the
final sequence. The best answer among all possi-
ble paths is chosen by optimization of these loss
function.

Finally, we present simple evaluation metrics
for determining the efficacy of our dialogue gen-
eration model. ‘

Related Work

Using Seq2Seq models for dialogue generation
has become commonplace in recent years. Ritter,
Cherry, and Dolan (2011) were the first to use
a model used for Statistical Machine Translation
(SMT) to generate responses to queries by training

on a corpus of query-response pairs. Sordoni et al.
(2015) improved Ritter et al.’s work by re-scoring
the output of the SMT-based response generation
system with a Seq2Seq model that took context
into account.

Vinyals and Le (2015) used an RNN-based
model with a cross-entropy based auxiliary loss
function and a greedy search at the output end.
Wen et al. (2015) used LSTMs for joint planning
of sentences and surface realization by adding
an extra cell to the standard LSTM architecture
(Hochreiter and Schmidhuber, 1997), and using
the cross-entropy loss. They produced sentence
variations by sampling from sentence candidates.
Li et al. (2016a) used Maximum Mutual Informa-
tion (MMI) as the objective function to produce di-
verse, interesting and appropriate responses. This
objective function was not used in the training of
the network, but to find the best among candidates
produced by the model at the output, during gen-
eration of responses. Our paper is substantially in-
spired by this work.

Li et al. (2016b) applied deep reinforcement
learning using policy gradient methods to punish
sequences that displayed certain unwanted proper-
ties of conversation: lack of informativity, incoher-
ence and responding inanely. Lack of informativ-
ity was measured in terms of high semantic simi-
larity between consecutive turns of the same agent.
Semantic coherence was measured in terms of mu-
tual information, and low values were used to pe-
nalize ungrammatical or incoherent responses.

Su et al. (2018) use a hierarchical multi-layered
decoding network to generate complex sentences.
The layers are GRU-based (Cho et al., 2014), and
each layer generates words associated with a spe-
cific Part-Of-Speech (POS) set. In particular, the
first layer of the decoder generates nouns and pro-
nouns; the second layer generates verbs, the third
layer adjectives and adverbs; and the fourth layer,
words belonging to other POSes. They also use
a technique called teacher forcing (Williams and
Zipser, 1989) to train RNNs using the output from
the prior step as an input.

Despite the relatively new methods that are be-
ing proposed for question answering and dialogue
generation, the evaluation of the the generated
text still relies on metrics like BLEU (Bilingual
Evaluation Understudy) (Papineni et al., 2002), a
metric that was designed for evaluation of SMT.
BLEU computes scores for individual translated
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sentences by comparing overlaps in terms of n-
grams with a set of good quality reference trans-
lations. These measurments alone are insufficient
for evaluating the effectiveness of dialogue gener-
ation systems.

Li et al. (2016b) used two additional com-
putable metrics: the length of the dialogue gen-
erated, and diversity of distinct unigrams and
bigrams. While this simple measure may be a
good addition to BLEU we, believe that a wider
set of evaluation metrics is needed. Coh-Metrix
(Graesser et al., 2004) is a Web-based tool that
analyzes texts with over 100 measures of cohe-
sion, language complexity, and readability. We
have used Coh-Metrix extensively in the evalua-
tion of dialogue from this research and it has pro-
vided a rich understanding of the quality of our
results.

Loss Functions

Our training model employs a softmax cross en-
tropy loss function for back-propagation during
training. Rather than modify this primary loss
function, we concentrate on the auxiliary loss
function needed during sentence generation. This
function operates on partially generated sequences
during a beam search and is used to find consen-
sus among a number of possible choices equal to
the beam width. We have tested extensively using
a beam width of 2 since our functions are config-
ured to process 2 parameters. We leave the expan-
sion of this process to handle wider beam widths
as an obvious future enhancement.

We begin our testing using no auxiliary loss
function at all and rely on network predictions
alone to select subsequent characters. We call this
Network Loss (NET) in this research and consider
the results a control baseline for comparison with
other functions.

We continue testing with a basic MMI loss func-
tion T̂MMI as shown in Equation 4, where S repre-
sents the current set of solution states during sen-
tence generation and T represents the set of pos-
sible next states. This function is modeled after
work conducted by (Li et al., 2016a). The weight-
ing factor λ is configurable at run time and is used
to adjust the relevance of current solution states
versus future solution states, in the decision pro-
cess.

cT̂MMI = argmax
T

{
log p(T |S)−λ log p(T )

}
(4)

The basic MMI approach is suggested by
(Estévez et al., 2009) and implemented as shown
in Equation 4. We further develop this MMI ap-
proach by including Entropy normalization, as in-
spired by (Trinh et al., 2018) by who used nor-
malized MMI for feature selection. We calculate
entropy from predicted network probabilities as
shown in Equations 5 and 6.

HS =

|S|∑

t=0

−P (St)× log(P (St)) (5)

HT =

|T |∑

t=0

−P (Tt)× log((Tt) (6)

The minimum of these values is used to normalize
our MMI value as in Equation 7.

T̂NORM =
T̂MMI

min(HS , HT )
(7)

Finally we experiment with MMI entropy normal-
ization where entropy is not calculated but mea-
sured directly from the training corpus in terms
of character frequencies. Optimizing based on this
function should affect the uniqueness of generated
sentences.

Architecture

The core of our model is a stack of dense layers
comprised of gated recurrent unit (GRUs) cells.
We tested extensively on a configuration with 3
layers, each divided into 3 blocks, where each
block contained 2048 GRUs. This architecture is
based on a prior implementation available on-
line1.

The GRU stack is initialized with the previous
state (st−1) and the current character encoding (xt)
at each time step t in the character sequence. The
GRU output (Yt) and the weights from the final
stack layer (Wt) are combined with a bias (b) to
produce logits at time t. We define logits as the
raw output of the GRU stack which can be normal-
ized and passed to a softmax function to produce
probabilities. In this scheme, we update the logits
by applying weights and biases from the last GRU
layer as shown in Equation 8.

Logits = (Output×Weights) +Biases (8)

The logits are then passed to a loss function for
back propagation within the GRU stack. We do not
limit or pad the length of the input sequence but

1https://github.com/pender/chatbot-rnn
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perform back propagation through time (BBTT),
relying on TensorFlow’s default truncated back-
propagation capabilities. Note that, output se-
quences (y0, ..., yt) are not generated during the
training phase where only the logits are used for
back-propagation. It is after training, during test-
ing or dialogue generation, that the logits are con-
verted to probability using softmax. Finally, prob-
abilities are converted to character sequences us-
ing a beam search.

Our beam search employs custom loss functions
based on Maximum Mutual Information (MMI)
as described in (Li et al., 2016b). We extend this
concept to include entropy-normalized MMI as
discussed previously. Figure 1 illustrates a single
time-step t in sequence processing by our recur-
rent neural network.

xt

GRU Stack
Back-Propagation

Logit Loss

st−1 st+1

Probabilities
P0...Pn

Beam Search
MMI Loss

yt

Training

Generation

Figure 1: Custom Loss Model

The model accepts a (one-hot) binary vector X
and a previous state vector, S, as inputs and pro-
duces a state vector, S and a predicted probabil-
ity distribution vector Pt, for the (one-hot) binary
vector Yt.

Evaluation Metrics

Evaluation of generated text remains a difficult
task as there is little consensus regarding what
makes a good conversation (Liu et al., 2016).
Word-overlap metrics such as BLEU (Papineni et
al., 2002), METEOR (Banerjee and Lavie, 2005)
and ROUGE (Lin, 2004) have been used in the
past, however, a simple overlapping of words be-
tween question and answer may not make for a
good conversation and repetition may be consid-
ered annoying and reminiscent of Eliza, as men-
tioned earlier.

We begin our testing of generated dialogue us-
ing the on-line suite of tools provided by Coh-
Metrix (Graesser et al., 2004). Although this is a
very manual process of cutting and pasting results,
it provides insight from over 100 different metrics
related to cohesion and coherence of text.

After examining several of these measurements
for effectiveness in evaluating our dialogues; we
use the knowledge gained from this manual pro-
cess to develop a few simple metrics that reflect
the concepts of cohesion and coherence, but can
be automated. We built our simple metrics us-
ing tried-and-true NLP standard modules such as
WordNet (Fellbaum, 1998), GloVe (Pennington,
Socher, and Manning, 2014), NLTK (Loper and
Bird, 2002) and the Stanford CoreNLP (Manning
et al., 2014).

Inspired by the fore mentioned tools, we present
four simple distance functions which we apply
to sentences pairs from generated dialogues as a
measure of coherence and cohesion.

• SynSet Distance This metric uses a human
generated semantic knowledge-base (Word-
Net) to create two sets of semantic elements,
where elements consist of synonyms and
lemmas evoked by the words of each sen-
tence. The ratio of the intersection of the sets
to the union of the sets provides a distance
measurement between 0 and 1.

• Embedding Distance Here we exploit the
semantic knowledge inherent in pretrained
word embeddings to produce a set of the n-
closest words from each word in a sentence.
Similar to SynSet Distance we use the ratio of
the intersection of the sets to the union of the
sets get a value between 0 and 1.

• Cosine Distance We consider that the set of
word embeddings from a sentence has se-
mantic meaning in a manner similar to the
well known concept of “bag-of-words”. The
cosine distance between the average of the
two sets provides a result between 0 and 1.

• Sentiment Distance A Naive Bayes Analyzer
provides a simple measure of positive or neg-
ative sentiment, for each sentence. With val-
ues between 0 and 1, a simple difference is
used to represent Sentiment Distance.
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Experiments and Results

We tested our model by training on dialogue from
Reddit and from the proceedings of the Supreme
Court of the United States (SCOTUS) and by us-
ing four distinct auxiliary loss functions described
in this research. Network loss (NET), Maximum
Mutual Information (MMI), Normalized MMI
(NORM) and Entropy Normalized MMI (ENT)
were used to generated conversations consisting of
15 question and answer pairs for testing.

Using the Reddit trained model, multiple tests
were run using Coh-Metrix and some results are
summarized in Table 1. All test conversations con-
sist of 15 question and answer pairs generated by
two different chatbots. This summary of results
provides insight into the relative effectiveness of
our loss models as measured by Coh-Metrix. The
definition of these metrics is left to (Graesser et
al., 2004); however observed trends in Coh-Metrix
have led to the development of our own custom
metrics.

NET MMI NORM ENT
Mean Words per Sentence 10.070 3.200 1.550 51.389
Narrativity 99.910 98.170 57.140 78.810
Syntactic Simplicity 58.320 41.680 99.930 0.160
Referential Cohesion 90.820 64.800 100 100
Sentence Semantic Similarity 0.363 0.359 0.167 0.624
Lexical Diversity 0.366 0.594 0.333 0.096
Connective Word Occurrence 48.499 0 0 57.297
Modifiers per Noun Phrase 0.408 0.231 0 0.908
Sentence Syntax Similarity 0.114 0.158 0.593 0.040
Content Word Frequency 2.813 4.580 2.358 2.835
Word Familiarity 589.115 572 591.5 583.183
Reading Ease 90.526 100 98.835 63.476

Table 1: Selected Coh-Metrix results from our
model using four auxiliary loss functions.

Comparative results shown in Figure 2 indicate
lower values for all 4 non-random metrics, show-
ing that our system is not just parroting text se-
quences from the training corpus. The larger re-
sults, produced by ENT, indicate that entropy nor-
malization increases uniqueness in responses and
thus increases the distance measure, as expected.
The lower measurements for the MMI based func-
tions indicate a closer cohesion and coherence be-
tween question and answer; this may be a result
of using lambda factor equal to .5 during test-
ing which reduces the impact of previous solution
states in favor of the predicted solution state.

Cohesion and Coherence
A generated sample of text from SCOTUS, shown
in Table 2 illustrates the difference between cohe-
sion and coherence. The fact that sentences seem

Figure 2: Average distance measurements for cus-
tom auxiliary loss functions across all datasets.

to fit together well and flow naturally indicate high
cohesion which can be produced by the neural net-
work alone. However, a close reading of the text
shows that the network was unable to give logi-
cal sense to the words and sentences. The capital-
ization at the beginning of the sequence correctly
shows name of a random speaker, as found in the
training corpus. Our testing shows that a network
built on a larger training set has greater cohesion
dialogue of Table 2 is reasonable, but no level of
training alone was able to create dialogue with any
real logic or meaning.

”MR. COLE: I think we’re talking about the district court
to review it does, Your Honor. I believe that’s correct, Jus-
tice Ginsburg. It’s – it’s in navigation. If you have the dis-
tinction between aliens who we collect taxes. They’re –
they’re contested, would be able to read the restatement of
the landowners – or – or that decision. In that instance, I
think that was referred to the issue before this Court that
have standing alone and then have set forth in these kinds
of prosecutions, when i”

Table 2: Generated response from SCOTUS show-
ing reasonable cohesion but a lack of coherence.

Conclusion and Future Work

Advancements in technology may allow develop-
ment of more complex neural networks and more
sophisticated loss functions. With better evalua-
tion models, a neural-network-based chatbot may
be enhanced to learn more from itself using a bet-
ter form of back-propagation, during the genera-
tion phase, as described in this research.

Although human interaction is still considered
to be the best method for dialog evaluation, future
dialog generation models, based on this research,
may be able to bring human level sophistication to
computer generated text.
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Abstract

Children with autism spectrum disorder
(ASD) have difficulty in producing the
speech that is different from the speech
of normal children. Most children with
ASD have difficulty in proper communica-
tion of information, their thoughts or their
emotional state. Only a few studies have
been carried out towards acoustic analy-
sis of ASD speech. Objective of this study
is to characterize the speech signal of the
children affected with autism, by examin-
ing changes in the acoustic features. An
autism speech dataset has been collected
from the children affected with autism,
for over a year. Autism speech is ex-
amined mainly in English vowels regions
due to their relatively longer duration, and
quasi-periodic nature of the vocal folds
during pronunciation of the vowel sounds.
Changes in the characteristics of autism
speech are analyzed by examining changes
in the production features. The excitation
source characteristics are examined using
the feature F0, and the vocal tract filter,
i.e., system characteristics, by using dom-
inant frequencies features. The combined
characteristics of the source-system inter-
action are examined using features SoE,
ZCR and signal energy. Changes are ex-
amined in five English vowels regions.
Distinct patterns of changes observed in
the autism speech of male and female chil-
dren are discussed.
keywords: ASD, ZFF, F0, FD1, FD2

1 Introduction

Autism spectrum disorder (ASD) is a pervasive
developmental disorder, defined clinically by ob-

Figure 1: Block diagram of the proposed plan.

serving abnormalities in three areas: communica-
tion, social reciprocity, and reduced or hyperfocus
behavioral flexibility (Chaspari et al., 2014; Kjel-
gaard and Tager-Flusberg, 2001). It is knows as
a spectrum disorder because of its heterogeneity
of symptomatology (Bone et al., 2012). Accord-
ing to (Black et al., 2011; Mower et al., 2011a),
1 in 110 children are with ASD. Disturbances of
prosody, communication impairments and abnor-
malities involving speech impairments are some of
the most common aspects among many individu-
als with ASD (Fusaroli et al., 2017). Also, indi-
viduals with autism carry some specific biomark-
ers connected with the disorder by birth, and these
biomarkers develop in such a way that can be
clearly identified by 36 months of life or later (Mc-
Cann and Peppé, 2003). However, there are no
fixed rules to define autism, also the biological and
genetic reasons behind the ASD are still unknown
(Herbert et al., 2005). Still, only a few researches
have been done on autism speech, i.e., the speech
of ASD affected children. The purpose of this re-
search is to analyze speech signal of the children
with autism in English vowels regions, by exam-
ining changes in the production features.

Sometimes the individuals with autism are as-
sociated with the difficulties in expressing their
emotions as well as understanding others’ emo-
tional states from speech, facial expression, etc
(Marchi et al., 2012). The reason behind language
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Table 1: Datset details of the children with ASD.

Attributes Statistics
Total number of
the children

13 (11 male,
2 female)

Age ( in years) 3.5 to 16

Native language
Tamil: 12 and
Punjabi: 1

Reading skill (English)
Beginner: 2
Intermediate: 4
Fluent: 7

Total files 187
Duration of data 9350 sec

impairment in autism is the outcome of primary
linguistic disorder with a focus on pragmatic im-
pairments (Rutter, 1970; Baltaxe, 1977). In fact,
in many cases, a significant spoken language de-
lay and repetitive language could be encountered
in the children with ASD (Mower et al., 2011b).
In general, the children with typical development
start establishing their vocabularies at the age of
24 months, but the children with autism could be
unable to do the same (Short and Schopler, 1988).
Also, compared to the individuals with typical
speech, individuals with high-functioning autism
(HFA) have a large variation in pitch, and some of
them have the absence of terminal pitch contour
in their speech (Shriberg et al., 2001; Diehl et al.,
2009).

This paper discusses the analyzation of autism
speech in the vowel regions of five English vowels.
Speech dataset collection is one of the most chal-
lenging tasks in order to do the research on speech
signal of the children with autism. Although,
for this research purpose an English speech sig-
nal dataset has been collected by recording speech
samples of the children with ASD. Only the vow-
els regions of English language have been consid-
ered in this study because of their relatively longer
duration and the presence of sustained speech sig-
nal in vowel regions. The excitation source char-
acteristics are examined using the feature instan-
taneous fundamental frequency (F0), and the sys-
tem characteristics are examined using the first
two dominant frequencies (FD1 and FD2). In ad-
dition, the combined characteristics are examined
using the features strength of excitation (SoE),
zero crossing rate (ZCR) and signal energy (E).
All these features have been extracted only form
the vowels parts of the speech signal.

Figure 2: Average F0 and ZCR for male and
female children with autism: (a) µF0, (b) µZCR.

This study consists of four major steps, graphi-
cally represented in Figure 1. Firstly, a speech sig-
nal dataset was collected, by recording the sound
files of the children with ASD. Secondly, in pre-
processing step, unwanted signal parts were re-
moved, and the speech signal files were arranged
in a database. Thirdly, speech signal process-
ing methods were applied on the collected dataset
to extract the production features. Lastly, results
were made by observing changes in the extracted
features.

The organization of this paper is as follows. De-
tails about the database collection of the children
with ASD are discussed in section 2. Next, the
signal processing methods and features used for
the purpose of analysis are discussed in section
3. Section 4 presents the key results, observa-
tions and discussion on results. Lastly, section 5
presents the conclusions along with the scope of
future work on this topic.

2 Speech Signal Dataset of ASD Children

A speech signal dataset of the children with ASD
was recorded for this research purpose. Dataset
details are tabulated in Table 1. Here, in this
study, the children with age less than 41 months
were not considered, because according to a study
ASD start in the first 36 months of life (McCann
and Peppé, 2003). Dataset was recorded in En-
glish. All the speakers who were selected for data
collection had a knowledge of English, and also
had some speaking related problems. It was made
sure by a certified doctor that the children consid-
ered for the data collection were diagnosed with
ASD. Also, before data collection it was made
sure that they met the DSM–IV diagnostic crite-
ria (Lord et al., 1994) and other diagnostic criteria
for autism.

Data was collected once or twice in a week for
a year period of time in a noise-free empty room.
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Table 2: Mean (µ) values of the acoustic features
of the male children with autism: (a) acoustic

features and (b)-(f) mean values in five English
vowels regions.

(a)
Features

(b)
/a/

(c)
/e/

(d)
/i/

(e)
/o/

(f)
/u/

F0 (Hz) 263.3 267.1 271.3 269.1 254.7
E×1000 36.53 31.41 43.18 41.25 54.29
SoE×100 34.9 43.4 44 39.1 35.9
ZCR×1000 37.7 28.18 30.98 28.21 30.55
FD1 (Hz) 1041.7 900.5 1043.4 863 951.8
FD2 (Hz) 3294.6 3234.2 3281.5 3291.4 3316.1

Figure 3: Average E and SoE for male and female
children with autism: (a) µE , (b) µSoE .

The children were asked to pronounce a set of
twenty five especially selected consonant-vowel-
consonant (CVC) and consonant-vowel-vowel-
consonant (CVVC) English words and numbers.
These words and numbers were shown to them
with pictures and text on a laptop. A study shows
that children with autism have an early interest in
letters and numbers, and that is a big reason be-
hind showing them words and numbers (Volkmar
et al., 1997; Tager-Flusberg et al., 2005).

Each child with ASD was asked to pronounce
the same set of words, over the entire data col-
lection period. There were five English words se-
lected for each of the five English vowels. So,
in a single day by each speaker, total utterances
of 25 words were recorded for each of two such
sections. Roland R-26 audio recorder was used
for the recording purpose. In addition, data was
recorded at a sampling rate of 48 KHz and in .wav
format.

3 Signal Processing Methods and
Features

The speech signal files of the children with ASD
were analyzed by observing the changes in the
source characteristics (F0), system characteristics

Table 3: Mean (µ) values of the acoustic features
of the female children with autism: (a) acoustic
features and (b)-(f) mean values in five English

vowels regions.

(a)
Features

(b)
/a/

(c)
/e/

(d)
/i/

(e)
/o/

(f)
/u/

F0 (Hz) 326.4 343 339.3 339.9 334.6
E×1000 39.5 35.3 48.35 63.75 58.65
SoE×100 32 37.1 38.1 42.9 37.1
ZCR×1000 35.65 26.9 29.3 29.95 32.1
FD1 (Hz) 864.7 686.1 783.3 802.8 859.9
FD2 (Hz) 3185 3285.9 3268.8 3057.6 3112.3

Figure 4: Average FD1 and FD2 for male and
female children with autism: (a) µFD1, (b) µFD2.

(dominant frequencies), and combined character-
istics (SoE, ZCR and signal energy). The F0
was derived using zero-frequency filtering (ZFF)
method with the sampling frequency 10 KHz
(Murty and Yegnanarayana, 2008; Yegnanarayana
and Murty, 2009). The ZFF method involves
computing the output of the cascade of two zero-
frequency resonators (ZFRs) (Murty and Yegna-
narayana, 2008; Yegnanarayana and Murty, 2009).
The zero-frequency filter signal output of ZFR is
given as:

y1[n] = −
2∑

k=1

aky1[n− k] + x[n] (1)

where, x[n] is pre-processed input signal, a1 =
−2, and a2 = 1. This operation is repeated twice,
for a cascade of ZFRs. The trend in this output is
removed by subtracting the moving average cor-
responding to the 10 ms window at each sample.
The resultant trend removed signal, called ZFF
signal is given by:

y[n] = y2[n]−
1

2N + 1

N∑

m=−N

y2[n+m] (2)
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where, 2N+1 is the window length in terms of
sample number. The resultant signal is called the
ZFF signal. Its positive giving zero crossings in-
dicate the glottal closure instants (GCIs), which
are used to estimate the F0 (Murty and Yegna-
narayana, 2008). In addition, the slope of the ZFF
signal around the GCIs gives a measure of the SoE
(Murty and Yegnanarayana, 2008; Mittal and Yeg-
nanarayana, 2015a).

The FD1 and FD2 were derived using linear
prediction (LP) analysis (Makhoul, 1975). With
the LP order 5, the LP spectrum will have a max-
imum of two peaks. The frequencies correspond-
ing to these peaks are called the dominant frequen-
cies, denoted as FD1 and FD2, respectively (Mittal
and Yegnanarayana, 2015b).

The signal energy (E) (Rihaczek, 1968) was cal-
culated using the frame size 30 ms and frame shift
10 ms. Signal energy of a discrete-time signal x[n]
can be computed as: Ew =

∑w/2
n=−w/2 |x [n]|

2

where, w is the window length.

4 Results and Observations

The µF0, µE , µSoE , µZCR, µFD1, and µFD2 val-
ues for male and female children with autism are
represented in Table 2 and 3, respectively. From
Figure 2(a), it is observed that for each of the five
English vowels, the female children with autism
have the higher vocal fold vibration rate than the
male children with autism. Although, this state-
ment is also true in case of the individual with typ-
ical speech. Also, in case of both the male and
female children with autism, front vowels i.e., /e/
and /i/ give the highest µF0 values as compared to
other English vowels. Lastly, in case of the µF0

values of the rear vowels i.e., /o/ and /u/, a similar
pattern is observed for both the male and female
children with autism.

The µZCR values of the male and female speak-
ers are represented graphically in Figure 2(b). In
addition, µZCR values are multiplied by 1000 for
better understanding purpose. The µZCR values of
the front and mid vowels follow a similar trend for
both the male and female speakers, which could be
observed from Figure 2(b). Next, in case of front
and mid vowels, the male speakers have the higher
µZCR values as compared to female, but in case
of rear vowels the female speakers have the higher
µZCR values as compared to male speakers.

The µE values of male and female speakers are
represented graphically in Figure 3(a). In addition,

µE values are also multiplied by 1000 for better
understanding purpose. Here, it is observed that
the µE values of front and mid vowels for both the
male and female speakers follow a similar trend.
It could be observed from Figure 3(a).

All the µSoE values are multiplied by 100 for
the purpose of better understanding. It is observed
that in case of the front and mid vowels, µSoE val-
ues follow a similar trend for both the male and fe-
male speakers. Also, in case of the front and mid
vowels, µSoE have the higher values for the male
speakers as compared to female speakers. These
statements could be observed from Figure 3(b).

The µFD1 and µFD2 values are represented in
Figure 4(a) and 4(b), respectively. In case of all
English vowels, µFD1 values are higher for male
children as compared to female children. Also, in
case of female vowel, /e/ gives the lowest µFD1

value and the highest µFD2 value as compared to
other English vowels. Next, in case of the female
children, µFD2 value of vowel /e/ is the highest as
compared to other vowels. On the other hand, in
case of the male children, µFD2 value of vowel /e/
is the lowest as compared to other vowels.

5 Conclusions

The aim of this research is to analyze changes in
the various speech production features in English
vowel regions of children with ASD. An autism
speech dataset is recorded for this research pur-
pose. Changes are analyzed by observing the dif-
ferences in the source characteristics (F0), sys-
tem characteristics (FD1 and FD2), and combined
characteristics (SoE, ZCR and E). In the conclu-
sion, it could be stated that in case of the male and
female children with ASD, front and mid vowels
show the similar trend for F0, E, SoE and ZCR.
But, in case of the rear vowels such trends are
not present. These robust results could be used to
differentiate between the children with autism and
the typically developed individuals.

A small size of speech data for female children
with ASD is a limitation of this study. More acous-
tic features could be considered for future studies.
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Abstract

This paper reports an increment to the
state-of-the-art in hate speech detection
for English-Hindi code-mixed tweets. We
compare three typical deep learning mod-
els using domain-specific embeddings. On
experimenting with a benchmark dataset
of English-Hindi code-mixed tweets, we
observe that using domain-specific em-
beddings results in an improved represen-
tation of target groups. We also show that
our models result in an improvement of
about 12% in F-score over a past work that
used statistical classifiers.

1 Introduction

Hindi is one of the official languages of India1,
spoken by more than 551 million speakers2. As
is typical of social media in any language, Hindi
speakers on social media occasionally manifest
hate towards one another. Hate speech refers to the
use of hateful language, tone or prosody directed
towards a person or a group of individuals, with
the negative intention to provoke, intimidate, ex-
press contempt or cause harm to them. The mem-
bership to a group could be based on attributes
such as race, religion, sexual orientation, ethnic
origin, disability and so on.

Hate speech detection is the automated task of
detecting if a piece of text contains hate speech.
Hateful messages can be used to misinform people
or result in violent incidents arising due to hate,
therefore, hate speech detection assumes impor-
tance. In a recent news report, the Indian Gov-
ernment also expressed its intention to introduce a

1https://en.wikipedia.org/wiki/Hindi
2https://en.wikipedia.org/wiki/

List_of_languages_by_number_of_native_
speakers_in_India

law to deal with online hate speech3. A tool for
hate speech detection on social media in India is
the need of the day.

As a country with high internet penetration and
rich linguistic diversity, hate speech detection as-
sumes an additional change in the case of Indian
languages (Bali et al., 2014). Due to the difficul-
ties in typing tools and familiarity with the English
QWERTY keyboard, using a mixture of English
words and transliterated Indian language words is
common amongst the Indian internet users. Re-
ferred to as code-mixing or code-switching, the
phenomenon corresponds to the use of transliter-
ated words from one or more languages along with
words in the language of the script. Challenges of
creating and using code-mixed datasets are well-
understood (Jamatia et al., 2016).

Towards this, we present an approach that uses
deep learning for hate speech detection. We com-
pare our approach with the past work by Bohra
et al. (2018) and report a substantial improvement.
The contribution of our work is:

1. We compare our deep learning-based ap-
proach with a statistical approach, and eval-
uate it on the same dataset as the statistical
approach. We observe an improvement in the
performance.

2. Instead of using pre-trained word embed-
dings, we train word embeddings on a large
corpus of relevant code-mixed data. We
demonstrate that this results in improved sim-
ilarity values.

The rest of the paper is organised as follows. We
describe related work in Section 2. The architec-
ture is in Section 3 while the experiment setup is

3https://www.thehindu.com/news/
national/centre-moves-for-law-on-online-abuse/
article23295440.ece
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Figure 1: CNN model for hate speech detection.

in Section 4. We present our results in Section 5,
and analyse the errors in Section 6.

2 Related Work

Approaches for hate speech detection have been
reported (Schmidt and Wiegand, 2017; Warner
and Hirschberg, 2012). Code-mixed datasets for
Indian languages have been explored for several
NLP tasks such as part-of-speech tagging (Jama-
tia et al., 2015), language identification (Das and
Gambäck, 2014) and so on. Also, work con-
cerning with hate speech in English language ex-
ists (Waseem and Hovy, 2016; Djuric et al., 2015;
Davidson et al., 2017; Nobata et al., 2016). In a
way, code-mixed datasets represent a majority of
datasets from India, on the social media. Bohra
et al. (2018) introduces a dataset of Hindi-English
code-mixed tweets, and reports results on a statis-
tical approach that use hand-engineered features.
We download tweets from their dataset and com-
pare with their results. Another work by Mathur
et al. (2018) uses deep learning for hate speech de-
tection. Our work differs from theirs in two ways:
(a) We experiment with a different dataset, and
compare performance on that dataset with the past
work that reports results on the dataset, (b) We use
domain-specific word embeddings that we show to
be better indicative of semantics in the hate speech
context. Our approach of using domain-specific
embeddings is motivated by Tkachenko et al.
(2018). They train two sets of word embeddings:
one from a Wikipedia corpus and another from
an Amazon review corpus. For sentiment-related
tasks (such as sentiment classification), embed-
dings on the Amazon review corpus result in a
higher performance as compared to those from the
Wikipedia corpus. On the other hand, for topic-
related tasks (such as topic classification), embed-

dings trained using the Wikipedia corpus outdo
those from the Amazon review corpus.

3 Architecture

We propose three deep learning models for hate
speech detection. These models are shown in Fig-
ures 1, 2 and 3 respectively. In the forthcoming
sections, we describe each of the models.

3.1 CNN-1D
Figure 1 shows the CNN-1D model. It is fed in
with domain-specific embeddings corresponding
to sentences in the training data. The filters(3 filter
sizes) with the specifications listed, convolve over
the embeddings and produce the feature maps.
Following this, we use a layer of globalMaxPool-
ing having a dropout probability of 0.5. Then, the
results are concatenated to form a single feature
vector. Here, we apply the sigmoid activation to
produce our final results.

3.2 LSTM
Figure 2 shows the LSTM model. Owing to the se-
quential nature of the code-mixed data, we make
use of the LSTM model to compare our results.
The results of the input embeddings, on passing
through the LSTM layer, are made to accumulate
at each proceeding timestep. The model is tuned
to return the sequences of each of these timesteps.
Next, the compiled sequences are given as an in-
put to the globalMaxPooling layer. Lastly, the
resulting output from the pooling layer is passed
through the sigmoid activation function to give a
final prediction.

3.3 BiLSTM
Figure 3 shows the BiLSTM model. Taking into
consideration that the temporal dynamics can be
better captured when a piece of text is analysed
from both the directions, we make use of the BiL-
STM to further compare our results. Here, instead
of retrieving the sequences from a single direc-
tion, we do it for both the directions and concate-
nate the results. The vector now produced, goes
through the globalMaxpooling layer. Finally, the
result produced, is passed through the sigmoid ac-
tivation to generate the final output.

3.4 Creation of Domain-Specific Word
Embeddings

Using the Twitter API, we search for tweets con-
taining Hindi cuss words and names of minority
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Figure 2: LSTM model for hate speech detection.

Figure 3: BiLSTM model for hate speech detec-
tion

Dataset Charecteristics Size

Number of Tweets 255,309
Number of Timelines Extracted 7232
Number of Retweets 76,645
Total Number of Words 4,975,642
Size of Vocabulary 168,638
% Hindi Words per Tweet 18.63%

Table 1: Dataset Statistics of the Domain-Specific
Word Embeddings

groups in their transliterated form. This is moti-
vated by the definition of hate speech: hateful lan-
guage that is used towards minority groups. We
download a dataset of 255,309 tweets. Statistics of
the dataset are in Table 1. Tweets collected were
used only to train word embeddings. The dataset
by Bohra et al. (2018) is used for evaluation of the
3 deep learning models.

We use the gensim (https://
radimrehurek.com/gensim/models/
word2vec.html) library to train word embed-
dings from this dataset, and use these domain-
specific embeddings to initialize our deep learning
models. We also utilize the Google Translate API
to measure the average Hindi proportion of all the
collected tweets. Using the API, we calculate the
number of Hindi words in a tweet and calculate
it’s percentage with respect to the total number
of words in the tweet. This is done for all tweets
and an average is computed. We commit to make
our domain-specific word embeddings available
for download at: https://github.com/
satyaSK/Hate-Speech-Detection.

4 Experiment Setup

We download the dataset by Bohra et al. (2018)
using the Twitter API. Due to typical issues such
as timeline restrictions, we obtain 3849 tweets,
of which 1436 are labelled as hateful. We re-
port 10-fold cross-validation performance on this
dataset. We compare our models with a baseline
re-implementation as given in Bohra et al. (2018).
We implement feature extraction and use classifi-
cation algorithms as described in their paper.

For the deep learning models, we use Keras,
a neural network API (https://keras.io/).
We experimentally determine the values of the pa-
rameters. For the CNN-1D model, we use the fol-
lowing hyperparameters:
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1. Embedding dimension = 300

2. Number of filters of each filter size = 64,
Batch size = 64, Epochs = 5, Dropout = 0.5

3. Pooling layer : Global max pooling

4. Filter sizes being 2,3 and 4 for the 3 CNNs in
parallel.

5. Loss function : Binary cross-entropy loss

6. ReLU activation to obtain feature maps

7. Optimization algorithm : Adam

For LSTM and BiLSTM, we use the following
configuration:

1. Number of LSTM units = 100, Recurrent
dropout = 0.2

2. Loss function : Binary cross-entropy loss

3. Recurrent Activation : Hard sigmoid

4. Activation : tanh

We report Precision, Recall, F-score and accuracy
values using methods in scikitlearn(Pedregosa
et al., 2011).

5 Results

5.1 Qualitative Evaluation of domain-specific
word embeddings

Table 2 shows cosine similarity between ‘women’
and words of three minority groups: religious,
caste and sexual. We have not mentioned the
specific names of the corresponding groups due
to their controversial nature. We wish to high-
light that the word ‘women’ is used as a refer-
ence word solely because women might be a tar-
get of hate speech on social media. Each row
in the table is computed using the cosine similar-
ity between the word ‘women’ and representative
words of the specific minority group. The sim-
ilarity between a pair of related social groups is
consistently higher in the case of domain-specific
embeddings as compared to general embeddings.
For example, in case of sexual minority (which
we consider as ‘transgender’), the similarity in
the case of domain-specific embeddings is 0.726
while that in case of general embeddings is 0.348.
This implies that domain-specific embeddings are
able to capture the societal relationships and corre-
lations between minority groups more accurately.
An additional point to note is that, swear words
in Hindi may not be present in pre-trained Google

Minority Group Domain-
specific

General

Religious Minority 0.637 0.224
Caste Minority 0.615 0.204
Sexual Minority 0.726 0.348

Table 2: Cosine Similarity of ‘women’ with words
representing three minority groups.

news embeddings. Specifically, we observe that
18 swear words in Hindi that were used to down-
load the dataset, and were used to train domain-
specific embeddings are not present in the Google
news embeddings at all.

Therefore, higher similarity between groups
that are targets of hate speech and higher coverage
in terms of words that indicate expressions of hate,
highlight the importance of using domain-specific
embeddings.

5.2 Quantitative evaluation of hate speech
detection

Bohra et al. (2018) train their classifiers using
SVM and Random Forest algorithm, but only re-
port accuracy. For a better comparison, we re-
implement their features and obtain Precision, Re-
call and F-score values as well. The reported val-
ues and our values are compared with the deep
learning models in Table 3. It must be noted that
the accuracy values as reported and as obtained
from re-implementation are close - indicating that
the precision and recall are also likely to be com-
parable. We observe that using CNN-1D results in
the highest performance with a F-score of 80.85%
and an accuracy of 82.62%. This improvement
in F-score is about 12% higher than the statistical
baseline that we compare against. The improve-
ment is in both precision and recall. An example
of a correctly classified instance of hate speech by
the CNN-1D model is ‘@.. inke 6month ke works
dekh lijiy nafrat ho jayegi aapko inse anandpal ke
liye julus aur julus me public ko khule aam patthro
ki barish karna dhamkana public ke sir fodna hate
all of u’ which is translated to ‘@.. look at the
6 month works of these people, you will start to
hate them. A group of people rallying for Anand-
pal, has been stone-throwing and threatening the
public. hate all of you.‘. Among the deep learn-
ing models, we observe that CNN-1D results in
the highest precision while BiLSTM gives the best
recall by a difference of approximately 0.40% as
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P (%) R (%) F (%) A (%)

(Bohra
et al., 2018)
(SVM)

74.94 63.15 68.54 71.03
(71.7*)

(Bohra et al.,
2018) (Ran-
dom Forest)

62.43 58.88 60.60 65.78
(66.7*)

CNN-1D 83.34 78.51 80.85 82.62
LSTM 81.11 75.80 78.36 80.21
BiLSTM 82.04 78.90 80.43 81.48

Table 3: Comparison of Statistical Approach
with Our Deep Learning-based Approach for Hate
Speech Detection; * indicates reported values in
the baseline paper; P: Precision, R: Recall, F: F-
score, A: Accuracy.

compared to the CNN-1D. For example, this tweet
‘@.. he is right x y may gundo ka palka kutha hai
jo koi karwai nai kartha gundo par u.p no1 state
in muders rape‘ (@.. he is right, x is a dog pet
by the mafias of y, and so, he does not call for
the investigation of the crimes they committed. u.p
is number 1 state in rape and murders) has been
correctly classified as hate speech by the CNN-1D
model while the LSTM and BiLSTM models in-
correctly classify the tweet as non-hate speech.(x
and y are anonymised names of a politician and a
state respectively). In general, these results show
that our deep learning models outperform the sta-
tistical approach.

6 Error Analysis

To understand the shortcomings of our models, we
analyse and elucidate the errors made by our best-
performing approach, which motivate future direc-
tions of experimentation. Some of these errors in-
clude:

• Code-switched tweets in Hindi: These are
tweets written, following the grammatical
structure of Hindi with a few English words.
Many mis-classified examples include such
tweets. An example is ‘@.. @.. @.. @..
aur tum jahan hoti ho wahan balatkar badh
jata hai baba bhi rape karne lagte hin (sic)’.
This tweet is translated as ‘@.. @.. @.. @..
and rape cases start to increase wherever you
go, baba also starts to rape’. This has been
identified to be a recurring error which oc-
curs due to the code-mixed nature of the data

at hand, where the text piece contains an im-
balance between tokens from the Hindi and
English scripts.

• Series of swear words: Some mis-classified
instances are a string of swear words with
a few function words between them. We
skip an example here, on purpose, due to
the obscene nature of these tweets. These
errors may be because the model does not
solely rely on the presence of swear words.
Other context may be necessary to detect hate
speech. This shows that the presence of ex-
plicit hate keywords or swear words is not the
only determining factor for deciding whether
a piece of text is hate speech or not, which
points towards the necessity of capturing the
underlying semantics and sense of the text in
discussion.

• Possibly incorrect labels: Some tweets con-
tain swear words but are not hateful towards
any group as such. So, even though our mod-
els predict them as non-hate-speech, the in-
stance is marked as mis-classified. For exam-
ple, a hateful tweet calls someone the child
of a rape victim but the gold label is negative.
On the other hand, ‘x ke samay me isase dou-
ble rape hote the lekin us samay y bolti thi hai
na (In times of x, the number of rapes were
double as this, but y would always call it out,
isn’t it?!) has the gold label as positive. (x
and y are anonymised names of politicians).

7 Conclusion & Future Work

This paper explored hate speech detection in
Hindi-English code-mixed tweets. We used three
typical deep-learning models for detecting hate
speech and empirically demonstrated their effec-
tiveness. In contrast to statistical methods, our
models were able to better capture the semantics
of hate speech along with their context. We ad-
ditionally demonstrated the efficacy of domain-
specific word embeddings in adding intrinsic value
to the code-mixed landscape.

Our work uses a benchmark dataset, and shows
how deep learning models improve best-known
work using statistical classifiers. In that, we make
a small contribution to hate speech detection for
Hindi-English code-mixed tweets. Novel deep
learning techniques capable of assimilating textual
cues more accurately, can be used to improve upon
our work. Other nuances of hate speech in terms
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of sarcasm or misinformation can also be incorpo-
rated in future work.
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Abstract

Clickbaits are catchy headlines that are
frequently used by social media outlets
in order to allure its viewers into click-
ing them and thus leading them to dubi-
ous content. Such venal schemes thrive
on exploiting the curiosity of naive social
media users, directing traffic to web pages
that won’t be visited otherwise. In this pa-
per, we propose a novel, semi-supervised
classification based approach, that em-
ploys attentions sampled from a Gumbel-
Softmax distribution to distill contexts that
are fairly important in clickbait detec-
tion. An additional loss over the atten-
tion weights is used to encode prior knowl-
edge. Furthermore, we propose a confi-
dence network that enables learning over
weak labels and improves robustness to
noisy labels. We show that with merely
30% of strongly labeled samples we can
achieve over 97% of the accuracy, of cur-
rent state of the art methods in clickbait
detection.

1 Introduction

With the number of social media users increasing
by the day, one of the prime objectives of online
news media agencies is to lead social media users
onto bogus pages through the display of luscious
text/images (Loewenstein, 1994). In most cases
the content on the landing page is disparate to the
headline the user clicked on. Source verification
is no longer warranted as news agencies aren’t
held accountable for the content they post online.
As (M. Potthast and Hagen, 2016) suggests, at
least 15 of the most prominent content creators use
clickbaits in some form or the other to honey-trap
users. Impetus for such schemes can range from

directing traffic to web sites that force users to pur-
chase a product, to shaping popular opinion espe-
cially during elections. Some clickbaits claim to
accomplish inconceivable tasks while others rely
on a viewer’s inducement to grapevines.

• “You will never believe what this celebrity
did at the awards ceremony.”

• “10 things that will get you fairer in 5 days.”

• “Millionaires want to conceal this scheme. It
can make you rich in a week.”

Earlier approaches on tackling clickbaits mainly
focused on cheap and easy to implement solu-
tions. Blacklisting URLs has been, to some ex-
tent, effective in regulating an average user’s expo-
sure to clickbaits. (Gianotto, 2014) assumed that
most clickbaits are based on a few key phrases,
and a naive way yet effective strategy would be
to simply look for such phrases. Such an as-
sumption holds no ground today. As the problem
grew to be more pervasive, social media compa-
nies modeled the probability for a content to be
a clickbait based on factors like click-to-share ra-
tio, time spent by user on the target page, and
other such quantifiers. Recent research focuses on
salvaging sentence structures, n-grams & embed-
dings among other features, in classifiers like Ran-
dom Forests (RF), Gradient Boosted Trees (GBT),
Support Vector Machines (SVM) or the vanilla
Logistic Regression (LR). With the advent of on-
line news agencies, there exists a plethora of such
sources, but labeling each of the headlines from
them would be a staggering task. This vindicates
the need for an unsupervised / semi-supervised ap-
proach.

Contributions of this paper include: 1. A novel
loss component on the attention weights that en-
codes prior information from a weak source of la-
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bels, which eventually improves the generalizabil-
ity of the deep learning model that has been trained
on a small representative dataset. 2. A joint archi-
tecture that incorporates into the clickbait classifi-
cation framework a confidence network that tack-
les label noise. 3. Using Gumbel-Softmax for
gated attentions, thus enforcing peaky attentions
over word contexts. 4. Empirically proving the
performance of the proposed approach on popu-
lar clickbait datasets with only a small portion of
labeled samples.

2 Related Work

The problem of clickbait detection has been pri-
marily studied in two forms. One of them in-
volves a pair of post and target phrases, in which,
the objective is to identify whether the post text
(visible to the user), is in someway related to the
target content (text/images on the landing page).
Using this formulation, (P. Biyani and Blackmer,
2016) suggested that the features involved in click-
bait detection can be broadly classified into: con-
tent features (quotes, capitalization), similarity be-
tween the source and target representations, in-
formality, forward reference, URLs etc. A gra-
dient boosted tree was trained using these fea-
tures. (Chakraborty et al., 2016) highlighted the
use of features based on linguistic and structural
differences between the clickbait & non-clickbait
headlines. Using the n-grams and word patterns,
they successfully trained a SVM classifier with a
Radial Basis Function (RBF) kernel, that outper-
formed the baseline rule based method in (Gian-
otto, 2014).

The other form comprises of making decisions
purely based on the headline content (Zhou, 2017),
(P. Biyani and Blackmer, 2016). Our work is based
on this paradigm, and performs on par with meth-
ods that follow the former approach. According
to (Schuster and Paliwal, 1997), Recurrent Neu-
ral Network (RNN) based sentence embeddings
of the headlines, are expressive enough to learn
neural network based classifiers that separate the
two classes. (Teng et al., 2017) explored con-
volutional networks that can convolve our word
embeddings to learn n-grams, sub-words and to-
ken patterns that are consistent with clickbaits.
(M. Potthast and Stein, 2017) worked on the twit-
ter dataset and treated clickbait detection as a re-
gression problem instead of binary classification.
Hence, they proposed a model that outputs scores

indicative of how clickbaity a tweet is. (A. Anand
and Park, 2017) used a bi-directional LSTM to im-
prove upon the results published by (Chakraborty
et al., 2016), on the Headlines Dataset (Section
3.1).

(Wang et al., 2016) employed attention based
mechanisms (Bahdanau et al., 2014) for text clas-
sification. Our work reuses the self-attentive struc-
tured sentence embeddings introduced by (Z. Lin
and Bengio, 2017), with some additional com-
ponents that supplant text classification in semi-
supervised environments, with weakly labeled
data.

Some of the most recent approaches that have
been successful in modelling curiosity are based
on the ”novelty” and ”surprise” components of a
headline. (Venneti and Alam, 2018) used topic
modelling to identify the topic distributions for
each headline in the corpus. Distance metrics in
the space of propability distributions like KL di-
vergence and Hellinger distance were used as fea-
tures to express novelty while surprise was pri-
marily modeled using bi-gram frequency counts.
Based on these features, an SVM/LR classifier
was trained on a small section of the training data.

3 Proposed Methodology

3.1 Dataset

The first dataset used in the paper is the Headlines
Dataset curated by (Chakraborty et al., 2016) 1

and used by (A. Anand and Park, 2017), (Rony
et al., 2017) et al. It holds labels for 32,000 head-
lines which featured in articles from BuzzFeed,
New York Times, Scoopwhoop, Upworthy, The
Guardian, ViralNova, The Hindu, ViralStories,
Thatscoop and WikiNews. In all, there are 15,999
clickbait and 16,001 non-clickbait samples. We
perform an ablation study using a varying propor-
tion of the dataset as our strongly labeled set. Fur-
thermore, we compare our results against strong
baselines established on this dataset, in the ab-
sence of labeled data. All experiments have been
performed using a 5-fold cross validation scheme,
in order to reconcile with the existing baselines.

The second dataset was picked from the
Clickbait-Challenge 2017 (Zhou, 2017)2. The
challenge posed clickbait detection as a regres-
sion problem, assigning each entry a set of scores
from five different annotators. Each score ∈

1https://github.com/bhargaviparanjape/clickbait/
2https://www.clickbait-challenge.org/
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{0, 13 , 23 , 1}3. Therefore, each sample was anno-
tated with score summary statistics: truthMean,
truthJudgements, truthMode, and truthMedian.
For the sake of consistency we reformulated this
as a classification problem using the following de-
cision:

Ci =

{
clickbait if truthMeani ≥ 0.5
non− clickbait otherwise

(1)
Although the dataset consists of “targetText” and
“image” (landing page) data apart from “post-
Text” (headline), we were able to attain convinc-
ing results by using features derived purely from
“postText”. This assumption was based on the
behaviour of an average annotator, as in most
cases the annotator judgments are purely hinged
on the headline. Based on similar assumptions,
(A. Anand and Park, 2017), (Zhou, 2017) and
(Rony et al., 2017), used n-grams, simple word
filters or latent text representations (LSTMs) that
were solely based on headline content. Following
3 splits were provided in the Clickbait-Challenge
(C: Clickbaits, NC: Non-clickbaits).

Label Headlines C NC
A 19,538 4,761 14,777
B 2,495 762 1,697
C 80,012 - -

We evaluated F1-score and accuracy on the test
set B while using portions of the set A as our la-
beled dataset (with the remaining as unlabeled),
bootstrapped with the unlabeled set C.

3.2 Random Forest
In order to identify words of high importance (in-
formation gain), we trained a Random Forest Clas-
sifier on the strongly labeled section of the dataset.
By using entropy (Eq. 2) as a measure of informa-
tion gain, while splitting samples at each node of a
tree, we posited that words with low entropy (sum-
marized in Table 1) were strong signals for iden-
tifying clickbaits. Before fitting the random for-
est, the headlines were pre-processed; all numeric
content was mapped to <n-token>, URLs were
mapped to <u-token>. Along with these, entity
detectors were useful in identifying references to
dates/years, locations. The Wordnet Lemmatizer
was used to obviate trivial variances in word repre-
sentations. The analyses presented in Table 1 was
done on the Headlines Dataset. In this section, we

3https://www.clickbait-challenge.org/#data

Word Importance Naive
Inclination

<n-token> 5.120 clickbait
like 3.112 clickbait
dies 3.042 non-clickbait
people 2.351 clickbait
know 2.336 clickbait
life 2.155 clickbait
need 2.062 clickbait
president 1.799 non-clickbait
wins 1.664 non-clickbait
kill 1.623 non-clickbait
iraq 1.244 non-clickbait
hilarious 1.058 clickbait
favorite 1.039 clickbait
laugh 0.965 clickbait
really 0.963 clickbait
court 0.941 non-clickbait
china 0.940 non-clickbait
dead 0.891 non-clickbait
photos 0.869 clickbait
most 0.851 clickbait
leader 0.702 clickbait
pictures 0.698 clickbait
obama 0.592 non-clickbait
questions 0.524 clickbait

Table 1: Some of the tokens with high word-
importance factor (Inverse Entropy).

propose the use of Random Forest as a source of
weak labels, with the Random Forest being trained
on the human labeled samples.

Es =
Nl

N
El +

Nr

N
Er

El = −
∑

i∈C
pil log pil

Er = −
∑

i∈C
pir log pir

(2)

pil : proportion of samples of the left split
that ∈ class Ci

pir : proportion of samples of the right split
that ∈ class Ci

Nl: number of samples in left split
Nr: number of samples in right split
N : total number of samples
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Salvaging the tokens with the lowest entropy,
we built simple rules to detect clickbaits. Tree
paths that included decisions based on these low
entropy tokens were used to construct rules in Dis-
junctive Normal Forms (DNFs) (Table 2). The un-
labeled dataset was then run through these rules
to determine weak labels for classification. This
aided the training of the attention network, as cor-
roborated by our experiments (Section 4).

3.3 Problem Definition

We are given two sets of data, namely:
Ds = {(X1, y1), (X2, y2), .., (Xn, yn)}, that is
strongly labeled through manual annotations and
Dw = {(X1, ŷ1), (X2, ŷ2), .., (Xn, ŷn)}, which is
weakly labeled and is composed of samples from
the unlabeled set. The weak labels in Dw are gen-
erated by the Random Forest Classifier (RF) (Sec-
tion 3.2). In addition to this, we assimilate D̂s,
that is composed of RF predictions on Ds (Eq. 4).

ŷi = RF (Xi)

∀(Xi, ŷi) ∈ Dw
(3)

D̂s = {(Xi, yi, RF (Xi))}
∀(Xi, yi) ∈ Ds

(4)

The goal would be to train a classification net-
work on the set obtained by concatenating Ds &
Dw. It is assumed that Ds is comprised of a rep-
resentative set of samples and that Ds and Dw

contain i.i.d. samples from the true data distribu-
tion. Since Dw consists of weak labels from the
Random Forest and |Dw| > |Ds|, we propose the
use of a confidence network (Section 3.7) that pre-
dicts the accuracy of a weak label. These accuracy
scores would re-weigh the gradient updates when
the loss is calculated using samples fromDw, thus
attenuating the effect of noisy labels.

3.4 Deep Attention Network

Self-attentive structured attention mechanisms for
efficient semantic latent sentence representations
was proposed by (Z. Yang and Hovy, 2016) and
(Z. Lin and Bengio, 2017). (Zhou, 2017) fur-
ther ascertained the effectiveness of the atten-
tion mechanism in clickbait detection. The in-
tuition behind a self attention mechanism is that
the network learns the importance of each to-
ken’s context, for the task in hand (clickbait de-
tection), along with a hidden state representation
of the word context itself. While (Zhou, 2017),

(Z. Yang and Hovy, 2016) used this in a fully su-
pervised setting, we researched its resilience un-
der the semi-supervised tone. In the following sec-
tions, we show that, the presence of an external at-
tention enforcer is pivotal in training the network.
Merely training a deep network on a meagre set of
a few thousand samples leads to overfitting (Good-
fellow et al., 2016), and as expected, this claim
was substantiated, when we noted a higher vali-
dation/test loss, upon direct application of the ar-
chitecture proposed by (Zhou, 2017), (Z. Lin and
Bengio, 2017).

We propose vital and consequential modifica-
tions to the base network which accommodates
the semi-supervised learning problem. Attention
mechanisms have traditionally been utilized to fo-
cus attention on features that are most influential
in performing a specific task, like image caption-
ing or semantic segmentation, in the image do-
main (Xu et al., 2015). Drawing a parallel, we
propose an attention based loss that forces the at-
tentions for a specific set of words to be higher
than the rest. When a large number of samples are
available, the attention module is self-sufficient in
determining such tokens. In this case however, we
use as a surrogate, the word importance measures
from the Random Forest classifier to identify them
(Section 3.6).

3.5 Architecture
Figure 1 demonstrates the two networks employed
during training. The classification/self-attention
network determines the sentence embedding post
a dot-product operation on the LSTM hidden state
representations using the attention weights. Given
a headline with N tokens, we map each token wi,
where i ∈ {1, . . . , N}, to its corresponding glove
embedding4 (trained on the twitter corpus), de-
noted by xi. A bi-directional LSTM network, en-
codes the word context (from both directions), for
the word wi, in the time step ti (Eqs. 5).

hlefti = LSTMleft(xi)

hrighti = LSTMright(xi)

hi = hlefti ||hrighti
xi ∈ Re

hlefti, hlefti ∈ Ru

hi ∈ R2u

(5)

Given the word context embeddings, the at-
4https://nlp.stanford.edu/projects/glove/
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Figure 1: Network Architecture

tention network maps them to intermediate token
level activations, using a Multi-Layered Percep-
tron (MLP) network with non-linear (tanh) activa-
tions. WithH ∈ RN×2u as the context embedding
matrix, the network outputs B ∈ RN , as the inter-
mediate activation vector (Eq. 6).

B = σ((tanh(H ·Wa1
T )) ·Wa2)

H ∈ RN×2u, Wa1 ∈ Rm×2u, Wa2 ∈ Rm×1 (6)

The original structured self-attentive network
(Z. Lin and Bengio, 2017) proposed a softmax ac-
tivation in the final layer. This was befitting in the
case of sentiment classification, where in the sen-
timent of each sentence was pivoted on a few key
tokens and such tokens existed in all sentences,
irrespective of the class. On the contrary, in the
case of clickbait detection, it is mostly the neg-
ative class (clickbaits), that contains such tokens
of importance. As depicted in Table 1, the words
identified by the Random Forest for the clickbait
class are independent of the news item/news sub-
ject (“<n-token>”, “know”, “need”, “favorite”,

“most”). Same can’t be said for the positive class
(“obama”, “iraq”, “china”, “president”). Hence
we introduced a sigmoid layer to better suit the
case of clickbait detection.

The intermediate activations B ∈ RN , obtained
post the sigmoid layer were treated as parame-
ters of a binary distribution. Treating each bi as
P (ai = 1), we could sample from the binary
distribution. To propagate losses during back-
propagation, we instead sampled values from the
Gumbel-Softmax distribution (Jang et al., 2016),
to obtain D ∈ RN (Eq. 7). This encapsulates
the “gated” portion of the network where in acti-
vations for word contexts are sampled from a dis-
crete distribution whose parameters are learned.
The central idea is to support a case where in the
sentence may not have significant impact words
(fairly common with the positive class), and with
this formulation the sampled values can represent
such a case trivially with a zero vector. In the orig-
inal work done by (Z. Lin and Bengio, 2017), such
activations were inconceivable.

165



di =
exp ((log(bi) + gi1)/τ)

exp ((log(bi) + gi1)/τ) + exp ((log(1− bi) + gi0)/τ)

(7)

gi1 ∼ Gumbel(0, 1)
gi0 ∼ Gumbel(0, 1)
τ : the temperature parameter that determines the

extent to which di would be close to 0 or 1

Adding the Gumbel-Softmax enables the pos-
sibility of peaky activations. Lower values of τ
would lead to di lying on either end of the spec-
trum, i.e 0 or 1, thus resembling a sample from a
binomial distribution.

In cases of very low volumes of labeled data
we observed that the attention weights of tokens
neighboring the words of importance were very
close to 0, and thus their context representations
wasn’t contributing towards the final sentence rep-
resentation. To avoid this, we used a Gaussian
filter over the samples from the Gumbel-Softmax
distribution, which acts as a 1D convolution. The
weights of the Gaussian filter are not learned.
They are fixed and normalized so as to ensure that
the final attention weights 0.0 ≤ ai ≤ 1.0. The ac-
tivation vector A ∈ RN , and LSTM hidden states
H produce the final sentence embedding S (Eq.
8).

A = GaussianFilter(B)

S = H> ·A
H ∈ RN×2u, A ∈ RN , S ∈ R2u

(8)

3.6 Attention Loss
One way to identify key words/features is to use a
weak labeler like Random Forest. It identifies a set
of words crucial in decision making (Table 1). The
loss penalizing a deviation from such important
words, is the standard binary cross entropy loss
where it considers the attentions sampled from the
Gumbel-Softmax distribution. The true attention
is inferred from the word importance or entropy
scores generated by the Random Forest. A true at-
tention of 1.0 is assigned to words with importance
over a particular threshold.

The set of positive activations in the corpus is
much lower than its counterpart. This class imbal-
ance was tackled by simply using the class weights
to re-weigh the attention loss (Alejo et al., 2017).
The proportion of activations of class i is inversely
proportional to wi (Eq. 9). The parameters of the
classification network in Figure 1 are optimized

over a combination of the attention and classifi-
cation losses (Eq. 10).

La(X, y) = −W>[Q� log(A) + Q̄� log(Ā)]

A = {a1, . . . , aN}>, Ā = 1−A
Q = {q1, . . . , qN}>, Q̄ = 1−Q

W = {w1, . . . , wN}>
(9)

A: network activations for tokens
Q: true activations for tokens
W : sample weights
N : number of tokens
�: Hadamard product
X, y: samples ∼ Ds, Dw

Lca(X, y) = Lc(X, y) + λ · La(X, y) (10)

X, y: samples ∼ Ds, Dw

Lca: Classification + Attention Loss
Lc: Classification Loss
La: Attention Loss
λ: Contribution of the attention loss to the

total loss

3.7 Optimization Algorithm
Amalgamation of strong and weak supervision has
been used to solve constraints like data paucity,
noisy labels and a few others (Schapire, 1990).
Weak learners are sources of noisy labels. (De-
hghani et al., 2017b) proposed the use of a con-
fidence network to estimate the accuracy of a
noisy label. Similar to (Dehghani et al., 2017a)
and (Arachie and Huang, 2018), we used an op-
timization method that is a variant of the stan-
dard Stochastic Gradient Descent (SGD). The lat-
ter uses a constant learning rate on all samples
in an iteration. Such an approach can lead to
noisy gradients, especially when the proportion of
strongly labeled samples in a batch is low (Good-
fellow et al., 2016).

In order to mitigate this, a confidence network,
trained on D̂s, formulates the confidence in a weak
label as a function of the weak label (Random
Classifier output) and the encoded input represen-
tation. As shown in Figure 1, the architecture
is split into the classification and confidence net-
works. Batches of i.i.d samples are drawn itera-
tively from D̂s and Dw. A batch of the former
type is used train the classification network, the
weights for which are updated using SGD. Since
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the samples from D̂s also consist of RF predic-
tions on strongly labeled samples, they are used to
train the confidence network (fconf ) as well.

score = fconf (E(X), ŷ)

∀(X, y, ŷ) ∈ D̂s,

E(X) : latent representation forX

(11)

For a sample (X, y, ŷ) ∼ D̂s, a forward prop-
agation on the classification network would gen-
erate the sentence representation S (denoted as
E(X) in Eq. 11). S is concatenated with ŷ,
and passed to a batch-normalization layer. Since
the embeddings and binary signals lie on sepa-
rate manifolds, the batch-normalization is quint-
essential before the concatenated input is passed to
a neural network. Figure 1 enunciates the output
of the network as a 2-dimensional vector [c0, c1].
The score in Eq. 11 is given by c1. The confi-
dence network is trained using a cross-entropy loss
(Lconf in Eq. 12). The true confidence is given by
the indicator 1y=ŷ.

In the subsequent iteration when samples are
drawn from Dw confidence scores are inferred on
each sample in this set through a forward propaga-
tion on the confidence network. These scores are
passed to the optimization algorithm for the clas-
sification network in order for it to re-weigh its
gradient updates. Equation 13 defines the gradi-
ent update rule for parameters in the classification
network.

Lconf (X, y, ŷ) = −1y 6=ŷ log c0 − 1y=ŷ log c1
(12)

(X, y, ŷ) ∼ D̂s

c : [c0, c1], output of the confidence network
Lconf : Loss on sample (X, y, ŷ)
1y=ŷ : True confidence value

∇w
∧

=
1

B

B∑

i=1

fconf (Xi, ŷi) · ∇wLca(Xi, ŷi)

wt+1 = wt − ηt∇w
∧

(13)

ηt: learning rate
B: Batch size of samples drawn from D̂s

Lca: Loss on sample (Xi, ŷi) (Section 3.6)
fconf : Confidence network

Rule Class
believe ∧ <n-token> C
president ∧ iraq ∧ war NC
hilarious ∧ photos ∧ <n-token> C

Table 2: Rules drawn from the tress in RF.

4 Experiments

4.1 Experimental Setting

The following discussion on hyper-parameters is
with respect to the Headlines Dataset. Although
nearly the same set of values were applicable to
the Clickbait-Challenge Dataset.

The hyper-parameters of the random forest
were fine tuned using Bayesian optimization tech-
niques. We used 50 estimators, with a maximum
depth of 3 and a minimum split size of 5 along
with the entropy criterion for splitting. Rules in
DNF form were constructed by traversing paths
that consisted only of tokens with high informa-
tion gain. The threshold for minimum word im-
portance was found to be optimal at 0.42. Table 2
lists some of the rules (mentioning only the words
whose presence triggers the corresponding rule).

The dimensionality of the parameters en-
trenched in the classification and confidence net-
works have been encapsulated in Table 3. Glove
embeddings (Pennington et al., 2014) trained on
the twitter corpus, were used as base word em-
beddings, which were fed to the LSTM cells.
Dropouts (Srivastava et al., 2014) have been com-
monly used in recurrent neural networks as a form
of regularizer, especially after they were proven to
be a form of Bayesian inference in deep Gaussian
Processes (Gal and Ghahramani, 2016). We used
a dropout parameter of 0.5 within the LSTM, and
0.4 for the inputs to the fully connected layer with
weightsWa2. For the Gumbel-Softmax layer, tem-
perature parameter of τ = 0.7 was found to be op-
timal. Lower values of τ would have led to higher
attention weights for the words of importance, but
it would have also driven the weights for the rest
of the tokens to zero. For the batch-normalization
layer present within the confidence network, a
momentum of 0.05 resulted in a slightly better
validation accuracy as compared to the standard
value of 0.1 (Ioffe and Szegedy, 2015). This can
be attributed to the variance in label confidence
across alternate mini-batches that were sampled
randomly from the labeled and unlabeled sets. The
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Parameter Dimensionality
x (Word Embedding) 300

h (LSTM hidden state) 200

Wa1 32× 400

Wa2 32× 1

Wc1 64× 400

Wc2
5 65× 2

Table 3: Dimensionality of the parameters in the
classification and confidence networks.

standard mini-batch SGD optimizer with a learn-
ing rate of 0.0001 (Li et al., 2014) and a batch size
of 64 samples was employed. The parameter λ,
involved in the combination of attention and clas-
sification losses was fixed at 0.3. We used an early
stopping criteria, to stunt training. In most cases,
5 epochs were sufficient to fit the training data, a
result, which seems to corroborate with the size of
the dataset involved.

4.2 Results
In accordance with the disparity of the datasets
mentioned in section 3.1, we summarize the pro-
posed model performance on the two of them inde-
pendently. In both cases, we benchmark the model
performance against baselines, that claim to have
achieved state of the art results on the dataset in
question.

(A. Anand and Park, 2017) claimed a high clas-
sification accuracy of 0.982 after having exper-
imented with multiple RNN based architectures
to embed the clickbait embeddings in a multi-
dimensional space. Our model’s performance em-
ulates the former on the fully labeled dataset. On
the partially labeled set we achieve a high accu-
racy of 0.980, even with only 30% of labeled sam-
ples (Table 4). This is an increment of 4.03% in
the accuracy on the validation set, when compared
to the BiLSTM based network.

We further study model performances across the
various model architectures supplanted in an in-
cremental fashion (Table 5). When data paucity is
high (30% labeled), we see significant differences
in accuracy, precision and recall while adding in-
dividual components to the network. Increments
have been noticed when a large number of labeled
samples (80%) are available, albeit the rate of im-
provement is negligible. The gaussian filter over
attention weights sampled from Gumbel-Softmax

5This includes the bias terms as well.

is more effective in the former case where scatter-
ing attention onto the neighborhood of high im-
portance words prevents the sentence representa-
tion from collapsing to an average of word vectors
in the inchoate stages of training. The precision
and recall metrics also show similar trends, with
increments of 3.92% and 3.91% respectively, in
case of 30% labeled samples.

In case of the Clickbait-Challenge dataset (sec-
tion 3.1), we train our model on the labeled split
(A), concatenated with the unlabeled samples in
(C) and observe model performance on the test set
(B), consistent with (Zhou, 2017). We further per-
formed experiments to study our model’s ability
to learn meaningful sentence representations when
only a portion of the set A was labeled. Table 6
puts into perspective the observed Mean Squared
Error (MSE), precision and accuracy on the test
set, in comparison to the current best performing
model (Zhou, 2017) on the dataset in question.
The existing baseline involves sentence classifica-
tion solely using the self-attention network intro-
duced by (Z. Lin and Bengio, 2017). The baseline
results are convincing when all labels are available
and on par with our model’s performance. On the
other hand, when only 30% of the set A is used as
the labeled set we observed a jump of 23.55% &
25.61% with regards to the accuracy & F1-score
respectively.

Conclusion and Future Work

In this paper, we proposed a novel architecture to
tackle clickbait detection when only a few labeled
samples are present. We successfully showed that
use of a weak labeler like Random Forest can gen-
erate priors over an attention mechanism and thus
improve generalizability. Empirically, we have
also shown that training a confidence network to
rescale gradients, helps tackle the inherent noise
attributed to the presence of a weak labeler.

We haven’t considered λ as a function of time,
and annealing λ over time may improve perfor-
mance. Future work may also involve confidence
networks with, momentum and adaptive learning
rate based gradient update methods like Adam or
RMSprop (Kingma and Ba, 2014). The glove em-
beddings capture the word contexts. Modelling
curiosity (Venneti and Alam, 2018) in conjunction
with such features may help capture user intent as
well. Nevertheless, this requires a different set of
experiments and benchmarks to thoroughly under-
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Model Accuracy Precision Recall ROC-AUC
Baseline (BiLSTMs) 0.982 0.984 0.980 0.998
Self-Attentive Network (SAN) 0.982 0.983 0.981 0.997
SAN + Gumbel Softmax (GS) 0.981 0.982 0.981 0.996
SAN + GS + Gaussian Filter (GF) 0.983 0.984 0.982 0.997

Table 4: Performance metrics against the existing baseline (A. Anand and Park, 2017), with the fully
labeled Headlines Dataset. [Averaged over a 5-fold cross validation scheme]

Model
Accuracy Precision Recall

80% 50% 30% 80% 50% 30% 80% 50% 30%
Baseline (BiLSTMs) 0.980 0.966 0.942 0.979 0.967 0.943 0.981 0.966 0.944
SAN 0.979 0.966 0.944 0.978 0.965 0.945 0.980 0.967 0.942
SAN + RF 0.980 0.976 0.959 0.980 0.974 0.958 0.981 0.976 0.960
SAN + RF + GS 0.980 0.978 0.970 0.981 0.978 0.971 0.982 0.979 0.972
SAN + RF + GS + GF 0.981 0.977 0.975 0.982 0.978 0.976 0.981 0.977 0.977
SAN + RF + GS + GF +
Confidence N/w

0.983 0.982 0.980 0.984 0.983 0.980 0.982 0.982 0.981

Table 5: Ablation study with variations in the proportions (80%, 50%, & 30%) of labeled data (Headlines
Dataset). [Averaged over a 5-fold cross validation scheme]

Model
MSE F1-Score Accuracy

100% 50% 30% 100% 50% 30% 100% 50% 30%
Baseline 0.033 0.047 0.055 0.683 0.557 0.521 0.856 0.713 0.671
Proposed Model 0.034 0.038 0.042 0.679 0.668 0.662 0.856 0.835 0.829

Table 6: MSE, F1-Score and Accuracy metrics for the existing baseline (Zhou, 2017) & our solution on
the test set, while using different proportions of set A (100%, 50% & 30%) as our labeled data.

stand the intricacies involved in such a mixture.
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Abstract

Bilingual speakers often freely mix lan-
guages in conversation. Should dialog sys-
tems also be designed with an ability to
code-switch, when interacting with mul-
tilingual users? In this paper, we ex-
plore this question based on a user-study
on text-based bot-human conversations.
Our results reveal three distinct classes of
users with varying individual attitude to-
wards code-switching (CS), and demon-
strate the importance of a bot’s CS fluency
and its ability to reciprocate CS, in de-
termining user preference. We also high-
light some computational and sociolin-
guistic considerations that have implica-
tions for the design of multilingual dialog
systems, and propose a strategy for dialog
systems to navigate attitude estimation in
mixed-language interactions.

1 Introduction

Code-switching (CS) is the fluid alteration be-
tween two or more languages within a conversa-
tion, and is common in most multilingual societies
(Gumperz, 1982; Myers-Scotton, 1993). Multi-
lingual speakers are known to code-switch in ca-
sual speech conversations for reasons motivated
by its socio-pragmatic functions (Auer, 2013a; Be-
gum et al., 2016; Auer, 1995), and driven by com-
municative and cognitive principles (Myslı́n and
Levy, 2015; Scotton and Ury, 1977). As a marker
of a shared multilingual identity (Auer, 2005),
CS can make a conversation sound more natural
and engaging, convey informality, and reduce per-
ceived social distance between speakers (De Fina,
2007; Camilleri, 1996; Myers-Scotton, 1995).

Text-based conversational agents are now being
developed in new languages (Shum et al., 2018).
Although a large fraction of the world’s population

is multilingual (Ansaldo et al., 2008), nearly all
conversational agents are still monolingual, which
begs the following questions: Should dialog sys-
tems be designed to understand and respond in
code-switched languages as well, or is it suffi-
cient to simply have multiple monolingual agents.
Given the communicative and social functions and
roles of CS, can CS be an effective strategy for di-
alog systems? Can the appropriate use of CS by
a dialog system improve its task-effectiveness or
human judgment of its responses?

Further, would users perceive CS agents as be-
ing more natural or engaging, or do the social
norms around human interactions not shape ex-
pectations for human-agent conversations, as is
suggested by Ciechanowski et al. (2018)? For
many agent applications, there are no obvious ad-
vantages of introducing CS ability, as only fluent
bilinguals can code-switch and therefore, should
be capable of conversing in either of the lan-
guages. Even if there are tangible improvements
in judgment, would they be limited to certain types
of users, or certain interaction-contexts? What
would be the influence of reciprocity, and the qual-
ity of CS in the generated responses?

In this paper, we address the effect of CS usage
on user perceptions through an in-depth user-study
on human-bot conversations. Users observe snip-
pets of human-bot conversations and are asked to
compare several bot variants for naturalness and
relative preference. We observe that users are fre-
quently polarized on their judgments of CS, and
that improved quality of generated CS also im-
proves user judgments significantly.

We also observe that reciprocative use of CS
is judged more favorably, indicating that the soci-
olinguistic theory of interpersonal accommodation
(Bawa et al., 2018) also extends to CS in human-
bot interactions. We carefully design the experi-
ment and presentation to isolate the effect of CS
from the effects of all other properties of the con-
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versations and their dialogs.
Our multifaceted analysis reveals several inter-

esting facts, such as:

1. Code-switching is used/perceived as a lin-
guistic style marker, and therefore its ac-
commodation is judged positively, even in
human-bot conversations.

2. Irrespective of whether users code-switch
themselves, their attitude towards a chatbot
that code-switches can be extremely positive
or negative.

3. Among users with a positive attitude, judg-
ments of CS chatbots positively correlate
with the naturalness of CS utterances, and
with the accommodativeness of the bot in
terms of its CS usage.

Thus, several important repercussions are borne
out of this study in the context of dialog system de-
sign for multilingual societies. As far as we know,
this is the first study to discuss the notion of CS in
human-bot conversations.

We also discuss sociological and computational
considerations affecting design choices of conver-
sational agents, and briefly propose a novel strat-
egy for navigating multilingual interactions and
estimating user attitudes.

The rest of the paper is organized as follows-
we motivate the questions of interest from related
work in Section 2, followed by the experiment it-
self in elaborate detail in Section 3. We then dis-
cuss the implications of the study and its results in
Section 4, and conclude in Section 5.

2 Motivation and Related Work

A wide range of differing attitudes towards CS has
been well documented (Dewaele and Wei, 2014)
and clearly indicate that CS is a style marker
in multilingual conversations. Dewaele and Wei
(2013) show that not only sociolinguistic factors
like age, gender, education and language pro-
ficiency, but also personality types of speakers
(levels of emotional stability, tolerance to ambi-
guity, cognitive empathy and neuroticism) affect
their attitude towards CS. While we show CS to
be similar to other dimensions of linguistic style
(Tausczik and Pennebaker, 2010) in its cohesive
and accommodative characteristics in human con-
versations, it also differs from them in being a
strong sociological indicator of identity (Auer,

2005). Because of this sociological dimension,
users may have different attitudes towards CS, and
these attitudes may vary with users’ demographic
profiles. We delineate such effects in the study.

A computational study of style accommodation
(Danescu-Niculescu-Mizil et al., 2011) shows that
style-accommodation is highly prevalent and ex-
hibits great complexity in Twitter conversations.

Language interaction and socio-pragmatic util-
ity of code-switching in multilingual societies is
very well studied in linguistics (Scotton and Ury,
1977; Fishman, 1970; Ervin-Tripp and Reyes,
2005; Dewaele, 2010; Rudra et al., 2016). Due to
the prevalence and naturalness of CS in human-
human conversations, we argue that a CS agent
can build better rapport with its user by connect-
ing to their common multilingual identity. Fur-
ther, certain pragmatic and socio-linguistic fac-
tors, such as formality of context (Fishman, 1970),
age (Ervin-Tripp and Reyes, 2005), expression of
emotion (Dewaele, 2010) and sentiment (Rudra
et al., 2016), have been found to function as socio-
pragmatic signals for language preference in CS
conversations. Style convergence in a conversa-
tion signals warmth and reduced inter-personal
distance (Myers-Scotton, 1995; Blom et al., 2000),
and Bawa et al. (2018) have shown that choice
of language (or code) exhibits interpersonal con-
vergence or accommodation in human conversa-
tions. Therefore, users could expected to follow
similar patterns of conversation with an agent, and
could find responses that follow these patterns to
be more natural, which makes a case for both a CS
understanding and generation ability in conversa-
tional agents.

However, it is unclear how much of the human-
human conversation norms reflect in, and have
the same pragmatic effect in, human-agent con-
versations. While there is evidence that humans
exhibit a “chameleon effect” when engaged in a
social-interaction (Ward and Litman, 2007; Reit-
ter et al., 2011), there is limited evidence of any
convergence in human-agent interactions (Brani-
gan et al., 2010).

We do not know of any human-agent study
that explores the effects of multilingual usage
and code-switching. Hill et al. (2015) show
that there are significant linguistic differences be-
tween human-human and human-agent conversa-
tions, which might be due to users’ adaptation to
the limitations of the technology (Arif and Stuer-
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zlinger, 2012; Vinciarelli et al., 2015). These
observations suggest that in a multilingual so-
ciety, users may effortlessly adapt to monolin-
gual agents, just as they would to monolingual
speakers. Our in-depth user study extends some
of these findings to code-switching as a dimen-
sion of linguistic style, by measuring how code-
choice and code-choice accommodation by con-
versational agents are perceived by different kinds
of human users.

Though, as shown in another user study (Thies
et al., 2017) on preferences over bot personalities
that even a single user can have different prefer-
ences based on what they are trying to achieve,
we might argue that depending on the context of
usage of an agent, user might prefer a CS agent
(for instance for personal assistant or chit-chat) or
a monolingual agent (for a particular goal, like
booking flight tickets, or finding scientific arti-
cles), and while multilingual users can easily adapt
to a monolingual agent, a CS agent could still be
perceived as more empathetic and engaging, pro-
viding a better overall user experience.

Yet another confounding factor is the wide
range of differing attitudes towards CS that exist at
the level of an individual or community of speak-
ers (Dewaele and Wei, 2014). Dewaele and Wei
(2013) show that not only sociolinguistic factors
like age, gender, education and language profi-
ciency, but also personality types of speakers (lev-
els of emotional stability, tolerance to ambiguity,
cognitive empathy and neuroticism) affect their at-
titude towards CS. Thus, the preference towards
a CS agent might widely vary across individuals,
communities and multilingual geographies.

Given the wide differences in the perception of
CS, perception of chatbots, and the fact that in-
sights from human-human conversations cannot
be trivially applied to human-agent conversations,
we cannot a priori comment on the usefulness of
CS agents, and perform a user study to gain in-
sights on these questions.

3 User Study on Human-Bot
Conversations

The goal of the study is to quantify the causal ef-
fects of the following on the user judgments of
agents:

1. Presence of CS in agent and human dialogs

2. Expressed attitude of users towards CS, as re-
vealed and inferred from user comments

3. Naturalness and reciprocal nature of CS

4. Demographic profile of the users

Users are shown a series of human-bot con-
versation snippets in pairs, and asked to rate the
agents (bots) on conversational skill and relative
preference within the pair. The users are also
asked to comment on the aspects of the conver-
sations that they notice, the differences between
the two agents’ conversational skill, and the rea-
sons for their stated preferences. These snippets
average about 15 dialogs each in length, and vary
in the presence of CS in dialogs by either dialog
participant.

3.1 Experiment Design

There are four variants, or ‘conditions’ of each
presented conversation : No CS by either partic-
ipant (None), CS used by agent only (Agent), CS
by human only (Human) and CS by both partic-
ipants (Both). This is done to isolate the effect
of style (here CS) from the effect of content of the
conversations.

In each trial, a user is shown two human-agent
conversation snippets, each with a different agent.
Users are asked to rate each agent on perceived
conversational skill on a 7-point Likert scale, rang-
ing from ‘Extremely Bad’ to ‘Extremely Good’,
and to compare the two agents by assigning rel-
ative preference between the two, again on a 7-
point Likert scale, with ‘Strong preference’ for ei-
ther agent as the extremes and ‘No preference’ as
the mean.

In a pilot version, users were shown conversa-
tion pairs that differed only exactly in CS usage
and were identical otherwise. This led to starkly
negative judgments of CS, as CS usage stood out
and was therefore judged critically. Since code-
switching is a non-conscious process for many flu-
ent bilinguals (Heredia and Altarriba, 2001), ex-
plicitly asking users to judge CS in this way is
likely to distort judgments because of observer
bias (Poulton, 1975).

Therefore, to mask the variables of interest, we
conduct a single-blind study, and allow the human-
agent conversations to differ not just in CS usage
but in various other respects such as conversational
topic, lengths of utterances, expressed sentiment
and conveyed personality. We do not control for
any variation across conversations, stylistic or oth-
erwise, and treat all differences between conversa-
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tions (except code-switching) as confounding co-
variates, or noise.

3.1.1 Presentation Order
Users are randomly divided into four groups; each
user sees 4 pairs of conversations to be com-
pared (so 8 conversations per user), where one
was always in the None condition, while the
other varies across all four conditions mentioned
above (including the None-None pair, which pro-
vided the baseline judgments that we later use to
measure the ratings for other conditions against).
We employ a presentation order similar to the
case-crossover study design (Lombardi, 2010), in
which different randomly-assigned groups see dif-
ferent permutations of conversations and CS vari-
ants, as shown in Table 1.

Each group sees the same conversations (and in
the same order) as other groups, with the corre-
sponding conversations across the groups differing
exactly in the CS conditions applied. Addition-
ally, as the order of presentation of the CS variants
varies across the groups, it takes care of ordering
biases like fatigue and carryover (Strack, 1992).

Conversation Pair
Group 1 2 3 4

1 None Agent Human Both
2 Agent Human Both None
3 Human Both None Agent
4 Both None Agent Human

Table 1: Presentation order of the CS variants

3.1.2 Conversation Generation Methodology
The conversation snippets are extracted from real
conversations between one of the authors and an
online chatbot, Ruuh1 that were conducted as a
part of this study. We chose to use real conver-
sations with a chatbot rather than artificially con-
structed chat so that the data reflects the nature and
technological constraints of human-bot conversa-
tions.

Eight such conversation snippets were collected
that span everyday topics such as hobbies, travel,
relationships and work. A fluent English-Hindi
bilingual was consulted to generate code-switched
versions of the dialogs (Agent, Human and
Both variants). In keeping with the findings on
markedness of conversational English-Hindi CS
from Bawa et al. (2018), the generated conversa-
tions have Hindi as the marked language and mod-

1https://www.facebook.com/Ruuh/

erately high values of sentence-level fraction of
Hindi words.

The box below shows one such conversation.
The full list of questions and all conversations are
provided in Supplementary Material.

Human Do you play any musical instruments?
Bot Nope, just listen to a lot of music I guess.
Human Main piano play karna sikh raha hoon

〈 I’m learning to play the piano 〉
Bot Piano bajaanaa is like a zen mood mere liye.

〈 Playing the piano is like a zen mood for me 〉
Human Indeed, it is very relaxing to play the piano after

a long day at work
Bot Does learning how to play the piano help?
Human Isse focus karne me help hota hai, and to

develop a taste in music
〈 It helps you to focus, and to develop a taste in
music 〉

Bot Music to ek language hai yaar. You were born
to speak it.
〈 But music is a language dude. You were born
to speak it. 〉

Human Yes, but some nuances need to be learnt.
Bot No I do not think music can be learnt.

Sample conversation. Hindi-code is in italics.

3.2 Analysis
A total of 68 users participated in our study, all
fluent English-Hindi bilinguals. A user typically
took 15-20 minutes to answer all questions.

3.2.1 Demographic Profile
In addition to the judgment scores from users,
we collected basic demographic information about
each user- their age, native language and other lan-
guages known, places where they’ve lived in for at
least three years, and highest level of education at-
tained. Interestingly, none of these were found to
be correlated with either attitude classes or with
judgments. (exact values of these correlations are
reported in Supplementary Material).

3.2.2 Comparing Judgment Ratings
The 7-point skill ratings are normalized to zero-
mean and unit-variance for each user, as we are
interested only in the relative ratings given to the
CS variants by each user. The 7-point preference
ratings over conversation pairs are similarly nor-
malized to unit-variance.

Let SKILLV,C denote this normalized skill rat-
ing for a conversation C presented with the CS
variant V , as judged by all users who see this
variant. Let C1 and C2 be the two conversa-
tions presented in some pair, with C1 presented
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with CS variant V and C2 with the base variant
(None). The corresponding relative skill rating of
C1 over C2 is then defined as SKILLV,C1,C2 =
SKILLV,C1 − SKILLNone,C2.

We adjust these ratings against the base differ-
ence between the conversations C1 and C2 (dif-
ferences that can be attributed to everything except
the code-switching) by getting SKILL′

V,C1,C2 =
SKILLV,C1,C2 − SKILLNone,C1,C2. We are able
to do this because every conversation pair is
also shown once to some group without any CS
in either conversation (None condition in Ta-
ble 1). The overall skill rating of condition
V ∈ {Agent,Human,Both} is then just the
average over all conversation pairs, SKILLV =
EC1,C2(SKILL′

V,C1,C2). Let PREFV,C1,C2 denote
the normalized preference rating of C1 over C2,
as judged by all users who see this pair. We analo-
gously derive the overall preference rating PREFV .

3.2.3 Inferring Attitude Classes
We look at the text comments provided by users
and classify users based on if they explicitly men-
tion language mixing (or any paraphrasing of it) in
one of the differences that they notice between the
conversation pairs, and if they express any senti-
ment towards it. This gives us three types of users,
differing in their expressed attitude towards CS:
Pos : CS is noticed; positive attitude or preference
expressed. (39% users)
Neg : CS is noticed; negative attitude or dispref-
erence expressed. (29% users)
Neut : CS is not mentioned or no sentiment can
be discerned from comments. (32% users)

We do not observe any significant trends in
values of SKILLV and PREFV across the popu-
lation as a whole, but the distribution of these
values does suggest some clustering of user rat-
ings. Indeed, when we condition the ratings
SKILLV and PREFV on the attitude class A ∈
{Pos,Neg,Neut} of the users providing them,
denoted by SKILLA

V and PREFAV , we see signifi-
cant differences.

3.2.4 Labeling CS Quality
We are interested in quantifying the effect of CS
quality on user judgments. We had two indepen-
dent annotators rate all conversations and variants
on a 5-point scale for CS fluency and naturalness.
We then binarize this judgment and label each
conversation as having ‘high-quality CS’ or ‘low-
quality CS’. This divides the 4 conversations into

two classes of two conversations each. Restrict-
ing SKILLV only to conversations with CS quality
Q ∈ {High, Low}, gives SKILL

Q
V .

(a)

(b)

(c)

Figure 1: Skill and preference ratings across var-
ious conditions and user groups. (*) denotes sig-
nificant difference from zero or between the pair.

3.3 Observations

Figure 1a shows SKILLA
Bot+HumanBot and

PREFABot+HumanBot for all A. They capture
the effect of presence of CS in bot’s dialogs.
Figure 1b shows SKILL

Q,A
Bot+HumanBot and

PREF
Q,A
Bot+HumanBot for all Q and A, and they

show the effect of quality of CS of the bot’s di-
alogs. Figure 1c) shows SKILLA

HumanBot against
SKILLA

Bot+Human and PREFAHumanBot against
PREFABot+Human for all A. This brings out the
effect of accommodative CS on SKILL and PREF

judgments.

3.3.1 Presence and Quality of CS
The effects of CS on these normalized judgments
of skill (SKILL) and relative preference (PREF) for
the users in the three attitude classes are seen in
Figure 1. The effect of presence and quality of
CS in agent dialogs are shown in Figure 1a and 1b
respectively. For the attitude class Neg, all judg-
ments of CS (irrespective of quality) are consis-
tently negative, which is not surprising, as users
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who have a dispreference for the phenomenon of
CS itself are unlikely to have a notion of quality.

SKILL judgments by Neut users are similar to
those in Neg, but PREF judgments are sensitive to
CS quality. We speculate that their dispreference
can at least partially be addressed by improving
CS generation by bots, or by aligning it better with
known user CS patterns.

3.3.2 Reciprocity of CS

Figure 1c compares the ratings when only one of
the parties code-switch (Agent and Human) to
when both code-switch in a reciprocative manner
(Both). Pos users have a strong preference to-
wards reciprocative CS, which is in line with reci-
procity observed in human conversations (Bawa
et al., 2018). This suggests that users in this class
judge conversational agents on similar parameters
as they would judge human interlocutors. Users in
Pos not only rate CS highly, but are also sensitive
to both quality and accommodativeness of bot’s
CS, with accommodative CS perceived as much
more skillful than anti-accommodative CS.

3.4 Results

To summarize, the study points to two primary
takeaways: (1) it is important to know or other-
wise identify the “user’s attitude” towards an agent
that code-switches, as introducing CS has diamet-
rically opposite effects on users with different atti-
tudes, and (2) quality of CS responses is important
to all users, and might also influence their attitude
towards a CS-agent in the long run.

Overall, it is suggested from the study that
good-quality accommodative CS significantly im-
proves judgment for a large fraction of users
whose general attitude towards CS has otherwise
been identified.

Demographic factors are all poorly correlated
with judgments of SKILL and PREF. Demographic
variables also fail to predict attitude classes, with
all classes having a similar spread of all demo-
graphic variables. See Supplementary Material for
all such correlations.

4 Discussion

The findings of the study have multiple implica-
tions for the design of CS conversational agents,
and their strategy for making CS decisions.

4.1 Attitude Estimation

The ability to infer a user’s attitude towards CS
seems to be the single-most important determi-
nant of the success of any CS strategy by a bot,
as a bot that can infer the attitude class can make
an informed decision on whether or not to adopt
CS. Users’ attitude towards CS depends on vari-
ous social and psychological variables (Dewaele
and Wei, 2013). Since attitude estimation is cru-
cial, it should be incorporated into the design of an
agent. Individual disposition could be predicted at
the demographic level, though we found no cor-
relation between users’ attitude and their demo-
graphics, suggesting that demography-based infer-
ence of attitude is unreliable.

Furthermore, it is not necessary that a per-
son’s attitude towards CS in human conversations
matches that in a human-bot conversation. For in-
stance, in our study, users commented: “I didn’t
like the way he was switching languages. That felt
very forced.” and “...is trying too hard to sound
natural”.

It seems straightforward to just ask the user
about their CS preferences, but as CS choices
could be nonconscious or spontaneous decisions
like other aspects of linguistic style (Levelt and
Kelter, 1982), stated preferences are unlikely to be
as reliable as preferences revealed from observing
users in-conversation (Levitt and List, 2007). Fur-
thermore, the latter estimates would also reveal a
user’s individual style of CS and extent of CS.

4.2 Nudging as a Conversational Strategy

Such probing of CS preferences while conversing
needs to be a balancing act. Without any adapta-
tion, the agent is likely to stick to a suboptimal de-
fault. On the other hand, aggressive probing in the
form of arbitrary CS decisions will immediately
distract and annoy users.

We propose nudging as a strategy to navigate
this tradeoff - the agent slightly deviates from its
default response (in terms of CS) and measures if
the change is reciprocated, either immediately or
over a few turns, to implicitly estimate user pref-
erence. In principle, these changes can also be
measured using other evaluation criteria (Liu et al.,
2016). Nudging has been studied for human-agent
interactions in other non-conversational contexts
(Sadigh et al., 2016) and with the aim of influ-
encing user behavior over digital interfaces (Wein-
mann et al., 2016). We propose nudging as an
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active exploration strategy to reveal user prefer-
ences, over which longer term policies can then
be studied. In our conversational context, ‘nudg-
ing’ would mean that the bot introduces instances
of marked code-choice gradually in increasing
amounts of markedness, while being sensitive to
its measured effects on the user. These effects,
in turn, could be inferred from their replies, from
factors such as user’s code-choice and/or trends in
expressed sentiment.

4.3 CS Quality

We also see from the study that the perceived qual-
ity of generated CS matters, as bilinguals easily
spot inaccuracies or unnatural CS patterns. Some
of their responses within the user-study, to poor-
quality CS, are: “answers in the style of speaker,
all right, but the hinglish is unnatural”, “... The
place to change the language is a bit unnatural ac-
cording to me” and “I don’t like the way codemix-
ing was used”. Perceived CS quality affects judg-
ments regardless of attitude.

Unless conversational systems can consistently
generate high-quality CS, they may not be very
well-received. CS quality itself depends on multi-
ple factors. The first and most basic factor is syn-
tactic soundness of mixed sentences. Joshi (1985)
is the only work we know of that computationally
generates grammatical CS sentences. The second
determinant of perceived quality is the statistical
likelihood of the CS pattern, which depends on the
strength of the underlying language model. While
there have been several proposed language models
for CS (Adel et al., 2015; Ying and Fung, 2014),
none of them have been evaluated against human
judgments.

Quality judgments could be learned from natu-
ral CS data over Twitter, and there is initial work
on making artificially generated CS similar to nat-
ural CS (Pratapa et al., 2018). Perceived CS qual-
ity, however, goes beyond the surface form of a
sentence and is influenced by social and pragmatic
functions in context (Begum et al., 2016).

While a better codification of naturalness judg-
ments is needed, we speculate that an initial and
safe strategy for an agent to explore nudging
would be to introduce simpler CS constructions,
like tags, frozen expressions (Poplack, 1988),
or frequently observed discourse markers (Auer,
2013b). Monolingual responses from an existing
conversational agent could be modified with such

constructs in simple, even rule-based ways, to get
corresponding CS versions.

5 Conclusion and Future Work

Our user study shows that proficient and accom-
modative CS in bots improves their perceived skill
and preference for users who have a positive atti-
tude towards CS by bots. In conclusion, we have
argued that conversational agents need to discover
and adapt to user CS preferences in order to gain
relevance in multilingual contexts.

We propose nudging as a way to infer, on-the-
fly, the users’ attitude towards CS agents. In fu-
ture work we would like to explore the utility of
this strategy through a Wizard-of-Oz study, where
the bot (wizard) can adaptively change the code-
choice based on user’s responses. Such strategies
could also be automatically inferred from analy-
sis of human-bot conversations in an inverse re-
inforcement learning framework as formulated in
(Sadigh et al., 2016). Further, unlike our user
study, a Wizard-of-Oz study will allow users to ac-
tively participate in the conversation and therefore
provide better judgments.
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Abstract

Many challenges in natural language pro-
cessing require generating text, including
language translation, dialogue generation,
and speech recognition. For all of these
problems, text generation becomes more
difficult as the text becomes longer. Cur-
rent language models often struggle to
keep track of coherence for long pieces of
text. Here, we attempt to have the model
construct and use an outline of the text it
generates to keep it focused. We find that
the usage of an outline improves perplex-
ity. We do not find that using the outline
improves human evaluation over a simpler
baseline, revealing a discrepancy in per-
plexity and human perception. Similarly,
hierarchical generation is not found to im-
prove human evaluation scores.

1 Introduction

Recurrent neural networks have been successfully
used for a variety of tasks in dealing with natu-
ral language. Successes include language trans-
lation (Sutskever et al., 2014), speech recognition
(Graves, 2012), and text to speech (Kalchbrenner
et al., 2018). They all learn to model the con-
ditional probability of a sequence and generate
words sequentially, typically using sequence to se-
quence models. These models have the advantage
that their negative log likelihood is differentiable,
allowing them to be directly trained through gra-
dient descent.

A similar task is language modeling. Here the
goal is to determine the probability of a sequence
of words. Being able to model text is important
for natural language understanding. These mod-
els can be used for re-ranking candidate transla-
tions (Cho et al., 2014), determining possible ways

to extend a piece of writing (Roemmele and Gor-
don, 2018), and generating text (Dauphin et al.,
2016). These problems all share the difficulty that
although in theory a recurrent model can preserve
information for arbitrarily long sequences, in prac-
tice recurrent models tend to struggle to keep track
of context as the sequence length becomes large.
Models for tasks like language translation tend to
avoid translating entire paragraphs and instead fo-
cus on only generating a sentence at a time. Sim-
ilarly, when one generates multiple sentences of
text from language models, they tend to be locally
coherent but not globally coherent.

The difficulty of generating large samples is not
unique to text and also occurs with images. In
the realm of images though, a different technique
is commonly used for generation. Here, genera-
tive adversarial networks (Goodfellow et al., 2014)
have been successfully used to generate images di-
rectly. Similar to text, initially these models only
worked well for generating small images. Gener-
ating large images (like 1024 by 1024) was diffi-
cult for these models. In some recent work, the
issue of large images was dealt with by generat-
ing images in a hierarchical manner. Instead of
directly learning to generate the desired image,
lower resolution images were first generated and
then improved upon (Zhang et al., 2016). Initially,
this was done by generating one lower resolution
image and then directly the final image. More re-
cently, this has been extended to starting off with
generating a small image and iteratively increasing
its resolution by double until reaching the desired
size (Karras et al., 2017).

Inspired by the idea of generating images in a
hierarchical manner, here we will explore gener-
ating text in a hierarchical manner. Similar to
(Zhang et al., 2016), we will approach this by gen-
erating in two steps. One difficulty with hierar-
chical text generation is that meaningfully down-
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sampling text is more difficult than downsampling
images. The textual equivalent of decreasing reso-
lution is summarization, which is a difficult prob-
lem in itself. To side-step this issue, we will use
a simple extractive summarization approach to get
an outline. Using an extractive summarization ap-
proach to acquire information to build upon has
been done previously in generating Wikipedia ar-
ticles (Liu et al., 2018). Their approach differs
from ours in that there they used summarization
to extract relevant information from references to
generate the article, while here we are summariz-
ing the target text to acquire an outline of it. We
generate complete documents hierarchically with
two models. First, one model component gener-
ates the outline. We then condition upon the out-
line to generate the entire document.

Our main contribution will be to explore gener-
ating text in a hierarchical manner by separating
text generation into two phases. The first phase
generates an outline of the text, while the second
phase uses the outline to generate the complete ar-
ticle.

2 Background

Most sequence-to-sequence models consist of an
encoder and decoder model (Sutskever et al.,
2014). The encoder model’s purpose is to take in
an input sequence and construct representations of
each token in the sequence. The decoder’s hid-
den state is initialized with encoder’s final hidden
state. At each step, the decoder predicts the next
token in the sequence until it predicts an end of
sequence token.

As it is difficult to encode an entire sequence
into one vector, generally the decoder is allowed
to look back at the representations of the tokens
the encoder created through an attention mecha-
nism (Bahdanau et al., 2014). An attention mech-
anism scores the decoder’s hidden state against
the encodings of all the tokens in the input sen-
tence, converts these scores to probabilities, and
then takes a weighted average of each encoding to
produce the context vector. This context vector is
then fed in to the decoder to aid it in keeping track
of information from the entire sentence.

One weakness of conventional attention is that
it can only focus on words in the prompt sequence
and not in the target sequence. Self-attention
(Vaswani et al., 2017) is a modification that attends
to both words in the prompt and prior words in the

target. This is especially important for models that
generate long sequences to be able to keep track of
what has been made. A second weakness of con-
ventional attention when used on long sequences
of input text is that it only operates at the word
level, ignoring any information conveyed through
the fact that words are grouped into sentences. An
extension of attention to account for both word
level and sentence level information is hierarchical
attention (Ling and Rush, 2017), which constructs
and scores a vector for each sentence along with
each word. The probability of focusing on a word
is then the product of its associated word level at-
tention and sentence level attention.

For summarization, approaches fall into two
primary categories. Extractive summarization in-
volves choosing and directly copying the main
sentences/words from the document. Abstractive
summarization focuses on having a model gener-
ate the words directly for the summary. As our
goal is to simply have an outline of the text, ex-
tractive summarization is sufficient. It would be
interesting future work to see how different meth-
ods of generating an outline affect document gen-
eration. Another possible future extension would
be to instead use topic modeling to extract a dif-
ferent form of useful context for the target text.

The summarization algorithm that will be used
is called SumBasic (Nenkova and Vanderwende,
2005). This algorithm is based upon choosing sen-
tences with words that are frequent in the docu-
ment. After choosing a sentence, the algorithm
down-weights the words in that sentence to avoid
choosing sentences that are too similar.

3 Methods

Our goal is to generate text in a hierarchical man-
ner by generating the topic sentences of the article
first and then generating the entire paragraph by
conditioning on the topic sentence.

3.1 Model Overview

The model will be an extension of the model
used in Neural Story Generation (Fan et al.,
2018). In that work, a sequence-to-sequence
model was used to convert a prompt into a com-
plete document. Our main extension is dividing
the sequence-to-sequence model into two com-
ponents to assist in the coherence for the gener-
ated text. One component will generate topic sen-
tences, and one will expand topic sentences into

181



Figure 1: This diagram gives a high level overview
of the article generation process. Outlines are pre-
pared with SumBasic. The prompt is converted to
an outline which is then converted to an article.

complete paragraphs.

3.2 First Component - Outline Generator

To generate a document from the prompt, we
first generate the outline associated with the doc-
ument. This component will be trained using al-
most an architecture almost identical to the model
used by (Fan et al., 2018). Their architecture
is a convolutional sequence-to-sequence model
(Gehring et al., 2017) that uses a gated form of
self-attention. The one difference is we did not
use the cold fusion (Sriram et al., 2017) mech-
anism, mainly to lower training time. Cold fu-
sion is a mechanism that involves first training the
main model, freezing its weights, and then train-
ing a second randomly initialized version of the
main model, concatenating the two models’ out-
puts, and then adding a few layers to determine
the final prediction.

3.3 Second Component - Article Generator

The second component will use the outline to
generate the entire article. It will also be based
upon the sequence-to-sequence model used by
(Fan et al., 2018) and similarly will not include
cold fusion. It will be extended in one way. The
self-attention heads in the decoder will remain the
same, but the attention over the encoded outline
will be replaced by hierarchical attention. The

sentence vectors will be obtained by summing the
encoded word vectors for each word in the corre-
sponding sentence. The sentence vectors will then
also have the same type of attention mechanism
applied to them. Similar to how the prior decoder
attention was gated, the hierarchical attention is
also gated and uses the same gating. Both model
components will be trained separately by directly
optimizing the negative log likelihood.

3.4 Outlines

To train the model, we require a dataset of out-
lines corresponding to complete articles. As the
primary focus of this work is not on new methods
of summarization, these outlines will be generated
using prior text summarization methods. Sum-
Basic (Nenkova and Vanderwende, 2005) is one
frequency-based method for determining the topic
sentence. It tries to find sentences whose words
are common in the document. One way to avoid
overweighting common words like ’the’ is to pe-
nalize words that are common across many arti-
cles. TF-IDF (Term Frequency Inverse Document
Frequency) does this by multiplying by the nega-
tive log probability of a word appearing in a doc-
ument. SumBasic is often tweaked to use TF-IDF
instead of directly using word frequencies (Allah-
yari et al., 2017).

As the outline is intended to contain information
about each section of the text, instead of directly
applying SumBasic to the full document, it will be
applied at the meta-paragraph level. Here, meta-
paragraph does not refer to the actual paragraphs
in the text, because their lengths are very incon-
sistent. The paragraphs of many of the documents
in the training data only consist of one or two sen-
tences. Extracting a topic sentence from each of
these paragraphs as an outline would be problem-
atic as we would effectively be letting the outline
contain too much of the document. To avoid this
issue, the actual paragraphs will be aggregated to-
gether using the rule that any paragraph under a
threshold number of sentences k will be combined
with the next paragraph to form a meta-paragraph.
As a side effect, every meta-paragraph except for
possibly the last one will end up having at least k
sentences.

Lastly, some preprocessing is done before di-
rectly applying SumBasic. Stop words are re-
moved using a list of NLTK’s (Loper and Bird,
2002) English stop words, numbers are removed,
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punctuation is removed, and words are stemmed
using Porter stemming (Porter, 1980).

3.5 Training the Models
Strictly speaking the probability of an entire doc-
ument can only now be obtained by marginaliz-
ing over all possible outlines. A lower bound for
the probability can be obtained by instead generat-
ing the most likely outline for a given prompt and
then finding the probability of the document con-
ditioned on that outline. This lower bound how-
ever is intractable to compute as it involves gener-
ating many outlines. Due to the long length of the
sequences and the relatively slow generation time,
even only using 10 outlines for the approximation
would take approximately 100 days just to evalu-
ate on the validation/test set on one 1080 Ti. It also
turns out to be intractable as the memory needed
to do a beam search with such long sequences is
too high and it runs out of memory if you increase
the beam size beyond 2.

As the two components are trained separately,
this similarly leads to the overall training loss not
corresponding to the actual article negative log
likelihood. Using that loss properly would require
being able to efficiently compute the probability of
a document, but this is intractable for the reasons
given in the prior paragraph.

A second discrepancy that arises is that since
the components are trained separately, the second
component is only trained on good outlines. It’s
never trained to deal with poorly generated out-
lines, so if the first component generates a bad
outline, the second component is unlikely to be
able to recover from the mistake. This is unlike
the training for StackGAN (Zhang et al., 2016)
where the second part of the model was trained us-
ing the output of the first part of the model. Train-
ing this model in an end-to-end manner is difficult
because the slow outline generation time would
increase the training time by a factor of roughly
30 which was unfeasible given our computational
resources. Training on a small amount of gener-
ated samples to fine-tune the model is feasible and
could be done in future work.

3.6 Code
A github repository containing our model code
can be found here: https://github.com/
hmc-cs-mdrissi/fairseq. The dataset of
prompts, articles, and outlines can be found at
this link: https://www.dropbox.com/s/

jupoljc2cx0to7y/datasets.zip?dl=
0.

4 Evaluation Approach

4.1 Datasets

We used the Wikitext-103 dataset described in
(Merity et al., 2016). It consists of a large col-
lection of preprocessed Wikipedia articles. As this
dataset does not come with prompts, the prompt
used was the first sentence of the article, with the
goal being generating the entire article. We pre-
processed the dataset to eliminate tables, to canon-
icalize numbers, and to lowercase each word.

4.2 Possible Evaluation Metrics

The two automated evaluation metrics used pre-
viously by (Fan et al., 2018) were perplexity and
prompt relevance. BLEU and ROUGE were not
used as the primary goal is generating new, diverse
text rather than matching the target text precisely.
Perplexity and prompt relevance are problematic
for the hierarchical model as they both involve
computing the probability of a article. Due to the
previously discussed computational intractability
of computing article probabilities, neither can be
used for the hierarchical model. For the non-
hierarchical models and the components of the hi-
erarchical model, we can still measure the perplex-
ity to see how well the model captures the text
distribution. Perplexity is the exponential of the
cross entropy of the model distribution compared
to the data distribution and is defined in Equation
1, where q(x) is the probability the model assigns
to x.

perplexity = 2−
1
N

∑N

i=1
log2 q(xi) (1)

Recently, (Semeniuta et al., 2018) explored var-
ious evaluation metrics for language models. One
automated metric they explored was the Frechet
Infersent Distance (FID). The FID metric is com-
puted by encoding all of the generated and real
documents as vectors and then comparing the dis-
tributions of these vectors by approximating them
as Gaussian. The FID metric is problematic as it
requires a model that can encode the meaning of
a document well. In their work, they only focused
on sentence-level generation and were able to use
a model that could create sentence vectors. A sec-
ond issue with the FID metric is that they did not
find it sensitive to word order, which indicates that
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Table 1: Model Perplexity
Model Validation Perplexity
prompt-to-outline 45.63
outline-to-article 21.08
outline-to-article + h.a. 20.49
prompt-to-article 30.96

the metric does not correlate well with human per-
ception of quality.

One, method applicable to any model is human
evaluation. We generated about 27 articles for
each model using the first sentences of articles in
our test set as prompts. We then had native En-
glish speakers evaluate ten articles on both global
coherence and overall quality on a 5 point Likert
Scale. The questions that were used are shown in
Figure 2.

4.3 Models
The models that will be compared are a model
from prompt-to-outline, outline-to-article, outline-
to-article + hierarchical attention (h.a.), prompt-
to-article, hierarchical prompt-to-article + h.a..

5 Evaluation Results

5.1 Perplexity Evaluation
The model perplexity experiments revealed multi-
ple interesting findings. The biggest one is that the
perplexity of prompt-to-article is lower than the
perplexity of prompt-to-outline, indicating that it
is easier on average word-wise to generate the full
article than just the outline. One possible explana-
tion for this is that in generating the outline there
are much more abrupt shifts in topic when com-
pared to generating the article, and as each word
is conditional on the prior words, the topic flow-
ing more smoothly may make it easier to guess the
next word. There is a significant improvement in
perplexity (about 10 points) when conditioning on
outlines compared to conditioning on prompts.

The other interesting result is that hierarchical
attention led to a small improvement in perplexity.
In the prior work by (Ling and Rush, 2017), hierar-
chical attention improved the model by providing
a computationally efficient attention mechanism
over long sequences and was not found to be help-
ful otherwise. A similar magnitude improvement
using hierarchical attention occurred when com-
paring the two models on the stories dataset used

by (Fan et al., 2018). Two plausible explanations
are either that hierarchical attention works better
for some tasks/datasets, or that the discrepancy oc-
curred because we used gated attention for both
the word-level attention model and the hierarchi-
cal attention model. The gating may have helped
the sentence attention learn to focus on different
and useful things than the word attention. Lastly,
the hierarchical model is missing from the table as
computing perplexity for it was intractable.

5.2 Human Evaluation

The results can be found in Table 5.1 on the next
page. The number of articles evaluated total is 70.
For the three models, only one pair is significantly
different in global coherence. That pair is hierar-
chical model vs prompt-to-article where the latter
is better (p = 0.005). The hierarchical model is
also significantly different in quality from both of
the other two models (for both p = 0.049). The
worst model is still within a standard deviation
evaluation wise of the best model in both metrics,
indicating how noisy the quality of the articles and
the reviews of them are. Thus, for human percep-
tion all the hierarchical model performed slightly
worse, while the outline vs prompt models per-
formed equally well.

The biggest unexpected result is that the
prompt-to-article model performed better in hu-
man evaluation on global coherence than the
outline-to-article model. Considering the outline
describes the article more thoroughly, it should
have helped the model stay focused. It was also
unexpected that the overall quality of the outline-
to-article would be the same as the prompt-to-
article model. Both of these results, are unex-
pected because there was a large improvement
in perplexity when conditioning on an outline.
This reveals that for this task, perplexity did not
correlate well with human perception of quality.
Lastly, overall quality and global coherence corre-
late strongly (r = 0.74, p < 0.001).

5.3 Best Cases

Due to space constraints, articles and outlines
were both truncated. unk was used for unknown
tokens, num was used for numbers, and newline
was used to keep track of paragraph breaks. The
article shown in Figure 3 came from the outline-
to-article model and tied for highest human evalu-
ation scores.
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Question 1 (Global Coherence) The article should be well-structured and well-organized. The article
should not just be a heap of unrelated information, but should build from sentence to sentence and
paragraph to paragraph. Abrupt changes in topic without any transitions are problematic.

Question 2 (Overall Quality) How realistic is the article as a whole given that the article is meant to be a
Wikipedia article.

Figure 2: Questions for Human Evaluation of Generated Articles

Model µ-Global Coherence σ-Global Coherence µ-Quality σ-Quality
prompt-to-article 3.36 1.00 2.91 1.07
hierarchical prompt-to-article + h.a. 2.54 0.96 2.26 0.89
outline-to-article + h.a. 3.14 1.31 2.90 1.22

Table 2: The µ is for mean and σ is for standard deviation.

In both cases we see that the text conditioned
upon was very informative. Doing a better job
of preprocessing would likely help in some cases,
as some of the other prompts end up being trun-
cated too heavily (mainly due to difficulty deter-
mining where a sentence ends). While the main
topic is preserved, often the facts will end up be-
ing changed. For the second article, originally the
player was a basketball player, but the model mor-
phed him into a baseball player.

5.4 Failure Cases

Here, we will examine one of the worst generated
articles. Worst is defined as being rated as a 1 in
both global coherence and overall quality. The ar-
ticle, shown in Figure 4 was generated from the
hierarchical model.

This example looks to be a case where the first
component of the hierarchical model did poorly
leading to the model struggling to generate a ar-
ticle from that outline. It is not the only exam-
ple where too many unknown word tokens end up
leading to poor articles. While repetition occurs
more broadly, unknown tokens have the worst ten-
dency to lead the article to become too repetitive.
This issue may be helped by training the second
component of the hierarchical model on not just
good outlines, but also sampled outlines so it can
learn to not be too reliant on the outline.

More broadly, the main type of error found in
generated articles is too much redundancy. Often
individual sentences would not be too bad, but a
very similar sentence would appear a bit later in
the paragraph. Article quality also generally be-
comes worse near the end of the article.

6 Conclusion

We have focused on generating text in a hierarchi-
cal manner for generating Wikipedia articles. The
primary automated metric, perplexity, for measur-
ing overall article generation quality was compu-
tationally intractable for the hierarchical model.
We found that conditioning on an outline heav-
ily improved perplexity, but did not improve hu-
man perceived quality. This indicates that, per-
plexity should be used more cautiously for text
generation if the motivation is generating text peo-
ple will find believable. This issue should be ana-
lyzed more thoroughly in future work as perplex-
ity is the most commonly used evaluation metric
for language models currently. More generally, it
would be useful to develop automated metrics that
more closely correlate with human evaluation and
have a better understanding of what qualitative as-
pects good articles share.

Other interesting findings are that that one ma-
jor failure mode for the hierarchical model is dif-
ficulty dealing with poor outlines and that hierar-
chical attention led to a small improvement in per-
plexity for two different datasets unlike when it
was used previously by (Ling and Rush, 2017).

For future work, the main thing is to deal with
the issue of the hierarchical model not being able
to generate reasonable articles with poor outlines.
Training using only generated articles would be
ideal, but is computationally expensive due to gen-
eration time being hundreds of times slower than
training time. To make training feasible with gen-
erated samples, it will likely require only using
a small number of generated articles to help fine
tune the model. This may also be feasible when
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Outline 1: he was previously the head coach at butler university in indianapolis . newline on april num ,
num , he became the head coach after todd unk left to coach the iowa hawkeyes . newline in july num ,
he signed a six - year , num million dollar contract to become the head coach of the boston celtics in the
nba . newline bradley kent stevens grew up in unk , indiana , where he developed his love for basketball
. newline he wore no. num in high school in honor of indiana pacers guard reggie miller . newline he
earned three letters in basketball , three in track , and one in baseball during his days at unk . newline the
more success you had at lilly , the harder it would be to leave . ”

Generated Article 1: walter george stevens ( may num , num october num , num ) was an american major
league baseball ( mlb ) outfielder who played for the boston red sox ( num num , num num ) and the
yankees ( num num ) . stevens was an outfielder , placekicker and punter , and had played with the boston
indians and boston red sox from num to num . he was previously the head coach at butler university in
indianapolis . he played num seasons in major league baseball ( mlb ) for the boston red sox , and in num
played on the chicago red sox from num to num . newline stevens played num major league baseball (
mlb ) all - star team in num , and led the league to five consecutive national champions with a num num
conference record , the longest streak in career history . he was also the only player to reach the major
division i ’s num playoffs . the num and num seasons have taken place in the central division ( num num
) . newline at the time of the num mlb draft , he was known for the right to handle a hit . he was one to
only two players . in num , the red sox traded him in minor league organization with the red sox . the red
sox promoted him with the numth overall pick in the num mlb draft , while the red sox traded him to the
cleveland indians .

Figure 3: Well-generated Article

the training dataset size is small.
Another possible extension is to make better us-

age of the outlines. Specifically, for ideal outlines
we know that the sentences present in the outline
should also be present in the target text. Allow-
ing the model to copy an entire sentence would be
beneficial and make it more likely to fully utilize
the outline. This does come with the downside
that a poor sentence in a generated outline being
copied would be problematic. That could be dealt
with by training on a mixture of generated and real
outlines.
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Prompt 1: the portage to san cristobal of a.h. is a num literary and philosophical novella by george steiner
, in which jewish nazi hunters find a fictional adolf hitler ( a.h. ) alive in the amazon jungle thirty years
after the end of world war ii .
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Figure 4: A Poorly Generated Article
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Abstract

In this article, we identified the qualita-
tive differences between Statistical Ma-
chine Translation (SMT) and Neural Ma-
chine Translation (NMT) outputs. We
have tried to answer two important ques-
tions: 1. Does NMT perform equivalently
well with respect to SMT and 2. Does
using simple sentences as training units,
add extra flavor in improving the qual-
ity of Machine Translation output. In or-
der to obtain insights, we have developed
three core models viz., SMT model based
on Moses toolkit, followed by character
and word level NMT models. All of the
systems use English-Hindi and English-
Bengali language pairs containing simple
sentences as well as sentences of other
complexity. In order to preserve the trans-
lations semantics with respect to the tar-
get words of a sentence, we have em-
ployed soft-attention into our word level
NMT model. We have further evaluated all
the systems with respect to the scenarios
where they succeed and fail. Finally, the
quality of translation has been validated
using BLEU and TER metrics along with
manual parameters like fluency, adequacy
etc. We observed that NMT outperforms
SMT in case of simple sentences whereas
SMT outperforms in case of all sentence
types.

1 Introduction

Machine Translation (MT) refers to automated
translation. It is the process by which computer
software is used to translate a text from one natu-
ral language (such as English) into another (such
as Spanish). Translation itself is a challenging

task for humans, and hence, is more challenging
for computers. High quality translation requires a
thorough understanding of syntax and semantical
properties of both the source and target languages.

The importance of studying and developing bet-
ter MT systems has gained popularity in the re-
cent past due to rapid globalization, where people
from multiple backgrounds having varying lan-
guage knowledge are working together. Primar-
ily two paradigms are currently followed for build-
ing MT systems. One is based on statistical tech-
niques, while the other employs artificial neural
networks.

The statistical model, commonly referred to as
Statistical Machine Translation (SMT) (Weaver,
1955), addresses this challenge by creating statis-
tical models, whose input parameters are derived
from the analysis of parallel bilingual text corpora
(Mahata et al., 2017). Some of the notable works
on SMT are (Al-Onaizan et al., 1999; Lopez,
2008; Koehn, 2009), where the authors have dived
deep into the challenges, working principles and
possible improvements. SMT has shown good re-
sults for many language pairs and is responsible
for the recent surge in the popularity of MT among
general public .

On the other hand, despite being relatively new,
Neural Machine Translation (NMT) (Bahdanau
et al., 2014) has already shown promising results
(Mahata et al., 2016; Wu et al., 2016) and hence
has gained substantial attention and interest. Con-
tinuous recurrent models for translation, which do
not depend on alignment or phrasal translation
units, was introduced by Kalchbrenner and Blun-
som (2013). The problem of rare word occurrence
was addressed by Luong et al. (2014) and the ef-
fectiveness of global and local approach was ex-
plored by Luong et al. (2015). He et al. (2016)
demonstrated a log-linear framework incorporat-
ing SMT features combined with NMT which ad-
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dresses out of vocabulary and inadequate trans-
lation. The properties of these architecture was
discussed in detail in (Cho et al., 2014). This
approach generally creates much more accurate
translation than SMT given sufficient amount of
training data (Vaswani et al., 2013; Liu et al.,
2014; Doherty et al., 2010).

In the current work, we have tested the perfor-
mance of SMT and NMT on simple sentences (see
Section 2) extracted from English-Hindi (En-Hn)
and English-Bengali (En-Bn) parallel corpus pro-
vided by TDIL1. These experiments were done to
dive into the scenarios where NMT and SMT out-
perform each other. Moreover, they would also
help us in evaluating the question that whether us-
age of simple sentences, when training the MT
models, creates any difference in the quality of the
MT output.

We have constrained our language domain to
Hindi and Bengali as these languages are used pri-
marily in the Indian sub-continent. Number of na-
tive speakers of Hindi in India is 41.1% while that
of Bengali is 8.11%. Hindi is written in Devana-
gari 2 script and Bengali is written in Eastern Na-
gari 3 script.

To test the effectiveness of the case study, SMT
and NMT systems were also trained for the whole
corpus, which consists of sentences with mixed
complexity. For both simple sentence corpus and
the whole corpus, BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and manual evaluation
metrics like fluency and adequecy were calculated
to validate the observed results.

The paper has been organized as follows. Sec-
tion 2 describes the extraction of simple sentences
from the parallel corpus given by TDIL. Section 3
and Section 4, describes the methodology for the
training of the SMT and the NMT models respec-
tively. Later, Section 5 and Section 6 describes the
evaluation and conclusion, respectively.

2 Extraction of Simple Sentence Pairs

Since we wanted to analyze and compare both the
models, SMT and NMT, with respect to how they
perform on simple sentences, we first needed to
extract such instances from our dataset that had
data of varying complexity.

A simple sentence in this context is defined

1http://www.tdil.meity.gov.in/
2https://en.wikipedia.org/wiki/Devanagari
3https://en.wikipedia.org/wiki/Eastern Nagari script

as a sentence which contains only one indepen-
dent clause and has no dependent clauses. Gen-
erally, whenever two or more clauses are joined
by conjunctions (coordinating and subordinating),
it becomes a complex or a compound sentence
accordingly. So, to get a hold on handling the
conjunctions, we used the Stanford Dependency
Parser 4 library to chunk the English sentences
into phrases. (viz. NP (Noun Phrase), VP (Verb
Phrase), PP (Preposition Phrase), ADJP (Adjec-
tive Phrase) and ADVP (Adverb Phrase)).

Figure 1: Extraction of phrase chunks.

We noticed that, simple sentences have an
unique phrase structure that consists of combina-
tions of NP, VP and PP. In conjunction with this
theory, we applied two methods (viz. rule based
approach and deep learning based approach) to ex-
tract simple sentences from the English corpus.
The approaches are discussed in Section 2.1 and
Section 2.2, respectively.

2.1 Rule Based Approach

We subjected 3046 simple sentences, extracted
from various websites, to chunking using Stan-
ford Dependency Parser (Manning et al., 2014),
and extracted the unique phrase structures, which
became the rules by which we further mined for
simple sentences from the English corpus.

We extracted 205 unique rules, the surface
forms of which, along with its Confidence Score,
are shown in Table 1. The confidence score of the
rules were calculated using

ConfidenceScore =
No.OfSentencesPertainingToARule

TotalNo.OfSentencesInTheTestData

We tested our system on 2876 sentences (1438
simple sentences and 1438 complex/compound
sentences) and got an accuracy of 89.22%. Table

4https://stanfordnlp.github.io/CoreNLP/
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2 shows the various validation metrics. Using this
system, 10,349 simple sentences from the TDIL
English corpus was extracted, as shown in Table
4.

Rules Confidence
PP NP* PP VP NP* 8.40
PP NP* VP PP NP* 9.49
ADVP NP* VP* ADVP NP* 9.36
NP VP PP NP PP NP 12.15
NP ADVP VP* NP* 11.69
NP* VP NP* 11.69
NP* PP NP VP* NP 11.46
NP VP PP NP* 11.23
VP* NP* PRP* ADVP* 4.92
NP VP* NP* PP* ADJP* ADVP* 9.62

Table 1: Surface forms of the extracted rules. ”*”
means one or more occurrence of item.

Other Simple Prec. Kappa
Other 1275 90

93.41%
0.78Simple 220 1291

Recall 85.28%
Acc. 89.22%
F1 89.16%

Table 2: Confusion matrix for the rule based
approach.

2.2 Deep Learning Based Approach
We preferred Deep Learning approach over tra-
ditional Machine Learning (ML) approach as be-
cause in the ML approach we could only extract
syntactic features, which was already exploited
in the rule based approach discussed in Section
2.1. On the other hand, a deep learning technique
learn categories incrementally through its hidden
layer architecture. We wanted the deep learning
framework to learn from the POS tags itself as
it automatically clusters similar data into separate
spaces.

For the deep learning model, we trained a multi-
layer feed-forward neural network with stochas-
tic gradient descent (Bottou, 2010) as optimizer
with back-propagation. The network contained
two hidden layers of sizes 50 and 50 respectively.
The activation function used was tanh and loss
function used was Mean Squared Error. Learn-
ing Rate was kept at 0.001 and number of epochs
were fixed at 100. The batch size was kept

at 128. The training data consisted phrases of
2876 sentences (1438 simple sentences and 1438
other complex/compound sentences). The trained
model was subjected to 10 fold cross validation
and it yielded an accuracy figure of 92.11%. Ta-
ble 3 shows the other important validation metric
measures.

Other Simple Prec. Kappa
Other 1287 76

92.22%
0.84Simple 151 1362

Recall 92.11%
Acc. 92.11%
F1 92.16%

Table 3: Confusion matrix for deep learning
based approach.

The TDIL English corpus was fed to this model
and it yielded 14,976 simple sentences as shown
in Table 4.

# of sentences 49999
# of other sentences RL 39650
# of simple sentences RL 10349
# of other sentences DL 35023
# of simple sentences DL 14976

Table 4: Simple Sentence Count

The deep learning based approach was pre-
ferred as it resulted in better accuracy. The Bengali
and Hindi counterparts of these sentences were ex-
tracted to build a parallel corpus comprising of
simple sentences only. The next step was to build
MT models using this data, as well as the data
from the whole corpus, and compare their respec-
tive results.

3 Statistical Machine Translation

Moses (Koehn et al., 2007) is a statistical ma-
chine translation system that allows us to automat-
ically train translation models for any language
pair, making use of a large collection of translated
texts (parallel corpus). Once the model has been
trained, an efficient beam search algorithm quickly
finds the highest probability translation among the
exponential number of choices.

For training the SMT model, we used English
as the source language and Bengali and Hindi as
the target languages. To prepare the data for train-
ing the SMT system, we performed the following
steps.
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3.1 Preprocessing
The following steps were employed to preprocess
the Source and the Target texts.

• Tokenization: Given a character sequence
and a defined document unit, tokenization is
the task of chopping it up into pieces, called
tokens. In our case, these tokens were words,
punctuation marks, numbers.

• Truecasing: This refers to the process of
restoring case information to badly-cased or
non-cased text (Lita et al., 2003). Truecasing
helps in reducing data sparsity.

• Cleaning: Long sentences (# of tokens> 80)
were removed.

3.2 Language Model
Post these steps a Language Model (LM) was
built using the target language, Bengali and Hindi,
in our case, to ensure fluent output. KenLM
(Heafield, 2011), which comes bundled with the
Moses toolkit, was used for building this model.

3.3 Word Alignment and Phrase Table
Generation

For word alignment in the translation model,
GIZA++ (Och and Ney, 2003) was used. Finally,
the phrase table was created and probability scores
were calculated. Training the Moses statistical MT
system resulted in the generation of two models,
one is a Phrase Model and the other is a Transla-
tion Model. Moses scores the phrase in the phrase
table with respect to a given source sentence and
produces best scored phrases as output.

The results of this system when trained and
tested on the simple sentence corpus and the gen-
eral corpus, for both En-Bn and En-Hn language
pairs. The results and evaluation of the systems
are shown in Sec 5, Table 5 and Table 6.

4 Neural Machine Translation

Neural machine translation (NMT) is an approach
to machine translation that uses neural networks
to predict the likelihood of a sequence of words,
typically modeling entire sentences in a single in-
tegrated model. NMT departs from traditional
phrase-based statistical approaches in that uses
separately engineered subcomponents like Lan-
guage Model generation, Word Alignment and
Phrase Table generation. The main functional-
ity of NMT is based on the sequence to sequence

(seq2seq) architecture, which is described in Sec-
tion 4.1.

4.1 Seq2Seq Model
The sequence to sequence model is a relatively
new idea for sequence learning using neural net-
works. It has gained quite some popularity since it
achieved state of the art results in machine trans-
lation task. Essentially, the model takes as input a
sequence

X = {x1, x2, ..., xn}

and tries to generate the target sequence as output

Y = {y1, y2, ..., ym}

where xi and yi are the input and target symbols
respectively. The architecture of seq2seq model
comprises of two parts, the encoder and decoder.
We experimented with two types of NMT mod-
els (word and character level), with both using the
seq2seq architecture, the difference being in the
inputs to its encoder and decoder. They are dis-
cussed in the sections 3 and 4 below. The working
of seq2seq architecture at the word level is shown
in Fig. 2. We implemented both the models using
the Keras (Chollet et al., 2015) library.

4.1.1 Word Level NMT
To build our world level NMT model, we used the
seq2seq with attention mechanism. This architec-
ture has recently shown to achieve state of the art
quality translation across many different language
pairs. The details of the seq2seq model along with
the training details are given below.

Encoder The encoder takes a variable length se-
quence as input and encodes it into a fixed length
vector, which is supposed to summarize it’s mean-
ing and taking into account it’s context as well. A
Long Short Term Memory (LSTM) cell was used
to achieve this. The directional encoder reads the
sequence from one end to the other (left to right in
our case),

~ht = ~f enc(Ex(xt),~ht-1)

Here, Ex is the input embedding lookup table
(dictionary), ~f enc are the transfer function for the
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) recurrent unit. A con-
tiguous sequence of encodings C is constructed
which is then passed on to the decoder.
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Figure 2: NMT with attention architecture.

Decoder The decoder takes as input, the context
vector C from the encoder, and computes the hid-
den state at time t as,

st = fdec(Ey(yt-1), st-1, ct)

Subsequently, a parametric function outk returns
the conditional probability using the next target
symbol k.

(yt = k | y < t,X) =
1

Z
exp(outk(Ey(yt−1), st, ct))

Z is the normalizing constant,
∑

jexp(outj(Ey(yt − 1), st, ct))

The entire model can be trained end-to-end by
minimizing the log likelihood which is defined as

L = − 1

N

N∑

n=1

Tyn∑

t=1

logp(yt = yt
n, y¡t

n, Xn)

where N is the number of sentence pairs, and Xn

and yt
n are the input sentence and the t-th target

symbol in the n-th pair respectively.

Training For training our model, we used the
seq2seq with attention architecture with LSTM
cell. We used two LSTM cells, stacked upon each
other, where one acts as the encoder and the other
as the decoder. We trained our model on 14976
data (for simple sentence corpus), 49999 sentences
(for Bengali and Hindi general corpus), batch size
at 256, number of epochs at 100 and learning rate
at 0.001. The activation function used was soft-
max, optimizer used was rmsprop and the loss cal-
culation at each step was done using categorical
cross-entropy.

Attention Neural processes involving attention
(Vaswani et al., 2017) has been largely studied in
computational neuro-science. This concept is very
loosely based on visual attention mechanism in
humans. With attention mechanism, the need to
encode the full source sentence into a fixed length
vector is omitted. Rather we allow the decoder to
attend different parts of the source sentence at each
time step of the output generation. Essentially, we
let the model learn what to attent to based on the
input sequence and what is predicted so far.

Mathematically, it computes the context vector
ct at each time step t as a weighted sum of the
source hidden states,

ct =
∑

t=1
Txαtht

Each attention weight αt represents how much rel-
evant the t-th source token xt is to the t-th target
token yt and is computed as :

αt =
1

Z
exp(score(Ey(yt − 1), st-1, ht))

where

Z =
∑

k=1
Txexp(score(Ey(yt − 1), st-1, hk))

Z is the normalization constant. score() is a feed
forward neural network with a single hidden layer
that scores how well the source symbol xx and the
target symbol yt match. Ey is the target embedding
lookup table and st is the target hidden state at time
t.

The results and evaluation of the systems are
shown in Sec 5.

192



4.1.2 Character Level NMT
Character level NMT (CNMT) performs better
than Word Level NMT due to the following rea-
sons

1. It does not suffer from out-of-vocabulary is-
sues

2. It is able to model different, rare morpholog-
ical variants of a word

3. It does not require segmentation (Chung
et al., 2016).

Generally, CNMT works best when majority of al-
phabets, in the source and target language, overlap
i.e both the languages share a common or similar
script. Still, we tried to find out its performance
on the simple sentence and whole corpus, though
in our case Nagari script and Roman script utilizes
completely different alphabets. The model has two
parts (encoder and decoder) as discussed below.

Encoder For building the encoder we used
LSTM cells. The input of the cell was one hot ten-
sor of English sentences (embeddings at charac-
ter level). From the encoder, the internal states of
each cell were preserved and the outputs were dis-
carded. The purpose of this is to preserve the in-
formation at context level. These states were then
passed on to the decoder cell as initial states.

Decoder For building the decoder, again an
LSTM cell was used with initial states as the hid-
den states from encoder. It was designed to re-
turn both sequences and states. The input to the
decoder was one hot tensor (embeddings at char-
acter level) of Bengali and Hindi sentences while
the target data was identical, but with an offset of
one time-step ahead. The information for gener-
ation is gathered from the initial states passed on
by the encoder. Thus, the decoder learns to gen-
erate target data [t+1,...] given targets [..., t] con-
ditioned on the input sequence. It essentially pre-
dicts the output sequence, one character per output
time step.

Training For training the model, batch size was
set to 64, number of epochs was set to 100, activa-
tion function was softmax, optimizer chosen was
rmsprop and loss function used was categorical
cross-entropy. Learning rate was set to 0.001.

The results and evaluation of the systems are
shown in Sec 5.

5 Evaluation and Analysis

All of our translation systems were evaluated in
two ways, automatic and manual, depiction s of
which are discussed in the section below.

5.1 Automatic Evaluation

Automatic evaluation was done by scoring the
translations using BLEU and TER metrics. The
results are shown in Table 5 and 6. In the tables,
”Bn” and ”Hn” means Bengali and Hindi respec-
tively. ”CNMT” and ”WNMT” means character
and word level NMT models respectively. Pres-
ence of Attention mechanism in the model is de-
noted using ”A” and the contrary is denoted using
”NA”

Model
(Bn)

Simple Sent. Whole Corp.
BLEU TER BLEU TER

SMT 0 117.67 15.9 85.26
CNMT (NA) 8.69 91.87 4.19 88.22
WNMT (NA) 9.68 86.84 3.61 98.03
WNMT (A) 9.95 85.66 3.77 96.72

Table 5: Automatic evaluation metrics for En-Bn
Model.

Model
(Hn)

Simple Sent. Whole Corp.
BLEU TER BLEU TER

SMT 3.98 101.945 12.86 95.092
CNMT (NA) 7.98 92.85 5.96 85.18
WNMT (NA) 10.01 90.28 4.87 96.97
WNMT (A) 10.54 90.26 5.21 94.20

Table 6: Automatic evaluation metrics for En-Hn
Model.

5.2 Manual Evaluation

Translation quality was judged by four linguists.
Two had Bengali mother tongue (evaluated Bn
model), while the other two had Hindi mother
tongue (evaluated Hn model). The evaluation cri-
terion were Adequacy and Fluency. Adequacy
means how much of the meaning expressed in the
target translation. Fluency means to what extent
the translation is well-formed grammatically, con-
tains correct spellings and intuitively acceptable
and can be sensibly interpreted by a native speaker.
The speakers were asked to rate the translation in
range of 1-5, where ’1’ is the lowest and ’5’ is
the highest. The manual evaluation measures for
English-Bengali and English-Hindi language pair
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Model (Bn) SMT CNMT WNMT (NA) WNMT(A)
Corpus Simple Whole Simple Whole Simple Whole Simple Whole

Adequecy 1 0 2.15 1.98 1.54 2.02 1.44 2.15 1.47
Fluency 1 0 1.87 2.27 1.98 2.36 1.86 1.98 2.02

Adequecy 2 0 2.24 1.87 1.66 1.96 1.57 2.01 1.69
Fluency 2 0 1.92 2.05 1.86 2.21 1.77 2.26 1.93

Avg. Adequecy 0 2.195 1.925 1.6 1.99 1.505 2.08 1.58
Avg. Fluency 0 1.895 2.16 1.92 2.285 1.815 2.12 1.975

Table 7: Depiction of Manual Evaluation conducted by Bengali language speaking experts.

Model (Hn) SMT CNMT WNMT(NA) WNMT(A)
Corpus Simple Whole Simple Whole Simple Whole Simple Whole

Adequecy 1 0.8 2.06 1.96 1.69 2.36 1.47 2.26 1.49
Fluency 1 0.5 1.72 2.04 2.08 2.27 1.92 2 2.22

Adequecy 2 1.02 2.18 1.79 1.71 2.02 1.63 2.18 1.9
Fluency 2 0.65 1.98 2.1 1.94 2.39 1.83 2.33 1.87

Avg. Adequecy 0.91 2.12 1.875 1.7 2.19 1.55 2.22 1.695
Avg. Fluency 0.575 1.85 2.07 2.01 2.33 1.875 2.165 2.045

Table 8: Depiction of Manual Evaluation conducted by Hindi language speaking experts.

is given in Table 7 and Table 8 respectively. In
the tables, presence of Attention mechanism in the
model is denoted using ”A” and the contrary is de-
noted using ”NA”.

5.3 Analysis

We can clearly see in the results, that a NMT
model, when trained using simple sentences, per-
forms better than a SMT model, when trained us-
ing the same sentence pairs.

But, at the same time, SMT outperforms NMT,
when trained using the whole corpus. This is due
to the fact that NMT doesn’t quite work well with
less amount of data and highly complex sentences.

Similarly, we also see that character based NMT
works better than word based NMT, when deal-
ing with less amount of data. But again, we have
to keep in mind that for a character based NMT
to work well, we have to train it using a Source-
Target language pair, who share a common script.

Further, word based NMT with attention per-
form relatively better than a character based NMT.
We didn’t use attention in the Character NMT, as
attention won’t be able to attent to individual char-
acters.

6 Conclusion and Future Work

In this work, we have tried to analyze the scenarios
where SMT performs better than NMT and vice-
versa. Also, we have tried to find out whether MT

models give better outputs when trained with sim-
ple sentences rather than when trained using sen-
tences of various complexities.

As a future prospect, we would like to take the
”other” (Complex+Compound) sentence pairs and
simplify it, so that the whole MT models can be
trained using more simple sentences. Also, we
would like to increase the number of LSTM en-
coding and decoding layers as well as include em-
beddings like ConceptNet5 in our future works.
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Abstract

Suggestion mining is increasingly becom-
ing an important task along with sen-
timent analysis. In today’s cyberspace
world, people not only express their sen-
timents and dispositions towards some en-
tities or services, but they also spend con-
siderable time sharing their experiences
and advice to fellow customers and the
product/service providers with two-fold
agenda: helping fellow customers who are
likely to share a similar experience, and
motivating the producer to bring specific
changes in their offerings which would be
more appreciated by the customers. In our
current work, we propose a hybrid deep
learning model to identify whether a re-
view text contains any suggestion. The
model employs semi-supervised learning
to leverage the useful information from
the large amount of unlabeled data. We
evaluate the performance of our proposed
model on a benchmark customer review
dataset, comprising of the reviews of Ho-
tel and Electronics domains. Our proposed
approach shows the F-scores of 65.6% and
65.5% for the Hotel and Electronics re-
view datasets, respectively. These perfor-
mances are significantly better compared
to the existing state-of-the-art system.

1 Introduction

The online platforms like social media websites,
e-commerce sites of products and services, blogs,
online forums and discussion forums etc. are
very much attached today with our day-to-day
lives.The availability of the these information
sharing platforms has fueled the humans’ desires
to share one’s opinions, emotions and sentiments

with respect to the entities of all kinds: be it
people, events, places, organizations, institutions,
products, services, hobbies, games, movies, pol-
itics, technology etc. Generally people express
their opinions in three ways: (1) through an inde-
pendent piece of content writing (2) writing dis-
posed towards a theme (such as a question in a
community based question answering platform, or
a topic in a discussion forum, or an entity in a
product reviewing website/ e-commerce website)
and (3) conversational writings in the form of ex-
change of utterances in dialog systems/chats or
comments for a post in social media/online fo-
rums.

Such opinions which exist in different forms
and places, have often hidden in them the expe-
riences of people, their subjective emotions and
sentiments towards different aspects of different
entities, as well as the intentions of advices and
suggestions proposing some action in a prescribed
way. Suggestion mining can be thought of as a
subproblem of opinion mining, entrusted with the
task of extracting mentions of suggestions from
the unstructured texts. Suggestions in the domain
of reviews can be generally of two kinds:

1. Customer to Companies: These sugges-
tions are directed from customers to the pro-
ducers/service providers. Customers provide
companies with feedbacks, often expressing
their contentment or complaining about their
dissatisfaction with certain product features,
services, processes or amenities. They pro-
vide detailed reasons and personal experi-
ences for the same and offer alternative ideas
for implementation. These kinds of sugges-
tions are not only important as a tool for the
companies to review their current offerings,
but they are also a great source of ideas for
new directions.

196



2. Customer to Customer: These suggestions
are provided from customers/users to the
fellow customers/users. Customers share
their experiences in reviews, and provide tips
and recommendations to the other customers.
This is sometimes more than merely the in-
formation whether they like some specific at-
tributes of the products or services.

1.1 Motivation and Contributions

There are several use cases of automated retrieval
and natural language understanding for sugges-
tion mining. Apart from their own experiences,
understanding and knowledge, people depend on
the online community to form their own opinions
and readily look for suggestions and tips from the
other customers. The extracted suggestions and
tips are equivalent to a set of effective guidelines
for the other customers before they make their own
decisions. The fellow users can avail more infor-
mation, and hence the decision taken would be
better. This is often beyond the sense conveyed by
aspect based sentiment analysis (Thet et al., 2010;
Gupta et al., 2015; Gupta and Ekbal, 2014).

Suggestions and feedbacks are also an impor-
tant component of the market survey performed by
the companies to drive innovation, change and im-
provements. This task is a prerequisite to other
nuanced tasks which include classifying the do-
main of the suggestion, identifying the other ar-
guments of the suggestions (finding the entity to-
wards whom the suggestion is directed, identify-
ing the aspects regarding which a suggestion has
been made, finding the word boundaries of the
suggestive expressions), and aggregation of such
suggestions from multiple sources to comprehend
a customer friendly summary.

We summarize the contributions of our pro-
posed work as follows:

• We develop a linguistically motivated hybrid
neural architecture to identify the review sen-
tences that carry an intention of suggestion.

• We employ semi-supervised learning (self-
training) along with a deep learning based su-
pervised classification approach. This gives
us the opportunity to harness the treasure of
huge (unlabeled) data available in the form of
customer reviews. To the best of our knowl-
edge, this is the very first attempt in this di-
rection to handle the target problem.

• Outperforming the current state-of-the-art

customer-to- customer suggestion mining
techniques and setting up a new state-of-the-
art.

2 Related works

The field of suggestion classification and customer
feedback analysis are relatively new in the area
of Natural Language Processing (NLP) and Text
Mining. Our work is most closely related to the
prior research as reported in (Negi and Buitelaar,
2015; Negi et al., 2016). In (Negi and Buite-
laar, 2015) authors defined the annotation guide-
lines for customer-to-customer suggestion mining.
They trained a support vector machine (SVM)
classifier over the features relevant for classifica-
tion in the domains of hotels and electronics re-
views. They used heuristic features, features ex-
tracted from the Part-of-Speech (PoS) tags, se-
quential pattern mining features, sentiment fea-
tures and the features extracted from the depen-
dency relations.
In their subsequent work, (Negi et al., 2016)
demonstrated the improved performance using
Convolutional neural networks (CNN) (Kim,
2014) and Long short term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) based deep
learning architectures to solve this problem. They
experimented with both in-domain and cross-
domain training data, and also compared their per-
formance with a SVM based classifier trained with
the same set of features similar to (Negi and Buite-
laar, 2015).

There are some other existing works for sugges-
tion mining, beyond customer-to-customer sug-
gestions. (Ngo et al., 2017) developed a binary
classification model based on Maximum Entropy
and CNN for filtering suggestion intents in Viet-
namese conversational texts like posts, comments,
reviews, messages chat and spoken texts.

Brun and Hagege (Brun and Hagege, 2013) de-
veloped a feature-based suggestion mining sys-
tem for the domain of product reviews. (Dong
et al., 2013) performed suggestion mining on
tweets of the customers regarding Microsoft Win-
dows’ phone. A model is proposed in (Wicaksono
and Myaeng, 2013) which focused on extracting
advices for the domains of travel using Hidden
Markov Model (HMM) and Conditional Random
Field (CRF). The work as reported in (Gupta et al.,
2017) focused on classifying the customer feed-
back sentences of users into six classes using deep
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learning based models.
Our proposed model differs from these existing

works with respect to the problem addressed and
the model developed. We have presented a very
detailed comparison (in the experiments section)
to the state-of-the-art system as reported in (Negi
and Buitelaar, 2015; Negi et al., 2016).

3 Methodology

In this section at first we discuss the various deep
learning models and then semi-supervised model.

3.1 Problem Definition

Given a multi-sentence review R having N sen-
tences {s1, s2, . . . , sN} the task is to catego-
rize each sentence si into one of the classes
c ∈ C , where C ={“suggestive”, “non-
suggestive }. For a sentence s with a sequence
w1, w2, . . . , wn−1, wn of n words, the associated
suggestion class c can be computed as:

c = argmaxyp(y|s) (1)

where y ∈ C

The following example review sentence, “Tip if
you want a beach chair at the beach or pool, go
there before 9 am or so and put your magazine
or towel on your chair.” is a “suggestion” intent
directed towards a fellow customer. Here the ex-
pression of the intent is explicitly conveyed in the
form of a review sentence with imperative mood1.
The “non-suggestive” sentences instead contain
statements and facts (e.g. (1) “We stayed in the
Westin Grand Berlin in July 2007.”) or expressions
of one’s sentiments (e.g. (2) “But the rooms are
small and not very functional.”). An interesting
thing to note is that the second example has im-
plicit suggestions for the fellow customers as well
as the service provider (hotel owner). The other
visiting customers are implicitly advised against
renting the rooms of the hotel as they are small and
have less utility. Moreover, this review sentence
also consists of an implicit suggestion to the ho-
tel owner to offer larger rooms to their customers,
and also improve the functionalities that they pro-
vide. However in our work, we only deal with the
suggestions which are very explicitly mentioned,
and that too directed specifically to the fellow cus-
tomers.

3.2 Proposed Deep Learning Model

The customer-to-customer suggestion mining task
requires recognizing specific syntactic and seman-
tic constructions represented in texts. It should
be able to capture the constructions representing
imperative moods, and identify the patterns or
phrases which are highly correlated with sugges-
tive sentences in a review. It should also have a
way for deep semantic understanding of text in
order to disambiguate suggestions from the sen-
tences which appear like suggestions on the sur-
face.

We propose a hybrid model consisting of two
deep learning based encoders designed to inte-
grate different views or representations of the re-
view sentences, and a linguistically motivated fea-
ture set. The information from the encoders along
with linguistic knowledge are effectively com-
bined with the help of a multi-layer perception
(MLP) network. This is done to achieve higher ab-
straction necessary for a complex task like identi-
fying the suggestive review sentence. Specifically,
we use two different encoders, namely Convolu-
tional Neural Network (CNN) and attention based
Recurrent Neural Network (RNN). The effective-
ness of CNN and RNN based encoder has been
proven in other NLP tasks (Gupta et al., 2018d;
Maitra et al., 2018; Gupta et al., 2018a,c). The
CNN encoder uses multiple fully-connected over
the convolution layer while the RNN encoder uses
a LSTM layer with the attention (Raffel and Ellis,
2015) followed by multiple fully-connected lay-
ers. An overview of the architecture for suggestion
mining is shown in Figure 1.

3.2.1 Linguistic Features

We use the following set of linguistic features in
our model. We use slightly modified subset of fea-
tures from (Negi and Buitelaar, 2015) and similar
to (Gupta et al., 2018b)

Suggestive keywords : The suggestive key-
words are usually associated with the texts con-
taining actual suggestions. We use the following
small set of suggestive keywords:
advice, suggest, may, suggestion, ask, warn, rec-
ommend, do, advise, request, warning, tip, recom-
mendation, not, should, can, would, will
A binary-valued feature is defined that checks

1Imperative mood is a category or form of a verb which
expresses a request or a command. For example, “Get ready”
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Figure 1: The proposed model architecture for customer suggestion mining

whether the current word is one of the keywords
or not (1-presence, 0-absence).

N-gram features : We extract the most fre-
quent 300 unigrams, 100 bigrams, and 100 tri-
grams from the training set. These are then used
as a bag of n-gram features.

Part-of-Speech (PoS) N-gram features : We
extract the most frequent PoS unigrams, bigrams
and trigrams of size 50. These are then used as a
bag of PoS n-grams features.

Imperative mood features : Most of the sug-
gestions containing sentences have imperative
mood. We try to capture this phenomenon by in-
troducing the features obtained from the depen-
dency trees2. We use the following imperative
mood features:

1. Base verb (VB) at the beginning of sentence
or without nsubj arc: In many imperative sen-
tences, the subject (denoted by nsubj) is ab-
sent, i.e. it implies to be the second person.
Moreover, the clause containing the sugges-
tive expression begins with the base form of
the verb (denoted by VB). Hence, this does
not have any dependency relation with nsubj.
This feature is illustrated in Figure 2.

2. ‘nsubj’ dependency relation features: The
pair of PoS tags of the words connected by
the dependency arc ‘nsubj’ is used as the bag
of PoS feature. We describe the presence of
this feature in Figure 3 and 4.

2We use spaCy dependency parser. For visualization, we
used Stanford dependency parser

Figure 2: Presence of ‘VB’ without nsubj arc

Figure 3: nsubj dependency arc relations. From
this dependency tree the extracted features are
(VBP, PRP).

This set of linguistic features are fed into a multi-
layer perceptron having two hidden layers of size
150 and 25, respectively.

3.2.2 Recurrent and CNN Encoders
The words in the sequence {w1, w2 . . . wn} from a
given review sentence s are mapped to their corre-
sponding word vectors {x1, x2 . . . xn}. The word
embeddings are obtained through the publicly
available3 GloVe word embeddings(Pennington
et al., 2014) of dimension 300 and trained on the
Common Crawl.

The recurrent encoder uses a LSTM network
(hidden size 64) over the embedded sequences and
it then applies an internal attention over the hidden
states.

The LSTM network is able to process the sen-
tence as a sequence, with the ability to capture
long term dependencies. Thus the hidden layers

3https://nlp.stanford.edu/projects/glove/
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Figure 4: nsubj dependency arc relations. Here,
(VB, PRP) and (VBP, PRP) features are active.

can efficiently perform composition over the lo-
cal context, and help to identify patterns which
are found in suggestive sentences. The attention
mechanism then finds salient contexts and aggre-
gates the important ones to build the context vec-
tor. The motivation for using attention stems from
the fact that suggestive expressions can be identi-
fied in a short span of text within the sentence and
the attention can effectively attend to those spe-
cific contexts encoded by LSTM. The Attention
layer is followed by dense layers with 150, and
25 neurons, each having ReLU activations and a
dropout value of 0.2.

The convolutional layer applies 250 one dimen-
sional CNN filters of size 5 over the embeddings.
The global max pooling is applied separately for
the feature map obtained from each filter, and it
helps to identify the presence of the n-gram feature
corresponding to that feature in the sentence. The
following dense layer with 250 neurons (ReLU ac-
tivation and 0.75 dropout) helps to non-linearly
compose multiple such features, thus giving itself
an opportunity to learn a more diverse set of fea-
tures.

3.2.3 Hybrid Model

The extracted linguistic features, the recurrent en-
coder representation and the convolutional en-
coder representation are concatenated (into a fea-
ture set p) and fed to a fully-connected layer
with two neurons, followed by softmax activation.
The softmax layer outputs the probability of the
given review sentence being suggestive or non-
suggestive. The probability that the output class ŷ
is i given the sentence s and parameters θ is com-
puted as:

P (ŷ = i|s, θ) = softmaxi(p
Twi + zi)

=
ep

Twi+zi

∑K
k=1 e

pTwk+zk

(2)

where zk and wk are the bias and weight vector of
the kth labels, p is the concatenated feature set, and
K is the number of total classes (i.e. 2). θ is the

set of all the parameters of the model. The system
predicts the most probable class.

3.3 Semi-supervised Model
Semi-supervised learning makes use of both la-
beled (small) and unlabeled (huge) data for de-
signing a more efficient classifier, as compared
to the traditional supervised learning. We utilize
self-training algorithm (Zhu, 2006), also known
as bootstrapping, which can be flexibly used as a
wrapper over any supervised learning algorithm.
We use our hybrid model for this semi-supervised
learning.

In self-training, we iteratively train a classifier
enhancing each time the original training dataset
with newly labeled instances. At the end of each
iteration, the classifier is made to predict on the
unlabeled dataset and 100 most confidently pre-
dicted instances of each class is added to the train-
ing data, with the predicted labels as the true la-
bels. For self-training, a methodology similar to
early stopping is applied, with a maximum of six
iterations. We stop the iteration when the F1-Score
on the validation data 4 does not improve over the
existing best model in consecutive three iterations,
saving only the best performing model for testing.
For example in Fig. 5, the training terminates after
the 6th iteration, and the model trained in the 3rd
iteration is chosen for the final evaluation. Effect
of adding unlabeled data to training for the elec-
tronics domain is depicted in Figure 6.

Figure 5: Scores on the validation set during self-
training: Hotel domain.

For this semi-supervised setting, the cross-
entropy error is minimized using the Adam Opti-
mizer, and the training is stopped as the validation
loss stops decreasing (early stopping). Because of
the class imbalance (cf. Table 1), the loss function

4A part of the training set was used for validation.
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Figure 6: Scores on the validation set during self-
training: Electronics domain.

weighs the loss for the positive class instances 10
times more than the loss for the negative class in-
stances. All the other configurations are similar to
the supervised setting5.

4 Dataset and Experiments

In this section we present the datasets, experimen-
tal results and the necessary analysis.

4.1 Dataset

We conduct experiments on the dataset created by
(Negi and Buitelaar, 2015)). The dataset com-
prises of the sentences of reviews taken from
two domains, viz. Hotels and Electronics. The
dataset was annotated as ‘suggestive’ and ‘non-
suggestive’.

The hotel reviews in (Negi and Buitelaar, 2015)
are a subset of the TripAdvisor reviews annotated
by (Wachsmuth et al., 2014)), with the sentiment
polarity classes of positive, negative, neutral and
conflicting. The electronics dataset was originally
annotated by (Hu and Liu, 2004)) with the senti-
ment labels, and (Negi and Buitelaar, 2015) ex-
tended it for suggestion mining. The dataset con-
sists of 7534 sentences from the hotel reviews
and 3782 sentences from the reviews of electronic
items. For semi-supervised learning experiments,
we obtain the complete dataset from (Wachsmuth
et al., 2014) for hotels. We segment these reviews
into 21328 sentences in total. For the electron-
ics domain, we use the Amazon reviews obtained
from the electronics segment of (He and McAuley,
2016) as the unlabeled data. The first 50,000 sen-
tences extracted from the reviews were chosen for
the experiments.

5Models are optimized based on the validation set, a part
of the training set

Hotel Electronics
reviews reviews

Class = 1 Suggestive 407 273
Class = 0 Non - Suggestive 7127 3509
Total 7534 3782

Class1 : Class0 1:17.5 1:12.9

Table 1: Dataset statistics (on the sentence level)

Instances of suggestions and tips form a rela-
tively small percentage of the total review sen-
tences, and this is reflected in the class distribution
of the labeled dataset. The number of instances is
not enough for very deep architectures. Statistics
of the datasets are presented in Table 1.

4.2 Results and Analysis

We re-implement the LSTM and CNN architec-
tures proposed in (Negi et al., 2016) to construct
our baselines. We re-implement this state-of-
the-art system with the common training method-
ologies as ours. Detailed evaluation results are
demonstrated in Table 2.

The LSTM is capable of handling long term de-
pendencies and that may be attributed to its bet-
ter performance against CNN for the domain of
electronics where the average sentence length is
relatively longer. The model based on LSTM
achieves the F1 scores of 0.562 and 0.611 for the
hotel and electronics datasets, respectively. CNN
based model also demonstrates comparative per-
formance with F1 scores of 0.598 and 0.600 for
the two domains, respectively. Introducing atten-
tion to the LSTM model was found to be effective
with reasonable performance improvement. Be-
cause of attention the system could attend to spe-
cific regions of the input sentence which had pat-
terns similar to that of suggestive sentences, en-
coded by its query vector. The system with atten-
tion shows the best recall of 76.9% for the hotel
reviews and 69.9% for the electronics reviews, es-
tablishing our claim about its ability. It achieves
the F1 scores of 0.602 and 0.611 for the two do-
mains, respectively.

Among the different architectures, the proposed
hybrid model is found to be the best performing
one with F1 scores of 0.643 and 0.621 for the two
domains, respectively. Each of the encoders pro-
vides a different representation and features of the
input, and the dense layers are able to combine
them in an effective way. We also remove different
encoders-one after other-from the proposed hybrid
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Model Hotel Electronics

Precision Recall F1 Precision Recall F1

CNN 0.560 0.641 0.598 0.586 0.615 0.600
LSTM 0.511 0.624 0.562 0.582 0.644 0.611
LSTM + Attention 0.494 0.769 0.602 0.543 0.699 0.611
Negi and Buitelaar (2015) 0.580 0.512 0.567 0.645 0.621 0.640
Proposed Hybrid 0.593 0.703 0.643 0.587 0.660 0.621
Proposed Hybrid +
Self Training 0.639 0.673 0.656 0.634 0.677 0.655

Table 2: Macro average evaluation results on 5-fold cross validation. Results of CNN and LSTM are
based on the reimplementation of (Negi et al., 2016)

Model Hotel Electronics

Precision Recall F1 Precision Recall F1

Hybrid 0.593 0.703 0.643 0.587 0.660 0.621
Hybrid - CNN encoder 0.585 0.696 0.636 0.542 0.721 0.618
Hybrid - RNN encoder 0.636 0.641 0.638 0.586 0.644 0.614
Hybrid - Linguistic encoder 0.554 0.626 0.588 0.615 0.633 0.624

Table 3: Macro average evaluation on 5-fold cross validation for the ablation study of different compo-
nent models

system to analyze the importance of each. Abla-
tion studies of these models are reported in Table
3. For hotel reviews the order of importance of
feature encoders are: Linguistic encoder >CNN
Encoder >RNN Encoder. For electronics reviews
the importance of model encoders are: RNN En-
coder >CNN Encoder >Linguistic Encoder. Ef-
fectively, different representations of the review
sentences and the corresponding features are in-
deed important for the classification task.

The use of self-training further improves the
precision of the proposed hybrid model because
it conservatively adds high confidence predictions
obtained from the unlabeled data to the training
data in each iteration. Inclusion of the ‘sugges-
tion’ class examples into training helped in reduc-
ing the class imbalance, which leads to the im-
proved recall scores for the positive class. Aug-
mentation of new data also added more lexical
variability for the system to learn. This, in turn,
helps for better classification with the improved
F1 scores of 0.656 and 0.655 for the hotel and
electronics domains, respectively. The self train-
ing runs for a mean of 3.2 (SD = 0.75) iterations
for the hotel domain, and 3.6 iterations (SD =
1.62) for the electronics domain. Thus, the ex-
pected number of unlabeled sentences added are
640 and 720, respectively. Our proposed sys-
tem clearly performs better than the state-of-the-
art model (Negi and Buitelaar, 2015) with the in-
crements of 8.9 and 1.5 F1 score points for the

hotel and electronics domain, respectively. Please
note that the SVM based model was trained with a
diverse and rich feature set. Statistical T-test show
the performance improvement as significant.

5 Error Analysis

In order to understand the behaviors of our pro-
posed model, we perform error analysis-both
quantitatively and qualitatively. For quantitative
analysis we depict the confusion matrix in Figure
7. Our closer analysis reveals that a lot of electron-

Figure 7: Confusion matrix on test set using
Hybrid+Self- training. Here, 1: suggestive and 0:
non-suggestive

ics reviews are slightly longer and more complex
than the hotel reviews, making it slightly harder
to predict despite having slightly more balanced
class distribution. Moreover, the presence of only
273 reviews of class 1 in all (about 218 reviews in
training), is too small for the architectures to ef-
fectively model.

We provide more detailed analysis with the ac-
tual examples. At first we describe the phenom-
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ena where the instances are incorrectly predicted
as suggestions (i.e. false positive cases):

• Many of the false positives are of imperative
mood, but do not contain any suggestion to-
wards any entity or product. For e.g.:
Forget the fact that it will probably take me a
year to figure out all the features this camera
has to offer.

• Sometimes a user shares his/her own experi-
ence(s) but in the form of a second person,
thus confusing the machine to predict as a
suggestive sentence. For e.g.
You book a top floor, you get first floor, you
booked a suite, and got a room...you go out
to your balcony to relax...and someone from
a top floor....,which you reserved, has just spit
on the back of your head.

• Many of the sentences consist of objects in
the second person, but the sentences are not
imperative in mood. Such errors are more
common in the CNN based model, but are
lesser in the proposed hybrid system that
makes use of self-training. For e.g.
If we find some great cheap places we will
share it with you.
“Sentence: very comfortable camera , easy
to use , and the best digital photos you re go-
ing to get at this price”

• LSTM model sometimes incorrectly predicts
those review texts where tokens with VB PoS
tags appear. This happens because the sen-
tence appears to be similar to a suggestive
sentence that also starts from that particular
word having VB PoS tag. For e.g.
You need the storage to hold a decent amount
of shots at 4 megapixel resolution
might be confused with
Hold a decent amount of ....

• Some of the false positives are actually sug-
gestions which appear to be wrongly labeled
in the original dataset. We would definitely
recommend this hotel to our friends.

• Suggestions against a product/service which
are sarcastic in nature have been annotated as
non-suggestive but are difficult for our sys-
tem to differentiate from the usual sugges-
tions.
I recommend this hotel only if you don’t mind
blithely throwing money around, and if you
bring your own towels

We also show here few examples that contribute to

the false negatives:

• When the sentences are very long, and only
a clause of the text belongs to the imperative
mood, it is missed by even the best system.
For e.g. “The battery lasts very long when
playing music, but writing files to the player
drains the battery fast , so you need to have it
plugged into an outlet when sending files. ”

• Sometimes two sentences are clubbed to-
gether into one when the end marker is miss-
ing. In such scenarios, one of the sentences
is suggestive and the other is not. In these
cases the system predicts the sentence as non-
suggestive. For e.g.
“My only suggestion is to get a lens protector
to help protect the shooting lens the lens coat-
ing will wear out after so many clean wipes
and I m getting the those 52 mm adapter and
uv lens filter at lensmateonline.com .”

It becomes more tricky for the machine if
the remaining part of the sentence contains
multiple occurrences of first person pronoun.
For e.g. “You have to press the buttons hard
and frequently I end up pressing enter when I
meant to scroll .”

From qualitative analysis we observe that sys-
tems have learned the ability to identify the sen-
tences with suggestive terms and also the sen-
tences which are imperative in nature. We be-
lieve that many of these errors can be reduced to a
greater extent by increasing the size of the training
data. With sufficient data, systems would be able
to learn to better model the input, extract more rel-
evant features, and be able to reason better about
the differences between the suggestive sentences
and sentences which look like suggestions.

6 Conclusion and Future Work

In this paper, we have proposed a hybrid deep
learning model for the task of suggestion min-
ing by incorporating richer and diverse representa-
tions of the inputs. We have also used self-training
algorithm, which even improved the performance
of the hybrid model, opening up more opportu-
nities for the use of semi-supervised learning for
this task. Experiments on benchmark datasets
show that we obtain superior performance over
the existing state-of-the-art system. In the future,
we would like extend our work to other semi-
supervised learning algorithms.
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Abstract

Age of Acquisition (AoA) of words is an
important psycho-linguistic property that
influences various lexical tasks such as
speed of reading words, naming pictures
etc. In this paper, we study the effec-
tiveness of graph theoretic and lexical fea-
tures derived from dictionary networks in
predicting the Age of Acquisition of En-
glish words. We show that dictionary net-
works contain a lot of information that
can hint at the AoA of words, and the re-
sult promises that there are significant im-
provements over earlier approaches. We
also extended the experiment to predict the
Age of Acquisition of Hindi words and
evaluated using words in Hindi textbooks.

1 Introduction

Age of Acquisition (AoA) (Kuperman et al., 2012)
refers to the age at which a word is typically
learned. For example, ‘penguin’ is generally
learned earlier than ‘albatross’ and hence, ‘pen-
guin’ has a lower age of acquisition value. Age of
acquisition is an important feature for lexical deci-
sion tasks (Gilhooly and Logie, 1982) like speed
of word reading, picture naming, word retrieval
from lexical memory etc. AoA is important for
two reasons. Firstly, word frequency is used as a
feature alongside AoA in psycho-linguistic studies
and is estimated from corpora consisting of mate-
rials meant for adult readers (Gerhand and Barry,
1999). Thus, word frequency typically underesti-
mates the importance of words acquired earlier and
thus, AoA plays an important role in complement-
ing the information provided by word frequency.
Secondly, it is believed that words acquired earlier

∗* denotes equal contribution

have internal representations that can be activated
faster independent of the number of times the word
has been encountered. Despite the importance of
the AoA parameter, the only way to estimate its
value for any word is by surveying human partici-
pants. However, this process is in general tedious,
requires active human participation and is thus lim-
iting. We explore the possibility of an easier alter-
native. For this, we utilize the structure of word
dictionary (Picard et al., 2013) where words are
constructively defined.
Dictionaries provide recursive definitions and

establish a dependency relation between words.
To observe the inherent notion of order in which
words are acquired, we consider a network con-
structed from a dictionary, which is a directed
graph with words as vertices and edges denoting
definitional participation. An edge from vertex A
to vertex B implies that A is used in the definition
of B in the dictionary. Thus, all predecessors of a
vertex must be known for the vertex to be under-
stood by a reader. The inherent idea is that some
words (like “green”) have to be learned via senso-
rimotor experience (Harnad, 1990), hence they are
expected to be involved in loops/cycles in the net-
work, while others can possibly be learned from
constructive definitions composed of other known
words which are probably simpler (Miller et al.,
1990). Picard et al. (2013) extensively studied the
hidden structure of the dictionary and used AoA to
discriminate between different dictionary network
regions successfully. This provides a strong moti-
vation to explore the dictionary network structure
for our problem - to estimate the AoA of words. In
this paper, we build on this to take a step towards a
faster alternative that can approximate AoA value
for any word based on the dictionary network, and
thus overcome the limited availability of data in
addition to alleviating the need for tedious surveys.
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It is important to keep in mind that the AoA
is often highly subjective and can widely vary
among subjects depending on their educational
background, mental capabilities etc. So predicting
AoA is in some way an ill-defined problem with
an inherent noise in the data. Thus the primary
motivation of the paper is to reveal the extent to
which we can successfully predict AoA while re-
stricting our scope to features derived from dic-
tionary networks. It should be noted that align-
ing AoA may need richer cognitive and psycho-
linguistic features that are not contained in the dic-
tionary network.

2 Background

2.1 Structure of Dictionary Network
Massé et al. (2008) developed a formal ground-
work to determine “how word meaning is explic-
itly grounded in real dictionaries” and observed
that meaning cannot be fetched based on dictio-
nary definition recursively; at some point circular-
ity of definitions must be broken by grounding the
meaning of certain words. Massé et al. (2008) pro-
posed a greedy algorithm to obtain a set of words
in the dictionary network from which the rest of
the words in the network can be defined without
any circular dependencies. This set of words is
called grounding kernel. The grounding kernel is
estimated by repeatedly removing the nodes that
do not have out-neighbors until there are no such
nodes in the network. The intuition is that the
nodes which do not have out-neighbors are not
used for defining other words, so these words do
not lead to circularity problem.
Picard et al. (2013) analyzed the full structure

of the dictionary network, and they have found that
the grounding kernel of dictionaries consist of a set
of words, approximately 10% of the size of the en-
tire dictionary, from which all other words can be
defined. Inside the kernel, two sets of words are
identified. One set is called core which includes
the words in the strongly connected components
(SCCs) that act as sources, i.e., all the words in
these SCCs are defined by words in that SCC itself
(in graph theoretical terms the nodes correspond-
ing to such SCCs do not have incoming edges in its
SCC-condensed graph1). The second set is called
satellites which include rest of the SCCs in the
grounding kernel.

1Each strongly connected component of a graph will be
condensed to a single node in its SCC-condensed graph.

Vincent-Lamarre et al. (2016) studied the hierar-
chies of concepts in the concept network and pro-
posed two types of hierarchies - kernel hierarchy
and core hierarchy. These hierarchies are based
on a graph theoretic property called definitional
distance. In kernel hierarchy, the definitional dis-
tance of a word u is defined as,

1. dist(u) = 0, if u ∈ kernel

2. dist(u) = 1 + max{dist(v) : v ∈
predecessors(u)}, otherwise

The words with definitional distance, dist = 0
are the words in the zeroth level of the kernel hier-
archy. All words in the kernel of a dictionary will
be at zeroth level. The words, which can be de-
fined using the words in the zeroth level, are in the
first level of the hierarchy and so on. For the words
in the ith level of the hierarchy, all the words which
define these words should be at any level between
0 and i − 1.
In core hierarchy, the definitional distance of

words are computed with respect to core where
core is a set of strongly connected components.
The core hierarchy is a hierarchy of strongly con-
nected components. The definitional distance of a
word u from core is defined as,

1. dist(u) = 0, if u ∈ core

2. dist(u) = 1 +max{dist(v) : ∃w ∈ SCC(u)
such that v ∈ predecessors(w)}, otherwise

where SCC(u) contains all nodes in the strongly
connected component that contains u.

2.2 Study of Psycho-linguistic Properties
based on Dictionary Network

Vincent-Lamarre et al. (2016) studied the psycho-
linguistic properties such as frequency, concrete-
ness, and age of acquisition of words with re-
spect to the dictionary structure. This study is per-
formed in dictionaries such as Cambridge dictio-
nary, Longman dictionary, Merriam Webster dic-
tionary and WordNet. Frequencies of words are
computed using SUBTLEX (US) corpus; the con-
creteness ratings for 40,000 English word lemmas
given in (Brysbaert et al., 2014) are used for con-
creteness; the age of acquisition ratings for 30,000
English words (Kuperman et al., 2012) are used for
the age of acquisition property. They observed that
the average age of acquisition of words that are part
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of the core is smaller than the average age of acqui-
sition of words that are part of satellites which is
in turn smaller than the average age of acquisition
of words that are not part of core and satellites. A
similar trend is observed for frequency of words.
For concreteness, the average concreteness value
of words in satellites is observed to be smaller than
the average concreteness value of words that are
part of the core, which is in turn smaller than that of
rest of the words. The properties such as frequency
and age of acquisition follow the similar observa-
tion and it is hypothesized that words in the core
are more frequent and acquired earlier compared
to satellites, and words in the rest of the dictionary
are less frequent and acquired later compared to
satellites. This motivates us to test whether the dic-
tionary structure will help in predicting the age of
acquisition of words.

3 Dictionary Network Based Features

Let G = (V, E) be the directed graph constructed
using words in the dictionary D. Each vertex v ∈
V indicates a word and each directed edge (u, v) ∈
E represents that the word u is used to define the
word v in dictionary D. We propose graph-based
features based on dictionary network G to predict
the age of acquisition of each word defined in D.
We use the following basic dictionary structure-

based features which were analyzed by Vincent-
Lamarre et al. (2016) as having patterns related to
AoA.

1. Is core: This is a binary value, which indi-
cates whether the word is part of core or not.
This feature is based on the work by Vincent-
Lamarre et al. (2016) where they show that
the words in the core are learned earlier than
the satellite words, which are in turn learned
earlier than the rest-of-dictionary.

2. Is kernel: This feature indicates whether the
word is part of the kernel or not. This fea-
ture is motivated by the observation that the
words in the kernel are acquired earlier than
the words in the rest-of-dictionary (Vincent-
Lamarre et al., 2016).

3. Definitional distance from kernel and core:
These two features are defined by Vincent-
Lamarre et al. (2016). For both definitional
distances from core and kernel, Vincent-
Lamarre et al. (2016) observed a linear trend

between the definitional distance and the av-
erage age of acquisition of words at each def-
initional distance.

We propose the following features which are de-
rived from the basic dictionary features studied by
Vincent-Lamarre et al. (2016).

1. PageRank: The out-neighbors of a word w
in G are the words which are defined using
w. One would expectw to be acquired before
words that are defined using w. Thus, a word
is acquired early if it is used to define several
words that are acquired early; this leads to a
circularity. In order to resolve this circular-
ity, we use the PageRank (Page et al., 1999)
of words in the transpose graphG′ whose ver-
tices are same as G, but edges are reversed to
capture the importance from out-neighbors in
G.

2. SCC PageRank: The words within the
strongly connected components (SCC) are
closely associated. Because of circular de-
pendencies between words in SCCs, it is hard
to findwhichwords are defined first. The cor-
relation between definitional distance from
core and AoA showed by (Vincent-Lamarre
et al., 2016) claims that if there is an edge
from the condensed node of SCC Sj to the
condensed node of SCC Si in the condensed
graph, the words in Si would be acquired ear-
lier than words in Sj . In order to analyze
the random walk interpretation of this prop-
erty, we consider the importance of the SCC
to which each word is associated as a feature
and it is estimated as the PageRank of the cor-
responding condensed node in the condensed
graph.

3. Within SCC PageRank: This feature com-
putes the importance of a word within the
SCC it belongs to as given by PageRank. We
consider this feature to complement the SCC
PageRank feature.

We propose the following local features to un-
derstand their trends in dictionary network for
AoA prediction task.

1. Word length: The number of characters in
the word is used as a feature. Generally,
at lower ages, shorter words are learned and
longer words tend to be acquired at later ages.
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2. In-degree centrality: The in-degree central-
ity of a word is computed by dividing its in-
degree by maximum possible in-degree. In-
degree of a wordw is ameasure of the number
of other words that are used in the definition
of w. The intuition behind this is that a larger
value suggests that this word may be acquired
later.

3. Out-degree centrality: The out-degree cen-
trality is the ratio of the out-degree of a word
to the maximum possible out-degree. The
out-degree of a word w is a measure of the
number of words that are defined using w.
The intuition is that the larger value should
mean that this word may be acquired earlier.

4. Local clustering coefficient: The local clus-
tering coefficient is the number of edges be-
tween immediate predecessors and succes-
sors divided by the maximum number of pos-
sible edges among them. This feature is used
to study the effect of clustering tendencies on
the AoA of a word.

5. Second in-neighborhood and out-
neighborhood: The number of predecessors
at distance 1 or 2 from a word in the graph
is taken as the second in-neighborhood.
Similarly, second out-neighborhood is the
number of successors at distance 1 or 2 from
a word in the graph. These features are
used to study the higher level significance of
in-degree centrality and out-degree centrality.

4 Experimental Evaluation

4.1 Datasets
We use the age of acquisition data from the Ku-
perman’s (Kuperman et al., 2012) dataset and
MRC psycho-linguistic dataset (Coltheart, 1981).
The Kuperman dataset2 contains AoA values for
31,124 words which are collected using Amazon
Machine Turk. It contains data aggregated by ask-
ing participants to give one value in the range 1 to
25 for each word. The final AoA for a given word
is then computed by taking the average of all the re-
sponses. TheMRC psycho-linguistic dataset3 con-

2Kuperman dataset is downloaded from http://crr.
ugent.be/archives/806

3MRC psycho-linguistic dataset is downloaded from
http://websites.psychology.uwa.edu.au/school/
MRCDatabase/uwa_mrc.htm

tains lexical, morphological and psycho-linguistic
properties of 1,50,837 words out of which the age
of acquisition of 1,903words are available. We use
the age of acquisition ratings from both Kuperman
and MRC datasets for evaluation.
We construct dictionary networks from Cam-

bridge International Dictionary of English (CIDE),
Longman Dictionary of Contemporary English
(LDOCE), Merriam-Webster (MWC) dictionary
and WordNet. We use the first definition of first
sense in these dictionaries to build the correspond-
ing dictionary graph. The stop words in the word
definition are removed. The number of words in
the network that is constructed from all four dic-
tionaries are given in Table 1.

Dictionary No of Words
CIDE 19,614
LDOCE 26,859
MWC 79,979
WordNet 76,792

Table 1: No of words in the network constructed from all four
dictionaries

The graph-based features are extracted from
these dictionary networks for the words that are
common in all dictionaries andAoAdataset. There
are 14,436 common words for Kuperman dataset,
and we obtain 1,495 common words for MRC
dataset.

4.2 Experiment Setup

We propose to use the dictionary network-based
features along with richer cognitive and psycho-
linguistic features for the prediction of age of ac-
quisition of words. Hence, we use dictionary
network-based features along with the lexical fea-
tures and semantic features proposed in Paetzold
and Specia (2016a) to predict the age of acquisi-
tion of words. The lexical features include

• Number of syllables

• Word’s frequency in the Brown (Francis and
Kucera, 1979), SUBTLEX (Brysbaert and
New, 2009), SubIMDB (Paetzold and Spe-
cia, 2016b), Wikipedia, Simple Wikipedia
(Kauchak, 2013) corpora

• Number of senses, synonyms, hypernyms,
and hyponyms for word in WordNet
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• Minimum, maximum and average distance
between the word’s senses in WordNet and
the root sense

• Number of images found for word in the
Getty Image database4

The semantic features are the word embedded vec-
tors (Mikolov et al., 2013) of words. The word em-
bedded vectors capture the semantic information
of words.
We train a ridge regression model to predict the

AoAofwords and train themodel using lexical, se-
mantic and dictionary features. We train the model
using different sets of features,

1. Lexical features (Paetzold and Specia, 2016a)

2. Lexical and Semantic features (Paetzold and
Specia, 2016a)

3. Lexical, Semantic and Dictionary network
features based on CIDE dictionary

4. Lexical, Semantic and Dictionary network
features based on LDOCE dictionary

5. Lexical, Semantic and Dictionary network
features based on MWC dictionary

6. Lexical, Semantic and Dictionary network
features based on WordNet

We use the lexical features and semantic features
proposed in Paetzold and Specia (2016a) as a base-
line to predict the age of acquisition of words. We
compare the baseline model with the model that
uses lexical features, semantic features, and dictio-
nary features. We used the word embedded vectors
trained using Google news dataset5.
The model is evaluated by analyzing the Spear-

man’s (ρ) (Spearman, 1906), Pearson’s (r) (Pear-
son, 1920) and Kendall’s tau (Sen, 1968) corre-
lation coefficients between the actual AoA rank-
ing and the predicted AoA ranking of words in test
data. The Spearman’s correlation is a measure of
rank correlation and it assesses the monotonic rela-
tionships between variables. The Pearson’s corre-
lation measures the linear correlation between two
variables. The Kendall’s tau coefficient measures
the association of variables based on pairwise or-
dering.

4http://developers.gettyimages.com/
5https://code.google.com/archive/p/

word2vec/

4.3 Evaluation
We analyze the correlation coefficients on a 10-
fold train-test splits and the average Spearman’s
(ρ), Pearson’s (r), Kendall’s tau correlations of
test data are obtained. We compare the models
which use dictionary network-based features with
the baselines which do not use dictionary network-
based features. The correlation coefficients of
the predicted value with respect to the Kuperman
dataset for all feature sets are listed in Table 2. All
correlation coefficients are statistically significant
with p < 0.05.

Features Avg
Spearman

Avg
Pearson

Avg
Kendall’s tau

Lexical Features
(Paetzold and Specia,
2016a)

0.4837 0.5049 0.3353

Lexical + Semantic
Features (Paetzold and
Specia, 2016a)

0.7793 0.7835 0.5856

Lexical + Semantic +
CIDE 0.7926∗ 0.8004∗ 0.5986∗

Lexical + Semantic +
LDOCE 0.7910∗ 0.7990∗ 0.5970∗

Lexical + Semantic +
MWC 0.7837∗ 0.7887∗ 0.5899∗

Lexical + Semantic +
WordNet 0.7878∗ 0.7924∗ 0.5941∗

Table 2: Correlation Coefficients between the predicted AoA
of words and the AoA based on Kuperman dataset; * indicates
improvements are statistically significant with p < 0.05

We can observe that the model which uses dic-
tionary network features result in better correla-
tions compared to both baselines. The improve-
ments in correlations are statistically significant
with p < 0.05.
The correlation coefficients between the pre-

dicted AoA of words and the age of acquisition
values in MRC psycho-linguistic dataset using all
sets of features are given in Table 3. The corre-
lation coefficients obtained when trained with all
features are consistently performing better in all
four dictionaries compared to baseline models.
Some words which are predicted as acquired

earlier compared to its actual AoA using lexical
and semantic (Paetzold and Specia, 2016a) fea-
tures have their AoA predicted better when dic-
tionary features are used. These words are ob-
served as non-kernel words in the dictionary net-
work. We also observed that the AoA prediction
error is very less for words with a lower age of ac-
quisition such as ‘give’, ‘work’, ‘show’, ‘day’ etc.
when dictionary features are used compared to the
baseline features. The inclusion of lexical and se-
mantic features improved the prediction value for
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Features Avg
Spearman

Avg
Pearson

Avg
Kendall’s tau

Lexical Features
(Paetzold and Specia,
2016a)

0.5632 0.5514 0.3993

Lexical + Semantic
Features (Paetzold and
Specia, 2016a)

0.7576 0.7700 0.5718

Lexical + Semantic +
CIDE 0.7867∗ 0.7957∗ 0.6008∗

Lexical + Semantic +
LDOCE 0.7880∗ 0.7956∗ 0.6005∗

Lexical + Semantic +
MWC 0.7609 0.7713 0.5746

Lexical + Semantic +
WordNet 0.7703∗ 0.7820∗ 0.5830∗

Table 3: Correlation Coefficients between the predicted AoA
of words and the AoA based on MRC psycho-linguistic
dataset; * indicates improvements are statistically significant
with p < 0.05

words which are i) general words like ‘something’,
‘everyday’, ii) colloquial words like ‘grandma’,
‘mama’, ‘papa’. This is because of the infrequent
use of such words in dictionary definitions.

We also study the prediction of other psycho-
linguistic properties using dictionary network-
based features. We experimented with the psycho-
linguistic properties such as familiarity and imaga-
bility (Gilhooly and Logie, 1980). The familiarity
of a word is the frequency with which a word is
seen, heard and used. The imagability of a word
is the intensity with which a word arouses im-
ages. We use the familiarity and imagability rat-
ings presented in MRC psycho-linguistic dataset
(Coltheart, 1981). This dataset contains familiarity
ratings for 3,814 words and imagability ratings for
3,733 words. We trained a ridge regression model
with the target value as the familiarity rating for
predicting the familiarity of a word and the imaga-
bility rating is used as the target value for predict-
ing the imagability of a word.

The same set of features are used for comparison
and observed that both familiarity and imagability
ratings are correlating better when dictionary net-
work based features are used. All correlation coef-
ficients are statistically significant with p < 0.05.
The improvements in correlations are also statis-
tically significant with p < 0.05. The dictionary
features based on CIDE and LDOCE dictionaries
are performing better than other two dictionaries.

Features Avg
Spearman

Avg
Pearson

Avg
Kendall’s tau

Lexical Features
(Paetzold and Specia,
2016a)

0.5673 0.4956 0.4004

Lexical + Semantic
Features (Paetzold and
Specia, 2016a)

0.7670 0.7358 0.5707

Lexical + Semantic +
CIDE 0.7987∗ 0.7672∗ 0.6026∗

Lexical + Semantic +
LDOCE 0.8042∗ 0.7654∗ 0.6068∗

Lexical + Semantic +
MWC 0.7741∗ 0.7467∗ 0.5783∗

Lexical + Semantic +
WordNet 0.7785∗ 0.7572∗ 0.5836∗

Table 4: Correlation Coefficients between the predicted fa-
miliarity of words and the familiarity rating based on MRC
psycho-linguistic dataset; * indicates improvements are sta-
tistically significant with p < 0.05

Features Avg
Spearman

Avg
Pearson

Avg
Kendall’s tau

Lexical Features
(Paetzold and Specia,
2016a)

0.4734 0.4681 0.3252

Lexical +Semantic
Features (Paetzold and
Specia, 2016a)

0.7829 0.7708 0.5857

Lexical +Semantic +
CIDE 0.7915∗ 0.7807∗ 0.5939∗

Lexical +Semantic +
LDOCE 0.7912∗ 0.7797∗ 0.5936∗

Lexical +Semantic +
MWC 0.7860∗ 0.7757∗ 0.5877∗

Lexical +Semantic +
WordNet 0.7890∗ 0.7785∗ 0.5914∗

Table 5: Correlation Coefficients between the predicted
imagability of words and the imagability rating based on
MRC psycho-linguistic dataset; * indicates improvements are
statistically significant with p < 0.05

4.4 Experiment using School Textbooks

In this experiment, our task is to predict the class
or grade6 at which a word can be introduced in the
school curriculum. We used the words present in
Indian English textbooks from standard 1 to stan-
dard 10 which are published by National Council
of Educational Research and Training (NCERT)7.
If a word is first mentioned in ith standard where
1 ≤ i ≤ 10, then the target value of that word is i.
In this way, we labeled the target value of words
that are used in standard 1 to 10 English textbooks.
We extracted all words from these textbooks and
out of whichwe used the 5,496words that are com-
mon in all four dictionaries.
For this task, we prefer regression over classifi-

cation as the target values are ordered. We trained
6we use the words ‘class’, ‘grade’, or ‘standard’ inter-

changeably.
7http://www.ncert.nic.in/ncerts/textbook/

textbook.htm
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a ridge regression model to predict the target value
and evaluated the model using mean squared er-
ror over 10-fold train-test splits. The model is
trained using all sets of features and the results are
given in Table 6. The mean squared error is high-
est when trained using only lexical features and
it is decreased when lexical and semantic features
are used. The mean squared error is even reduced
when dictionary network-based features are used
along with lexical and semantic features. The er-
ror is minimum when dictionary network features
from LDOCE dictionary are used. The reduction
in mean squared error is statistically significant
with p < 0.05when dictionary network-based fea-
tures from CIDE, LDOCE andWordNet dictionar-
ies are used and the deduction is statistically signif-
icant with p < 0.01 when MWC dictionary based
features are used.

Features Mean Squared Error
Lexical Features (Paetzold
and Specia, 2016a) 0.8039

Lexical + Semantic Features
(Paetzold and Specia, 2016a) 0.6621

Lexical + Semantic + CIDE 0.6326∗

Lexical + Semantic +
LDOCE 0.6289∗

Lexical + Semantic + MWC 0.6595+

Lexical + Semantic +
WordNet 0.6553∗

Table 6: AverageMean squared error when predicted the stan-
dard at which a word is first introduced to school students
in NCERT English textbooks; * indicates deduction in mean
squared error is statistically significant with p < 0.05 and +
indicates deduction is statistically significant with p < 0.01

We also extended our experiment for Hindi
words by using Hindi textbooks published by
NCERT. Similar to the experiment using English
Words, here the task is to predict the class or stan-
dard at which a Hindi word can be introduced in
the school curriculum. We used the gloss of Hindi
words in Hindi WordNet (Bhattacharyya, 2017) to
construct the dictionary network using which the
network based features are extracted. For lexical
features, we used the frequency of words based
on Hindi Corpus8 published by Center for Indian
Language Technology, IIT Bombay. The Hindi
WordNet is used for other lexical features based
on WordNet. We used Hindi Wikipedia9 dump
to train the embedded vectors of Hindi words.
We used these features to train a ridge regression
model to predict the standard at which a Hindi

8http://www.cfilt.iitb.ac.in/Downloads.html
9https://hi.wikipedia.org/

word can be introduced. We extracted words from
NCERT Hindi textbooks from standard 1 to 10
and all features are obtained for 3,860 words. The
model is evaluated using mean squared error over
10-fold train-test splits. The averagemean squared
error obtained when trained using i) only lexical
features, ii) lexical and semantic features, iii) lex-
ical, semantic and dictionary network features are
given in Table 7. We can observe that the addi-

Features Mean Squared Error
Lexical Features (Paetzold
and Specia, 2016a) 0.8708

Lexical + Semantic Features
(Paetzold and Specia, 2016a) 0.8056

Lexical + Semantic +
Dictionary 0.7674∗

Table 7: AverageMean squared error when predicted the stan-
dard at which a word is first introduced to school students
in NCERT Hindi textbooks; * indicates deduction in mean
squared error is statistically significant with p < 0.05

tion of dictionary network features improves the
prediction compared to lexical and semantic fea-
tures. This experiment also signifies the impact of
the proposed model in predicting the age of acqui-
sition of Hindi words for which an AoA dataset is
not available.

Class Words

1 साथ (saath), काम (kaam), याद (yaad), फूल (phuul),
जानवर (jaanvar)

2 आराम (aaram), दौरान (dauran), घास (ghas), असर
(asar), पुȢलस (pulice)

3 देखभाल (dekhbhaal), मुख (mukh), झलक (jhalak), वार
(vaar)

4 ȟदमाग (dimaag), Ŗने (train), जीव (jeev), उपहार
(upahaar), खैर (khair)

5 पकवान (pakvaan), नौकर (naukar), बरतन (bartan),
नमकɏन (namkeen), मांग (maang)

6 जूट (juut), ढोलक (dholak), अȠधगम (adhigam),आंगन
(aangan),आǶासन (aaswaasan)

7 गजăन (garjan), खĒग (khadag), जुġम (julm), ȟवकणă
(vikarn), सूयăदेव (sooryadev)

8 Šेरक (prerak),आĕमसĞमान (aatmasamman), समाȟहत
(samaahit), ŠȠतमान (praratimaan)

9 अवमूġयन (avamuulyan), वैĤणव (vaishnav), जागीरदार
(jaageeradhaar), अĘयाĕम (adhyaathm)

10 पाǟपुĥतक (paathyapustak), पूँजीवाद (punjeevaad),
मूȸत�कार (muurtikaar), ȟवǯाधर (vidhyaadhar)

Table 8: Examples of Hindi words predicted for
Class/Standard 1 to 10

In order to qualitatively analyze the results, the
predicted value of words is rounded when trained
using all features. The class at which a word can be
introduced is correctly predicted when the rounded
predicted value is the same as the actual value as-
signed to theword. Some examples of Hindi words
with the class/standard are correctly predicted are

212



given in Table 8.

5 Discussion

Vajjala and Meurers (2014) proposed psycho-
linguistic features such as the age of acquisition,
familiarity, imagability and concreteness for pre-
dicting the reading level of a text and it is used
for assessing the relative reading level of sentence
pairs for text simplification. Our experiments sug-
gest that the dictionary network-based features can
be used as lexical features for predicting the read-
ing level of a text.
In our experiments, the dictionary network-

based features are performing better when ex-
tracted from Cambridge (CIDE) and Longman
(LDOCE) dictionaries compared toMerriamWeb-
ster (MWC) and WordNet dictionaries. The moti-
vation of proposing dictionary network-based fea-
tures for predicting age of acquisition is the obser-
vation by Vincent-Lamarre et al. (2016) that the
average age of acquisition of words in the core
is smaller than the average age of acquisition of
words in the satellites which is in turn smaller than
the average age of acquisition of words in the rest
of the dictionaries. In Figure 1, the average age

Figure 1: Average age of acquisition of words in Core, Satel-
lites and Rest of the words in all four dictionaries

of acquisition values of words in core, satellites
and the rest of the words are given for all four dic-
tionaries. We can observe that the average AoA
values are increasing from core to satellites to rest
of the words in all four dictionaries. The average
AoA of words in the kernel is the average of the
AoA of words in core and satellites. From Figure
1, it is clear that the average AoA of kernel words
will be smaller than the rest of the words. We
can observe that the differences between the av-
erage AoA value of core words and the rest of the

words are small in MWC and WordNet dictionar-
ies, whereas the differences are large in CIDE and
LDOCE dictionaries. This may be the reason that
the CIDE and LDOCE dictionaries are performing
better than MWC and WordNet dictionaries.
Concreteness (Brysbaert and New, 2009) is an-

other psycho-linguistic property which is widely
used along with age of acquisition for reading level
prediction, text simplification etc. Concreteness is
the extent to which the object that the word can be
experienced by senses. The proposed dictionary
network features are based on the dictionary struc-
ture where core words are defined before satellite
words which are in turn defined before the rest of
the words in the dictionary. Vincent-Lamarre et al.
(2016) observed that the words present in the satel-
lites are more concrete than the words present in
the core. Since concreteness does not follow the
progression from core to satellite and then to the
rest of the words, which is central to our hypothe-
sis, we did not use dictionary features to estimate
concreteness.

6 Conclusion

We study the effectiveness of graph-theoretic fea-
tures derived from dictionary networks in predict-
ing the age of acquisition of words and the re-
sult shows significant improvements over earlier
approaches that relate dictionary features to AoA.
This work is a step towards understanding the dif-
ficult cognitive task of understanding how we ac-
quire words. We also study the usefulness of
dictionary network-based features for predicting
other psycho-linguistic properties such as familiar-
ity and imagability and the results are promising.
To the best of our knowledge, the psycho-

linguistic study on Hindi has not been done before.
Our experiment on Hindi words signifies the im-
pact of the proposed model in predicting the age
of acquisition of Hindi words.
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Abstract

Age of Acquisition (AoA) of words is an
important psycho-linguistic property that
influences various lexical tasks such as
speed of reading words, naming pictures
etc. In this paper, we study the effec-
tiveness of graph theoretic and lexical fea-
tures derived from dictionary networks in
predicting the Age of Acquisition of En-
glish words. We show that dictionary net-
works contain a lot of information that
can hint at the AoA of words, and the re-
sult promises that there are significant im-
provements over earlier approaches. We
also extended the experiment to predict the
Age of Acquisition of Hindi words and
evaluated using words in Hindi textbooks.

1 Introduction

Age of Acquisition (AoA) (Kuperman et al., 2012)
refers to the age at which a word is typically
learned. For example, ‘penguin’ is generally
learned earlier than ‘albatross’ and hence, ‘pen-
guin’ has a lower age of acquisition value. Age of
acquisition is an important feature for lexical deci-
sion tasks (Gilhooly and Logie, 1982) like speed
of word reading, picture naming, word retrieval
from lexical memory etc. AoA is important for
two reasons. Firstly, word frequency is used as a
feature alongside AoA in psycho-linguistic studies
and is estimated from corpora consisting of mate-
rials meant for adult readers (Gerhand and Barry,
1999). Thus, word frequency typically underesti-
mates the importance of words acquired earlier and
thus, AoA plays an important role in complement-
ing the information provided by word frequency.
Secondly, it is believed that words acquired earlier

∗* denotes equal contribution

have internal representations that can be activated
faster independent of the number of times the word
has been encountered. Despite the importance of
the AoA parameter, the only way to estimate its
value for any word is by surveying human partici-
pants. However, this process is in general tedious,
requires active human participation and is thus lim-
iting. We explore the possibility of an easier alter-
native. For this, we utilize the structure of word
dictionary (Picard et al., 2013) where words are
constructively defined.
Dictionaries provide recursive definitions and

establish a dependency relation between words.
To observe the inherent notion of order in which
words are acquired, we consider a network con-
structed from a dictionary, which is a directed
graph with words as vertices and edges denoting
definitional participation. An edge from vertex A
to vertex B implies that A is used in the definition
of B in the dictionary. Thus, all predecessors of a
vertex must be known for the vertex to be under-
stood by a reader. The inherent idea is that some
words (like “green”) have to be learned via senso-
rimotor experience (Harnad, 1990), hence they are
expected to be involved in loops/cycles in the net-
work, while others can possibly be learned from
constructive definitions composed of other known
words which are probably simpler (Miller et al.,
1990). Picard et al. (2013) extensively studied the
hidden structure of the dictionary and used AoA to
discriminate between different dictionary network
regions successfully. This provides a strong moti-
vation to explore the dictionary network structure
for our problem - to estimate the AoA of words. In
this paper, we build on this to take a step towards a
faster alternative that can approximate AoA value
for any word based on the dictionary network, and
thus overcome the limited availability of data in
addition to alleviating the need for tedious surveys.
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It is important to keep in mind that the AoA
is often highly subjective and can widely vary
among subjects depending on their educational
background, mental capabilities etc. So predicting
AoA is in some way an ill-defined problem with
an inherent noise in the data. Thus the primary
motivation of the paper is to reveal the extent to
which we can successfully predict AoA while re-
stricting our scope to features derived from dic-
tionary networks. It should be noted that align-
ing AoA may need richer cognitive and psycho-
linguistic features that are not contained in the dic-
tionary network.

2 Background

2.1 Structure of Dictionary Network
Massé et al. (2008) developed a formal ground-
work to determine “how word meaning is explic-
itly grounded in real dictionaries” and observed
that meaning cannot be fetched based on dictio-
nary definition recursively; at some point circular-
ity of definitions must be broken by grounding the
meaning of certain words. Massé et al. (2008) pro-
posed a greedy algorithm to obtain a set of words
in the dictionary network from which the rest of
the words in the network can be defined without
any circular dependencies. This set of words is
called grounding kernel. The grounding kernel is
estimated by repeatedly removing the nodes that
do not have out-neighbors until there are no such
nodes in the network. The intuition is that the
nodes which do not have out-neighbors are not
used for defining other words, so these words do
not lead to circularity problem.
Picard et al. (2013) analyzed the full structure

of the dictionary network, and they have found that
the grounding kernel of dictionaries consist of a set
of words, approximately 10% of the size of the en-
tire dictionary, from which all other words can be
defined. Inside the kernel, two sets of words are
identified. One set is called core which includes
the words in the strongly connected components
(SCCs) that act as sources, i.e., all the words in
these SCCs are defined by words in that SCC itself
(in graph theoretical terms the nodes correspond-
ing to such SCCs do not have incoming edges in its
SCC-condensed graph1). The second set is called
satellites which include rest of the SCCs in the
grounding kernel.

1Each strongly connected component of a graph will be
condensed to a single node in its SCC-condensed graph.

Vincent-Lamarre et al. (2016) studied the hierar-
chies of concepts in the concept network and pro-
posed two types of hierarchies - kernel hierarchy
and core hierarchy. These hierarchies are based
on a graph theoretic property called definitional
distance. In kernel hierarchy, the definitional dis-
tance of a word u is defined as,

1. dist(u) = 0, if u ∈ kernel

2. dist(u) = 1 + max{dist(v) : v ∈
predecessors(u)}, otherwise

The words with definitional distance, dist = 0
are the words in the zeroth level of the kernel hier-
archy. All words in the kernel of a dictionary will
be at zeroth level. The words, which can be de-
fined using the words in the zeroth level, are in the
first level of the hierarchy and so on. For the words
in the ith level of the hierarchy, all the words which
define these words should be at any level between
0 and i − 1.
In core hierarchy, the definitional distance of

words are computed with respect to core where
core is a set of strongly connected components.
The core hierarchy is a hierarchy of strongly con-
nected components. The definitional distance of a
word u from core is defined as,

1. dist(u) = 0, if u ∈ core

2. dist(u) = 1 +max{dist(v) : ∃w ∈ SCC(u)
such that v ∈ predecessors(w)}, otherwise

where SCC(u) contains all nodes in the strongly
connected component that contains u.

2.2 Study of Psycho-linguistic Properties
based on Dictionary Network

Vincent-Lamarre et al. (2016) studied the psycho-
linguistic properties such as frequency, concrete-
ness, and age of acquisition of words with re-
spect to the dictionary structure. This study is per-
formed in dictionaries such as Cambridge dictio-
nary, Longman dictionary, Merriam Webster dic-
tionary and WordNet. Frequencies of words are
computed using SUBTLEX (US) corpus; the con-
creteness ratings for 40,000 English word lemmas
given in (Brysbaert et al., 2014) are used for con-
creteness; the age of acquisition ratings for 30,000
English words (Kuperman et al., 2012) are used for
the age of acquisition property. They observed that
the average age of acquisition of words that are part
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of the core is smaller than the average age of acqui-
sition of words that are part of satellites which is
in turn smaller than the average age of acquisition
of words that are not part of core and satellites. A
similar trend is observed for frequency of words.
For concreteness, the average concreteness value
of words in satellites is observed to be smaller than
the average concreteness value of words that are
part of the core, which is in turn smaller than that of
rest of the words. The properties such as frequency
and age of acquisition follow the similar observa-
tion and it is hypothesized that words in the core
are more frequent and acquired earlier compared
to satellites, and words in the rest of the dictionary
are less frequent and acquired later compared to
satellites. This motivates us to test whether the dic-
tionary structure will help in predicting the age of
acquisition of words.

3 Dictionary Network Based Features

Let G = (V, E) be the directed graph constructed
using words in the dictionary D. Each vertex v ∈
V indicates a word and each directed edge (u, v) ∈
E represents that the word u is used to define the
word v in dictionary D. We propose graph-based
features based on dictionary network G to predict
the age of acquisition of each word defined in D.
We use the following basic dictionary structure-

based features which were analyzed by Vincent-
Lamarre et al. (2016) as having patterns related to
AoA.

1. Is core: This is a binary value, which indi-
cates whether the word is part of core or not.
This feature is based on the work by Vincent-
Lamarre et al. (2016) where they show that
the words in the core are learned earlier than
the satellite words, which are in turn learned
earlier than the rest-of-dictionary.

2. Is kernel: This feature indicates whether the
word is part of the kernel or not. This fea-
ture is motivated by the observation that the
words in the kernel are acquired earlier than
the words in the rest-of-dictionary (Vincent-
Lamarre et al., 2016).

3. Definitional distance from kernel and core:
These two features are defined by Vincent-
Lamarre et al. (2016). For both definitional
distances from core and kernel, Vincent-
Lamarre et al. (2016) observed a linear trend

between the definitional distance and the av-
erage age of acquisition of words at each def-
initional distance.

We propose the following features which are de-
rived from the basic dictionary features studied by
Vincent-Lamarre et al. (2016).

1. PageRank: The out-neighbors of a word w
in G are the words which are defined using
w. One would expectw to be acquired before
words that are defined using w. Thus, a word
is acquired early if it is used to define several
words that are acquired early; this leads to a
circularity. In order to resolve this circular-
ity, we use the PageRank (Page et al., 1999)
of words in the transpose graphG′ whose ver-
tices are same as G, but edges are reversed to
capture the importance from out-neighbors in
G.

2. SCC PageRank: The words within the
strongly connected components (SCC) are
closely associated. Because of circular de-
pendencies between words in SCCs, it is hard
to findwhichwords are defined first. The cor-
relation between definitional distance from
core and AoA showed by (Vincent-Lamarre
et al., 2016) claims that if there is an edge
from the condensed node of SCC Sj to the
condensed node of SCC Si in the condensed
graph, the words in Si would be acquired ear-
lier than words in Sj . In order to analyze
the random walk interpretation of this prop-
erty, we consider the importance of the SCC
to which each word is associated as a feature
and it is estimated as the PageRank of the cor-
responding condensed node in the condensed
graph.

3. Within SCC PageRank: This feature com-
putes the importance of a word within the
SCC it belongs to as given by PageRank. We
consider this feature to complement the SCC
PageRank feature.

We propose the following local features to un-
derstand their trends in dictionary network for
AoA prediction task.

1. Word length: The number of characters in
the word is used as a feature. Generally,
at lower ages, shorter words are learned and
longer words tend to be acquired at later ages.
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2. In-degree centrality: The in-degree central-
ity of a word is computed by dividing its in-
degree by maximum possible in-degree. In-
degree of a wordw is ameasure of the number
of other words that are used in the definition
of w. The intuition behind this is that a larger
value suggests that this word may be acquired
later.

3. Out-degree centrality: The out-degree cen-
trality is the ratio of the out-degree of a word
to the maximum possible out-degree. The
out-degree of a word w is a measure of the
number of words that are defined using w.
The intuition is that the larger value should
mean that this word may be acquired earlier.

4. Local clustering coefficient: The local clus-
tering coefficient is the number of edges be-
tween immediate predecessors and succes-
sors divided by the maximum number of pos-
sible edges among them. This feature is used
to study the effect of clustering tendencies on
the AoA of a word.

5. Second in-neighborhood and out-
neighborhood: The number of predecessors
at distance 1 or 2 from a word in the graph
is taken as the second in-neighborhood.
Similarly, second out-neighborhood is the
number of successors at distance 1 or 2 from
a word in the graph. These features are
used to study the higher level significance of
in-degree centrality and out-degree centrality.

4 Experimental Evaluation

4.1 Datasets
We use the age of acquisition data from the Ku-
perman’s (Kuperman et al., 2012) dataset and
MRC psycho-linguistic dataset (Coltheart, 1981).
The Kuperman dataset2 contains AoA values for
31,124 words which are collected using Amazon
Machine Turk. It contains data aggregated by ask-
ing participants to give one value in the range 1 to
25 for each word. The final AoA for a given word
is then computed by taking the average of all the re-
sponses. TheMRC psycho-linguistic dataset3 con-

2Kuperman dataset is downloaded from http://crr.
ugent.be/archives/806

3MRC psycho-linguistic dataset is downloaded from
http://websites.psychology.uwa.edu.au/school/
MRCDatabase/uwa_mrc.htm

tains lexical, morphological and psycho-linguistic
properties of 1,50,837 words out of which the age
of acquisition of 1,903words are available. We use
the age of acquisition ratings from both Kuperman
and MRC datasets for evaluation.
We construct dictionary networks from Cam-

bridge International Dictionary of English (CIDE),
Longman Dictionary of Contemporary English
(LDOCE), Merriam-Webster (MWC) dictionary
and WordNet. We use the first definition of first
sense in these dictionaries to build the correspond-
ing dictionary graph. The stop words in the word
definition are removed. The number of words in
the network that is constructed from all four dic-
tionaries are given in Table 1.

Dictionary No of Words
CIDE 19,614
LDOCE 26,859
MWC 79,979
WordNet 76,792

Table 1: No of words in the network constructed from all four
dictionaries

The graph-based features are extracted from
these dictionary networks for the words that are
common in all dictionaries andAoAdataset. There
are 14,436 common words for Kuperman dataset,
and we obtain 1,495 common words for MRC
dataset.

4.2 Experiment Setup

We propose to use the dictionary network-based
features along with richer cognitive and psycho-
linguistic features for the prediction of age of ac-
quisition of words. Hence, we use dictionary
network-based features along with the lexical fea-
tures and semantic features proposed in Paetzold
and Specia (2016a) to predict the age of acquisi-
tion of words. The lexical features include

• Number of syllables

• Word’s frequency in the Brown (Francis and
Kucera, 1979), SUBTLEX (Brysbaert and
New, 2009), SubIMDB (Paetzold and Spe-
cia, 2016b), Wikipedia, Simple Wikipedia
(Kauchak, 2013) corpora

• Number of senses, synonyms, hypernyms,
and hyponyms for word in WordNet
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• Minimum, maximum and average distance
between the word’s senses in WordNet and
the root sense

• Number of images found for word in the
Getty Image database4

The semantic features are the word embedded vec-
tors (Mikolov et al., 2013) of words. The word em-
bedded vectors capture the semantic information
of words.
We train a ridge regression model to predict the

AoAofwords and train themodel using lexical, se-
mantic and dictionary features. We train the model
using different sets of features,

1. Lexical features (Paetzold and Specia, 2016a)

2. Lexical and Semantic features (Paetzold and
Specia, 2016a)

3. Lexical, Semantic and Dictionary network
features based on CIDE dictionary

4. Lexical, Semantic and Dictionary network
features based on LDOCE dictionary

5. Lexical, Semantic and Dictionary network
features based on MWC dictionary

6. Lexical, Semantic and Dictionary network
features based on WordNet

We use the lexical features and semantic features
proposed in Paetzold and Specia (2016a) as a base-
line to predict the age of acquisition of words. We
compare the baseline model with the model that
uses lexical features, semantic features, and dictio-
nary features. We used the word embedded vectors
trained using Google news dataset5.
The model is evaluated by analyzing the Spear-

man’s (ρ) (Spearman, 1906), Pearson’s (r) (Pear-
son, 1920) and Kendall’s tau (Sen, 1968) corre-
lation coefficients between the actual AoA rank-
ing and the predicted AoA ranking of words in test
data. The Spearman’s correlation is a measure of
rank correlation and it assesses the monotonic rela-
tionships between variables. The Pearson’s corre-
lation measures the linear correlation between two
variables. The Kendall’s tau coefficient measures
the association of variables based on pairwise or-
dering.

4http://developers.gettyimages.com/
5https://code.google.com/archive/p/

word2vec/

4.3 Evaluation
We analyze the correlation coefficients on a 10-
fold train-test splits and the average Spearman’s
(ρ), Pearson’s (r), Kendall’s tau correlations of
test data are obtained. We compare the models
which use dictionary network-based features with
the baselines which do not use dictionary network-
based features. The correlation coefficients of
the predicted value with respect to the Kuperman
dataset for all feature sets are listed in Table 2. All
correlation coefficients are statistically significant
with p < 0.05.

Features Avg
Spearman

Avg
Pearson

Avg
Kendall’s tau

Lexical Features
(Paetzold and Specia,
2016a)

0.4837 0.5049 0.3353

Lexical + Semantic
Features (Paetzold and
Specia, 2016a)

0.7793 0.7835 0.5856

Lexical + Semantic +
CIDE 0.7926∗ 0.8004∗ 0.5986∗

Lexical + Semantic +
LDOCE 0.7910∗ 0.7990∗ 0.5970∗

Lexical + Semantic +
MWC 0.7837∗ 0.7887∗ 0.5899∗

Lexical + Semantic +
WordNet 0.7878∗ 0.7924∗ 0.5941∗

Table 2: Correlation Coefficients between the predicted AoA
of words and the AoA based on Kuperman dataset; * indicates
improvements are statistically significant with p < 0.05

We can observe that the model which uses dic-
tionary network features result in better correla-
tions compared to both baselines. The improve-
ments in correlations are statistically significant
with p < 0.05.
The correlation coefficients between the pre-

dicted AoA of words and the age of acquisition
values in MRC psycho-linguistic dataset using all
sets of features are given in Table 3. The corre-
lation coefficients obtained when trained with all
features are consistently performing better in all
four dictionaries compared to baseline models.
Some words which are predicted as acquired

earlier compared to its actual AoA using lexical
and semantic (Paetzold and Specia, 2016a) fea-
tures have their AoA predicted better when dic-
tionary features are used. These words are ob-
served as non-kernel words in the dictionary net-
work. We also observed that the AoA prediction
error is very less for words with a lower age of ac-
quisition such as ‘give’, ‘work’, ‘show’, ‘day’ etc.
when dictionary features are used compared to the
baseline features. The inclusion of lexical and se-
mantic features improved the prediction value for
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Features Avg
Spearman

Avg
Pearson

Avg
Kendall’s tau

Lexical Features
(Paetzold and Specia,
2016a)

0.5632 0.5514 0.3993

Lexical + Semantic
Features (Paetzold and
Specia, 2016a)

0.7576 0.7700 0.5718

Lexical + Semantic +
CIDE 0.7867∗ 0.7957∗ 0.6008∗

Lexical + Semantic +
LDOCE 0.7880∗ 0.7956∗ 0.6005∗

Lexical + Semantic +
MWC 0.7609 0.7713 0.5746

Lexical + Semantic +
WordNet 0.7703∗ 0.7820∗ 0.5830∗

Table 3: Correlation Coefficients between the predicted AoA
of words and the AoA based on MRC psycho-linguistic
dataset; * indicates improvements are statistically significant
with p < 0.05

words which are i) general words like ‘something’,
‘everyday’, ii) colloquial words like ‘grandma’,
‘mama’, ‘papa’. This is because of the infrequent
use of such words in dictionary definitions.

We also study the prediction of other psycho-
linguistic properties using dictionary network-
based features. We experimented with the psycho-
linguistic properties such as familiarity and imaga-
bility (Gilhooly and Logie, 1980). The familiarity
of a word is the frequency with which a word is
seen, heard and used. The imagability of a word
is the intensity with which a word arouses im-
ages. We use the familiarity and imagability rat-
ings presented in MRC psycho-linguistic dataset
(Coltheart, 1981). This dataset contains familiarity
ratings for 3,814 words and imagability ratings for
3,733 words. We trained a ridge regression model
with the target value as the familiarity rating for
predicting the familiarity of a word and the imaga-
bility rating is used as the target value for predict-
ing the imagability of a word.

The same set of features are used for comparison
and observed that both familiarity and imagability
ratings are correlating better when dictionary net-
work based features are used. All correlation coef-
ficients are statistically significant with p < 0.05.
The improvements in correlations are also statis-
tically significant with p < 0.05. The dictionary
features based on CIDE and LDOCE dictionaries
are performing better than other two dictionaries.

Features Avg
Spearman

Avg
Pearson

Avg
Kendall’s tau

Lexical Features
(Paetzold and Specia,
2016a)

0.5673 0.4956 0.4004

Lexical + Semantic
Features (Paetzold and
Specia, 2016a)

0.7670 0.7358 0.5707

Lexical + Semantic +
CIDE 0.7987∗ 0.7672∗ 0.6026∗

Lexical + Semantic +
LDOCE 0.8042∗ 0.7654∗ 0.6068∗

Lexical + Semantic +
MWC 0.7741∗ 0.7467∗ 0.5783∗

Lexical + Semantic +
WordNet 0.7785∗ 0.7572∗ 0.5836∗

Table 4: Correlation Coefficients between the predicted fa-
miliarity of words and the familiarity rating based on MRC
psycho-linguistic dataset; * indicates improvements are sta-
tistically significant with p < 0.05

Features Avg
Spearman

Avg
Pearson

Avg
Kendall’s tau

Lexical Features
(Paetzold and Specia,
2016a)

0.4734 0.4681 0.3252

Lexical +Semantic
Features (Paetzold and
Specia, 2016a)

0.7829 0.7708 0.5857

Lexical +Semantic +
CIDE 0.7915∗ 0.7807∗ 0.5939∗

Lexical +Semantic +
LDOCE 0.7912∗ 0.7797∗ 0.5936∗

Lexical +Semantic +
MWC 0.7860∗ 0.7757∗ 0.5877∗

Lexical +Semantic +
WordNet 0.7890∗ 0.7785∗ 0.5914∗

Table 5: Correlation Coefficients between the predicted
imagability of words and the imagability rating based on
MRC psycho-linguistic dataset; * indicates improvements are
statistically significant with p < 0.05

4.4 Experiment using School Textbooks

In this experiment, our task is to predict the class
or grade6 at which a word can be introduced in the
school curriculum. We used the words present in
Indian English textbooks from standard 1 to stan-
dard 10 which are published by National Council
of Educational Research and Training (NCERT)7.
If a word is first mentioned in ith standard where
1 ≤ i ≤ 10, then the target value of that word is i.
In this way, we labeled the target value of words
that are used in standard 1 to 10 English textbooks.
We extracted all words from these textbooks and
out of whichwe used the 5,496words that are com-
mon in all four dictionaries.
For this task, we prefer regression over classifi-

cation as the target values are ordered. We trained
6we use the words ‘class’, ‘grade’, or ‘standard’ inter-

changeably.
7http://www.ncert.nic.in/ncerts/textbook/

textbook.htm
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a ridge regression model to predict the target value
and evaluated the model using mean squared er-
ror over 10-fold train-test splits. The model is
trained using all sets of features and the results are
given in Table 6. The mean squared error is high-
est when trained using only lexical features and
it is decreased when lexical and semantic features
are used. The mean squared error is even reduced
when dictionary network-based features are used
along with lexical and semantic features. The er-
ror is minimum when dictionary network features
from LDOCE dictionary are used. The reduction
in mean squared error is statistically significant
with p < 0.05when dictionary network-based fea-
tures from CIDE, LDOCE andWordNet dictionar-
ies are used and the deduction is statistically signif-
icant with p < 0.01 when MWC dictionary based
features are used.

Features Mean Squared Error
Lexical Features (Paetzold
and Specia, 2016a) 0.8039

Lexical + Semantic Features
(Paetzold and Specia, 2016a) 0.6621

Lexical + Semantic + CIDE 0.6326∗

Lexical + Semantic +
LDOCE 0.6289∗

Lexical + Semantic + MWC 0.6595+

Lexical + Semantic +
WordNet 0.6553∗

Table 6: AverageMean squared error when predicted the stan-
dard at which a word is first introduced to school students
in NCERT English textbooks; * indicates deduction in mean
squared error is statistically significant with p < 0.05 and +
indicates deduction is statistically significant with p < 0.01

We also extended our experiment for Hindi
words by using Hindi textbooks published by
NCERT. Similar to the experiment using English
Words, here the task is to predict the class or stan-
dard at which a Hindi word can be introduced in
the school curriculum. We used the gloss of Hindi
words in Hindi WordNet (Bhattacharyya, 2017) to
construct the dictionary network using which the
network based features are extracted. For lexical
features, we used the frequency of words based
on Hindi Corpus8 published by Center for Indian
Language Technology, IIT Bombay. The Hindi
WordNet is used for other lexical features based
on WordNet. We used Hindi Wikipedia9 dump
to train the embedded vectors of Hindi words.
We used these features to train a ridge regression
model to predict the standard at which a Hindi

8http://www.cfilt.iitb.ac.in/Downloads.html
9https://hi.wikipedia.org/

word can be introduced. We extracted words from
NCERT Hindi textbooks from standard 1 to 10
and all features are obtained for 3,860 words. The
model is evaluated using mean squared error over
10-fold train-test splits. The averagemean squared
error obtained when trained using i) only lexical
features, ii) lexical and semantic features, iii) lex-
ical, semantic and dictionary network features are
given in Table 7. We can observe that the addi-

Features Mean Squared Error
Lexical Features (Paetzold
and Specia, 2016a) 0.8708

Lexical + Semantic Features
(Paetzold and Specia, 2016a) 0.8056

Lexical + Semantic +
Dictionary 0.7674∗

Table 7: AverageMean squared error when predicted the stan-
dard at which a word is first introduced to school students
in NCERT Hindi textbooks; * indicates deduction in mean
squared error is statistically significant with p < 0.05

tion of dictionary network features improves the
prediction compared to lexical and semantic fea-
tures. This experiment also signifies the impact of
the proposed model in predicting the age of acqui-
sition of Hindi words for which an AoA dataset is
not available.

Class Words

1 साथ (saath), काम (kaam), याद (yaad), फूल (phuul),
जानवर (jaanvar)

2 आराम (aaram), दौरान (dauran), घास (ghas), असर
(asar), पुȢलस (pulice)

3 देखभाल (dekhbhaal), मुख (mukh), झलक (jhalak), वार
(vaar)

4 ȟदमाग (dimaag), Ŗने (train), जीव (jeev), उपहार
(upahaar), खैर (khair)

5 पकवान (pakvaan), नौकर (naukar), बरतन (bartan),
नमकɏन (namkeen), मांग (maang)

6 जूट (juut), ढोलक (dholak), अȠधगम (adhigam),आंगन
(aangan),आǶासन (aaswaasan)

7 गजăन (garjan), खĒग (khadag), जुġम (julm), ȟवकणă
(vikarn), सूयăदेव (sooryadev)

8 Šेरक (prerak),आĕमसĞमान (aatmasamman), समाȟहत
(samaahit), ŠȠतमान (praratimaan)

9 अवमूġयन (avamuulyan), वैĤणव (vaishnav), जागीरदार
(jaageeradhaar), अĘयाĕम (adhyaathm)

10 पाǟपुĥतक (paathyapustak), पूँजीवाद (punjeevaad),
मूȸत�कार (muurtikaar), ȟवǯाधर (vidhyaadhar)

Table 8: Examples of Hindi words predicted for
Class/Standard 1 to 10

In order to qualitatively analyze the results, the
predicted value of words is rounded when trained
using all features. The class at which a word can be
introduced is correctly predicted when the rounded
predicted value is the same as the actual value as-
signed to theword. Some examples of Hindi words
with the class/standard are correctly predicted are
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given in Table 8.

5 Discussion

Vajjala and Meurers (2014) proposed psycho-
linguistic features such as the age of acquisition,
familiarity, imagability and concreteness for pre-
dicting the reading level of a text and it is used
for assessing the relative reading level of sentence
pairs for text simplification. Our experiments sug-
gest that the dictionary network-based features can
be used as lexical features for predicting the read-
ing level of a text.
In our experiments, the dictionary network-

based features are performing better when ex-
tracted from Cambridge (CIDE) and Longman
(LDOCE) dictionaries compared toMerriamWeb-
ster (MWC) and WordNet dictionaries. The moti-
vation of proposing dictionary network-based fea-
tures for predicting age of acquisition is the obser-
vation by Vincent-Lamarre et al. (2016) that the
average age of acquisition of words in the core
is smaller than the average age of acquisition of
words in the satellites which is in turn smaller than
the average age of acquisition of words in the rest
of the dictionaries. In Figure 1, the average age

Figure 1: Average age of acquisition of words in Core, Satel-
lites and Rest of the words in all four dictionaries

of acquisition values of words in core, satellites
and the rest of the words are given for all four dic-
tionaries. We can observe that the average AoA
values are increasing from core to satellites to rest
of the words in all four dictionaries. The average
AoA of words in the kernel is the average of the
AoA of words in core and satellites. From Figure
1, it is clear that the average AoA of kernel words
will be smaller than the rest of the words. We
can observe that the differences between the av-
erage AoA value of core words and the rest of the

words are small in MWC and WordNet dictionar-
ies, whereas the differences are large in CIDE and
LDOCE dictionaries. This may be the reason that
the CIDE and LDOCE dictionaries are performing
better than MWC and WordNet dictionaries.
Concreteness (Brysbaert and New, 2009) is an-

other psycho-linguistic property which is widely
used along with age of acquisition for reading level
prediction, text simplification etc. Concreteness is
the extent to which the object that the word can be
experienced by senses. The proposed dictionary
network features are based on the dictionary struc-
ture where core words are defined before satellite
words which are in turn defined before the rest of
the words in the dictionary. Vincent-Lamarre et al.
(2016) observed that the words present in the satel-
lites are more concrete than the words present in
the core. Since concreteness does not follow the
progression from core to satellite and then to the
rest of the words, which is central to our hypothe-
sis, we did not use dictionary features to estimate
concreteness.

6 Conclusion

We study the effectiveness of graph-theoretic fea-
tures derived from dictionary networks in predict-
ing the age of acquisition of words and the re-
sult shows significant improvements over earlier
approaches that relate dictionary features to AoA.
This work is a step towards understanding the dif-
ficult cognitive task of understanding how we ac-
quire words. We also study the usefulness of
dictionary network-based features for predicting
other psycho-linguistic properties such as familiar-
ity and imagability and the results are promising.
To the best of our knowledge, the psycho-

linguistic study on Hindi has not been done before.
Our experiment on Hindi words signifies the im-
pact of the proposed model in predicting the age
of acquisition of Hindi words.
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