
Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 485–494

Neural Morphological Disambiguation Using Surface and
Contextual Morphological Awareness

Akhilesh Sudhakar
IIT (BHU), Varanasi, India
akhileshs.s4@gmail.com

Anil Kumar Singh
IIT (BHU), Varanasi, India

nlprnd@gmail.com

Abstract

Morphological disambiguation, partic-
ularly for morphologically rich lan-
guages, is a crucial step in many NLP
tasks. Morphological analyzers provide
multiple analyses of a word, only one of
which is true in context. We present
a language-agnostic deep neural sys-
tem for morphological disambiguation,
with experiments on Hindi. We achieve
accuracies of around 95.22% without
the use of any language-specific fea-
tures or heuristics, which outperforms
the existing state of the art. One con-
tribution through this work is build-
ing the first morphological disambigua-
tion system for Hindi. We also show
that using phonological features can
improve performance. On using phono-
logical features and pre-trained word
vectors, we report an accuracy of
97.02% for Hindi.

1 Introduction
Morphologically inflected words are derived
from a root by modifying it (e.g., by apply-
ing prefixes, suffixes and infixes) based on lin-
guistic features (manifested as the inflection
tagset). Morphological analysis involves ex-
tracting this root word and the set of features
that describe the inflected form. These anal-
yses contain syntactic and semantic informa-
tion about inflected words. Table 1 shows an
example for the Hindi word ‘पूरे’ [pUre]1. Ex-
isting morphological analyzers typically work
in isolation, meaning that they generate multi-
ple analyses of a word, purely based on surface
structure. For many NLP tasks like machine

1We use the Roman notation popularly known as
WX for representing Hindi words

translation and topic modeling, however, it is
essential to know which morphological analy-
sis is correct in the context of the sentence.
Morphological disambiguation aims to solve
this problem. The task of disambiguation is
non-trivial and is complicated by the depen-
dencies of the correct analysis on the surface
structure of the inflected word, on the surface
structures of the neighboring words, and on
the analyses of neighboring words.

We present a deep neural morphological dis-
ambiguation system that leverages context in-
formation as well as surface structure. While
we have experimented on Hindi in our work,
we report accuracies without employing any
language-specific features to show that our
system can generalize across different lan-
guages. We also show performance boost by
using phonological features and pre-training of
word vectors. To the best of our knowledge,
this is the first ever non-naive morphological
disambiguation system to be built for Hindi.

Like other Indo-Aryan languages, Hindi is
morphologically rich and a word form may
have over 40 morphological analyses (Goyal
and Lehal, 2008). Though the inflectional
morphology of Hindi is not agglutinative, the
derivational suffixes are. This leads to an ex-
plosion in the number of inflectional root forms
(Singh et al., 2013). One of the reasons for
our focus on Hindi is that it has a wide cov-
erage of speaking population, with over 260
million speakers across 5 countries2 and is the
fifth most spoken language in the world3. We
present four neural architectures for this task,
each different from the others by the nature
of context information used as disambiguating

2https://www.ethnologue.com/statistics/size
3The exact rank may be a matter of debate due to

the socio-linguistic scenario in South Asia, with some
surveys claiming it to be even more popularly spoken.485

Root Category Gender Number Person Case TAM Suffix
pUrA adj m sg - o - -
pUrA adj m pl - d - -
pUrA adj m pl - o - -
pUrA n m pl 3 d 0 0
pUrA n m sg 3 o 0 0
pUra v any sg 2 - ए e
pUra v any sg 3 - ए e
pUra v m pl any - या yA

Table 1: Morphological analyses of the word `पूरे' [pUre] (A ‘-’ indicates that the feature is not
applicable and an ‘any’ indicates that it can take any value in the domain for that feature)

evidence. We assess our results by implement-
ing an existing state-of-the-art system (Shen
et al., 2016) on our Hindi dataset. Our system
outperforms this state-of-the-art system.

2 Related Work

There is very little directly corresponding pre-
vious work on morphological disambiguation
and it cannot be formulated in the same way
as POS tagging. This is because the number
of classes is fixed in POS tagging, whereas it
is variable in our problem. Still, since part
of speech (POS) tagging is a closely related
task, the work on POS tagging can also pro-
vide useful insights. However, morphological
disambiguation is a harder task to perform
than POS tagging. The earliest approaches
to POS tagging were rule-based (Karlsson et
al. (1995), Brill (1992)) and required a set of
hand-crafted rules learnt from a tagged cor-
pus. More recently, Kessikbayeva and Ci-
cekli (2016) present a morphological disam-
biguation system using rules based on disam-
biguations of context words.

Statistical approaches are also used for mor-
phological disambiguation. Hakkani-Tür et
al. (2000) propose a model based on joint con-
ditional probabilities of the root and tags. Sak
et al. (2007) use a perceptron model, while
other statistical models use decision trees as
by Görgün and Yildiz (2011). Hybrid ap-
proaches have also been tried, with Orosz and
Novák (2013) using an approach combining
rule-based and statistical approaches, to prune
grammar-violating parses.

The use of deep learning for morphologi-
cal disambiguation, has been explored. Straka
and Straková (2017) build a neural system for
tasks such as sentence segmentation, tokeniza-
tion and POS tagging. Plank et al. (2016)

build a multilingual neural POS tagger. While
we draw insights from works on tasks such
as POS tagging, we bear in mind that POS
tagging and morphological disambiguation are
significantly different. Morphological disam-
biguation is more complex because it works
with multiple categories and not just part-
of-speech. This introduces sparseness in the
model, as well as considerations of whether
the different categories are dependent on each
other, on how to combine classifiers for each
category, etc. The number of analyses for a
word also varies.

Yildiz et al. (2016) propose a convolu-
tional neural net architecture, which takes
context disambiguation into account. Shen
et al. (2016) use a deep neural model with
character-level and well as tag-level LSTMs to
embed analyses. Our work shares certain as-
pects in common with theirs but is different in
many ways. We experiment on Hindi (which
has significantly different morphological prop-
erties from the three languages they explore),
use different neural structures, show the effect
of language specific phonological features and
study the impact of unsupervised pre-training
of embeddings under different settings. Fur-
ther, as mentioned earlier, we consider their
results to be state-of-the-art because theirs is
a language-agnostic system which gives state-
of-the-art results on all 3 languages they have
experimented on. We show that our model
gives better performance than an implemen-
tation of their best model on Hindi.

3 Neural Models

We present four models for morphological
disambiguation. Some aspects are common
among them. They all use a deep neural net-
work, which, given the current word in con-

2

486

sideration and one of the candidate morpho-
logical analyses of the word, acts as a binary
true/false classifier. A final softmax layer out-
puts probabilities for correct and incorrect,
based on whether the candidate analysis is cor-
rect or not. An ideal classifier would predict
the probability of correct as 1 and incorrect
as 0 for the correct morphological analysis of
the word. As is usual in word sense disam-
biguation, we make the ‘one sense per colloca-
tion’ assumption (a word in a particular con-
text has only one correct morphological anal-
ysis), with which our dataset is in accordance.
The choices of neural architectures used by us
are influenced by the findings in the work of
Heigold et al. (2016), in which the authors con-
clude that on morphological tagging tasks, dif-
ferent neural architectures (CNNs, RNNs etc.)
give comparable results, and careful tuning of
model structure and hyperparameters can give
substantial gains. We also draw insights from
their work on augmenting character and word-
level embeddings.

3.1 Terminology Used
For each of ‘category’, ‘gender’, ‘number’,
‘person’, ‘case’, ‘TAM’ and ‘suffix’, we use the
term ‘feature’. We call each of the values of a
feature for a particular word, a ‘tag’. For in-
stance the feature ‘gender’ can have tags ‘M
(male)’, ‘F (female)’ and ‘N (neuter)’. The
root and the tagset together make up a mor-
phological analysis for a word. We use the
term ‘candidate analysis’ to refer to each
of the morphological analyses generated by the
analyzer for a given word.

3.2 Broad Basis for the Architectures
We first establish an intuitive and statistical
foundation to justify our decision choices in
building the deep neural network. We extract
dependencies between roots and features from
the work by Hakkani-Tür et al. (2000), noting
that the assumptions used for Turkish by the
authors hold good for Hindi too. We also ob-
tain surface-information-related dependencies
from the work by Faruqui et al. (2016). The
following is the full set of extended dependen-
cies:

• Dependency #1: The root of a word
depends on the roots as well as the fea-

tures of all previous and following words
in the window

• Dependency #2: Each feature of a
word depends on the roots and the fea-
tures of all previous and following words
in the window

• Dependency #3: Each feature of a
word depends on the root of the current
word, as well as all other features of the
current word

• Dependency #4: The root and each
feature of a word depend on the surface
form of the word

• Dependency #5: The root and each
feature of a word depend on the surface
forms of the word as well as those of all
previous and following words in the win-
dow.

In all these four models, the following network
components are also consistent.

Figure 1: Architecture for the word surface
vector. ‘i’ indicates the ith input word.

3.3 Word Input
Word inputs to the network are embedded at
two levels. A word embedding vector is gener-
ated using the word as a whole. Each charac-
ter in the word is also embedded in a character
embedding vector and these character embed-
dings are fed, in sequence, to a bidirectional
GRU. The output vector of the GRU and the

3

487

word embedding vector are concatenated to-
gether to form the ‘word surface vector’
that takes into account surface features of the
word. The part of the network that generates
the word surface vector is shown in Figure 1.

The character-level GRU allows for captur-
ing of surface properties of a word, and takes
into account Dependency #4 (section 3.2).
We obtain marginal accuracy gains (of around
0.1%) by using a GRU instead of an LSTM at
the character-level.

3.4 Candidate Analysis Input
Candidate analysis inputs to the network are
treated as two inputs: the root word and rest
of the tags. The root is treated in the same
exact fashion as the word inputs (for the same
reasons mentioned in the above section) with
the only difference being that all words share a
common embedding layer, while all roots share
a separate common embedding layer. Conse-
quently, a corresponding ‘root surface vec-
tor’ will be generated as described for each
root input. Tagsets are represented as binary
vectors, with positional encoding. The root
surface vector and all the tag encodings are
treated as a sequence and fed as input to a
bidirectional LSTM. This design choice, in-
cluding the bidirectionality, has been made to
address Dependency #3 (section 3.2). We call
the output vector of this LSTM, the ‘root fea-
tures sequence vector’. The part of the
network architecture that generates the root
features sequence vector is shown in Figure 2.

3.5 Hyperparameters and Training
All GRUs and LSTMs have a hidden layer size
of 256, and deep GRUs and LSTMs have a
depth of 2 layers. Deep convolutional net-
works have a filter width of 3, hidden layer
size of 64 and depth of 3 layers. The model
can run for 10,000 epochs but we make use of
early stopping with a patience of 10 epochs
in order to keep the generalization error in
check. This is a validation-based early stop-
ping on the development set. The word and
root embedding layers have a dimension of
100, while the character embedding layer has
a dimension of 64. All models use the categor-
ical cross-entropy loss function and the Adam
optimization method as proposed by Kingma
and Ba (2014). The sequence of words in each

Figure 2: Network architecture for generating
the root feature sequence vector. The sub-
script i indicates the morphological features
of the ith input word. These might be candi-
date analyses or correct analyses, depending
on where (training or testing) they are used in
other figures.

sentence act as a mini-batch during training.
The best model is saved for predictions on the
test data.

3.6 Baseline Model
As mentioned earlier, since there does not ex-
ist a non-naive state of the art system for
Hindi, we use a low baseline model that picks
one candidate analysis at random and predicts
this to be the correct morphological analy-
sis for the given word. This4 is the default
for building several machine translation (MT)
systems, such as the Sampark5 system, for In-
dian languages. The most that is currently
done for these MT systems is to apply some
agreement based rules6. Proper evaluation of
these modules may be needed, but it is beyond
the scope of this paper. It must be mentioned
here that the baseline we have picked is a weak
baseline. However, we have done so for a cou-
ple of reasons. Firstly, we compare our results
to the state-of-the-art system mentioned ear-
lier and show performance gain. Therefore it
is not a case of inflation of results using a weak

4The so called ‘pick one morph’ module.
5http://sampark.org.in
6The ‘guess morph’ module.

4

488

baseline. Secondly, we have presented 4 mod-
els which show a gradation of performance on
this task (as shown in Table 5). Thirdly, the
baseline presents the case when absolutely no
character, word or context-level information is
available to the model. We believe that since
we study the impact of each of these kinds
of knowledge on the models’ performance, we
must also study the case when none of this
knowledge is available.

3.7 Model 1
This model solely relies on the surface infor-
mation of the current word to make predic-
tions about its morphological analysis. Given
a current word and the root and tags of the
candidate analysis, the model uses only the
word surface vector (section 4.2) with the root
features sequence vector (section 4.3) of the
candidate to make predictions. Figure 3 shows
the exact structure of the network used.

Figure 3: Structure of Model 1. The subscript
‘0’ indicates the current word. P(T) and P(F)
indicate probability of True and False respec-
tively.

3.8 Model 2
This model makes use of not only the current
word’s surface information but also the surface
information of all words in a window which has
4 words to the left and 4 words to the right of
the current word in the sentence. (We exper-
iment with values from 2 to 6). Building the
model this way accounts for Dependency #5
(section 3.2). This model uses out-of-sentence
tokens too, to ensure that words towards the

beginning and end of the sentence also have a
full window. The word surface vectors (section
4.2) of all the words in this window, along with
the root features sequence vector (section 4.3)
of the candidate are fed into a bidirectional
LSTM in this model. Figure 4 shows the ex-
act network structure used.

Figure 4: Model 2. The subscript ‘0’ indi-
cates the current word, the subscript ‘-m’ rep-
resents any word in the left context of the cur-
rent word and the subscript ‘+m’ represents
any word in the right context of the current
word. P(T) and P(F) indicate probability of
True and False respectively.

3.9 Model 3
This model makes use of not only the current
word’s surface information and the surface in-
formation of all words in a window which has
5 words to the left of the current word in
the sentence, but also the correct morpho-
logical annotations of the words in this left-
context. This model partially accounts for
Dependency #1 and Dependency #2 (section
3.2). The word surface vector (section 4.2) of
each word is concatenated with the root fea-
tures sequence vector (section 4.3) of the word
to give a ‘complete vector’. Complete vectors,
each concatenated with their own convolutions
are fed as inputs to a deep LSTM. Model 3
uses the network structure shown in Figure 5,
except that Figure 5 shows the model using

5

489

the current word’s left and right context, while
Model 3 uses only its left context.

Figure 5: Model 4. Model 3 also has a sim-
ilar configuration except for the context of
the current word. The subscript ‘0’ indicates
the current word, the subscript ‘-m’ represents
any word in the left context of the current
word and the subscript ‘+m’ represents any
word in the right context of the current word.
P(T) and P(F) indicate probability of True
and False respectively.

3.10 Model 4
Model 4 is similar to Model 3, except that this
model makes use of surface information and
correct morphological annotations of not only
words to the left but also to the right of the
current word. The complete window for the
current word has 4 words to the left and 4
words to the right of it. (We experiment with
values from 2 to 6). This model takes into ac-
count all the dependencies mentioned in sec-
tion 3.2. Figure 5 shows the network structure
for Model 4.

It must be mentioned here that Model 3
and Model 4 are slightly complex due to the
presence of a CNN and further concatenation
of the convolved inputs with the original in-
puts. We have conducted experiments on sim-
pler versions of Model 3 and Model 4 but with
poorer results (an average drop in accuracy of

1.2%). An elaborate discussion of these re-
sults is not possible due to space constraints.
Specifically, we used the same context as used
in these two models but did not use the inter-
mediary CNN in these simpler experiments.
The reasons for the performance improvement
upon using a CNN could be that CNNs have
proved to be particularly useful for classifica-
tion tasks on data that has the property of lo-
cal consistency. This is evident from previous
work on using CNNs for similar classification
tasks such as those by Collobert et al. (2011),
Yildiz et al. (2016) and Heigold et al. (2016).
Well-formed sentences of any language (Hindi,
in our case) display local consistency because
they have a natural order, with context words
forming abstractive concepts/features. Hence,
a CNN was an intuitive choice for our task.

4 Experimental setup

4.1 Dataset
We use a manually annotated Hindi Depen-
dency TreeBank7, which is part of the Hindi-
Urdu Dependency TreeBank (HUTB)8 as the
source of the correct morphological analysis
of words in the context of their sentences.
The treebank annotates words from sentences
taken from news articles and textual conversa-
tions. Each word in every sentence of the tree-
bank is annotated with the correct morpholog-
ical analysis. We use a morphological analyzer
for Hindi9, which was developed earlier, but
is now used for the Sampark MT system and
other purposes. We use it to generate the dif-
ferent possible morphological analyses for each
word (in isolation) in the treebank. For each
word in the treebank, the candidate analysis
matching the word’s treebank-annotated mor-
phological analysis is labeled as true while all
other candidate analyses are labeled as false.
In the entire dataset, we ensure that out of
all the candidate analyses of a word, there is
one that matches the treebank annotation for
that word. Table 2 provides specific statistics
about the dataset used. Table 3 describes the
features of a morphological analysis as well as
provides the domain of possible tags (values)
for each feature.

7http://ltrc.iiit.ac.in/treebank_H2014
8http://verbs.colorado.edu/hindiurdu
9http://sampark.iiit.ac.in/hindimorph

6

490

Attribute Count
Total words 298,285
Unique words 17,315
Manual additions of 115432

treebank annotation
Ambiguous words 179,453
Unambiguous words 118,742
Sentences in treebank 13,933
Mean sentence length 21.40
Mean morphological

analyses per word 2.534
Mean morphological analyses

per ambiguous word 3.550
Standard deviation of morpho-

-logical analyses per word 1.620
Maximum morphological

analyses for a word 10

Table 2: Dataset statistics

Feature List of possible tags
name

Root Not fixed
Category Noun(n), Pronoun(pn), Adjective(adj)

verb(v), adverb(adv)
post-position(psp), avvya(avy)

Gender Masculine(m), Feminine(f),
Neuter(n)

Number Singular(sg), Plural(pl), Dual(d)
Person 1st Person(1), 2nd Person(2),

3rd Person(3)
Case Direct(d), Oblique(o)
TAM है,का,ना,में,या,या1,से,ए,

कर,ता,0,था,को,गा,ने
Suffix kA,e,wA,WA,yA,nA,ko,ne,

0,kara,gA,yA1,meM,se,hE

Table 3: Domain of tags (values) for each fea-
ture. The tag ‘TAM’ denotes the tense, aspect
and modality marker.

We would like to mention here that since
our system is built to pick the correct analysis
from the morphological analyses generated by
the analyzer, it assumes that every word has
a set of candidate analyses. In the context of
our task, it is not relevant to discuss the case
when the morphological analyzer itself fails to
provide candidate analyses.

Table 4 shows the number of ambiguous
words and the total number of words used
for training, development and testing. The
test set is held-out and is used solely for re-
porting final results. The development set is
used to validate and tune model hyperparam-
eters. During testing, the model is provided
with only the different candidate morpholog-
ical analysis outputs from the morphological
analyzer, for each word. The correct analyses
(also referred to as annotations in the follow-

Phase Ambiguous Words Total Words
Training 149,540 248,572
Development 11,963 19,885
Testing 17,950 29,828

Table 4: Word counts in training, development
and test splits

ing section) provided by the treebank for each
word are used to calculate the reported accu-
racies.

4.2 Methods of Testing
Models that use morphological analyses of the
context words (Models 3 and 4) have access to
correct annotations of these contexts during
training and validation but not during test-
ing. During testing, in order to provide ‘cor-
rect annotations’ of words in the context of
a word, to these models, we use Model 2 or
Model 3. This is because Model 2 does not
itself use context annotations and Model 3 it-
self uses only left context annotations (it can
hence, predict the correct morphological anal-
ysis for each word in the test data from left to
right, treating the predictions of the previous
words as the correct annotations of the left-
context of the words that occur next). How-
ever, in the case where Model 3 is being used
as the test set annotator, a strategic choice has
to be made for annotation. A greedy strategy
would pick the morphological analysis with the
highest softmax probability of being the cor-
rect annotation and annotate the word with
this annotation. However, the greedy strat-
egy fails if the model makes mistakes towards
the start of a sentence or performs poorly on
only some types of words, because these errors
propagate to every consecutive word and get
compounded. In order to avoid these kinds of
errors, we use a beam search with width 10
for pre-annotating the test set in the case of
context-based models.

5 Results and Analysis

Table 5 presents performance accuracies of dif-
ferent models and with different methods used
to annotate test data in the cases where an
initial pre-annotation of test data is needed,
as discussed in the previous section. As men-
tioned before, model accuracy is calculated by
comparing each trained model’s predictions on

7

491

Model Pre-testing Accuracy on Accuracy on
Test Data Ambiguous All Words

Annotation Words
Model

Baseline NA 29.40 38.43
S-O-T-A S-O-T-A 90.13 92.06
Model 1 NA 80.21 83.96
Model 2 NA 87.35 89.18
Model 3 Treebank 93.82 96.17
Model 3 Model 2 89.40 93.35
Model 3 Model 3 91.23 94.90
Model 4 Treebank 94.77 97.59
Model 4 Model 2 90.41 94.74
Model 4 Model 3 92.65 95.22

Table 5: Performance of different models (all
accuracies are percentages). S-O-T-A stands
for state-of-the-art, which is the full-context
model of Shen et al. (2016). The accuracy
gain we have achieved over S-O-T-A is 2.8%
on ambiguous words and 3.43% on all words.

the test data with the correct analyses from
the treebank data, regardless of which model
was used for the initial test annotation (if any).
The standard measure for accuracy is used:

of correct disambiguations
total # of words in test set

For practical purposes, the best performing
system is the last row in Table 5, i.e., in which
Model 4 uses Model 3 for pre-annotating the
test set (though the 7th row has the highest
accuracy, we cannot assume treebank anno-
tations on the test data as well). Table 5
also presents the results of using the exist-
ing state of the art (S-O-T-A) model on our
Hindi dataset. We have used the best perform-
ing model (on our Hindi dataset) proposed by
Shen et al. (2016), the full-context model, as
the state of the art. The accuracy gain we
have achieved over state of the art is 2.8% on
ambiguous words and 3.43% on all words.

We suggest possible reasons for the observed
performance behavior in table 5. Typologi-
cally, Hindi is a Subject-Object-Verb, head-
final language and uses post-positional case
marking. This means that on an average,
words show disambiguation dependencies on
the words following them. However, there is
also disambiguation evidence for a word to be
gained from its left context. For instance, ad-
verbs usually occur before (to the left of) the
verb or object they refer to. Similarly, relative
clauses, adjectives and articles are written be-
fore the noun they refer to. Model 4 uses the

morphological analyses of the right-context of
a word as well as the left context and hence
is able to leverage information from both pre-
ceding and following words. Hence it is able
to achieve better performance than Model 3.
Models 2 and 1 do not leverage evidence about
the morphological analysis of the words in the
window and perform worse than the other two
models. This shows (as is also quite intuitive)
that the morphological analysis of the context
is far stronger evidence in disambiguating a
word, than just the surface forms of the words
and its context. Model 2 performs better than
Model 1 as it has access to the surface forms of
the surrounding words, which in turn provide
some level of knowledge about their inflected
properties.

From control experiments, we conclude that
our gain over the state of the art is due to
factors that include careful tuning of hyper-
parameters, increasing model complexity and
leveraging the strength of combining models.
At the end of section 3.10, we have already
described the advantage of using a CNN. The
existing state of the art does not leverage this
advantage. Further, in allowing Model 3 to
pre-annotate the test data, we have allowed
our full-context model to take advantage of the
strengths of a left-to-right model, which is also
something that the existing state of the art
does not explore.

5.1 Language-specific Enhancements
While the reported results in Table 5 are
obtained without using pre-training of word
vectors or phonological features, we also ex-
perimented with using these enhancements.
We present results on the experimental setup
where we train using Model 4 and pre-
annotate the test set using Model 3. All per-
formance improvements are reported as those
obtained over and above the performance of
this particular experiment setup.

5.1.1 Pre-training of Word Vectors
We pre-trained word embeddings using the
word vector representation methods proposed
by Bojanowski et al. (2016). This method
makes use of an unsupervised skip-gram model
to generate word vectors of dimension 100.
We used an augmented corpus comprising of
Wikipedia text dump for Hindi, as well as

8

492

Model Accuracy Accuracy
gain over

Baseline (%)
Baseline 38.43 0
Model 4 95.22 147.74
Model 4 +

Pre-training 96.64 151.47
Model 4 +

Phonological Features 96.04 149.91
Model 4 +

Pre-training +
Phonological Features 97.02 152.46

Table 6: Performance with language-specific
enhancements

the collection of news articles and conversa-
tions that the Hindi treebank annotated words
come from. Using vector pre-training gave us
an accuracy improvement of 1.42%. One of
the main reasons for the performance boost
obtained during pre-training could perhaps
be that the pre-trained word vectors capture
syntactic and morphological information from
short neighbouring windows.

5.1.2 Use of Phonological Features
Morphology interacts closely with phonology
and there is ample work on the phonology-
morphology interface (Booij, 2007). It is quite
intuitive, therefore, to use phonological fea-
tures (Chomsky and Halle, 1968) for a mor-
phological problem. Besides, Hindi is written
in the Devanagari script, in which the map-
ping from letters to phonemes is almost one to
one. Each letter can therefore be represented
as a set of feature-value pairs, where the fea-
tures are phonological features such as type
(whether consonant or vowel), place, manner
etc. (Singh, 2006). This is true for almost
all languages that use Brahmi-derived scripts.
Phonological features are incorporated into
the model by concatenating them with the
character-level embeddings for words. We ob-
serve a performance enhancement of 0.82%
upon using these phonological features.

Employing pre-training as well as phonolog-
ical features boosted our model’s performance
from 95.22 % to 97.02%. These enhanced re-
sults are summarized in Table 6.

6 Future Work
We plan to test all our models on different lan-
guages and analyze which models perform best
on each language and hope to be able to cor-

relate these results with the linguistic phono-
morphological properties of the languages. We
will also try out this model in the Sampark10

machine translation system to evaluate the ef-
fect it has on translation.

Recently, an attention-based machine trans-
lation model was proposed by Bahdanau et
al. (2014) that defines a selective context
around a word rather than a fixed window for
all words. Models 3 and 4 can be modified
to use an attentional mechanism based on the
context words’ positional and morphological
properties. This would allow these models to
increase their range of information-capturing
across words in the sentence, without losing
information due to propagation in a recurrent
unit running across a large window. Experi-
ments have been done in the past for morpho-
logical disambiguation using Conditional Ran-
dom Fields (CRFs). It might be interesting to
see the hybrid use of CRF models with the
models we propose.

7 Conclusion

We propose multiple deep learning models for
morphological disambiguation. We show that
the model that makes use of morphological
information in both the left and right con-
text of a word performs best on this task, at
least in the case of Hindi. We also study the
effect of different context settings on model
performance. The differences in performance
obtained using these different context set-
tings, we believe, follows from the typological
and morphological properties of the language.
Hence, we also believe that different languages
may work better with different models that
we propose. The use of phonological features
enhances the quality of predictions by these
models, at least in the case of Hindi.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-

10https://sampark.iiit.ac.in/sampark/web/
index.php

9

493

tors with subword information. arXiv preprint
arXiv:1607.04606.

Geert Booij. 2007. The interface between morphol-
ogy and phonology. Oxford University Press.

Eric Brill. 1992. A simple rule-based part of speech
tagger. In Proceedings of the Third Conference
on Applied Natural Language Processing, ANLC
’92, pages 152–155, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Noam Chomsky and Morris Halle. 1968. The
Sound Pattern of English. Harper & Row, New
York.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. 2011. Natural language processing (al-
most) from scratch. Journal of Machine Learn-
ing Research, 12(Aug):2493–2537.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig,
and Chris Dyer. 2016. Morphological inflection
generation using character sequence to sequence
learning. In Proc. of NAACL.

Onur Görgün and Olcay Taner Yildiz. 2011. A
novel approach to morphological disambiguation
for turkish. In Computer and Information Sci-
ences II, pages 77–83. Springer.

Vishal Goyal and Gurpreet Singh Lehal. 2008.
Hindi morphological analyzer and generator. In
Emerging Trends in Engineering and Technol-
ogy, 2008. ICETET’08. First International Con-
ference on, pages 1156–1159. IEEE.

Dilek Z Hakkani-Tür, Kemal Oflazer, and Gökhan
Tür. 2000. Statistical morphological disam-
biguation for agglutinative languages. In Pro-
ceedings of the 18th conference on Computa-
tional linguistics-Volume 1, pages 285–291. As-
sociation for Computational Linguistics.

Georg Heigold, Guenter Neumann, and Josef van
Genabith. 2016. Neural morphological tagging
from characters for morphologically rich lan-
guages. arXiv preprint arXiv:1606.06640.

Fred Karlsson, Atro Voutilainen, Juha Heikkila,
and Arto Anttila, editors. 1995. Constraint
Grammar: A Language-Independent System for
Parsing Unrestricted Text. Walter de Gruyter
& Co., Hawthorne, NJ, USA.

Gulshat Kessikbayeva and Ilyas Cicekli. 2016. A
rule based morphological analyzer and a mor-
phological disambiguator for kazakh language.
Linguistics and Literature Studies, 4(1):96–104.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. In Pro-
ceedings of the 3rd International Conference on
Learning Representations (ICLR).

György Orosz and Attila Novák. 2013. Purepos
2.0: a hybrid tool for morphological disambigua-
tion. In RANLP, volume 13, pages 539–545.

Barbara Plank, Anders Søgaard, and Yoav Gold-
berg. 2016. Multilingual part-of-speech tag-
ging with bidirectional long short-term mem-
ory models and auxiliary loss. arXiv preprint
arXiv:1604.05529.

Haşim Sak, Tunga Güngör, and Murat Saraçlar.
2007. Morphological disambiguation of turk-
ish text with perceptron algorithm. Computa-
tional Linguistics and Intelligent Text Process-
ing, pages 107–118.

Qinlan Shen, Daniel Clothiaux, Emily Tagtow,
Patrick Littell, and Chris Dyer. 2016. The role
of context in neural morphological disambigua-
tion. In COLING, pages 181–191.

Pawan Deep Singh, Archana Kore, Rekha
Sugandhi, Gaurav Arya, and Sneha Jadhav.
2013. Hindi morphological analysis and inflec-
tion generator for english to hindi translation.
International Journal of Engineering and Inno-
vative Technology (IJEIT), pages 256–259.

Anil Kumar Singh. 2006. A computational pho-
netic model for indian language scripts. In Con-
straints on Spelling Changes: Fifth Interna-
tional Workshop on Writing Systems. Nijmegen,
Nijmegen, The Netherlands.

Milan Straka and Jana Straková. 2017. Tokeniz-
ing, pos tagging, lemmatizing and parsing ud 2.0
with udpipe. Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 88–99.

Eray Yildiz, Caglar Tirkaz, H. Bahadir Sahin,
Mustafa Tolga Eren, and Ozan Sonmez. 2016.
A morphology-aware network for morphological
disambiguation. In Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence,
AAAI’16, pages 2863–2869. AAAI Press.

10

494

