
ICON-2017

14th International
Conference on Natural
Language Processing

Proceedings of the Conference

18-21 December 2017
Jadavpur University, Kolkata, India

c© 2017 NLP Association of India (NLPAI)

ii

Preface

Research in Natural Language Processing (NLP) has taken a noticeable leap in the recent years.
Tremendous growth of information on the web and its easy access has stimulated large interest in
the field. India with multiple languages and continuous growth of Indian language content on the web
makes a fertile ground for NLP research. Moreover, industry is keenly interested in obtaining NLP
technology for mass use. The internet search companies are increasingly aware of the large market for
processing languages other than English. For example, search capability is needed for content in Indian
and other languages. There is also a need for searching content in multiple languages, and making the
retrieved documents available in the language of the user. As a result, a strong need is being felt for
machine translation to handle this large instantaneous use. Information Extraction, Question Answering
Systems and Sentiment Analysis are also showing up as other business opportunities.

These needs have resulted in two welcome trends. First, there is much wider student interest in getting
into NLP at both postgraduate and undergraduate levels. Many students interested in computing
technology are getting interested in natural language technology, and those interested in pursuing
computing research are joining NLP research. Second, the research community in academic institutions
and the government funding agencies in India have joined hands to launch consortia projects to develop
NLP products. Each consortium project is a multi-institutional endeavour working with a common
software framework, common language standards, and common technology engines for all the different
languages covered in the consortium. As a result, it has already led to development of basic tools for
multiple languages which are inter-operable for machine translation, cross lingual search, hand writing
recognition and OCR.

In this backdrop of increased student interest, greater funding and most importantly, common standards
and interoperable tools, there has been a spurt in research in NLP on Indian languages whose effects we
have just begun to see. A great number of submissions reflecting good research is a heartening matter.
There is an increasing realization to take advantage of features common to Indian languages in machine
learning. It is a delight to see that such features are not just specific to Indian languages but to a large
number of languages of the world, hitherto ignored. The insights so gained are furthering our linguistic
understanding and will help in technology development for hopefully all languages of the world.

For machine learning and other purposes, linguistically annotated corpora using the common standards
have become available for multiple Indian languages. They have been used for the development of basic
technologies for several languages. Larger set of corpora are expected to be prepared in near future.

This conference proceedings contains papers selected for presentation in technical sessions of ICON-
2017 and short communications selected for poster presentation. We are thankful to our excellent team
of reviewers from all over the globe who deserve full credit for the hard work of reviewing the high
quality submissions with rich technical content. From 141 submissions, 64 papers were selected, 32 for
full presentation, 32 for poster presentation, representing a variety of new and interesting developments,
covering a wide spectrum of NLP areas and core linguistics.

We are deeply grateful to Bjrn W. Schuller, University of Passau, Germany, NG Hwee Tou, National
University of Singapore (NUS), Singapore and Vasudeva Varma, IIIT Hyderabad, India for giving the
keynote lectures at ICON. We would also like to thank the members of the Advisory Committee and

iii

Programme Committee for their support and co-operation in making ICON 2017 a success.

We thank Anil Kumar Singh, Chair, Student Paper Competition and Dipankar Das, Chair, NLP Tools
Contest for taking the responsibilities of the events. We are thankful to Sudip Kumar Naskar and
Dipankar Das for making the organization of the event at Jadavpur University a success.

We convey our thanks to P V S Ram Babu, G Srinivas Rao, B Mahender Kumar and A Lakshmi
Narayana, International Institute of Information Technology (IIIT), Hyderabad for their dedicated
efforts in successfully handling the ICON Secretariat. We also thank IIIT Hyderabad team of
Vineet Chaitanya, Vasudeva Varma, Soma Paul, Radhika Mamidi, Manish Shrivastava, Suryakanth
V Gangashetty and Anil Kumar Vuppala. We heartfully express our gratitude to Somnath Banerjee,
Tapabrata Mondal, Sainik Mahata and other team members at Jadavpur University for their timely help
with sincere dedication to make this conference a success.

We also thank all those who came forward to help us in this task.

Finally, we thank all the researchers who responded to our call for papers and all the participants of
ICON-2017, without whose overwhelming response the conference would not have been a success.

December 2017 Sivaji Bandyopadhyay
Varanasi Dipti Misra Sharma

Rajeev Sangal

iv

Advisory Committee:

Aravind K Joshi, University of Pennsylvania, USA (Chair)

Conference General Chair:

Rajeev Sangal, IIT (BHU), Varanasi, India

Programme Committee:

Sivaji Bandyopadhyay, Jadavpur University,Kolkata, India (Chair)
Dipti Misra Sharma, IIIT Hyderabad, India (Co-Chair)
Kalika Bali, Microsoft Research India, India
Srinivas Bangalore, Interactions LLC, AT&T Research, USA
Rajesh Bhatt, University of Massachusetts, USA
Pushpak Bhattacharyya, IIT Patna, India
Monojit Choudhury, Microsoft Research India, India
Josef van Genabith, DFKI GmbH, Germany
Harald Hammarstrm, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
Mohammed Hasanuzzaman, Universit de Caen, Normandie, France
Gurpreet Lehal, Punjabi University, Patiala, India
Yuji Matsumoto, Nara Institute of Science and Technology, Japan
Joakim Nivre, Uppsala University, Sweden
Alexis Palmer, Heidelberg University, Germany
Jyoti Pawar, DCST, Goa University, India
Owen Rambow, University of Columbia, USA
Paolo Rosso, Universitat Politcnica de Valncia, Spain
Shikhar Kr. Sarma, Gauhati University, India
Elizabeth Sherly, IIITM-K, Trivandrum, India
Sobha Lalitha Devi, AU-KBC, Chennai, India
Keh-Yih Su, Institute of Information Science, Academia Sinica, Taiwan
Vasudeva Varma, IIIT Hyderabad, India

Tools Contest Chairs:
Dipankar Das, Jadavpur University, Kolkata, India (Chair)
Amitava Das, IIIT-Sri City, India

Student Paper Competition Chair:

Anil Kumar Singh, IIT (BHU), India

Organizing Committee:

Sudip Naskar, Jadavpur University, Kolkata, India
Dipankar Das, Jadavpur University, Kolkata, India

v

Organized by:

 Jadavpur University IIIT-H NLPAI LDC-IL, CIIL Mysore

Sponsored by:

Microsoft Research India American Express

NLPAI

vii

Referees

We gratefully acknowledge the excellent quality of refereeing we received from the reviewers. We thank them
all for being precise and fair in their assessment and for reviewing the papers in time.

Abhijeet Mishra

Adithya Pratapa
Aditi Mukherjee

Aditya Joshi

Aishwarya N Reganti

Akhilesh Sudhakar

Alok Ranjan Pal
Amitava Das

Amol Bole
Anand Kumar

Anchal Rani
Anil Kumar Singh

Anil Thakur

Anil Kumar Vuppala

Animesh Mukherjee

Anshul Bawa

Anupam Jamatia

Anupam Mondal

Anusha Prakash

Anushiya Rachel G

Arjun Akula

Arun Baby

Ashika Naidu
Ashwini Vaidya

Asif Ekbal

Aswin Shanmugam S

Bajibabu Bollepalli
Balamurali A R

Bapi Raju

Basil Abraham
Bharat Ram Ambati

Bhuvana Narasimhan

Braja Gopal Patra
C V Jawahar

Chandra Sekhar Chellu
Christian Boitet

D S Karthik Pandia
Dan Zeman

Deepak P

Delia Irazú Hernández Farias

Devi G

Dipankar Das
Dipti Misra Sharma

Divya Sai Jitta

Dwijen Rudrapal
Elizabeth Sherly

Erik Cambria

Fei Xia

Girish Palshikar

Golda Brunet Rajan
Gurpreet Singh Lehal

Harald Hammarström

Hema Murthy

Himanshu Sharma

Irshad Bhat

Jilt Sebastian
Jose Moreno

Joy Mahapatra

Jyoti Pawar
Kalika Bali

Kamal Sarkar
Karunesh Arora

Keh-Yih Su

Kevin Patel
Kishorjit Nongmeikapam

Kunal Chakma

Litton J Kurisinkel

Mahidas Bhattacharya
Malhar Kulkarni

Manish Shrivastava
Manoj Chinnakotla

Maria Anzovino

Mayank Singh
Mohammed Hasanuzzaman

Monojit Choudhury

Nikhil Pattisapu

Niloofar Safi
Niraj Kumar

Nirmal Surange
Owen Rambow

Paolo Rosso

Parameswari Krishnamurthy

Partha Pakray
Partha Talukdar

Pawan Goyal

Pranav Dhakras
ix

Pranav Goel
Pranaw Kumar

Prathyusha Jwalapuram
Priya Radhakrishnan

Pruthwik Mishra
Pushpak Bhattacharyya

Radhika Mamidi

Rajeev Rajan

Rajiv Srivastava
Rakesh Balabantaray

Ranjani Parthasarathi

Rashmi Prasad

Riyaz Bhat

Rudramurthy V

Sachin Pawar

Sakshi Kalra
Samar Husain

Samudravijaya K

Sanjukta Ghosh

Santanu Pal
Satarupa Guha

Shashank Gupta
Shashi Narayan

Shilpa Desai

Siva Reddy Gangireddy
Sivaji Bandyopadhyay

Sivanand Achanta
Smriti Singh

Sobha L

Soma Paul

Somnath Banerjee

Sourav Mandal

Spandana Gella

Sri Rama Murty Kodukula
Srikanth Ronanki

Sriram Venkatapathy

Sruti Rallapalli

Subba Reddy Oota

Subhabrata Dutta

Sudip Kumar Naskar

Sudipta Kar
Sutanu Chakraborti

Swapnil Chaudhari

Swapnil Hingmire

T Nagarajan
Thamar Solorio

Thoudam Doren Singh

Tushar Maheshwari

Umamaheswari E
Vasudeva Varma

Vasudevan Nedumpozhi

Venkata Viraraghavan

Vijay Sundar Ram

Vijayalakshmi P
Vinay Kumar Mittal

Vishal Goyal

Yan Shao
Yuji Matsumoto

x

Table of Contents

Keynote Lecture 1: NLP in Tomorrow’s Profiling - Words May Fail You
Björn W. Schuller .1

Deriving Word Prosody from Orthography in Hindi
Somnath Roy. .2

Three-phase training to address data sparsity in Neural Machine Translation
Ruchit Agrawal, Mihir Shekhar and Dipti Sharma. .13

Reference Scope Identification for Citances Using Convolutional Neural Networks
Saurav Jha, Aanchal Chaurasia, Akhilesh Sudhakar and Anil Kumar Singh 23

A vis-à-vis evaluation of MT paradigms for linguistically distant languages
Ruchit Agrawal, Jahfar Ali and Dipti Misra Sharma . 33

Textual Relations and Topic-Projection: Issues in Text Categorization
Lahari Chatterjee, Samir Karmakar and Abahan Datta . 43

POS Tagging For Resource Poor Languages Through Feature Projection
Pruthwik Mishra, Vandan Mujadia and Dipti Misra Sharma . 50

An Exploration of Word Embedding Initialization in Deep-Learning Tasks
Tom Kocmi and Ondrej Bojar . 56

Curriculum Design for Code-switching: Experiments with Language Identification and Language Mod-
eling with Deep Neural Networks

Monojit Choudhury, Kalika Bali, Sunayana Sitaram and Ashutosh Baheti 65

Quantitative Characterization of Code Switching Patterns in Complex Multi-Party Conversations: A
Case Study on Hindi Movie Scripts

Adithya Pratapa and Monojit Choudhury . 75

Towards Normalising Konkani-English Code-Mixed Social Media Text
Akshata Phadte and Gaurish Thakkar . 85

Towards developing a phonetically balanced code-mixed speech corpus for Hindi-English ASR
Ayushi Pandey, Brij Mohan Lal Srivastava and Suryakanth Gangashetty . 95

Keynote Lecture 2: Grammatical Error Correction: Past, Present and Future
NG Hwee Tou . 102

Hybrid Approach for Marathi Named Entity Recognition
Nita Patil, Ajay Patil and B.V. Pawar . 103

Sentiment Analysis: An Empirical Comparative Study of Various Machine Learning Approaches
Swapnil Jain, Shrikant Malviya, Rohit Mishra and Uma Shanker Tiwary 112

xi

Handling Multi-Sentence Queries in a Domain Independent Dialogue System
Prathyusha Jwalapuram and Radhika Mamidi . 122

Document Level Novelty Detection: Textual Entailment Lends a Helping Hand
Tanik Saikh, Tirthankar Ghosal, Asif Ekbal and Pushpak Bhattacharyya 131

Is your Statement Purposeless? Predicting Computer Science Graduation Admission Acceptance based
on Statement Of Purpose

Diptesh Kanojia, Nikhil Wani and Pushpak Bhattacharyya . 141

Natural Language Programing with Automatic Code Generation towards Solving Addition-Subtraction
Word Problems

Sourav Mandal and Sudip Kumar Naskar . 146

Unsupervised Separation of Transliterable and Native Words for Malayalam
Deepak P . 155

Known Strangers: Cross Linguistic Patterns in Multilingual Multidirectional Dictionaries
Rejitha K. S. and Rajesha N. .165

Tutorial for Deaf – Teaching Punjabi Alphabet using Synthetic Animations
Lalit Goyal and Vishal Goyal . 172

SemTagger: A Novel Approach for Semantic Similarity Based Hashtag Recommendation on Twitter
Kuntal Dey, Ritvik Shrivastava, Saroj Kaushik and L. Venkata Subramaniam 178

Reasoning with Sets to Solve Simple Word Problems Automatically
Sowmya S Sundaram and Deepak Khemani . 188

Improving NER for Clinical Texts by Ensemble Approach using Segment Representations
Hamada Nayel and H L Shashirekha . 197

Beyond Word2Vec: Embedding Words and Phrases in Same Vector Space
Vijay Prakash Dwivedi and Manish Shrivastava. .205

Relationship Extraction based on Category of Medical Concepts from Lexical Contexts
Anupam Mondal, Dipankar Das and Sivaji Bandyopadhyay . 212

Sinhala Word Joiner
Rajith Priyanga, Surangika Ranatunga and Gihan Dias . 220

Supervised Methods For Ranking Relations In Web Search
Sumit Asthana and Asif Ekbal . 227

Malayalam VerbFrames
Jisha P Jayan, Asha S Nair and Govindaru V . 236

Hindi Shabdamitra: A Wordnet based E-Learning Tool for Language Learning and Teaching
Hanumant Redkar, Sandhya Singh, Dhara Gorasia, Meenakshi Somasundaram, Malhar Kulkarni

and Pushpak Bhattacharyya . 245

xii

”A pessimist sees the difficulty in every opportunity; an optimist sees the opportunity in every difficulty”
– Understanding the psycho-sociological influences to it

Updendra Kumar, Vishal Kumar Rana, Srinivas Pykl and Amitava Das. .255

End to End Dialog System for Telugu
Prathyusha Danda, Prathyusha Jwalapuram and Manish Shrivastava . 265

Investigating how well contextual features are captured by bi-directional recurrent neural network mod-
els

Kushal Chawla, Sunil Kumar Sahu and Ashish Anand. .273

Correcting General Purpose ASR Errors using Posteriors
Sunil Kumar Kopparapu and C. Anantaram . 283

Retrieving Similar Lyrics for Music Recommendation System
Braja Gopal Patra, Dipankar Das and Sivaji Bandyopadhyay . 290

Unsupervised Morpheme Segmentation Through Numerical Weighting and Thresholding
Joy Mahapatra and Sudip Kumar Naskar . 298

Experiments with Domain Dependent Dialogue Act Classification using Open-Domain Dialogue Cor-
pora

Swapnil Hingmire, Apoorv Shrivastava, Girish Palshikar and Saurabh Srivastava 305

Normalization of Social Media Text using Deep Neural Networks
Ajay Shankar Tiwari and Sudip Kumar Naskar . 312

Acronym Expansion: A General Approach Using Deep Learning
Aditya Thakker, Suhail Barot and Sudhir Bagul . 322

Exploring an Efficient Handwritten Manipuri Meetei-Mayek Character Recognition Using Gradient
Feature Extractor and Cosine Distance Based Multiclass k-Nearest Neighbor Classifier

Kishorjit Nongmeikapam, Wahengbam Kumar and Mithlesh Prasad Singh 328

A Modified Cosine-Similarity based Log Kernel for Support Vector Machines in the Domain of Text
Classification

Rajendra Kumar Roul and Kushagr Arora . 338

Document Embedding Generation for Cyber-Aggressive Comment Detection using Supervised Machine
Learning Approach

Shylaja S S, Abhishek Narayanan, Abhijith Venugopal and Abhishek Prasad 348

Coarticulatory propensity in Khalkha Mongolian
Ushashi Banerjee, Indranil Dutta and Irfan S . 356

Developing Lexicon and Classifier for Personality Identification in Texts
Kumar Gourav Das and Dipankar Das . 362

Linguistic approach based Transfer Learning for Sentiment Classification in Hindi
Vartika Rai, Sakshee Vijay and Dipti Misra . 373

xiii

Scalable Bio-Molecular Event Extraction System towards Knowledge Acquisition
Pattabhi Rk Rao, Sindhuja Gopalan and Sobha Lalitha Devi . 383

Co-reference Resolution in Tamil Text
Vijay Sundar Ram and Sobha Lalitha Devi . 392

Cross Linguistic Variations in Discourse Relations among Indian Languages
Sindhuja Gopalan, Lakshmi S and Sobha Lalitha Devi . 402

RULE BASED APPROCH OF CLAUSE BOUNDARY IDENTI-FICATION IN TELUGU
Ganthoti Nagaraju, Thennarasu Sakkan and Christopher Mala . 408

Keynote Lecture 3: Towards Abstractive Summarization
Vasudeva Varma . 417

”Who Mentions Whom?”- Understanding the Psycho-Sociological Aspects of Twitter Mention Network
R Sudhesh Solomon, Abhay Narayan, Srinivas P Y K L and Amitava Das 418

Study on Visual Word Recognition in Bangla across Different Reader Groups
Manjira Sinha and Tirthankar Dasgupta . 427

Demystifying Topology of Autopilot Thoughts: A Computational Analysis of Linguistic Patterns of Psy-
chological Aspects in Mental Health

Bibekananda Kundu and Sanjay Choudhury . 435

A Deep Dive into Identification of Characters from Mahabharata
Apurba Paul and Dipankar Das . 447

Neural Networks for Semantic Textual Similarity
Derek Prijatelj, Jugal Kalita and Jonathan Ventura . 456

Open Set Text Classification using Convolutional Neural Networks
Sridhama Prakhya, Vinodini Venkataram and Jugal Kalita . 466

Predicting User Competence from Linguistic Data
Yonas Woldemariam, Henrik Björklund and Suna Bensch . 476

Neural Morphological Disambiguation Using Surface and Contextual Morphological Awareness
Akhilesh Sudhakar and Anil Kumar Singh . 485

Word Sense Disambiguation for Malayalam in a Conditional Random Field Framework
Junaida M K, Jisha P Jayan and Elizabeth Sherly . 495

Semisupervied Data Driven Word Sense Disambiguation for Resource-poor Languages
Pratibha Rani, Vikram Pudi and Dipti M. Sharma . 503

Notion of Semantics in Computer Science - A Systematic Literature Review
Sai Prasad Vrj Gollapudi and Venkatesh Choppella . 513

Semantic Enrichment Across Language: A Case Study of Czech Bibliographic Databases
Pavel Smrz and Lubomir Otrusina . 523

xiv

Conference Program

Tuesday, December 19, 2017

+ 9:00-9:30 Inaugural Ceremony

+ 9:30-10:30 Keynote Lecture 1 by Prof. Bjom W. Schuller

Keynote Lecture 1: NLP in Tomorrow’s Profiling - Words May Fail You
Björn W. Schuller

+ 10:30-11:00 Tea Break

+ 11:00-13:00 Technical Session I: Machine Translation and Speech:

Deriving Word Prosody from Orthography in Hindi
Somnath Roy

Three-phase training to address data sparsity in Neural Machine Translation
Ruchit Agrawal, Mihir Shekhar and Dipti Sharma

Reference Scope Identification for Citances Using Convolutional Neural Networks
Saurav Jha, Aanchal Chaurasia, Akhilesh Sudhakar and Anil Kumar Singh

A vis-à-vis evaluation of MT paradigms for linguistically distant languages
Ruchit Agrawal, Jahfar Ali and Dipti Misra Sharma

+ 11:00-13:00 Technical Session II : Text Categorization:

Textual Relations and Topic-Projection: Issues in Text Categorization
Lahari Chatterjee, Samir Karmakar and Abahan Datta

POS Tagging For Resource Poor Languages Through Feature Projection
Pruthwik Mishra, Vandan Mujadia and Dipti Misra Sharma

An Exploration of Word Embedding Initialization in Deep-Learning Tasks
Tom Kocmi and Ondrej Bojar

xv

Tuesday, December 19, 2017 (continued)

+ 11:00-13:00 Technical Session III : Parsing Code-mixed Data:

Curriculum Design for Code-switching: Experiments with Language Identification and
Language Modeling with Deep Neural Networks
Monojit Choudhury, Kalika Bali, Sunayana Sitaram and Ashutosh Baheti

Quantitative Characterization of Code Switching Patterns in Complex Multi-Party Con-
versations: A Case Study on Hindi Movie Scripts
Adithya Pratapa and Monojit Choudhury

Towards Normalising Konkani-English Code-Mixed Social Media Text
Akshata Phadte and Gaurish Thakkar

Towards developing a phonetically balanced code-mixed speech corpus for Hindi-English
ASR
Ayushi Pandey, Brij Mohan Lal Srivastava and Suryakanth Gangashetty

+ 13:00-14:00 Lunch

+ 14:00-15:00 Keynote Lecture 2 by Prof. NG Hwee Tou

Keynote Lecture 2: Grammatical Error Correction: Past, Present and Future
NG Hwee Tou

+ 15:00-16:30 Technical Session IV : Information Extraction:

Hybrid Approach for Marathi Named Entity Recognition
Nita Patil, Ajay Patil and B.V. Pawar

Sentiment Analysis: An Empirical Comparative Study of Various Machine Learning Ap-
proaches
Swapnil Jain, Shrikant Malviya, Rohit Mishra and Uma Shanker Tiwary

xvi

Tuesday, December 19, 2017 (continued)

+ 15:00-16:30 Technical Session V : Discourse and Dialogue:

Handling Multi-Sentence Queries in a Domain Independent Dialogue System
Prathyusha Jwalapuram and Radhika Mamidi

Document Level Novelty Detection: Textual Entailment Lends a Helping Hand
Tanik Saikh, Tirthankar Ghosal, Asif Ekbal and Pushpak Bhattacharyya

Is your Statement Purposeless? Predicting Computer Science Graduation Admission Ac-
ceptance based on Statement Of Purpose
Diptesh Kanojia, Nikhil Wani and Pushpak Bhattacharyya

+ 15:00-16:30 Technical Session VI : Lexical Analysis:

Natural Language Programing with Automatic Code Generation towards Solving
Addition-Subtraction Word Problems
Sourav Mandal and Sudip Kumar Naskar

Unsupervised Separation of Transliterable and Native Words for Malayalam
Deepak P

Known Strangers: Cross Linguistic Patterns in Multilingual Multidirectional Dictionaries

Rejitha K. S. and Rajesha N.

+ 16:30-17:30 Tea Break

+ 16:30-17:30 Poster and Demo Session-I:

Tutorial for Deaf – Teaching Punjabi Alphabet using Synthetic Animations
Lalit Goyal and Vishal Goyal

SemTagger: A Novel Approach for Semantic Similarity Based Hashtag Recommendation
on Twitter
Kuntal Dey, Ritvik Shrivastava, Saroj Kaushik and L. Venkata Subramaniam

Reasoning with Sets to Solve Simple Word Problems Automatically
Sowmya S Sundaram and Deepak Khemani

Improving NER for Clinical Texts by Ensemble Approach using Segment Representations
Hamada Nayel and H L Shashirekha

xvii

Tuesday, December 19, 2017 (continued)

Beyond Word2Vec: Embedding Words and Phrases in Same Vector Space
Vijay Prakash Dwivedi and Manish Shrivastava

Relationship Extraction based on Category of Medical Concepts from Lexical Contexts
Anupam Mondal, Dipankar Das and Sivaji Bandyopadhyay

Sinhala Word Joiner
Rajith Priyanga, Surangika Ranatunga and Gihan Dias

Supervised Methods For Ranking Relations In Web Search
Sumit Asthana and Asif Ekbal

Malayalam VerbFrames
Jisha P Jayan, Asha S Nair and Govindaru V

Hindi Shabdamitra: A Wordnet based E-Learning Tool for Language Learning and Teach-
ing
Hanumant Redkar, Sandhya Singh, Dhara Gorasia, Meenakshi Somasundaram, Malhar
Kulkarni and Pushpak Bhattacharyya

”A pessimist sees the difficulty in every opportunity; an optimist sees the opportunity in
every difficulty” – Understanding the psycho-sociological influences to it
Updendra Kumar, Vishal Kumar Rana, Srinivas Pykl and Amitava Das

End to End Dialog System for Telugu
Prathyusha Danda, Prathyusha Jwalapuram and Manish Shrivastava

Investigating how well contextual features are captured by bi-directional recurrent neural
network models
Kushal Chawla, Sunil Kumar Sahu and Ashish Anand

Correcting General Purpose ASR Errors using Posteriors
Sunil Kumar Kopparapu and C. Anantaram

Retrieving Similar Lyrics for Music Recommendation System
Braja Gopal Patra, Dipankar Das and Sivaji Bandyopadhyay

Unsupervised Morpheme Segmentation Through Numerical Weighting and Thresholding
Joy Mahapatra and Sudip Kumar Naskar

xviii

Tuesday, December 19, 2017 (continued)

Experiments with Domain Dependent Dialogue Act Classification using Open-Domain
Dialogue Corpora
Swapnil Hingmire, Apoorv Shrivastava, Girish Palshikar and Saurabh Srivastava

Normalization of Social Media Text using Deep Neural Networks
Ajay Shankar Tiwari and Sudip Kumar Naskar

Acronym Expansion: A General Approach Using Deep Learning
Aditya Thakker, Suhail Barot and Sudhir Bagul

Exploring an Efficient Handwritten Manipuri Meetei-Mayek Character Recognition Using
Gradient Feature Extractor and Cosine Distance Based Multiclass k-Nearest Neighbor
Classifier
Kishorjit Nongmeikapam, Wahengbam Kumar and Mithlesh Prasad Singh

A Modified Cosine-Similarity based Log Kernel for Support Vector Machines in the Do-
main of Text Classification
Rajendra Kumar Roul and Kushagr Arora

Document Embedding Generation for Cyber-Aggressive Comment Detection using Super-
vised Machine Learning Approach
Shylaja S S, Abhishek Narayanan, Abhijith Venugopal and Abhishek Prasad

Coarticulatory propensity in Khalkha Mongolian
Ushashi Banerjee, Indranil Dutta and Irfan S

Developing Lexicon and Classifier for Personality Identification in Texts
Kumar Gourav Das and Dipankar Das

Linguistic approach based Transfer Learning for Sentiment Classification in Hindi
Vartika Rai, Sakshee Vijay and Dipti Misra

Scalable Bio-Molecular Event Extraction System towards Knowledge Acquisition
Pattabhi Rk Rao, Sindhuja Gopalan and Sobha Lalitha Devi

Co-reference Resolution in Tamil Text
Vijay Sundar Ram and Sobha Lalitha Devi

Cross Linguistic Variations in Discourse Relations among Indian Languages
Sindhuja Gopalan, Lakshmi S and Sobha Lalitha Devi

xix

Tuesday, December 19, 2017 (continued)

RULE BASED APPROCH OF CLAUSE BOUNDARY IDENTI-FICATION IN TELUGU
Ganthoti Nagaraju, Thennarasu Sakkan and Christopher Mala

+ 17:30-19:30 NLPAI Meeting

+ 19:00-20:00 Cultural Programme

+ 20:00-Onwards Dinner

Wednesday, December 20, 2017

+ 9:30-10:30 Keynote Lecture 3 by Vasudeva Varmaa

Keynote Lecture 3: Towards Abstractive Summarization
Vasudeva Varma

+ 10:30-11:00 Tea Break

+ 11:00-13:00 Technical Session VII: Socio-Psycho Text Analysis: Emerging Trends

”Who Mentions Whom?”- Understanding the Psycho-Sociological Aspects of Twitter
Mention Network
R Sudhesh Solomon, Abhay Narayan, Srinivas P Y K L and Amitava Das

Study on Visual Word Recognition in Bangla across Different Reader Groups
Manjira Sinha and Tirthankar Dasgupta

Demystifying Topology of Autopilot Thoughts: A Computational Analysis of Linguistic
Patterns of Psychological Aspects in Mental Health
Bibekananda Kundu and Sanjay Choudhury

A Deep Dive into Identification of Characters from Mahabharata
Apurba Paul and Dipankar Das

xx

Wednesday, December 20, 2017 (continued)

+ 11:00-13:00 Technical Session VIII: Deep Neural Networks:

Neural Networks for Semantic Textual Similarity
Derek Prijatelj, Jugal Kalita and Jonathan Ventura

Open Set Text Classification using Convolutional Neural Networks
Sridhama Prakhya, Vinodini Venkataram and Jugal Kalita

Predicting User Competence from Linguistic Data
Yonas Woldemariam, Henrik Björklund and Suna Bensch

Neural Morphological Disambiguation Using Surface and Contextual Morphological
Awareness
Akhilesh Sudhakar and Anil Kumar Singh

+ 11:00-13:00 Technical Session IX: Semantics:

Word Sense Disambiguation for Malayalam in a Conditional Random Field Framework
Junaida M K, Jisha P Jayan and Elizabeth Sherly

Semisupervied Data Driven Word Sense Disambiguation for Resource-poor Languages
Pratibha Rani, Vikram Pudi and Dipti M. Sharma

Notion of Semantics in Computer Science - A Systematic Literature Review
Sai Prasad Vrj Gollapudi and Venkatesh Choppella

Semantic Enrichment Across Language: A Case Study of Czech Bibliographic Databases
Pavel Smrz and Lubomir Otrusina

xxi

Wednesday, December 20, 2017 (continued)

+ 13:00-14:00 Lunch Break

+ 14:00-15:00 Industry Talk

+ 15:00-15:30 Tea Break

+ 15:30-17:00 Technical Session X: Student Paper Contest

+ 15:30-17:00 Technical Session XI: NLP Tools Contest

+ 17:00-17:30 Valedictory Session

xxii

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, page 1

Keynote Lecture-1

NLP in Tomorrow’s Profiling - Words May Fail You

Björn W. Schuller
University of Augsburg, Germany

1

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 2–12

Deriving Word Prosody from Orthography in Hindi

Somnath Roy
Centre for Linguistics

Jawaharlal Nehru University
New Delhi-110067

somnathroy86@gmail.com

Abstract

This study proposes a word prosody
converter (WPC), which takes Hindi
grapheme as input and yields output as
a sequence of phonemes with syllable
boundaries and stress mark. The WPC
has two submodules connected in the lin-
ear fashion. The first submodule is a
grapheme to phoneme (G2P) converter.
The output of G2P converter is fed to the
second submodule which is for prosody
specific job. The second submodule con-
sists of two finite state machines (FSMs).
The first FSM does the syllabification and
the second assigns prosodic labels to the
syllabified strings. The prosodic labels
are translated into the stressed and un-
stressed component using rules specific to
the language. This study proposes a novel
rule-based system which uses non-linear
phonological rules with the provision of
recursive foot structure for G2P conver-
sion and prosodic labeling. The imple-
mentation1 of the proposed rules outper-
forms the G2P models trained on the state
of the art data-driven techniques such as
joint sequence model (JSM) and LSTM.

1 Introduction

A dictionary is an essential component of a text-
to-speech (TTS) and an automatic speech recog-
nition (ASR) system. These systems are of open
nature and can have an input word which is not
present in the dictionary. Such input words are
called out-of-vocabulary (OOV) words. There-
fore, a G2P converter is required, which can gen-
erate the pronunciation of the OOV words. A G2P
converter can be a rule-based or data driven sys-
tem. A rule-based G2P converter relies on the

1https://github.com/somnat/Hindi-Word-Prosody-Hindi-
G2P

expert knowledge (i.e., the rule-set designed by
an expert). However, these rule-sets may not be
exhaustive for capturing many language-specific
properties such as word morphology and stress
pattern (Pagel et al., 1998).Therefore, researchers
nowadays rely on state-of-the art machine learn-
ing (data-driven) techniques for developing a G2P
model. A data-driven system is trained using a
manually annotated dataset. The manually anno-
tated dataset contains words and its phonemic se-
quence. These datasets are language specific in
nature. The machine learning algorithm learns the
phonemic sequence for words based on the prob-
abilistic or geometric calculation. These calcu-
lation varies across machine learning approaches.
In data-driven approaches, one need not to worry
about the language specific complexities such as
word morphology and stress pattern. The algo-
rithm automatically captures these patterns in the
generated model. A data-driven G2P conversion
process is broadly categorized into three subpro-
cesses i) Sequence alignment ii) Model training
and iii) Decoding (for details see (Novak et al.,
2012)). Many data-driven techniques are available
for G2P conversion. The important ones are deci-
sion tree (Black et al., 1998), Conditional Random
Field (Wang and King, 2011), Hidden Markov
Model (Taylor, 2005), Joint-Sequence techniques
(Bisani and Ney, 2008) and Recurrent Neural Net-
work (Rao et al., 2015).

The function of a word prosody model is simi-
lar to that of a grapheme to phoneme (G2P) con-
verter. Moreover, it also describes syllable bound-
aries and predict stressed syllables in a word.
The schematic diagram of word prosody model
is shown in Fig 1. The accuracy of a word
prosody module for Hindi language depends on
an efficient solution of the two sub-problems well-
known in Hindi phonology as schwa deletion
and pronunciation of diacritic marks anusvara and
anunasika (Ohala, 1983; Pandey, 1989; Pandey,

2

Figure 1: Schematic Diagram of Word Prosody
Model

1990; Narasimhan et al., 2004; Pandey, 2014).
Ohala used linear phonological rules to derive sur-
face phonemic form. Pandey showed the superior-
ity of non-linear phonological rules over the linear
one. The motivation for the current work is stated
below.

a. In the past, Hindi G2P converters were imple-
mented in the context of speech synthesis (Bali et
al., 2004), (Narasimhan et al., 2004) and (Choud-
hury, 2003). However, these works have given
partial attention to the anusvara/anunasika disam-
biguation. (Pandey, 2014) describes it as the prob-
lem of Hindi orthography.

b. These G2P converters are based on lin-
ear phonological rules proposed by (Ohala, 1983)
with the exception of (Pandey, 2014). Non-linear
phonological rules have advantages over linear
one as explained below. (Bernhardt and Gilbert,
1992).

i. Non-linear rules capture both the prosodic
and segmental information.

ii. The hierarchical representation used in non-
linear framework captures more information; this
results in a compact rule set.

c. Syllable is known to be a better unit for Hindi
speech synthesis (Bellur et al., 2011; Kishore and
Black, 2003). Therefore, a Hindi text-to-speech
(TTS) system needs an automatic syllabification
module. The automatic syllabification would be
more useful if it could also predict the stressed
syllables in words of natural speech as this would
facilitate synthesis.

d. The usefulness of syllable as the basic lin-
guistic unit in the context of speech recognition
system has been explored in English (Ganapathi-
raju et al., 2001) and Tamil (Lakshmi and Murthy,
2006). Similar work for Hindi requires a software
for syllabification. This work fulfills that need.

1.1 Main Contributions
• The WPC does not require the information

of morphological boundaries. The proposed
rules take into account the syllable patterns of
compound, derived and inflected words.

• The syllabification and syllable labeling pro-
cess follow finite state machine. The faultless
syllabification and syllable labeling at under-
lying phonemic form yields better accuracy
in schwa deletion and pronunciation of di-
acritic—anusvara and anunasika. The syl-
labification at underlying phonemic form is
called as I-level syllabification in this work.

• The rules proposed in this study assume the
extrametricality of foot unlike syllable as pro-
posed in (Pandey, 2014). The contention
is that the stress can be predicted elegantly
using the notion of extrametrical foot (Mc-
Carthy and Prince, 1990; Crowhurst, 1994) .
Also, the directionality is LR (left to right)
unlike RL (right to left) used in (Pandey,
2014).

• Anusvara and anunasika are used inter-
changeably in Hindi. Therefore, both anus-
vara and anunasika is mapped to a hypothet-
ical phoneme X at the underlying phonemic
form. The decision for homo-organic nasal
consonant or a nasalized vowel for phoneme
X is based on the minimum moraic weight
difference of the syllable having phoneme X
and the next syllable. The moraic weight
difference is calculated after schwa deletion
and re-syllabification. The proposed map-
ping rule almost removes the pronunciation
ambiguity related to anusvara and anunasika.

Rest of this paper is organized as follows. Sec-
tion 2 describes the salient points of metrical
phonology relevant to this work. Section 3 de-
scribes the process of syllabification and sylla-
ble labeling. Section 4 describes foot forma-
tion. Section 5 describes schwa deletion and re-
syllabification. Section 6 describes the observa-

3

tions and rules for the anusvara and anunasika pro-
nunciation. Section 7 describes the data-driven
G2P systems implemented for Hindi. Section 8
compares the performance of current system to
data-driven systems and previous rule-based im-
plementations. Section 9 describes the rules for
the prediction of the stressed syllables and reports
the accuracy of current system for syllabification
and stress prediction. The conclusion and limita-
tions are written in Section 10.

2 Theoretical Background

Metrical phonology is based on nonlinear arrange-
ment of the constituents of a phrase (Liberman and
Prince, 1977; Selkirk, 1980; Hayes, 1980; Selkirk,
1986; Hayes, 1995; Apoussidou, 2006). The non-
linear arrangement is realized in the form of a tree
with nodes as the constituents of a phrase. The
constituents are syllable, foot, phonological word,
phonological phrase and intonational phrase. Syl-
lable is the lowest unit in the hierarchy dominated
by foot, which in turn is dominated by a phono-
logical word. The higher units such as phonolog-
ical phrase and intonational phrase are not rele-
vant in the current work (for clarity see fig 4 -
9). Syllable functions as a domain for segmen-
tal phonological rules. In non-linear phonology,
the rules are written on the basis of interaction
among syllables under the domain of higher con-
stituents. A syllable has obligatory rhyme and op-
tional coda. The syllables are also described by
the moraic weight in quantity-sensitive languages
such as Hindi (Pandey, 1989). Foot as a domain
is used for describing stress and re-syllabification
due to deletion of segment like schwa in languages
such as French and Hindi. The foot is used as
a musical meter and the concept is borrowed to
non-linear phonology as a constituent (Selkirk,
1980; Hayes, 1995). Most of the quantity sensi-
tive languages have binary foot, but some also al-
low degenerate foot. A binary foot is erected on
either two syllables or on a single syllable hav-
ing at least two moras. A single syllable hav-
ing one mora, if projected as a foot, is called de-
generate foot (Liberman and Prince, 1977; Hayes,
1995).Phonological word, also known as prosodic
word, is a constituent unit of prosodic hierarchy
above syllables or foot and below phonological
phrases. Prosodic word is non-isomorphic to the
grammatical word and the boundary of the former
aligns with the morpho-syntactic boundary (Hall

and Kleinhenz, 1999).

3 I-Level Syllabification

I-level syllabification is derived from the under-
lying phonemic form (UPF), which in turn is de-
rived from orthography using the following map-
ping rules.

i. Each consonant in Devanagari script is inher-
ently associated with the mid-central vowel called
schwa or its lower counterpart ”a”2.

ii. If a consonant is followed by a vowel dia-
critic mark, or a diacritic called halant, the inher-
ent schwa is deleted.

iii. The inherent schwa is not realized in case of
consonant at word final position.

iv. Two or three consonant together can form a
ligature.

v. A short vowel at word final position is length-
ened.

The following examples illustrate derivation of
UPF from orthography:

/kml/→ k@m@l (Lotus)
/kmAl/→ k@ma:l
The process of syllabification in Hindi was

explored by (Ohala, 1983) and (Pandey, 1989;
Pandey, 2014). Their analysis do not talk about
the maximal onset principle for syllabification.
The present analysis for syllabification follows
maximum onset principle (Selkirk, 1984; Selkirk,
1981). The maximum onset principle is a suffi-
ciency condition as demonstrated by the following
examples.

i. m� (y\�jy (A name)→ [mri] [tjun] [dZ@j]
→ *[mrit][jun][dZ@j]
→ *[mritj][un][dZ@j]
→ *[mrit][jundZ][@j]

ii. kb� tr (Pigeon)→ [k@] [bu] [t@r]
→ *[k@b] [ut] [@r]
→ *[k@] [but] [@r]

In the above examples, the right hand side
shows the potential syllable structures for a word.
The square bracket denotes the syllable boundary.
An asterisk before the syllable structure indicates
that this potential syllable sequence is incorrect.
The above examples show that either onsets are
maximized or is equal to number of coda conso-
nants for correct syllabification. It implies that the
maximum onset principle hold for syllabification

2Hindi graphemes and its corresponding phoneme using
international phonetic alphabet (IPA) and Roman symbols are
described in Table 10.

4

in Hindi. Based on many such examples, follow-
ing regular expressions are proposed for syllabifi-
cation in Hindi.

i. v→ [v]
ii. vv→ [v][v]
iii. c*vcv→ [c* v] [cv]
iv. c*vc1cv→ [c*vc1] [cv]
v. c*vc1c2v→ [c*v] [c1c2v]
vi. c*vc1c1v→ [c*vc1] [c1v]
vii. c*vc2c2v→ [c*vc2] [c2v]
viii. c*vcccv→ [c*vc] [ccv]
In the above expressions, v denotes a vowel,

”c1” denotes a stop consonant, ”c2” represents a
semivowel (r, l, v, j) and ”c” at intervocalic po-
sition denotes a consonant that is neither a stop
nor a semivowel but can be any consonant at
non-intervocalic position. An asterisk denotes the
kleene star.

The finite state machine for the I-level syllabifi-
cation is shown in Figure 2. It contains seventeen
states with the start state as I and the final state
as F. The orthography of an input word is translit-
erated into a sequence of consonants and vowels.
The 8 syllabification rules are applied to this se-
quence to derive a symbol sequence in terms of c,
c1, c2 and v. The symbol sequence is the input
to the FSM in Figure 1. An arc between a pair of
states in FSM is associated with a label (a pair
of symbols seperated by ”/”). Suppose the symbol
pair associated with an arc is ”x/y”. This indicates
that whenever a symbol ”x” is fed to the state at the
beginning of the arc, the system makes a transition
along the arc and outputs the symbol ”y”. The la-
bel e/e symbolizes null input and null output for a
transition. If part of a symbol string reaches to the
final state F, then it is consumed, and a transition
from F to I with arc label e/b takes place, where e
is null and b denotes the syllable boundary of the
consumed string. The remaining part of the string
repeats the same process from initial state I until
everything is consumed.

3.1 Syllable Labeling

Hindi is a quantity sensitive language. There-
fore, syllables in Hindi are also described based
on an attribute called syllable weight or moraic
weight (Hayes, 1980; Pandey, 1989). A phonetic,
phonological and typological description of sylla-
ble weight can be found in (Gordon, 2007). The
following rules are used for label syllables based
on syllable weights (for examples, see Table 1).

Figure 2: Finite State Machine for Syllabification

i. Each short vowel (like @,u,i) and each coda
consonant of a syllable are assigned a weight of
one mora, while a long vowel (like a:,u:,i:) is as-
signed a weight of two moras.

ii. The syllables with one, two and three moras
are called weak (w), heavy (h) and superheavy
(sh) syllables respectively (Pandey, 1989; Hayes,
1989; Pandey, 1990).

Sylable Weight Syllable Label Gloss
1 [ki]w that
2 [m@n]h soul
3 [ga:l]sh cheek

Table 1: Syllable labels according to syllable
Weight

A finite state machine for syllable labeling is
shown in Figure 3. The machine consists of one
initial state (state I), seven non-final states and
three final states (F1, F2 and F3). The syllabi-
fied string (i.e, the syllable boundary marked as
b) is given as input to the initial state. Since, each
short vowel gets one mora and long vowels get two
moras, therefore, vowel type distinction is essen-
tial at syllable labeling stage. Each coda conso-
nants get one mora and the onset consonants do
not contribute to the moraic weight of syllables in
Hindi. Therefore, consonant type distinction is not
required at this stage. The symbol c, v s and v l
stand for consonants, short vowels and long vow-
els respectively. The output symbol along an arc
is either a syllable label or the reflection of the in-
put itself. There is a null transition from each fi-

5

nal state to the initial state so that the process can
be repeated for the remaining part of the string.
The FSM assigns the label ”w” to a syllable with
phoneme sequences v s, cv s, ccv s, ccc*v s and
”h” to v sc , c*v sc, c*v l, and ”sh” to c*v scc,
c*v lc.

Figure 3: Finite State Machine for Syllable Label-
ing

4 Foot Formation

The concept of foot or feet is brought to linguistic
from poetry. The notion of foot work as a metric
to define stress pattern in a language (Jakobson,
1960). Moreover, foot also plays an important role
in resyllabification due to deletion of a segment
(Selkirk, 1996). In this section, a new approach
of foot formation is described for Hindi. The ap-
proach is based on three assumptions and six rules.
The rules apply in the direction from left to right.

4.1 Assumptions
i. Foot is formed using the labeled syllables of a
word. The process of syllable labeling is described
in the section 3.

ii. Foot is either binary branching or projected
on at least a bimoraic syllable.

iii. A superfoot is formed either between a syl-
lable and a foot, or between two foot.

4.2 Rules
The six rules for foot formation are listed below.

i. Weak to Weak Affinity Rule (WWAR): Two
adjacent weak syllables form a binary foot and re-
sults into a bimoraic foot as shown in the Figure 4.

The foot <
∑

s>is the extra metrical foot, which
never bears any stress.

Figure 4: Bimoraic binary foot

ii. Heavy to Weak Affinity Rule (HWAR):
A heavy and a weak adjacent syllables form tri-
moraic binary foot as shown in the Figure 5.

Figure 5: Trimoraic foot

iii. Weak to Heavy Affinity Rule (WHAR): This
kind of foot is either formed in bisyllabic Hindi
words or in loan words as shown in the Figure 6.

Figure 6: Trimoraic foot

iv. Heavy to Heavy Affinity Rule (HHAR): Two
adjacent heavy syllables also form a binary foot as
shown in the Figure 7.

v. Superheavy to Others Affinity Rule (SOAR):
The superheavy syllables always projected as a
foot as shown in Figure 7. The superfoot (

∑
s) is

formed using one syllable and one foot. The pro-
jected foot constituent in

∑
s could be either a new

syllable after schwa deletion as shown in Figure 4
or a syllable which inherently bear stress i.e., the
superheavy syllable as shown in Figure 8.

vi. List Affinity Rule (LAR): LAR is devised
for handling words having same syllable structure
at underlying phonemic form but realized differ-
ently at surface level. Such overlapping cases are
stored in different list (usually different spread-
sheets) and different foot formation rules are ap-
plied to these lists. The foot formation rules shown
in Figure 9 describe four cases with overlapping
syllable structure. These four cases represent four
different list of words. These rules are called

6

Figure 7: Heavy syllables forming a foot

Figure 8: Superheavy syllables forming foot

as affinity hierarchy rules. The word affinity de-
scribes the interaction between different or similar
type of syllables. The word ’hierarchy’ is used be-
cause these rules apply in the order of their height.
The top rule in the hierarchy applies first and so
on. The decreasing order of height of these rules
are LAR>WWAR >HWAR >WHAR >HHAR
>SOAR.

5 Schwa Deletion and Resyllabification

Schwa deletion is an optional phenomena in
Hindi. This means that schwa can be deleted or
retained in the same environment, and the choice
solely depends on the speaker and the context be-
ing used. Schwa deletion phenomena in Hindi
helps speakers to utter a word quickly, i.e., the pro-
cess of schwa deletion reduces the overall effort in
terms of duration. It enables stress shift from one
syllable to other. The following rules describe the
contexts in which schwa gets deleted.

i. @→ Φ/[σw − σw]∑

ii. @→ Φ/[σh − σw]∑

iii. @→ Φ/[σsh − σw]∑

In other words, if the right most node of a foot
is a weak syllable having schwa then schwa can
be deleted.Application of the above schwa dele-
tion (SD) rules and consequent re-syllabification
of exemplar words are shown in Table 3. The pro-
cess of schwa deletion and re-syllabification occur
at foot level. In the process of re-syllabification,
the bare consonant(s) after schwa deletion are as-
signed as coda consonant(s) to the preceding syl-
lable. The foot structure for the examples in Table
2 can be found in the Section 4.

Figure 9: Examples of words with same syllable
structure but different foot formation

UPF SD Resyllab Gloss
k@m@la: k@mla: [k@m][la:] A Name
l@r@k@p@n l@r@kp@n [l@][r@k][p@n] Childhood
ka:m@na: ka:mna: [ka:m] [na:] Wish
lo:k@s@bha: lo:ks@bha: [lo:k][s@][bha:] Parliament
s@ph@l@ta: s@ph@lta: [s@] [ph@l] [ta:] Success

Table 2: Examples of word re-syllabification (Re-
syllab) after applying schwa deletion (SD) to un-
derlying phonemic form (UPF)

6 Anusvara and Anunasika
Pronunciation

Over the past, researchers have ignored the ambi-
guities in the pronunciation of anusvara/anunasika
for G2P conversion. A simple finite state trans-
ducer for anusvara and anunasika is proposed by
(Choudhury, 2003). (Pandey, 2014) says that the
pronunciation ambiguities in anusvara/anunasika
can be solved by preparing an exhaustive list of
irregular cases. He further advocates the need for
revision in the orthography to get rid of these ir-
regular cases. However, not only in superscripted
vowel diacritics as described in (Pandey, 2014),
but in general, the present day Devanagari uses
bindu and chandrabindu interchangeably. Some
such examples are shown below in Table 3. The
process of mapping anusvara and anunasika to ap-
propriate phoneme is based on the observations
and rules described below. The proposed ap-
proach maps both bindu and chandrabindu to the
same phoneme X at the underlying phonological
level. A single phoneme X for both anusvara
and anunasika at underlying phonological level
correctly captures the phonological structure of a
word. The use of single phoneme X transforms
the co-domain of the function G2P:A→ B and it
becomes a one-to-one function from many-to-one

7

function as shown in Fig. 10 and Fig.11 . The
disambiguation rules apply on the phoneme X.
Hence, these rules perform better for the words
with identical use of bindu and chandrabindu.
Moreover,The proposed approach uses both supra-
segmental and segmental phonological constraints
for anusvara/anunasika disambiguation.

Figure 10: One-to-many mapping due to the iden-
tical use of anusvara and anunasika

Figure 11: The use of phoneme X transform the
codomain of G2P function. It becomes one-to-one
function.

6.1 Observations

• Nasalization of vowel (NV) does not change
the moraic weight of a syllable while
the homo-organic nasal (HN) increases the
moraic weight of a syllable by one unit.

• A syllable having phoneme for either anus-
vara or anunasika always tries to keep mini-
mum moraic weigth difference with its suc-
ceeding syllable.

6.2 Rules

• Initially both anusvara and anunasika is
mapped to phoneme, say, X. The moraic
weight of X is assumed as one unit.

• The decision of using NV or HN is based on
the comparison of moraic weight between the
syllable to be mapped for NV/HN and the
syllable succeeding to it.

– If the moraic weight of the syllable con-
taining phoneme X is greater than that of
the next syllable, then replace the vowel
and phoneme X by the corresponding
NV.

– If the moraic weight of the syllable con-
taining phoneme X is less than or equal
to that of the next syllable, then replace

the phoneme X by the HN correspond-
ing to the following phoneme.

• If the word final syllable contains the
phoneme X at the last coda position then
nasalize the vowel preceding X and delete X.

• If the word final syllable contains the
phoneme X at non-final position and fol-
lowed by a tS, tSh, dZ and dZh then nasalize
the vowel preceding X and delete X. Other-
wise replace X by HN corresponding to the
following phoneme.

Table 4 and 5 show examples of application of
the above written rules for phonemic realization of
anusvara and anunasika. In Table 4, the acronym
Syllab denotes the syllable division and Mw de-
notes the moraic weight of syllables in the ordered
pair.

7 Data Driven G2P Systems for Hindi

Two data-driven G2P models are trained on an
expert annotated training lexicon of size 26454
words. These words are extracted from BBC
Hindi. The first model is a joint sequence
(JS) based G2P model trained using the sequitur
(Bisani and Ney, 2008) toolkit. The second G2P
model is a bidirectional deep LSTM model. The
model configuration is same as reported in (Rao
et al., 2015). Three forward and three backward
hidden layers with 256 nodes at each layer is used.
The output layer is a connectionist temporal clas-
sification (CTC) (Graves et al., 2006) layer and the
error function is softmax.

8 Results

The publicly accessible Hindi wordnet (Bhat-
tacharyya, 2010) is used for the testing pur-
pose. The wordnet is first cleaned i.e., digits, hy-
phen and other special characters are removed.
Long words especially compounds, derived and
inflected words are picked up from different lex-
ical categories like Noun, Verb, Adjective and
Adverbs. The first list contains 3500 words for
which schwa deletion rule applies at least once. A
second list 700 words having diacritic for anus-
vara or anunasika. This implies that two test
sets are used containing 3500 and 700 words.
These sets are annotated by expert at three lev-
els i) phonemic sequence, ii) syllable boundaries,
and iii) stress mark. The G2P output for the

8

Graphemic Form-1 Graphemic Form-2 Correct Surface Form Gloss
U V U\V ũ:ú Camel
kArvA kArvA\ ka:rvã: coffle
k� vArF k� \vArF kũva:ri: Unmarried Girl
gA DF gA\DF ga:ndhi: A Name
g�h � g�h\� ge:hũ: Wheat
G� G! G�\G! ghuNgh ru: A Name
jA EGyA jA\EGyA dZa:Nghija: Underwear
jAe jAe\ dZa:ẽ: Go(Honorific)
YA c� YA\c� ãã:tSe: Shape
tA bA tA\bA ta:mba: Copper
P sA P\sA ph@̃sa: Trap (past)
B vrF B\vrF bh@̃vri: Loop
vq
gA W vq
gA\W v@rùgã:úh Anniversary
[AAhjhA [AAhjhA\ Sa:hdZ@hã: A Name
hAlA Ek hAlA\Ek ha:lã:ki: However

Table 3: Examples of word in which diacritic mark for ansuvara and anunasika are used interchangeably
at orthographic level but only one phoneme (i.e., either nasalized vowel or nasal consonant) emerges at
surface phonemic form level

Grapheme Syllab Mw Decision Gloss
a\g� r [aX] [gu:r] (2,3) X=HN=N Grape
cF\VF [tSi:X][úi:] (3,2) i:X=NV=ĩ:Ant
a\br [@X][b@r] (2,2)X=HN=m Sky
a\DA [@X][ãha:] (2,2)X=HN=n Blind
aA cl [a:X][tS@l] (3,2)a:X=NV=ã:A Name
Es\cAI [siX][tSa:i:] (2,2)X=HN=n irrigation
j\jFr [dZ@X][dZi:r] (2,3)X=HN=n chain
a\D�r� [@X][dhe:][re:] (2,2)X=HN=n Dark
aA\vl� [a:Xv][le:] (3,2)a:X=NV=ã:gooseberry

Table 4: Examples of applications of rules for
phonemic realization of anusvara and anunasika

test sets by the proposed system, the data driven
system and the previous systems are compared
against the annotated test test. The rules of pre-
vious systems (Narasimhan et al., 2004),(Choud-
hury, 2003), (Bali et al., 2004) and (Pandey, 2014)
are implemented in Python for comparison on the
same test set. The example words where the oth-
ers failed and current system succeded is shown
in Table 9.The performance of these systems is re-
ported below in Table 7. The present work has one
limitation though.

It cannot predict the stress pattern for the
words having different part of speech cat-
egories as described in (Pandey, 2014) and

Grapheme Phoneme Gloss
gmlo\ g@mlõ: Flowerpots
an\t @n@nt Infinity
DFr�\d} dhi:re:ndr A name
p�\c pẽ:tS Bolt
pA c pã:tS Five

Table 5: Examples of applications of rule (Rule iii
and iv) for phonemic realization of anusvara and
anunasika

(Dyrud, 2001). However, the number of such
words in Hindi is small and can be listed. The
future work will include a mechanism to pre-
dict stress for these words based on their part-
of-speech category.

9 Prediction of Stressed Syllables

The process of resyllabification discussed in sec-
tion 5 can upgrade syllables from weak to heavy or
heavy to superheavy. Therefore, the after resyllab-
ification the syllabified strings are fed to the FSM
for syllable labeling. The labels assigned by FSM
after resyllabification is called prosodic label. Ta-
ble 6 shows examples of applications of syllable
stress rule. Here a stressed syllable is preceded
by a stress mark ("). The following rules translate
the prosodic labels into stressed/unstressed com-
ponent.

9

Type Stress Mark Gloss
w+h "k@la: Art
h+h "ka:la: Black
sh+h a:"ra:m Comfort
sh+sh "ra:m"na:th A name
w+h+h m@"hi:na: Month
sh+h+h "a:l"ma:ri: cupboard
h+h+sh "hindus"ta:n Country Name

Table 6: Examples of applications of syllable
stress rule

Systems %Error1 % Error2
narasimhan et. al 9.57 12.08
choudhury 6.28 17.6
bali et. al. 5.2 8.27
pandey 7.5 9.4
JS Model 2.6 7.37
LSTM Model 2.16 3.56
Current System 0.45 1.5

Table 7: A summary of comparison of perfor-
mance of the current system with previous rule-
based systems and the state of the art data driven
systems. The %Error1 and %Error2 denotes the
word error rate due to schwa deletion and anus-
vara/anunasika pronunciation respectively.

i. Superheavy syllables are always stressed.
ii. Heavy syllables at the ultimate position are

unstressed and stressed otherwise.
iii. Weak syllables at the penultimate position in

bisyllabic words are stressed and unstressed other-
wise.

The output of current system is evaluated for
syllabification and stress prediction for the test set
described in Section 8. The report is summarized
in Table 8.

Testing Level % Accuracy
Syllabification 100
Stressed Syllables 99.34

Table 8: A summary of testing of the current im-
plementation for syllabification and prediction of
stressed syllables

10 Conclusion

In this paper, a new approach for deriving Hindi
word prosody is described. The WPC uses a novel

Grapheme Other Systems Current System Gloss
loksBA lo:k@sbha: lo:ks@bha: Parliament
tAjmhl ta:dZmh@l ta:dZm@h@l A Name
kmlnyn k@mln@j@n k@m@ln@j@n A Name
an� srZ anusr@ï anus@r@ï To follow
apvcn @p@Vc@n @pV@c@n Bad words
ap[Ak� n @p@Skun @p@Skun Bad omen
bh� vcn b@huVc@n b@huV@c@n Plural
up`rh up@gr@h upgr@h satellite
hrBjn h@r@bhdZ@n h@rbh@dZ@n A name
aA\kn� a:Nkne: ã:kne: To Judge
?yo\Ek kjo:nki: kjõ:ki: Because
VA g úã:g úa:Ng Leg
psElyA\ p@s@lijã: p@slijã: Ribs

Table 9: Examples words where the others failed
and current system succeeded

rule-based G2P converter which outperforms the
state of the art data-driven G2P systems and the
previous rule-based system for Hindi. The pro-
posed G2P system uses non-linear phonological
rules with the provision of recursive foot. The
proposed system has one limitation though. The
system cannot predict the correct stress pattern of
a word having two part-of-speech category as de-
scribed in (Pandey, 2014). The proposed work can
be further utilized in prosodic analysis by extract-
ing stressed/unstressed syllables at textual level.
The acoustic analysis can be performed by train-
ing the speech data and corresponding text using
hidden markov model (HMM) or deep neural net-
works (DNN).

Acknowledgement

I would like to thank Pramod Pandey and Samu-
dravijaya K for their comments and suggestions
on the initial draft of this paper. I would also like
to thank all the reviewers for their valuable com-
ments.

References

Diana Apoussidou. 2006. The learnability of metrical
phonology. Netherlands Graduate School of Lin-
guistics.

Kalika Bali, Partha Pratim Talukdar, N Sridhar Kr-
ishna, and AG Ramakrishnan. 2004. Tools for the
development of a hindi speech synthesis system. In
Fifth ISCA Workshop on Speech Synthesis.

10

Devanagari a aA i I u U e e� ao aO k K g G
IPA @ a: i i: u u: e: æ: o: @o: k kh g gh

Roman a aa i ii u oo e ei o au k kh g gh
Devanagari c C j J t T d D n V W X x Z
IPA tS tSh dZ dZh t th d dh n ú úh ã óh ï
Roman c ch j jh t th d dh n tx txh dx dxh nx
Devanagari p P b B m y r l v [A q s h #A
IPA p ph b bh m j r l V S ù s h kù
Roman p ph b jh m y r l v sh sx s h ksh
Devanagari /) * w ' R � \ {
 } E F matra u U
IPA tr z q ó f N e: DMC DMB æ: RH i i: u u:
Roman tr z q rx f ng e NV/NC NV/NC ei r i ii u oo

Table 10: Hindi grapheme and its corresponding phoneme in IPA and Roman. The DMC and DMB
means Diacritic mark chandrabindu and bindu respectively. RH represents the Ra halant which is also
a diacritic mark. u and oo in the last column represent matra (diacritic mark) for the vowel u and U
respectively.

Ashwin Bellur, K Badri Narayan, K Raghava Krish-
nan, and Hema A Murthy. 2011. Prosody modeling
for syllable-based concatenative speech synthesis of
hindi and tamil. In Communications (NCC), 2011
National Conference on, pages 1–5. IEEE.

Barbara Bernhardt and John Gilbert. 1992. Applying
linguistic theory to speech–language pathology: the
case for nonlinear phonology. Clinical Linguistics
& Phonetics, 6(1-2):123–145.

Pushpak Bhattacharyya. 2010. Indowordnet. In In
Proc. of LREC-10. Citeseer.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech communication, 50(5):434–451.

Alan W Black, Kevin Lenzo, and Vincent Pagel. 1998.
Issues in building general letter to sound rules.

Monojit Choudhury. 2003. Rule-based grapheme to
phoneme mapping for hindi speech synthesis. In
90th Indian Science Congress of the International
Speech Communication Association (ISCA), Banga-
lore, India.

Megan J Crowhurst. 1994. Foot extrametricality and
template mapping in cupeño. Natural Language &
Linguistic Theory, 12(2):177–201.

Lars O Dyrud. 2001. Hindi-Urdu: Stress accent or
non-stress accent? Ph.D. thesis, University of North
Dakota.

Aravind Ganapathiraju, Jonathan Hamaker, Joseph Pi-
cone, Mark Ordowski, and George R Doddington.
2001. Syllable-based large vocabulary continuous
speech recognition. Speech and Audio Processing,
IEEE Transactions on, 9(4):358–366.

Matthew Gordon. 2007. Syllable weight: phonetics,
phonology, typology. Routledge.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on
Machine learning, pages 369–376. ACM.

T Alan Hall and Ursula Kleinhenz. 1999. Studies
on the phonological word, volume 174. John Ben-
jamins Publishing.

Bruce Philip Hayes. 1980. A metrical theory of stress
rules. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

Bruce Hayes. 1989. Compensatory lengthening in
moraic phonology. Linguistic inquiry, 20(2):253–
306.

Bruce Hayes. 1995. Metrical stress theory: Principles
and case studies. University of Chicago Press.

Roman Jakobson. 1960. Linguistics and poetics. In
Style in language, pages 350–377. MA: MIT Press.

S Prahallad Kishore and Alan W Black. 2003. Unit
size in unit selection speech synthesis. In INTER-
SPEECH.

A Lakshmi and Hema A Murthy. 2006. A syllable
based continuous speech recognizer for tamil. In IN-
TERSPEECH.

Mark Liberman and Alan Prince. 1977. On stress and
linguistic rhythm. Linguistic inquiry, 8(2):249–336.

John J McCarthy and Alan S Prince. 1990. Foot
and word in prosodic morphology: The arabic bro-
ken plural. Natural Language & Linguistic Theory,
8(2):209–283.

Bhuvana Narasimhan, Richard Sproat, and George Ki-
raz. 2004. Schwa-deletion in hindi text-to-speech

11

synthesis. International Journal of Speech Technol-
ogy, 7(4):319–333.

Josef R Novak, Nobuaki Minematsu, and Keikichi Hi-
rose. 2012. Wfst-based grapheme-to-phoneme con-
version: Open source tools for alignment, model-
building and decoding. In FSMNLP, pages 45–49.

Manjari Ohala. 1983. Aspects of Hindi phonology,
volume 2. Motilal Banarsidass Publisher.

Vincent Pagel, Kevin Lenzo, and Alan Black. 1998.
Letter to sound rules for accented lexicon compres-
sion. arXiv preprint cmp-lg/9808010.

Pramod Kumar Pandey. 1989. Word accentuation in
hindi. Lingua, 77(1):37–73.

Pramod Kumar Pandey. 1990. Hindi schwa deletion.
Lingua, 82(4):277–311.

Pramod Pandey. 2014. Akshara-to-sound rules for
hindi. Writing Systems Research, 6(1):54–72.

Kanishka Rao, Fuchun Peng, Haşim Sak, and
Françoise Beaufays. 2015. Grapheme-to-phoneme
conversion using long short-term memory recurrent
neural networks. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015 IEEE International
Conference on, pages 4225–4229. IEEE.

Elisabeth O Selkirk. 1980. The role of prosodic cat-
egories in english word stress. Linguistic inquiry,
11(3):563–605.

Elisabeth O Selkirk. 1981. English compounding and
the theory of word structure. The scope of lexical
rules, pages 229–277.

Elisabeth O Selkirk. 1984. On the major class features
and syllable theory.

Elisabeth O Selkirk. 1986. Phonology and syntax:
the relationship between sound and structure. MIT
press.

Elisabeth Selkirk. 1996. The prosodic structure
of function words. Signal to syntax: Bootstrap-
ping from speech to grammar in early acquisition,
187:214.

Paul Taylor. 2005. Hidden markov models for
grapheme to phoneme conversion. In Interspeech,
pages 1973–1976.

Dong Wang and Simon King. 2011. Letter-to-sound
pronunciation prediction using conditional random
fields. IEEE Signal Processing Letters, 18(2):122–
125.

12

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 13–22

Three-phase training to address data sparsity in Neural
Machine Translation

Ruchit Agrawal
LTRC

IIIT Hyderabad

Mihir Shekhar
DSAC

IIIT Hyderabad

Dipti Misra Sharma
LTRC

IIIT Hyderabad

Abstract

Data sparsity is a key problem in
contemporary neural machine transla-
tion (NMT) techniques, especially for
resource-scarce language pairs. NMT
models when coupled with large,
high quality parallel corpora provide
promising results and are an emerging
alternative to phrase-based Statistical
Machine Translation (SMT) systems.
A solution to overcome data sparsity
can facilitate leveraging of NMT mod-
els across language pairs, thereby pro-
viding high quality translations de-
spite the lack of large parallel cor-
pora. In this paper, we demonstrate a
three-phase integrated approach which
combines weakly supervised and semi-
supervised learning with NMT tech-
niques to build a robust model using
a limited amount of parallel data. We
conduct experiments for five language
pairs (thereby generating ten systems)
and our results show a substantial in-
crease in translation quality over a
baseline NMT model trained only on
parallel data.

1 Introduction

Neural Machine Translation (NMT) is an
emerging technique which utilizes deep neural
networks (Kalchbrenner and Blunsom, 2013),
(Sutskever et al., 2014), (Bahdanau et al.,
2014) to generate end-to-end translation.
NMT has shown promising results for various
language pairs and has been consistently
performing better than Phrase based SMT,
the state-of-the-art MT paradigm until a
few years back. A major benefit in NMT
which makes it so popular is its ability to

use deep neural networks and learn linguistic
information from the parallel data itself
without being fed any learning features. This
makes it a conceptually simple method which
provides significantly better translations than
other MT paradigms like rule-based MT and
statistical MT. Furthermore, it eliminates
the need for complex feature engineering by
providing end-to-end translation. The newly
proposed attention mechanism is a valuable
addition to NMT contributing to significant
gain in performance.
NMT systems have achieved competitive
accuracy scores under large-data training
conditions for language pairs such as En
→ Fr (English - French) and En → De
(English - German). However, on the other
hand, NMT models are unable to extract
sufficient linguistic information in terms of
morphology, word order, syntactic structure
and semantics in low resource scenario. This
makes translation among morphologically
rich languages especially challenging. Also,
due to the unavailability of large parallel
corpora, the vocabulary size tends to be low,
due to which any word which is not included
in the vocabulary is mapped to a special
token representing an unknown word [UNK].
This causes a large number of [UNK]’s
in the target sentence, which results in a
drastic drop in the translation quality. This
behaviour makes vanilla NMT a poor choice
for low resource language pairs, especially if
they are morphologically rich.
In this paper, we propose an integrated
approach for reducing the impact of data
sparsity in NMT, which leverages a large
monolingual corpus of the source language,
which is easier to obtain in comparison to
parallel corpus. We employ a small paral-
lel corpus in addition to the monolingual

13

corpus, and through a combination of weakly-
supervised and semi-supervised learning,
we build an efficient model which delivers
promising results. Our approach along with
the intuition driving it is described in detail in
Section 4. Our model obtains an improvement
of five to eight points in BLEU score over
an attention based encoder-decoder model
trained over a parallel corpus. The results
obtained on test sets from different domains
are also promising, which suggests that the
proposed model is able to perform domain
adaptation successfully due to the presence
of a rich vocabulary learnt from hree-phase
training.

The main contributions of our work are :

• We propose an integrated approach which
combines weakly-supervised learning and
semi-supervised learning to reduce the
impact of data sparsity on NMT, by uti-
lizing a large monolingual corpus of the
source language in addition to a small
parallel corpus.

• We tweak the NMT architecture to gen-
erate optimum performance and conduct
experiments on different Indian language
pairs using the proposed approach. We
demonstrate that we are able to build a
robust NMT model which produces qual-
ity translation and delivers promising re-
sults, significantly better than a baseline
NMT model.

2 Related Work
NMT methods are data hungry. Efficient
NMT for Indian languages is a challenging
problem, owing to multiple reasons including
morphological complexity and diversity, in ad-
dition to a lack of resources for many lan-
guages. Advances in the recent past mainly
employ statistical and rule based methods for
MT. (Kunchukuttan et al., 2014) uses statisti-
cal phrase based machine translation for In-
dian Languages using Moses (Koehn et al.,
2007) for phrase extraction as well as lexi-
calized reordering. Sampark (Anthes, 2010)
is a transfer based system for translation be-
tween 18 Indian language pairs, which uses
a common lexical transfer engine, whereas

minimum structural transfer is required be-
tween Indian languages. (Kunchukuttan and
Bhattacharyya, 2016) use orthographic fea-
tures along with SMT to reach state of the
art results in SMT for related languages.
The use of monolingual data to improve trans-
lation accuracy in NMT was first proposed by
(Gulcehre et al., 2015). Monolingual mod-
els were trained independently and then were
integrated to decoder module either through
rescoring of the beam (shallow fusion), or
by adding the recurrent hidden state of the
language model to the decoder state of the
encoder-decoder network, with an additional
controller mechanism that controls the mag-
nitude of the LM signal (deep fusion).
(Sennrich et al., 2016) proposed use of syn-
thetic data, a parallel data corpus generated
using back-translation along with parallel cor-
pus to increase the translation accuracy.

Our method differs from them since it is
three-phased. In the first phase, we train
our model over a synthetic corpus generated
using a suboptimal MT technique, and then
fine tune it further on gold data. This allows
better control over training during various
stages - leading to better translation quality
for Indian languages. Our second phase is
inspired from (Zoph et al., 2016). They
use transfer learning to increase translation
quality between resource scarce language pairs
by incorporating the weights learnt during
training for high resource language pairs. It
was also found that languages having similar
structure, like Fr ←→ En (French - English)
showed better improvement in performance
as compared to other languages having little
similarity, like Uz ←→ En (Uzbek - English).
Our approach is based on the intuition that
transfer learning between the same language
pair should perform better than its multilin-
gual counterpart. The experimental results
described in Section 5 demonstrate that
the above intuition stands correct. During
fine-tuning, the change in weights in each
epoch learnt through transfer learning allows
the model to align more towards the correct
model.
(McClosky et al., 2006) proposed using
self-training for the task of parsing. We have
experimented with its use in Neural machine

14

translation.

3 Experimental Setup

3.1 Datasets

We employ a small parallel corpus and large
monolingual corpora for training. For the for-
mer, we use the multilingual Indian Language
Corpora Initiative (ILCI) corpus 1, which con-
tains 50,000 sentences from the health and
tourism domains aligned across eleven Indian
languages. We employed manual preprocess-
ing to eliminate misalignments - the resultant
dataset has a size of 47,382 sentences. These
are split randomly into training set, validation
set and test set containing 44,000, 1382 and
2000 sentences respectively.

Table 1: Corpus statistics - ILCI

Tokens Vocabulary
hin 850968 39170
pan 849679 849679
guj 759380 62780
tam 849679 86462
ben 715886 50553
urd 832776 36738
tel 632995 86997
kon 643605 70030
eng 808370 35134
mar 663597 77057
mal 599422 101869

The statistics for the ILCI corpus are given
in Table 1. We use the EMILLE monolingual
corpora (McEnery et al., 2000) for five lan-
guages and the UrMonoCorp (Jawaid et al.,
2014) for Coarse Learning detailed in Section
4.2. These statistics are given in Table 2. In
addition to these, we extract samples from the
EMILLE (McEnery et al., 2000) parallel cor-
pus for the Housing and Legal domains. These
datasets are used as test sets to show coverage
of our NMT model. Details are given in Table
3.

1This corpus is available on request from TDIL :
https://goo.gl/VHYST

2We extract a sample containing 500,000 sentences
from UrMonoCorp

Table 2: Monolingual Corpora statistics -
EMILLE and *UrMonoCorp

Sentences Tokens Vocabulary
hin 612705 11986152 321356
pan 488985 14285063 272771
tam 827439 17170697 1285031
guj 272526 12766111 660465
ben 259145 2671369 243531
urd* 500000 8744825 157133

Table 3: Parallel Corpus Statistics -
EMILLE. H: Housing, L: Legal

Sentences Tokens Vocabulary

hin H 1183 23178 3131
L 1321 27700 3880

ben H 1109 17815 3310
L 1288 21690 4567

guj H 1113 17537 4405
L 1382 21377 5689

pan H 1308 20729 3771
L 1368 24971 3763

urd H 1327 22691 2871
L 1386 27207 3945

3.2 Resources
For our experiments, we use synthetic data in
addition to the gold data (described in detail
in Section 4) to compensate for the relatively
lower size of our gold corpus. The genera-
tion of synthetic data from the monolingual
corpora is done using the Sampark (Anthes,
2010) systems, which are available for 9 Indian
language pairs3. Sampark is a multipart ma-
chine translation system developed under the
Indian Language Machine Translation project.
It uses a transfer-based engine and has a huge
repository of rules for dealing with Indian lan-
guage specific constructs. The motivation be-
hind this choice for synthetic data generation
stems from the quality of performance ob-
tained using Sampark for Coarse Learning due
to its uniform coverage and large vocabulary.

3.3 NMT Architecture
The main component of our NMT model is a
single neural network trained jointly to pro-
vide end-to-end translation. Our architecture
consists of two components called encoder and

3https://goo.gl/yu7KUT

15

Figure 1: A simple two-layered encoder-decoder based NMT architecture as proposed by (Sutskever et al.,
2014), which translates a source sentence “I eat food” into a target sentence “मैं खाना खाता हĩ ँ" . ‘EOS’ denotes the

end of the sentence.

decoder, as shown in Figure 1. The com-
ponents are composed of Stacked RNNs (Re-
current Neural Networks), using either Long
Short Term Memory (LSTM) (Sundermeyer
et al., 2012) or Gated Recurrent Units (Chung
et al., 2015). The encoder encodes the source
sentence into a vector from which the decoder
extracts the target translation sentences. This
facilitates learning of long-distance dependen-
cies, thereby enabling the system to learn an
end-to-end model.
Specifically, NMT aims to model the con-
ditional probability p(y|x) of translating a
source sentence x = x1, x2...xu to a target sen-
tence y = y1, y2, ...yv. Let s be the representa-
tion of the source sentence as computed by the
encoder. Based on the source representation,
the decoder produces a translation, one target
word at a time and decomposes the conditional
probability as :

log p(y|x) =
v∑

j=1

log p(yj |y<j , x, s) (1)

The entire model is jointly trained to max-
imize the (conditional) log-likelihood of the
parallel training corpus:

max
θ

1

N

N∑

n=1

log pθ(y
(n)|x(n)) (2)

where (y(n), x(n)) represents the nth sentence
in parallel corpus of size N and θ denotes the
set of all tunable parameters.
(Bahdanau et al., 2014) proposed an atten-
tion mechanism so that the memory of the

source hidden states is tracked and reference is
done to the relevant ones when needed. This
increases the translation quality for longer
sentences. Further, local and global atten-
tion mechanism was proposed by (Luong et
al., 2015). We employ encoder-decoder sys-
tem with LSTM units trained to optimize
maximum-likelihood (via a softmax layer)
with back-propagation through time (Werbos,
1990). We also use an attention mechanism
that allows the target decoder to look back at
the source encoder, specifically the local at-
tention plus feed-input model (Luong et al.,
2015). We use OpenNMT-Lua (Klein et al.,
2017) for building the models. The learning
rate is set to 1 for both coarse learning and
fine tuning. Our primary motive for the coarse
learning stage is to learn only the general fea-
tures from the synthetic corpus, thereby mak-
ing it easier to fine tune the model. Hence, the
decay rate is set to be 0.9 and 0.97 for coarse
learning and fine tuning respectively, which re-
sults in significantly faster convergence for the
former. Due to the same reason, the dropout
ratio is kept higher for coarse learning (0.5)
as compared to fine tuning (0.3). As the de-
cay rate is higher for coarse learning, we run
it for considerably lower number of epochs
(40 epochs) as compared to fine tuning (130
epochs).

We performed grid search to obtain best
set of hyper-parameter with validation data
for each phase including learning rate, learn-
ing decay-rate and drop out. We did hyper-
parameter tuning for Hindi-Gujarati language

16

pairs and used the same parameters values for
corresponding to each phases for all the other
language pairs. Some of the parameters like
optimisation function, word vector size and
brnn parameters were set to the default values.
Detailed set of parameters used is provided in
Table 4.

4 Experiments using Three-Phase
Training

We train a baseline NMT model using the
small parallel corpus (ILCI) described in Sec-
tion 3.2. We call this model NMTBase. In
order to compare our results with the state-of-
the-art, we train a phrase based SMT model
using the same corpus. The SMT model is
trained using Moses (Koehn et al., 2007) for
phrase extraction and lexicalized reordering
as described in (Kunchukuttan et al., 2014)4.
We call this model SMTSA. In this section,
we describe a three-phase integrated approach
which leverages a large monolingual corpus of
the source language and an existing MT tool
to improve translation accuracy as well as do-
main coverage.

Figure 2 shows the block diagram of this
approach. The entire process is divided
into three stages : Coarse learning, Fine-
tuning and Self-training. We begin by
Coarse Learning, which can be thought of
as providing the neural model with some
information about grammatical constructs
of the target language. The second phase
employs Fine-tuning to enrich the linguistic
knowledge of the model with the help of a
hand-annotated gold parallel corpus. This
is then followed by self-training, where the
fine-tuned model is employed to generate a
synthetic corpus again, on which we perform
Coarse Learning for the next training itera-
tion. Thus, this is a cyclical process, which is
stopped when further increase in accuracy is
observed to be negligible.
The following sections explain the three
phases in detail :

4We train our own SMT model since the training,
validation and testing sets used by Sata-Anuvadak are
unavailable to us.

4.1 Coarse Learning
Coarse Learning is a form of weak supervi-
sion, which is a machine learning paradigm
where the model learns from noisy data or
prior knowledge. (Haghighi and Klein, 2009)
used rich syntactic and semantic features to
induce prior knowledge for the task of coref-
erence resolution. (Ratner et al., 2016) uses
an ensemble of weak learners using rules to
identify biomedical entities from medical doc-
uments.

Figure 2: Three-phase approach to improve
robustness and accuracy. The entire cycle is

repeated until the increase in accuracy is
minimal. We conduct three self-training

iterations.

Large annotated parallel corpora are not
easy to obtain for Indian languages. However,
it is easier to use an existing MT system to
generate a sub-optimal translation of a mono-
lingual corpus, which is referred to as synthetic
data.
Building upon this insight, we generate a
synthetic corpus for 10 language pairs5 us-
ing Sampark (Anthes, 2010) to translate
the EMILLE monolingual corpora. We
use this tool rather than Sata − Anuvadak
(Kunchukuttan et al., 2014) due to its uni-
form domain coverage - a trait desirable for
synthetic data generation when dealing with
multiple domains
We train an NMT model over the syn-

thetic corpus thus generated. This helps the
model to learn significant linguistic informa-
tion about the target language in the form
of syntax, word order and morphology, along
with the vocabularies, although with certain

5Language pairs for which both large monolingual
corpora and Sampark were available.

17

Table 4: Detailed parameters for training the NMT models.
LR : Learning Rate, DS : Start Decay at

Phase Parameters
Sample WordVecSize Layers Dropout LR LR Decay DS Epochs

Baseline 80% 500 2 0.2 0.76 0.325 10 60
Fine Tuning 80% 500 2 0.3 0.5 0.15 10 60
Coarse ST1 50% 500 2 0.55 0.9 0.75 5 30
Fine ST1 80% 500 2 0.2 0.8 0.25 10 60

Coarse ST2 50% 500 2 0.4 0.8 0.6 5 30
Fine ST2 80% 500 2 0.15 0.3 0.326 10 60

Coarse ST3 50% 500 2 0.4 0.8 0.6 5 30
Fine ST3 80% 500 2 0.3 0.5 0.15 10 60

noise. The resulting model would naturally
not perform with high accuracy, but it adds
sufficient vocabulary and serves as a baseline
to improve upon in further phases. We call the
resulting model as NMTCoarse. NMTCoarse

including both the encoder and decoder is
jointly trained to maximize the conditional log
likelihood of the synthetic corpus as shown in
Equation 3.

max
θw

1

Nw

Nw∑

j=1

log pθw(y(n)
w |x(n)

w) (3)

where (y
(n)
w , x

(n)
w) represents the n−th sentence

in the weak corpus of size Nw and θw denotes
the set of all tunable parameters. The dropout
and learning rate are kept high whereas the
number of epochs is kept low since the primary
motive for coarse learning is to learn only the
general characteristics of the target language
from the synthetic corpus, thereby making it
easier to fine-tune the model. Detailed param-
eters used are provided in Table 4.
(Rapp and Vide, 2006) proposes a rule-based
MT system using bigram dictionaries. As part
of future work, this method can be employed in
addition to our method to generate synthetic
corpora for languages in which there is no ex-
isting MT tool available.

4.2 Fine-Tuning
This is the second and most important phase
of our three-phase training approach. During
this phase, a gold parallel corpus is needed.
This phase comprises of improving perfor-
mance by fine-tuning the pre-trained model
NMTCoarse using the gold parallel corpus.

This allows the model to be initialized with
the weights learnt by the coarse model, rather
than random weights.
In this phase, we employ the ILCI parallel

corpus (with added linguistic features) for fine-
tuning the pre-trained model - NMTCoarse.
This means that the low-data NMT model
is not initialized with random weights, but
with the weights learnt by the coarse model.
The coarse model contains some amount of
linguistic knowledge, in terms of lexical and
semantic structure, word order and vocabu-
lary. This information is imparted to the
new model being trained using transfer learn-
ing. (Zoph et al., 2016) uses transfer learn-
ing to increase translation quality between re-
source scarce language pairs by incorporating
the weights learnt during training for high re-
source language pairs. It was also found that
languages having similar structure, like Fr←→
En (French - English) showed better improve-
ment in performance as compared to other lan-
guages having little similarity, like Uz←→ En
(Uzbek - English). Our approach is based on
the intuition that transfer learning between
the same language pair should perform better
than its multilingual counterpart. Our experi-
ments confirm this (Section 5) During fine tun-
ing, the change in weights in each epoch learnt
through transfer learning allows the model to
align more towards the correct model. This
is because the quality of the corpus employed
during this phase is significantly better than
the quality of the corpus employed for phase 1,
i.e. Coarse Learning. However, since the size
of this corpus is lesser, it is not a good idea to
train the model directly on this corpus. This is

18

evident from the scores obtained by BaseNMT ,
the baseline NMT model trained only on the
ILCI corpus.
We call the model generated after fine-tuning
NMTFT . Table 5 gives the results obtained by
NMTFT . Our experiments demonstrate that
the quality of translation obtained using this
technique is significantly better than SMTSA

as well as NMTBase.
The hyper-parameters for training the model
are carefully tweaked to achieve optimum per-
formance. For example:
We use lower dropout and learning rate but
considerably higher number of epochs in this
phase as compared to Coarse Learning. This
is done since the emphasis in this phase is to
fine-tune the already learnt language charac-
teristics and further learn new ones from the
gold data.

Coarse Learning and Fine Tuning combined
can be visualized as weakly supervised learn-
ing for our NMT model. Weak supervision
is a technique of learning from noisy data or
prior knowledge. (Haghighi and Klein, 2009)
used rich syntactic and semantic features
to induce prior knowledge for the task of
coreference resolution. (Ratner et al., 2016)
uses an ensemble of weak learners using rules
to identify biomedical entities from medical
documents.

4.3 Self-Training
Self-training is a form of semi-supervised
learning, which is a technique of using both la-
belled and unlabelled data to improve the per-
formance of a machine learning system. Self-
training (Chapelle et al., 2009) involves itera-
tively classifying unlabelled data using a clas-
sifier trained on labelled data. The unlabelled
data classified with highest confidence is used
to further create the classifier along with the
labelled data.

As part of the self-training stage, we gen-
erate a synthetic corpus using the fine-tuned
model from the previous cycle. For example:
NMTFT from the first cycle is now used to
translate the monolingual corpus rather than
Sampark (Anthes, 2010). Coarse learning is
then performed using this synthetic corpus as
training data. This leads to better accuracy
during coarse learning for the second cycle

as compared to the previous iteration due
to lesser noise in the synthetic corpus. The
coarse model thus generated is again fine-
tuned using the ILCI corpus. This forms one
iteration of self-training. This entire cycle is
repeated until there is minimal increase in
translation accuracy.

This is an effective method specially when
employed in the proposed three-phase training
pipeline, since the quality of the synthetic data
generator used during the first phase heavily
influences the trasnlation accuracy. Since the
fine-tuned model has a better quality than a
rule-based or statistical MT system, we see sig-
nificant gains on employing self-training.
The number of cycles to be performed

for Self-Training (and in effect three-phase
training) depends on the sizes of the mono-
lingual corpus employed in the first phase
as well as the parallel corpus employed in
the second phase. If the latter is especially
large in size, more self-training iterations
can be performed. The size of our parallel
corpus is 50,000 sentences. We perform
three self-training iterations for our ex-
periments since there was minimal to no
increase in BLEU scores after that. The
resultant model after three iterations is called
NMTST . The results obtained by NMTST

are given in Table 5 and discussed in Section 5.

Confidence estimation : OpenNMT
(Klein et al., 2017) generates a prediction score
for each translation, which is the cumulated
log likelihood of the generated sequence. We
use a threshold of -5.0 to filter out the low
confidence translations. This ensures that the
synthetic corpus employed for Coarse Learn-
ing in Training iteration 2 is of much better
quality than the previous iteration. We ob-
serve improvement in scores by 2-5 percentage
on employing this method, as opposed to us-
ing the same size of synthetic corpus in each
training iteration.

5 Evaluation and Analysis

5.1 Results on the ILCI test set
We observe that although NMT models are
good at learning language constructs from the
parallel corpus itself, exploiting additional lin-

19

Table 5: Performance Comparison during various phases over ILCI test set in terms of BLEU
scores

urd pan ben guj tam
NMTFT hin ⇒ 52.93 72.57 37.75 54.87 11.94
NMTST 53.95 73.71 38.77 55.52 12.27
NMTFT hin ⇐ 60.22 73.2 38.97 54.64 22.04
NMTST 61.33 73.63 39.31 55.14 22.37

Table 6: Robustness comparison of models over different domains (in terms of BLEU scores)

Housing Legal
pan guj urd ben pan guj urd ben

SMTSA

hin ⇒
16.45 11.46 18.11 3.62 15.13 8.93 17.75 1.83

NMTBase 17.48 13.23 19.53 4.74 16.42 11.35 19.02 2.89
NMTFT 23.71 17.62 24.49 13.22 22.27 14.07 25.41 7.7
NMTST 22.69 16.92 22.23 11.03 19.13 13.29 23.69 6.1
SMTSA

hin ⇐
13.85 12.73 14.78 3.0 12.45 11.93 15.63 2.72

NMTBase 15.09 14.52 15.72 3.88 13.9 14.07 17.0 3.5
NMTFT 20.7 17.52 20.88 9.41 19.6 17.26 24.16 11.18
NMTST 19.65 16.71 18.03 8.11 18.05 16.09 22.54 9.52

guistic information in the form of coarse learn-
ing - specially in low data conditions, provides
further improvement in performance.

We can observe from Table 5 that a signif-
icant gain in scores is observed on employing
three-phase training.

5.2 Results on test sets from different
domains

We test the coverage of our model after three-
phase training on test sets from different do-
mains. We extract data samples from Hous-
ing and Legal domains respectively from the
EMILLE parallel corpus (described in Section
3.1. We use these samples as test sets to eval-
uate the coverage of our models.

Table 6 shows the results obtained by
SMTSA, NMTBase, NMTFT and NMTST on
test sets from different domains. We see im-
provement in accuracy as well as coverage -
discussed below:
Two-phase vs. Three-phase Training :
Accuracy vs. Coverage
Since the large monolingual corpus contains
data from a variety of domains, NMTCoarse

develops a significantly big vocabulary, which
leads to lesser number of Out of Vocabulary
(OOV) words on out-of-domain data, as com-
pared to NMTBase and SMTSA. The word or-

der and lexical constructs learnt during coarse
learning are retained and improved upon fine-
tuning on the gold corpus.

NMTFT exhibits best domain coverage re-
sults as can be seen from Table 6. This
suggests that two-phase training obtains best
results on out-of-domain data. Three-phase
training includes self-training as well - it pro-
duces best results on in-domain data as can be
observed from Table 5). Since the fine-tuned
model is used to generate the synthetic corpus
for the next self-training iteration, the qual-
ity of synthetic corpus thus obtained is higher
than the one used during the previous iter-
ation. Better synthetic data leads to better
fine-tuning. This explains overall increase in
accuracy after self-training over the ILCI test
set. However, the coverage is affected a lit-
tle. The reason can be attributed to a slight
development of bias towards the health and
tourism domains due to iterative fine-tuning.
The domain coverage of three-phase training
is still significantly better than SMTSA and
NMTBase.
We conclude that the two-phase approach

(Coarse Learning + Fine-Tuning) is more
suitable for out-of-domain data, whereas
the three-phase approach is better suited to
translate in-domain data.

20

6 Conclusion

Data sparsity is a challenging problem in
NMT, especially for resource-scarce language
pairs. In this paper, we proposed an inte-
grated approach to reduce the impact of data
sparsity in NMT, using only little amount
of parallel data. We demonstrated results
using this approach on five Indian language
pairs and showed a substantial improvement
in translation quality. . We achieve compar-
ative scores to the state-of-the-art for multi-
ple language pairs. We propose that this is a
effective method in the presence of an exist-
ing MT system and large monolingual corpora
but inadequate parallel corpora. Future work
includes using source as well as target trans-
lations for coarse learning and fine tuning, in
addition to exploring methods for vocabulary
compression. We would like to explore the
application of this technique and its modi-
fications for other resource-scarce languages,
specifically the ones lacking a rule-based MT
system. We would also like to evaluate the ef-
fectiveness of this approach in character-based
translation. We would also like to experiment
with using different atomic units for NMT, for
eg. Orthographic syllables as units when deal-
ing with translation among closely related lan-
guages OR subword-level units to ensure lesser
number of Out-of-Vocabulary (OOV) words.

References
Gary Anthes. 2010. Automated translation of in-

dian languages. Communications of the ACM,
53(1):24–26.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Olivier Chapelle, Bernhard Scholkopf, and Alexan-
der Zien. 2009. Semi-supervised learn-
ing (chapelle, o. et al., eds.; 2006)[book re-
views]. IEEE Transactions on Neural Networks,
20(3):542–542.

Junyoung Chung, Caglar Gülçehre, Kyunghyun
Cho, and Yoshua Bengio. 2015. Gated feed-
back recurrent neural networks. In ICML, pages
2067–2075.

Caglar Gulcehre, Orhan Firat, Kelvin Xu,
Kyunghyun Cho, Loic Barrault, Huei-Chi Lin,
Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2015. On using monolingual corpora
in neural machine translation. arXiv preprint
arXiv:1503.03535.

Aria Haghighi and Dan Klein. 2009. Simple coref-
erence resolution with rich syntactic and seman-
tic features. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Lan-
guage Processing: Volume 3-Volume 3, pages
1152–1161. Association for Computational Lin-
guistics.

Bushra Jawaid, Amir Kamran, and Ondrej Bo-
jar. 2014. A tagged corpus and a tagger for
urdu. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Hrafn Lofts-
son, Bente Maegaard, Joseph Mariani, Asun-
cion Moreno, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Ninth International
Conference on Language Resources and Evalua-
tion (LREC’14), Reykjavik, Iceland, may. Euro-
pean Language Resources Association (ELRA).

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In EMNLP,
number 39, page 413.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-Source Toolkit
for Neural Machine Translation. ArXiv e-prints.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, et al. 2007. Moses: Open
source toolkit for statistical machine translation.
In Proceedings of the 45th annual meeting of the
ACL on interactive poster and demonstration
sessions, pages 177–180. Association for Com-
putational Linguistics.

Anoop Kunchukuttan and Pushpak Bhat-
tacharyya. 2016. Orthographic syllable as basic
unit for smt between related languages. arXiv
preprint arXiv:1610.00634.

Anoop Kunchukuttan, Abhijit Mishra, Rajen
Chatterjee, Ritesh Shah, and Pushpak Bhat-
tacharyya. 2014. Sata-anuvadak: Tackling
multiway translation of indian languages. pan,
841(54,570):4–135.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D Manning. 2015. Effective approaches
to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025.

David McClosky, Eugene Charniak, and Mark
Johnson. 2006. Effective self-training for pars-
ing. In Proceedings of the main conference on
human language technology conference of the
North American Chapter of the Association of

21

Computational Linguistics, pages 152–159. As-
sociation for Computational Linguistics.

Anthony McEnery, Paul Baker, Rob Gaizauskas,
and Hamish Cunningham. 2000. Emille: Build-
ing a corpus of south asian languages. VIVEK-
BOMBAY-, 13(3):22–28.

Reinhard Rapp and Carlos Martin Vide. 2006.
Example-based machine translation using a dic-
tionary of word pairs. In Proceedings, LREC,
pages 1268–1273.

Alexander J Ratner, Christopher M De Sa, Sen
Wu, Daniel Selsam, and Christopher Ré. 2016.
Data programming creating large training sets,
quickly. In Advances in Neural Information Pro-
cessing Systems, pages 3567–3575.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Improving neural machine trans-
lation models with monolingual data. arXiv
preprint arXiv:1511.06709.

Martin Sundermeyer, Ralf Schlüter, and Hermann
Ney. 2012. Lstm neural networks for language
modeling. In Interspeech, pages 194–197.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in neural information
processing systems, pages 3104–3112.

Paul J Werbos. 1990. Backpropagation through
time, what it does and how to do it. Proceedings
of the IEEE, 78.

Barret Zoph, Deniz Yuret, Jonathan May, and
Kevin Knight. 2016. Transfer learning for
low-resource neural machine translation. arXiv
preprint arXiv:1604.02201.

22

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 23–32

Reference Scope Identification for Citances Using
Convolutional Neural Network

Saurav Jha
MNNIT Allahabad, India
mail@sauravjha.com.np

Aanchal Chaurasia
NIT Rourkela, India

aanchal21194@gmail.com

Akhilesh Sudhakar
IIT (BHU), Varanasi, India
akhileshs.s4@gmail.com

Anil Kumar Singh
IIT (BHU), Varanasi, India

nlprnd@gmail.com

Abstract

In the task of summarization of a
scientific paper, a lot of information
stands to be gained about a refer-
ence paper, from the papers that cite
it. Automatically generating the ref-
erence scope (the span of cited text)
in a reference paper, corresponding to
citances (sentences in the citing pa-
pers that cite it) has great signifi-
cance in preparing a structured sum-
mary of the reference paper. We
treat this task as a binary classi-
fication problem, by extracting fea-
ture vectors from pairs of citances
and reference sentences. These fea-
tures are lexical, corpus-based, sur-
face and knowledge-based. We extend
the current feature set employed for
reference-citance pair identification in
the current state-of-the-art system.
Using these features, we present a
novel classification approach for this
task, that employs a deep Convolu-
tional Neural Network along with two
boosting ensemble algorithms. We
outperform the existing state-of-the-
art for distinguishing between cited
spans and non-cited spans of text in
the reference paper.

1 Introduction
Citation sentences or ‘citances’ that cite a
reference paper (RP) can give valuable infor-
mation about the larger context in which the
RP is written, key ideas behind the RP and
a concise synopsis of it. All of this is impor-
tant for a task like scientific paper summa-
rization, which not only requires the content
of a paper but also meta-information about

it. This kind of information would otherwise
have to be obtained from sources such as lit-
erature reviews and surveys about the paper,
which in turn is time-consuming and labor-
intensive. This goal has also been outlined
in a recent shared task on scientific paper
summarization, the 3rd Computational Lin-
guistics Scientific Document Summarization
Shared Task1.

The first step towards building a system
that can obtain information about an RP
from a citing paper (CP) that cites it, is to
find spans of text in the RP that are cited by
a particular citance in the CP. In the context
of the above-mentioned shared task, this first
step is referred to as Task 1A. Task 1A, thus
offers a good foundation for the goal men-
tioned above, by identifying the relevant ref-
erence sentences for a citance. We present a
novel approach to Task 1A. While we build
on previous work by Yeh et al. (2017), our
major contributions can be described as:

• We model a new feature set to rep-
resent a citance-reference sentence pair
along with building a classification sys-
tem that uses a binary classification
technique for classifying a <CP sen-
tence, RP sentence> pair according to
whether the CP sentence cites the RP
sentence or not.

• We show performance gains over the
results of Yeh et al. (2017)(which is
the current state-of-the-art) by achiev-
ing better F1-scores, using a feature set
that has lesser number of features than
that used in the above work.

• We explore various measures for evaluat-
ing similarity between texts while build-

1http://wing.comp.nus.edu.sg/ cl-scisumm2017/
23

ing this feature set. Feature representa-
tions extracted (as described later), are
used to train three binary classifiers - an
Adaptive Boosting Classifier (ABC), a
Gradient Boosting Classifier (GBC) and
a CNN classifier.

The datasets provided for this year’s as well
as last year’s shared task have been used.

2 Related Work
There has been a large amount of work
on the task of summarizing scientific docu-
ments. However, as is clear from review sur-
veys and papers such as Jones (2007), Teufel
and Moens (2002) and Nenkova (2011), just
using citances of a paper does not taken into
account the context of a user or place the
paper in a larger perspective of related work.
Most of the related work on the task of iden-
tifying text spans in the RP that correspond
to a particular citance, have been presented
at the shared task mentioned in the previ-
ous section. We highlight some relevant work
and various methods used for this task.

Yeh et al. (2017) also used a binary clas-
sification approach for Task 1A, as we do.
They used five classification algorithms to
learn the binary classification model, with
L2-SVM performing the best. Moraes et
al. (2016) used SVM with subset tree ker-
nel, a type of convolution kernel. They com-
puted similarities between three tree repre-
sentations of the citance and reference text.
Li et al. (2016) used an SVM classifier with a
topical lexicon to identify the best matching
reference spans for a citance, using IFD simi-
larity, Jaccard similarity and context similar-
ity. The PolyU system by Cao et al. (2016),
for Task 1a, used SVM-rank with lexical
and document structural features to rank
reference text sentences for every citance.
Klampfl et al. (2016) applied a modified ver-
sion of an unsupervised summarization tech-
nique (TextSentenceRank) to the reference
document. Nomoto (2016) treated the prob-
lem as a ranking problem, learning one com-
ponent of the similarity through a neural net-
work and using TF-IDF scores for the other
component. Aggarwal and Sharma (2016a)
employed lexical and syntactic dependency
cues in writing rules to extract text spans

in the RP for a given CP citance. Malen-
fant and Lapalme (2016) presented a novel
approach to solve this task. They first per-
formed another task of identifying the facet
of each sentence of the RP. These facets be-
longed to a predefined set of facets, such
as introduction, abstract, results, etc. They
then used the facet information to match
each sentence to a citance having the same
facet in the CP.

3 Method

The structure of the dataset is described in
Section 4.1. Citances and their actual refer-
ence texts are extracted from gold-standard
annotations. Citances in CPs are paired with
each sentence in the RPs, along with a bi-
nary label indicating their actual reference
relations - 0 if the citance actually refers to
the RP sentence and 1 if it doesn’t. For each
such pair, a feature vector is extracted that
describes the relatedness between the given
citance and the reference sentence. These
feature vectors, along with their correspond-
ing labels, are used to train the binary clas-
sifiers.

3.1 Feature Extraction
As mentioned in the section on related work,
most approaches to this task have either been
based on ranking of possible cited sentences
in the RP for a given CP citance, or on
binary classifying each RP sentence as rel-
evant or irrelevant to a given CP citance.
We use the latter approach. Our method is
based on the assumption that a CP sentence
and corresponding RP sentence should be se-
mantically and lexically similar, represent-
ing similar meaning, idea or abstract con-
cept. This is a natural assumption to make,
since modeling the problem based on this
assumption helps to separate relevant sen-
tences (to the CP citance) in the RP from
irrelevant ones. Inspired by the idea of Yeh
et al. (2017), the feature set for each citance-
reference pair is divided into three different
classes of citation-dependent features (i.e.,
lexical, knowledge-based and corpus-based)
and one class of citation-independent fea-
tures (i.e., surface). However, we must men-
tion here that our work is significantly dif-

2
24

ferent from Yeh et al. (2017), when it comes
to the set of features used. Through control
experiments (Section 5.1), we show the effect
of using our set of feature over theirs. We in-
corporate several modified and newly added
features.

The features marked by an asterisk (∗) are
the ones that are borrowed, but modified.
The features marked by two asterisks (∗∗) are
the newly added features in this work. For
features that have been borrowed from Yeh
et al. (2017), more elaborate details about
them can be seen in their work.

3.1.1 Lexical features
This class deals with the features represent-
ing similarity measure of words for each pair
of citance and reference sentence. As sug-
gested by the results of Kenter et al. (2016)
for short text similarity tasks, the overall sen-
tence similarity measure based on each fea-
ture is calculated by averaging the similari-
ties over all the words in the sentences.

1. Word overlap∗: Word overlap between
the citance and the reference sentence
based on five metrics: Dice coefficient,
Jaccard coefficient, Cosine similarity,
Levenshtein distance based fuzzy string
similarity and modified gestalt pattern-
matching based sequence matcher score,
the last one as reported by Ratcliff and
Metzener (1988).

2. TF-IDF similarity: The TF-IDF vec-
tor cosine similarity between the ci-
tance and the reference sentence as
reported by Baeza-Yates and Ribeiro-
Neto (2011).

3. ROUGE measure: The ROGUE (Lin
and Hovy, 2003) metrics used are:
ROGUE-1, ROGUE-2 and ROGUE-L.

4. Named entity overlap∗: Measured
using Dice coefficient, fuzzy string sim-
ilarity, sequence matcher score and
word2vec similarity.

5. Number overlap∗: Number overlap
between the citance and the reference
sentence measured by fuzzy string simi-
larity and sequence matcher score.

6. Significance of citation-related
word pairs: The number of significant
word pairs and the summation of
significance scores of such word pairs
extracted for each citance-reference pair
based on Pointwise Mutual Information
(PMI) score (Church and Hanks, 1989)
collected from a dictionary containing
significant words pairs appearing in the
cited citance-reference pairs.

3.1.2 Knowledge-based features
1. WordNet-based semantic

similarity∗: The best semantic
similarity score between words in the
citance and the reference sentence out
of all the sets of cognitive synonyms
(synsets) present in the WordNet,
following Miller (1992) and Pedersen et
al. (2004).

3.1.3 Corpus-based feature
1. Word2Vec-based semantic

similarity∗∗: The word-to-word
semantic similarity between the ci-
tance and the reference sentence is
obtained based on the pre-trained
embedding vectors of the GoogleNews
corpus, following Mikolov et al. (2013).
Campr and Jezek (2015) show several
advantages that such embeddings of-
fer, compared to those generated by
traditional algorithms, such as LSA.

3.1.4 Surface features
This class includes features dealing primar-
ily with the morphology of the reference sen-
tences. These include:

1. Count of words: The count of words
in the reference sentence.

2. Count of characters∗∗: The total
count of all characters in the reference
sentence.

3. Count of numbers: The count of
numbers in the reference sentence.

4. Count of special characters∗∗: The
number of special characters in the ref-
erence sentence : “@”, “#”, “$”, “%”,
“&”, “*”, “-”, “=”, “+”, “>”, “<”, “[”,
“]”, “{”, “}”, “/”.

3
25

5. Normalized count of punctuation
markers∗∗: The ratio of count of punc-
tuation characters to the total count of
characters in the reference sentence.

6. Count of long words∗∗: The count of
words in the reference sentence exceed-
ing six letters in length.

7. Average word Length∗∗: The ratio of
count of total characters in a word to the
count of words in the reference sentence.

8. Count of named entities: The num-
ber of named entities in the reference
sentence.

9. Average sentiment score∗∗: The
overall positive and negative sentiment
score of the reference sentence averaged
over all the words, based on the Sen-
tiWordNet 3.0 lexical resource as de-
scribed by Baccianella et al. (2010).

10. Lexical richness∗∗: The lexical rich-
ness of the reference sentence based on
Yule’s K index.

3.2 Classification Algorithms
As our approach treats the training data as
pairs of citances and reference sentences, the
number of reference sentences that a citance
refers to is much smaller for a reference pa-
per, leading to a highly imbalanced data set
with the ratio of non-cited to cited pairs be-
ing 383.83 : 1 in the combined corpus of de-
velopment and training set and 355.76 : 1
in the test set corpus. This is not surprising
since CPs usually cite only a small text span
of an entire RP. Hence, our dataset is hugely
imbalanced with negative examples being the
majority. Following the work of Bowyer
et al. (2002), we experimented with com-
binations of three different degrees of Ran-
dom under-sampling (20%, 30% and 35%) on
the majority class (negative samples). On
each undersampled dataset, we apply the
SMOTE (Synthetic Minority Over-sampling
Technique) method (Bowyer et al. (2002))
to generate synthetic cited pairs until the
ratio of the cited to non-cited pairs is 1:1.
The best results were obtained with 30% ran-
dom undersampling rate. To take care of

correlated features, if any, Principal Compo-
nent Analysis (PCA), following Tipping and
Bishop (1997) is applied on both training and
testing feature sets. Experiments were done
by varying the number of principal compo-
nents from 30-40 and the best performance
was obtained by retaining the top 35 princi-
pal components.

For the classification task, we use two
boosting ensemble algorithms: Adaptive
Boosting Classifier (ABC) as described by
Abe et al. (1999), Gradient Boosting Classi-
fier (GBC) as described by Friedman (1999)
and a deep Convolutional Neural Network
(CNN) as described by Schmidhuber (2015).

The implementation of ABC and GBC rely
on sci-kit learn2, while the CNN is imple-
mented using Keras3 (Chollet et al. (2015)).
Gensim (Rehurek and Sojka (2010)) is used
to carry out word2vec related operations.

3.2.1 Boosting Ensemble Algorithms
Boosting ensemble algorithms work by
creating a sequence of models that attempt
to correct the mistakes of the models used be-
fore them in the sequence. Therefore, these
offer the added benefit of combining out-
puts from weak learners (those whose perfor-
mance is at least better than random chance)
to create a strong learner with improved pre-
diction performance, by paying higher focus
on instances that have been misclassified or
have higher errors by preceding weak rules.
This is assisted by a majority vote of the
weak learner’s predictions weighted by their
individual accuracy. Figure 1 shows the il-
lustration of such a boosting framework, as
described by Bishop and Nasrabadi (2007).

The Adaptive Boosting Classifier
(ABC) algorithm works in a similar way dis-
cussed above. The base classifier (or weak
learner) used in this case is a decision tree.

Gradient Boosting Classifier (GBC),
on the other hand, begins by training sev-
eral models sequentially on the original data
set while allowing each model to gradually
minimize the loss function of the whole sys-
tem using the Gradient Descent method, as
described by Collobert et al. (2004). The

2http://scikit-learn.org
3https://keras.io

4
26

Figure 1: Schematic illustration of the boost-
ing framework. Adapted from Bishop and
Nasrabadi (2007): each base classifier ym(x)
is trained on a weighted form of the train-
ing set (blue arrows) in which the weights
wn(m) depend on the performance of the pre-
vious base classifier ym−1(x) (green arrows).
Once all base classifiers have been trained,
they are combined to give the final classifier
YM (x) (red arrows)

base classifiers in a GBC are regression trees.
Since our task is a binary classification, only
one regression tree is used as a special case.

3.2.2 Convolutional Neural Network
Convolutional Neural Networks, as described
in Schmidhuber (2015), have the ability
to extract features of high-level abstraction
with minimum pre-processing of data. They
have been widely used for sentence classifica-
tion problems, such as by Kim (2014). Re-
cently, Ngoc Giang et al. (2016) also used
CNNs for a sequence classification problem
involving classification of DNA sequences by
considering these sequences as text data.
Given the success of CNNs on these, we ex-
plore their use in our task.

However, in our case, a class-imbalance
problem occurs due to the number of posi-
tive reference-citance instances being far too
low (495). These are too few examples for
any deep learning model to extract mean-
ingful features from the original text. Using
the original sentences, and modeling it di-
rectly as a sequence classification on pairs of
sentences would introduce too much sparsity
owing to this imbalance. Not surprisingly,
our experiments on using original sentences

directly in an attention-based RNN model
(2015) resulted in a precision score of 0.002
for positive and 0.24 for negative samples.
Thus, we choose to train the CNN on the
feature sets as inputs instead of the sentences
directly. Figure 2 describes the CNN archi-
tecture chosen by us after repeated experi-
ments and tuning on the development data.

A 1D Convolutional layer accepts inputs
of the form (Height * Width * Channels). In
our case, we can visualize each feature vector
as an image with a unit channel, unit height
and a width equal to the number of features
in the reduced feature vector obtained after
applying PCA. Therefore, the input shape
for the vector to be fed into the input layer
of the CNN, becomes (No. of features * 1).

3.3 Post Filtering
The binary classifier may classify multiple
sentences in the RP as positive, i.e., being
relevant to a particular citance. However,
the existence of inherent errors in the model
means that all of these sentences may not
be in the ideal text span of the RP corre-
sponding to the citance. In order to reduce
our false positive error rate, we post-process
by filtering out some of these false positives.
We use the approach of Yeh et al. (2017)
for the post-filtering task. In this approach,
the final output denotes the top-k sentences
from the ordered sequence of classified refer-
ence sentences based on the TF-IDF vector
cosine similarity score to measure the rele-
vance between the citance and the reference
sentences. All sentences other than the top-k
are not included in the final output text span,
even though the model might have labelled
them as positive.

4 Experiments
4.1 Dataset
We use the development corpus, the training
corpora and the test corpus provided for the
CL-SciSumm Shared Tasks 20164 and 20175.
As reported in Jaidka et al. (2016), each cor-
pus comprises 10 reference articles, their cit-
ing papers and annotation files for each refer-
ence article. The citation annotations specify

4http://wing.comp.nus.edu.sg/cl-scisumm2016/
5http://wing.comp.nus.edu.sg/ cl-scisumm2017/

5
27

Figure 2: Our CNN architecture: stack of two 1-D convolutional layers with 64 hidden units
each (ReLu activations) + 1-D MaxPooling + stack of two 1-D convolutional layers with 128
hidden units each (ReLu activations) + 1-D Global Average Pooling + 50% Dropout + a single
unit output dense layer (sigmoid activation)

citances, their associated reference text and
the discourse facet that it represents.

4.2 Experimental Settings
Precision, Recall and F1-Score are used as
evaluation metrics. The average score on all
topics in the test corpus is reported. We run
experiments on two separate training sets.

In the first run, we use data only from
the 2016 shared task, and not from the 2017
shared task. This is because we need a com-
mon ground for comparison with the existing
state-of-the-art (Yeh et al. (2017)), which
used this dataset. We first train our data
on the training set, and tune the CNN’s hy-
perparameters on the development set. We
then augment the training data and the de-
velopment data to train the final models. We
test our model on the test provided as part
of this dataset. Table 2 shows the perfor-
mance of the CNN model on this test set,
and compares it with the existing state-of-
art and another well-performing model. We
have reported only the CNN’s performance in
this table as (as will be seen in the results of
the second run), this is a better performing
model than ABC and GBC, in our experi-
mental setup.

In the second run, we make use of the
datasets from both 2016 and 2017. Both
the training datasets are augmented to form
the initial training set. After tuning the
CNN’s hyperparameters on the development
set (which is the same for both 2016 and
2017), the initial training and development
sets are augmented to form the final train-
ing set. Grid search algorithm, as given
by Bergstra and Bengio (2012), over 10-fold

cross validation is used to find the best model
parameters for ABC and GBC listed in Ta-
ble 1. Since the gold-standard annotations
for the 2017 test set were not yet available at
the time of conducting our experiments, we
use only the test set of 2016. We report per-
formance of ABC, GBC as well as the CNN
classifier on this test set. Table 3 shows these
results.

Table 1: Model parameter settings

Classifier Architecture and Param-
eter settings

ABC

Learning rate for shrinking
the contribution of each de-
cision tree = 1.3, Boosting
algorithm = SAMME.R for
faster convergence

GBC

Learning rate for shrinking
the contribution of regression
tree = 0.15, Loss = De-
viance for probabilistic out-
puts, No. of Boosting stages
= 100

5 Results and Analysis
Precision, recall and F1-score obtained by
the models on the test set with respect to the
positive classes, evaluated by 10-fold cross
validation are shown in Table 3. The CNN-
based classifier was trained for 30 epochs.
The best scores for each metric have been
shown in bold.

Table 2 shows a comparison of the F1-score
achieved by our model with that of the pre-

6
28

Table 2: F1 scores of previous models

System F1-
scores

Yeh et al. (2017) 0.1443
Aggarwal and
Sharma (2016b) 0.11

Our Method 0.2462

vious models used for the task. The L2-SVM
system by Yeh et al. (2017) produced an F1-
score of 0.1443, which is the highest reported
yet to the best of our knowledge. Our model
outperforms it in terms of F1-score. It must
be mentioned here that Klampfl et al. (2016)
reported an F1-score of 0.346 on the develop-
ment set corpus and 0.432 on the training set
corpus of 2016. However, we have not con-
sidered their system in Table 2 because of the
unavailability of their performance results on
the test set corpus. Figure 3 compares the
performance of our CNN classifier with their
TextSentenceRank assisted sentence classi-
fier on the development and training set cor-
pus (80:20 train:test split) of 2016. Although
the CNN classifier performs better on both
the corpora, the improvement on the devel-
opment corpus is much more significant than
that on the training.

5.1 Control Studies
We run control studies to analyze the con-
tribution of each class of features to our fi-
nal performance. We also control for the
different techniques used, such as SMOTE
and PCA, to see their effect. These con-
trol studies also help us to understand why
our model outperformed the previous state-
of-art. Since the CNN is our best performing
classifier, we make use of it to perform these
control studies.

5.1.1 Effect of feature classes
Figure 4 shows the effect of each class of fea-
tures. We obtain these graphs by removing
one class of features each time from the fea-
ture set and calculating the performance us-
ing all the other classes. From the bar plot
in Figure 4, it is apparent that the class of
lexical features contributes the most in dis-

Figure 3: A comparison of the performance
of our CNN-based classifier on the develop-
ment and training set of 2016 with that of
Klampfl et al. (2016)

tinguishing between a positive and a nega-
tive example. Not using this class of features
gives 0.3371 lesser F1-score than when using
all the features. This means that an informa-
tion retrieval based component to this prob-
lem using lexical features such as TF-IDF,
ROUGE etc. as mentioned in section 3.1.1
is the most important for this task. It is also
possible that this class shows the maximum
effect because of the good number of features
in this class, i.e., 6. The second most signif-
icant class of features is the class of corpus-
based features. Not using this class of fea-
tures gives 0.3002 lesser F1-score than when
using all the features. Our class of corpus-
based features has just the word2vec feature.
It is not surprising that this feature shows
a high impact because word2vec representa-
tions capture a good level of semantic and
syntactic similarity, which was one of the as-
sumptions we built the model on. Not us-
ing the class of surface features gives 0.2429
lesser F1-score than when using all the fea-
tures. One reason for the impact of surface
features could be that it is perhaps the only
class of features that takes numbers and spe-
cial characters into account, and these are
significantly high in number in scientific pa-

7
29

Figure 4: F1 Scores of CNN Model with dif-
ferent feature selection settings

pers. This class also has a high number of
features, i.e., 10. Not using the class of sur-
face features gives 0.0706 lesser F1-score than
when using all the features. The plot also
shows that the impact of WordNet-based fea-
tures contribute the least to distinguishing
between positive and negative examples.

It might therefore be concluded that part
of the reason why our model outperforms the
state-of-the-art is that their model does not
make use of word2vec, while we do so. It also
appears that the modified lexical features
that we have used, namely, named entity
overlap, number overlap and word overlap
provide an added advantage to our model,
over the state-of-the-art.

5.1.2 Effect of data-handling
techniques

Figure 5 shows the contribution of differ-
ent pre-processing and processing techniques
used such as SMOTE (oversampling), under-
sampling and dimensionality reduction us-
ing PCA. There are a few observations that
can be drawn from the bar plot in Figure 5.
Firstly, dimensionality reduction is a crucial
important step in this task. When PCA was
not used on the feature set, the performance
dropped from 0.5558 to 0.2838, which is a re-
duction in F1-score of 0.2720. The existing

Figure 5: F1 Scores of CNN Model with dif-
ferent feature selection settings

state-of-the-art has a higher number of fea-
tures than our work does, and does not per-
form dimensionality reduction on these fea-
tures, which might be one of the reasons be-
hind the better performance achieved in our
work. Further, we see that oversampling us-
ing SMOTE gives an improvement of 0.0555
and using undersampling over and above this
further improves the performance by 0.0615.

Table 3: Results obtained by different
models

Model Precision Recall F1-
score

ABC 0.7141 0.3579 0.4925
GBC 0.7439 0.3237 0.4512
CNN 0.6556 0.5973 0.5558

5.1.3 Classifier-wise performance
Table 3 shows the performance on the com-
bined dataset of the 2016 and 2017 versions
of the shared task, as described in more de-
tail in section 4.2 as the ‘second run’. The
CNN model gives the best performance on
recall and F1-score, while the GBC model
gives the best precision. Precision for each
classifier is considerably higher than that of
recall, indicating that there are relatively few

8
30

false positives while a significant number of
true positives have been missed out.

6 Future Work

To our knowledge, this is the first attempt
which has used a deep learning model for
addressing the task. However, for training
our model, we had to be entirely dependent
on the feature sets extracted. The num-
ber of positive instances in the corpus pro-
vided is still too low to train the model using
the conventional CNN sequence-to-sequence
approach, which, given more data, might
be able to learn more interesting patterns
in the citance-reference pairs. Also, recent
extensions to word2vec such as the Para-
graph Vector (Le and Mikolo (2014)) can
be used to further enhance the semantic simi-
larity measures between the reference-citance
pairs.
Furthermore, the binary labels assigned to
each <CP sentence, RP sentence> pair can
be used to establish some partial order in be-
tween the training instances, which in turn,
can help in modeling the task as a Learning
to rank problem. This ordering can then be
incorporated to predict the relevance-based
ranking of referenced sentences for a citance.

7 Conclusions

We describe our work on reference scope
identification for citances using an extended
feature set applied to three different classi-
fiers. Among the classifiers trained to distin-
guish cited and non-cited pairs, the CNN-
based model gave the overall best results
with an F1 score of 0.5558 on the combined
corpus of CL-SciSumm 2016 and 2017. We
also achieved an F1 score of 0.2462 on the
2016 dataset, which surpasses the previous
state-of-the-art accuracy on the dataset. In
addition to this, we carry out control studies
reporting the contribution of various feature
classes as well as feature selection methods
that have been used by us.

References
Naoki Abe, Yoav Freund, and Robert E.

Schapire. 1999. A short introduction to boost-
ing.

Peeyush Aggarwal and Richa Sharma. 2016a.
Lexical and syntactic cues to identify reference
scope of citance. In BIRNDL@ JCDL, pages
103–112.

Peeyush Aggarwal and Richa Sharma. 2016b.
Lexical and syntactic cues to identify reference
scope of citance. In BIRNDL@JCDL.

Stefano Baccianella, Andrea Esuli, and Fabrizio
Sebastiani. 2010. Sentiwordnet 3.0: An en-
hanced lexical resource for sentiment analysis
and opinion mining. In LREC.

Ricardo A. Baeza-Yates and Berthier A. Ribeiro-
Neto. 2011. Modern information retrieval - the
concepts and technology behind search, second
edition.

James Bergstra and Yoshua Bengio. 2012.
Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research,
13:281–305.

Christopher M. Bishop and Nasser M. Nasrabadi.
2007. Pattern recognition and machine learn-
ing. J. Electronic Imaging, 16:049901.

Kevin W. Bowyer, Nitesh V. Chawla,
Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. Smote: Synthetic minority over-
sampling technique. J. Artif. Intell. Res.
(JAIR), 16:321–357.

Michal Campr and Karel Jezek. 2015. Compar-
ing semantic models for evaluating automatic
document summarization. In TSD.

Ziqiang Cao, Wenjie Li, and Dapeng Wu.
2016. Polyu at cl-scisumm 2016. In
BIRNDL@JCDL.

François Chollet et al. 2015. Keras. https:
//github.com/fchollet/keras.

Ronan Collobert, Patrick Gallinari, Léon Bottou,
Hélène Paugam-Moisy, Samy Bengio, and Yves
Grandvalet. 2004. Large scale machine learn-
ing.

Jerome H. Friedman. 1999. Greedy function ap-
proximation: A gradient boosting machine.

Kokil Jaidka, Muthu Kumar Chandrasekaran,
Sajal Rustagi, and Min-Yen Kan. 2016.
Overview of the cl-scisumm 2016 shared task.
In BIRNDL@JCDL.

Karen Spärck Jones. 2007. Automatic summaris-
ing: The state of the art. Information Process-
ing & Management, 43(6):1449–1481.

Tom Kenter, Alexey Borisov, and Maarten de Ri-
jke. 2016. Siamese cbow: Optimizing
word embeddings for sentence representations.
CoRR, abs/1606.04640.

9
31

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In EMNLP.

Stefan Klampfl, Andi Rexha, and Roman Kern.
2016. Identifying referenced text in scientific
publications by summarisation and classifica-
tion techniques. In BIRNDL@JCDL.

Quoc V. Le and Tomas Mikolov. 2014. Dis-
tributed representations of sentences and doc-
uments. In ICML.

Lei Li, Liyuan Mao, Yazhao Zhang, Junqi Chi,
Taiwen Huang, Xiaoyue Cong, and Heng Peng.
2016. Cist system for cl-scisumm 2016 shared
task. In BIRNDL@JCDL.

Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to
attention-based neural machine translation. In
EMNLP.

Bruno Malenfant and Guy Lapalme. 2016. Rali
system description for cl-scisumm 2016 shared
task. In BIRNDL@ JCDL, pages 146–155.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gre-
gory S. Corrado, and Jeffrey Dean. 2013. Dis-
tributed representations of words and phrases
and their compositionality. In NIPS.

George A. Miller. 1992. Wordnet: A lexical
database for english. Commun. ACM, 38:39–
41.

Luis Moraes, Shahryar Baki, Rakesh M. Verma,
and Daniel Lee. 2016. University of houston at
cl-scisumm 2016: Svms with tree kernels and
sentence similarity. In BIRNDL@JCDL.

Ani Nenkova, Kathleen McKeown, et al. 2011.
Automatic summarization. Foundations and
Trends® in Information Retrieval, 5(2–3):103–
233.

Nguyen Ngoc Giang, Vu Anh Tran, Duc Luu Ngo,
Dau Phan, Favorisen Lumbanraja, M Reza
Faisal, Bahriddin Abapihi, Mamoru Kubo, and
Kenji Satou. 2016. Dna sequence classification
by convolutional neural network. 09:280–286,
01.

Tadashi Nomoto. 2016. Neal: A neurally en-
hanced approach to linking citation and refer-
ence. In BIRNDL@ JCDL, pages 168–174.

Ted Pedersen, Siddharth Patwardhan, and Jason
Michelizzi. 2004. Wordnet: : Similarity - mea-
suring the relatedness of concepts. In AAAI.

John W. Ratcliff and David Metzener. 1988.
Pattern Matching: The Gestalt Approach.

Radim Rehurek and Petr Sojka. 2010. Software
framework for topic modelling with large cor-
pora.

Jürgen Schmidhuber. 2015. Deep learning in
neural networks: An overview. Neural net-
works : the official journal of the International
Neural Network Society, 61:85–117.

Simone Teufel and Marc Moens. 2002. Summa-
rizing scientific articles: experiments with rel-
evance and rhetorical status. Computational
linguistics, 28(4):409–445.

Michael E. Tipping and Christopher M. Bishop.
1997. Probabilistic principal component anal-
ysis.

Jen-Yuan Yeh, Tien-Yu Hsu, Cheng-Jung Tsai,
and Pei-Cheng Cheng. 2017. Reference scope
identification for citances by classification with
text similarity measures. In ICSCA ’17.

10
32

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 33–42

A vis-à-vis evaluation of MT paradigms for linguistically distant
languages

Ruchit Agrawal
LTRC

IIIT Hyderabad

Jahfar Ali
LTRC

IIIT Hyderabad

Dipti Misra Sharma
LTRC

IIIT Hyderabad

Abstract

Neural Machine Translation is emerg-
ing as the de facto standard for Ma-
chine Translation across the globe.
Statistical Machine Translation has
been the state-of-the-art for translation
among Indian languages. This paper
probes into the effectiveness of NMT
for Indian languages and compares the
strengths and weaknesses of NMT with
SMT through a vis-a-vis qualitative es-
timation on different linguistic param-
eters. We compare the outputs of
both models for the languages English,
Malayalam and Hindi; and test them
on various linguistic parameters. We
conclude that NMT works better in
most of the settings, however there is
still immense scope for the betterment
of accuracy for translation of Indian
Languages. We describe the challenges
faces especially when dealing with lan-
guages from different language families.

1 Introduction and Related Work

There is an immense scope in the development
of translation systems which cater to the spe-
cific characteristics of languages under consid-
eration. Indian languages are not an exception
to this, however, they add certain specifica-
tions which need to be considered carefully for
effective translation. Firstly, they span across
multiple language families like the Indo-Aryan
and Dravidian languages. Secondly, there is a
lack of large parallel corpora for most of these
languages, which are required to build robust
systems by the SMT and NMT paradigms.

This paper probes in to the competence of
different MT paradigms with respect to lan-
guage pairs which belong to different language

families. Dravidian languages raise many in-
triguing issues in modern linguistics. One of
them is the differentiation of the finiteness
and non finiteness of clauses with its tense
inflection in verbs (Amritavalli, 2014), (Mc-
Fadden and Sundaresan, 2014), (Tonhauser,
2015). Scrambling effect on canonical word
order (Jayaseelan, 2001) is another such phe-
nomenon. It is to be observed when dealing
with complex syntactical structures contain-
ing cleft constructions in Malayalam (Jayasee-
lan and Amritavalli, 2005).

Relative clause structures, nominal clause
structures and their coordination construc-
tions in Dravidian languages are other in-
teresting phenomena (Amritavalli, 2017),
(Jayaseelan, 2014). The analysis made in the
paper describes the handling of all these lin-
guistic phenomena in the context of machine
translation.

Neural Machine Translation is emerging as
a de facto standard for Machine Translation
across the globe. However, a manual inspec-
tion of the output translations reveals sig-
nificant scope for improvement in translation
quality. We perform a comparative analysis of
Neural and Phrase-based Statistical MT tech-
niques and highlight the strengths and weak-
nesses of each paradigm with respect to han-
dling of different linguistic phenomena. The
enquiry throws light on some of the challeng-
ing cases encountered when translating be-
tween morphologically rich and free word or-
der languages and the other end of morpho-
logically less complicated and word order spe-
cific languages. A set of basic observations
are made after extensive testing of SMT and
NMT outputs on these language pairs. We
observe that NMT performs better than SMT
for most of the linguistic phenomena consid-
ered. However; one of the major hurdles to

33

deliver the correct output between morpho-
logically rich languages to to morphologically
weak languages is the inadequacy of NMT to
generate word forms with correct affixes.

The analysis can generate fruitful insights in
the modification of NMT / SMT based tech-
niques to generate efficient results. The in-
sights can be taken into consideration dur-
ing the building of parallel corpora in the fu-
ture or using linguistic features as additional
informaiton for training NMT models. The
analysis also enables the usage of a particular
paradigm depending upon the language pair
and domain in consideration.

2 Motivation

2.1 Characteristics of Indian
languages

The majority of Indian languages are
morphologically rich and depict unique char-
acteristics, which are significantly different
from languages such as English. Some of
these characteristics are the relatively free
word-order with a tendency towards the
Subject-Object-Verb (SOV) construction, a
high degree of inflection, usage of redupli-
cation, conjunct verbs, relative participal
forms and correlative clause constructions.
These unique characteristics coupled with
the caveats of evaluation metrics described in
Section 2.3 pose interesting challenges to the
field of Indian Language MT - both in terms
of development of efficient systems as well as
their evaluation.

For example, in Hindi, a sentence s contain-
ing the words w1,w2,..,wn can be formulated
with multiple variants of word ordering. This
behavior is depicted in Table 1, which shows
two Hindi translations of the following English
sentence :
‘Shyam has given the book to Manish.’ Al-
though they use different word-order, both of
them are semantically equivalent and correct
translations of the source sentence.
Similarly, for the sentence ‘The sun has set’,
there can be multiple valid translations, as
shown in Table 2. It can be noted that ‘सूयर् ’
and ‘सूरज ’ are synonyms of ‘Sun’ in Hindi.

In addition to these, there are many sub-

tle differences in the ways different Indian
languages encode information. For example,
Hindi has two genders for nouns whereas
Gujarati has three. There are also many
ambiguities introduced in language (both at
lexical as well as sentence levels) due to the
socio-cultural reasons and partial encoding of
information in discourse scenario. In addi-
tion to this, the majority of Indian languages
encode a significant amount of linguistic infor-
mation in their rich morphological structures,
and often lexemes can have multiple senses.
All these factors like linguistic conventions,
socio-cultural knowledge, context and highly
inflectional morphology combined together
make Indian languages a challenging terrain
for Machine Translation.

2.2 Variation in linguistic
constructions in IA and DR
languages

Even though Indian languages are all typo-
logically SOV, there are distinct syntactic
peculiarities in Dravidian languages (DR)
that makes MT challenging between Indo-
Aryan (IA) and Dravidian languages. Two
such phenomena are shown by the examples
below:

1. • Hindi Sentence : राम ने बोला िक वह घर
जा रहा था

• Transliteration : rām nē bōl-ā ki vah
ghar jā rahā thā

• Gloss : Ram ERG tell-PST S.CONJ
3.SG.D.PRON home go AUX1-
CONT AUX2-PST

• Meaning : Ram said that he is going
home

2. • Malayalam Sentence : അവൻ
വീ·ിേലാ±് േപാകുകയാണ് എ¼്
രാമൻ പറ¶ു

• Transliteration : avan vīṭṭilēākk
pēākukayāṇ enn rāman paṟaññu

• Gloss : He-NOM home-LOC-towards
go-INF COP QT Raman-NOM say-
PST.

3. • Telugu Sentence : Ƽ̢͠Ʊơ ఇంǐǆ
Ȭ͛˽న́ƚ˸Ƥ ȓƶ̢̂

34

Table 1: Different Hindi translations corresponding to the English sentence - “Shyam has given
the book to Manish.” (Due to word order)

Hindi Transliteration
Sent : 1 मनीष को श्याम ने िकताब दे दी । maneesh ko shyaam ne kitaab de dee
Sent : 2 श्याम ने मनीष को िकताब दे दी । shyaam ne maneesh ko kitaab de dee

Table 2: Two different translations corresponding to the English sentence - “The sun has set.”
(Due to many-to-many mapping between vocabulary)

Hindi Transliteration
Sent : 1 सूयर् डूब चुका है । soorya doob chuka hai
Sent : 2 सूरज डूब चुका है । sooraj doob chuka hai

• Transliteration : rāmuḍu tānu iṇṭi-ki
veḷ-tunn-aṭṭugā cepp-ā-ḍu

• Gloss : Ram 3P.REFL.PRON home-
DAT go-PRES-MANNER.ADV tell-
PST-3.M.SG

4. • Tamil Sentence : ராமæ தாæ
வீâடுÝகு ெசìவதாக Æறினாæ

• Transliteration : rāmaṉ tāṉ vīṭṭu-
kku cel-vat-āka kūṟ-iṉ-āṉ

• Gloss : Ram 3P.REFL.PRON
home-DAT go-NPST.R.PART-
MANNER.ADV tell-PST-3.M.SG

Above example shows that in Hindi the
main clause is followed by subordinate clause
and both the clauses are connected by a sub-
ordinating conjunction ‘ki’. For Malayalam,
The embedded clausal structure with quota-
tive particle ‘ennu’ is the only kind of sentence
possible to have two finite verbs (Asher and
Kumari, 1997). In Telugu and Tamil (Dr),
the subordinate clause is embedded within the
main clause and connection between them is
established morphologically through adverbial
inflections or sometimes a quotative marker
is used to connect the two clauses. These
phenomena explain the relatively lower perfor-
mance on Dravidian languages as compared to
Indo-Aryan languages.

2.3 Challenges in automatic evaluation
A key aspect in developing efficient MT sys-
tems is addressing the issue of effective met-
rics for automatic evalution of translations,
since manual evaluation is expensive and time-
consuming. There has been significant inter-
est in this area, both in terms of development

as well as evaluation of MT metrics. The
Workshop on Statistical Machine Transla- tion
(Callison-Burch et al., 2007; Callison-Burch et
al., 2008; Callison- Burch et al., 2009) and the
NIST Metrics for Machine Translation 2008
Evaluation 1 have both collected human judge-
ment data to evaluate a wide spectrum of met-
rics. However, the problem of reordering has
not been addressed much so far. The pri-
mary evalutaion metrics which exist currently
for scoring translations are BLEU, METEOR,
RIBES and NIST.
BLEU (Papineni et al., 2002) measures the
number of overlapping n-grams in a given
translation when compared to a reference
translation, giving higher scores to sequen-
tial words. METEOR (Lavie and Denkowski,
2009) scores translations using alignments
based on exact, stem, synonym, and para-
phrase matches between words and phrases.
RIBES (Isozaki et al., 2010) is based on rank
correlation coefficients modified with preci-
sion. NIST (Doddington, 2002) is a variation
of BLEU; where instead of treating all n-grams
equally, weightage is given on how informative
a particular n-gram is. We report the BLEU
score as a measure to test accuracy for the
110 NMT systems to maintain brevity. How-
ever, for the language-pair English -> Hindi;
we report all of the above scores. We also de-
scribe the challenges in evaluating MT accu-
racy keeping this language pair in considera-
tion, however it should be noted that the same
or similar challenges are faced when dealing
with other language pairs as well. We use the

35

MT-Eval Toolkit1 to calculate all these met-
rics.
It can be noted that most of the above-
mentioned metrics employ some concept of
word-order as well as word similarity using n-
grams to score translations, which makes eval-
uating Hindi translations a tedious task. In
addition to this, there exists a many-to-many
mapping of vocabulary between English and
Hindi which makes all of these scoring mecha-
nisms less effective. For example, both trans-
lations shown in Table 2 are valid. However;
since the current MT metrics rely heavily on
lexical choice, there is no mechanism which
takes into account the phenomena described
above, which is which is quite common in Indic
languages like Hindi. Hence, in addition to the
metric scores, we also show sample examples
with their descriptions in the following section,
in order to demonstrate translation quality in
a more comprehensive manner.

3 Parameters for evaluation
Since the evaluation metrics do not capture
how well different linguistic phenomena are
handled by our model, we perform a manual
investigation and error analysis with the help
of linguists. In order to have a clear insight
of NMT performance as compared to SMT on
various aspects, we do a side-by-side compar-
ison of the output sentences generated by the
SMT and the NMT models respectively. The
linguists were asked to identify the strengths
and weaknesses of NMT and SMT by ranking
200 output sentences produced by the respec-
tive models in terms of the following parame-
ters:

• Word order

• Morphology :

– How appropriate is the surface form
selection

– Usage of correct syntactic structures
– Morphological agreement between

words

• Phrase handling :

– Non-translated phrases / phrases
missing in the output

1http://bit.ly/2p5C2FB

Hindi Malayalam English

Hindi SMT - 10.4 27.87
NMT - 8.86 27.76

Malayalam SMT 13.9 - 8.2
NMT 12.56 - 7.88

English SMT 26.84 5.15 -
NMT 27.24 3.76 -

Table 3: Results of SMT and NMT on the
ILCI test set

– Additional phrases - Phrases occur-
ing in the output but not in the input
source sentence

• Lexical Choice - Quality and appropriate-
ness of content words and terminology er-
rors

We show the results in Figure 1.

It can be observed from Figure 1 that SMT
produces about twice as more errors in word
order and almost thrice as more errors in syn-
tactic and morphological structures and agree-
ment than NMT. Thus the NMT model is
able to perform significantly better than SMT
for these phenomena. This results in much
more fluent translations produced by the NMT
model - making it a better choice in most sce-
narios. At the same time, the errors made in
terms of lexical choice are much more in NMT
than SMT. NMT also produces slightly greater
number of errors in terms of missing or addi-
tional phrases. On deeper investigation, it is
made clear that a majority of the lexical choice
errors are due to the noise present in the train-
ing data. This leads to the insight that NMT
is more prone to greater sensitivity to training
noise than SMT.

To summarize, NMT performs better than
SMT in most linguistic aspects, particularly in
the presence of a high quality training corpus.

4 Analysis and insights
The analysis is based on the translation of
prevalent sentence construction usages in
the source languages. An extensive testing
is done with these sentence constructions
and some of the output has been reported
with releveant translation and gloss in the

36

Figure 1: Manual Error Analysis of performance of NMT with SMT

coming sections. In order to understand the
efficacy of capturing the syntactical structure
of source language for the translation, we
crafted simple sentences with different verbal
inflections, such as transitive, intransitive,
causative and different modalities in the
source language. These sentences are tested
and verified if the translated sentences are
able to convey the same meaning from the
source language. Similar attempt has been
done with participle, cleft and coordination
constructions in Malayalam to Hindi and En-
glish. For analysing Hindi to other languages,
sentences with participle, complex predicate
and coordination are tested to Malayalam
and English. Tha analysis has done majorly
on following sentences

• Simple sentences with different verbal in-
flections

• Participle, cleft and coordination con-
structions for Malayalam

• Participle, complex predicate, and coor-
dination constructions for Hindi

4.1 Malayalam to English translation

SMT produces a lot of untranslated words as
can be seen from the examples below, although
the domain is kept the same for the manually
created test set, however, the phrasing and
structure is tweaked to cover all the gram-
matically possible constructions prevalent in
Malayalam.

On the other hand, NMT shows an im-
pressive performance in simple sentence
translation from Malayalam to English. We
observe that verbal inflections signalling
modality is getting translated correctly in
NMT(Example-3).Similarly NMT is also
able to figure out variations in transitive
and intransitive inflections in Malayalam
to produce moderately equivalent English
sentence(Example-2). At the same time NMT
fails to translate imperative mood inflections
correctly(Example-1). Example-1:
<SRC> വീ·ില് കീടനാശിനി മരു¼ുകള്
തളി±ുക
<Gloss> home-LOC pesticide medicine
spray-IMP.
<Translation> Pesticide sprays in home.
<SMT-ENG> വീ·ില് കീടനാശിനി medicines
തളി±ു¼ു.

37

<Gloss> home-LOC pesticide medicine
sprinkle-PRS.
<Translation> Pesticide medicine sprinkle in
home.
<NMT-ENG> Get insecticides sprayed at
home .
Example-2:
<SRC> വളെര അധികം ദാഹം ഉ¸ാകു¼ു
<Gloss> Very much thirsty make-PRS.
<Translation> It makes very much thirsty.
<SMT-ENG> feels very thirsty .
<NMT-ENG> One feels very thirsty .
Example-3: <SRC> ഉറ³ു¼ സമയº്
െകാതുകു വല ഉപേയാഗികണം
<Gloss> Sleep-RELAT time-DAT Mosquito
net use-IMP.
<Translation> While sleeping mosquito net
should be used.
<SMT-ENG> mosquito nets ഉപേയാഗികണ
while sleeping .
<Gloss> mosquito nets use-IMP. while sleep-
ing .
<NMT-ENG> while sleeping mosquito net
should be used.

4.1.1 Cleft constructions
Both paradigms fail to translate cleft con-
structions from Malayalam to English. Some
of the complex syntactic constructions per-
taining to the source or target language
consistently fail to be learnt correctly , even
though they are very common in the usage of
the languages. The cleft construction could
be accounted as an example as it is being
used in both Malayalam and English. The
SMT output is mostly erroneous and contains
many untranslated words as can be seen from
the following example.
Example-1:
<SRC> അനീമിക് സംബ×മായ
േരാഗ³െളയാണ് വർÝി½ി±ു¼ത്
<Gloss> Anemic related-RELAT disease-
COP increase-NOMIN.
<Translation> It is anemic relate diseases
that are increased.
<SMT> anaemic വർÝി½ി±ു¼ു related
diseases .
<Gloss> anaemic increase-PRS related dis-
eases .
<NMT-ENG> It increases the diseases of

anemic.

4.1.2 Participle constructions
The sentences with relative participle
verb forms are translated incorrectly from
Malayalam to English and from English to
Malayalam as well. The relativised form of the
verbs are predominently used in Malayalam
for relative clause construction. It extends
a subject sharing possibility between the
realtive clause and the main clasue without
the need of pronoun usage. It has also been
observed that complex postpositional phrases
and nomilised clauses are translated well in
NMT in both directions. The example shows
an erroneous traslation of a relative participle
clause usage in the sentance.
Example-1:
<SRC>േരാഗം പരºു¼ െകാതുക്
ഏഡിസ് എഡി½ടായ് ആണ്
<Gloss> Disease spread-RELAT mosquito
aedis edippai COP.
<Translation> Disease spreading mosquito is
Aedis Edippai.
<SMT-ENG> Disease and mosquito aedes
aegypti .
<NMT-ENG> Malaria spreads while
mosquito infected person .

4.1.3 Coordination constructions
The co-ordination constructions at clausal
level are consistently translated incorrectly
in both the directions in all cases of the
co-ordination sample set. The construction is
realised in Malayalam with complex syntactic
form. The particle suffix -um is attached
to all coordinating elements, but the same
particle is used as an emphatic particle and
also as an inclusion purpose as well. Apart
from these usages the particle -um is also used
for the future tense inflection. It might be the
reason none of the usages of -um is translated
correctly.
Example:
<SRC>ഓ±ാനം അഥവാ ഛര് ദി±ാന്
േതാ¼ും
<Gloss> Nausea or vomit-INF feel-FUT.
<Translation> Nausea or vomitting will feel.
<NMT-ENG> Nausea and vomiting .

38

4.1.4 Semantic handling in translation
A significant number of outputs generated
by SMT and NMT depict correct syntactic
structures but have a potent semantic loss.
This is another important challenge, since
the sentences being translated look like the
correct usage in the target language, but the
intended meaning has absolutely changed.
NMT displays more such occurrences when
compared to SMT, and often fails to realise
the correct semantic role in the target lan-
guage.
<SRC> ഇºരºിലുÞ േരാഗികളിൽ
സമയº് അന് റീബേയാ·ിക് ഔഷധം നല്
കണം
<Gloss> This-kind-EXT-RELATE patients
anti-biotic medicine give-IMP.
<Translation>This kind of patients anti-
biotic medicines should be given at right time.
<SMT> Such േരാഗികളിൽ time അന്
റീബേയാ·ിക് medicine നല് treatment .
<Gloss> Such ”patients-LOC” time ”anti-
biotic” medicine give-ROOT treatment .
<NMT-ENG> In such a case the medicine
should be given to the doctor .

4.2 Hindi to Malayalam translation

The NMT performance on simple sentences
and sentences with postpositional phrases are
reasonably good, except few cases of complex
syntactical co-ordination constructions and
complex predicates.
Example-1:
<SRC> Ùजला मानÙसक स्वास्थ्य कायर्कर्म के Ùलए
उत्राखंड के दो ÙजलƁ का चयन िकया गया ह।ै
<Translation> Two districts of Uttarakhand
have been selected for District mental health
programme.
<NMT> ജിലĂാ മാനസികാേരാഗ®
പരിപാടിയിൽ ഉºരാഖêിെല രĤ
ജിലĂകൾ െതരെ¶ടുºു
<Gloss> District mental-health programme-
LOC Uttarakhand two districts selected.
<Translation> In distirict mental-health pro-
gramme two districts located in Uttarakhand
selected.
<SMT> ജിലĂാ മാനസികാേരാഗ®
പരിപാടി±കº് േവ¸ി ഉºരാഖêിെല
ര¸ു ജിലĂകളിൽ തിര¶ടു±ു¼ത് െച¢തു
<Gloss> District mental-health programme-

within for Uttarakhand-LOC two districts-
LOC select-NOMIN did.
<Translation> For within the district mental-
health programme selecting two districts in
Uttarakhand that did.
Example-2:
<SRC> टीके लेने कĢ सलाह भी दी जाती ह।ै
<NMT> വാ�സിൻ എടു±ു¼തിനുÞ
ഉപേദശം നൽകണം
<Translation> Advice should be given for
taking vaccine
<Gloss> vaccine take-NOMIN-EXIST-REL
advice give-IMP.
<SMT> കുºിവ¢പ് എടു±ു¼തിനുÞ
ഉപേദശം എ¼ിവയും നൽകെ½ടു¼ു
<Translation> Advice for taking Vaccination
and so on are given.
<Gloss> Vaccination take-NOMIN-EXIST-
RELAT advice so-on-also give-PASS-PRS.
Example-3:
<SRC> कुŬ रोग के लक्षणƁ को पहचानना बहĨत किठन
ह।ै
<NMT> കുªഠേരാഗ ല­ണ³ൾ
തിരി´റിയു¼ത് വളെര അപൂർÁമാണ്
<Translation> Identifying leprosy syptoms
that is very rare.
<Gloss> Leprosy symptoms identify-NOMIN
very rare-COP.
<SMT> കുªഠ േരാഗºിൻെറ
ല­ണ³ൾ തിരി´റിയു¼ത് വളെര
കഠിനമാണ്
<Translation> Identifying leprosy’s symp-
toms that is very hard.
<Gloss> Leprosy disease symptoms identify-
NOMIN very dificult-COP.

4.2.1 Co-ordination constructions
Hindi sentences with co-ordination construc-
tions are incorrectly translated to equivalent
Malayalam sentences. This is in alignment
with the previous observation that complex
syntactic sentence constructions are mostly
translated incorrectly. This might be due to
the vast differences in the way co-ordination
constructions are realised in two languages.
<SRC> माटा एनािफÙलक मच्छर स्वच्छ पानी में पदैा
होता है और रात में काटता ह।ै
<NMT> മലാരിയില് നി¼് വല
േശഖരി±രുത്
<Translation> From Malaria do not collect
net.

39

<Gloss> Malaria-LOC from net collect-NEG.
<SMT> െകാതുക് വൃºിയുÞ െവÞºിൽ
ജനി±ുകയും രാxതിയിൽ എ¼ിവ
ഉ¸ാകു¼ു
<Translation> Mosquito takes births also in
fresh water night and so on makes.
<Gloss> Mosquito fresh-EXIST-RELAT
water-LOC take-birth-COORD night-LOC
so-on make-INTR-PRS.
<Gloss> Mosquito clean-EXIST-RELAT
water-LOC take-birth-CORD night-LOC
and-so-on make-INTR-PRS.

4.2.2 Complex predicate constructions
Hindi complex predicate constructions are the
other set of constructions which consistently
fail to be translated correctly from Hindi to
Malayalam. The usage of complex predicate
is confined to Hindi and the equivalent
Malayalam is obtain by relative clause. The
different ways of realising the semantically
equal sentence might lead to problems. Sec-
ondly, scrambling of arguments with in a
clause is usual in relatively free word order
languages. It may also lead to the failure of
this translation. The erroneous outputs are
shown in the example-1 and example-2.
Example-1
<SRC> कुŬ रोग एक पर्कार के वायरस से होने वाला
एक रोग ह।ै
<NMT> ൈവറസ് ഒരു തരºിലുÞ
ൈവറസ് ൈവറസ് ആണ്
<Translation> Virus one kind of virus is
virus.
<Gloss> Virus one kind-EXIST-RELAT
virus virus COP.
<SMT> കുªഠേരാഗം ഒരു തരºിലുÞ
ൈവറസ് െകാĤ ഉ¸ാകു¼ ഒരു
േരാഗമാണ്
<Translation> Leprosy is due to one kind of
virus making disease.
<Gloss> Leprosy one kind-EXIST-RELAT
virus by make-INTR-PRS one disease-COP.
Example-2
<SRC> कुŬ रोग वायरस से होने वाला एक पर्कार का
रोगजनन ह।ै
<NMT> ൈവറസ് ൈവറസ് ബാധി´ ഒരു
തരºിലുÞ േരാഗമാണ്
<Translation> Virus virus effected one kind
disease is.
<Gloss> Virus virus infect-RELAT one

kind-EXIST-RELAT disease-COP.
<SMT> കുªഠേരാഗം ൈവറസ്
മൂലമു¸ാകു¼ ഒരു തരºിലുÞ
<Translation> Leprosy due to virus one kind
of.
<Gloss> Leprosy virus due-to-make-INTR-
PRS-RELAT one kind-EXIST-RELAT.

4.3 Malayalam to Hindi translation
The translations from Malayalam to Hindi
using NMT do not perform better than
Hindi to Malayalam. Verbal inflections are in
Malayalam are not able to be translated in
the apt manner in Hindi. However, certain
simple sentences are handled reasonably well
by NMT.
Example-1:
<SRC> നി³ള് ക�പിളി വxù³ള്
ധരി±ുക
<Gloss> you woolen clothes wear-IMP.
<Translation> You may wear woolen clothes.
<NMT-HND> आप ऊनी कपड़े पहनें ।

Example-2:
<SRC> ഉറ³ു¼ സമയº് െകാതുകു വല
ഉപേയാഗികണ
<Gloss> Sleep-RELAT time-DAT mosquito
net use-IMP.
<Translation> while sleeping mosquito net
should be used.
<NMT-HND> सोते समय मच्छरदानी पम्प करें ।

Example-3:
«Semantic error»>
<SRC> ഇºരºിലുÞ േരാഗികളിൽ
സമയº് അന് റീബേയാ·ിക് ഔഷധം
നøണ
<Translation> This-kind-EXIST-RELAT
disease-LOC time-DAT antibiotic medicine
give-IMP.
<NMT-HND> ऐसे सहवास के समय एंटीबायोिटक्स
औषÙध देनी चािहए ।

4.3.1 Coordination constructions
Simple nominal co-ordination constructions
are successfully translated from Malayalam
to Hindi. However, the complex sentential
coordination is still out of its reach. The
example-1 nominal coordination is translated
well, whereas it failes on example-2.

40

Example-1:
<SRC> ഓ±ാനം അഥവാ ഛര് ദി±ാന്
േതാ¼ും
<Gloss> Nausea or vomit-INF feel-FUT.
<Translation> You will feel Nausea or vom-
itting.
<NMT-HND> िमतली या उल्टी महसूस होना ।
Example-2:
<SRC> ഓ±ാനവും ചർÝിയും ഉ¸ാകു
<Translation> It makes nausea or vomitting.
<NMT-HND> मतली कĢ िनयिुक्

4.3.2 Cleft constructions
Cleft sentences in Malayalam are still a
problem for Malayalam to Hindi translation.
The simple sentence is translated correctly
(Example 1), but its cleft form is translated
incorrectly in (Example 2). This shows the
dire need of an approach which can enhance
NMT to learn different syntactical constructs
prevalent in linguistically distant languages.
<SRC> അവന് ഡ²ി പനി ബാധി´ു
<Gloss> He-DAT Dengue fever caught.
<Translation> He caught dengue fever.
<NMT-HND> Ùजसके कारण डेंगू बढ़ता ह।ै
<SRC> അവനാണ് ഡ²ി പനി ബാധി´ത്
<Gloss> He-COP dengue fever caught-
NOMIN.
<Translation> It is him that caught fever.
<NMT-HND> वह डेंगू बुखार ह।ै

5 Conclusion
Based on the extensive evaluation carried out
on the NMT bi-directional translator with
possible pairs of English, Hindi, and Malay-
alam, simple sentences including sentences
with complex postpositional phrases are trans-
lated well in all pairs. The output quality
is consistently better than SMT in most of
the phenomena. An exceptional case is shown
in the modal affixes of Malayalam, which are
translated incorrectly to Hindi. The other im-
portant observation is that NMT is not able to
decode complex verbal inflections and trans-
late them to the target language, particularly
to Hindi. A major issue of NMT is that
it can not translate complex syntactic struc-
tures, particular to the source language usage.
It is visible from the cleft and participle con-
structions of Malayalam failing to get trans-

lated to other languages and similarly com-
plex predicate structures in Hindi to other lan-
guages. In addition to these, co-ordination
constructions with conjuncts are also trans-
lated incorrectly by both SMT and NMT.
These factors can serve as important guide-
lines to be considered when building parallel
corpora for linguistically distant languages in
the future, to facilitate better performance of
SMT as well as NMT approaches on these lan-
guage pairs.

References
Raghavachari Amritavalli. 2014. Separating tense

and finiteness: anchoring in dravidian. Natural
Language & Linguistic Theory, 32(1):283–306.

R Amritavalli. 2017. 9 nominal and interrogative
complements in. Dravidian Syntax and Univer-
sal Grammar.

Ronald E Asher and TC Kumari. 1997. Malay-
alam. Psychology Press.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo,
and Marcello Federico. 2016. Neural versus
phrase-based machine translation quality: a case
study. arXiv preprint arXiv:1608.04631.

Akshar Bharati, Vineet Chaitanya, and Rajeev
Sangal. 1994. Anusaraka or language acces-
sor: A short introduction. Automatic Transla-
tion, Thiruvananthpuram, Int. school of Dravid-
ian Linguistics.

Akshar Bharati, Vineet Chaitanya, Rajeev Sangal,
and KV Ramakrishnamacharyulu. 1995. Natu-
ral language processing: a Paninian perspective.
Prentice-Hall of India New Delhi.

Junyoung Chung, Caglar Gülçehre, Kyunghyun
Cho, and Yoshua Bengio. 2015. Gated feed-
back recurrent neural networks. In ICML, pages
2067–2075.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the sec-
ond international conference on Human Lan-
guage Technology Research, pages 138–145. Mor-
gan Kaufmann Publishers Inc.

Caglar Gulcehre, Orhan Firat, Kelvin Xu,
Kyunghyun Cho, Loic Barrault, Huei-Chi Lin,
Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2015. On using monolingual corpora
in neural machine translation. arXiv preprint
arXiv:1503.03535.

41

Aria Haghighi and Dan Klein. 2009. Simple coref-
erence resolution with rich syntactic and seman-
tic features. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Lan-
guage Processing: Volume 3-Volume 3, pages
1152–1161. Association for Computational Lin-
guistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Kat-
suhito Sudoh, and Hajime Tsukada. 2010. Au-
tomatic evaluation of translation quality for dis-
tant language pairs. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, pages 944–952. Associa-
tion for Computational Linguistics.

KA Jayaseelan and R Amritavalli. 2005. Scram-
bling in the cleft construction in dravidian.
The free word order phenomenon: Its syntac-
tic sources and diversity, 69:137.

Karattuparambil A Jayaseelan. 2001. Ip-internal
topic and focus phrases. Studia Linguistica,
55(1):39–75.

KA Jayaseelan. 2014. Coordination, relativization
and finiteness in dravidian. Natural Language &
Linguistic Theory, 32(1):191–211.

Girish Nath Jha. 2010. The tdil program and
the indian langauge corpora intitiative (ilci). In
LREC.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-Source Toolkit
for Neural Machine Translation. ArXiv e-prints.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, et al. 2007. Moses: Open
source toolkit for statistical machine translation.
In Proceedings of the 45th annual meeting of the
ACL on interactive poster and demonstration
sessions, pages 177–180. Association for Com-
putational Linguistics.

Anoop Kunchukuttan, Abhijit Mishra, Rajen
Chatterjee, Ritesh Shah, and Pushpak Bhat-
tacharyya. 2014. Sata-anuvadak: Tackling
multiway translation of indian languages. pan,
841(54,570):4–135.

Alon Lavie and Michael J Denkowski. 2009.
The meteor metric for automatic evaluation
of machine translation. Machine translation,
23(2):105–115.

Minh-Thang Luong and Christopher D Manning.
2015. Stanford neural machine translation sys-
tems for spoken language domains. In Proceed-
ings of the International Workshop on Spoken
Language Translation.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D Manning. 2015. Effective approaches
to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025.

Thomas McFadden and Sandhya Sundaresan.
2014. Finiteness in south asian languages: an in-
troduction. Natural Language & Linguistic The-
ory, 32(1):1–27.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th annual meeting on asso-
ciation for computational linguistics, pages 311–
318. Association for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz,
Linnea Micciulla, and John Makhoul. 2006. A
study of translation edit rate with targeted hu-
man annotation. In Proceedings of association
for machine translation in the Americas, volume
200.

Martin Sundermeyer, Ralf Schlüter, and Hermann
Ney. 2012. Lstm neural networks for language
modeling. In Interspeech, pages 194–197.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in neural information
processing systems, pages 3104–3112.

Judith Tonhauser. 2015. Cross-linguistic temporal
reference. linguistics, 1(1):129–154.

Paul J Werbos. 1990. Backpropagation through
time: what it does and how to do it. Proceedings
of the IEEE, 78:1550–1560.

Barret Zoph, Deniz Yuret, Jonathan May, and
Kevin Knight. 2016. Transfer learning for
low-resource neural machine translation. arXiv
preprint arXiv:1604.02201.

42

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 43–49

Textual Relations and Topic-Projection: Issues in Text Categorization

Samir Karmakar
Jadavpur University

samir.krmkr@gmail.com

Lahari Chatterjee
Jadavpur University

lahari.chatterjee@gmail.com

Abahan Dutta
Jadavpur University

abahanjiriya@gmail.com

Abstract

Categorization of text is done on the ba-
sis of its aboutness. Understanding what
a text is about often involves a subjec-
tive dimension. Developments in linguis-
tics, however, can provide some impor-
tant insights about what underlies the pro-
cess of text categorization in general and
topic spotting in particular. More specifi-
cally, theoretical underpinnings from for-
mal linguistics and systemic functional
linguistics may give some important in-
sights about the way challenges can be
dealt with. Under this situation, this pa-
per seeks to present a theoretical frame-
work which can take care of the catego-
rization of text in terms of relational hier-
archies embodied in the overall organiza-
tion of the text.

1 Introduction

Multiplicity of text is the consequence of the way
textual components are selected and combined
into coherent wholes, apart from the factors con-
tributing to the content. One could be suspicious
about this structure-centric investigation; but it is
really hard to give up structure-centricity particu-
larly in a position when structure is crucial both in
formation and representation of the text.

Distinguishibility of one text from the other de-
pends on what sorts of textual components are se-
lected and how are they combined into the com-
plex structure of a text. This complex weaving of
whats and hows is often termed as textuality
- the property because of which a text attains its
uniqueness. Interpretation of text, therefore, arises
through the gradual unpacking of textuality. Sil-
verman (1994) argues, "[t]he interpretation of the
text brings the textuality . . . outside the text, so as
to specify and determine the text in a particular
fashion."

Specification and/or the determination of a text
in a particular fashion possess(es) a daunting chal-
lenge to linguistics in general and computational
linguistics in particular. In linguistics, this finds
its way through the study of discourse, text etc.
(Beaugrande and Dressler, 1981); whereas in com-
putational linguistics, interest is developed due the
growth of text categorization, information struc-
ture etc. (Nomoto and Matsumoto, 1996). A care-
ful investigation of these two lines will reveal the
fact that their respective queries and approaches
are built on the question of how a text is structured:
Since a structure is the embodiment of different
structuring principles out of which it is made up
of, explicating the process through which a text
comes into being remain a central concern. Note
that textuality as an account of constituents and
combinatorial principles is intrinsic to the text.
Therefore, the questions of specification and/or
determination of a text is translated into the way
the respective textuality is.

Under this situation, then, this paper is inter-
ested in understanding what textuality is. One
among many ways to investigate this question is to
answer how the topic of a text is projected through
the characteristic but hierarchical associations of
its constituents. In other words, the projection of
a topic in a text in some way brings out a nexus of
text-internal relations holding among constituent
statements of it. If so, then, topic-spotting in one
sense is an act to categorize a text with an empha-
sis on textuality.

If we consider topic-spotting as the single most
important criterion in categorizing a text, then the
paper seeks to develop an analytical account of
how the weaving of statements into a network re-
sults into the projection of its topic. This, in turn,
plays a crucial role in identifying the way a text is
categorized.

Since text and textuality are inseparable from
each other, our task will be of two folds: Firstly,

43

we need to come up with an analysis of the rela-
tions holding among the constituents of the text;
and, secondly, how these relations are hierarchi-
cally organized in a text. Taken them togather,
a general description of the textuality will evolve
with a linguistic answer to the problem of topic-
spotting.

Above mentioned two tasks will be performed
over the news reports called brief. Broadsheet
newspaper – generally designed in 8 columns –
contains some brief news in the left most column.
They are typically restricted into single column
and consists of 5 to 10 sentences. The space,
alloted to the briefs, is termed as Doric column
for having symbolic resemblance with an archaic
form of architectural order developed in Greece
and Rome. A Doric column contains three to four
brief news and they are ordered according to their
significance which may vary from one news pa-
per to another depending on the editorial policies.
Briefs are structured.

2 Topic Projection and Textual Relations

To Taboada and Mann (2006), the communica-
tive function of a written text is the consequence
of the way words, phrases, grammatical structures
and other relevant linguistic entities are getting in-
volved into a coherent whole. In other words, a
text-construal consists of certain structural roles
performed by the constituents reflecting depen-
dencies among the statements within a text and
the way these roles are combined togather with the
help of relations. As a result, following schematic
representation of a text-construal is surfaced:

1. text_construal

structural_role

head
(H)

modifier
(M)

structural_combination

compound
(H-H)

complex
(H-M)

As per this scheme, structural roles could be of
two types namely (a) head (= H) and (b) modi-
fier (= M). It is often noticed that head is pro-
jected as the topic. Relative saliencies of state-
ments over each other often depends on their re-
spective structural roles in a structural combina-
tion. For example, in a text-construal if the state-
ments are connected with each other with the ex-
pressions - like ‘and’, ‘or’, ‘but’etc. - chances are

high for both the statements to enjoy the status
of head (ex. the moon was bright and the tem-
perature was moderate). This type of coordinat-
ing structure will be classified as compounded. In
contrast to compounding, complex type structural
combination distinguishes constituent clauses as
either principle or subordinate (ex. A guest is un-
welcome when he stays too long). Complexities
involved in identifying topic of text-construal is
often considered as the contribution of different
statements within a network of textual relations.

In an investigation, where the topic-based cate-
gorization of text is being talked about, one need
to know what is meant by topic. The topic of a
text is its aboutness. More technically, topic is a
statement which is entailed by the text. Following
Djik (1977), we can formulate the following for-
mal definition for the topic of a text - where text is
a collection of statements in particular order.

2. A statement σi is the TOPIC of a sequence of
statements Σ = 〈σ1, σ2, . . . , σn〉 iff for each
σi ∈ Σ there is a subsequent Σk of Σ such
that σi ∈ Σk and for each successive Σk there
exists σi such that Σk |= σi.

In other words, a statement will have the sta-
tus of the topic, iff it is entailed globally by a text
which it is a part of. By this, it is meant that all
other local entailment relations will never have the
status of topic in virtue of not being able to suc-
ceed across all subsequent collections of the state-
ments to the ultimate text.

The most important criterion, i.e. the concept of
entailment (represented with |=), for a statement
to be the topic of a sequence of statements mani-
fested through a text-construal needs some clarifi-
cation: A statement p entails q when the truth of
the first (p) guarantees the truth of the second (q),
and the falsity of the second (q) guarantees the fal-
sity of the first (p) (Saeed, 2009):

3.

p |= q
T → T
F → T or F
F ← F

T or F ← T

In continuation to our discussion, it could be
said that a statement will have the status of topic
in a text-construal, iff it is assigned to truth. As
per composite truth table of entailment (3), the ab-
solute truth of the entailed statement is subject to

44

the truth of a statement which is entailing the en-
tailed. In other words, in order to have the status of
topic, a statement must be in congruence with an-
other statement in terms of the truth values. Note
that the implementation of the criterion assumes
a careful dissociation between sentence and state-
ment. We will comment on this issue in our dis-
cussion below.

In a text, the other statements, acting as entail-
ers, are used in modifying the entailed sentence
(i.e. the topic) in various capacities - say for ex-
ample elaborating, extending, enhancing etc. We
will call them relators. It is not always neces-
sary for a relator to be expressed explicitly in a text
construal. What is worth mentioning is the fact
that a statement with the status of topic is modi-
fied by modifiers in a structured manner. Having
said this, it is emphasized that topic of a text hier-
archically organizes various other functions with
which it is associated. As an example consider the
following piece from a brief published in Anand-
abazar on July 31, 2017:

4. (a) jhARkhaNDe
Jharkhand.loc

bhArI
heavy

briSTir
rain.poss

AshangkA
fear

nA
not

thAkAy
having

Dibhisir
DVC.poss

jal
water

chArA
release

kAmeche
reduce.perf.pres.3

Having no fear of heavy rain in Jhark-
hand, water release of DVC has reduced

(b) rAjya
State

prashAsan
administration

tAi
therefore

trAner
relief.poss

kAje
work-loc

bARti
extra

najar
attention

dicche
give.impf.pres.3

State administration, therefore, is giving
more attention to the relief work.

Note that (4a) and (4b) both of them separately
have their own topics: When (4a) is about the re-
duction in the release of water, (4b) is about pay-
ing extra attention to the flood situation. However,
when these two statements are put togather in a
text, the topic or aboutness of the resultant text is
determined by the characteristic relation holding
between (4a) and (4b). A careful look into (4) will
reveal the fact that the topic of it is (4a). Being
a topic, (4a) will enjoy the status of head (H) and
(4b), the status of modifier (M). But what type of
relation (4a) and (4b) are in? We can define the re-
lation as therefore, because (4a) is reporting a
situation that logically results into the situation re-
ported in (4a). Moreover, (4b) contains an explicit

lexical item tai in it to show how (4b) is modifying
(4a). Further, reporting of (4a) is more central to
reporter’s purpose in putting forth the H-M combi-
nation than the reporting of (4b). Thus the relation
could be termed as therefore - which licenses
complex strucural combination. This discussion
can be summarized in the following way:

5. therefore(4a, 4b) |= 4a
interpreted as ((4a), therefore (4b)) entails
(4a) with a reference to a text-construal

To distinguish a statement from a sentence, we
will introduce Greek alphabet σ with the provi-
sions of using subscripts. Later on, it would be
shown that a single sentence can have more than
one statements in it. For this time, lets consider
the statement expressed in (4a) is σi and the state-
ment expressed in (4b) is σj . As a result, (5) will
be converted into

6. therefore(σi, σj) |= σi
where therefore is a relator connecting a
head statement with its modifier statement
with a reference to a sequence of statements
corresponding to a text-construal

The local relation(s) holding between two state-
ments are getting modified when a third sentence
is added with it. Consider the following sentence
as the part of (4):

4. (c) rabibAr
Sunday

goghATe
Goghat.loc

jal
water

nAmleo
decreasing.prt

nadIgulir
river.pl.poss

jalastar
water

beshi
more

thAkAy
having

ghATAl
Ghatal

o
and

khAnAkule
Khanakul.loc

teman
such

nAmeni
decreasing.neg

On Sunday, in Goghat, though the water
level decreased, in Ghatal and Khanakul
no such change is noticed due to the
high water level in the rivers.

Inclusion of (4c) will have its impact on the ex-
isting relational pattern because of effecting the
distribution of roles and their combinatorial pat-
tern in the resultant text-construal: (4c) represents
a statement which is contradictory to the text-
construal comprised of (4a) and (4b). This time no
relation is explicitly mentioned. We will name this
relation contrarily - since (4c) is providing an
information which is contradicting with the previ-
ously stated information. Because of being com-
pound type structural combination, resultant text-

45

construal will entail both (4a) and (4c): In com-
pound type structural combination both the state-
ments have the status of heads. As a consequence
both (5) and (6) will be augmented or modified in
the following ways:

7. contrarily(therefore(4a, 4b), 4c)

|=
{

4a

4c
Interpreted as,
(((4a) therefore (4b)), contrarily (4c)) en-
tails 4a and 4c with respect to a text-construal

Conversion to the relational scheme of corre-
sponding statements will give us the following re-
sult:

8. contrarily(therefore(σi, σj), σk)

|=
{
σi

σk
with respect to a sequence of state-

ments corresponding to the text-construal

Note that the entailment relation is changed
with the addition of newer statement. If this is
a deviation from what is claimed in (2), then
one should have some satisfactory answer to the
question of how topics are licensed to perco-
late from one text-construal to its successive text-
construals. No doubt, the answer to this problem
has to come from the characteristic interactions
holding between the structural aspect (= syntac-
tic) and the meaning aspect (= semantic) of a text-
construal. By strucural aspect, different combina-
tions of H(ead) and M(odifier) are meant; whereas
the meaning aspect is primarily concerned about
the topic as well as entailment relations. The pro-
posed solution to this problem will be explained in
Section 4.

2.1 Sentence Internally Topic Projection
Though we are concerned about the topic spotting
with a focus on the sequences of statements pri-
marily at the sentential level, it is possible to trace
back the topic from the sub-sentential level anal-
ysis - because a sentence can contain more than
one statements. Therefore, to trace back our anal-
ysis from the subsentential level, we need to iden-
tify the subsentential constituents in the following
way:

4(a) σi.1: jhARkhaNDe
Jharkhand.loc

bhArI
heavy

briSTir
rain.poss

aAshangkA
fear

nA
not

thAkAy
having

Having no fear of heavy rain in Jhark-
hand,

σi.2: Dibhisir
DVC.poss

jal
water

chArA
release

kameche
reduce.perf.pres.3

water release of DVC has reduced.

4(b) σj : rAjya
State

prashAsan
administration

tAi
therefore

trAner
relief.poss

kAje
work-loc

bARti
extra

najar
attention

dicche
give.impf.pres.3

State administration, therefore, is giving
more attention to the relief work.

4(c)σk.1: rabibAr
Sunday

goghATe
Goghat.loc

jal
water

nAmleo
decreasing.prt

On Sunday, in Goghat, though the water
level decreased

σk.2: nadIgulir
river.pl.poss

jalastar
water-level

beshi
more

thAkAy
having

having high water level in the rivers
σk.3: ghATAl

Ghatal
o
and

khAnAkule
Khanakul.loc

teman
such

nAmeni
decreasing.neg
in Ghatal and Khanakul no such change
is noticed

Now, consider the case of (4a) which is a col-
lection of following two statements: (i) there is no
fear of heavy rain (= σi.1), and (ii) DVC is reduc-
ing the water release (= σi.2). Here in this case
the former one is the modifier and the latter one
is the head. First one is the reason for the second
one. Alternatively, we can say, second one is the
consequence of the first one:

9. consequently(σi.1, σi.2) |= σi.2

Similarly, (4c) as a complex sentence is made up
of three distinct statements: (i) decreasing of the
water level in Goghat region on Sunday (σk.1),
(ii) having more water in the rivers (= σk.2), and
(iii) not decreasing water levels in Ghatal and
Khanakul regions (= σk.3). Here, (iii) is the head
modified with (ii).

10. consequently(σk.2, σk.3) |= σk.3

Being in contrast with topic-projection of (10), the
statement σk.1 will also have the status of head. As
a result, along with σk.3, σk.1 will also be entailed
by the resultant sequence of statements:

11. contrarily(σk.1, consequently(σk.2, σk.3))

|=
{
σk.1

σk.3

46

Later on, in Section 4, the rest of this story of
topic projection will be presented. Here, in this
point of our discussion, we would rather like to
turn towards the questions of how a particular re-
lation existing between two statements are identi-
fied, and how a statement is assigned to the topic.
To address these issues, in Section 3, the under-
lying conceptual framework for topic extraction is
explained.

3 Conceptual Framework for Topic
Extraction

The process involved in the categorization of text
in terms of its topic extraction, as is described in
Section 2, can be conceptualized in the follow-
ing way: As per our understanding, any text (like,
brief) can be conceived as the sequence of state-
ments. Each of these statements in isolation has a
topic - no matter, how trivial it may sound. As a
part of a text-construal, each one of them is related
with some other statement. As is discussed earlier,
(i) either one of the each pair has the status head
and the other is the modifier (as in subordina-
tion), or (ii) both of them are of head status (as in
coordination). Relator along with the concept of
structural saliencies plays a crucial role in deter-
mining the topic of the text-construal made up of
the constituent statements. Formally, a relator can
be defined as,

12. R : S × T where S is the set of statements
and T is the set of topics;

Assignment of a topic τi to a statement σi is a
subjective task. This subjective dimension can be
discussed in terms of a characteristic function:

13. f : R→ {1, 0}

Before getting into our final section, lets have a
look into the issues of relations.

3.1 Textual Relations
What seems to be central to the conceptual frame-
work discussed in Section (3) is an account of
different types of textual relations - for which
we have relators of both implicit and explicit
types. Few such relations - like therefore,
contrarily, and consequently - are al-
ready mentioned in our discussion. Relations
are important for the formation of complex state-
ments. More specifically, relators are crucial in
maintaining the coherence of a text. Three major

types of relators will be discussed in section fol-
lowing the proposal of Systemic Functional Lin-
guistics (Eggins, (Eggins, 2004)):

14. R-type

elaboration extension enhancement

These three types of relations are crucial in ex-
plaining the way text-construal incorporates the
newer forms of information through the gradual
increment of the relational network. While elabo-
rating we are restating a statement for better clar-
ity. In case of extending, additional statements are
supplied; and the act of enhancing is used to indi-
cate the further development of the meaning al-
ready communicated by a statement. Being the
part of the typological classification of the relators,
each of them are defined set-theoretically over a
set of relators. In (15), these three types of relators
are represented with their respective members:

15. (a) elaboration
clarify, restate, exemplify,
instantiate, illustrate,
in_other_words,
to_be_more_precise,
as_a_matter_of_fact,
actually, in_fact etc.

(b) extension
and, but, additionally,
furthermore, moreover,
excepting,
apart_from_that,
alternatively,
on_the_other_hand,
on_the_contrary, instead etc.

(c) enhancement
after, before, next, then,
therefore, simultaneously,
sequentially, until, since,
now, similarly, yet, still,
despite, though, consequently
etc.

The algebraic system underneath the process
of topic sorting as a most important criterion to
categorize a text, then, is a tuple 〈S,T,R, f〉 -
which consists of a non-empty set of statements,
a set of topics, a class of relations defined over
the cartesian product of S and T, and a charac-
teristic function assigning each of the relations to

47

the set of values. In addition to the issues dis-
cussed above, what seems to be most crucial for
the relations mentioned in (15) is their classifica-
tion either as compound or complex type relations.
More specifically, it is important to know which
type of relations permit coordinate structures and
which ones permit subordinate structures. From
a gross observation, it seems the relations cate-
gorized as elaboration type and enhancement type
permits subordination; whereas extension type re-
lations are useful in constructing coordination.

4 Discussion

This section is dedicated to the hierarchical orga-
nization of the relations in a text-construal. This
is done with the help of attribute value matrix. As
per the conventions, set earlier, H and M are used
to mark the organizational roles associated with
the statements. Functional dependencies existing
between the statements, along with their respec-
tive entailments, are represented with the aid of
the relations. Apart from these, T and τ are used
as subscripts to mark the status of the statements
as topic. A statement marked with T is likely to
percolate as topic to the next stage of construal as
against the statement with subscipted τ confined
within the text-construal which it is a part of. Note
the identification of a topic (τ) either as a head (H)
or as a modifier (M) is determined solely by the se-
mantics of the relations. The topic is marked as T
when it is identified as H. In addition to this, a con-
cept of rank needs to be introduced here: If a ma-
trix embeds another matrix in it, then the former
one would be considered as of higher rank con-
strual in comparison to the latter one. Consider
the following examples:

16. matrix with higher rank with respect to (17):

(16) is considered as a matrix of higher rank with
respect to the matrices enumerated in (17):

17. matrices with lower ranks

(a) (b)

However, (16) will be considered as a matrix with
lower rank with respect to (18).

18. Topic percolation through the network of tex-
tual relations:

For the sake of the brevity and the ease of the pre-
sentation, in (18), we have used following abbre-
viations: therefore = t, consequently = c,
contrarily = C.

Needless to say, matrices mentioned in (17)
would be of lowest rank because of not embed-
ding any other matrix; on the other hand, (18) will
be of greatest rank in virtue of not being embed-
ded in other matrix. Significance of relative ranks
is useful in explaining how the projection of topic
is taking place within the text-construal.

As per attribute value matrix of (18), the topic
of a sequence of statements, Σ corresponding to
a text construal (4), will be that statement which
is embedded in all successive matrices of higher
ranks as head (= H). In other words, topic of a
modifier is not licensed to be the topic of a ma-
trix with higher rank within which the modifier is
embedded. As per this assertion, then, it is not
hard to argue why the topics of the lowest rank
text-construals as modifier fail to percolate as a
topic in the text-construals which are in immedi-
ately higher ranks.

As the analytical framework outlined and dis-
cussed above, the text mentioned in (4) have two
distinct topics:

19. Σ |=
{
topic4a−b marked as 1

topic4c marked as 2

These two topics are projected by two differ-
ent text-construals which are in equal rank as is
obvious from the attribute-value matrix of (18).
Similar situation prevails in case of the matrices
marked with 3 and 4. If two topics are of equal
rank, then chances are high for the respective texts
to be independent of each other. In other words,
two topics with equal rank are combined togather
into a text-construal with the aid of those relations
which are crucial in producing compounded struc-
tures.

On the basis of this discussion, we can argue
that Dijk’s criterion (1977) for topic identification

48

mentioned in (2) seeks the following modification:
Any text as a sequence of statements will have one
and only one topic iff the constituent textual rela-
tions are in complex type structural combination.
Compounding of constituent relations will indi-
cate their respective projections as independent of
each other. In such a situation, the text-construal
can be broken into two independently occurring
texts. This could be used as a potential clue to
the auto-editing of briefs in particular and news
reporting in general.

References
R. A. De Beaugrande and W. U. Dressler 1981. Intro-

duction To Text Linguistics Longman, New York.

M. Taboada and W. C. Mann 2006. Rhetorical Struc-
ture Theory: Looking Back and Moving Ahead Dis-
course Studies, 8(3), pp. 423-459.

T. A. van Djik 1977. Text and Context: Explorations
in the semantics and pragmatics of discourse Long-
man, London.

J.I. Saeed 2009 Semantics (3rd edition) Wiley-
Blackwell, Oxford.

H. J. Silverman. 1994. Textualities: Between
Hermeneutics and Deconstruction Routledge, Lon-
don.

T. Nomoto and Y. Matsumoto 1996 Exploiting Text
Structure For Topic Identification Workshop On
Very Large Corpora, 101-112

S. Eggins 2004 An Introduction to Systemic Func-
tional Linguistics Second Edition Continuum, New
York

49

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 50–55

POS Tagging For Resource Poor Indian Languages Through
Feature Projection

Pruthwik Mishra1 Vandan Mujadia2 Dipti Misra Sharma3

Language Technologies Research Center, IIIT Hyderabad
Kohli Center On Intelligent Systems

pruthwik.mishra@research.iiit.ac.in,vmujadia@gmail.com,dipti@iiit.ac.in

Abstract

We present an approach for POS tag-
ging with out any labeled data. Our
method requires translated sentences
from a pair of languages. We used
feature transfer from a resource rich
language to resource poor languages.
Across 8 different Indian Languages,
we achieved encouraging accuracies
without any knowledge of the target
language and any human annotation.
This will help us in creating annotated
corpora for resource poor Indian lan-
guages.

Keywords
POS, NLP, corpus, parallel corpora, Feature
Transfer, Alignment, Mapping

1 Introduction
Part-Of-Speech(POS) (Bharati et al., 2007)
Tagging is considered as a preliminary task for
various Natural Language Processing(NLP)
tasks. POS Tagging primarily assigns class
labels to words based on some extracted fea-
tures. The POS tagged corpus can further
be used for parsing, building lexical dictionar-
ies, frequency lists and many more subsequent
tasks 1. For automatic POS tagging, the state-
of-the-art POS taggers use large POS anno-
tated data sets and try to learn the appropri-
ate class labels for words depending on various
hand annotated features. There are many In-
dian Languages which are unexplored due to
the unavailability of annotated corpora. But
recently, there has been a lot of efforts to cre-
ate monolingual as well as bilingual corpora

1http://www.ahds.ac.uk/creating/guides/linguistic-
corpora/

for different Indian Languages.
Hindi is resource rich in this regard as there are
many linguistic resources created for Hindi.
One of the notable corpus available is the
Hindi Treebank (Bharati et al., 2006). Statis-
tical POS taggers trained on Hindi Treebank
data for Hindi achieved around 93% accuracy
(Gadde and Yeleti, 2008). Stochastic or Sta-
tistical Taggers are also used for Indian lan-
guages like Punjabi, Urdu, Marathi, Telugu,
but their accuracies fall due to lack of large
annotated corpora. POS Taggers for other In-
dian Languages have not been evaluated. So
these languages are resource poor in terms of
high quality linguistic annotated data.
The motivation behind this work is to create
lexical resources for resource poor Indian lan-
guages. All the Indian Languages are mor-
phologically rich, prefixes and the word end-
ing suffixes encode a lot information about the
category of the word. We try to leverage these
similarities and availability of Hindi corpus for
creating resources for other languages.
The paper is divided as per the following. In
the section 2, we describe Background of Pro-
jection using aligned Corpora. Section 3 gives
an account of Corpus Details, section 4 de-
scribes the Algorithm and various tools used.
Section 5 presents the Experimental Results
and in the subsequent section 6, we have the
error analysis. The future work is discussed in
the concluding section.

2 Background

Many supervised learning techniques reported
state-of-the-art accuracy of around 90% for
POS tagging in Indian Languages. POS Tag-
ging is more accurate in most of the Indo-
Aryan Languages while the results are poorer

50

for agglutinative Dravidian Languages. But
one major bottleneck in POS tagging is the
requirement of a large labeled corpus which
is difficult to create. To overcome this dif-
ficulty, many researchers have employed un-
supervised techniques which are less accurate
(Accuracies reported in the range of 70-80%)
(Christodoulopoulos et al., 2010)
So in our approach, we leveraged the gold
quality corpus of a resource rich language and
transferred features to a resource poor lan-
guage. The only resource available to us is a
parallel corpus with the resource rich one. We
report the results using two different tag-sets
- one being the tag-set defined for Indian Lan-
guages named as the IIIT - tagset (Bharati et
al., 2006) which is fine-grained and the Univer-
sal Tag-set (Petrov et al., 2011) mostly used
for Unsupervised and semi-supervised POS-
Tagging which is coarse-grained. We evaluated
on 8 Indian Languages and obtained overall
average accuracies of 81%.
(Yarowsky et al., 2001) introduced robust pro-
jections across aligned corpora. They used
a statistical POS tagger for tagging source
side text and transferred the POS tags to
the target side from the word alignments ob-
tained. The noisy transfers were filtered out
re-estimating the the most frequent tag se-
quence model. Other works (Das and Petrov,
2011) used bilingual projections using Univer-
sal Tag-set. All these methods employ Label
Propagation (LP) to transfer the tags from la-
beled data to unlabeled data. These are exam-
ples of semi-supervised techniques and major
work has been done on European languages.
The work of (Das and Petrov, 2011) is clos-
est to (Yarowsky et al., 2001). These meth-
ods are evaluated on data sets which are very
similar to the parallel corpus. Direct transfer
of tags using raw projection can lead to very
noisy POS tags. Instead of directly matching
words from the word alignments available; we
use the feature of the words which are clear
indicators of POS tags realized through rich
morphology. Because of the limited size of bi-
text (parallel corpus) chances of finding exact
matching words gets reduced. We do not use
the observed word as a feature. For avoiding
non-matched features, we use back-off smooth-
ing. Thus we have an approximate feature

Language Domain #Tokens
Hindi Health 368K
Hindi Tourism 474K

Marathi Health 382K
Marathi Tourism 278K
Konkani Health 346K
Konkani Tourism 328K

Urdu Health 371K
Urdu Tourism 473K

Bengali Health 300K
Bengali Tourism 387K
Gujarati Health 329K
Gujarati Tourism 388K
Punjabi Health 386K
Punjabi Tourism 425K
Tamil Health 313K
Tamil Tourism 312K
Telugu Health 316K
Telugu Tourism 316K

Malayalam Health 286K
Malayalam Tourism 291K

Table 1: ILCI Corpus Details

representation for any word occurring in the
corpus. The features used suffice to the back-
off model. The Suffixes and prefixes provide
valuable cue in the identification of a particu-
lar POS category. Additionally, suffixes help
to disambiguate between various similar cate-
gories.
We trained the models on general domain
and tested on health domain data. The
performance of our models is comparable to
the state-of-the-art systems in out-of-domain
data.

3 Corpus Details

We used two data sets for our experiments.
1. ILCI (Indian Languages Corpora Initia-

tive) parallel corpora
2. Hindi Tree-bank

The data used for parallel corpora was the
ILCI (Choudhary and Jha, 2014) corpora re-
leased for different languages. We have exper-
imented on 8 languages :- Punjabi, Konkani,
Bengali, Telugu, Malayalam, Urdu, Marathi,
Gujarati

The details of the ICLI corpus are shown
in Table 1, the number of sentences in each

51

Data-Set #Sentences #Tokens
Hindi Treebank 21K 450K

Table 2: Hindi Treebank Details

language was 25K.
The Hindi Treebank (Bharati et al., 2006)

creation task was taken up at IIIT, Hyder-
abad. The treebank is a multi-layered rep-
resentation of sentences with syntactic and
semantic annotation. The syntactic annota-
tion includes morph analysis, POS Tagging,
Chunking of words or tokens occurring in a
sentence. We used Hindi treebank for ensur-
ing high quality projection of POS tags. The
Hindi Treebank is annotated with POS tags
from IIIT tag-set(tagging annotation guide-
lines described in (Bharati et al., 2006)). The
details of the Hindi Treebank is presented in
Table 2. We also converted IIIT tags to Uni-
versal tags (Petrov et al., 2011) and evaluated
the POS Tagging accuracy for both the tag-
sets. Universal Tag-set is often used for projec-
tion techniques to remove ambiguities related
to finer grained tags.

4 Algorithm
Our approach is an example of feature repre-
sentation transfer. We transfered the knowl-
edge acquired from a language to another lan-
guage. In this paper, the source language used
for feature transfer was Hindi and the target
languages for projection were resource poor In-
dian Languages explained in the above section.
The scarcity of data for any language will not
impact the performance if a huge training data
set is available for another language. With a
mapping between the feature sets of the con-
cerned languages, we have the luxury of cre-
ating training data of comparable size for a
resource poor language.

Our algorithm has 5 steps.

4.1 Word Alignment
Learning word alignments from the parallel
text is the first step in our approach. We used
GIZA++ tool 2 for capturing the word level
alignment between sentences that are aligned
for a pair of languages. The raw text files for a
source language and target language serve as

2https://github.com/moses-smt/giza-pp.git

Feature Example
Prefix length 1 प
Prefix length 2 पत
Prefix length 3 पत्
Prefix length 4 पतर्
Prefix length 5 पतर्क
Prefix length 6 पतर्का
Prefix length 7 पतर्कार
Suffix length 1 '◌ं
Suffix length 2 ◌Ɓ
Suffix length 3 रƁ
Suffix length 4 ◌ारƁ

Table 3: Features for Hindi

the inputs for the tool. In this case, the source
language was Hindi and target language was
any of the resource poor Indian languages.
GIZA++ tool finds the alignments between
words with translation probabilities. It also
generates files with translation probabilities of
aligned sentences. A word can have multiple
alignments, but we selected the alignment
with highest probability. We were able to
eliminate noisy alignments by only selecting
the most likely alignment for a word.

4.2 Feature Selection
As POS Tagging is sequence labeling task, cer-
tain features need to be captured in classify-
ing the words and assigning them appropriate
tags. Indian Languages are morphologically
rich, therefore prefixes and suffixes provide a
lot of information about the category of the
word. For Indian Languages, we considered
the following morph features:-

• The prefix characters up to 7 characters

• The suffix characters up to 4 characters

• Length of the word

• Context Window size of 3 (Previous word,
Current word and Next word)

For example the feature representation for a
Hindi word पतर्कारƁ (Patrakāron - Journalists)
is given in Table 1:

The above features are extracted from the
words present in the Hindi Treebank. After
this step, all the words in the Hindi Treebank
are represented in terms of their features.

52

if length(word) < length(feature) then
▷ The prefix length can vary from 1-7 and
suffix length can range from 1-4

feature← NULL

Feature Source Mapped
Prefix 1 व ਵ
Prefix 2 िव ਿਵ
Prefix 3 िवव ਿਵਆ
Prefix 4 िववा ਿਵਆਹ
Prefix 5 िववाह ਿਵਆਹੀ
Prefix 6 िववािह ਿਵਆਹੀਆ
Prefix 7 िववािहत ਿਵਆਹੀਆਂ
Suffix 1 त ◌ਂ
Suffix 2 ि◌त ਆਂ
Suffix 3 िहत ◌ੀਆਂ
SUffix 4 ◌ािहत ਹੀਆਂ

Table 4: Feature Mapping Between Hindi and
Punjabi

4.3 Mapping File Creation
After obtaining word level alignments, we cre-
ated feature level mapping files based on the
features defined in the previous subsection. As
the word alignments with highest probabili-
ties were taken into account, the correspond-
ing feature files supported the best possible
mapping from the source language to the tar-
get language. The example of Hindi - Pun-
jabi pair mapping file is given in Table 4. The
word in Hindi is 'िववािहत' (Vivāhita - married)
and the aligned word in Punjabi is 'ਿਵਆਹੀਆਂ'
(Vivāhita - married). We did not normaliza-
tion the text before the feature transfer. This
was done keeping in our effort of not includ-
ing any language specific information for any
resource poor language. If the same feature
got mapped to multiple target features, we se-
lected the target feature with highest proba-
bility. There are 7 features corresponding to
prefixes and 4 features for suffix, so there are
total 11 feature mapping files from Hindi to
one of the resource poor languages.

4.4 Feature Transfer
This is the most vital step of the algorithm
in which the features obtained from the to-
kens present in the Hindi Treebank are trans-
ferred to other languages. Hindi Treebank

data is used to avoid noisy projections from
Hindi to resource poor languages. Each word
in the treebank is represented by the features
described above. From the mapping files, we
obtain a particular Hindi feature and its corre-
sponding mapped feature in the language un-
der test. If a feature is missing from the fea-
ture mapping file, a back-off model finds the
next lower length feature. These feature trans-
formations are essential for a sound represen-
tation in the target side. Otherwise, in case
of features that are not-found, the target side
would have been filled with NULL features and
will affect the performance of the POS Tagger.

4.5 Creation of Training Model
This step is the training phase of POS Tagging
where the samples are assigned pre-defined la-
bels i.e. POS tags. We have used Conditional
Random Fields(CRF) classification algorithm
for our task. The conditional random fields
are implemented via CRF++ 3tool. This tool
receives features in the form of a template.
From the training samples, CRF creates a
model assigning feature weights to the indi-
vidual features. After the model is created, a
test data set is used to predict the POS tags
of the test samples.

The whole process can be modeled as a com-
position of different functions. The final model
for predicting POS tags is given in equation 1

final_model = M(T (f(A(x, y)))) (1)

where A→ Alignment between word x and y
f→ Feature Representation for the words x, y
T→ Transfer of Features from x to y
M→ Model creation using the transferred fea-
tures

5 Experiments & Results
The experimental results are shown in Table 5.
The 1st entry for Gujarati corresponds to the
word alignments obtained from Original Hindi
- Gujarati ILCI parallel corpus. The other en-
try reflects the accuracy obtained after pre-
processing the parallel corpus. Case markers
are not present as separate tokens in Gujarati.
As a result of this, there were no alignments
for many post-positions used as case markers

3https://taku910.github.io/crfpp/

53

Language Accuracy #Train #Test
Gujarati 80.5 450K 6.5K
Gujarati 86.2 380K 6.5K
Punjabi 84.3 450K 9K

Urdu 85.6 450K 7.5K
Konkani 76.9 380K 7.5K
Bengali 75.5 380K 7.5K
Telugu 74.2 380K 7K
Marathi 77.7 380K 7K

Malayalam 65.01 380K 6K

Table 5: Accuracies for Different Languages

in Hindi. So we combined the post-positions
with the preceding noun on the Hindi side and
found word alignments from the changed par-
allel corpus.

6 Error Analysis
Languages which are close to Hindi gave better
results than other languages. Gujarati, Urdu
and Punjabi have similar syntactic structure
to Hindi with minor variations. Gujarati does
not separate case markers as Hindi, where the
case markers are present as a suffix in the
nouns. Other languages like Bengali, Konkani,
Marathi, Telugu, Malayalam are morpholog-
ically richer than Hindi. So the word level
alignment is less accurate. To overcome this
shortcomings, we combined the post positions
marking the case, the auxiliary verbs with the
preceding head categories. The head cate-
gory in the former was the noun and the cor-
responding head in the latter was the verb.
By incorporating these changes, we were able
to capture the inherent syntactic behavior of
these languages. The increase in accuracy for
Gujarati showed this. This heuristic helped to
create a better feature mapping (Petrov et al.,
2011).

The sources of major errors are listed as fol-
lows:

• Errors in the Gold Data

• Ambiguities between Nouns and Adjec-
tive

• Ambiguities between particle and con-
junction

• Ambiguities between Verbs and Auxiliary
Verbs

• Alignment Issues

7 Future Work
We would extend this work to other resource
poor Indian languages. Semantic Clustering
using neural networks is an interesting area to
explore. As the efficiency of the system re-
lies heavily on the word alignments between
a pair of languages, new methods can be im-
plemented to improve the alignments. We will
experiment with other sequence labelers like
structured perceptron (Collins, 2002), SVM-
Struct (Tsochantaridis et al., 2004), sequence-
to-sequence learners(Sutskever et al., 2014).
We will explore (Das and Petrov, 2011) the
label propagation of tags between languages.

Acknowledgement
We thank DIT for providing ILCI corpus
which enabled us to carry out the research.
We would also like to thank people of different
languages for helping out in the error analysis
of POS tagging.

References
Akshar Bharati, Rajeev Sangal, Dipti Misra

Sharma, and Lakshmi Bai. 2006. Anncorra:
Annotating corpora guidelines for pos and chunk
annotation for indian languages. LTRC-TR31.

Akshar Bharati, Rajeev Sangal, and Dipti M
Sharma. 2007. Ssf: Shakti standard format
guide. Language Technologies Research Centre,
International Institute of Information Technol-
ogy, Hyderabad, India, pages 1–25.

Narayan Choudhary and Girish Nath Jha. 2014.
Creating multilingual parallel corpora in indian
languages. In Human Language Technology
Challenges for Computer Science and Linguis-
tics, pages 527–537. Springer.

Christos Christodoulopoulos, Sharon Goldwater,
and Mark Steedman. 2010. Two decades of
unsupervised pos induction: How far have we
come? In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 575–584. Association for Compu-
tational Linguistics.

Michael Collins. 2002. Discriminative training
methods for hidden markov models: Theory
and experiments with perceptron algorithms. In
Proceedings of the ACL-02 conference on Em-
pirical methods in natural language processing-
Volume 10, pages 1–8. Association for Compu-
tational Linguistics.

54

Dipanjan Das and Slav Petrov. 2011. Unsu-
pervised part-of-speech tagging with bilingual
graph-based projections. In Proceedings of the
49th Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies-Volume 1, pages 600–609. Associa-
tion for Computational Linguistics.

Phani Gadde and Meher Vijay Yeleti. 2008. Im-
proving statistical pos tagging using linguistic
feature for hindi and telugu. Proc. of ICON.

Slav Petrov, Dipanjan Das, and Ryan McDonald.
2011. A universal part-of-speech tagset. arXiv
preprint arXiv:1104.2086.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in neural information
processing systems, pages 3104–3112.

Ioannis Tsochantaridis, Thomas Hofmann,
Thorsten Joachims, and Yasemin Altun.
2004. Support vector machine learning for
interdependent and structured output spaces.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text anal-
ysis tools via robust projection across aligned
corpora. In Proceedings of the first interna-
tional conference on Human language technol-
ogy research, pages 1–8. Association for Compu-
tational Linguistics.

55

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 56–64

An Exploration of Word Embedding Initialization
in Deep-Learning Tasks

Tom Kocmi and Ondřej Bojar
Charles University,

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

surname@ufal.mff.cuni.cz

Abstract

Word embeddings are the interface be-
tween the world of discrete units of text
processing and the continuous, differen-
tiable world of neural networks. In this
work, we examine various random and
pretrained initialization methods for em-
beddings used in deep networks and their
effect on the performance on four NLP
tasks with both recurrent and convolu-
tional architectures. We confirm that pre-
trained embeddings are a little better than
random initialization, especially consider-
ing the speed of learning. On the other
hand, we do not see any significant dif-
ference between various methods of ran-
dom initialization, as long as the variance
is kept reasonably low. High-variance ini-
tialization prevents the network to use the
space of embeddings and forces it to use
other free parameters to accomplish the
task. We support this hypothesis by ob-
serving the performance in learning lexical
relations and by the fact that the network
can learn to perform reasonably in its task
even with fixed random embeddings.

1 Introduction

Embeddings or lookup tables (Bengio et al., 2003)
are used for units of different granularity, from
characters (Lee et al., 2016) to subword units
(Sennrich et al., 2016; Wu et al., 2016) up to
words. In this paper, we focus solely on word
embeddings (embeddings attached to individual
token types in the text). In their highly dimen-
sional vector space, word embeddings are capa-
ble of representing many aspects of similarities be-
tween words: semantic relations or morphological
properties (Mikolov et al., 2013; Kocmi and Bojar,

2016) in one language or cross-lingually (Luong et
al., 2015).

Embeddings are trained for a task. In other
words, the vectors that embeddings assign to each
word type are almost never provided manually but
always discovered automatically in a neural net-
work trained to carry out a particular task. The
well known embeddings are those by Mikolov et
al. (2013), where the task is to predict the word
from its neighboring words (CBOW) or the neigh-
bors from the given word (Skip-gram). Trained
on a huge corpus, these “Word2Vec” embeddings
show an interesting correspondence between lexi-
cal relations and arithmetic operations in the vec-
tor space. The most famous example is the follow-
ing:

v(king)− v(man) + v(woman) ≈ v(queen)

In other words, adding the vectors associated with
the words ‘king’ and ‘woman’ while subtracting
‘man’ should be equal to the vector associated
with the word ‘queen’. We can also say that
the difference vectors v(king) − v(queen) and
v(man) − v(woman) are almost identical and de-
scribe the gender relationship.

Word2Vec is not trained with a goal of proper
representation of relationships, therefore the ab-
solute accuracy scores around 50% do not allow
to rely on these relation predictions. Still, it is a
rather interesting property observed empirically in
the learned space. Another extensive study of em-
bedding space has been conducted by Hill et al.
(2017).

Word2Vec embeddings as well as GloVe em-
beddings (Pennington et al., 2014) became very
popular and they were tested in many tasks, also
because for English they can be simply down-
loaded as pretrained on huge corpora. Word2Vec
was trained on 100 billion words Google News

56

dataset1 and GloVe embeddings were trained on
6 billion words from the Wikipedia. Sometimes,
they are used as a fixed mapping for a better
robustness of the system (Kenter and De Rijke,
2015), but they are more often used to seed the em-
beddings in a system and they are further trained
in the particular end-to-end application (Collobert
et al., 2011; Lample et al., 2016).

In practice, random initialization of embeddings
is still more common than using pretrained embed-
dings and it should be noted that pretrained em-
beddings are not always better than random ini-
tialization (Dhingra et al., 2017).

We are not aware of any study of the effects of
various random embeddings initializations on the
training performance.

In the first part of the paper, we explore various
English word embeddings initializations in four
tasks: neural machine translation (denoted MT in
the following for short), language modeling (LM),
part-of-speech tagging (TAG) and lemmatization
(LEM), covering both common styles of neural ar-
chitectures: the recurrent and convolutional neural
networks, RNN and CNN, resp.

In the second part, we explore the obtained em-
beddings spaces in an attempt to better understand
the networks have learned about word relations.

2 Embeddings initialization

Given a vocabulary V of words, embeddings rep-
resent each word as a dense vector of size d (as
opposed to “one-hot” representation where each
word would be represented as a sparse vector of
size |V | with all zeros except for one element in-
dicating the given word). Formally, embeddings
are stored in a matrix E ∈ R|V |×d.

For a given word type w ∈ V , a row is se-
lected from E. Thus, E is often referred to as
word lookup table. The size of embeddings d is
often set between 100 and 1000 (Bahdanau et al.,
2014; Vaswani et al., 2017; Gehring et al., 2017).

2.1 Initialization methods

Many different methods can be used to initialize
the values in E at the beginning of neural network
training. We distinguish between randomly initial-
ized and pretrained embeddings, where the latter
can be further divided into embeddings pretrained

1See https://code.google.com/archive/p/
word2vec/.

on the same task and pretrained on a standard task
such as Word2Vec or GloVe.

Random initialization methods common in the
literature2 sample values either uniformly from a
fixed interval centered at zero or, more often, from
a zero-mean normal distribution with the standard
deviation varying from 0.001 to 10.

The parameters of the distribution can be set
empirically or calculated based on some assump-
tions about the training of the network. The sec-
ond approach has been done for various hidden
layer initializations (i.e. not the embedding layer).
E.g. Glorot and Bengio (2010) and He et al. (2015)
argue that sustaining variance of values thorough
the whole network leads to the best results and
define the parameters for initialization so that the
layer weights W have the same variance of output
as is the variance of the input.

Glorot and Bengio (2010) define the “Xavier”
initialization method. They suppose a linear neu-
ral network for which they derive weights initial-
ization as

W ∼ U
[
−

√
6√

ni + no
;

√
6√

ni + no

]
(1)

where ni is the size of the input and no is the size
of the output. The initialization for nonlinear net-
works using ReLu units has been derived similarly
by He et al. (2015) as

W ∼ N (0,
2

ni
) (2)

The same assumption of sustaining variance can-
not be applied to embeddings because there is no
input signal whose variance should be sustained
to the output. We nevertheless try these initializa-
tion as well, denoting them Xavier and He, respec-
tively.

2.2 Pretrained embeddings
Pretrained embeddings, as opposed to random ini-
tialization, could work better, because they already
contain some information about word relations.

To obtain pretrained embeddings, we can train
a randomly initialized model from the normal dis-
tribution with a standard deviation of 0.01, extract
embeddings from the final model and use them as
pretrained embeddings for the following trainings

2Aside from related NN task papers such as Bahdanau et
al. (2014) or Gehring et al. (2017), we also checked several
popular neural network frameworks (TensorFlow, Theano,
Torch, ...) to collect various initialization parameters.

57

on the same task. Such embeddings contain infor-
mation useful for the task in question and we refer
to them as self-pretrain.

A more common approach is to download
some ready-made “generic” embeddings such as
Word2Vec and GloVe, whose are not directly
related to the final task but show to contain
many morpho-syntactic relations between words
(Mikolov et al., 2013; Kocmi and Bojar, 2016).
Those embeddings are trained on billions of
monolingual examples and can be easily reused in
most existing neural architectures.

3 Experimental setup

This section describes the neural models we use
for our four tasks and the training and testing
datasets.

3.1 Models description

For all our four tasks (MT, LM, TAG, and LEM),
we use Neural Monkey (Helcl and Libovický,
2017), an open-source neural machine translation
and general sequence-to-sequence learning system
built using the TensorFlow machine learning li-
brary.

All models use the same vocabulary of 50000
most frequent words from the training corpus.
And the size of embedding is set to 300, to
match the dimensionality of the available pre-
trained Word2Vec and GloVe embeddings.

All tasks are trained using the Adam (Kingma
and Ba, 2014) optimization algorithm.

We are using 4GB machine translation setup
(MT) as described in Bojar et al. (2017) with in-
creased encoder and decoder RNN sizes. The
setup is the encoder-decoder architecture with at-
tention mechanism as proposed by Bahdanau et
al. (2014). We use encoder RNN with 500 GRU
cells for each direction (forward and backward),
decoder RNN with 450 conditional GRU cells,
maximal length of 50 words and no dropout. We
evaluate the performance using BLEU (Papineni
et al., 2002). Because our aim is not to surpass
the state-of-the-art MT performance, we omit com-
mon extensions like beam search or ensembling.
Pretrained embeddings also prevent us from using
subword units (Sennrich et al., 2016) or a larger
embedding size, as customary in NMT. We exper-
iment only with English-to-Czech MT and when
using pretrained embeddings we modify only the
source-side (encoder) embeddings, because there

are no pretrained embeddings available for Czech.
The goal of the language model (LM) is to pre-

dict the next word based on the history of previous
words. Language modeling can be thus seen as
(neural) machine translation without the encoder
part: no source sentence is given to translate and
we only predict words conditioned on the previ-
ous word and the state computed from predicted
words. Therefore the parameters of the neural net-
work are the same as for the MT decoder. The only
difference is that we use dropout with keep prob-
ability of 0.7 (Srivastava et al., 2014). The gener-
ated sentence is evaluated as the perplexity against
the gold output words (English in our case).

The third task is the POS tagging (TAG). We
use our custom network architecture: The model
starts with a bidirectional encoder as in MT. For
each encoder state, a fully connected linear layer
then predicts a tag. The parameters are set to be
equal to the encoder in MT, the predicting layer
have a size equal to the number of tags. TAG is
evaluated by the accuracy of predicting the correct
POS tag.

The last task examined in this paper is the
lemmatization of words in a given sentence (LEM).
For this task we have decided to use the convolu-
tional neural network, which is second most used
architecture in neural language processing next to
the recurrent neural networks. We use the con-
volutional encoder as defined by Gehring et al.
(2017) and for each state of the encoder, we pre-
dict the lemma with a fully connected linear layer.
The parameters are identical to the cited work.
LEM is evaluated by a accuracy of predicting the
correct lemma.

When using pretrained Word2Vec and GloVe
embeddings, we face the problem of different vo-
cabularies not compatible with ours. Therefore for
words in our vocabulary not covered by the pre-
trained embeddings, we sample the embeddings
from the zero-mean normal distribution with a
standard deviation of 0.01.

3.2 Training and testing datasets

We use CzEng 1.6 (Bojar et al., 2016), a parallel
Czech-English corpus containing over 62.5 mil-
lion sentence pairs. This dataset already contains
automatic word lemmas and POS tags.3

3We are aware that training and evaluating a POS tag-
ger and lemmatizer on automatically annotated data is a little
questionable because the data may exhibit artificial regulari-
ties and cannot lead to the best performance, but we assume

58

Initialization MT en-cs (25M) LM (25M) RNN TAG (3M) CNN LEM (3M)
N (0, 10) 6.93 BLEU 76.95 85.2 % 48.4 %
N (0, 1) 9.81 BLEU 61.36 87.9 % 94.4 %
N (0, 0.1) 11.77 BLEU 56.61 90.7 % 95.7 %
N (0, 0.01) 11.77 BLEU 56.37 90.8 % 95.9 %
N (0, 0.001) 11.88 BLEU 55.66 90.5 % 95.9 %
Zeros 11.65 BLEU 56.34 90.7 % 95.9 %
Ones 10.63 BLEU 62.04 90.2 % 95.7 %
He init. 11.74 BLEU 56.40 90.7 % 95.7 %
Xavier init. 11.67 BLEU 55.95 90.8 % 95.9 %
Word2Vec 12.37 BLEU 54.43 90.9 % 95.7 %
Word2Vec on trainset 11.74 BLEU 54.63 90.8 % 95.6 %
GloVe 11.90 BLEU 55.56 90.6 % 95.5 %
Self pretrain 12.61 BLEU 54.56 91.1 % 95.9 %

Table 1: Task performance with various embedding initializations. Except for LM, higher is better. The
best results for random (upper part) and pretrained (lower part) embedding initializations are in bold.

We use the newstest2016 dataset from
WMT 20164 as the testset for MT, LM and LEM.
The size of the testset is 2999 sentence pairs con-
taining 57 thousands Czech and 67 thousands En-
glish running words.

For TAG, we use manually annotated English
tags from PCEDT5 (Hajič et al., 2012). From
this dataset, we drop all sentences containing the
tag “-NONE-” which is not part of the standard
tags. This leads to the testset of 13060 sentences
of 228k running words.

4 Experiments

In this section, we experimentally evaluate em-
bedding initialization methods across four differ-
ent tasks and two architectures: the recurrent and
convolutional neural networks.

The experiments are performed on the NVidia
GeForce 1080 graphic card. Note that each run of
MT takes a week of training, LM takes a day and
a half and TAG and LEM need several hours each.
We run the training for one epoch and evaluate the
performance regularly throughout the training on
the described test set. For MT and LM, the epoch
amounts to 25M sentence pairs and for TAG and
LEM to 3M sentences. The epoch size is set em-
pirically so that the models already reach a sta-
ble level of performance and further improvement
does not increase the performance too much.

MT and LM exhibit performance fluctuation
throughout the training. Therefore, we average
the results over five consecutive evaluation scores

that this difference will have no effect on the comparison
of embeddings initializations and we prefer to use the same
training dataset for all our tasks.

4http://www.statmt.org/wmt16/translation-task.html
5https://ufal.mff.cuni.cz/pcedt2.0/en/index.html

spread across 500k training examples to avoid lo-
cal fluctuations. This can be seen as a simple
smoothing method.6

4.1 Final performance

In this section, we compare various initialization
methods based on the final performance reached
in the individual tasks. Intuitively, one would ex-
pect the best performance with self-pretrained em-
beddings, followed by Word2Vec and GloVe. The
random embeddings should perform worse.

Table 1 shows the influence of the embedding
initialization on various tasks and architectures.

The rows ones and zeros specify the initializa-
tion with a single fixed value.

The “Word2Vec on trainset” are pretrained em-
beddings which we created by running Gensim
(Řehůřek and Sojka, 2010) on our training set.
This setup serves as a baseline for the embeddings
pretrained on huge monolingual corpora and we
can notice a small loss in performance compared
to both Word2Vec and GloVe.

We can notice several interesting results. As
expected, the self-pretrained embeddings slightly
outperform pretrained Word2Vec and GloVe,
which are generally slightly better than random
initializations.

A more important finding is that there is gen-
erally no significant difference in the performance
between different random initialization methods,
except ones and setups with the standard deviation
of 1 and higher, all of which perform considerably
worse.

6See, e.g. http://www.itl.nist.gov/div898/
handbook/pmc/section4/pmc42.htm from Natrella
(2010) justifying the use of the simple average, provided that
the series has leveled off, which holds in our case.

59

50

55

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25

Pe
rp

le
xi

ty

Steps (in millions examples)

Normal std=10
Normal std=1

Ones
Remaining methods

Word2Vec
Selftrain

Figure 1: Learning curves for language model-
ing. The testing perplexity is computed every
300k training examples. Label ”Remaining meth-
ods” represents all learning curves for the methods
from Table 1 not mentioned otherwise.

Any random initialization with standard devia-
tion smaller than 0.1 leads to similar results, in-
cluding even the zero initialization.7 We attempt
to explain this behavior in Section 5.

4.2 Learning speed
While we saw in Table 1 that most of the initial-
ization methods lead to a similar performance, the
course of the learning is slightly more varied. In
other words, different initializations need different
numbers of training steps to arrive at a particular
performance. This is illustrated in Figure 1 for LM.

To describe the situation concisely across the
tasks, we set a minimal score for each task and we
measure how many examples did the training need
to reach the score. We set the scores as follows:
MT needs to reach 10 BLEU points, LM needs to
reach the perplexity of 60, TAG needs to reach the
accuracy of 90% and LEM needs to reach the ac-
curacy of 94%.

We use a smoothing window as implemented in
TensorBoard with a weight of 0.6 to smooth the

7It could be seen as a surprise, that zero initialization
works at all. But since embeddings behave as weights for bias
values, they learn quickly from the random weights available
throughout the network.

Initialization MT en-cs LM TAG LEM
N (0, 1) 25.3M 37.3M 10.6M 2.7M
N (0, 0.1) 9.7M 13.5M 2.0M 1.8M
N (0, 0.01) 9.8M 12.0M 1.4M 1.2M
N (0, 0.001) 9.8M 12.0M 1.0M 0.5M
Zeros 9.4M 12.3M 1.0M 0.5M
Ones 18.9M 26.7M 2.9M 0.8M
He init. 9.5M 12.5M 1.0M 0.5M
Xavier init. 9.2M 12.3M 1.0M 0.5M
Word2Vec 6.9M 7.9M 0.7M 1.2M
GloVe 8.6M 11.4M 1.9M 1.3M
Self pretrain 5.2M 5.7M 0.2M 0.9M

Table 2: The number of training examples needed
to reach a desired score.

testing results throughout the learning. This way,
we avoid small fluctuations in training and our es-
timate when the desired value was reached is more
reliable.

The results are in Table 2. We can notice that
pretrained embeddings converge faster than the
randomly initialized ones on recurrent architecture
(MT, LM and TAG) but not on the convolutional ar-
chitecture (LEM).

Self-pretrained embeddings are generally much
better. Word2Vec also performs very well but
GloVe embeddings are worse than random initial-
izations for TAG.

5 Exploration of embeddings space

We saw above that pretrained embeddings are
slightly better than random initialization. We also
saw that the differences in performance are not
significant when initialized randomly with small
values.

In this section, we analyze how specific lex-
ical relations between words are represented in
the learned embeddings space. Moreover, based
on the observations from the previous section, we
propose a hypothesis about the failure of initial-
ization with big numbers (ones or high-variance
random initialization) and try to justify it.

The hypothesis is as follows:
The more variance the randomly initialized em-

beddings have, the more effort must the neural
network exerts to store information in the embed-
dings space. Above a certain effort threshold, it
becomes easier to store the information in the sub-
sequent hidden layers (at the expense of some ca-
pacity loss) and use the random embeddings more
or less as a strange “multi-hot” indexing mecha-
nism. And on the other hand, initialization with
a small variance or even all zeros leaves the neu-

60

ral network free choice over the utilization of the
embedding space.

We support our hypothesis as follows.

• We examine the embedding space on the per-
formance in lexical relations between words,
If our hypothesis is plausible, low-variance
embeddings will perform better at represent-
ing these relations.

• We run an experiment with non-trainable
fixed random initialization to demonstrate the
ability of the neural network to overcome
broken embeddings and to learn the informa-
tion about words in its deeper hidden layers.

5.1 Lexical relations

Recent work on word embeddings (Vylomova et
al., 2016; Mikolov et al., 2013) has shown that
simple vector operations over the embeddings are
surprisingly effective at capturing various seman-
tic and morphosyntactic relations, despite lacking
explicit supervision in these respects.

The testset by Mikolov et al. (2013) contains
“questions” defined as v(X) − v(Y) + v(A) ∼
v(B). The well-known example involves predict-
ing a vector for word ‘queen’ from the vector com-
bination of v(king) − v(man) + v(woman). This
example is a part of “semantic relations” in the test
set, called opposite-gender. The dataset contain
another 4 semantic relations and 9 morphosyn-
tactic relations such as pluralisation v(cars) −
v(car) + v(apple) ∼ v(apples).

Kocmi and Bojar (2016) revealed the sparsity
of the testset and presented extended testset. Both
testsets are compatible and we use them in combi-
nation.

Note that the performance on this test set is af-
fected by the vocabulary overlap between the test
set and the vocabulary of the embeddings; ques-
tions containing out-of-vocabulary words cannot
be evaluated. This is the main reason, why we
trained all tasks on the same training set and with
the same vocabulary, so that their performance in
lexical relations can be directly compared.

Another lexical relation benchmark is the word
similarity. The idea is that similar words such as
‘football’ and ‘soccer’ should have vectors close
together. There exist many datasets dealing with
word similarity. Faruqui and Dyer (2014) have
extracted words similarity pairs from 12 different

Initialization MT en-cs LM LEM
N (0, 10) 0.0; 0.3 0.0; 0.3 0.0; 0.3
N (0, 1) 0.0; 0.4 1.4; 3.5 0.0; 0.3
N (0, 0.1) 1.2; 23.5 5.5; 15.2 0.0; 0.8
N (0, 0.01) 2.0; 29.9 6.9; 19.4 0.1; 32.7
N (0, 0.001) 2.1; 31.4 6.7; 18.2 0.3; 33.3
Zeros 1.6; 29.5 6.0; 17.5 0.2; 31.1
Ones 0.5; 16.6 5.3; 9.3 0.1; 31.0
He init. 1.4; 28.9 7.7; 18.3 0.1; 32.6
Xavier init. 1.5; 29.5 7.4; 18.2 0.1; 32.7
Word2Vec on trainset* 22.3; 48.9
Word2Vec official* 81.3; 70.7
GloVe official* 12.3; 60.1

Table 3: The accuracy in percent on the (seman-
tic; morphosyntactic) questions. We do not re-
port TAG since its accuracy was less than 1% on
all questions. *For comparison, we present results
of Word2Vec trained on our training set and offi-
cial trained embeddings before applying them on
training of particular task.

Initialization MT en-cs LM TAG LEM
N (0, 10) 3.3 2.2 3.6 2.6
N (0, 1) 15.7 11.8 3.5 2.7
N (0, 0.1) 56.7 32.7 6.9 2.8
N (0, 0.01) 62.5 41.0 12.8 4.7
N (0, 0.001) 59.3 37.4 12.1 2.4
Zeros 57.9 37.4 12.8 3.5
Ones 34.0 19.3 11.4 4.3
He init. 58.2 37.4 12.3 4.2
Xavier init. 58.3 37.5 12.3 2.7

Table 4: Spearman’s correlation ρ on word simi-
larities. The results are multiplied by 100.

corpora and created an interface for testing the em-
beddings on the word similarity task.8

When evaluating the task, we calculate the sim-
ilarity between a given pair of words by the co-
sine similarity between their corresponding vector
representation. We then report Spearmans rank
correlation coefficient between the rankings pro-
duced by the embeddings against human rank-
ings. For convenience, we combine absolute val-
ues of Spearman’s correlations from all 12 Faruqui
and Dyer (2014) testsets together as an average
weighted by the number of words in the datasets.

The last type of relation we examine are the
nearest neighbors. We illustrate on the TAG task
how the embedding space is clustered when vari-
ous initializations are used. We employ the Prin-
cipal component analysis (PCA) to convert the
embedding space of |E| dimensions into two-
dimensional space.

Table 3 reflects several interesting properties
8http://wordvectors.org/

61

Figure 2: A representation of words in the trained embeddings for TAG task projected by PCA. From left
to right it shows trained embeddings for N (0, 1), N (0, 0.1), N (0, 0.01), N (0, 0.001) and zeros. Note
that except of the first model all of them reached a similar performance on the TAG task.

about the embedding space. We see task-specific
behavior, e.g. TAG not learning any of the tested
relationships whatsoever or LM being the only task
that learned at least something of semantic rela-
tions.

The most interesting property is that when in-
creasing the variance of initial embedding, the
performance dramatically drops after some point.
LEM reveals this behavior the most: the network
initialized by normal distribution with standard
deviation of 0.1 does not learn any relations but
still performs comparably with other initialization
methods as presented in Table 1. We ran the
lemmatization experiments once again in order to
confirm that it is not only a training fluctuation.

This behavior suggests that the neural network
can work around broken embeddings and learn im-
portant features within other hidden layers instead
of embeddings.

A similar behavior can be traced also in the
word similarity evaluation in Table 4, where mod-
els are able to learn to solve their tasks and still
not learn any information about word similarities
in the embeddings.

Finally, when comparing the embedded space
of embeddings as trained by TAG in Figure 2, we
see a similar behavior. With lower variance in
embeddings initialization, the learned embeddings
are more clearly separated.

This suggests that when the neural network has
enough freedom over the embeddings space, it
uses it to store information about the relations be-
tween words.

5.2 Non-trainable embeddings

To conclude our hypothesis, we demonstrate the
flexibility of a neural network to learn despite a
broken embedding layer.

In this experiment, the embeddings are fixed

Initialization MT en-cs LM TAG LEM
N (0, 10) 7.28 BLEU 79.44 47.3 % 85.5 %
N (0, 1) 8.46 BLEU 78.68 87.1 % 94.0 %
N (0, 0.01) 6.84 BLEU 82.84 63.2 % 91.1 %
Word2Vec 8.71 BLEU 60.23 88.4 % 94.1 %

Table 5: The results of the experiment when
learned with non-trainable embeddings.

and the neural network cannot modify them during
the training process. Therefore, it needs to find a
way to learn the representation of words in other
hidden layers.

As in Section 4.1, we train models for 3M ex-
amples for TAG and LEM and for over 25M exam-
ples for MT and LM.

Table 5 confirms that the neural network is flex-
ible enough to partly overcome the problem with
fixed embeddings. For example, MT initialized
withN (0, 1) reaches the score of 8.46 BLEU with
fixed embeddings compared to 9.81 BLEU for the
same but not fixed (trainable) embeddings.

When embeddings are fixed at random values,
the effect is very similar to embeddings with high-
variance random initialization. The network can
distinguish the words through the crippled embed-
dings but has no way to improve them. It thus pro-
ceeds to learn in a similar fashion as with one-hot
representation.

6 Conclusion

In this paper, we compared several initializa-
tion methods of embeddings on four different
tasks, namely: machine translation (RNN), lan-
guage modeling (RNN), POS tagging (RNN) and
lemmatization (CNN).

The experiments indicate that pretrained em-
beddings converge faster than random initializa-
tion and that they reach a slightly better final per-
formance.

62

The examined random initialization methods do
not lead to significant differences in the perfor-
mance as long as the initialization is within rea-
sonable variance (i.e. standard deviation smaller
than 0.1). Higher variance apparently prevents the
network to adapt the embeddings to its needs and
the network resorts to learning in its other free pa-
rameters. We support this explanation by showing
that the network is flexible enough to overcome
even non-trainable embeddings.

We also showed a somewhat unintuitive result
that when the neural network is presented with em-
beddings with a small variance or even all-zeros
embeddings, it utilizes the space and learns (to
some extent) relations between words in a way
similar to Word2Vec learning.

Acknowledgement

This work has been in part supported by the
European Union’s Horizon 2020 research and
innovation programme under grant agreements
No 644402 (HimL) and 645452 (QT21), by
the LINDAT/CLARIN project of the Ministry
of Education, Youth and Sports of the Czech
Republic (projects LM2015071 and OP VVV
VI CZ.02.1.01/0.0/0.0/16 013/0001781), by the
Charles University Research Programme “Pro-
gres” Q18+Q48, by the Charles University SVV
project number 260 453 and by the grant GAUK
8502/2016.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Ondřej Bojar, Ondřej Dušek, Tom Kocmi, Jindřich Li-
bovický, Michal Novák, Martin Popel, Roman Su-
darikov, and Dušan Variš. 2016. Czeng 1.6: En-
larged czech-english parallel corpus with process-
ing tools dockered. In Petr Sojka, Aleš Horák,
Ivan Kopeček, and Karel Pala, editors, Text, Speech,
and Dialogue: 19th International Conference, TSD
2016, number 9924 in Lecture Notes in Com-
puter Science, pages 231–238. Masaryk University,
Springer International Publishing.

Ondřej Bojar, Jindřich Helcl, Tom Kocmi, Jindřich Li-
bovický, and Tomáš Musil. 2017. Results of the

WMT17 Neural MT Training Task. In Proceed-
ings of the 2nd Conference on Machine Translation
(WMT), Copenhagen, Denmark, September.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Bhuwan Dhingra, Hanxiao Liu, Ruslan Salakhutdinov,
and William W. Cohen. 2017. A comparative
study of word embeddings for reading comprehen-
sion. CoRR, abs/1703.00993.

Manaal Faruqui and Chris Dyer. 2014. Community
evaluation and exchange of word vectors at word-
vectors.org. In Proceedings of ACL: System Demon-
strations.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann Dauphin. 2017. Convolutional se-
quence to sequence learning.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, pages 249–256.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr
Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jiřı́
Semecký, Jana Šindlerová, Jan Štěpánek, Josef
Toman, Zdeňka Urešová, and Zdeněk Žabokrtský.
2012. Announcing Prague Czech-English Depen-
dency Treebank 2.0. In Proceedings of the Eighth
International Language Resources and Evaluation
Conference (LREC’12), pages 3153–3160, Istanbul,
Turkey, May. ELRA, European Language Resources
Association.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classifi-
cation. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034.

Jindřich Helcl and Jindřich Libovický. 2017. Neural
monkey: An open-source tool for sequence learn-
ing. The Prague Bulletin of Mathematical Linguis-
tics, 107:5–17.

Felix Hill, Kyunghyun Cho, Sébastien Jean, and
Yoshua Bengio. 2017. The representational geom-
etry of word meanings acquired by neural machine
translation models. Machine Translation, pages 1–
16.

Tom Kenter and Maarten De Rijke. 2015. Short text
similarity with word embeddings. In Proceedings of
the 24th ACM International on Conference on Infor-
mation and Knowledge Management, pages 1411–
1420. ACM.

63

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Tom Kocmi and Ondřej Bojar, 2016. SubGram: Ex-
tending Skip-Gram Word Representation with Sub-
strings, pages 182–189. Springer International Pub-
lishing.

Guillaume Lample, Miguel Ballesteros, Kazuya
Kawakami, Sandeep Subramanian, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. In In proceedings of NAACL-HLT (NAACL
2016)., San Diego, US.

Jason Lee, Kyunghyun Cho, and Thomas Hof-
mann. 2016. Fully character-level neural machine
translation without explicit segmentation. CoRR,
abs/1610.03017.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Bilingual word representations
with monolingual quality in mind. In NAACL Work-
shop on Vector Space Modeling for NLP, Denver,
United States.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Mary Natrella. 2010. Nist/sematech e-handbook of
statistical methods.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In ACL 2002,
Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages 311–
318, Philadelphia, Pennsylvania.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta, May. ELRA. http://is.
muni.cz/publication/884893/en.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1715–1725, Berlin, Germany, August. Association
for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
2017. Attention is all you need. ArXiv e-prints, jun.

Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and
Timothy Baldwin. 2016. Take and took, gaggle
and goose, book and read: Evaluating the utility of
vector differences for lexical relation learning. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1671–1682, Berlin, Germany,
August. Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

64

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 65–74

Curriculum Design for Code-switching: Experiments with Language
Identification and Language Modeling with Deep Neural Networks

Ashutosh Baheti, Sunayana Sitaram, Monojit Choudhury, Kalika Bali
Microsoft Research Lab, India

ashutosh.baheti95@gmail.com
{t-susita, monojitc, kalikab}@microsoft.com

Abstract

Curriculum learning strategies are known
to improve the accuracy, robustness
and convergence rate for various lan-
guage learning tasks using deep archi-
tectures (Bengio et al., 2009). In this
work, we design and experiment with
several training curricula for two tasks
– word-level language detection and lan-
guage modeling – for code-switched text
data. Our study shows that irrespective of
the task or the underlying DNN architec-
ture, the best curriculum for training the
code-switched models is to first train a net-
work with monolingual training instances,
where each mini-batch has instances from
both languages, and then train the result-
ing network on code-switched data.

1 Introduction

Code-switching (CS) refers to the linguistic phe-
nomenon of fluid alternation between two or more
languages during a single conversation or even an
utterance (Myers-Scotton, 1993). It is observed in
all stable multilingual societies (Auer, 1995) and
recent studies have shown that social media posts
from such societies almost always contain small
to moderate amount of CS (Bali et al., 2014; Dor-
leijn, 2016; Molina et al., 2016; Rudra et al., 2016;
Rijhwani et al., 2017). For instance, Rijhwani et
al. (2017) shows that 2-12% (3.5% on average)
of the tweets from the cities around the world are
code-switched. It is therefore imperative to build
speech and text processing technologies that can
handle CS. Indeed, quite some amount of effort
is being invested towards technology for CS (see
Diab et al. (2014; 2016), Sharma et al. (2015), and
references therein).

It is of theoretical and practical interest to pon-
der on the question: whether for a particular NLP
task (say ASR, MT or POS Tagging), it is pos-
sible to build CS models only from pretrained
monolingual models or monolingual training data?
Indeed, several studies in the past (Solorio and
Liu, 2008; Vyas et al., 2014; Gadre et al., 2016;
Gonzalez-Dominguez et al., 2015) have proposed
techniques for combining monolingual models or
training data coupled with a little amount of CS
data to build models of CS text or speech. These
techniques have reported promising results. How-
ever, all these studies, except (Johnson et al., 2016;
Rijhwani et al., 2017; Chan et al., 2009), have tried
to combine the outputs of pre-trained monolingual
models in intelligent ways. On the other hand,
one might ask whether a single system trained on
monolingual data from both the languages would
be able to handle CS between these languages?
And, if we also had a little amount of CS data,
how best to use it during the training process?

In this paper, we explore various training strate-
gies, also known as Curriculum (Bengio et al.,
2009) for DNN-based architectures for code-
switching. In particular, we design a set of strate-
gies or curricula involving various ordering of the
monolingual and CS data. We experiment with
these curricula for Language Identification (LID)
and Language Modeling (LM) tasks. Our study
shows that the best curriculum across the tasks as
well as DNN architecture is the same one: first
train a network with monolingual instances alter-
nating between the languages, and then train the
resultant network with CS data, if available. The
models trained solely with monolingual data also
achieve reasonably high accuracies.

As far as we know, this is the first study on cur-
riculum design for CS. Our study has two impor-
tant implications: first, it shows that it is possible
to train models for CS using primarily monolin-

65

gual data; this obviates the need for creation of
large amount of CS datasets. Second, it also brings
out the fact that training curriculum is extremely
important while building CS models from mono-
lingual data, and there seems to be an ideal way
of ordering the training examples that works best
across tasks and network structures.

2 Background and Motivation

In this section, we present a typology of the
monolingual model combination strategies for CS,
through which we will motivate the central idea of
this work.

2.1 A Note on Terms

It is important to differentiate between inter-
sentential and intra-sentential CS. The former
refers to a situation where each sentence (or some-
times clause) is in a single language, but the lan-
guage might change across the sentences. On
the other hand, intra-sentential CS, which is also
sometimes called Code-mixing, refers to a situa-
tion where words in the same sentence/clause can
be drawn from multiple languages.

Tasks that operate on sentence level context
(like POS tagging, ASR and MT) do not re-
quire any special technique for handling inter-
sentential CS, except LID and sentence bound-
ary detection. However, intra-sentential CS is
more challenging to handle, and will be our pri-
mary focus. In this paper, the terms monolin-
gual model and monolingual data will be used for
cases where the data was collected and the model
was built assuming that the input will be only in
a single language. Such datasets might also con-
tain some borrowed words and text in other lan-
guage(s). On the other hand, we will use the term
CS data to imply datasets where all instances con-
tain intra-sentential CS, even though most of the
datasets released in the past for training CS mod-
els, e.g., (Molina et al., 2016; Das, 2016; Sequiera
et al., 2015b), do contain fair amounts of monolin-
gual and inter-sentential CS. The term CS model
will be used for systems that can handle monolin-
gual, inter-sentential as well as intra-sentential CS.

2.2 A Taxonomy of CS Models

In order to succinctly represent the various types
of CS models proposed in the literature, we will
use the following notation. Let l1 and l2 be two
languages. Let x denote the input string, usually

a sentence, i.e., string of tokens, in l1, l2 or l12,
i.e., l1 ↔ l2 code-switched. Let y be the output
string of tokens in a target language (as in MT,
ASR or POS tagging). Let gi and fi denote mod-
els trained on data from li. Further, we describe a
special function lid(x) which returns the string of
language labels for each word; lid1(x) and lid2(x)
are projection functions which returns only those
tokens of x that are in l1 and l2 respectively.

CS models described in the literature can be
broadly categorized into the following four classes
(in descending order of amount of CS data re-
quired for training).

Purely Supervised Models: When a large
amount of annotated CS data is available, a super-
vised model can be learnt simply from the mono-
lingual and CS data. Thus,

y = g1∪2∪12(x) (1)

These models often use features or extra in-
formation specific to CS, but do not particularly
modify the training process or system architecture
for handling CS. This approach has been applied
to language identification, e.g., most submissions
in the LID shared task in the Computational Ap-
proaches to Code-Switching Workshops (Solorio
et al., 2014; Molina et al., 2016); to POS tagging,
e.g., most submissions in the ICON 2016 shared
task on CS POS tagging (Das, 2016) and also (Ja-
matia and Das, 2014; Jamatia et al., 2015); and to
ASR (Gebhardt, 2011).

Combining Monolingual Models: In this ap-
proach, the output of two monolingual systems
on x is used as features for a third model (f12 in
Eq. 2). This third model f is trained on a small
amount of CS data, and can use other features
which often includes LID output.

y = f12(g1(x), g2(x), lid(x)) (2)

Solorio and Liu (2008) proposed this architec-
ture for POS tagging of English-Spanish CS data,
and Lyu et al. (2006) proposed a similar model
for ASR. Both reported significant gain over the
monolingual models by using very little CS data.
Later works, such as (Sequiera et al., 2015a),
along this line also reported promising results.

Divide and Conquer: In this approach, the in-
put is first passed through a LID system and split
into parts according to the language of the tokens.
The token strings are then passed on to the respec-
tive monolingual systems and the outputs are com-
bined (shown as the operator ⊕ in Eq. 3)

66

y = g1(lid1(x))⊕ g2(x)(lid2(x)) (3)

This approach does not require any CS training
data, but it does not work well for intra-sentential
CS because splitting by language can lead to loss
of context especially at the code-switch points.
However, some benefits of this approach have
been shown for POS tagging (Vyas et al., 2014),
MT (Gadre et al., 2016) and ASR (Lyudovyk and
Pylypenko, 2014) respectively.

Zero Shot Learning: This is an extreme case,
where only monolingual data from two or more
languages is used to train a single system with the
hope that it will work for CS data as well.

y = g1∪2(x) (4)

A recent work (Rijhwani et al., 2017) uses this
technique very effectively for developing an LID
system for 7 languages. While no annotated CS
data is used for training, the system uses unlabeled
data that is expected to contain CS data, for unsu-
pervised training. Johnson et al. (2016) trains a
neural MT system with data from two pairs of lan-
guages, l1 ⇔ l2 and l1 ⇔ l3 and show that the
resultant model not only works for l2 ⇔ l3 (the so
called “zero shot learning” but also for CS input in
these languages, albeit to a limited extent.

Factors such as lack of large-scale CS datasets,
possibility of CS between any pair (or even triplet)
of languages (which in turn implies the need for
nearly a quadratic number of such datasets) and
the difficulty in creation of CS datasets owing
to the requirement of skilled multilingual annota-
tors make Zero Shot Learning a very lucrative ap-
proach CS. However, we do not know of any work
that systematically explores the various training
strategies and effective use of CS data in the con-
text of Zero Shot Learning.

3 Training Curricula for CS

Originally proposed by (Elman, 1993), Curricu-
lum learning refers to a sequence of weight distri-
butions over the training example, such that during
the training process certain examples are used with
higher weight at the initial stages of the training
and other examples are used later (Bengio et al.,
2009). In general, it is believed that for complex
non-convex optimization problems, training with
simpler examples first and introducing the com-
plex examples at later stage has distinctive bene-
fits. Empirically, it has shown promising results
for several NLP tasks like parsing (Spitkovsky

et al., 2009) and language modeling (Bengio et al.,
2009; Graves et al., 2017). Shi et al. (2015)
describe curricula for domain adaptation of Lan-
guage Models, in which they order the data such
that general data is presented to the RNN first, fol-
lowed by in-domain data.

In principle, the purely supervised (Eq. 1)
and the zero shot learning approaches (Eq. 4)
should benefit from curriculum based training. It
is well known that proficient bilingual children
learn to code-switch without any exposure to CS
data (Cantone, 2007). This leads us to explore var-
ious curricula for training with monolingual and
CS data. While complexity of training instances
can be defined across various dimensions, in this
study we will restrict ourselves to only one aspect
of the curriculum design - the language(s).

Let T1, T2 and T12 be respectively the set of
training examples in l1, l2 and intra-sentential CS
between l1 and l2. We will use the notation Ti;Tj

to indicate a basic curriculum where the system is
trained with all instances from Ti first, and then
with instances from Tj . Similarly, {Ti, Tj} will be
used to indicate the curiculum where the system is
trained with instances from Ti and Tj simultane-
ously; in the context of deep learning, this means
each mini-batch contains samples from Ti and Tj

(ideally, but not necessarily, in a ratio |Ti| : |Tj |).
Based on the ordering of the training in-

stances, we define 7 different curricula: (C1)
T1;T2 (C2) T12;T1;T2 (C3) T1;T2;T12 (C4)
{T1, T2} (C5) T12; {T1, T2} (C6) {T1, T2};T12

(C7) {T1, T2, T12}. We consider the curricula (C0)
T12 (i.e., training with only CS data) and C7 (i.e.,
all instances randomized1) as the two baselines.

In the next two sections, we will describe ex-
periments with these curricula for deep learning
models applied to two tasks – Language Identifi-
cation (LID) and Language Modeling (LM), both
for English (En) and Spanish (Es) CS.

4 Language Identification

Along the lines of (Rijhwani et al., 2017), we de-
fine word-level LID as a sequence labeling prob-
lem, where each token in the input sentence is la-
beled with one of the three tags: l1, l2 and X
(meaning “none of the languges”, such as num-
bers, punctuations, urls and hashtags). In the

1Strictly speaking, in C7 we ensure that in each mini-
batch there are training instances from T1, T2 and T12 in cer-
tain fixed ratio.

67

Language Train Dev Test
En 1240k 1006 13542
Es 1240k 1119 4874
En-Es 17.5k 750 8678

Table 1: Datasets for LID (in number of words).

following subsections, we describe the datasets,
DNN architecture, and experimental results.

4.1 Datasets
All our experiments are done on En and Es tweets,
which are primarily drawn from two existing
datasets: (Rijhwani et al., 2017) for monolingual
training data, and (Solorio et al., 2014) for CS
training data, and all dev and test datasets. Since
we define LID as a classification problem, we con-
sider each word with its context as an instance
(instead of each tweet as an instance). Further,
we differentiate between CS and monolingual in-
stances as those where the context (a window of 2k
words around the target word) has or does not have
a code-switch point, respectively. Table 1 summa-
rizes the size of the datasets. There are total 1328
switching points in the CS test data.

4.2 DNN Architecture
Fig. 1 shows the architecture of the DNN for
LID. The model takes 2k + 1 word window in-
put with target word at the center, and predicts the
language of the target word. In this word-context
block, all the input words are projected into a
dw dimensional word-embedding space. The em-
bedding vectors of the k words in the left and
right contexts are averaged separately. These left-
average, right-average and the current word em-
bedding are merged into one 3dw dimensional vec-
tor. This vector is passed to an intermediate Dense
layer (with ReLu activation) of dim dimension. To
speed up the convergence of the network, we add
a batch normalization layer. Also, a dropout layer
with 0.3 probability is introduced to prevent over-
fitting. Finally, a softmax layer with two nodes,
one for each language, l1 and l2, is used for pre-
dicting the output.

We define another architecture - the Char-LID
model where this basic LID model is augmented
with a character-context block (as shown in the
dashed box in the Fig. 1). We embed charac-
ter tri-grams into a dc dimensional space; an av-
erage of all the character tri-grams of the target
word is then concatenated with the embeddings of

Figure 1: DNN achitecture for LID

the first and last trigrams to generate a 3dc dimen-
sional character-representation vector of the target
word. In the Char-LID model, this vector is con-
catenated to the aforementioned 3dw dimensional
word vector, and is fed as the input to the interme-
diate dense layer. Rest of the network is identical
to the LID model. We expect the Char-LID model
to work better for out-of-vocabulary words.

4.3 Experiments

The networks were implemented, trained and
tested using the Microsoft’s Cognitive Toolkit
(CNTK)(Yu et al., 2014). For all our experiments,
we set2 k = 3, dw = 100, dc = 40, dim = 140,
and dropout rate = 0.3. The networks are trained
using mean square error loss and Adadelta SGD
under default parameter settings of CNTK. The
word and character vectors were initialized uni-
formly randomly.

Note that we do not use the DNN to predict the
X labels, as these are identified through regular
expressions during the pre-processing of the data
and are never used as target words during training
or testing. Details of how we handle the special
and boundary cases (e.g., out-of-vocabulary words
and contexts for target words in the beginning and
end of a sentence) are discussed in the supplemen-
tary material.

For each curriculum, we train the models for 20
epochs and choose the model that has maximum
overall accuracy on the dev set. For curricula in-
volving interleaving of instances of different types
(e.g., C4 to C7), we presented the training data

2Experiments with different values of these parameters
led us to these numbers which seem to work well.

68

Curriculum All En-Es En Es
LID Model

C0: T12 89.1 86.6 89.1 93.4
C1: T1;T2 37.0 48.3 17.8 70.3
C2: T12;T1;T2 35.4 54.2 0.1 100
C3: T1;T2;T12 84.1 78.0 95.5 63.6
C4: {T1, T2} 94.7 87.0 99.6 96.3
C5: T12; {T1, T2} 94.8 86.7 99.3 96.7
C6: {T1, T2};T12 95.1 89.1 98.8 95.8
C7: {T1, T2, T12} 94.4 87.7 97.5 97.4

Char-LID Model
C4: {T1, T2} 95.5 87.6 99.7 97.7
C5: T12; {T1, T2} 95.5 87.3 99.7 98.4
C6: {T1, T2};T12 97.1 93.7 98.7 98.3
C7: {T1, T2, T12} 96.2 89.6 99.7 98.2

Table 2: Curriculum training accuracies (in %) for
LID and Char-LID models. The maximum accu-
racy for the models are in bold and are statistically
significantly higher (p < 0.001) than all other val-
ues in the column for that model.

to the network in randomized order. Thus, every
minibatch is expected to contain the instances in
ratio |T1| : |T2|. Since the |T12| training data is
significantly low compared to |T1| and |T2|, we
oversample T12 by replicating the data 10 times
for curriculum C7. For curricula that involves or-
dering of inputs by blocks (all except C4 and C7),
we first train on the first block of instances for 20
epochs and choose the best model which is trained
on the next block of instances for 20 epochs.

4.4 Results

In Table 2 we report the l1 and l2 labeling accuracy
on the En, Es and En-Es CS test sets, as well as
the combined accuracy (column 1) on all the test
instances. Due to the significantly poorer perfor-
mance of C1, C2 and C3 for the LID model, these
experiments were not conducted for the char-LID
model. For C0, overall accuracy for the Char-LID
model is 94.5% (Table 3).

The key observations from Table 2 are: (a) cur-
riculum C6 is most effective across the models; the
performance on CS set increases significantly with
only a marginal drop in accuracy on the monolin-
gual data; (b) C6 achieves an 11% (55%) and 23%
(47%) error reduction over the baseline curriculum
C7 (C0) for the LID and Char-LID models respec-
tively; (c) The improvements are highly significant
at p < 0.001 for a paired t-test, which implies that

C6 is able to correct labeling errors made by C7
and other curricula, and hardly makes new label-
ing errors; (d) Providing the CS training data as the
last block is much more effective than providing it
in the beginning or distributing it over the entire
training curriculum; (e) On the other hand, mixing
of monolingual data is more effective than provid-
ing them in block; (f) Finally, it is also interest-
ing to note that curriculum C4, where only mono-
lingual training data is used, achieves reasonably
high accuracies.

We manually inspected around 100 erroneously
labeled words by the best C6 model. There are
three noticeable error patterns: (a) errors around
an X tag (approx. 15%), (b) errors at or near the
interjections such as ”haha”, ”jaja”, ”lmao” etc.
(approx. 15%), and (c) errors near the code-switch
point and sentence boundaries (approx. 25%).
Rest of the errors didn’t have any noticeable pat-
tern, though we also discovered that some of the
system labels classified as errors were actually
correct and rather the gold standard label was in-
correct (approx. 5%).

We also conduct two auxiliary sets of exper-
iments to understand the effect of the ratio of
monolingual training instances (|T1| : |T2|) and
that of the CS data to monolingual data (|T12| :
|T1 ∪ T2|). In the first experiment, we train the
LID model where we vary the percentage of train-
ing instances used from the En and Es monolin-
gual datasets. The results are shown in Fig. 2. In
the x-axis, we plot the percentage of training in-
stances used from the En and Es training sets dur-
ing each experiment, where En fractions (the first
value in the tuple) increases from right to left, Es
fractions (the second value) from left to right. It is
evident from the plot that the system performance
is not strongly sensitive to the ratio of |T1| : |T2|.
Rather, it is more sensitive to the absolute amount
of data available for training; when the data for
either T1 or T2 drops significantly (less than 1%
of the training set here, as in the extremes of the
plot), the accuracy is affected significantly.

In the second set of experiments, we train the
Char-LID model with curriculum C7. We vary the
monolingual and CS training data independently
and report the accuracies on the entire test set for
each setup in Table 3. The trends, as expected,
shows diminishing marginal utility for both mono-
lingual and CS datasets. Nevertheless, we note
that the marginal utility of monolingual data is

69

Figure 2: en-es Skew experiment using Curricu-
lum C4 in LID model

% of % of |T1| and |T2|
|T12| 0 0.1 1 10
20 89.5 93.3 94.4 95.8
50 92.5 93.6 95.4 95.9
100 94.5 93.3 95.1 96.1

Table 3: Overall accuracy of the Char-LID model
for C7 with varying amounts of training data.

much more pronounced (i.e., systematic increase
of accuracy in each row from left to right) than that
of CS data. This could be because of much higher
sizes of the monolingual training sets as compared
to the CS dataset.

We have also conducted some of these experi-
ments with English-French CS data, which shows
similar trends. Reader may refer to the supple-
mentary material for more details.

4.5 Related Work on LID

There have been many works on LID for CS.
See (Solorio et al., 2014; Molina et al., 2016; Rijh-
wani et al., 2017) and references therein. Two sys-
tems (Samih et al., 2016; Jaech et al., 2016) sub-
mitted in the shared task on language detection in
EMNLP 2016 use deep learning based techniques.
Samih et al. (2016) uses LSTMs on top of word
and character context with a CRF classifier and
achieves an accuracy of 96.3% on the same En-Es
test set. Jaech et al. (2016) uses only the character
sequence data with stacked CNNs to create a word
embedding. Then it creates a global context by
adding a bi-directional LSTM on top of it. Their
system achieves 94.6 average F1 score for En-Es.
Chang and Lin (2014 describes an RNN based sys-
tem which is trained and tested on the EMNLP

2014 shared task dataset. This system outperforms
all the submitted systems in that shared task.

The EMNLP shared task dataset had 6 labels in-
cluding named entities and mixed language words
which we did not consider in this work. Therefore,
even though we evaluate on the same dataset, the
accuracies are not directly comparable. However,
since majority of the tokens are labeled En and Es,
our results are certainly comparable to these state-
of-the-art systems. Rijhwani et al. (2017) uses
HMM model initialized by monolingual data and
retrained it on unlabeled data using Baum-Welch
algorithm. It achieves an average F-1 score of
97.8% for En and Es labels, which is only slightly
better than our best performing system. However,
the models described here do not use the unlabeled
data, incorporating which could be an interesting
future direction for this research.

5 Language Modeling

Statistical Language Models estimate the prob-
ability of a word sequence given a large train-
ing corpus. Language Modeling has applica-
tions in various NLP and Speech processing tasks,
most notably in MT and ASR. In this section,
we describe experiments on building En-Es code-
switched LM.

5.1 Datasets

Similar to our LID experiment datasets described
in Table 1, we use the En and Es monolingual
tweets from (Rijhwani et al., 2017) (described as
the weakly-labeled data in the paper), and the
language-labeled CS data from (Solorio et al.,
2014) for training. However, unlike the LID ex-
periments, here a tweet, rather than a word, is con-
sidered as an instance; any tweet with CS is a part
of the CS training instance. Since we do not need
the language labels for the LM training experi-
ments, the tweets were stripped off those labels.
We used 212k En tweets, 92k Es tweets and 798
En-Es CS tweets as training data. The amount of
CS data used is a very small fraction (0.2%) of the
size of the monolingual data and the amount of En
data is more than double the Es data.

We also created a held-out test set for the LM
experiments, which consists of 2200 En-Es tweets
that were automatically tagged as code-switched
by our best En-Es LID system described in the
previous section. We use the standard evaluation
metric − perplexity (PPL) on the held-out test set

70

− to compare the LMs (lower the better).

5.2 Models
We train both RNNLMs and ngram language mod-
els on the same data to compare their perfor-
mances on various training data curricula.

We use the RNNLM toolkit (Mikolov et al.,
2011) to train and test all our RNNLM models.
The ngram models are also built with the same
toolkit, which invokes the SRILM toolkit (Stolcke
et al., 2002). During our initial experiments on
finding the appropriate curriculum for training CS
LMs, we use the single iteration recipe provided
in the RNNLM toolkit. In this setting, the learn-
ing rate is manually set to decrease after 4 epochs
and no validation data is used.

We then use the regular LM training recipe in
the RNNLM toolkit that makes use of a validation
data set. We adjust the values of various hyper-
parameters in our experiments. One crucial pa-
rameter we adjust is the number of classes (700),
according to a rule of thumb saying that the num-
ber of classes should be approximately the square
root of the vocabulary size. By doing this, we sac-
rifice accuracy for speed of training our models;
since the aim here is to analyze the trends rather
than look at the absolute values, we believe this is
a reasonable policy. Our models have a very large
vocabulary size owing to the presence of two lan-
guages and also due to large amount of spelling
variations found in tweets. For the experiments
with a single iteration, our models have 150 hid-
den layers. Other hyper parameters are kept at
their default values in the corresponding recipes
in the RNNLM toolkit. In our final experiments
with the full iteration recipe, we used CS data as
validation and 100 hidden layers.

5.3 Experiments
We experiment with all the training curricula de-
scribed in Sec. 3, except C5 because from our ex-
periments with C2 and C3, we find that adding CS
data at the beginning produces worse results. For
experiments involving {T1, T2} (i.e., curricula C4
and C6), we provide the input by interleaving the
tweets from T1 and T2. Since En has almost twice
as many tweets as Es, the extra En tweets that re-
main after interleaving all the Es tweets, are sim-
ply appended to the training set. Finally, since we
have very little CS data as compared to the mono-
lingual data, for curriculum C7 we replicate the
entire T12 dataset after every 10k instances from

{T1, T2}. Thus, we use 30 replicas of {T12} in
this curriculum. In addition to these curricula, we
also build a baseline using only CS data (C0).

We build all the six models using the RNNLM
single iteration setting first. Then, we build mod-
els for the best performing curriculum using the
multiple iteration recipe. In addition, we build 5-
gram models for all the 6 curricula and the C0
baseline. However, since ngram models do not de-
pend on the ordering, there are only four unique
corpora for training them: (1) with only monolin-
gual data: T1 ∪ T2, which is comparable to the
models for curricula C1 and C4; (2) with monolin-
gual and CS data without replication: T1∪T2∪T12,
which is comparable to RNNLMs built using cur-
ricula C2, C3 and C6; and (3) monolingual data
and with replicated CS data3: T1 ∪ T2 ∪ 30 · T12,
which is comparable to the RNNLM trained using
curriculum C7 (4) only code-switched data T12,
which is comparable to the RNNLM trained using
only CS data (comparable to C0).

5.4 Results
Table 4 shows the results of the LM experiments in
terms of perplexity on the held-out test set. As we
see from the numbers in first column, the best per-
forming RNNLMs are those that are trained ini-
tially with monolingual data and then trained with
CS data (C3 and C6). The model that is trained
initially with CS data and then with monolingual
data (C2) performs as badly as the model that was
trained with only monolingual data in blocks (C1).
In addition, training models with alternate mono-
lingual sentences gives better performance (C4,
C5) than training it with large chunks of mono-
lingual text (C1, C2). Training with monolingual
and CS data using curricula C3, C6 and C7 out-
performs the CS-data only baseline (C0). Also,
C4, that uses alternate sentences of monolingual
data outperforms this baseline, probably due to the
large difference in data size between the monolin-
gual and CS data.

Although the PPL values for the RNNLM are
very high, one must note that the test set consists
entirely of CS sentences, whereas the amount of
”in-domain” (i.e., CS) data used in training is very
low (0.2%). To improve our models, we build the
best performing model, the one corresponding to
C6, with multiple iterations; the PPL value for it is

3Since ngrams models strongly depend on frequency of
occurrence, we represent this using a slight abuse of notation
to indicate 30 replications of the T12 set

71

Curriculum RNNLM Intpl.
C0: T12 27443 477
C1: T1;T2 46628 1120
C2: T12;T1;T2 44516 609
C3: T1;T2;T12 7987 358
C4: {T1, T2} 9749 771
C6: {T1, T2};T12 6533 (4544) 320 (298)
C7: {T1, T2, T12} 23384 673

Table 4: Perplexity results for RNNLM and inter-
polated RNNLM+ngram LM. Values in parenthe-
sis are for the multiple iteration model.

shown within parenthesis.
Table 4 (column 2) also shows the PPL for

models obtained by interpolating the probabilities
given by RNNLM and the 5-gram LM. The in-
terpolation coefficient is kept fixed at 0.5. In all
cases, the PPL of the ngram model is significantly
lower than the RNNLM. For C1/C4, the 5-gram
PPL is 915, for C2/C3/C6 it is 778 and for C7
it is 574. However, in all cases, interpolating the
ngram model with the RNNLM gives the best re-
sults. Experimenting with the interpolation coeffi-
cient could potentially give better results.

5.5 Related Work on LM
Language Models for CS have been studied in the
context of three main approaches: (a) Bilingual
models that combine data from both languages, (b)
Factored models that take into account strong in-
dicators of CS like POS and LID, and (c) Mod-
els that incorporate linguistic constraints for CS.
Bilingual language models are typically trained
using pooled text data (Weng et al., 1997). Geb-
hardt (2011) describes a framework to use Fac-
tored Language Models for rescoring n-best lists
during decoding. The factors used include POS
tags, CS point probability and LID.

In Adel et al.(2014b; 2014a; 2013) recurrent
language models built on the same corpus are
combined with n-gram based models, or converted
to backoff models, giving improvements in per-
plexity and mixed error rate. Li and Fung (2014)
integrates Functional Head constraints for code-
switching into the Language Model for decoding a
Mandarin-English corpus. Li and Fung (2013) use
inversion constraints to predict CS points and in-
tegrates this prediction into the decoding process.

Our work is similar to the bilingual model ap-
proach in that we pool data from both languages.
However, we also add a very small amount of CS

data to our models in some of the experiments.
In addition, we also focus on the ordering of the
monolingual and CS data, which to our knowl-
edge, none of the previous approaches do.

6 Discussion and Conclusion

The experiments presented here on the two tasks
and three different DNN architectures show that
across all these cases, C6: {T1, T2};T12 is the
most effective curriculum for training CS mod-
els. C7: {T1, T2, T12} also performs quite well,
and in absence of CS data, C4: {T1, T2} seems to
be the most effective curriculum. Presenting the
monolingual training instances in blocks produce
the worst models, and neither is training with the
CS data in the beginning any more effective than
not using CS data at all.

This is similar to the findings reported in (Shi
et al., 2015) in the context of RNNLM adaptation
to specific domains. In general, empirical results
on transfer learning of DNNs show that training
with in-domain data at the end leads to better mod-
els. This explains why training first with one lan-
guage and then another is not ideal; in such cases
the model adapts to the second language, as ob-
served for C1, C2 and C3 in Table 2. For sim-
ilar reasons, training with T12 at the beginning
provides no benefit. One could possibly argue
that during training with {T1, T2} the upper lay-
ers (closer to input) of the networks learns the low
level features of the languages. Then during the
last phase of training with T12, the lower layers of
the network learns when to switch from one lan-
guage to another, i.e., the CS specific features.

An interesting cognitive metaphor (albeit not an
explanation) is as follows: an ideal bilingual is
exposed to both the languages almost simultane-
ously; such a user is able to code-switch even if
never exposed to CS (as in C4); however, with
exposure to CS, the frequency and perceived-
naturalness of CS increases in his/her language use
(as in C6). Of course, in multilingual communi-
ties children grow up with both languages as well
as CS between them (similar to C7). Thus, it is
tempting to predict that with large amount of CS
training data, i.e., when |T12| ≈ |T1| ≈ |T2|, C6
and C7 should perform equally well.

Here, we have explored the ordering of the
training instances based on the language. There
are other dimensions of complexity, for exam-
ple the number of code-switch points, syntactic

72

structure, etc., which could as well be harnessed
for more effective curricula. Going forward, we
would also like to explore techniques such as Self-
paced learning (Kumar et al., 2010; Jiang et al.,
2015; Graves et al., 2017).

References
Heike Adel, K. Kirchhoff, N. T. Vu, D. Telaar, and

T. Schultz. 2014a. Combining recurrent neural net-
works and factored language models during decod-
ing of code-switching speech. In INTERSPEECH.
pages 1415–1419.

Heike Adel, K Kirchhoff, N T Vu, D Telaar, and
T Schultz. 2014b. Comparing approaches to con-
vert recurrent neural networks into backoff language
models for efficient decoding. In INTERSPEECH.
pages 651–655.

Heike Adel, N T Vu, and T Schultz. 2013. Combina-
tion of recurrent neural networks and factored lan-
guage models for code-switching language model-
ing. In ACL (2). pages 206–211.

Peter Auer. 1995. The pragmatics of code-switching: a
sequential approach. In L. Milroy and P. Muysken,
editors, One speaker, two languages, Cambridge
Univ Press, pages 115–135.

Kalika Bali, Y. Vyas, J. Sharma, and M. Choudhury.
2014. ”I am borrowing ya mixing?” An analy-
sis of English-Hindi code mixing in Facebook. In
Proc. First Workshop on Computational Approaches
to Code Switching, EMNLP.

Yoshua Bengio, J. Louradour, R. Collobert, and J. We-
ston. 2009. Curriculum learning. In The 26th an-
nual international conference on machine learning.
ACM, pages 41–48.

Katja F Cantone. 2007. Code-switching in bilingual
children, volume 296. Springer.

Joyce YC Chan, H. Cao, PC Ching, and T. Lee. 2009.
Automatic recognition of cantonese-english code-
mixing speech. Computational Linguistics and Chi-
nese Language Processing 14(3):281–304.

Joseph Chee Chang and Chu-Cheng Lin. 2014.
Recurrent-neural-network for language detec-
tion on twitter code-switching corpus. CoRR
abs/1412.4314.

Amitava Das. 2016. Tool contest on POS tagging for
Code-mixed Indian Social Media Text. In ICON.

Mona Diab, P. Fung, M. Ghoneim, J. Hirschberg, and
T. Solorio, editors. 2016. Proc.of the 2nd Workshop
on Computational Approaches to Code Switching.

Mona Diab, J. Hirschberg, P. Fung, and T. Solorio, ed-
itors. 2014. Proc. of the 1st Workshop on Computa-
tional Approaches to Code Switching. ACL.

Margreet Dorleijn. 2016. Can internet data help to un-
cover developing preferred multilingual usage pat-
terns? an exploration of data from turkish-dutch
bilingual internet fora. Journal of Language Con-
tact 9(1):130–162.

Jeffrey L Elman. 1993. Learning and development in
neural networks: The importance of starting small.
Cognition 48(1):71–99.

Akshay Gadre, R. Begum, K. Bali, and M. Choudhury.
2016. Machine translating code mixed text: Pain
points and sweet spots. In WILDRE.

Jan Gebhardt. 2011. Speech recognition on english-
mandarin code-switching data using factored lan-
guage models .

Javier Gonzalez-Dominguez, D Eustis, I Lopez-
Moreno, A Senior, F Beaufays, and Pedro J Moreno.
2015. A real-time end-to-end multilingual speech
recognition architecture. IEEE Journal of Selected
Topics in Signal Processing 9(4):749–759.

Alex Graves, M G Bellemare, J Menick, R Munos,
and K Kavukcuoglu. 2017. Automated curricu-
lum learning for neural networks. arXiv preprint
arXiv:1704.03003 .

Aaron Jaech, G Mulcaire, S Hathi, M Ostendorf, and
N A Smith. 2016. A neural model for language iden-
tification in code-switched tweets. EMNLP 2016
page 60.

Anupam Jamatia and A Das. 2014. Part-of-speech tag-
ging system for Hindi social media text on twitter. In
The First Workshop on Language Technologies for
Indian Social Media, ICON.

Anupam Jamatia, B Gambck, and A Das. 2015.
Part-of-speech tagging for code-mixed english-hindi
twitter and facebook chat messages. In RANLP.

Lu Jiang, D Meng, Q Zhao, S Shan, and A G Haupt-
mann. 2015. Self-paced curriculum learning. In
AAAI. volume 2, page 6.

Melvin Johnson, M Schuster, Q V Le, M Krikun,
Y Wu, Z Chen, N Thorat, F Viégas, M Wattenberg,
G Corrado, et al. 2016. Google’s multilingual neu-
ral machine translation system: Enabling zero-shot
translation. arXiv preprint arXiv:1611.04558 .

M Pawan Kumar, B Packer, and D Koller. 2010. Self-
paced learning for latent variable models. In Ad-
vances in Neural Information Processing Systems.
pages 1189–1197.

Ying Li and P Fung. 2013. Improved mixed lan-
guage speech recognition using asymmetric acoustic
model and language model with code-switch inver-
sion constraints. In ICASSP. pages 7368–7372.

Ying Li and P Fung. 2014. Language modeling with
functional head constraint for code switching speech
recognition. In EMNLP.

73

Dau-Cheng Lyu, R-Y Lyu, Y-C Chiang, and C-N Hsu.
2006. Speech recognition on code-switching among
the chinese dialects. In IEEE ICASSP 2006. vol-
ume 1, pages I–I.

Tetyana Lyudovyk and Valeriy Pylypenko. 2014.
Code-switching speech recognition for closely re-
lated languages. In SLTU. pages 188–193.

Tomas Mikolov, S Kombrink, A Deoras, L Burget, and
J Cernocky. 2011. RNNLM-recurrent neural net-
work language modeling toolkit. In ASRU Work-
shop 2011. pages 196–201.

Giovanni Molina, N Rey-Villamizar, T Solorio, F Al-
Ghamdi, M Ghoneim, A Hawwari, and M Diab.
2016. Overview for the second shared task on lan-
guage identification in code-switched data. EMNLP
2016 page 40.

Carol Myers-Scotton. 1993. Dueling Languages:
Grammatical Structure in Code-Switching. Clare-
don, Oxford.

Shruti Rijhwani, R Sequiera, M Choudhury, K Bali,
and C S Maddila. 2017. Estimating code-switching
on Twitter with a novel generalized word-level lan-
guage identification technique. In ACL.

Koustav Rudra, S Rijhwani, R Begum, K Bali,
M Choudhury, and N Ganguly. 2016. Understand-
ing language preference for expression of opinion
and sentiment: What do Hindi-English speakers do
on Twitter? In EMNLP. pages 1131–1141.

Younes Samih, S Maharjan, M Attia, L Kallmeyer, and
T Solorio. 2016. Multilingual code-switching iden-
tification via lstm recurrent neural networks. In 2nd
Workshop on Computational Approaches to Code
Switching,. pages 50–59.

Royal Sequiera, M Choudhury, and K Bali. 2015a. Pos
tagging of Hindi-English code mixed text from so-
cial media: Some machine learning experiments. In
Proceedings of ICON.

Royal Sequiera et al. 2015b. Overview of fire-2015
shared task on mixed script information retrieval. In
FIRE. pages 21–27.

Shashank Sharma, P Srinivas, and R C Balabantaray.
2015. Text normalization of code mix and sentiment
analysis. In ICACCI, 2015 International Conference
on. IEEE, pages 1468–1473.

Yangyang Shi, M Larson, and C M Jonker. 2015. Re-
current neural network language model adaptation
with curriculum learning. Computer Speech & Lan-
guage 33(1):136–154.

Thamar Solorio and Yang Liu. 2008. Part-of-speech
tagging for english-spanish code-switched text. In
Proc. of EMNLP.

Thamar Solorio et al. 2014. Overview for the first
shared task on language identification in code-
switched data. In 1st Workshop on Computational
Approaches to Code Switching, EMNLP pages 62–
72.

Valentin I Spitkovsky, H Alshawi, and D Jurafsky.
2009. Baby steps: How less is more in unsupervised
dependency parsing. NIPS: Grammar Induction,
Representation of Language and Language Learn-
ing pages 1–10.

Andreas Stolcke et al. 2002. SRILM-an extensible
language modeling toolkit. In Interspeech. volume
2002, page 2002.

Yogarshi Vyas, S Gella, J Sharma, K Bali, and
M Choudhury. 2014. POS Tagging of English-
Hindi Code-Mixed Social Media Content. In Proc.
EMNLP. pages 974–979.

Fuliang Weng, H Bratt, L Neumeyer, and A Stolcke.
1997. A study of multilingual speech recognition.
In EUROSPEECH. Citeseer, volume 1997, pages
359–362.

Dong Yu, A Eversole, M Seltzer, K Yao, Z Huang,
B Guenter, O Kuchaiev, Y Zhang, F Seide, H Wang,
et al. 2014. An introduction to computational net-
works and the computational network toolkit. Mi-
crosoft Technical Report MSR-TR-2014–112 .

74

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 75–84

Quantitative Characterization of Code Switching Patterns in Complex
Multi-Party Conversations: A Case Study on Hindi Movie Scripts

Adithya Pratapa
Microsoft Research, India

adithyapratapa@gmail.com

Monojit Choudhury
Microsoft Research, India

monojitc@microsoft.com

Abstract

In this paper, we present a framework
for quantitative characterization of code-
switching patterns in multi-party conver-
sations, which allows us to compare and
contrast the socio-cultural and functional
aspects of code-switching within a set of
cultural contexts. Our method applies
some of the proposed metrics for quan-
tification of code-switching (Gamback and
Das, 2016; Guzman et al., 2017) at the
level of entire conversations, dyads and
participants. We apply this technique to
analyze the conversations from 18 recent
Hindi movies. In the process, we are able
to tease apart the use of code-switching
as a device for establishing identity, socio-
cultural contexts of the characters and the
events in a movie.

1 Introduction

Code-switching (henceforth CS) or code-mixing
refers to the juxtaposition of linguistic units from
more than one language in a single conversation,
or in a single utterance. Linguists have exten-
sively studied the structural (i.e., the grammatical
constraints on CS) and functional (i.e., the moti-
vation and intention behind CS) aspects of CS in
various mediums, contexts, languages and geogra-
phies (Myers-Scotton, 2005; Auer, 1995, 2013).
However, most of these studies are limited to qual-
itative analysis of small datasets, which makes it
hard to make statistically valid quantitative claims
over the nature and distribution of CS.

Recently, due to the availability of large code-
switched datasets, gathered mostly from social
media, there has been some quantitative stud-
ies on socio-linguistic and functional aspects of
CS (Rudra et al., 2016; Rijhwani et al., 2017; Guz-

man et al., 2017). Nevertheless, there are no large-
scale quantitative studies of code-switched conver-
sations, primarily because currently the only avail-
able large-scale datasets come from social media.
These are either micro-blogs without any conver-
sational context or data from Facebook or What-
sApp with very short conversations. On the other
hand, functions of CS are most relevant and dis-
cernible in relatively long multi-party conversa-
tions embedded in a social context. For instance,
it is well documented (Auer, 2013) that CS is mo-
tivated by complex social functions, such as iden-
tity, social power and style accommodation, which
are difficult to elicit and establish from short social
media texts.

In this work, we propose a set of techniques for
analyzing CS styles and functions in conversations
grounded over social networks. Our approach de-
velops on two previously proposed metrics of CS –
the Code-mixing Index (CMI) (Gamback and Das,
2016) and corpus level metrics proposed in (Guz-
man et al., 2017), applied to conversations at the
level of dyads, participants, conversation scenes
and the entire social network of the participants.
We apply this new approach to analyze scripts of
18 recent Hindi movies with various degrees and
styles of Hindi-English CS. Through this analysis
technique, we are able to bring out the social func-
tions of CS at different levels.

The primary contributions of this work are: (a)
development of a set of quantitative conversation
analysis techniques for CS; (b) some visualiza-
tion techniques for CS patterns in conversations
that can help linguists and social scientists to get
a holistic view of the switching styles in interac-
tions; (c) analysis of CS patterns in recent Hindi
movies that adds to the existing rich literature of
similar but small scale qualitative studies of CS in
Indian cinema.

Rest of this paper is organized as follows: Sec

75

2 describes related work on functions of CS with
particular emphasis on CS in Indian cinema. Sec
3 introduces our analysis technique, which is later
applied and illustrated in the context of movie
scripts in Sec 5 and 6. Sec 4 introduces the movie
dataset, preprocessing of the scripts and word-
level language labeling of the dialogues. Sec 7
concludes the paper by summarizing the contribu-
tions and discussing potential future work.

2 Related Work

In this section, we will start with a brief review of
the linguistics literature on functional and socio-
linguistic aspects of CS, followed by a discussion
on recent computational models. In order to put
the case-study on Hindi movies in perspective, we
will also review relevant literature on CS in Indian
cinema.

2.1 Functions of Code-Switching

Code-switching is a common phenomenon in all
multilingual communities, though usually it is un-
predictable whether in a given context a speaker
will code-switch or not (Auer, 1995). Neverthe-
less, linguists have observed that there are pre-
ferred languages for communicating certain kinds
of functions. For instance, certain speech activities
might be exclusively or more commonly related
to a certain language choice (e.g. Fishman (1971)
reports use of English for professional purposes
and Spanish for informal chat for English-Spanish
bilinguals from Puerto Rico). Language switch-
ing is also used as a signaling device that serves
specific communicative functions (Barredo, 1997;
Sanchez, 1983; Nishimura, 1995; Maschler, 1991,
1994) such as: (a) reported speech (b) narrative
to evaluative switch (c) reiterations or empha-
sis (d) topic shift (e) puns and language play (f)
topic/comment structuring etc. Attempts of pre-
dicting the preferred language, or even exhaus-
tively listing such functions, have failed. However,
linguists agree that language alteration in multilin-
gual communities is not a random process.

Code-switching is also strongly linked to social
identity and the principle of linguistic style ac-
commodation (Melhim and Rahman, 1991; Auer,
2013). For instance, two Hindi-English bilingual
speakers could code-switch just to establish a con-
nection or in-group identity because CS is the
norm for a large section of urban Indians, and En-
glish is attached to aspirational values by a large

section of the Indian society (see Sec.2.3 for de-
tailed discussion on this).

2.2 Computational and Quantitative Studies
Over the last decade, research in computational
processing of code-switching has gained signifi-
cant interest (Solorio and Liu, 2008, 2010; Vyas
et al., 2014; Peng et al., 2014; Sharma et al., 2016).
In particular, word-level language identification,
which is the first step towards processing of CS
text, has received a lot of attention (see Rijhwani
et al. (2017) for a review). In this work, we use the
word-level language labeler by Gella et al. (2013)
for labeling the Hindi movie dialogues.

Nevertheless, to the best of our knowledge,
there has been very little work on automatic iden-
tification of functional aspects of CS or any large-
scale data-driven study of its socio-linguistic as-
pects. Of the few studies that exist, most no-
table are the ones by Rudra et al. (2016) on lan-
guage preference by Hindi-English bilinguals on
Twitter and Rijhwani et al. (2017) on extent and
patterns of CS across European languages from
24 cities. Rudra et al. (2016) analyzed 430K
unique tweets for opinion and sentiment, and con-
cluded that Hindi-English bilinguals prefer to ex-
press negative opinions in Hindi; they further re-
port that a large fraction of the CS tweets exhib-
ited the narrative-evaluative function. Rijhwani et
al. (2017) examined more than 50M tweets from
across the world the study shows that the percent-
age of CS tweets varies from 1 to 11% across
the cities, and more CS is observed in the cities
where English is not the primary language of com-
munication. They also show that English-Spanish
CS patterns in a predominantly Spanish speaking
region (e.g., Barcelona) are different from those
where English is the primary language (e.g., Hous-
ton).

In an excellent survey on computational socio-
linguistics, Nguyen et al. (2016) report a few other
studies on socio-linguistic aspects of multilingual
communities.

2.3 Code-switching in Indian Cinema
Hindi-English CS, commonly called Hinglish, is
extremely widespread in India. There is histor-
ical attestation, as well as recent studies on the
growing use of Hinglish in general conversation,
and in entertainment and media (see Parshad et al.
(2016) and references therein). Several recent
studies (Bali et al., 2014; Barman et al., 2014;

76

Sequiera et al., 2015) also provide evidence of
Hinglish and other instances of CS on online so-
cial media, such as Twitter and Facebook.

Hindi movies provide a rich data source for
studying CS in the Indian context. Accord-
ing to the Conversational Analysis approach to
CS (Auer, 2013; Wei, 2002), in any given context
a particular language is preferred or unmarked.
Therefore, “speakers, and in turn script writers,
choose marked or unmarked codes on the ba-
sis of which one will bring them the best out-
comes” (Vaish, 2011). Myers-Scotton (2005) sug-
gested that the matrix or unmarked code for Hindi
movies is Hindi. Therefore, any switch to English
has some communicative purpose. Lösch (2007)
uses this idea to analyze the dialogues of the
movie Monsoon Wedding (2001) and concludes
that English is used as a device for encoding so-
cial distance; lower socio-economic class charac-
ters switch to English for upward social mobility.

Vaish (2011), on the other hand, argues that
Hindi is not necessarily the matrix or the un-
marked code for all characters and scenes in cur-
rent Hindi movies. Instead, the two codes (and
sometimes even more languages and regional va-
rieties) are used to bring out the identity of each
character. In particular, English and Hinglish are
associated with Westernization of culture, and are
often used as the preferred code for depicting NRI
or otherwise strongly westernized characters in
the movies. Yet a third line of study by Kachru
(2006) argues that predominance of English in
Hindi movies crops from the fact that it helps the
screenplay writers to borrow fresh metaphors and
new rhyming words from English; it also adds to
the playfulness, irony, humor and satire.

Chandra et al. (2016) report an acute rise in
use of English words in Hindi song lyrics over the
years. This is the only quantitative study of CS in
Indian cinema that we are aware of.

3 Approach

In this section, we present the techniques that
can be used to study complex multi-party conver-
sations like plays, movies, Facebook/WhatsApp
group conversations, and so on. We propose a do-
main independent modular framework to quanti-
tatively analyze these conversations. For this, we
adopt metrics proposed by Guzman et al. (2017)
and Gamback and Das (2016) to comprehensively
measure various aspects of CS in the corpus.

3.1 Metrics for Quantification of CS
The first corpus level quantification of the extent
and nature of CS was proposed by Gamback and
Das (2016). Referred to as the Code mixing in-
dex, this metric tries to capture the language distri-
bution and the switching, both at the level of utter-
ances and the entire corpus. Let N be the number
of languages, x an utterance; let tLi be the tokens
in language Li, P be the number of code alterna-
tion points in x; also, letwm andwp be the weights
for the two components of the metric. Then, the
Code mixed index per utterance, Cu(x) for x is:

Cu(x) = 100
wm(N(x)−maxLi∈L{tLi}(x)) + wpP (x)

N(x)
(1)

Let U be the number of utterances in the corpus
and S ≤ U be the number of utterances that con-
tains code-switching. Then the Code mixed index
over the entire corpus, Cc is defined as:

Cc =

∑U
x=1 Cu(x) + wpδ(x)

U
+ ws.

S

U
.100 (2)

δ(x) =

{
0, x = 1 ∨ Lx−1 = Lx

1, x 6= 1 ∧ Lx−1 6= Lx
(3)

In another recent study, Guzman et al. (2017)
propose not a single, but rather a set of metrics for
quantification of CS in a corpus. These are:

M-Index captures the inequality of distribution of
languages in the corpus. Let pj be the fraction
of words in language j and k represents the total
number of languages in the corpus, then

M-index =
1−∑ p2j

(k − 1)
∑
p2j

(4)

Language Entropy is the number of bits needed
to represent the distribution of languages.

LE = −
k∑

j=1

pjlog2(pj) (5)

I-Index is the switching probability.

I-index =
Total no. of switch points

n− 1
(6)

Burstiness quantifies whether the switching has
periodic character or occurs in bursts. Let στ ,
mτ be the standard deviation and the mean of
language-span (in terms of number of words in a

77

contiguous sequence of words in a language) dis-
tributions respectively.

Burstiness =
στ −mτ

στ +mτ
(7)

Span Entropy (SE) is the number of bits needed
to represent the distribution of language spans.
If pl represents sample probability of a span of
length l, then

SE = −
M∑

l=1

pllog2(pl) (8)

Memory captures the tendency of consecutive
language spans to be positively or negatively auto-
correlated. nr is the number of language spans in
the distribution, τi is the language span under con-
sideration, σ1 and m1 are the standard deviation
and the mean of all spans except the last, whereas
σ2 andm2 are the standard deviation and the mean
of all spans except the first,

Memory =
1

nr − 1

nr−1∑

i=1

(τi −m1)(τi+1 −m2)

σ1σ2
(9)

Each of these metrics evaluate a different aspect
of the corpus. For example, M-Index captures the
multilingualism of the corpus whereas CMI can be
used to measure the switching between languages
in and across the utterances. Therefore, an analyt-
ical approach that combines all these metrics and
overlays it on top of the conversation network of
the participants can bring out the various social
and functional aspects of CS.

3.2 The Proposed Approach
Here, we present a systematic approach to analyze
CS conversations. We begin with a set of defini-
tions and notations. Though the concepts defined
below applies to any multi-party conversation, it
might be useful to think of these in the context of
a play or a movie.

Let P = {P1, P2, . . . Pk} represents a set
of participants (akin to characters in a play or
movie). Let us define a conversation scene
Si as a sequence of participant-utterance pairs:
{〈P1,i, U1,i〉, 〈P2,i, U2,i〉, . . . 〈Pmi,i, Umi,i〉}. This
is essentially a multi-party conversation where
each participant Pj,i ∈ P speaks out Uj,i during
the conversation. Finally, a series of such scenes,
{S1, S2,, Sn} among the participants in P
along with their social context constitute a socially

grounded multi-party, multi-scene conversational
corpus, which we shall simply refer here as the
corpus1 C. Thus, C is similar to the script of an
entire movie or a play.

Note that while the social context of a scene,
such as the presence of passive participants, the
occassion and location, etc., are extremely impor-
tant for understanding the CS patterns, in the cur-
rent study we will ignore these meta-variables al-
together. Our analysis will solely rely on comput-
ing the CS metrics on the set of utterances present
in the entire corpus, which we shall denote as
π(C). Here, π refers to a projection of all the ut-
terances present in C.

Further, this projection can be limited to scenes,
participants, or dyads, which are defined below.

• πPi(C)→ set of all the utterances of the par-
ticipant Pi ∈ P in C

• πSj (C) → set of all the utterances in the
scene Sj in C

• πDi,j (C) → set of all the utterances of the
dyad (Pi, Pj), Pi, Pj ∈ P in C. A dyad is
defined as two consecutive utterances in any
scene, where the first and the second partic-
ipant are Pi and Pj , not necessarily in that
order.

The metrics described in the earlier subsections
can be applied to any of these projections and they
can be separately analyzed for inferences. We pro-
pose three kinds of analysis,

• Corpus: We can visualize each corpus C
based on these metrics and a cross-corpus
comparison can be made to explain the socio-
cultural setting of each of the corpora (or
movie).

• Participant: We can visualize the metrics for
a participant over the entire corpora and a
cross-participant comparison can reveal pat-
terns relating the social identity of the partic-
ipants.

• Dyad: Similar analysis can be done for each
dyad and this can help us find the functional
reasons for code switching, for example try-
ing to accommodate the other participant in
the conversation.

1Note that a collection of movie scripts, such as the one
analyzed here would usually be referred to as a corpus. How-
ever, here, we will refer to each movie as a conversational
corpus.

78

• Conversation Network: We can overlay the
cross-metric comparison plots onto the net-
work graph of the participants and this allows
us to study the variations in the amount and
style of CS by a participant with the other
participants in the network.

Thus, we can see the wide range of insights
this line of analysis could provide, and in the next
three sections we will illustrate these techniques
through a case study on movies.

4 Dataset

Though our methodology can be applied to any
complex multi-party conversation, in this work we
apply our framework to the case of Hindi films.

For our study we chose 18 recent
Hindi film scripts from a blog (https:
//moifightclub.com/category/
scripts/), which has around two dozen
Hindi movie scripts. The movies with their
meta-data and basic corpus statistics are presented
in Table 1.

We processed the scripts from the above blog in
the following way, (i) Converted the scripts pdfs
to text (ii) Using simple regular expressions, we
extracted the characters, dialogues and also seg-
regated the script into scenes (iii) Language la-
beled the dialogue using the tagger developed by
(Gella et al., 2013) into one of Hi (Hindi), En (En-
glish) and Other. The language tagger uses con-
text switch probability and monolingual frequency
factor on the top of maximum entropy classifier to
classify the Hi-En data.

A dialogue snippet from the script of movie
Queen is shown below. All the English words
are italicized and loose literal translations in En-
glish are given within angular brackets. As we can
see both intra-sentential and inter-sentential CS is
present in this snippet.

The distribution of the languages are presented
in Table 1 and we see significant usage of English
in all movies. Overall, we have noticed four kinds
of errors in processing the scripts. First being
the limitations of pdf to text converter, where
formating and justification issues lead to word
splitting, but these are very few in the corpus.
Second, we initially missed out the dialogues that
were capitalized. All the characters in the scripts
are in caps and our cues are built accordingly.
We tried to minimize these errors by manually
identifying the characters after preprocessing.

An example of the third kind of error is, some
characters like ’Vijaylaxmi’ in the movie Queen
are initially represented by generic phrases like
’The French Girl’ before the character introduces
itself. These errors are also few and in general
there are very few dialogues by the character
before his/her introduction. Lastly, the errors
caused by language tagger and we observed the
accuracy to be slightly lower than the results
presented in the original paper.

VIJAY:
ek minute ke liye thoda practical socho
〈 Please think practically for a minute 〉

VIJAY:
Main tumharey angle se hi soch raha

hoon... Tum hi uncomfortable feel karogi...
bahut time ho gaya hai... bahut fark aa
gaya hai
〈 I am thinking from your perspective...

But you will feel uncomfortable.. long
time has passed.. things have changed a lot
〉
RANI:

Kismein? Mujhmein koyi change nahin
hai
〈 In whom? I haven’t changed at all 〉

VIJAY:
Vohi to baat hai... mujhmein hai... meri

duniya ... bilkul alag hai... ab... you’ll not
fit in
〈 That’s the point... I have.. My world...

is very different... now... you’ll not fit in 〉
RANI:

Matlab? ek dum se main tumharey jitni
fancy nahin hoon...
〈 What do you mean? Suddenly I am

no longer as fancy as you 〉

The preprocessed corpus is available for re-
search on request by email to the authors.

5 Corpus level Analysis

In this section we present the results of the metrics
discussed in section 3 on the entire corpus. The
results of the metrics are given in table 2 and are
indexed by the Movie ID (as in table 1). The table
presents the metrics detailed in the section 3.1 with
the first half being the ones proposed by (Guzman
et al., 2017) and the later by (Gamback and Das,

79

MID Movie (Year) Script Writer Director % HI % EN # words # turns
1 Ankhon dekhi

(2014)
Rajat Kapoor Rajat Kapoor 69.66 17.27 11940 753

2 D-day (2013) Nikhil Advani et al, Nikhil Advani 62.95 21.46 10904 659
3 Dedh ishqiya

(2014)
Vishal Bhardwaj et
al.

Abhishek Chaubey 68.81 14.74 7775 642

4 Dum laga ke
haisha (2015)

Sharat Katariya Sharat Katariya 67.03 15.52 8870 678

5 Ek main aur ek
tu (2012)

Ayesha Devitre,
Shakun Batra

Shakun Batra 39.53 42.35 10333 836

6 Kapoor and
sons (2016)

Shakun Batra,
Ayesha D. Dillion

Shakun Batra 49.72 32.36 13698 1119

7 Kai po che
(2013)

Pubali Chaudhari
et al.

Abhishek Kapoor 56.83 26.79 11670 675

8 Lootera (2013) Bhavani Iyer, V.
Motwane

V. Motwane 71.4 12.7 8314 734

9 Masaan (2015) Varun Grover Neeraj Ghaywan 59.78 20.83 7620 653
10 Neerja (2016) Saiwyn Quadras Ram Madhvani 53.47 32.63 8293 602
11 NH10 (2015) Sudip Sharma Navdeep Singh 34.43 42.53 3148 340
12 Pink (2016) Shoojit Sricar et al. A. Roy Chowdhury 46.39 39.69 15437 897
13 Queen (2014) Vikas Bahl et al. Vikas Bahl 47.6 35.51 8958 951
14 Raman Ragha-

van 2.0 (2016)
Anurag Kashyap,
Vasan Bala

Anurag Kashyap 63.35 20.42 5171 373

15 Shahid (2013) Sameer Gautam
Singh

Hansal Mehta 47.47 34.17 10084 896

16 Talvar (2015) Vishal Bhardwaj Meghna Gulzar 48.97 34.9 9957 823
17 Titli (2015) Sharat Katariya,

Kanu Behl
Kanu Behl 49.01 34.7 8368 656

18 Udaan (2010) V. Motwane,
Anurag Kashyap

V. Motwane 64.53 18.59 10545 955

Table 1: List of Movies analyzed with some basic statistics. MID - Movie Id.

2016). Cc represents the CMI values on the over-
all corpus while Cu mix and Cu total denote the
CMI per utterance averaged over the mixed and to-
tal utterances respectively. P mix and P total are
the average number of switch points in the set of
mixed and total utterances respectively. The last
two columns represent the number and percentage
of inter-switches (change of matrix language) in
the corpus. We can see a significant variation of
most of the metrics across the movies. Figure 1
shows the distribution of mixed and non-mixed ut-
terances for the movies and this captures the mix-
ing in dialogues in contrast to the switching in the
entire corpus. On average, 50% of the dialogues
in a movie are code mixed and signifies the use of
multilingualism in the movie corpus.

Figure 2 represents the movies in an M-index vs
CMI scatter plot (π(C)). As shown, the movies
can be visually clustered into three sets: Clus-
ter A has movies with low CS (both low CMI

and M-Index), cluster B has movies with high
CS (both high CMI and M-Index), and cluster C
contains movies that has high M-Index (approxi-
mately equal usage of Hi and En) but low CMI.
Each of these clusters can be explained based on
the socio-cultural setting of the movies. For in-
stance, the movies in cluster B are based in ur-
ban setting and have more CS than the movies
in cluster A, which are typically based in small
towns (e.g., Dum laga ke haisha), rural settings
(e.g., Udaan), or in the past (e.g., Lootera). On
the other hand, the movies in cluster C like Queen
are the ones away from the trend-line (shown as
the dotted line) and it is because they have dif-
ferent matrix languages for different parts of the
movie. This results in an overall high M-Index
value but there is very little code switching in the
scenes with English as matrix language, leading to
lower CMI. We also compared other metrics but
gained very similar insights.

80

MID M-metric I-metric Bursti- Memory Language Span CMI Metrics

ness Entropy Entropy Cc Cu mix Cu total P mix P total # IS % IS

1 0.467 0.221 0.117 -0.203 0.719 3.240 72.47 30.11 19.24 4.16 2.66 146 19.39

2 0.611 0.210 0.081 -0.212 0.818 3.431 81.41 35.63 24.38 3.68 2.52 172 26.1

3 0.410 0.190 0.140 -0.248 0.672 3.480 58.13 32.56 16.33 3.04 1.52 190 29.6

4 0.440 0.194 0.128 -0.253 0.697 3.478 66.09 31.27 18.03 2.9 1.67 157 23.16

5 0.998 0.232 0.062 -0.005 0.999 3.318 77.08 50.63 29.13 3.37 1.94 352 42.11

6 0.914 0.240 0.066 -0.076 0.968 3.263 80.26 47.58 29.17 3.15 1.93 486 43.43

7 0.771 0.236 0.091 -0.131 0.905 3.244 90.99 39.26 29.14 3.97 2.95 198 29.33

8 0.345 0.172 0.139 -0.294 0.612 3.629 52.42 30.83 14.16 2.68 1.23 194 26.43

9 0.621 0.223 0.121 -0.206 0.824 3.287 65.26 37.05 20.09 3.09 1.68 186 28.48

10 0.889 0.197 0.143 -0.152 0.957 3.486 72.42 38.45 22.87 3.24 1.93 164 27.24

11 0.978 0.217 0.210 -0.092 0.992 3.249 54.78 41.67 18.26 2.64 1.16 105 30.88

12 0.988 0.209 0.080 -0.075 0.996 3.468 78.27 47.17 28.29 4.38 2.63 394 43.92

13 0.959 0.216 0.129 -0.144 0.985 3.360 53.47 43.8 18.42 3.04 1.28 353 37.12

14 0.584 0.189 0.103 -0.208 0.801 3.525 62.22 35.69 18.66 3.44 1.8 101 27.08

15 0.948 0.205 0.035 -0.129 0.981 3.509 59.97 47.09 21.65 2.99 1.38 419 46.76

16 0.945 0.249 0.093 -0.067 0.980 3.156 69.43 45.37 24.48 3.82 2.06 352 42.77

17 0.943 0.212 0.018 -0.037 0.979 3.458 76.95 46.1 27.41 3.06 1.82 271 41.31

18 0.532 0.229 0.074 -0.251 0.767 3.283 57.57 38.03 18.04 3.46 1.64 343 35.92

Table 2: Metrics

Figure 1: Percentage of Code-switched utterances
in the movies.

Figure 2: Movies plotted on M-Index (y-axis) vs
CMI (x-axis) scatter

6 Participant Level Analysis

In this section we analyze character and dyad spe-
cific aspects of CS patterns in the movies. We
compute the metrics, M-Index and CMI for cor-
pus projected on participants and dyads. Fig-
ure 3 shows the standard deviation of CMI and
M-index over all participants and dyads in the
movies. The plots indicate that there are signifi-
cant differences in the patterns across the movies.
For instance, MID-13 Queen shows large variation
in the amount of CS used by the various characters
and dyads; whereas, MID-18 Udaan has very lit-
tle variation in the extent of CS exhibited by the
characters and dyads. MID-15 Shahid shows yet
another different pattern, where all characters have
similar levels of CS, though there is a larger varia-
tion across the dyads. Thus, one can conclude that
in Queen CS is used to establish the identity of the
characters; in Shahid, CS is used for establishing
the social dynamics of the relations (dyads), but
not necessarily the characters; and in Udaan, CS
is neither used to establish characters or the dyadic
relationships; rather in this movie, the CS is used
to bring out the overall socio-cultural setting of the
movie.

81

Figure 3: Standard Deviation for characters (light grey) and dyads (dark grey) for CMI (left) and M-Index
(right).

Figure 4: CMI of the the five characters ranked in
ascending order of the number of dialogues in the
movie, for six movies.

In order to understand and characterize these
differences further, for each movie we ranked the
participants/dyads by their utterance count and
plot the standard deviation for the top 5 partic-
ipants and top 10 dyads. Figure 4 and 5 shows
these plots, respectively for the characters and the
dyads, for the top and bottom three movies in
terms of the variance in CS (by CMI).

In the participant plot, Queen, D-day and Talvar
are the movies with highest variance while Kai po
che, Dedh ishqiya and Shahid are the ones with
lowest variance. In the movie Queen, the char-
acters ’Vijaylaxmi’ and ’Mikhaelo’ exhibit little
CS since they speak only or mainly English owing
their identity. On the other hand, ’Rani’ ,’Vijay’
and ’Mom’ are based in Delhi, India and they ex-
hibit high CS. Similarly in the case of D-day, the
character ’Aslam’ has multiple roles in the movie.
In order to distinguish between the roles, high CS
is used for one of the roles, compared to the other
prominent characters. Thus, we observe that CS is
used as a tool by the scripts writers to depict the
identity of the characters.

Figure 5: CMI for top 10 dyads for 6 movies.

In Figure 6 we see that for the movies Queen
and Talvar dyads exhibit high variation in CS,
whereas in D-day, Udaan, Dedh ishqiya and
Lootera there is very little variation across the top
10 dyads. It is interesting to note that for the movie
D-day, the characters show low but the dyads show
high variation, unlike the movie Queen where the
variation is high for both. In order to further in-
vestigate these variations, we plotted the character
network graphs for these movies on the top of their
CMI-M Index plot, also denoting the average M-
Index and CMI for the entire movie (figure 6 and
7).

The diameter of the circle denoting the par-
ticipant dPi ∝

√
|πPi(C)| and the thickness

and darkness of the edge between two partici-
pants are tPi,Pj ∝ log|πDi,j (C)| and dPi,Pj ∝
log|Cc(πDi,j (C))| respectively.

We observe a clear difference in the networks
for Queen and D-day. In the case of Queen, the
movie revolves around the central character ’Rani’
and all others characters have dialogues primarily
with ’Rani’. These characters are from different
countries (India, France, Japan, Russia) and the

82

Figure 6: Queen - Network Plot

Figure 7: D-day - Network Plot

CS in dialogues with the central character varies
a lot, as captured by the darkness of edges in the
graph dPi,Pj . The individual amount of CS also
widely varies depending on the country of ori-
gin with higher Hi-En CS for characters based
in India. The overall mean CMI and M-Index
of the movie are closer to the central character
as she have many more dialogues than most oth-
ers. Whereas in D-day the characters are dis-
tributed around the movie’s average metrics and
the graph is well-connected. The CS patterns
across the characters and dyads are more similar
than in Queen. Thus, in Queen, we see CS being
used to represent social identity of the characters
but not so much in D-day. As we have already
illustrated the socio-cultural context of the movies
is also inherently captured by code switching. Due
to paucity of space we have only presented our
analysis for two movies but we observed similar
trends across the movies.

7 Conclusion

In this work, we presented a framework for quan-
titative characterization of CS patterns in multi-

party conversations which goes beyond the exist-
ing techniques of corpus level footprints. We ap-
ply this approach to analyze scripts of 18 Hindi
movies and illustrate its effectiveness in bringing
out certain social aspects of CS, such as establish-
ment of identity. Our study also reveals the widely
different styles and frequency in which CS is em-
ployed as a strategy to establish identity and social
context in the movies.

We would like to emphasize that the approach
presented here can be extended in scope as well
as applied to a wide genre of conversational data,
including but not limited to, social media text, pri-
vate and group chat (e.g., Whatsapp), trascribed
speech corpora and literary work. In terms of
scope, the approach can be used to study linguistic
style accomodation with respect to CS, and prag-
matic functions and structural aspects of code-
switching.

Acknowledgement

We would like to thank Anupam Jamatia, Amitava
Das and Bjorn Gamback for providing us with the
code for computing CMI metrics, and Gualberto
Guzman, Barbara Bullock and Jaqueline Toribio
for sharing the code for computing other set of
metrics. We would also like to thank Kalika Bali
and Sunayana Sitaram for their insights and valu-
able inputs on this work. We thank the authors of
the blog for allowing us to use the scripts for our
research.

References
Peter Auer. 1995. The pragmatics of code-switching:

a sequential approach. In Lesley Milroy and Pieter
Muysken, editors, One speaker, two languages,
Cambridge University Press, pages 115–135.

Peter Auer. 2013. Code-switching in conversation:
Language, interaction and identity. Routledge.

Kalika Bali, Yogarshi Vyas, Jatin Sharma, and Monojit
Choudhury. 2014. “I am borrowing ya mixing?” an
analysis of English-Hindi code mixing in Facebook.
In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching.

Utsab Barman, Amitava Das, Joachim Wagner, and
Jennifer Foster. 2014. Code mixing: A challenge for
language identification in the language of social me-
dia. In Proceedings of the First Workshop on Com-
putational Approaches to Code Switching.

Inma Muñoa Barredo. 1997. Pragmatic functions of
code-switching among Basque-Spanish bilinguals.
Retrieved on October 26:528–541.

83

Subhash Chandra, Bhupendra Kumar, Vivek Kumar,
and Sakshi. 2016. Acute sporadic english in bol-
lywood film songs lyrics: A textual evidence based
analysis of code-mixing in hindi. Language in India
16(11):25–34.

J. A. Fishman. 1971. Sociolinguistics. Rowley, New-
bury, MA.

B. Gamback and A Das. 2016. Comparing the level of
code-switching in corpora. In Proc. of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC).

Spandana Gella, Jatin Sharma, and Kalika Bali. 2013.
Query word labeling and back transliteration for in-
dian languages: Shared task system description .

Gualberto Guzman, Joseph Ricard, Jacqueline Seri-
gos, Barbara E. Bullock, and Almeida Jacqueline
Toribio. 2017. Metrics for modeling code-switching
across corpora. In Proc. of the Interspeech Special
Session on Code Switching.

Yamuna Kachru. 2006. Mixers lyricing in hinglish:
Blending and fusion in indian pop culture. World
Englishes 25(2):223–233.

Eva Lösch. 2007. The construction of social distance
through code-switching: an exemplary analysis for
popular indian cinema. Department of Linguistics,
Technical University of Chemnitz .

Yael Maschler. 1991. The language games bilinguals
play: language alternation at language boundaries.
Language and communication 11(2):263–289.

Yael Maschler. 1994. Appreciation ha’araxa ’o
ha’arasta? [valuing or admiration]. Negotiating con-
trast in bilingual disagreement talk 14(2):207–238.

Abu Melhim and Abdel Rahman. 1991. Code-
switching and linguistic accommodation in arabic.
In Perspectives on Arabic Linguistics III: Papers
from the Third Annual Symposium on Arabic Lin-
guistics. John Benjamins Publishing, volume 80,
pages 231–250.

Carol Myers-Scotton. 2005. Multiple voices: An intro-
duction to bilingualism. Wiley-Blackwell.

Dong Nguyen, A Seza Doğruöz, Carolyn P Rosé, and
Franciska de Jong. 2016. Computational sociolin-
guistics: A survey. Computational Linguistics .

Miwa Nishimura. 1995. A functional analysis of
Japanese/English code-switching. Journal of Prag-
matics 23(2):157–181.

Rana D. Parshad, Suman Bhowmick, Vineeta Chand,
Nitu Kumari, and Neha Sinha. 2016. What is India
speaking? Exploring the “Hinglish” invasion. Phys-
ica A 449:375–389.

Nanyun Peng, Yiming Wang, and Mark Dredze.
2014. Learning polylingual topic models from code-
switched social media documents. In ACL (2). pages
674–679.

Shruti Rijhwani, Royal Sequiera, Monojit Choud-
hury, Kalika Bali, and Chandra Sekhar Maddila.
2017. Estimating code-switching on twitter with
a novel generalized word-level language detection
technique. In Proc of ACL 2017.

Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika
Bali, Monojit Choudhury, and Niloy Ganguly. 2016.
Understanding language preference for expression
of opinion and sentiment: What do Hindi-English
speakers do on Twitter? In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Rosaura Sanchez. 1983. Chicano discourse. Rowley,
Newbury House.

Royal Sequiera, Monojit Choudhury, Parth Gupta,
Paolo Rosso, Shubham Kumar, Somnath Banerjee,
Sudip Kumar Naskar, Sivaji Bandyopadhyay, Gokul
Chittaranjan, Amitava Das, and Kunal Chakma.
2015. Overview of fire-2015 shared task on mixed
script information retrieval. In Working Notes of
FIRE.

A. Sharma, S. Gupta, R. Motlani, P. Bansal, M. Srivas-
tava, R. Mamidi, and D.M Sharma. 2016. Shallow
parsing pipeline for hindi-english code-mixed social
media text. In Proceedings of NAACL-HLT .

Thamar Solorio and Yang Liu. 2008. Part-of-speech
tagging for english-spanish code-switched text. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1051–1060.

Thamar Solorio and Yang Liu. 2010. Learning to Pre-
dict Code-Switching Points. In Proc. EMNLP.

VINITI Vaish. 2011. Terrorism, nationalism and west-
ernization: Code switching and identity in bolly-
wood. FM Hult, & KA King, K. A (Eds.). Edu-
cational linguistics in practice: Applying the local
globally and the global locally pages 27–40.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. POS Tagging
of English-Hindi Code-Mixed Social Media Con-
tent. In Proc. EMNLP. pages 974–979.

Li Wei. 2002. what do you want me to say?on the con-
versation analysis approach to bilingual interaction.
Language in Society 31(2):159–180.

84

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 85–94

Towards Normalising Konkani-English Code-Mixed Social Media Text

Akshata Phadte
DCST Goa University

Goa, India.
akshataph07@gmail.com

Gaurish Thakkar
DCST Goa University

Goa, India.
thak123@gmail.com

Abstract

In this paper, we present an empiri-
cal study on problem of word-level lan-
guage identification and text normaliza-
tion for Konkani-English Code-Mixed So-
cial Media Text (CMST). we describe a
new dataset which contains of more than
thousands posts from Facebook posts that
exhibit code mixing between Konkani-
English. To the best of our knowledge, our
work is the first attempt at the creation of
a linguistic resource for this language pair
which will be made public and developed
a language identification and Normalisa-
tion System for Konkani-Englsih language
pair.
We also present word-level language iden-
tification experiments are performed us-
ing this dataset. Different techniques
are employed, including a simple unsu-
pervised dictionary-based approach, su-
pervised word-level Language identifica-
tion using sequence labelling using Con-
ditional Random Fields based models,
SVM, Random Forest. The targeted re-
search problem also entails solving an-
other problem, that to correct English
spelling errors in code-mixed social media
text that contains English words as well as
Romanized transliteration of words from
another language, in this case Konkani.

1 Introduction

Social media in todays world possess enormous
amount of data. But the problem starts in Multi-
lingual speakers tend to exhibit code-mixing and
code-switching in their use of language on social
media platforms. Now Automatic understanding
of Social Media text is unravelling a whole new

field of study. English is still found the most pop-
ular language in Social Media Text, its dominance
is receding. Code mixing occurs due to various
reasons. According to a work by (Hidayat, 2012),
There are the following major reasons for Code-
Mixing:-

• 45%: Real lexical needs : For instance
someone is thinking of some object but is
not able to recall the word in the language,
then he/she will tend to switch to a language
where he knows the appropriate word.

• 40%: Talking about a particular topic
people : tend to talk about some topics in
their mother tongue (like food) and gener-
ally while discussing science people tend to
switch to English.

• 5%: for content clarification : while ex-
plaining one topic, for better clarification of
the audience, to make the audience more
clear about the topic, code switching is used.

Konkani-English bilingual speakers produce
huge amounts of code-mixed social media text
(CSMT). (Vyas et al., 2014) noted that the com-
plexity in analyzing code-mixed social media text
(CSMT) stems from nonadherence to a formal
grammar, spelling variations, lack of annotated
data, inherent conversational nature of the text and
ofcourse, code-mixing. Therefore, there is a need
to create datasets and Natural Language Process-
ing (NLP) tools for code-mixed social media text
(CSMT) as traditional tools are ill-equipped for
it. Taking a step in this direction, we describe
the Word Level Language Identification system
for Konkani-English language pair that we will
be building in this study. The salient contribu-
tions of this work are in formalizing the problem
and related challenges for processing of Konkani-
English social media data, creation of an annotated

85

dataset and initial experiments for language iden-
tification of this data.

2 Related Work

A lot of work has been done on social media data
and code-mixed data over the past decades. Code-
mixing being a relatively newer phenomena has
gained attention of researchers only in the past two
decades. On the other hand, Language Identifi-
cation has been considered to be a solved prob-
lem by (McNamee, 2005), but new complications
were added to this task in the context of code-
mixed social media data. Similarly, Word Normal-
isation has been extensively studied, but there is
little work done on the Konkani-English , Hindi-
English language pair.

2.1 Code-Mixed Data

One of the earliest works on code-Mixing for
Facebook data was done by (Hidayat, 2012)
and showed that Facebook users tend to mainly
use inter-sentential switching over intra-sentential,
and report that 45% of the switching was insti-
gated by real lexical needs, 40% was used for talk-
ing about a particular topic, and 5% for content
clarification .

(Dey and Fung, 2014) also investigated the rules
for code-switching in Hindi-English data by inter-
viewing bilingual students and transcribing their
utterances . They found that on average, roughly
67% of each sentence were made up of Hindi
words and 33% English words.

2.2 Language Identification

Previous work on text has mainly been on identi-
fying a language from documents of several lan-
guages, such that even when evidence is collected
at word level, evaluation is at document level
(Prager, 1999); (Singh and Gorla, 2007); (Yam-
aguchi and Tanaka-Ishii, 2012). (Carter et al.,
2013) collected tweets in five different European
languages and analysed multi-lingual microblogs
for understanding the dominant language in any
specific tweet . He then performed post-level lan-
guage identification, experimenting with a range
of different models and a character n-gram dis-
tance metric, reporting a best overall classification
accuracy of 92.4%. (Tratz et al., 2013) on the other
hand worked on highly code mixed tweets, with
20.2% of their test and development sets consist-
ing of tweets in more than one language. They

aimed to separate Romanised Moroccan, Arabic
(Darija), English and French tweets using a Max-
imum Entropy classifier, achieving F-scores of
0.928 and 0.892 for English and French, but only
0.846 for Darija due to low precision.

(Nguyen and Dogruoz, 2013) worked on lan-
guage identification at the word level on randomly
sampled Turkish-Dutch posts from an online chat
forum . They compared dictionary based methods
to statistical ones. Their best system reached an
accuracy of 97.6%, but with a substantially lower
accuracy on post level (89.5%), even though 83%
of the posts actually were monolingual. They re-
port on language identification experiments per-
formed on Turkish and Dutch forum data. Experi-
ments have been carried out using language mod-
els, dictionaries, logistic regression classification
and Conditional Random Fields. They find that
language models are more robust than dictionaries
and that contextual information is helpful for the
task.

Furthermore, (Barman et al., 2014) investigated
language identification at word level on Bengali-
Hindi-English code-mixed social media text .
They annotated a corpus with more than 180,000
tokens and achieved an accuracy of 95.76% using
statistical models with monolingual dictionaries.

3 Normalisation

Owing to massive growth of SMS and social
media content, text normalisation systems have
gained attention where the focus is on conversion
of these tokens into standard dictionary words.The
first Chinese monolingual chat corpus was re-
leased by (Wong and Xia, 2008). They also intro-
duced a word normalisation model, which was a
hybrid of the Source Channel Model and phonetic
mapping model.

(Wang et al., 2009) work with abbreviations for
spoken Chinese rather than for English text mes-
sages. They first perform an abbreviation genera-
tion task for words and then reverse the mapping
in a look-up table. They use conditional random
fields as a binary classifier to determine the prob-
ability of removing a Chinese character to form
an abbreviation. They rerank the resulting ab-
breviations by using a length prior modeled from
their training data and co-occurrence of the orig-
inal word and generated abbreviation using web
search.

A commonly accepted research methodology is

86

treating normalisation as a noisy channel prob-
lem. (Choudhury et al., 2010) explain a super-
vised noisy channel framework using HMMs for
SMS normalisation. This work was then extended
by (Cook and Stevenson, 2009) to create an un-
supervised noisy channel approach using proba-
bilistic models for common abbreviation types and
choosing the English word with the highest proba-
bility after combining the models. (Beaufort et al.,
2010) combine a noisy channel model with a rule-
based finite-state transducer and got reasonable re-
sults on French SMS, but did not test their method
on English text. (Xue et al., 2011) adopted the
noisy-channel framework for normalisation of mi-
crotext and proved that it is an effective method
for performing normalisation.

(Vyas et al., 2014) worked on POS tagging for
Hindi-English data . For Hindi normalisation, they
used the system built by (Gella et al., 2013) but
they did not normalise English text as they used
the (Owoputi et al., 2013) Twitter POS Tagger in
the next step, which does not require normalised
data.

4 Data Preparation

For performing Language identification for
Konkani-English language we don`t have suffi-
cient annotated datasets and other resources. As
a part of this research work we developed the
following resources.

we collected data from Facebook public pages
of Konkani group. All these pages are very pop-
ular with 9800 likes. A total of 4983 posts were
scrapped from Konkani group pages, which were
published between 6 may 2014 to 28th Septem-
ber 2016 and preference was given to posts having
a long thread of posts. The corpus thus generated
has 4,983 posts and 1,13,578 words. Due to the us-
age of Facebook as the underlying crowd sourcing
engine, the data generated was highly conversa-
tional and had reasonable amount of social-media
lingo.

Facebook posts were broken down into sen-
tences using sentence Tokenize and 5088 of those
code-mixed sentences were randomly selected
for manual annotation. The data was semi-
automatically cleaned and formatted, removing
user names for privacy. The names of public fig-
ures in the posts were retained.

4.1 Data Statistics

The size of the original data was 34036 sentences
of facebook post. 5088 (14.94%) of those code-
mixed sentences were randomly selected, con-
taining a total of 60,118 tokens. Table 1 show
the distribution of the dataset at token level re-
spectively. Of these tokens, 34,118 (56.75%) are
Konkani words which are in Roman script, 17,764
(29.54%) are English words. 8,236 (13.69%) are
acronym, slag words, hindi words etc which are
marked as ‘ Rest ’ .

Language All Sentences
Konkani 34,118 (56.75%)
English 17,764 (29.54%)
Rest 8236 (13.69%)
Total 60,118

Table 1: Data distribution at token level

4.2 Dataset examples

1. Interviewer: Tuka British Accent’n ulopak
kalta? thn plz speeak.. pleeeaase! thn i cn
say ur genuis
Interviewer: Bare ulon dakhoi

The dataset is comprised of sentences similar to
Example 1 . Example 1 shows Code-Mixing as
some English words are embedded in a Konkani
utterance. Spelling variations (ur - your), ambigu-
ous words (To - So in Konkani or To in English)
and non-adherence to a formal grammar (out of
place ellipsis.., no or misplaced punctuation) are
some of the challenges evident in analyzing the
examples above.

5 Annotation Guidelines

The creation of this linguistic resource involved
Language identification layer. In the following
paragraphs, we describe the annotation guidelines
for these tasks in detail. Manual Annotation was
done on the following layer:

5.1 Language Identification

Similar to (Barman et al., 2014), we will be treat-
ing language identification as a three class (‘ kn’,
‘ en’, ‘ rest’) classification problem. Every word
was given a tag out of three - en, kn and rest to
mark its language. Words that a bilingual speaker
could identify as belonging to either Konkani or
English were marked as ‘kn’ or ‘en’, respectively.

87

The label ‘rest’ was given to symbols, emoticons,
punctuation, named entities, acronyms, foreign
words.

The label ‘rest’ was created in order to accom-
modate words that did not strictly belong to any
language, described below:

1 Symbols, emoticons and punctuation

2 Named Entities : Named Entities are lan-
guage independent in most cases. For in-
stance, ‘Jack’ would be represented by equiv-
alent characters in Konkani and English.

3 Acronyms: This includes SMS acronyms
such as ‘LOL’, and established contractions
such as ‘USA’. Acronyms are very interesting
linguistic units, and play an important role
in social media text. They represent not just
entities but also phrases and reactions. We
wanted to keep their analysis separate from
the rest of the language; and hence they were
categorised as ‘rest’ in our dataset.

4 foreign words : A word borrowed from a
language except Konkani and English has
been treated as ‘rest’ as well. This does not
include commonly borrowed Hindi words in
Konkani; they are treated as a part of Konkani
language.

5 Sub-lexical code-mixing : Any word with
word-level code-mixing has been classified
as ‘rest’, since it represents a more complex
morphology.

5.2 Normalisation
Words with language tag ‘ kn’ in Roman script
were labeled with their standard form in the na-
tive script of Konkani Devanagari, i.e. a back-
transliteration will be perform. Words with lan-
guage tag ‘ en’ were labeled with their standard
spelling. Words with language tag ‘ rest’ were kept
as they are.
Following are some case-specific guidelines.

1 In case a token consists of two words (due to
an error in typing the space), the tokens are
separated and written in their original script.
For instance, ‘ whatis’ would be normalised
to ‘ what is’, with the language ID as English.

2 In cases where multiple spellings of a word
are considered acceptable, we have allowed

both spelling variations to exist as the stan-
dard spellings. For instance, in ‘ color’
and ‘ colour’, ‘ dialogue’ and ‘ dialog’, both
spellings are valid.

3 Contractions such as ‘ don’t’ and ‘ who’s’
have been left undisturbed. The dataset thus
contains both variations - ‘ don’t’ and ‘ do
not’, depending on the original chat text.

4 Konkani has evolved through the past
decades, and often we see variations in
spelling of a single word. We observed the
variation patterns and choose the standard
spellings.

The overall annotation process was not a very
ambiguous task and annotation instruction was
straight-forward. Three Konkani-English bilin-
gual speaker annotated whole dataset. They were
not Linguist! Two other annotators reviewed and
cleaned it. To measure inter-annotator agree-
ment, another annotator read the guidelines and
annotated 125 sentences from scratch. The inter-
annotator agreement calculated by third annotator
using Cohens Kappa (Cohen, 1960) came out to
be 0.78 for language identification.

6 Tools and Resources

We have used the following resources and tools in
our experiment. Our English dictionaries Statistics
are those described in Table 2 (BNC1 , LexNorm-
List 2) and the training set words.

Resources are :-

1. British National Corpus (BNC): We com-
pile a word frequency list from the BNC (As-
ton and Burnard, 1998).

2. Lexical Normalization List (LexNorm-
List): Lexical normalization dataset released
by (Han and Baldwin, 2011) which consists
of 41118 pair of unnormalized and normal-
ized words / phrases.

3. slang words: Dictionary of Internet slang
words was extracted from http://www.
noslang.com.

4. Transliteration pairs: We developed
wordlists for English - Konkani language

1http://www.natcorp.ox.ac.uk/
2We use a lexical normalization dictionary created by Han

et al. (2012)

88

pairs using ILCI3. The wordlists contained
few overlapping words.

source Language Words
BNC 7,60,089
LEXNORM 41,118
Konkani Dictionary4 15,195

Table 2: Statistics of English and Konkani Dictio-
nary

7 Experiments and Results

7.1 Language Identification
While language identification at the document
level is a well-established task (Myers-Scotton,
1982), identifying language in social media posts
has certain challenges associated to it. Spelling
errors, phonetic typing, use of transliterated al-
phabets and abbreviations combined with code-
mixing make this problem interesting. Similar to
(Barman et al., 2014), we performed experiments
treating language identification as a three class
(‘ kn’, ‘ en’, ‘ rest’) classification problem.

For the initial experimentation, the tokenized
corpus of 5088 sentences is randomly shuffled and
the first 80% of dataset included in the training and
the remaining 20% for testing. Since our train-
ing data is entirely labelled at the word-level by
human annotators, we address the word-level lan-
guage identification task in a fully supervised way.
Manual annotation is a laborious process.

We address the problem of Language Identifica-
tion in two different ways:

1. A simple heuristic-based approach which
uses a combination of our dictionaries to clas-
sify the language of a word.

2. Word-level Language Identification using su-
pervised machine learning with SVMs6, Ran-
dom forest and sequence labelling using
CRFs7, employing contextual information.

7.1.1 Dictionary-Based Detection
A simple rule-based method is applied to predict
language of a word <w1 w2 w3 w4....wn>.
A token is considered as (‘en’,‘kn’,‘rest’) class to

3Indian Language Corpora Initiative corpus
6http://scikit-learn.org/stable/
7https://taku910.github.io/crfpp/

Dictionary Accuracy(%)
BNC + Konkani Dictionary 69.05

LexNorm + Konkani Dictionary 68.76
BNC + LexNorm + Konkani Dictionary 69.85

Table 3: Results of dictionary-based detection

mark its language. if any of the following condi-
tions satisfies.

Steps are as follows.

1. Tokenise given input query.

2. Match the word in English dictionary. so;
Wen <w1 w2 w4wn >Set of words which
are found in English dictionary, found words
were tags as en (English word).

3. Remaining words were compared with
Konkani Dictionary8 which is described in
sections 6, Wkn <w2 w3 w6.... wn >, found
words were tags as kn (Konkani word).

4. Set of Words Wrest <w5 >which remains
untag are tag as ‘rest’.

5. take Wen set and compared with Konkani
Dictionary .

6. if we found any word from Wen set in
Konkani Dictionary than we remove that
word from Wen set and tag the word as ‘rest’.
so, we get ambiguous words. Other words re-
maining in set Wen are tagged as en (English
words). By this approach we get particular
Konkani words and English words and am-
biguous words.

Table 3 shows the results of dictionary-based de-
tection. We try different combinations with the
above dictionaries (described in section 5). We
find that using a normalized frequency is help-
ful and that a combination of LexNormList and
Konkani-English Transliteration pairs, BNC is
suited best for our data. Hence, we consider this
as our baseline language identification system

7.1.2 Word-Language Detection using
machine learning classifier

Word level language detection from code-mixed
text can be defined as a classification problem.
SVMs were chosen for the experiment (Joachims,

8(Konkani-English Transliteration pairs) which is de-
scribed in section 5.

89

1998). The reason for choosing SVMs is that it
currently is the best performing machine learning
technique across multiple domains and for many
tasks, including language identification (Baldwin
and Lui, 2010). Another possibility would be
to treat language detection as sequence labelling
tasks (Lafferty et al., 2001); previous work (King
and Abney, 2013) has shown that it provides good
performance for the language identification task as
well. The features used can be broadly grouped as
described below:

1. Capitalization Features: They capture if
letter(s) in a token has been capitalized or
not. The reason for using this feature is
that in several languages, capital Roman let-
ters are used to denote proper nouns which
could correspond to named entities. This fea-
ture is meaningful only for languages which
make case distinction (e.g., Roman, Greek
and Cyrillic scripts).

2. Contextual Features: They constitute the
current and surrounding tokens and the
length of the current token. Code-switching
points are context sensitive and depend on
various structural restrictions.

3. Special Character Features: They capture
the existence of special characters and num-
bers in the token. Tweets contain various en-
tities like hashtags, mentions, links, smileys,
etc., which are signaled by #, and other spe-
cial characters.

4. Lexicon Features: These features indicate
the existence of a token in lexicons. Com-
mon words in a language and named entities
can be curated into finite, manageable lexi-
cons and were therefore used for cases where
such data was available.

5. Character n-gram features: we also used
charagter n-grams for n=1 to 5.

We perform experiments with an different clas-
sifier for different combination of these features.
The features are listed in Table 4. The accura-
cies with respect to different classifier and Fea-
tures are shown in Table 5. All possible combi-
nations are considered during experiments. It can
be seen from the results that character gram fea-
ture provides best results . Whereas for lexical and
Word gram and Contextual features provides com-
parable results.

7.1.2.1 System Accuracy
The approach using CRFs had a greater accuracy,
which validated our hypothesis and also proved
that context is crucial in this process. The results
of this module are shown in Table 5.

7.2 Normalisation

Once the language identification task is complete,
there will be a need to convert the noisy non-
standard tokens (such as English and Konkani
words inconsistently written in many ways using
the Roman script) in the text into standard words.
To fix this, a normalization module that per-
forms language-specific transformations, yielding
the correct spelling for a given word was built. we
had used two approach for normalisation.
1)Konkani Transliterator and Normalizer
2) Noisy Channel Framework.
These are further explained in Section 7.2.1 and
7.2.2

7.2.1 Konkani Transliterator and Normalizer
(Normalizer):

We use CMU Part of Speech tagger 9 on English
words which reported an accuracy of 65.39% ,
it normalizes English words as a primary step.
We used Python-Irtrans 10 developed by IIIT-
Hyderabad for transliteration of Konkani words
from Roman to Devanagari. We ran the konkani
words on transliteration system in order to nor-
malize it. This tool is used to convert roman into
Konkani script i.e Python-Irtrans which reported
an accuracy of 60.09%.

7.2.2 Noisy Channel Framework:
For transliterating the detected Romanized
Konkani words and for noisy English words, we
built A Two Layer Normalizer was built for both
Konkani and English.

1. Compression

2. Normalizer

The message is processed using the following
techniques described in following sections.

1. Compression: In Social Media platform,
while chatting, users most of the time express their
emotions/mood by stressing over a few characters

9http://www.cs.cmu.edu/ark/
10https://github.com/irshadbhat/

indic-trans

90

ID Feature Description Type
Capitalization Features
CAP1 Is first letter capitalized? True/False
CAP2 Is any character capitalized? True/False
CAP3 Are all characters capitalized? True/False
Contextual Features
CON1 Current Token String
CON2 Previous 3 and next 3 tokens String
CON3 Word length String
Special Character Features
CHR0 Is English alphabet word? True/False
CHR1 Contains @ in locations 2-end True/False
CHR2 Contains # in locations 2-end True/False
CHR3 Contains ’ in locations 2-end True/False
CHR4 Contains / in locations 2-end True/False
CHR5 Contains number in locations 2-end True/False
CHR6 Contains punctuation in locations 2-end True/False
CHR7 Starts with @ True/False
CHR8 Starts with # True/False
CHR9 Starts with ’ True/False
CHR10 Starts with / True/False
CHR11 Starts with number True/False
CHR12 Starts with punctuation True/False
CHR13 Token is a number? True/False
CHR14 Token is a punctuation? True/False
CHR15 Token contains a number? True/False
Lexical Features
LEX1 Is present in English dictionary? True/False
LEX2 Is Acronym True/False
LEX3 Is NE? True/False
Character n-gram Features
CNG0 Uni-gram, bigram,trigram vector
Word n-gram Feature
WNG0 Uni-gram, bigram,trigram Probability

Table 4: A description of features used.

in the word. For example, usage of words are
thanksss, sryy, byeeee, wowww, gooooood which
corresponds the person being obliged, needy,
apologetic, emotional, amazed, etc.

As we know, it is unlikely for an English word
to contain the same character consecutively for
three or more times hence, we compress all the
repeated windows of character length greater than
two, to two characters.

Each window now contains two characters of
the same alphabet in cases of repetition. Let n be
the number of windows, obtained from the previ-
ous step. Since average length of English word

(Mayzner and Tresselt, 1965) is approximately
4.9, we apply brute force search over 2n possibil-
ities to select a valid dictionary word. If none of
the combinations form a valid English word, the
compressed form is used for normalization.

Table 6 contains sanitized sample output from
our compression module for further processing.

2. Normalizer: Text Message Normalization
is the process of translating ad-hoc abbreviations,
typographical errors, phonetic substitution and un-
grammatical structures used in text messaging
(SMS and Chatting) to plain English. Use of such
language (often referred as Chatting Language)

91

Features System
SVM RF CRF

CON* 0.86 0.89 0.89
CHR* 0.87 0.86 0.87
CAP* 0.887 0.88 0.877
LEX* 0.89 0.89 0.88
CNG* 0.93 0.92 0.94
WNG* 0.89 0.88 0.89
ALL 0.898 0.90 0.97

Table 5: System word-level accuracies (in %) for
language detection from code-mixed text on the
test datasets.’*” is used to indicate a group of fea-
tures. Refer Table. 4 for the feature Ids.

Input Sentence Output Sentence
I am so gooood I am so good !
tuuu kaashe asa... tu kashe asa...

Table 6: Sample output of Compression module

induces noise which poses additional processing
challenges. While dictionary lookup based meth-
ods 11 are popular for Normalization, they can not
make use of context and domain knowledge. For
example, yr can have multiple translations like
year, your.

We tackle this by building our normalza-
tion system based on the state-of-the-art Phrase
Based Machine Translation System (PB-SMT),
that learns normalization patterns from a large
number of training examples. We use Moses
(Koehn et al., 2007), a statistical machine trans-
lation system that allows training of translation
models.

PB-SMT is a machine translation model; there-
fore, we adapted the PB-SMT model to the
transliteration task by translating characters rather
than words as in character-level translation. For
character alignment, we used GIZA++ implemen-
tation of the IBM word alignment model. To suit
the PB-SMT model to the transliteration task, we
do not use the phrase reordering model. The target
language model is built on the target side of the
parallel data with Kneser-Ney (Kneser and Ney,
1995) smoothing using the IRSTLM tool (Fed-
erico et al., 2008). In a bid to simulate syllable
level transliteration we also built a Normalization
model by breaking the English and Konkani words
to chunks of consecutive characters and trained the

11http://www.lingo2word.com

transliteration system on this chunked data.
Training process requires a Language Model of

the target language and a parallel corpora contain-
ing aligned un-normalized and normalized word
pairs.

For English and Konkani word Normalization,
our language model consists of 50,156 English
un-normalized and normalized words taken from
the web, 15195 Konkani words taken from Indian
Language Corpora Initiative (ILCI) Corpus and
manually transliterated.

Parallel corpora was used which is described in
section 6.

Table 7. presents the obtained results.

7.2.2.1 System Accuracy
The accuracy of this system is shown in Table 7.
The accuracy for the Konkani normaliser is higher
than that for English.

Languages Accuracy (%)
English Normalizer 72.81
Konkani Normalizer 77.21

Table 7: Token level Normalization Accuracy

8 Conclusion and Future Work

We have presented an initial study on auto-
matic language identification and text normalisa-
tion with Indian language code mixing from social
media communication. This is a quite complex
language identification task which has to be car-
ried out at the word level, since each message and
each single sentence can contain text and words
in several languages. The paper has aimed to put
the spotlight on the issues that make code-mixed
text challenging for language processing. we have
focused on the process of creating and annotating
a much needed dataset for code-mixed Konkani-
English sentences in the social media context,
as well as developed language identification and
normalisation systems follow supervised machine
learning and report final accuracies of 97.01%
and 72.81% for English Normalizer , 77.81% for
Konkani Normalizer for our dataset, respectively.

In the future, we intend to continue creating
more annotated code-mixed social media data. We
intend to use this dataset to build tools for code-
mixed data like POS taggers, morph analysers,
chunkers and parsers. In the future we would also
like to evaluate on adding more language classes,

92

particularly for named entities and acronyms in-
fluences the overall accuracy of our system.

References
Guy Aston and Lou Burnard. 1998. The BNC hand-

book: exploring the British National Corpus with
SARA. Capstone.

Timothy Baldwin and Marco Lui. 2010. Language
identification: The long and the short of the matter.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics. As-
sociation for Computational Linguistics, pages 229–
237.

Utsab Barman, Amitava Das, Joachim Wagner, and
Jennifer Foster. 2014. Code mixing: A challenge
for language identification in the language of social
media. EMNLP 2014 13.

Richard Beaufort, Sophie Roekhaut, Louise-Amélie
Cougnon, and Cédrick Fairon. 2010. A hybrid
rule/model-based finite-state framework for normal-
izing sms messages. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, pages 770–779.

Simon Carter, Wouter Weerkamp, and Manos
Tsagkias. 2013. Microblog language identification:
Overcoming the limitations of short, unedited and
idiomatic text. Language Resources and Evaluation
47(1):195–215.

Monojit Choudhury, Kalika Bali, Tirthankar Dasgupta,
and Anupam Basu. 2010. Resource creation for
training and testing of transliteration systems for in-
dian languages. LREC.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological
measurement 20(1):37–46.

Paul Cook and Suzanne Stevenson. 2009. An un-
supervised model for text message normalization.
In Proceedings of the workshop on computational
approaches to linguistic creativity. Association for
Computational Linguistics, pages 71–78.

Anik Dey and Pascale Fung. 2014. A hindi-english
code-switching corpus. In LREC. pages 2410–2413.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. Irstlm: an open source toolkit for han-
dling large scale language models. In Interspeech.
pages 1618–1621.

Spandana Gella, Jatin Sharma, and Kalika Bali. 2013.
Query word labeling and back transliteration for
indian languages: Shared task system description.
FIRE Working Notes 3.

Bo Han and Timothy Baldwin. 2011. Lexical normal-
isation of short text messages: Makn sens a# twit-
ter. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1. Association
for Computational Linguistics, pages 368–378.

Taofik Hidayat. 2012. An analysis of code switch-
ing used by facebookers (a case study in a so-
cial network site). In Student essay for the study
programme-PendidikanBahasaInggris (English Ed-
ucation) at STKIP Siliwangi Bandung.

Thorsten Joachims. 1998. Making large-scale svm
learning practical. Technical report, Technical Re-
port, SFB 475: Komplexitätsreduktion in Multivari-
aten Datenstrukturen, Universität Dortmund.

Ben King and Steven P Abney. 2013. Labeling the lan-
guages of words in mixed-language documents us-
ing weakly supervised methods. In HLT-NAACL.
pages 1110–1119.

Reinhard Kneser and Hermann Ney. 1995. Im-
proved backing-off for m-gram language model-
ing. In Acoustics, Speech, and Signal Processing,
1995. ICASSP-95., 1995 International Conference
on. IEEE, volume 1, pages 181–184.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions. As-
sociation for Computational Linguistics, pages 177–
180.

John Lafferty, Andrew McCallum, Fernando Pereira,
et al. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence
data. In Proceedings of the eighteenth international
conference on machine learning, ICML. volume 1,
pages 282–289.

Mark S Mayzner and Margaret Elizabeth Tresselt.
1965. Tables of single-letter and digram frequency
counts for various word-length and letter-position
combinations. Psychonomic monograph supple-
ments .

Paul McNamee. 2005. Language identification: a
solved problem suitable for undergraduate instruc-
tion. Journal of Computing Sciences in Colleges
20(3):94–101.

Carol Myers-Scotton. 1982. Duelling languages:
Grammatical structure in codeswitching. In Oxford
University Press..

Dong-Phuong Nguyen and A Seza Dogruoz. 2013.
Word level language identification in online multi-
lingual communication. Association for Computa-
tional Linguistics.

93

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. Asso-
ciation for Computational Linguistics.

John M Prager. 1999. Linguini: Language identifica-
tion for multilingual documents. Journal of Man-
agement Information Systems 16(3):71–101.

Anil Kumar Singh and Jagadeesh Gorla. 2007. Iden-
tification of languages and encodings in a multilin-
gual document. In Building and Exploring Web Cor-
pora (WAC3-2007): Proceedings of the 3rd Web as
Corpus Workshop, Incorporating Cleaneval. Presses
univ. de Louvain, volume 4, page 95.

Stephen Tratz, Douglas Briesch, Jamal Laoudi, and
Clare Voss. 2013. Tweet conversation annotation
tool with a focus on an arabic dialect, moroccan dar-
ija. LAW VII & ID 135.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. Pos tagging of
english-hindi code-mixed social media content. In
EMNLP. volume 14, pages 974–979.

Min Wang, Chen Yang, and Chenxi Cheng. 2009. The
contributions of phonology, orthography, and mor-
phology in chinese–english biliteracy acquisition.
Applied Psycholinguistics 30(02):291–314.

Kam-Fai Wong and Yunqing Xia. 2008. Normalization
of chinese chat language. Language Resources and
Evaluation 42(2):219–242.

Zhenzhen Xue, Dawei Yin, and Brian D Davison. 2011.
Normalizing microtext. In Workshops at the Twenty-
Fifth AAAI Conference on Artificial Intelligence.

Hiroshi Yamaguchi and Kumiko Tanaka-Ishii. 2012.
Text segmentation by language using minimum de-
scription length. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1. Association for
Computational Linguistics, pages 969–978.

94

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 95–101

Towards developing a phonetically balanced code-mixed speech
corpus for Hindi-English ASR

Ayushi Pandey
IIIT-Hyderabad

Hyderabad
email@domain

Brij Mohan Lal Srivastava
Microsoft Research
Bangalore, India

t-brsriv@microsoft.com

S V Gangashetty
IIIT-Hyderabad

Hyderabad
svg@iiit.ac.in

Abstract

This paper presents the ongoing pro-
cess in the design of the first phase
of the phonetically balanced code-
mixed corpus of Hindi-English speech
(PBCM-Phase I). The reference cor-
pus is a large code-mixed (LCM) news-
paper corpus selected from the sec-
tions that contain frequent English in-
sertions in a matrix of Hindi sen-
tence. From a phonetically transcribed
corpus, compulsory inclusion of low-
est frequency triphones has been en-
sured, with the assumption that high
frequency phones may automatically
be included. A high correlation of
0.81 with the representative large cor-
pus has been observed. A small scale
speech corpus of 5.6 hours has been col-
lected, by the contribution of 4 volun-
teer native Hindi speakers. The record-
ing has been conducted in a profes-
sional recording studio environment.
As a second contribution, this paper
also presents a baseline recognition sys-
tem with pooled monolingual and code-
mixed speech datasets as training and
testing environments.

1 Introduction

Code-mixing is a frequently encountered phe-
nomenon in day-to-day communication in mul-
tilingual and bilingual communities. The phe-
nomenon is so widespread that is often consid-
ered a different, emerging variety of the lan-
guage. In India, English has been granted the
status of an official language by the constitu-
tion. Additionally, there are complex diglos-
sic patterns existing between most of the re-
gional languages and English, where English is

usually the language of prestige. Indian bilin-
gual speakers therefore, show abundant mix-
ing and switching between their regional lan-
guage and English. Computational modeling
of the phenomenon of code-mixing and code-
switching assumes particular relevance with
the advancement of social media. However,
computational studies for both textual and
speech processing of code-mixing suffer from
a sincere disadvantage: lack of data.

To investigate the problem in a controlled
environment, the paper presents the first
phase of a Phonetically Balanced Code-Mixed
(PBCM-Phase I) read speech corpus.

The design of the paper is as follows: Sec-
tion 2 elaborates the popular methods in the
area of corpus design. Section 3 details the
metric in use for designing the speech cor-
pus. Section 4 details the recording proce-
dure and information about speakers. Section
5 provides a brief introduction to DNN based
acoustic modeling, language modeling and an
adaptive implementation of both in bilingual
speech recognition. Section 6 presents the re-
sults and concludes the paper.

2 Related studies in corpus develo
It is commonly believed that the quality of
the training data for nearly all speech pro-
cessing systems, largely determines the suc-
cess of the systems. Adequate phonemic cov-
erage with minimal redundancy is crucial in
corpus design, to allow for a wide coverage of
common phonetic forms in a variety of their
contexts. A large and usually diverse text
corpus serves as a reference corpus, from
which a set of phonetically rich and/or bal-
anced sentences are selected. Phonetically rich
sentences (Radová and Vopálka, 1999) con-
tain a homogeneous frequency distribution of

95

Table 1: Genre-wise distribution: LCM corpus
Section Number of sentences
Lifestyle 9,495
Sports 11,202
Gadgets and Technology 11,342

all phonemes in the language. In a phoneti-
cally rich corpus, adequate training instances
of almost all phones, or at least one instance
of every phone are compulsorily included. In
a phonetically balanced corpus, the distribu-
tion of phones is modeled to be proportion-
ate to the natural phonemic distribution in
the concerned language. Once the phonetic
transcriptions are made available along with
the speech recordings, the add-on procedure
is a popular method (Falaschi, 1989). From
the reference corpus, a set of sentences are
randomly selected as the seed corpus. There-
after, sentences with frequency scores propor-
tionate to those of the already selected cor-
pus are chosen. Speech databases designed
especially for recognition studies benefit from
a context-sensitive phone; for example a tri-
phone or another subword unit like a sylla-
ble or a diphone. Santen et al (Van Santen
and Buchsbaum, 1997) note that a training
corpus requires to be prepared towards less
frequent phonetic units. To optimize cover-
age of all phonetic units, ASR studies usu-
ally implement a sentence selection approach
with weighted frequencies of triphones, where
the weights are actually the inverse of fre-
quencies. This ensures an inclusion of rare
phones in the corpus, while the high frequency
phones are collected inadvertently. (Van San-
ten and Buchsbaum, 1997). In India, there has
been heavy investment on developing corpora
that are both phonetically rich and/or bal-
anced. But most of these have been designed
for monolingual speech recognition purposes,
and do not cover the scope of code-mixing.
The next section details our approaches in de-
sign and development of PBCM-Phase I, the
first phase of a phonetically balanced code-
mixed speech corpus for an Indian language
pair.

3 Design of the data corpus

The nature of code-mixing has best been seen
reflected in conversational communication, be-
cause the practice of code-mixing is still
frowned upon in formal registers. However,
owing to an increasing readership, selected
sections (like Sports, Technology, Lifestyle)
of newspapers offer enormous coverage of
code-mixing. In addition to a wide and di-
verse coverage, these sections have also intro-
duced a standardization into code-mixed dic-
tion. In this paper, we design a representative
corpus, the Large Code-Mixed (LCM) Cor-
pus as a large and diverse textual database,
scraped from three sections, namely Gad-
gets and Technology, Lifestyle and Sports
from the popular Hindi newspaper DainikB-
haskar (http://epaper.bhaskar.com/). Details
of these sections are given in Table 1. Figure
1 displays the code-mixing distributions in the
respective genres.

Upon preliminary observation, we note that
while the Sports and the Gadgets and the
Technology sections have prominent technical
vocabulary borrowings, this content is not al-
ways limited to lack of parallel vocabulary in
the matrix language.

Example:
पाट्सर् खरीद कर टेक्नी￱शयन से बदलवा सकते हï ।

Translation:
“One could buy parts and get them replaced by
a technician.”

3.1 Selecting sentences based on
triphone frequency

In development of most ASR corpora, fre-
quency of the triphone has been given specific
importance. This is primarily because of the
ability of the triphone to be sensitive to both
the preceding and the succeeding context. To
obtain an optimal selection of sentences, the
corpus needed to be balanced not only in a set
of unique phones, but also the contexts that

96

All Cricket Gadgets Lifestyle
Genre

0

10

20

30

40

50

P
e
rc

e
n
ta

g
e
 (

u
n
iq

u
e
)

Language distribution by Genre

All Cricket Gadgets Lifestyle
Genre

0

10

20

30

40

50

60

70

P
e
rc

e
n
ta

g
e
 (

n
o
n
-u

n
iq

u
e
)

Hindi
English

English+Hindi Suffix
Named Entities

Rest

Figure 1: Stacked graphs displaying the Unique (above) vs Non-unique (below) frequency of
distribution of English embeddings, Named-Entities and Rest contained in the PBCM corpus.

they occurred in.
Word-internal triphones were chosen as op-

posed to word-adjacent triphones, because
word-internal triphone sequence can aid the
identification of language at a word-level.

The design on the optimal text selection was
created using the following steps:

1. As a pre-processing step for creation of
a read-speech corpus, sentences only of
length 5-12 words were selected.

2. Phoneme sequences for unique Roman
words in the corpus were generated using
a grapheme to phoneme (G2P) converter
trained on 7̃000 words using sequence-to-
sequence (Yao and Zweig, 2015) learning
approach implemented in Tensorflow.

3. Phoneme sequences for uniqueDevanagari
words in the corpus were converted to
their corresponding WX notation repre-
sentation. (Bharati et al., 1995)

4. Word-internal triphones were collected
and arranged based on the descending or-
der of their frequency of occurrence in the
corpus.

5. To ensure the coverage of rare phones, all
the sentences containing words that were

composed of the triphones lower in fre-
quency than the threshold, were selected.
The Phonetically Balanced Code-Mixed
(PBCM) corpus of 2,694 sentences was
created based on the low frequency of the
rarest triphones.

3.2 Correlation computation
After the selection process of sentences, we
wanted to ensure that this is truly represen-
tative of the distribution of phones present in
natural language. Unique phones from both
the LCM corpus and the PBCM corpus were
collected, and a Pearson’s correlation was com-
puted between them. The Pearson’s correla-
tion coefficient between the two vectors was
found to be 0.81. A high correlation value
display a proportionate distribution of phones
between the sampled corpus PBCM, and the
reference corpus LCM.

3.3 Text annotations
We are in the process of annotating this
data at the following four levels: 1) language
identity, 2) word-identity, 3) part-of-speech
and 4) word-identity in the phonetic form.
Manual annotation of language identity
on the corresponding text corpus has been
completed for 1,760 sentences. A percentage

97

Table 2: Details of speakers for the PBCM
corpus

Speaker ID Sentences Age
FEMALE-1 675 32
FEMALE-2 673 25
MALE-1 676 28
MALE-2 671 22

distribution of English embeddings across
genres is illustrated in Figure 2.
As can be clearly seen from Panel 1 of Figure
1, the Gadgets and LifeStyle section display
a wider distribution of unique English word
embeddings in their respective content.

4 Recording procedure
After the sentence selection procedure is com-
pleted, the next step is to conduct the actual
recordings. This section presents a detailed
description of volunteer speakers, recording
environment and the equipment setup utilized
for recording. The duration of recorded utter-
ances collected so far is 5.6 hours.

4.1 Speakers description
Speech recordings were collected from 4 vol-
unteer speakers (2 male and 2 female), who
were each a native speaker of Hindi and had
received education in English medium schools.
The age range of these speakers was between
20-35 years. Sentences from the designed
PBCM corpus was equally divided among
the speakers, so that every speaker recorded
around 675 sentences. Exact details of speak-
ers can be found in Table 2.

At this stage, the corpus reflects a balance in
phonetic coverage, but low acoustic variability
in terms of speakers. We are planning to de-
velop this corpus into a large corpus of about
100 speakers, with a more vast collection of
speech utterances.

4.2 Recording environment and
equipment

The recording of the speech utterances of the
PBCM corpus was conducted in a professional
voice recording studio (Deepali Studio, Luc-
know, Uttar Pradesh). The recordings were
administered through the Nuendo speech pro-
cessing software. The equipment consisted

of an integrated SoundCraft Digital-Mixer, a
high fidelity noise free Sennheiser microphone
and two Yamaha studio speaker systems.
The volunteer speaker was instructed to main-
tain a distance 10-12 inches from the micro-
phone. Each speaker conducted recordings in
a set of 20 sentences, after which they were
given a water-break and vocal rest of 2-5 min-
utes. Before each recording session, each vol-
unteer speaker was primed by having the sen-
tences read out aloud to them, in order to min-
imize hesitation while speaking. After every
100 sentences, the speaker was given a vocal
rest for 10-15 minutes.

4.3 Post-processing of audio files
The files recorded through the session were
then post-processed as a final step. A long
sound file of 20 utterances each was manu-
ally split into a one sound file per sentence
format, using Praat. Repetitions and non-
verbal sounds were also manually removed,
and only noise-free sentences were compiled.
For preparing the data for use for speech recog-
nition, we gave each sound file a unique ID,
which contained the speaker information and
the serial number of recording. A silence of 1
second was appended to each sound file, both
before and after the utterance. The sound
files, initially recorded at 44 kHz and 24-bit
resolution, were also downsampled to 16 kHz
and a 16-bit resolution.

5 Baseline Automatic Speech
Recognition

Computational modeling of the phenomenon
of code-mixing assumes particular relevance
with the advancement of social media in multi-
lingual and bilingual communities. In process-
ing of code-mixed speech, several ideas have
been put forward.

5.1 The acoustic modeling component
Acoustic model aims to establish statistical re-
lationship between speech utterances and the
corresponding text.

In general, let O = {x1, ..., xT } be the
acoustic observations and w = {w1, ..., wT } be
the corresponding word sequence. Then the
DNN must learn p(w|O), which is the con-
ditional distribution of words given acoustic

98

observations. DNN acts as a discriminative
classifier which classifies tied-state phoneme
classes (senones) given the acoustic observa-
tions O. The acoustic model decodes speech
utterance and proposes a directed acyclic
graph (lattice) of phonemes with edges as
transition probabilities. The lattice is then
searched for contesting legal hypotheses. In
order to correct the errors made by the DNN
acoustic model, we multiply the probabilities
from the existing knowledge in form of lan-
guage model. This process is called lattice
rescoring. By devising statistical language
models which can mimic the original structure
of language, we can supplement the probabil-
ity of correct hypothesis and boost the accu-
racy of the overall system.

Multilingual and code-mixed ASR have seen
two major trends. The first approach uses a
language identification system implemented at
the front-end, and a monolingual speech rec-
ognizer at the back end. Once the language
has been identified at the word level, the seg-
ments (words) are passed as input to mono-
lingual speech recognizers for phoneme decod-
ing. However, such two-pass approaches re-
turn inferior results, owing to an unpredictable
error-propagation from the language identifier
at the front end, to the speech recognizer at
back end. To circumvent this error, a one-pass
approach is chosen, wherein the language iden-
tification component is completely removed.
Some such efforts have been made by Bhu-
vanagiri (Bhuvanagiri and Kopparapu, 2010)
et al, where they exploit an adaptation of
the existing monolingual (English) training re-
sources for code-mixed Hindi-English speech
recognition. An approximation of the miss-
ing Hindi phonemes is achieved using either a
direct mapping or a combination of existing
English phones. Similar monolingual training
resource extrapolation studies have been con-
ducted by Fung et al, in experimenting with
three sets of phonemic adaptation. (Yuen and
Pascale, 1998). More approaches to merging
phonesets can be seen in an interpolation of
two monolingual speech corpora. (Chan et
al.,). Model adaptation of monolingual cor-
pora for code-mixed speech recognition has
also been augmented with a model reconstruc-
tion with accented speech. (Li et al., 2011)

5.2 Language independent phones
One of the primary stages in the design of
a code-mixed or multilingual speech recogni-
tion system, is the development of a combined
phoneset. A combined phoneset allows for
the recognition system to be prepared for all
phones of the participating languages. If one
of the languages is low in resources, then its
phones are mapped to the closest approxima-
tions of phones in a high-resource language. A
variety of phonemic adaptation methods have
been explored, for example rule-based, manual
(Bhuvanagiri and Kopparapu, 2010), (Yuen
and Pascale, 1998) or clustering. (Li et al.,
2011) For the purpose of this experiment, the
speech utterances that are contained in the
PBCM-Phase I are extracted from a Hindi na-
tional newspaper. The English embeddings
are predominantly in Devanagari. However,
the corpus does have a sizeable collection of
sentences that have word-insertions in Roman
script. To ensure phonetic consistency among
all the transcripts, we use automatic translit-
eration (Bhat et al., 2015) to convert the words
in Roman script into their respective Devana-
gari representation.

This experiment can further be refined
through evaluating correspondence between
the resulted phonetic transcription of the WX
and the actual English phonetic transcription,
and then intervening with a rule-based map-
ping. For this, however, an LID for Devana-
gari would need to be prepared, which is be-
yond the scope of the present study.

5.3 Feature selection and extraction
We propose the usage of the WX nota-
tion (Bharati et al., 1995) for establishing a
grapheme to phoneme representation of the
Devanagari. For the Roman utterances, the
sequence-to-sequence converter has been im-
plemented, and the phonetic representation
belongs in the IPA.

The DNN model is trained over features ob-
tained initially by concatenating ±4 frames
of MFCC followed by followed by Linear Dis-
criminant Analysis (LDA). The features thus
obtained have unit variance. These features
are subjected to Maximum Likelihood Lin-
ear Transform (MLLT). MLLT is a feature-
space transform with the objective function

99

which is defined as the sum of the average per-
frame log-likelihood of the transformed fea-
tures given the model, and the log determinant
of the transform.

In the end, we apply feature-space Maxi-
mum Likelihood Linear Regression (fMLLR),
which is an affine feature transform of the
form x → Ax + b. We finally obtain the 40-
dimensional feature set used for DNN training.

5.4 Training and test corpora
development

The main objective of the latter part of this
study is to be able to utilize and adapt
high-resource monolingual corpora for a low-
resource setting such as code-mixed speech.
In order to achieve such an extrapolation, an
adaptation of phonemes has already been ex-
plained in the previous section. The training
dataset comprises of a combination of mono-
lingual Hindi speech and a small portion of
code-mixed speech.The training dataset com-
prises of monolingual speech corpus containing
speech recordings from 17 speakers, collected
through the Hindi DD-News channel and In-
dic speech database and 3 code-mixed speak-
ers, collected through the PBCM corpus. The
testing dataset comprises of the 3 monolingual
speakers and 1 code-mixed speaker, collected
through the PBCM corpus.

5.5 The language modeling component
Language models are prevalent in ASR stud-
ies for providing word-level probability scores
derived from the sequential structure of sen-
tences. N-gram (trigram, 4-gram etc) lan-
guage models are designed on the assumption
that the probability of a given word p(wt) can
be determined based on the context ht that it
is preceded by.

p(w1:T) =
∏

p(wt|wt−1wt−2..wt−T) = p(wt|ht)

(1)
Several ideas have been put forward in

designing language models for code-mixed
speech. Approaches relying on (Vu et al.,
2012) acoustic modeling alone have been re-
fined and augmented through modifications of
the language model. Grammatical constraints
(equivalence and government constraint) are
implemented in (Li and Fung, 2012), to predict

the correctness or likelihood of a switch in a
sentence. Additionally, to circumvent the lim-
itations of low-resources in data, class-based
language models (Yeh et al., 2010), (Tsai et al.,
2010) are used. Improved language modeling
for code-mixed speech recognition have also
aided in characterising some of the speaker
specific patterns of code-mixing. (Vu et al.,
2013)

6 Results and discussion
Acoustic models were trained according to
Dan’s NNET2 setup (Povey et al., 2014). The
featureset implemented for training has been
described in detail in section 5.3. We con-
ducted two sets of experiments with respect to
evaluating the scalability of the training cor-
pus.

• Expt 1: The speech transcripts that be-
longed in the testing corpus were included
in the language model training. This
setup was designed so as to remove any in-
stance of an out-of-vocabulary word, and
evaluating the performance of an mono-
lingual acoustic model with an adapted
phoneset.

• Expt 2: The speech utterances that had
been covered in the spoken corpus were
excluded from the language model train-
ing. The design of this setup allowed us
to evaluate the ASR based on a monolin-
gual language modeling and monolingual
acoustic modeling.

Expt 2 reveals that the WER obtained
over the mixed (3 monolingual, 1 code-mixed)
test set evolved from 72.34% with respect
to monophone training to 41.63% for Dan’s
NNET2. Removing out-of-vocabulary words
significantly reduces the WER, as the basline
(monophone) results in a far lower error 46.54
%, when compared with Expt 1.

7 Conclusion
We present the initial design and the ongoing
process in the development of a phonetically
balanced speech corpus of Hindi-English non-
conversational speech. Data has been subset-
ted from selected sections of a popular Hindi
newspaper, DainikBhaskar, and a corpus of

100

LM mono tri1 tri2b tri2bmmi tri2bmpe tri3b tri3c sgmm2 nnet
Expt 1 46.54 35.84 37.54 36.44 36.74 15.35 17.86 13.59 10.63
Expt 2 72.34 58.64 59.05 59.32 59.07 45.29 46.72 41.60 41.66

Table 3: Table with word error rate (WER) of different acoustic models implemented with the
two language modeling setups

2,694 sentences have been collected. Sam-
pling from a Large Code-Mixed (LCM) cor-
pus into a Phonetically Balanced Code-Mixed
corpus has been designed through a threshold
frequency of triphones, with the assumption
that high-frequency phones would be accom-
modated inadvertently through the process.
The first phase of the PBCM corpus has suc-
cessfully been recorded. We also present the
development of a baseline automatic speech
recognition system, modeled on adapting the
available high-resource such as the monolin-
gual Hindi speech corpora.

References
Akshar Bharati, Vineet Chaitanya, Rajeev Sangal,

and KV Ramakrishnamacharyulu. 1995. Natu-
ral language processing: a Paninian perspective.
Prentice-Hall of India New Delhi.

Irshad Ahmad Bhat, Vandan Mujadia, Aniruddha
Tammewar, Riyaz Ahmad Bhat, and Manish
Shrivastava. 2015. Iiit-h system submission for
fire2014 shared task on transliterated search. In
Proceedings of the Forum for Information Re-
trieval Evaluation, FIRE ’14, pages 48–53, New
York, NY, USA. ACM.

K Bhuvanagiri and Sunil Kopparapu. 2010. An
approach to mixed language automatic speech
recognition. Oriental COCOSDA, Kathmandu,
Nepal.

Joyce YC Chan, Houwei Cao, PC Ching, and Tan
Lee. Automatic recognition of cantonese-english
code-mixing speech.

Alessandro Falaschi. 1989. An automated pro-
cedure for minimum size phonetically balanced
phrases selection. In Speech Input/Output As-
sessment and Speech Databases.

Ying Li and Pascale Fung. 2012. Code-switch
language model with inversion constraints for
mixed language speech recognition. In COL-
ING, pages 1671–1680.

Ying Li, Pascale Fung, Ping Xu, and Yi Liu. 2011.
Asymmetric acoustic modeling of mixed lan-
guage speech. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International
Conference on, pages 5004–5007. IEEE.

Daniel Povey, Xiaohui Zhang, and Sanjeev Khu-
danpur. 2014. Parallel training of dnns
with natural gradient and parameter averaging.
arXiv preprint arXiv:1410.7455.

Vlasta Radová and Petr Vopálka. 1999. Methods
of sentences selection for read-speech corpus de-
sign. In International Workshop on Text, Speech
and Dialogue, pages 165–170. Springer.

Tsai-Lu Tsai, Chen-Yu Chiang, Hsiu-Min Yu, Lieh-
Shih Lo, Yih-Ru Wang, and Sin-Horng Chen.
2010. A study on hakka and mixed hakka-
mandarin speech recognition. In Chinese Spoken
Language Processing (ISCSLP), 2010 7th Inter-
national Symposium on, pages 199–204. IEEE.

Jan PH Van Santen and Adam L Buchsbaum.
1997. Methods for optimal text selection. In
EuroSpeech.

Ngoc Thang Vu, Dau-Cheng Lyu, Jochen Weiner,
Dominic Telaar, Tim Schlippe, Fabian Blaicher,
Eng-Siong Chng, Tanja Schultz, and Haizhou
Li. 2012. A first speech recognition system
for mandarin-english code-switch conversational
speech. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2012 IEEE International Confer-
ence on, pages 4889–4892. IEEE.

Ngoc Thang Vu, Heike Adel, and Tanja Schultz.
2013. An investigation of code-switching atti-
tude dependent language modeling. In Interna-
tional Conference on Statistical Language and
Speech Processing, pages 297–308. Springer.

Kaisheng Yao and Geoffrey Zweig. 2015.
Sequence-to-sequence neural net models for
grapheme-to-phoneme conversion. arXiv
preprint arXiv:1506.00196.

Ching Feng Yeh, Chao Yu Huang, Liang Che Sun,
and Lin Shan Lee. 2010. An integrated frame-
work for transcribing mandarin-english code-
mixed lectures with improved acoustic and lan-
guage modeling. In Chinese Spoken Language
Processing (ISCSLP), 2010 7th International
Symposium on, pages 214–219. IEEE.

MA Chi Yuen and FUNG Pascale. 1998. Using en-
glish phoneme models for chinese speech recog-
nition. In International Symposium on Chinese
Spoken language processing, pages 80–82. Cite-
seer.

101

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, page 102

Keynote Lecture-2

Grammatical Error Correction: Past, Present, and Future

NG Hwee Tou
National University of Singapore

Grammatical error correction is the task of correcting errors in texts including spelling, grammar,
collocation, and word choice errors. Software that can automatically correct errors in English texts has
far-reaching impact, since it is estimated that more than one billion people worldwide are learning English
as a second language and they will benefit greatly from such software. In this talk, I will give an overview
of past and present research on grammatical error correction, and suggest future research directions.

102

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 103–111

Hybrid Approach for Marathi Named Entity Recognition

Nita Patil
SOCS

N. M. U. Jalgaon (MS)
India

nvpatil@nmu.ac.in

Ajay S. Patil
SOCS

N. M. U. Jalgaon (MS)
India

aspatil@nmu.ac.in

B. V. Pawar
SOCS

N. M. U. Jalgaon (MS)
India

bvpawar@nmu.ac.in

Abstract
This paper describes a named entity
recognition system that combines hid-
den markov model, handcrafted rules,
and gazetteers to recognize named en-
tities in Marathi language. The objec-
tive of the system is to recognize twelve
types of NEs from the Marathi text.
Marathi is morphologically rich and in-
flectional language. The inflections in
NEs are handled by using lemmatiza-
tion. The difficulties of zero and poor
probabilities caused due to the sparse
data are handled using pseudo word re-
placement and smoothing techniques.
Viterbi algorithm is used for decoding
and word disambiguation. The perfor-
mance of the system is improved using
gazetteers and grammar rules.

Keywords: Named Entity Recognition,
Marathi, HMM, Gazetteers, Rules

1 Introduction
Named Entity Recognition (NER) is informa-
tion extraction task which can play significant
role in many different natural language pro-
cessing tasks such as information retrieval, ma-
chine translation, question answering systems
etc. Predefined entities in text such as peo-
ple, organizations, locations, events, expres-
sions such as amount, percentage, numbers,
date, time are named entities (NEs). Iden-
tification of NEs from unstructured text and
their classification into suitable NE class is
known as NER. This paper describes a hy-
brid model based on Hidden Markov Model
(HMM), handcrafted rules and gazetteers to
recognize named entities in Marathi. The dif-
ficulties of unseen probabilities are handled

by pseudo word replacement and poor prob-
abilities caused due to sparse data are han-
dled using smoothing techniques. Viterbi alo-
girithm is used for decoding and word disam-
biguation. The performance of the system is
improved using gazetteers. Linguistic rules
are used to generate patterns that can rec-
ognize dates, time and numerical expressions.
Following MUC specifications twelve types of
NE are considered in recognition problem they
are Person, Organization, Location, Miscella-
neous, Amount, Number, Date, Time, Year,
Month, Day and Measure. Patil (2017) re-
ported the NER system based on trigram
HMM model trained using pre-processed data
for the Marathi language. The system uses
Viterbi decoding to generate the optimal tag
sequence for the test data. The system im-
plemented using lemma model with trigram
HMM has performed well in NE recognition,
but it has further scope for improvement. Nu-
merical NEs generally follow some fixed pat-
terns, hence linguistic knowledge based recog-
nition could be the better choice than prob-
ability based recognition. The study aims
to improve NE recognition rate by combining
effectiveness of statistical model with good-
ness of rule and gazetteer based technique
for Marathi NER. The paper is organized in
five main sections. Introduction and litera-
ture survey is discussed in first and second sec-
tion. Supervised learning method for Marathi
NER that uses HMM is described in third sec-
tion. Fourth section briefs about rules and
gazetteer based Marathi named entity recog-
nition and the fifth section of the paper de-
scribes proposed hybrid model for develop-
ment of Marathi NER system.

103

2 Related Work
Research in named entity recognition for In-
dian languages is initiated by (Bandyopad-
hyay (2007), Varma (2008), Murthy (2008),
Nusrat (2008), Bhattacharya (2009)). Many
researchers have proposed rule based NER
systems (Krupka (1998), William (1998),
Awaghad (2009), Kashif (2010), Sasidhar
(2011)) that give accurate results and achieve
high performance. But the downside of this
approach is lack of robustness and portabil-
ity. Also, high maintenance is needed. Re-
cently NER problems are solved by most of
the researchers using statistical machine learn-
ing approach which uses mathematical and
statistical models to train and test the data.
Reasonable performance is reported by us-
ing this approach by the researchers (Daniel
(1999), John (2001), GuoDong (2002), Asif
(2008)). One more thought towards solv-
ing NER problem is combining the good-
ness of both approaches to achieve great per-
formance and minimize the drawback is us-
ing Hybrid approach (Raymond (2006), Bra-
nimir (2008), Alireza (2008), Sitanath (2009),
Xueqing (2009). Hybrid approach combines
hand crafted rules with machine learning tech-
niques. The time-consuming work like cre-
ation of resources can be done using machine
learning and the other important task like pre-
processing and post-processing can be done us-
ing hand crafted rules.

3 Machine Learning for NE
Recognition

3.1 Using Hidden Markov Models
Hidden markov models relies on three param-
eters that are a matrix A of tag transition
probabilities, a matrix B of emission or obser-
vation probabilities and a matrix π in which
probability of the tag to occur in the initial
state are recorded. Trigram HMM is defined
as (K, V, λ), where K = {s1, s2,….., sn} is a fi-
nite set of possible states, V = {x1, x2,….., xn}
is a finite set of possible observations and
λ = (π, A, B), where, π = {πi} : Set of ini-
tial state probabilities and πi : Initial proba-
bility that system starts at state i, A = {aij}
: Set of state transition probabilities and aij :
Probability of going to state j from state i,
B = {bi{xk}}: Set of emission probabilities

and bi{xk}: Probability of generating symbol
xk at state i. Maximum likelihood estimates
are used to estimate parameters of λ model
as, aijk =

C(i, j, k)

C(i, j)
and bi{xk} =

C(i ; xk)

C(i)
.

The start of the sentence is marked by ∗∗ and
end of the sentence is marked by STOP tag.
The probability of state sequence s1, s2…..sn+1

for given x1, x2…..xn observation sequence for
NE tagging can be computed as,

P (x1x2…..xn|s1s2…..sn+1) ∼=
n+1∏

i=1

q(si|si−2, si−1)

×
n∏

i=1

e(xi|si)

Where q and e are parameters for max-
imum likelihood estimates. If we have
n = 6, x1, x2,, x6 equal to the sentence
टÜÜयात १० हजार ǽपये अनुदान., and s1, s2, ..., s7

equal to the tag sequence O B-AMT I-AMT
E-AMT O O STOP, then Bigram counts
(MatBC) for probable tag sequence O B-
AMT I-AMT E-AMT O O STOP for the
sentence टÜÜयात १० हजार ǽपये अनुदान. is,

MatBC =




* B-AMT I-AMT E-AMT O STOP

* 26462 44 0 0 19544 0

B-AMT 0 0 937 491 0 0

I-AMT 0 0 768 936 0 0

E-AMT 0 24 0 0 1335 1

O 0 1227 0 0 265391 26305

STOP 0 0 0 0 0 0




Unigram counts (MatUC) for probable
tag sequence O B-AMT I-AMT E-AMT O O
STOP is

MatUC =
(* B-AMT I-AMT E-AMT O STOP

0 1428 1705 1427 323621 0
)

Bigram probabilities (MatBP) for proba-
ble tag sequence O B-AMT I-AMT E-AMT
O O STOP is,

104

MatBP =




* B-AMT I-AMT E-AMT O STOP

* 0 0 0 0 0 0

B-AMT 0 0 0.656 0.344 0 0

I-AMT 0 0 0.450 0.549 0 0

E-AMT 0 0.017 0 0 0.936 0.001

O 0 0.004 0 0 0.820 0.081

STOP 0 0 0 0 0 0




The q and e parameter estimations for
above sentence are




q(O|*) =
C(*,O)
C(*) = 0.73857

q(B-AMT|O) =
C(O,B-AMT)

C(O) = 0.00379

q(I-AMT|B-AMT) =
C(B-AMT,I-AMT)

C(B-AMT) = 0.656162

q(E-AMT|I-AMT) =
C(I-AMT,E-AMT)

C(I-AMT) = 0.548974

q(O|E-AMT) =
C(E-AMT,O)
C(E-AMT) = 0.93553

q(O|O) =
C(O,O)
C(O) = 0.82007

q(O|STOP) =
C(O,STOP)

C(O) = 0.08128

e(टÜÜयात|O) =
C(O ; टÜÜयात)

C(O) = 0.000108

e(१०|B-AMT) =
C(B − AMT ; १०)

C(B-AMT) = 0.006303

e(हजार|I-AMT) =
C(I − AMT ; हजार)

C(I-AMT) = 0.226979

e(ǽपये|E-AMT) =
C(E − AMT ; ǽपये)

C(E-AMT) = 0.280308

e(अनुदान|O) =
C(O ; अनुदान)

C(O) = 0.000121

e(.|O) =
C(O ; .)

C(O) = 0.079025




Bigram probability for an optimal tag se-
quence O B-AMT I-AMT E-AMT O O STOP
for the sentence टÜÜयात १० हजार ǽपये अनुदान.

is,

P (x1...x6, s1...s7) =

q(O|∗)

×q(B − AMT |O)

×q(I − AMT |B − AMT)

×q(E − AMT |I − AMT)

×q(O|E − AMT)

×q(O|O)

×q(O|STOP)

×e(टÜÜयात|O)

×e(१०|B − AMT)

×e(हजार|I − AMT)

×e(ǽपये|E − AMT)

×e(अनुदान|O)

×e(.|O)

= 2.59683×10-17

The probability of optimal tag sequence for a
given word sequence is illustrated in above ex-
ample. Similar probabilities are computed for
all possible tag sequences for a given sentence
using MLE estimation. Among all such pos-
sible tag sequences for a given sentence, the
optimal path of tag sequence is to be selected.
The tag sequence with highest probability is
selected. This decoding is done by Viterbi al-
gorithm(section 3.3). The trellis diagram for
Viterbi decoding for a sample sentence टÜÜयात
१० हजार ǽपये अनुदान., is shown in figure 1.

3.1.1 Preprocessing Data
The lemmatization based technique (Patil
(2017) is implemented in which inflected word
forms are replaced by specialized tokens. On-
tologies for number names in words, time,
length, weight, electricity, temperature, area,
volume and units of currency has been devel-
oped. The Marathi text is preprocessed using
lemmatization based technique to deal with
the inflections in named entities.

3.1.2 Minimizing Comparisons
Twelve different types of NEs using 40 tags
need to be recognized by the NE recognizer.
General trigram HMM assigns every tag to
each word, computes bigram, trigram and un-
igram probabilities and assigns most probable

105

Figure 1: NE Tag Decoding

tag to the word based on maximum proba-
bility. We have taken two sentences to find
number of trigram and emission probability
computations. If 40 is the number of tags
in tag set, then 40 tags are assigned to first
word in sentence, 1600 bigram combinations
are assigned to first and second word in sen-
tence and 64, 000 trigram combinations are as-
signed to first, second and third word. Thus,
64, 000 trigram combinations are assigned to
remaining words in sentence. Two * symbols
are added to first word in sentence to make tri-
gram. Trigram probability (TP) is the ratio of
trigram count (TC) to bigram count (BC) i.e.
TP = TC/BC . Combination BC that is not
seen in training becomes zero, zero value at
denominator results in infinite trigram prob-
ability. The difficulty introduced because of
unseen BC is solved by using two solutions.
First solution is return value 1 for unseen BC

which can temporary solve the problem. Sec-
ond solution is find out all the bigram com-
binations which are never seen in training as
well as not expected during testing. All such
combinations are called invalid bigram com-
binations. There are approximately 1089 bi-
gram tag combinations that are never seen in
training and not expected in testing some of
them are shown in table 1. For all combina-
tions, which are invalid computation of TP is
skipped so that load of algorithm execution

can be released to some extent as well wrong
trigram state assignment to observations can
be controlled. Comparison between first and
second solution is shown in table 2.

CurTag NextTag CurTag NextTag
B-LOC B-TIME B-LOC I-DATE
B-LOC B-AMT B-LOC I-MEAS
B-LOC B-DATE B-LOC I-MISC
B-LOC B-LOC B-LOC I-NUM
B-LOC B-MEAS B-LOC I-ORG
B-LOC B-MISC B-LOC I-PER
B-LOC B-NUM B-LOC MONTH
B-LOC B-ORG B-LOC O
B-LOC B-PER B-LOC S-TIME
B-LOC E-TIME B-LOC S-AMT
B-LOC E-AMT B-LOC S-DATE
B-LOC E-DATE B-LOC S-LOC
B-LOC E-MEAS B-LOC S-MEAS
B-LOC E-MISC B-LOC S-MISC
B-LOC E-NUM B-LOC S-NUM
B-LOC E-ORG B-LOC S-ORG
B-LOC E-PER B-LOC S-PER
B-LOC I-TIME B-LOC WEEKDAY
B-LOC I-AMT B-LOC YEAR

Table 1: Part of Unseen Bigram Tag Combi-
nations

TP Computations Solution 1 Solution 2

Trigram comparisons 142596 36581
Non zero TP s 3959 3959
Zero TP s 138637 32622

Table 2: Comparison between Tp Computa-
tions for Two Solutions

106

3.2 Viterbi Decoding
Viterbi algorithm is used to predict most
likely tag sequence for an input sequence.
The algorithm finds most probable state se-
quence s1, s2,….., sn for a observation sentence
x1, x2,….., xn. The problem of maximizing
P (s1, s2...sn|x1, x2.....xn) is addressed using
argmaxs1…..snP (s1s2…..sn|∗, x1x2…..xn, STOP).

3.3 Handling Unseen words
Unseen words are absent in training, therefore
their prediction probability becomes zero. If
frequency of observation in test set is less than
or equal to 5, then that observation is treated
as rare word. Non frequent words in test set
are replaced by < RARE > token. Katz back-
off smoothing is used to estimate the count of
words that are never seen in training.

4 Linguistics for NE Recognition

Linguistic knowledge to recognize Marathi
NEs is represented using indicator word lists,
gazetteers, and grammar rules. This subsec-
tion provides brief information about the lin-
guistic resources developed for detection of
NEs from newspaper articles.

4.1 Indicator Word Lists
The indicators often surrounding the NEs can
act as trigger words in identification of NEs
in their context. Such words play significant
role in designing heuristics to indicate NEs
within the text. Certain words exist in text
that are not indicators but are ambiguous NEs
and must be treated separately. The word lists
for indicators such as title person, awards, de-
gree, person name suffixes, suffixes to person
first name, suffixes to person last name, colli-
sion of proper and common noun, collision of
proper, common noun and verbs, ambiguous
last names, Marathi abbreviations, English in
Devanagari abbreviations, location indicators,
location suffixes etc. were developed to assists
NE recognition by rule based NER algorithm.

4.2 Using Gazetteers
Gazetteer for first names, last names, orga-
nizations names, miscellaneous names, days
of the week, month names (English and
Marathi), single word location, organization
and miscellaneous etc. were created. The

word form(s) which is (are) untagged if found
in some gazette(s), then the appropriate tag(s)
is (are) assigned to the word form(s) based on
the gazette(s) in which it found.

4.3 Using Grammatical Rules
The grammatical rules are a set of grammati-
cal patterns designed to derive NEs based on
lemmatization. Grammatical patterns were
indicated using regular expressions. Several
rules have been developed, which are used
to extract person, location, amount, measure,
date, time, and number entities.

5 Experimental Work
5.1 Dataset Preparation
FIRE-2010 corpus is used to develop NE an-
notated corpus by manually tagging 12 types
of NEs. 27,177 sentences of Marathi text have
been annotated using IOBES scheme. Train-
ing data developed for Marathi NER consists
of 4,01,295 word forms that comprise of 12,303
person names, 7,440 organization, 10,015 loca-
tion, 3,242 miscellaneous, 7,093 number, 1,500
amount, 2,967 measure, 1,549 date, 369 time,
197 month, 456 weekdays, and 395 year named
entities. The rich morphology of the Marathi
language allows adding suffixes and prefixes
to a morpheme to add semantic to a word and
to create meaningful context. It is observed
during corpus annotation that almost all NE
instances are present in inflected form. Al-
though the dataset is large enough, frequency
count of word is found to be lower since inflec-
tions result in same word appearing in differ-
ent forms. This further results in poor prob-
abilities and sparse data problem in MLE es-
timates. Lemmatization based preprocessing
deals with such inflections and is used in the
preprocessing of training and testing datasets.

5.1.1 Held Out Test Dataset
Preparation

Two sets of training and testing datasets is cre-
ated by dividing the NE annotated corpus pre-
processed using lemmatization in 80:20 and
90:10 percent proportions. The actual num-
ber of sentences in the corpus are computed,
20% of the total sentences in the corpus were
randomly selected and removed from the cor-
pus. The set of randomly selected sentences

107

NE Class NE Annotated Data Training Dataset1 Held-out Dataset1 Training Dataset2 Held-out Dataset2
Person 12,303 11,998 0305 12,285 018
Organization 07,440 07,236 0204 07,421 019
Location 10,015 09,723 0292 09,983 032
Miscellaneous 03,242 03,170 0072 03,231 011
Number 07,093 06,893 0200 07,081 012
Amount 01,500 01,463 0037 01,494 006
Measure 02,967 02,887 0080 02,958 009
Date 01,549 01,515 0034 01,541 008
Time 00369 00360 0009 00363 006
Month 00197 00193 0004 00190 007
Weekday 00456 00441 0015 00455 001
Year 00395 00384 0011 00389 006
Total NEs 47,526 46,263 1,263 47,391 135
#Sentences 27,177 26,462 0715 27,127 050

Table 3: Held Out Training and Testing Dataset Details

is termed as Held-out dataset1. The remain-
ing sentences (80%) in the corpus (training
dataset1) were used to train the NER sys-
tem. Similarly, 10% of the total sentences in
the corpus were randomly selected, removed
and stored in Held-out dataset2. The remain-
ing sentences (90%) in the corpus (training
dataset2) were used to train the NER system.
The total number of NE instances found in the
training dataset1, training dataset2, held-out
dataset1 and held-out dataset2 are shown in
table 3.

NE Class Train1 Unseen1 Unseen2
Person 11,998 33 08
Organization 07,236 15 16
Location 09,723 17 22
Miscellaneous 03,170 16 02
Number 06,893 10 16
Amount 01,463 05 01
Measure 02,887 02 06
Date 01,515 03 03
Time 00,360 01 01
Month 00,193 02 01
Weekday 00,441 01 01
Year 00,384 04 04
Total NEs 46,263 109 81
Sentences 26,462 33 24

Table 4: Unseen Test Dataset Details

5.1.2 Unseen Test Dataset
Preparation

Unseen dataset1 is a dataset composed of
news items taken from online eSakal newspa-
per in October 2016. Unseen dataset2 is a

dataset composed of news items taken from
online eSakal newspaper in February 2017.
Both the unseen datasets were tokenized and
preprocessed using lemmatization. The total
number of NE instances found in the unseen
dataset1 and unseen dataset2 is shown in ta-
ble 4. The NE annotated corpus pre-processed
using lemmatization consisting of 27,177 sen-
tences mentioned in the dataset preparation
section is used to train the NER system.

5.2 NER System Architecture

The proposed NER system applies statistical
algorithm i.e. trigram HMM using lemmati-
zation algorithm to test data. This algorithm
recognizes Marathi NEs satisfactorily. It also
deals with unknown words and performs word
disambiguation to some extent. There is pos-
sibility that some NEs might be untouched
by the system. Therefore, rule and gazetteer
based NER algorithm is cascaded to the NER
system. The rule based algorithms do not
modify the recognition carried by statistical al-
gorithm, rather it tags only the untagged NEs
in the test data. The NEs which are not con-
tained in any gazetteer are termed as unseen
NEs. The problem of unseen NEs is solved
by statistical algorithm using pseudo word re-
placement. Therefore, continuous expansion
of gazetteers is not required. Expected per-
formance of the Marathi NE recognition is
achieved using combining the statistical algo-
rithm with the rule based algorithm. The ar-
chitecture of NER system for the Marathi lan-
guage that combines statistical named entity
recognition, gazetteers and grammar rules is

108

Figure 2: Marathi NER System

shown in figure 2.

5.3 Evaluation of Hybrid NER System
The performance of the Marathi NER based
on hybrid approach is evaluated using four
varying size datasets containing varying num-
ber of NEs. Out of them two datasets were
held out and remaining two datasets were un-
known datasets.
The system is trained on dataset(s) prepro-
cessed using lemmatization. The performance
of the system using held out datasets is shown
in table 5 and 6. The overall NE identification
accuracy reported by the system for held out
dataset1 and 2 is 93.35% and 98.14% respec-
tively. The average NE classification accuracy
reported is 95.24% and 97.79% respectively.

The overall NE identification accuracy re-
ported by the system for unseen dataset1 and
2 is 81.37% and 83.33% respectively which is
relatively satisfactory. The average NE classi-
fication accuracy reported for unseen dataset1
and 2 is 83.09% and 84.23% respectively. The
NE recognition accuracy for organization NE
is relatively less result in unsatisfactory av-
erage NE classification accuracy for unseen
dataset2. Numeric NEs in this dataset were
accurately recognized than the enamex type of
NEs by the system. The performance of the
system using unseen datasets is shown in table
7 and 8 respectively. Overall NE identification
accuracy and average NE classification accu-
racy is shown in graph 3 and 4 respectively.

NE Class Precision Recall F1-Score
NEI 92.79 93.92 93.35
Person 84.05 86.35 85.18
Organization 95.02 98.96 96.95
Location 97.26 97.26 97.26
Miscellaneous 95.83 95.83 95.83
Number 96.43 90.43 93.33
Amount 80.00 100.0 88.89
Measure 100.0 100.0 100.0
Date 93.67 97.37 95.48
Time 81.82 100.0 90.00
Month 100.0 100.0 100.0
Weekday 100.0 100.0 100.0
Year 100.0 100.0 100.0
NEC 93.67 97.18 95.24

Table 5: NER System Performance on Held-
out Dataset1

NE Class Precision Recall F1-Score
NEI 98.51 97.78 98.14
Person 94.74 100.0 97.30
Organization 100.0 100.0 100.0
Location 100.0 96.88 98.41
Miscellaneous 100.0 100.0 100.0
Number 92.31 100.0 96.00
Amount 100.0 100.0 100.0
Measure 100.0 100.0 100.0
Date 100.0 100.0 100.0
Time 100.0 83.33 90.91
Month 100.0 100.0 100.0
Weekday 100.0 100.0 100.0
Year 100.0 83.33 90.91
NEC 98.92 96.96 97.79

Table 6: NER System Performance on Held-
out Dataset2

Figure 3: Overall NE Identification

109

NE Class Precision Recall F1-Score
NEI 86.46 76.85 81.37
Person 78.57 66.67 72.13
Organization 90.91 66.67 76.93
Location 100.0 94.12 96.97
Miscellaneous 100.0 87.50 93.33
Number 69.23 90.00 78.26
Amount 66.67 80.00 72.73
Measure 100.0 50.00 66.67
Date 100.0 100.0 100.0
Time 100.0 100.0 100.0
Month 100.0 100.0 100.0
Weekday 100.0 100.0 100.0
Year 100.0 25.00 40.00
NEC 92.12 80.00 83.09

Table 7: NER System Performance on Unseen
Dataset1

NE Class Precision Recall F1-Score
NEI 92.31 75.95 83.33
Person 83.33 62.50 71.43
Organization 87.50 43.75 58.33
Location 85.00 77.27 80.95
Miscellaneous 100.0 0 0
Number 100.0 100.0 100.0
Amount 100.0 100.0 100.0
Measure 100.0 100.0 100.0
Date 100.0 100.0 100.0
Time 100.0 100.0 100.0
Month 100.0 100.0 100.0
Weekday 100.0 100.0 100.0
Year 100.0 100.0 100.0
NEC 96.32 81.96 84.23

Table 8: NER System Performance on Unseen
Dataset2

Figure 4: Overall NE Classification

The cumulative performance of Marathi
NER system based on Hybrid approach for
held out and unseen test datasets is shown in
table 9. NE identification and classification re-
ported by this system is 90% approximately,
which is satisfactory for Marathi language.

Test Datasets NEI NEC
Held-Out Dataset1 93.35 95.24
Held-Out Dataset2 98.14 97.79
Unseen Dataset1 81.37 83.09
Unseen Dataset2 83.33 84.23
Average 89.05 90.09

Table 9: Average Performance of NER

6 Conclusion

A NER system for Marathi language is de-
scribed that applies hidden markov model,
language specific rules and gazetteers to the
task of named entity recognition (NER) in
Marathi language. Starting with named en-
tity (NE) annotated corpora and lemmatiza-
tion first a baseline NER system was imple-
mented. Then some language specific rules are
added to the system to recognize some specific
NE classes. Also, some gazetteers and context
patterns are added to the system to increase
the performance. After preparing the one-level
NER system, a set of rules are applied to iden-
tify the nested entities. The system can rec-
ognize 12 classes of NEs with 89.05% accuracy
in average NE identification and 90.09% accu-
racy in average NE classification for held out
and unseen test datasets in Marathi.

Acknowledgement

This research work is supported by grants
under Rajiv Gandhi Science and Technology
Commission, Govt. of Maharashtra, India.

References
Asif Ekbal and Sivaji Bandyopadhyay. 2007. A

Hidden Markov Model Based Named Entity
Recognition System: Bengali and Hindi as Case
Studies. Springer International Conference on
Pattern Recognition and Machine Intelligence
(PReMI 2007) Heidelberg, LNCS, 4815:545–552.

110

Anup Patel, Ganesh Ramakrishnan and Pushpak
Bhattacharya. 2009 Incorporating Linguistic Ex-
pertise using ILP for Named Entity Recognition
in Data Hungry Indian Languages. In Proceed-
ings of the 19th International Conference on In-
ductive Logic Programming (ILP’09), Leuven,
Belgium,178–185.

Sudha Morwal, and Nusrat Jahan. 2013. Named
entity recognition using hidden markov model
(hmm): An experimental result on Hindi, urdu
and marathi languages. International Journal of
Advanced Research in Computer Science and
Software Engineering (IJARCSSE),3(4):671–
675.

Praneeth Shishtla, Karthik Gali, Prasad Pingali,
and Vasudeva Varma. 2008. Experiments in Tel-
ugu NER: A Conditional Random Field Ap-
proach. In Proceedings of the Workshop on
NER for South and South East Asian languages
(IJCNLP-08), Hyderabad, India,105–110.

P. Srikanth and Kavi Narayana Murthy. 2008.
Named Entity Recognition for Telugu. In Pro-
ceedings of the Workshop on Named Entity
Recognition for South and South East Asian
Languages, Third International Joint Confer-
ence on Natural Langauge Processing (IJCNLP-
08), Hyderabad, India, 41-50.

Krupka, G.R., and Hausman, K. 1998. IsoQuest
Inc: Description of the NetOwl Text Extrac-
tion System as used for MUC-7. In Proceedings
of Seventh Message Understanding Conference
(MUC-7), Fairfax, Virgina.

William J Black, Fabio Rinaldi and David Mowatt.
1998. Facile: Description Of The NE System
Used For Muc-7. In Proceedings of Seventh Mes-
sage Understanding Conference (MUC-7), Fair-
fax, Virgina.

Awaghad Ashish Krishnarao, Himanshu Gahlot,
Amit Srinet and D. S. Kushwaha. 2009. A Com-
parative Study of Named Entity Recognition
for Hindi using Sequential Learning Algorithms.
International Advance Computing Conference
(IACC 2009), Patiala, India:1163-1168.

Kashif Riaz. 2010. Rule-based Named Entity Recog-
nition in Urdu. In Proceedings of the 2010
Named Entities Workshop, ACL 2010, Uppsala,
Sweden:126–135.

B. Sasidhar, P.M. Yohan, A. Vinaya Babu, A. Go-
vardhan. 2011. Named Entity Recognition in Tel-
ugu Language using Language Dependent Fea-
tures and Rule based Approach. International
Journal of Computer Applications, 22(8):30-34.

Daniel M. Bikel, Richard L. Schwartz, and Ralph
M. Weischedel. 1999. An Algorithm that Learns
What’s in a Name. Machine Learning, 34(1):
211-231.

John Lafferty, Andrew McCallum, and Fernando
C.N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Label-
ing Sequence Data In Proceedings of the 18th
International Conference on Machine Learning
2001 (ICML 2001):282-289.

GuoDong Zhou Jian Su. 2002 Named Entity Recog-
nition using an HMM-based Chunk Tagger. In
Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics
(ACL), Philadelphia, Pennsylvania:473-480.

Asif Ekbal and Sivaji Bandyopadhyay. 2008. Ben-
gali Named Entity Recognition Using Support
Vector Machine. In Proceedings of the Work-
shop on Named Entity Recognition for South
and South East Asian Languages, Third Inter-
national Joint Conference on Natural Langauge
Processing (IJCNLP-08), Hyderabad, India: 51-
58.

Raymond Chiong and Wang Wei. 2006. Named En-
tity Recognition Using Hybrid Machine Learn-
ing Approach. 5th IEEE International Confer-
ence Cognitive Informatics, (ICCI-2006), Vol-
ume 1:578-583.

Branimir T. Todorovic, Svetozar R. Rancic, Ivica
M. Markovic, Edin H. Mulalic and Velimir M.
Ilic. 2008. Named Entity Recognition and Clas-
sification Using Context Hidden Markov Model.
9th Symposium on Neural Network Applications
in Electrical Engineering, NEUREL 2008, Bel-
grade, Serbia :43-46.

Alireza Mansouri, Lilly Suriani Affendey, and Ali
Mamat. 2008. Name Entity Recognition Ap-
proach. International Journal of Computer Sci-
ence and Network Security, 8(2):320-325.

Sitanath Biswas, S. Mohanty, S.P. Mishra. 2009.
A Hybrid Oriya Named Entity Recognition
System: Integrating HMM with MaxEnt. In
Proceedings of 2nd International Conference
Emerging Trends in Engineering and Technol-
ogy (ICETET 2009), Nagpur:639-643.

Xueqing Zhang, Zhen Liu, Huizhong Qiu, Yan Fu.
2009. A Hybrid Approach for Chinese Named
Entity Recognition in Music Domain. In Pro-
ceedings of Eighth IEEE International Confer-
ence on Dependable, Autonomic and Secure
Computing , Chengdu, China:677-681.

Nita Patil, Ajay Patil and B. V. Pawar. 2017.
HMM based Named Entity Recognition for in-
flectional language. IEEE International Confer-
ence on Computer, Communications, and Elec-
tronics (COMPTELIX 2017):565-572.

111

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 112–121

Sentiment Analysis: An Empirical Comparative Study of Various
Machine Learning Approaches

Swapnil Jain, Shrikant Malviya, Rohit Mishra, Uma Shanker Tiwary
Department of Information Technology

Indian Institute of Information Technology Allahabad
Allahabad-211012 (Uttar Pradesh)

{j.swapnil2050,shrikant.iet6153,rohit129iiita,ustiwary}@gmail.com

Abstract

The aim of this paper is to experiment with
different machine learning approaches to
predict/classify the sentiment on various
available sentiment corpuses named as
Subjectivity v1.0 corpus, IMDB movie re-
view corpus, Rotten Tomatoes (RT) Movie
Reviews corpus, Twitter sentiment dataset.
Variants of Naive Bayes (NB) and Sup-
port Vector Machines (SVM) have been
often used for text categorization as base-
line. In this paper, we have tried to show
that how embodying bigram and trigram
features with Logistic Regression (LR),
Mutinomial Naive Bayes (MNB) and Sup-
port Vector Machine (SVM) show signif-
icant improvent in the sentiment anlay-
sis. Another observation we obtained is
that LR outperforms the MNB and SVM
in both large as well as short (snippets)
sentiment text when sentiment classes are
limited to two/three. Furthermore, when
the sentiment analysis task turn into a
kind of multi-class classifiction instead
of binary on large corpora, deep learn-
ing become dominant. We obtained test-
ing accuracy of 96.6% and training ac-
curacy of 98.8% on IMDB corpus by
LR with unigram+bigram+trigram feature
variant. Similarly, for Subjectivity v1.0
and twitter corpus, the same model re-
turns better accuracy. But on the multi-
class RT movie reviews corpus, Deep
learning based proposed architecture-3 of
type Extended-Convolution Neural Net-
work (E-CNN) outperforms others.

1 Introduction

Recently, the field of Opinion Mining and Sen-
timent Analysis has enticed many researchers

around the globe due to its capability of deliver-
ing valuable informative applications. People’s
opinion and reviews can play a crucial role in
making decision’s and choosing among multiple
options when those choices are related on valu-
able resources for example expenditure of time
and money to buy products as well as services.
These information mostly sourced from social
web through several forums, blogs and social net-
working websites. However, Due to its heteroge-
neous and unstructured nature, this information is
not directly machine processable. Thus, it set the
reason for the emergence of Opinion Mining (OM)
and Sentiment Analysis (SA) as a prominent area
of research. Both the keywords are commonly
used interchangeably to denote the same meaning.
However, some researchers believe, both aim to
solve two slightly different problems. According
to (Tsytsarau and Palpanas, 2012), OM determine
whether a piece of text contains opinion or not, a
problem that considered as subjectivity analysis.
On the other hand, SA’s task is to measure the po-
larity of text i.e. positive or negative.

Polarity classification is known to be very basic
task of OM and SA. Polarity classification as the
name signifies, classify a piece of text related to
opinion on a particular issue into two sentimental
opposite class. Moreover, it also helps in identify-
ing pros and cons expressions of customer reviews
which make the product evaluation and customer
interest assessment more credible.

In the present scenario, sentiment analysis and
opinion mining depends on the vector extraction
of a piece of text in order to represent it’s most
salient and important features. These features rep-
resenting a specific patterns-set help in determin-
ing the proper sentiment/opinion class. Term fre-
quency, presence and tf-idf1 are commonly used
features.

1tf-idf, short for term frequency-inverse document fre-
quency

112

In this research, we study the empirical effects
related to several variants of LR, MNB, SVM on
various available sentiment datasets. However,
these approaches are already used enormously in
text categorization, their performance varies due to
inherent variability in features, datasets and model
used. Through a set of experiments done on many
datasets, we tried to show that the better selection
of variants in many cases outperform the recent
published state-of-the-art.

2 Related Work

Sentiment analysis field of research has been stud-
ied and employed widely since last two decades.
SA systems have been implemented through dif-
ferent levels of analysis, such as word level e.g.,
(Qiu et al., 2009), the attribute level e.g., (Mei
et al., 2007), the concept level e.g., (Cambria and
Hussain, 2012), the sentence or clause level e.g.,
(Wilson et al., 2004) and finally the document
level e.g. (Pang et al., 2002).

The Sentiment analysis is also understood as a
task of determining the sentiment orientation of a
given textual unit distinguished into two or more
classes. Hence, the task of sentiment classification
has also been implemented for different number of
classes such as binary (e.g. positive/negative clas-
sification), ternary (e.g. positive/negative/neutral),
n-ary (e.g. 1-5 star labelling) (Rui et al., 2013).

In general, the SA approaches can be classi-
fied into two main categories, the dictionary based
approaches and other one is machine learning
based approaches (Saad, 2014). Dictionary-based
approaches are also known as lexical-based ap-
proaches that utilize a set of predefined set of sen-
timent dictionaries to identify the sentiments in a
given text. At the starting, most of the work in the
field of sentiment analysis was focused only on the
dictionary-based approaches. On the other hand,
machine learning approaches are become popular
in recent years which work through constructing a
classifier trained on manually annotated corpus to
discriminate the sentiments of a given text.

Likewise, Decision Trees (DT), Naive Bayes
(NB), Support Vector Machine (SVM), Neu-
ral Network (NN) and Maximum Entropy (ME)
are the common set of supervised learning
approaches, applied in sentiment classification
(Medhat et al., 2014). Each type of approaches
have its own pros and cons. For example, the
dictionary-based approaches suffers from the lim-

itation of highly domain-orientedness. Likewise,
the machine learning approaches also require a
significant human effort in order to annotate a sub-
stantial number of examples for training a classifi-
cation model first.

OM and SA are in real, non-trivial and chal-
lenging problem, spanned over many areas and
applications. However, a significant number of
studies have been done in this field since past one
decade, still much remained to be explored in or-
der to build robust real-life applications. It has
been observed that the problem of differentiating
subjective with objective instances of sentiment
is more difficult than the later polarity classifica-
tion (Molina-González et al., 2013). Therefore,
any improvement made on the field of subjective
classification will put positive impact on sentiment
classification. In the past, it has been done not only
using machine learning (Wang et al., 2011; Pang
and Lee, 2004) but lexicon-based approaches are
also been adapted (Banea et al., 2014; Xuan et al.,
2012). A glimpse of some subjective classifica-
tion results obtained by the researchers in the past
on Pang and Lee (Pang and Lee, 2004) corpus are
shown in Table 1.

Sometimes, sentiment classification is related to
identification of polarity of a piece of text whether
it is showing positive, negative or neutral senti-
ment (Wilson et al., 2005; Turney, 2002). There-
fore, sometimes sentiment classification is also
called as polarity determination. Polarity determi-
nation has been tried on product reviews, blogs,
micro blogs, news articles and forums. It’s been
observed that such texts are full of non-linguistic
content e.g. abbreviations, noisy texts. Hence,
it is required to use high level of preprocessing
and more intelligent analytical techniques in or-
der to extract most important discriminating pat-
terns. These micro-blogs are proved to be more
prominent and useful objects for many applica-
tions such as inferring opinion in social networks,
twitter mood prediction, social advertising over
micro-blogs and user-interest prediction in micro-
blogging etc. (Maks and Vossen, 2012; Bollen
et al., 2011; Bao et al., 2013; Li and Shiu, 2012).

3 Corpora Description

The goal of this paper is to deliver a comparative
study of various machine learning approaches on
different datasets. A number of relevant bench-
mark datasets are used and analysed with sev-

113

Authors Data Classifier Cross Feature Baseline Best
Split Models Validation Selection Accuracy (%) Accuracy (%)

(Pang et al., 2002) 700 Positive NB, ME, SVM 3-fold unigrams - 82.90700 Negative presence

(Pang and Lee, 2004) 1000 Positive NB, SVM 10-fold unigrams 87.15 87.201000 Negative presence

(Mullen and Collier, 2004) 700 Positive Hybrid SVM 10-fold PMI,Turney, 83.50 87.00700 Negative Osgood,Lemmas

(König and Brill, 2006) 1000 Positive Text Pattern + SVM, SVM 5-fold unigrams 87.50 91.001000 Negative bigrams

(Abbasi et al., 2008) 1000 Positive Genetic Algorithm 10-fold POS/Words n-grams 87.95 91.701000 Negative Genetic Algorithm with SVM Punctuation

(Prabowo and Thelwall, 2009) 1000 Positive Hybrid (Rule + Statistical 5-fold term frequency 87.30 87.301000 Negative and SVM) term presence

Table 1: Recently published Results in the literature on various versions of (Pang et al., 2002) movie
review dataset.

Dataset Type
No. of

Positive
Somewhat

Negative
Somewhat

Neutral
Textual Units Positive Negative

Subjectivity v1.0 Corpus Snippets of Movie Reviews 10662 5331 - 5331 - -

IMDB Dataset Movie Reviews 50k 25K - 25K - -

Twitter Sentiment Dataset Tweets on Flight Service 14640 2363 - 9178 - 3099

Rotten Tomatoes Dataset Movie Reviews 156060 9291 32681 7565 27325 79198

Table 2: Statistics of the datasets used in this paper.

eral methods in order to find their individual char-
actersitics towards the various approaches. We
have considered four different corpora in order
to perform the experiments: (1) Rotten Toma-
toes Dataset (Kaggle-Competitions, 2017), (2)
Subjectivity v1.0 Corpus (Pang and Lee, 2005),
(3) IMDB Movie Review Dataset (Maas et al.,
2011) and (4) Twitter Sentiment Dataset (Twitter-
Crowdflower, 2017).

3.1 Rotten Tomatoes Dataset

This is one of the renowned corpus for statistical
sentiment analysis on the collection of movie re-
views prepared by Pang and Lee (Pang and Lee,
2004). The corpus2 was prepared in order to clas-
sify movie reviews as positive or negative that
are collected from the IMDB.com (Internet Movie
DataBase). Initially, the corpus was consisted of
2000 full length reviews, 1000 each of positive as
well as negative. Later, the dataset transformed
to carry reviews of sentiments scaled in range [1-
5]. Recently, a contest was hosted on (Kaggle-
Competitions, 2017) with a huge corpus of movie
reviews taken from rotten tomattoes on 5-star rat-
ing scale. We used this updated large corpora in
this paper to see the the difference in results of var-
ious approaches. As the collected reviews are clas-
sified according to the rating system in terms of 5-
star, mulit-class machine classification approaches
are applied to develop a robust sentiment classifi-

2The dataset is freely available at www.cs.cornell.
edu/people/pabo/movie-review-data/
review_polarity.tar.gz

cation model.

3.2 Subjectivity v1.0 Corpus
A sentence polarity dataset3 has been created by
Pang & Lee, consists of 5331 of each positive
as well as negative short movie reviews “snip-
pets” (compulsorily one single long sentence)
extracted from www.rottentomatoes.com
(RT-s) (Pang and Lee, 2005). The aim of collect-
ing this dataset is to understand the sentiment anal-
ysis paradigm on short subjective reviews and ob-
jective plot summaries instead of considereing the
complete large reviews. Each snippet in the cor-
pora is marked as “positive” if it is labelled “fresh”
in www.rottentomatoes.com and the other
snippets which are marked with “rotten” are con-
sidered to be negative reviews.

3.3 IMDB Review Dataset
Another movie review dataset has been collected
by Andrew Maas at Stanford, sourced from IMDB
(Maas et al., 2011). The dataset consists of 50,000
reviews in total, 25,000 of each positive as well as
negative sentiments, conditioned on no more than
30 reviews from one movie. The reviews are dis-
tributed evenly into positive and negative classes
so that the random selection will result in 50% ac-
curacy. As movie reviews in IMDB are scored
from 1 to 10 scale, the selected negative reviews
are considered if its score is ≤ 4 out of 10 and
for the positive reviews the threshold is set to ≥ 7

3The dataset is freely available at www.cs.cornell.
edu/people/pabo/movie-review-data/
rt-polaritydata.tar.gz

114

out of 10. Other reviews (neutral reviews) are not
considered in this dataset.

3.4 Twitter Sentiment Dataset

This dataset originally came from crowd flow-
ers library 4 (Twitter-Crowdflower, 2017). The
dataset was generated through undertaking the sort
of complaints received by each airline entirely
by major U.S. air carrier customer service. The
dataset includes tens of thousands of tweets as
mentioned in the table 2, their respective carri-
ers, the positive, negative, and neutral sentiment.
This is a manually labelled corpus. In the process
of corpus generation, users were asked to manu-
ally label the tweets as positive, negative or neutral
with reasons of late flight, fast service etc.

4 Classification Models for Sentiment
Analysis

4.1 Dataset Pre-processing & Feature
Extraction

Data pre-processing is necessary task for senti-
ment analysis as it performs the process of clean-
ing and preparing text to be suitable as input to
classification models (Haddi et al., 2013). Most
of the sentiment dataset are made of the content
extracted from websites e.g. Movie Reviews web-
sites, product opinion websites, tweets from twit-
ter etc. They all contain usually lots of noise and
uninformative parts such as HTML tags, adver-
tisements and scripts which needed to be removed
before sending them for the classification. In order
to prepare datasets for applying various machine
learning approaches, we have designed a set rules
for removal of the noise and uninformative parts
i.e. HTML tags, rating indicators etc.

For all datasets, similar steps of pre-processing
methods are undertaken. Following steps are fol-
lowed for the same:
• Removing URL and getting data inside

HTML Tag.
• Removing Repeating Characters, i.e. looove

= love.
• Replacing emoticons with word happy and

sad
‘:D’ ‘:)’ ‘:P’ ‘;)’→ happy
‘:(’ ‘ ;(’ ‘:—’→ sad
• Replacing marks, ? → qmark , ! → exmark

4The dataset is freely available at www.crowdflower.
com/data-for-everyone/

• Removing stop words and replacing words
like (don’t→ do not) or (thx/thnx→ thanks)
etc.

Feature Engineering is an important part of text
analytics where features are extracted from text.
First comes bag of words, a model where words
are stored like the elements of a set with no word
order or specific grammar known. Second is about
use of different encodings. It states how the text
could be represented in the form of vectors where
the length of the vector is generally considered as
the length of vocabulary i.e. the number of distinct
words. First comes the very basic Count Encoding
which is drawn from the frequency of a word, kept
in the vector form. Similarly, the tf-idf encoding
deals with constructing vectors of tf-idf weight of
the words. Likewise, vector generation can also
use ngrams and word-embeddings as features. Un-
der ngram feature space, a single word is known
as unigram, a sequence of two and three words are
called bigrams and trigrams correspondingly.

Recently, word embeddings become top-notch
in order to avail the use of dense or continuous
vectors. Its main benefit arguably is that it does
not require expensive annotation, instead it can
be derived from large unannotated corpora that
are readily available. Pre-trained embeddings can
then be used in downstream tasks that use small
amounts of labelled data. Various Transforma-
tions are there for use of word embeddings in a
sentence i.e. mean transformation, image trans-
formation. If each word in a sentence will have
n embeddings, its mean transformation would be
the mean of all the n embeddings. Thus, this will
give rise to the feature vector of same length as
the length of sentence. On the other hand, if we
consider the length of embeddings n and feature
vector length m, [n ∗m] order can be considered
as a gray scale image where every element repre-
sents pixel intensity and thus it can be feed into a
convolution neural network or any other machine
learning model as an image.

4.2 Support Vector Machines (SVM)

Support vector machines (SVM) has been applied
in this work in order to classify the text units in
a set of pre-defined sentiment classes. The algo-
rithm got its name from the fact that it used to
find those samples (support vectors) which find the
widest frontier between the positive and negative
samples in the feature space through demarcating

115

those samples (support vectors). Due to its several
advantages such as robustness in high dimensional
space, versatility to any type of features, highly
suitable for linear separable data and robust even
when the data is sparsely distributed in the feature
space, SVM become suitable to be applicable in
many text categorization problems, motivated to
be used in the SA. This has been proved by achiev-
ing good results on application of SVM in opinion
mining and shown that it has overcome other ma-
chine learning techniques (OKeefe and Koprinska,
2009). A comparative study of several variants of
SVM with other approaches are discussed briefly
in the next section Experiments & Results.

4.3 Multinomial Naive Bayes (MNB)

Bayes Theorem based techniques that assumes in-
dependence among events/predictors are consid-
ered to be Naive Bayes approaches. In simple
terms, one feature is not related to any other fea-
tures, this is the general idea behind the work-
ing nature of Naive Bayes. Because of its less
time complexity, this model is faster and can be
easily used for large datasets. With the power
of simplicity in hand, it is also known to outper-
form even highly complex classification models in
many cases (Saad, 2014).

In the Multinomial variation of Naive Bayes,
each textual data d is considered as a bag of tokens
with each entry in it ti representing the occurrence
of a token or its tf-idf value or any other weight
score (Wang and Manning, 2012). Therefore, d
can be shown as a vector ~x =< x1, x2, ..., xn >,
in which each xi is bound to show the weight of
ti occured in d. Furthermore, each text unit d of a
particular class c is considered to be the outcome
of selecting individually |d| tokens from F with
replacement where each ti has probability p(ti|c).
Hence, p(~x|c) is represented by following multi-
nomial distribution:

p(~x|c) = p(|d|) · |d|! ·
m∏

i=1

p(ti|c)xi
xi!

(1)

here, a common assumption is followed that |d|
does not depend on the class c. This is a method
that has shown a significant improvement when
combined with a combination of unigram, bigram
and trigram.

4.4 Logistic Regression (LR)
We now look at the application of another algo-
rithm for sentiment analysis named logistic regres-
sion (Wang and Manning, 2012). In terms of clas-
sifiers, logistic regression belongs to the exponen-
tial or log-linear classifiers family. Like other lin-
ear classifiers such as Naive Bayes, it also extracts
a set of weighted features from the input, com-
bining them linearly preceded by taking logs. In
a more general way, logistic regression is repre-
sented by a classifier that classifies a data in two
classes.

The most fundamental difference between
Naive Bayes and Logistic Regression is that the
Naive Bays is a generative classifier while the Lo-
gistic Regression is a discriminative classifier (Ju-
rafsky and Martin, 2014). Naive Bays classifier
is based on the concept that it probabilistically
chooses which output label c is to be assigned to
an input x through maximizing p(c|x). It is per-
ceived directly, Naive Bayes classifier used to es-
timate the best c indirectly on the basis provided
likelihood p(x|c) and prior class probability p(c):

ĉ = argmax
c

p(c|x) = argmax
c

p(x|c)p(c) (2)

Although LR differs in terms of estimating the
probabilities, it is still similar to NB as being a
linear classifier. LR estimates the term p(c|x)
through extracting a set of features from the pro-
vided input followed by fusing them linearly with
weight vector (dot product) and then putting this
combined value to a function. The beauty of expo-
nential function for generating positive outcome,
is used as being an applied function here. In gen-
eral, the basic Logistic Regression formula for es-
timating the p(c|x) is:

p(c|x) = 1

Z
exp

(
N∑

i

wifi(c, x)

)
(3)

The denominator in the above equationZ is nor-
malization factor which converts a exponent value
to its probability. If vectors are represented by N
values, the final equation of calculating the proba-
bility of x being of class c through LR:

p(c|x) =
exp

(
∑N

i=1wifi(c, x)

)

∑
c∈C exp

(
wifi(c′, x)

) (4)

116

A form of linear regression where the value
which we want to predict i.e. c takes the discrete
amount which further can be used as the label for a
class. The cost function to estimate parameters for
logistic regression for binary classification which
we intend to minimize is given as follows:

J(f) = − 1

m

[m∑

i=1

c(i) log p(c(i)|x(i))

+(1− c(i)) log(1− p(c(i)|x(i)))
] (5)

Where, m is the number of sample, x is the pre-
dictor. Since c here always belongs to either 0 or 1.
The strategy used for multiclass classification we
used is one versus all where only one class is con-
sidered while classification of the rest considered
to be zero. Its been shown in the table later under
Experiments & Results section that LR proved to
be far better than MNB and SVM when it includes
bigram and tigram based features.

4.5 Extended Convolution Neural Network
(E-CNN)

In this section, we discuss a extended version of
convolution neural network (E-CNN), a variant of
the CNN architecture used by (Lan et al., 2016).
We have deployed this multi-channel variant of
CNN, E-CNN (Extended-CNN) in order to cap-
ture both semantic as well as sentiment informa-
tion. In the E-CNN architecture, a sentence of
length n with each contained word wi represented
by corresponding k-dimensional vector wi ∈ Rk
to the i-th word. Hence, a sentence of length n
with added necessary padding if needed is sup-
posed to be represented as

w1:n = w1 ⊕ w2 ⊕ ...⊕ wn, (6)

here, ⊕ represents a binary operator of con-
catenating its two operands. Hence, the sym-
bol w1:n refers to concatenated string of n vec-
tors w1, w2, ..., wn. Further, the convolution, a
dot product operation, filters out a set of features
and properties from the input through applying a
filter m ∈ Rhk window of size, say h words,
where k is the dimension size of the word vec-
tor. In other words, the goal of convolution layer
is to generate a feature map c (c ∈ Rn−h+1)
like [c1, c2, ..., cn−h+1] for input sentence s, where
each term cj is estimated through dot product of
convolution filter m with h word vectors ending at

word wj (i.e., wj−h+1:j):

cj = f(mTwj−h+1:j + b) (7)

where f is a non-linear activation function
such as hyperbolic tangent (Tanh), rectified lin-
ear unit (ReLU) and b ∈ R is a biased term
which allows the activation function to be shifted
to left or right for successful learning. Like-
wise, all the filters convolutes individually to each
possible window of the words in the sentence
w1:h, w2:h+1, ..., wn−h+1:n in order to generate a
featuremap

c = [c1, c2, ..., cn−h+1] (8)

Each filter tries to identify only one type of fea-
ture. Hence, in order to capture multiple features,
CNN models generally employ multiple filters by
varying the windows sizes or using the same filter
with random initialization each time.

Further, in order to capture the necessary infor-
mation from each feature map c, several pooling
methods have been presented such as averaged
pooling (i.e., ĉ = 1

h

∑h
i=1 ci) or max-over-time

pooling (i.e., ĉ = max(ci)). We have used max-
over-time pooling operation on the feature map in
order to take the maximum value ĉ = max(c) as
a feature for the corresponding filter. Natural idea
to use this pooling operation is to capture the most
important feature, nothing but the highest value,
for each feature map. The value obtained as fea-
tures (z = [ĉ1, ĉ2, ..., ĉk]) after pooling are for-
warded into a softmax layer:

p(y = l|z; θ) = ez
T .θl

∑K
k=1 e

zT .θk
(9)

which estimates the probability distribution
over predefined labels l. Nevertheless, in order
to adjust the weights of layers, the parameters in
CNN model (i.e. m, f, b, θ) are fine-tuned via
back-propagation method.

An experiment is done with two channels word
vectors, one’s job is to capture unsupervised se-
mantic information and another’s task is to extract
sentiment details from the input. The first, seman-
tic channel is kept static throughout the training
and second, sentiment channel is fine-tuned via
back-propagation (Kim, 2014).

117

Model Training Testing
Accuracy Accuracy

LR Unigram 92.5 91.4
LR Bigram 88.9 87.5
LR Unigram + Bigram 93.3 92.6
LR Unigram + Bigram + Trigram 98.8 96.6
NB Unigram 91.3 90.2
NB Bigram 92.3 90.3
NB Unigram + Bigram 93.2 90.2
NB Unigram + Bigram + Trigram 94.4 93.6
SVM + Unigram 85.3 83.4
SVM + Bigram 79.0 77.5
Mean Embeddings + SVM 85.2 84.5
Mean Embeddings + LR 84.2 83.0

Table 3: Accuracy chart of various approaches on
IMDB corpus.

5 Experiments & Results

Support Vector Machines are used with different
kernels for classification and also in Logistic Re-
gression; we use regularization to penalize the
weights to prevent over-fitting. For E-CNN dif-
ferent approaches are taken like changing the fil-
ter sizes, pooling layers are also used, changing
the number of hidden layers etc. Among various
architectures of convolution networks major ones
which give promising results, are listed as follows:
• Architecture-1

– Convolution Layer 1D Receptive Field
3x1, Feature Maps 100, Activation relu

– Convolution Layer 1D Receptive Field
4x1, Feature Maps 100, Activation relu

– Max Pooling Layer 1D Receptive Field
3x1, Activation relu

– Fully Connected Layer Neurons 100,
Activation relu

– Fully Connected Layer Neurons 50,
Activation sigmoid

– Output Layer
• Architecture-2

– Convolution Layer 1D Receptive Field
2x1, Feature Maps 150, Activation relu

– Max Pooling Layer 1D Receptive Field
3x1, Activation relu

– Convolution Layer 1D Receptive Field
3x1, Feature Maps 150, Activation relu

– Max Pooling Layer 1D Receptive Field
3x1, Activation relu

– Fully Connected Layer Neurons 200,
Activation relu

– Fully Connected Layer Neurons 100,
Activation sigmoid

– Fully Connected Layer Neurons 50,
Activation sigmoid

– Output Layer
• Architecture-3

– Convolution Layer 2D Receptive Field
3x3, Feature Maps 100, Activation relu

– Convolution Layer 2D Receptive Field
3x3, Feature Maps 150, Activation relu

– Flatten Layer
– Fully Connected Layer Neurons 100,

Activation relu
– Fully Connected Layer Neurons 100,

Activation relu
– Fully Connected Layer Neurons 64,

Activation relu
– Fully Connected Layer Neurons 10,

Activation sigmoid
– Output Layer

• Architecture-4
– Convolution Layer 2D Receptive Field

5x5, Feature Maps 100, Activation relu
– Max Pooling Layer 2D Filter Shape 2x2
– Convolution Layer 2D Receptive Field

4x4, Feature Maps 150, Activation relu
– Max Pooling 2D Filter Shape 2x2
– Flatten Layer
– Fully Connected Layer Neurons 100,

Activation relu
– Fully Connected Layer Neurons 64,

Activation sigmoid
– Output Layer

On the basis of various feature combinations,
many possible variants of SVM, MNB and LR
such as have been investigated, but only those are
mentioned in the tables 3, 4, 5 and 6 which de-
liver good results. As per the experiments done
on the IMDB movie review corpus, It is observed
that combination of Unigram, Bigram and Trigram
features provide more accurate classification re-
sults. Table 3 supports the observation. Both
Classes positive/negative are well-classified, but
the sentences which were misclassified are mostly
related to sarcasm or confusing for human percep-
tion. For example -

Predicted Negative but Marked Positive →
“You are a total idiot if u dont watch this movie.
You are wasting your time on this planet.” (Sar-
casm)

118

Model Training Testing
Accuracy Accuracy

Logistic Regression Unigram 91.9 90.7
Logistic Regression Bigram 82.6 80.9
Logistic Regression Unigram + Bigram + Trigram 99.7 96.4
Naive Bayes Unigram 94.2 92.9
Naive Bayes Bigram 86.7 84.9
Naive Bayes Unigram + Bigram + Trigram 97.1 95.2
SVM + Unigram 82.4 82.1
SVM + Bigram 56.2 55.8

Table 4: Accuracy chart of various approaches on Subjectivity v1.0 corpus.

Model Training Testing
Accuracy Accuracy

Naive Bayes + Count Encoding + unigrams + bigrams 80.3 5-fold
Naive Bayes + Tf-Idf Encoding + unigrams + bigrams 75.3 7-fold
Logistic Regression + Count Encoding + unigrams + bigrams 82.1 5-fold
Logistic Regression + Tf-Idf Encoding + unigrams + bigrams 81.5 7-fold

Table 5: Avg. Cross Validation Accuracy chart of various approaches on Twitter dataset.

Positive but Marked Negative→ “This movie
makes me wonder what I am doing on earth wast-
ing time, doing nothing, Ohh Man, What the hell.”
(Confusing even for human perception)

With reference to published results on subjec-
tive v1.0, a sentiment corpus consists of snippets,
short reviews, the results presented in this paper
is more accurate. Moreover, it also shows, the ca-
pability of SVM is better in classification of long
reviews. But for the short reviews or snippets as
subjective corpus, Logistic regression and Naive
Bayes are more accurate and robust. Addition of
bi-grams improves the performance significantly
as shown in Table 4. After the inclusion of trigram
again improve the performance a bit more. Both
LR and MNB with unigram, bigram and trigram
features provides 96.4% and 95.2% accuracy re-
spectively as shown in Table 4.

For the sentiment analysis experiment on twit-
ter corpus, a number of encoding considered to
draw feature set in order to apply some super-
vised learning methods. Here also, feature vectors
are constructed out of various possible combina-
tion of unigrams, bigrams with individual count
encoding and tf-idf encoding. Out of all combina-
tion, only those are shown here which draw signif-
icantly better result. The accuracy measurement
is done on the set environment of 5-fold and 7-
fold avg. cross-validation. The overall average ac-

curacy is obtained 82.1% as shown in the Table
5 through logistic regression in combination with
count encoding and unigram+bigram.

The Rotten Tomato Dataset is a very large
movie review corpus composed of 156,060 sen-
tences rated under 5-star rating scheme in Nega-
tive, Somewhat Negative, Neutral, Somewhat Pos-
itive, Positive categories. We divided the overall
corpus into a ratio of 7:2:1 for training, test and
cross-validation set. The problem of sentiment
analysis now turned from binary classification to
multi-category classification which make it diffi-
cult for the above implemented models to be in-
corporated here. This is the reason, the accuracy of
some linear approaches such as SVM and LR start
declining. Therefore, deep learning is undertaken
to see the difference. Four different architectures
are devised empirically which show better accu-
racy compare to SVM and LR as shown in Table
6.

It is clear from the above discussion that logistic
regression works better on the datasets like imdb,
subjectivity v1.0 and twitter where the sentiment
classes are limited to two/three and the corpus is
build of short statements/reviews. But for the large
datasets like Rotten Tomato corpus which consists
of millions of texts divided into many sentiment
classes, a better model is required robust enough
to capture and support entire feature set necessary

119

Model Training Testing
Accuracy Accuracy

Mean Embeddings + SVM 52.4 52.0
Count Encoding + LR 61.4 60.5
TfIdf Encoding + LR 63.3 62.5
Architecture-1 58.3 56.2
Architecture-2 59.1 57.5
Architecture-3 68.4 66.7
Architecture-4 65.1 63.4

Table 6: Accuracy chart of various approaces on
Rotten Tomatoes Dataset.

for the classification. For the twitter dataset, only
unigrams and bigrams with count encoding give
the better results.

As it can be seen, mean transformation of em-
beddings does not play major role in sentiment
analysis whereas image transformation of embed-
dings achieve the best result among all other clas-
sifiers. It is not worth denying that mean trans-
formation is not that good for representation of
embeddings as feature vector. Many other trans-
formations for embeddings are there like median,
mode, tf-idf but still the combination of convolu-
tion neural network with image transformation of
embeddings beats them all. So embeddings are
quite useful if used wisely.

6 Conclusion

In this paper, we performed a set of experiments to
capture the residing variation in various sentiment
datasets such as short or long texts and binary
vs multi-class classification variations. For this,
we analyzed various renowned models for classi-
fication and also various architectures for Convo-
lutional Neural Network on all possible datasets
ranging from short reviews/snippets to long doc-
uments. For each type, a list of best performing
models are shown. We observe that for short texts
and/or binary classification LR models beat all
other models with certain features. In contrast, for
long texts like the rotten tomatoes datasets, logis-
tic regression is shown to give accuracy of 62.47%
but in order to achieve better accuracy we included
the use of word embeddings as an image and feed
it into the convolution neural network (proposed
architecture-3) where we achieve greater accuracy
of 66.70%. Furthermore, for multi-class dataset
like rotten tomatoes dataset, based on the anal-
ysis of confusion matrix, a better feature set se-
lection and corresponding model enhancement re-
lated problems can be considered for future work.

References
Ahmed Abbasi, Hsinchun Chen, and Arab Salem.

2008. Sentiment analysis in multiple languages:
Feature selection for opinion classification in web
forums. ACM Transactions on Information Systems
(TOIS) 26(3):12.

Carmen Banea, Rada Mihalcea, and Janyce Wiebe.
2014. Sense-level subjectivity in a multilingual set-
ting. Computer Speech & Language 28(1):7–19.

Hongyun Bao, Qiudan Li, Stephen Shaoyi Liao,
Shuangyong Song, and Heng Gao. 2013. A new
temporal and social pmf-based method to predict
users’ interests in micro-blogging. Decision Sup-
port Systems 55(3):698–709.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
Computational Science 2(1):1–8.

Erik Cambria and Amir Hussain. 2012. Sentic comput-
ing: Techniques, tools, and applications, volume 2.
Springer Science & Business Media.

Emma Haddi, Xiaohui Liu, and Yong Shi. 2013. The
role of text pre-processing in sentiment analysis.
Procedia Computer Science 17:26–32.

Dan Jurafsky and James H Martin. 2014. Speech and
language processing, volume 3. Pearson London.

Kaggle-Competitions. 2017. Kaggle:
Sentiment analysis on movie reviews.
https://www.kaggle.com/c/
sentiment-analysis-on-movie-reviews/
data/. [Online; accessed 22-March-2017].

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Arnd Christian König and Eric Brill. 2006. Reducing
the human overhead in text categorization. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing. ACM, pages 598–603.

Man Lan, Zhihua Zhang, Yue Lu, and Ju Wu. 2016.
Three convolutional neural network-based models
for learning sentiment word vectors towards senti-
ment analysis. In Neural Networks (IJCNN), 2016
International Joint Conference on. IEEE, pages
3172–3179.

Yung-Ming Li and Ya-Lin Shiu. 2012. A diffusion
mechanism for social advertising over microblogs.
Decision Support Systems 54(1):9–22.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Portland, Oregon, USA, pages

120

142–150. http://www.aclweb.org/anthology/P11-
1015.

Isa Maks and Piek Vossen. 2012. A lexicon model for
deep sentiment analysis and opinion mining applica-
tions. Decision Support Systems 53(4):680–688.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy.
2014. Sentiment analysis algorithms and applica-
tions: A survey. Ain Shams Engineering Journal
5(4):1093–1113.

Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su,
and ChengXiang Zhai. 2007. Topic sentiment mix-
ture: modeling facets and opinions in weblogs. In
Proceedings of the 16th international conference on
World Wide Web. ACM, pages 171–180.

M Dolores Molina-González, Eugenio Martı́nez-
Cámara, Marı́a-Teresa Martı́n-Valdivia, and José M
Perea-Ortega. 2013. Semantic orientation for polar-
ity classification in spanish reviews. Expert Systems
with Applications 40(18):7250–7257.

Tony Mullen and Nigel Collier. 2004. Sentiment analy-
sis using support vector machines with diverse infor-
mation sources. In EMNLP. volume 4, pages 412–
418.

Tim OKeefe and Irena Koprinska. 2009. Feature selec-
tion and weighting methods in sentiment analysis.
In Proceedings of the 14th Australasian document
computing symposium, Sydney. Citeseer, pages 67–
74.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, page 271.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 115–124.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natu-
ral language processing-Volume 10. Association for
Computational Linguistics, pages 79–86.

Rudy Prabowo and Mike Thelwall. 2009. Sentiment
analysis: A combined approach. Journal of Infor-
metrics 3(2):143–157.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. 2009.
Expanding domain sentiment lexicon through dou-
ble propagation. In IJCAI. volume 9, pages 1199–
1204.

Huaxia Rui, Yizao Liu, and Andrew Whinston. 2013.
Whose and what chatter matters? the effect of
tweets on movie sales. Decision Support Systems
55(4):863–870.

Farag Saad. 2014. Baseline evaluation: an empirical
study of the performance of machine learning algo-
rithms in short snippet sentiment analysis. In Pro-
ceedings of the 14th International Conference on
Knowledge Technologies and Data-driven Business.
ACM, page 6.

Mikalai Tsytsarau and Themis Palpanas. 2012. Survey
on mining subjective data on the web. Data Mining
and Knowledge Discovery 24(3):478–514.

Peter D Turney. 2002. Thumbs up or thumbs down?:
semantic orientation applied to unsupervised classi-
fication of reviews. In Proceedings of the 40th an-
nual meeting on association for computational lin-
guistics. Association for Computational Linguistics,
pages 417–424.

Twitter-Crowdflower. 2017. Crowdflower: Sentiment
analysis on twitter dataset. https://www.
crowdflower.com/data-for-everyone/.
[Online; accessed 22-March-2017].

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2. Association for
Computational Linguistics, pages 90–94.

Suge Wang, Deyu Li, Xiaolei Song, Yingjie Wei, and
Hongxia Li. 2011. A feature selection method based
on improved fishers discriminant ratio for text sen-
timent classification. Expert Systems with Applica-
tions 38(7):8696–8702.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing. Associ-
ation for Computational Linguistics, pages 347–354.

Theresa Wilson, Janyce Wiebe, and Rebecca Hwa.
2004. Just how mad are you? finding strong and
weak opinion clauses. In aaai. volume 4, pages
761–769.

Huong Nguyen Thi Xuan, Anh Cuong Le, and Le Minh
Nguyen. 2012. Linguistic features for subjectiv-
ity classification. In Asian Language Processing
(IALP), 2012 International Conference on. IEEE,
pages 17–20.

121

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 122–130

Handling Multi-Sentence Queries in a Domain Independent Dialogue
System

1Prathyusha Jwalapuram 2Radhika Mamidi
Language Technology Research Center,

Kohli Center on Intelligent Systems,
International Institute of Information Technology,

Hyderabad, India
1prathyusha.jwalapuram@research.iiit.ac.in

2radhika.mamidi@iiit.ac.in

Abstract

This paper discusses the handling of multi-
sentence queries in a mixed-initiative di-
alogue system based on a hierarchically
structured knowledge base, in a way that
is domain independent. The system is
rule-based and uses dependency relations
and part-of-speech tags obtained from the
Stanford Parser coupled with the hierar-
chical structure of the knowledge base
to identify the user’s goal. The system
was tested for its accuracy over answering
questions, and also subjective testing was
done to evaluate the dialogue flow; primar-
ily over the books domain. We show ex-
amples of the system developed over the
domains of books, movies and restaurants
to demonstrate the domain independence.

1 Introduction

Most dialogue systems focus on processing the
user’s input and classifying the dialogue in terms
of the amount of information it presents and the
possible paths the dialogue could take. The idea
is to predict a possible goal of the user in order to
be able to ask relevant questions if needed in order
to fill information gaps, and provide more relevant
replies. Using a hierarchically structured knowl-
edge base for a dialogue system helps achieve this.
They help us limit the possible paths of the dia-
logue, and can help us identify irrelevant inputs or
topic changes.

Few dialogue systems attempt to process multi-
sentence inputs (multiple utterances in a single
user turn) that collectively behave as a query.
Users of a dialogue system may break up their
queries into multiple sentences, and also pro-
vide additional information and qualify their ini-
tial statements. In such cases it might not suffice to

simply find all the relevant keywords; it might be
important to understand the relationships between
them as well.

Aided with dependency relations, part-of-
speech tags (provided by the Stanford parser) and
the inherent semantics of some words such as
’and’ or ’but’, we attempt to link the keywords in
complex sentences and multiple sentences to get
a clear picture of exactly what the user is looking
for. Significant information can be gained by look-
ing at function words and their dependents. We
also attempt to look at expressions of negation and
negative words indicating the exclusion of certain
objects as required by the user.

The system is domain-independent, and we
present an implementation over a simple, hand-
crafted knowledge base of books, movies, and
restaurants, that is essentially structured into a
useful hierarchy. We evaluate the system based
on whether the replies are relevant or not on
multi-sentence queries that were collected through
a survey (objective evaluation) and qualitatively
through participant interaction and rating (subjec-
tive evaluation).

The paper is organised as follows. Section 2 de-
scribes related work, section 3 describes the stru-
cure of the knowledge base, section 4 describes the
dialogue manager, section 5 shows some examples
of dialogue demonstrating domain independence,
section 7 is about the evaluation and error anal-
ysis and section 8 explores possible future work
and the appendix at the end has more examples of
dialogue with multiple-sentence inputs.

2 Related Work

The advantages of using an ontological knowl-
edge base for a dialogue system were put forth
in Milward and Beveridge (2003) which defined
an ontology simply as a network of concepts and

122

instances related to each other through semantic
links. They introduce a mixed-initiative dialogue
system that uses part-whole and is-a relationships
to drive clarification questions and determine the
sequence of the dialogue. Since we seek to further
simplify the structure into a more generic relation-
ship set (rather than is-a and part-whole relation-
ships), we refer to our knowledge base as hierar-
chically structured.

It has been argued that the separation of the di-
alogue management from the domain knowledge
management helps reduce the complexity of the
systems and enhance further extensions (Flycht-
Eriksson, 2004). Flycht-Eriksson (2004) uses is-
a and part-of relations to resolve issues of under
and over specification. We use a similar approach
to make our implementation domain independent;
swapping the knowledge base with another in the
same format would produce a working dialogue
system for the new knowledge base, even of a dif-
ferent domain.

Dzikovska et al. (2003) describe a system that
maintains two ontologies, a domain independent
ontology for a parser linked to the lexicon to cap-
ture the aspects of dialogue interaction that are
common across domains and a domain-specific
ontology for knowledge representation, and they
integrate the linguistic and domain knowledge by
defining a set of mappings between the two.

Division of the task and the dialogue is also
explored in Bohus and Rudnicky (2003). A dia-
logue engine generates domain independent con-
versational behaviors and the dialogue task spec-
ification is handled separately. RavenClaw uses
hierarchical task decomposition, which has a tree-
like structure. The dialogue task specification is
domain specific.

Lee et al. (2009) propose an example-based di-
alogue modeling that is applicable over different
domains, but requires dialogue corpora for each
domain; they also do not consider multi-sentence
utterances in the course of a dialogue.

Mazuel and Sabouret (2006) propose a generic
command interpreter for natural languages that
uses an ontology to clarify semantic concepts,
coded in a specific language. They use a tokenizer,
tagger, lemmatizer and a chunker, but discount the
need for a grammar based syntactic parser; they
remove stop words and treat the sentences as a bag
of words, and use the ontology for concept match-
ing and semantic analysis; they do not take into ac-

Figure 1: Hierarchical Knowledge Base Structure

count the semantic information that is provided by
function words such as ’in’, ’and’ and so on. They
assume that the users’ commands are unlikely to
be complete sentences, and therefore do not con-
sider multiple sentences at all.

Bickmore et al. (2011) describe an ontology
based dialogue system that simulates a health
counselor, using an RDF-based ontology de-
scribed in OWL. They maintain a representation of
a plan tree, recording the recipes that are actively
being used and their goal-subgoal task decom-
position relationships. Their dialogue fragments
are modeled through a task representation lan-
guage, and a dialogue planner enacts these frag-
ments. They introduce the notion of adjacency
pairs which are logically related, consisting, for
example, of an utterance and its response.

Bharati et al. (1995) proposed a Computational
Paninian Grammar framework for interpreting nat-
ural language queries, for example by creating
verb frames of a list of domain-specific verbs in
order to identify relationships between the key-
words. We try to make it a domain indepen-
dent implementation by using dependency rela-
tions with less significance given to the verbs, al-
lowing us to focus on the relationships between the
prepositions, adjectives, nouns/noun phrases, etc.

3 Hierarchically Structured Knowledge
Base

The knowledge base is structured in a hierarchi-
cal manner for ease of representation, and also
to facilitate dialogue flow. For example, in the
books domain, the books maybe in a hierarchy
from genre to author to title and so on. This helps

123

form a possible path that a dialogue may take; for
example the user may specify a genre they like,
and the system may suggest relevant authors; the
user may then pick an author and the system sug-
gests books by the author, and so on.

Another reason for maintaining a structured
knowledge base rather than a standard ontology
is the flexibility in defining relationships. In our
knowledge base, the entities are related by a ’is-
x-of’ relationships; that is, is-author-of, is-genre-
of, etc. This could allow us to structure knowl-
edge bases in domains which may not fit into the
traditional ontology structure. We can also define
synonyms for the relationships for making search
easier (author, writer).

Tag Information
Although typical data about books consists of

information like author, year of publishing, genre,
etc., in order to answer queries, the system must
also be to consider what the books are about. This
is problematic since we usually do not have infor-
mation about the content of the books; the titles of
the books are not always informative, and a large
set of questions would have to go unanswered.

To resolve this issue and expand the scope of
queries being answered, tags provided for books
by the general public on popular book sites were
collected and added to the knowledge base (or
alternatively, high-frequency content words from
book reviews can also be scraped). Tags are com-
monly used in searches for a similar purpose, al-
lowing you to look for a book based on themes,
characters, and other classifications which are not
necessarily genres or part of a typical knowledge
base.

Consider a query like books with magic and an-
imals in them. The Harry Potter series, for exam-
ple, would be a good fit for such a query; but noth-
ing in any of the titles of the series would directly
imply this. However, some of the tags for the se-
ries include dark magic, witches, wizards, young
adult, British fiction, beasts, dragons, etc, which
would allow us to infer that both magic and ani-
mals play a part in these books (synonyms must
be considered).

Similarly, women writers, female writer are part
of the tags for both the Harry Potter series and
the Hunger Games series; this helps us return re-
sults to queries like Do you have books written by
female authors?. All additional information, like
prizes won by the books, the time period it is set

Figure 2: Simplified System Architecture

in (for example, detective fiction set in the Victo-
rian times = Sherlock Holmes), etc. is available to
us through these tags, enabling us to provide re-
sults to a wide variety of requirements; including
spelling variations (theatre, theater).

For the movie domain, similar ’tags’ are avail-
able in terms of ’plot points’, or high-frequency
content words can be scraped from movie reviews
on popular movie review sites. For the restaurant
domain, we use the restaurant menu item descrip-
tions (which are mainly descriptions of ingredients
and the like).

4 Dialogue Manager

Our emphasis was to try and identify the objective
of a user’s query, that is, the data the user is look-
ing for and the constraints pertaining to this data.
We use the Stanford POS Tagger and the Stanford
Dependency Parser for this purpose while assum-
ing that the queries are free of errors and are fairly
grammatically sound. We don’t attempt to resolve
abbreviations and ambiguities. The system is able
to extract information from ungrammatical queries
in certain cases where the Stanford Parser is able
to generate a fairly accurate dependency parse.

We consider the cases where the user directly
specifies what they are looking for, or makes
oblique remarks that are intended to help reach the
goal. These statements can be simple, complex or
span multiple sentences.

An online survey was conducted to obtain ques-
tions for the development and testing. A total of 57

124

participants submitted 118 questions. All domain
specific assumptions and rules are based on a de-
velopment set of 68 questions; the other 50 were
separated for testing.

4.1 Motivation behind using Dependency
Relations

The advantage of using dependency relations is
that they are syntacto-semantic relations, so the
same question formulated in different ways can
lead to the similar dependency relations (such as
a statement in active/passive voice); this allows us
to easily group similar user queries without having
to anticipate all the possibilities.

Dependency relations also give us an idea of the
relationship between the words and therefore the
information the user is looking for and the con-
straints. This information cannot be obtained from
simple syntactic parsing, such as Phrase Structure
Trees, as they are highly dependent on the word
order.

4.2 Processing the parser output
Keywords and Negation

An example of an input by the user could be
I like Oscar Wilde. Here, the parser should tag
like as the root, I as the nsubj (subject) and Os-
car Wilde as the dobj (direct object). We see that
the object here is the keyword we are looking for.
Using such information, keywords in the utterance
can be detected (Jwalapuram and Mamidi, 2017).

Similarly, we also consider cases where the user
expresses a negative sentiment, such as I don’t like
Oscar Wilde. Here the negation applies to the root,
and Wilde is the object of the root, so we transfer
the negation from the root to the keyword; we re-
member to eliminate Oscar Wilde from any results
we provide to the user. We also recognize lexical-
ized negatives, such as hate, dislike, awful, stupid
etc. through a simple dictionary list of negative
emotions. By maintaining a list of rejected can-
didates, we prune the results tailored to the user’s
requirements.

Prepositions, Modifiers and Conjunctions
In order to maintain domain independence, we

cannot attribute specific interpretations to func-
tion words, which are often overloaded. We use
prepositions as a clue merely signalling relation-
ships between two keywords (nouns or verb and
noun). This relationship does not need to be iden-
tified; we use the knowledge base to detect this.
For example, if the user says ”I want books by

Dan Brown”, we identify that ”books” and ”Dan
Brown” are the keywords, and are related. A refer-
ence to a topic in ’What books on psychology are
available?’ is identified in a similar way, as re-
lated keywords ”books” and ”psychology”. Use-
ful modifications through adjectives include cases
like I want funny books or Do you have scary
books?.

And and or are treated somewhat similarly. If
a user says I like magic and animals, if there are
no books which are about both magic and animals,
we would still want to return some results, which
are about magic or animals. This would be equiva-
lent to the user saying ’I like magic or animals’; in
this case, all books which have references to either
magic or animals are part of the results (see also
Table 11 in Example Dialogs). For but, it is a clear
case of contrast; any keyword obtained from a but
clause are included in the reject list. Consider I
want books about vampires but not Twilight or All
books by Bernard Shaw but Pygmalion.

Relative Clauses Consider I would prefer
books which have some mystery in them. Here the
user is looking for books, which is the argument of
the main verb prefer and the user specifies that the
books need to have (secondary verb) mystery (ob-
ject of secondary verb). Note that the prepositional
argument here is them; since it is a demonstrative
pronoun, it can be discarded as irrelevant. Using
dependency relations, it is possible to extract the
information that our keywords books and mystery
are therefore related (see Table 8 in Example Dia-
logues).

In case of but, the same assumption of contrast
applies; we simply identify the relevant keyword
as a reject qualification and eliminate it from the
results (I would like books which are about travel-
ing but not those which are focused on Europe).

4.3 Multiple Sentences

We have a similar assumption here, that the user is
likely to state their primary requirement first, fol-
lowed by further qualifications. Since we add any
keywords which have been associated with nega-
tive words to a reject list, and simply add any other
keywords to a list of possibilities, the explicit or-
der does not really matter. However, it is assumed
that the set of sentences which occur together are
related; which means that any qualifications that
are made are applied collectively.

Consider I like books with humor. I don’t like

125

Me: I like science fiction. Maybe Asimov.
System: I found these under Science Fiction:

H. G. Wells
Jules Verne
Isaac Asimov
George Orwell
Aldous Huxley

I found these under Isaac Asimov:
I, Robot
Foundation Series
Caves of Steel

What do you think?
Do you want books from the above?
Me: I like science fiction. I think Asimov
is awful.
System: You could try:

H. G. Wells
Jules Verne
George Orwell
Aldous Huxley

What do you think?
Do you want books from the above?

Table 1: Multiple Sentence Inputs

Wodehouse. Here, we first identify humor as a
keyword from the first sentence; since the struc-
ture of the ontology classifies authors under gen-
res, in this case we return a list of authors classi-
fied under humor to the user. The next statement
is assumed to be related to the first; it specifies
that the user does not like the author Wodehouse.
This keyword is added to the reject list; when the
list is specified to the user, we search for and omit
Wodehouse from the list (Table 1).

Through the dialogue for this user, the keyword
Wodehouse stays in the dialogue manager’s reject
list, so that any future cases are also eliminated.
This also helps us omit references in cases where it
is not immediately applicable; for example, if the
user input was I like books with humor. I don’t like
the Jeeves stories., we would add that to the reject
list, and if the user chose to look at books written
by Wodehouse in a future dialogue, we omit the
books which are about Jeeves. Some other prag-
matic instances for elimination can also be consid-
ered (I have already read the Jeeves stories).

Similarly, it is also possible to answer questions
which are more descriptive in style. Consider, I am
trying to find a poem I read back in school. There’s
a man who shoots a bird or something and things

start to go wrong. I think he was a sailor. We
get a set of related keywords from each utterance:
poem-school; man-shoots-bird; sailor etc.

4.4 Identifying Relationships in the
Knowledge Base

Given a set of related keywords, the system
searches through the knowledge base and matches
them to the entities it finds there. In order to make
the search efficient and the results relevant, the
search is prioritised. For example, the x-of rela-
tionships are searched for matches first; next the
search moves through the entities through the hi-
erarchy in order, ending at tags.

So, in our ”I want books by Dan Brown”, we
found that ”books” and ”Dan Brown” are the re-
lated keywords; the system finds books is an x-
of relationship as part of the knowledge base, and
Dan Brown is an entity under author which has an
x-of relationship with books. The system there-
fore returns a list of books under the author Dan
Brown. In the case of ’What books on psychology
are available?’, related keywords ”books” and
”psychology” are identified as an x-of and an en-
tity under either genre or tag respectively, and the
system similarly returns books classified or tagged
as psychology.

In case of multiple sentences, the keyword re-
lationships are identified individually from each
sentence and then collated. This helps us retrieve
a list (I like books with humor”) and then elimi-
nate unwanted results (I don’t like Wodehouse); or
alternatively narrow down possibilities. Consider
”I am trying to find a poem I read back in school.
There’s a man who shoots a bird or something and
things start to go wrong. I think he was a sailor.”.
We identify poem as a genre and school as a tag or
perhaps a title; once we add man/shoot/bird/sailor
we continue to narrow the possibilities down and
perhaps finally find all of them as tags. The system
then returns the relevant title (Rime of the Ancient
Mariner).

4.5 Dialogue Flow
The hierarchy of the knowledge base guides the
flow of the dialogue. The dialogue manager tra-
verses the hierarchy and locates itself on one of
the nodes, and uses the meta information of the
node (genre/author, etc) to frame its replies or ask
further questions. If user input is unclear and
the manager cannot locate itself in the knowledge
base, the system asks the user to rephrase.

126

Typically a user’s input is processed, the key-
words and the rejects identified, and the relevant
results are displayed. The user may then choose
to move up or down the hierarchy, or may change
the topic entirely. This is identified by the break
in the chain of the path being followed that is, if
the user is not simply moving up or down the path
but breaks the hierarchy chain such that the dia-
logue manager must relocate itself in the knowl-
edge base, then the topic (or user goal) is assumed
to have changed.

Consider a user who asks for some poetry. The
user is presented with a list of authors, say Yeats,
Shelley, Wordsworth and Coleridge. The chain
is now from genre to authors. Next, the user
may choose one of these authors, say Wordsworth.
Then a list of poems written by Wordsworth is pre-
sented to the user. Now the chain goes from genre
to authors to poems, and so on.

Similarly, a move up the hierarchy is also pos-
sible. A user may say that he wants books like,
say, The Time Machine. The system may then
present the user with a list of books written by the
same author, i.e., H. G. Wells. The chain has now
formed from books to authors. The user may ex-
press interest in other authors who write similar
books; the chain then moves up to genre and the
user is presented with a list of authors who write
Science Fiction, and so on.

4.6 Topic Change
The user may explicitly jump around the hierar-
chy, making the dialogue mixed-initiative. For ex-
ample, the user may choose to go back to the list
of authors under a genre after being presented by
a list of books (go back to fantasy) or the user may
skip a level by directly specifying the book he’s
interested in when presented with the authors (do
you have The Adventures of Tom Sawyer by Mark
Twain?) (see Table 7 in Example Dialogues). At
any point, if the user does not move up or down
from the current location in the hierarchical struc-
ture, then the chain is broken. A change in user
goal is assumed to have occurred, and the dialogue
manager relocates the current reference node in
the hierarchy. The chain is restarted from the loca-
tion which is specified by the keywords obtained
from the user’s input.

4.7 Ambiguities and Clarification Dialogue
In order to resolve certain inherent ambiguities,
the system engages the user in a simple clarifica-

tion dialogue. For example, if the user asks for
books with animals in them, the keyword relation-
ships set up may match with books with animals
in the title (’Animal Farm’) or generally books
tagged with animals (Harry Potter, Black Beauty,
Animal Farm). In this case, the system will ask the
user by presenting each option in order of priority
until the user accepts the results.

Queries such as books by Dan Brown and Ayn
Rand can also be considered ambiguous in the
sense that the user may be looking for an intersec-
tion (books written by both Dan Brown and Ayn
Rand or a union books by Dan Brown and books
by Ayn Rand (which is a case of ellipsis). In such
cases, the system asks the user if s/he wants the
results of the intersection, and if rejected, displays
results of the union (see Table 11 in Example Di-
alogues). In case the system does not find any re-
sults for intersection, the system specifies so and
automatically presents results of the union.

The system only looks for negative indication in
clarification (no, I don’t think so, etc.) in order to
be able to accept a wider range of positive indica-
tions (yes, alright, okay, sure etc.).

5 Domain Independence

The system utilises the structure of the data to
recognise goals and paths; there is no domain
knowledge involved in the dialogue manager it-
self, or in fact any other module. The knowledge
base is therefore replaceable, and the system is
able to work in the same way for a different do-
main. In order to demonstrate this, examples are
provided in Tables 2, 3, and 4 (additionally, Tables
9 and 10 in Example Dialogs) to show that the sys-
tem works just as well with a similarly structured
knowledge base for a different domain. Here, in
the movies domain the x-of relationships are in a
hierarchy consisting of genre, director, title, ac-
tors, plot points, etc. For the restaurant domain
the x-of relationships are location, cuisines, name,
menu, description, etc.

6 Evaluation

6.1 Accuracy
The system was tested on a set of questions for
the books domain obtained through an online sur-
vey. A human evaluation of the system’s responses
was conducted based on relevance, appropriate-
ness and correctness. The evaluation is based on
whether the intended keywords and any associated

127

Me: I like science fiction.
System: I found these under Science Fiction:

H. G. Wells
Jules Verne
Isaac Asimov
George Orwell
Aldous Huxley

What do you think?
Do you want books from the above?
Me: I will try Isaac Asimov’s books.
System: I found these under Isaac Asimov:

I, Robot
Caves of Steel
Foundation Series

Me: What is in the Foundation Series?
System: I’ve found a book series:

1. Prelude to Foundation
2. Forward the Foundation
3. Foundation
4. Foundation and Empire
5. Second Foundation
6. Foundation’s Edge
7. Foundation and Earth

Table 2: Books: Moving Through the Hierarchy

constraints are correctly identified. A result is con-
sidered to be correct if the relevant or expected
output is returned. An overall accuracy of 88%
was achieved over 50 questions (Table 5).

A second evaluation was carried out to test the
dialogue system qualitatively by means of user re-
sponses to questions in a Likert-scaled question-
naire; 8 participants were asked to interact with
the system (over about 8-10 turns) and rate it on a
scale of 5 on the basis of relevance (whether they
thought the system understood their goals), cor-
rectness (compare expected response with actual
system response) and an overall rating (navigation,
task completion, etc). A Wizard-of-Oz benchmark
was also collected. The results are in Table 6.

6.2 Error Analysis

There are many errors introduced due to ambigu-
ous structures, grammatically unsound instances,
etc. Parsing errors, like wrong identification of
root, incorrect argument assignment, etc. also in-
troduce significant error as the system is unable to
identify the right keywords.

Parsing Issues: There is a prepositional
phrase attachment problem - consider the follow-

System: How can I help you?
Me: I like science fiction.
System: I found these under science fiction:

Steven Spielberg
What do you think?
Do you want movies from the above?
Me: I will try Steven Spielberg movies.
System: I found these under Spielberg:

Indiana Jones
Schindler’s List
Jurassic Park
Catch Me If You Can
Saving Private Ryan

Me: Please tell me about Indiana Jones.
System: I’ve found a movie series:

1. Raiders of the Lost Ark
2. Temple of Doom
3. Last Crusade
4. Kingdom of the Crystal Skull

Table 3: Movies: Moving Through the Hierarchy

ing queries:
(a) Do you have Catcher in the Rye?
(a) Do you have Of Mice and Men in the library?
(b) Do you have Body in the Library?

In (a), the prepositional phrase in the Rye is part
of the title and important information; in (b) in
the library is irrelevant information. It may also
not be possible to ignore this phrase on the ba-
sis of the domain, as we can see from (c) where
the title of the book itself has in the Library in
it. In such cases, we may end up including irrel-
evant keywords and retrieving wrong information.
Similar problems also occur when the book titles
are phrases or sentences themselves (Do you have
Where the Wild Things Are?) which are consid-
ered as part of the sentence by the tagger and as-
signed incorrect roots or copula tags.

Pragmatics: Consider ’Which is the most pop-
ular dish in RESTAURANT-2?’. Converting ’the
most popular’ to mean that we need to group by
dish name for the restaurant, then look at the rat-
ings, frequency of orders or other relevant infor-
mation, is hard to do even if such information is
available in the knowledge base, and such an infer-
ence includes information not present in the query.
Also, the thresholds of such subjective opinions
may differ.

Recognizing the User’s Goal: Consider the
example, What other books are there have that

128

System: How can I help you?
Me: I like chinese food.
System: I found these under chinese food:

RESTAURANT-16
RESTAURANT-24

What do you think?
Do you want menus from the above?
Me: I will try RESTAURANT-24.
System: I found these under RESTAURANT-24:

Hakka Noodles
Chicken Fried Rice
Chilli Mushroom
Chicken 65

Table 4: Restaurants: Moving through the Hierar-
chy

Type of Input Accuracy
Single line 88.09%
Relative clauses 66.66%
Multiple lines 100%

Table 5: Survey Query Evaluation

were written by the author of The Old Man and the
Sea?. Here, we need to first identify the author of
the The Old Man and the Sea as Hemingway, and
then retrieve books written by Hemingway. This
retrieval may be complex and hard to identify.

7 Future Work

Pre-processing problems involving spelling and
grammatical errors, synonyms, missing argu-
ments, abbreviations, etc. need to be handled in
order to make the system practically useful. Also,
the words must be lemmatized and replaced with
a mapped, representative synonym that is part of
the knowledge base. A chunker or an NER can be
used to identify complete constraints with func-
tions words which the parser might separate (like
’Harry Potter and the Goblet of Fire’). Ellipsis
and anaphora issues need to be identified in depth.

A more robustly domain-independent system
which can work despite significant changes in the
knowledge base structure must be developed. For
example, the system should be capable of handling
data having complex networks and interconnec-
tions among the entities (instead of a simple hi-
erarchy as we have used).

Instead of a simple dictionary, a better method
for analyzing the positively and negatively asso-

Category Woz Avg. Rating
Benchmark out of 5

Relevance 4.625 4
Correctness 4.5 3.5
Overall 4.25 3.5

Table 6: Subjective Evaluation

ciated words expressed in queries can be found,
instead of a simple dictionary. Keeping track of
both positive and negatively associated keywords
could prove helpful for providing suggestions.

A corpus with a wide variation in the pattern of
questions, along with questions in statement form
must be analyzed and considered, in order to make
the system more accurate for generic queries. The
usefulness of the information gathered through
this method and the ease of mapping to a data rep-
resentation must also be studied. More rigorous
testing needs to be done for the descriptive ques-
tions.

The possibility of increasing the accuracy of
keyword identification by using statistical ma-
chine learning methods also needs to be explored.

References
Akshar Bharati, Ashok Gupta, and Rajeev Sangal.

1995. Parsing with nesting constraints. In Proc of
3rd NLP Pacific Rim Symposium, pages 4–6.

Timothy W Bickmore, Daniel Schulman, and Can-
dace L Sidner. 2011. A reusable framework for
health counseling dialogue systems based on a be-
havioral medicine ontology. Journal of biomedical
informatics, 44(2):183–197.

Dan Bohus and Alexander I Rudnicky. 2003. Raven-
claw: Dialog management using hierarchical task
decomposition and an expectation agenda. Eighth
European Conference on Speech Communication
and Technology.

Myroslava O Dzikovska, James F Allen, and Mary D
Swift. 2003. Integrating linguistic and domain
knowledge for spoken dialogue systems in multiple
domains. In Proc. of IJCAI-03 Workshop on Knowl-
edge and Reasoning in Practical Dialogue Systems.

Annika Flycht-Eriksson. 2004. Design and use of
ontologies in information-providing dialogue sys-
tems. Dissertation, Linkping Studies in Science and
Technology, Thesis n. 874, School of Engineering,
Linkping University.

Prathyusha Jwalapuram and Radhika Mamidi. 2017.
Keyword and constraint identification for question
answering. In 15th International Conference of the

129

Pacific Association for Computational Linguistics,
Yangon, Myanmar, in print.

Cheongjae Lee, Sangkeun Jung, Seokhwan Kim, and
Gary Geunbae Lee. 2009. Example-based dialog
modeling for practical multi-domain dialog system.
Speech Communication, 51(5):466–484.

Laurent Mazuel and Nicolas Sabouret. 2006.
Generic natural language command interpretation in
ontology-based dialogue systems. In Proceedings of
the 2006 IEEE/WIC/ACM international conference
on Web Intelligence and Intelligent Agent Technol-
ogy, pages 347–350. IEEE Computer Society.

David Milward and Martin Beveridge. 2003.
Ontology-based dialogue systems. In Proc. 3rd
Workshop on Knowledge and reasoning in practical
dialogue systems (IJCAI03), pages 9–18.

A Example Dialogues

System: What would you like me to look for?
Me: I want to try fantasy fiction.
System: I’ve found Fantasy.
I found these about/under Fantasy :

J. K. Rowling
Christopher Paolini
George R. R. Martin
Jonathan Stroud

Me: Do you have books by Rice?
System: I’ve found Anne Rice.
I found these about/under Anne Rice :

The Vampire Chronicles
What would you like me to look for?
Me: Go back to fantasy.
System: I found these about/under Fantasy :

J. K. Rowling
Christopher Paolini
George R. R. Martin
Jonathan Stroud

Table 7: Books: Topic Change

System: What would you like me to look for?
Me: I like books which are about vampires.
System: I’ve found vampires.
Would you like Dracula?
Me: I would prefer books which have some
mystery in them.
System: I’ve found Mystery, Thriller,
Suspense in the database.

Table 8: Books: Relative Clauses

Me: I like Indian food. Like Chicken
Tikka.
System: I found these under Indian:

RESTAURANT-13
RESTAURANT-22
RESTAURANT-26

I found these for Chicken Tikka:
RESTAURANT-22
RESTAURANT-26

Me: I like Indian food. But I don’t like
RESTAURANT-22 or RESTAURANT-26.
System: I think these restaurants are relevant:

RESTAURANT-13

Table 9: Restaurants: Multiple Sentence Input and
Rejection

Me: I like Tom Hanks.
System: I think these movies are relevant:

Catch Me If You Can
Saving Private Ryan

Me: Recommend some Matt Damon movies.
System: I think these movies are relevant:

Saving Private Ryan
Me: I like Hanks. I don’t like Damon.
System: I think these movies are relevant:

Catch Me If You Can

Table 10: Movies: Multiple Sentence Input and
Rejection

System: What would you like me to look for?
Me: I want Neil Gaiman and Terry
Pratchett books.
System: Do you want an intersection
of Neil Gaiman and Terry Pratchett?
Me: Yes.
System: Would you like Good Omens?
System: What would you like me to look for?
Me: I like Jules Verne and Isaac Asimov.
System: Do you want an intersection
of Jules Verne and Isaac Asimov?
Me: No.
System: I found these under Jules Verne

Twenty Thousand Leagues Under the Sea
Around the World in Eighty Days
Journey to the Center of the Earth

I found these under Isaac Asimov:
I, Robot
Caves of Steel
Foundation Series

What do you think?
Do you want books from the above?

Table 11: Books: Clarification Dialogue

130

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 131–140

Document Level Novelty Detection :
Textual Entailment Lends a Helping Hand

Tanik Saikh, Tirthankar Ghosal, Asif Ekbal, Pushpak Bhattacharyya
Department of Computer Science and Engineering, Indian Institute of Technology Patna

{tanik.srf17,tirthankar.pcs16,asif,pb}@iitp.ac.in

Abstract

In this paper we present a way of detect-
ing novelty of a document with respect to
the relevant source documents with the aid
of methods used in detecting Textual En-
tailment (TE). The proposed TE system is
based on supervised machine learning ap-
proach that makes use of different similar-
ity metrics. The TE system is further inter-
preted to detect the novelty of an incom-
ing document with respect to some source
document(s) already seen by the system.
We design a corpus to support this foun-
dation of novelty at the document level
and coin it as the Document Level Nov-
elty Detection (DLND) corpus. We em-
ploy standard supervised classification al-
gorithms such as Support Vector Machine
(SVM), Multilayer Perceptron (MLP) and
Random Forest (RF) and investigate their
performance on DLND. Evaluation results
show the accuracies of 78.78%, 77.27%
and 74.24% for SVM, MLP and RF, re-
spectively on DLND. To establish the ef-
ficacy of our methods we evaluate our
model on the benchmark datasets released
in the shared task of Recognizing Textual
Entailment - 6 (RTE-6) and Recognizing
Textual Entailment - 7 (RTE-7). Experi-
ments show the accuracies of 94.91% and
96.72% on RTE-6 and RTE-7 dataset, re-
spectively.

1 Introduction

Novelty detection from texts is an age-old prob-
lem in text mining and have found significance
in various applications of Natural Language
Processing (NLP) such as Text Summarization
(Bysani, 2010). Novelty detection from texts

implies figuring out new information from a
given piece of text and subsequently arriving to
the judgment that whether a given piece of text
could be termed as novel or not. The decision
should always be with respect to some relevant
pieces of source texts. The problem of novelty
detection has been studied via various NLP and
machine learning (ML) paradigms ranging from
classification to clustering. On the other hand TE
is a NLP problem which is defined as a directional
relationship between the two text fragments,
termed as Text (T) and Hypothesis (H). It is said
that:

T entails H if, typically, a human reading T
would infer that H is most likely to be true (Dagan
et al., 2006)

i.e. to judge that whether H could be in-
ferred from T. This inference is not only based on
understanding of T but also on some prior domain
knowledge. Novelty detection finds it’s relevance
with TE in the sense that, a certain hypothesis
H entailed from a certain piece of source text T
could be considered as non-novel with respect
to T if a human reading the hypothesis H after
reading T would find redundant information in
H. Whereas if H is not entailed from T then
a human reading H after T would find new
piece of information in H and hence H could be
considered as novel with respect to T. The basis
of our work also proceeds with this intuition and
is grounded with the very basic relationships of
textual entailment with textual similarity. Textual
similarity is bi-directional relationship between
two text fragments whereas textual entailment
is an uni-directional relationship between the
hypothesis and source text where the former could
be derived from the latter but not the reverse.
Similarity, it can be manifested in a scale that

131

ranges from semantic equivalence to complete
unrelatedness, whereas TE can be either Yes or
No. The implication of novelty with TE was first
attempted in the TAC RTE-6 Novelty Detection
Subtask (Bentivogli, 2010) and also being carried
out in RTE-7 (Bentivogli, 2011). In these tracks
also they defined those piece of Hypotheses as
Novel which are Not Entailed by Texts. On the
basis of this intuition we carry out the experiments
described henceforth. These tasks were rendered
at the sentence-level and they established this
view of TE as an opposite characteristic to
novelty. In this work we take forward this view
to investigate novelty detection at the document
level via TE with emphasis to textual similarity
measures. The contributions of the present work
could be enumerated as follows:

• Investigating the role of TE to detect novelty
of a document.

• Creating our own benchmark corpora for
novelty detection at the document level.

1.1 Motivation

The motivation behind the current work stemmed
from the following:

• Exponential dump of redundant information
across the web which hinders user quest of
new meaningful pieces of information.

• Explore the implication of TE to detect nov-
elty at the document level.

We make use of lexical level similarity features to
build the TE system. The studies (Saikh et al.,
2015; Saikh et al., 2016) showed that the use of
similarity measures such as Cosine Similarity, Jac-
card, Dice, Overlap etc. as features can effectively
be used in taking entailment decision between a
pair of texts (RTEs datasets) and these were also
used in detecting paraphrase relations between a
pair of texts written in Indian languages (Tamil,
Malayalam, Hindi and Punjabi) as in FIRE-2016
shared task, namely Shared Task on Detecting
Paraphrases in Indian languages (DPIL). This
straightforward relationship between textual sim-
ilarity and TE encouraged us to explore various
similarity measures to detect entailment at the doc-
ument level. Entailment criteria lead us to inves-
tigate the novelty of the target text with respect
to a set of source text(s). Our understanding and

survey reveal that in spite of having great poten-
tial in various applications, novelty detection at the
document level did not garner required attention.
Thus investigating textual similarity measures to
infer document level entailment formed the very
basis of our work for detection of novelty at the
document level. To the best of our knowledge our
approach in viewing document level novelty de-
tection task is novel and has not been tried before.
We believe that our method towards detecting nov-
elty of a document correlating with textual entail-
ment would provide a strong baseline and instigate
further research along this line.

1.2 Related works

Research in novelty detection could be traced
back to the Topic Detection and Tracking
(TDT) (Wayne, 1997) evaluation campaigns
where the concern was First Story Detection
(FSD) or to detect new events with respect to
online news streams, notable being the UMass
approach (Allan et al., 2000). The task gained
popularity in the tracks of Text Retrieval Con-
ferences (TREC) of the year of 2002, 2003 and
2004 (Voorhees, 2002; Voorhees, 2003; Clarke
et al., 2004) although the focus was at sentence
level novelty detection. Some interesting works
in TREC were based on the sets of terms (Zhang
et al., 2003a; Zhang et al., 2003b), term trans-
lations (Collins-Thompson et al., 2002), Princi-
pal Component Analysis (PCA) vectors (Ru et
al., 2004), SVM classification (Tomiyama et al.,
2004) etc. Similar works relied on named enti-
ties (Gabrilovich et al., 2004; Li and Croft, 2005;
Zhang and Tsai, 2009), language models (Zhang
et al., 2002; Allan et al., 2003), contexts (Schiff-
man and McKeown, 2005) etc. At the docu-
ment level, (Karkali et al., 2013) computed nov-
elty score based on the inverse document fre-
quency scoring function. More recently (Dasgupta
and Dey, 2016) conducted experiments with in-
formation entropy measure to calculate innova-
tiveness of a document. Novelty detection with
the help of TE was first introduced as a sub-
task of RTE-6 (Bentivogli, 2010) challenge or-
ganized by Text Analysis Conference in the year
of 2010. Several participants took part in this
shared task and reported various interesting results
which opened a new avenue of determining nov-
elty with the help of TE. The best result was ob-
tained by (Houping Jia and Xiao, 2010) with an

132

F-Score of 82.91%. The authors made use of Syn-
tactic method (MINIPAR parser relationship) and
semantic knowledge (Wordnet, Verb Ocean and
LingPipe) to achieve the accuracy. The novelty
detection subtask was again organized as a part of
RTE-7 (Bentivogli, 2011). In this track the best
F-Score of 90.95% was obtained by (Tsuchida
and Ishikawa, 2011). Their machine learning
based approach employed lexical level matching
measures as features. Other participating sys-
tem’s results in this track were very promising and
revealed that detecting novelty using entailment
could be a good direction. We leverage this idea
of TE for detecting novelty but at the document
level. Due to the non-availability of a proper, dedi-
cated document level novelty detection corpus, we
create a dataset for the purpose. We use super-
vised machine learning algorithms : SVM (Vap-
nik, 1995; Chang and Lin, 2011), RF (Breiman,
2001) and MLP (Becerra R., 2013; Costa et al.,
2015) on features extracted from our as well as
RTE datasets. Evaluation shows encouraging per-
formance on both the datasets as reported in Sec-
tion 4.

2 Proposed Method for Novelty
Detection

We propose a supervised scheme for detecting
document level novelty using the features for de-
tecting TE. The proposed method aims at devel-
oping a machine learning based TE system where
different similarity measures were employed as
features. The features include vector based sim-
ilarity measures (i.e. cosine, Dice), set based sim-
ilarity measures (i.e. Jaccard, Overlap and har-
monic), lexical level similarity measures (i.e. un-
igram similarity with respect to novel/non-novel,
unigram similarity with respect to source), entail-
ment trigger polarity based similarity (based on
negation), the length difference between text and
hypothesis, the number of overlapping keywords
and the number of overlapping Named Entities
(NEs). Given a pair of documents (i.e. target-
source) the system has to decide whether the tar-
get document can be entailed from any of the
source(s). A document is treated as non-novel if
it is fully entailed from any or all of the source
documents. Else if there is sufficient new infor-
mation in the target document which is not de-
rived from the source(s), the document is viewed
as novel. Paucity of a dedicated document level

novelty detection corpus led us to create the cor-
pus and we term the resource as the Document
Level Novelty Detection (DLND) corpus. It con-
sists of 202 different topics mostly taken from the
politics and business domains. In each topic there
exists at least one novel and non-novel documents
and three source documents. Each target (novel
or non-novel) document is compared with three
source documents on the same topic. We calcu-
late similarity scores between a target document
and three on-topic source documents with the help
of above mentioned measures. So for each tar-
get document pitched against the three source doc-
uments, we obtain three scores for each feature.
Hence we rely on two methods, namely Maximum
and Average to arrive upon the final measure.

1. Maximum: For each topic, each target doc-
ument is compared with all the three source
documents. This yields three scores for each
similarity measure. We take the maximum of
the three values with the intuition that a non-
novel document would have a high similarity
score with all or any one of the source doc-
ument(s). Whereas a novel document would
contain new information and would be lex-
ically distant from all the three source doc-
uments. Hence even if we take the maxi-
mum of the similarity values, it would yield
low score as compared to that of the non-
novel documents. Let us consider there is a
novel/non-novel target document dt which is
to be compared with three source documents
ds1, ds2 and ds3. For each feature, we thus
compute three scores sc1, sc2 and sc3. We
take the maximum of these three scores as the
feature value for the respective feature.

2. Averaging: In this approach we take the av-
erage of the three scores obtained against the
three source documents. This we do assum-
ing that reference information is distributed
in the source documents. So for a target doc-
ument dt with three source documents, ds1,
ds2 and ds3, we hence obtain three scores (for
each feature) sc1, sc2 and sc3. We take the
average of these three scores as feature value
for the respective features.

For each instance we generate the feature vector
consisting of all the features as mentioned above.
We assign the class label as Not Entailed, when

133

we compare with a novel document and as En-
tailed when the comparison is performed with a
non-novel document. We assume a piece of text
as Novel which is Not Entailed with respect to the
set of repositories (source documents). Such re-
lation between novelty and TE was established in
the subtask, namely novelty detection using tex-
tual entailment in (Bentivogli, 2010; Bentivogli,
2011). We develop models using three popular
supervised machine learning algorithms, namely
SVM with linear Kernel (Vapnik, 1995; Chang
and Lin, 2011), MLP (Becerra R., 2013; Costa
et al., 2015), and RF (Breiman, 2001). SVM is
known to be one of the very promising classifiers
for binary classification. MLP makes use of back-
propagation to classify instances and random for-
est combines the output of multiple decision tree
which is a tree based classifier. We make use of
Weka 1 implementation of these classification al-
gorithms.

2.1 Features used for Novelty Detection
Features play very crucial role in any machine
learning assisted experiment. Hence, use of proper
features for solving the problem is an important
part of such a particular system. We use the fol-
lowing set of features for training and testing of
classifiers:

1. Cosine Similarity: Cosine similarity
(Nguyen H.V., 2011) is a vector based simi-
larity metric. It calculates similarity between
the two vectors of A and B by the following
formula. This is a well known similarity
metric and perhaps the most widely used one.

Cosθ = A.B/||A||.||B|| (1)

where, A and B are two vector representa-
tions of two texts. The similarity score lies
between 0 to -1, where, -1 indicates exactly
opposite, 1 indicates exactly same, and 0 in-
dicates the independence. It is to be assumed
that higher the similarity score obtained more
is the chance that the pair of text snippets be-
come textually entailed, so it could be a good
predictor of TE.

2. Jaccard Similarity: Jaccard similarity (Jac-
card, 1901) is a set based similarity metric. It
is defined as follows:

Jaccard(A,B) = |A ∩ B|/|A ∪ B| (2)

1http://www.cs.waikato.ac.nz/ml/weka/

where A and B represent two sets of docu-
ments. A similar pair is expected to share
more words and hence the entailment relation
holds (Almarwani and Diab, 2017). Follow-
ing this intuition we make use of set based
similarity metric in our work. This is very
well established similarity metric and mea-
sure the similarity between the two finite sets.

3. Dice Similarity: Dice Similarity (Dice.,
1945) is also a vector based similarity met-
ric. It’s value lies within the range of 0 to 1.
It can be calculated using the following for-
mula.

Dice(A,B) = 2|A ∩ B|/(|A| + |B|) (3)

Here, A and B represent the first and second
set of documents, respectively. The mathe-
matical derivation of this measure is same as
the derivation of F-measure, where precision
and recall both are taken into account. So this
measure also captures both precision and re-
call.

4. Overlap: Overlap (Jayapal, 2012) is another
set based similarity metric, where a discourse
can be represented by a set. Elements of the
set are words. It’s value lies between 0 to 1. It
can be calculated as per the following equa-
tion:

Overlap(A,B) = |A ∩ B|/min(|A|, |B|) (4)

Here, A and B correspond to the Bag-of-
Words (BoW) representation of two compar-
ing documents.

5. Harmonic: Harmonic (Joshi et al., 2007) is
a set based similarity metric. It can mea-
sure the similarity between two pairs of doc-
uments by the following equation

Harmonic(A,B) = |A ∩ B|(|A+ |B|)/2.|A|.|B| (5)

Here A and B representing two comparing
documents in terms of set.

6. Unigram similarity with respect to target
document: Here we measure the similarity
between two documents by calculating the
number of common unigrams between a pair
of comparing documents normalized by the
number of unigrams present in novel/non-
novel (target) document to which the com-
parison is being performed. This can be illus-
trated by the following equation, where nuc:

134

Number of common unigrams in two docu-
ments and nut: Number of unigrams in the
target document.

USt =
nuc

nut

More is the overlapping of unigrams between
the two documents higher is the chance of en-
tailment between these.

7. Unigram Similarity with respect to source
document: Unigram similarity with respect
to source document is computed following
the same way as the previous approach, ex-
cept the normalization is done by the number
of unigrams present in the source document.
This can be represented by the following for-
mula, where nuc: Number of unigrams com-
mon between two documents and nus: Num-
ber of unigrams in source document

U.Ss =
nuc

nus

8. Length difference: The length difference be-
tween the two comparing documents is used
as a feature. Our analysis to the datasets
released as part of RTE-1 to RTE-5 show
that length of ”Text (T)” -the entailing text
is always larger than the length of ”Hypothe-
sis (H)” - the entailed hypothesis as shown
in Table 1, where, THP : number of T-H
pairs, ATL: average text length in words and
AHL : average hypothesis length in words for
the development and the test set belonging
to each dataset. These statistics, therefore,
shows that the length difference can be used
as a feature in the experiment.

Datasets Development set Test Set
THP ATL AHL THP ATL THP

RTE-1 567 23 9 800 25 10
RTE-2 800 26 9 800 27 8
RTE-3 800 34 8 800 29 7
RTE-4 0 0 0 1000 39 7
RTE-5 600 97 7 600 96 7

Table 1: Statistics of the RTEs datasets

9. Number of overlapping keywords: The mean-
ing of a textual document is often represented
by a set of keywords. We extract the key-
words present in each source and target docu-
ment. we make use of Rapid Automatic Key-
word Extractor (RAKE) 2 (Rose S. and W.,

2https://github.com/aneesha/RAKE

2010) for this purpose. We count the num-
ber of overlapping keywords between the two
(source and target) comparing documents.
This count is set as the feature value in our
experiment.

10. Number of overlapping Named Entities
(NEs): Named entities (NEs) provide impor-
tant evidence in taking the entailment deci-
sion between a pair of texts. We use Stanford
NER3 for recognizing the NEs. We extract
NEs present in novel, non-novel and source
document and find the number of overlap-
ping NEs between the two (source and target)
comparing documents. We use this count as
the feature value in our experiment.

11. Polarity feature: Most of the features used in
our work are based on lexical matching. Pres-
ence of negation might cause a problem in the
entailment decision if we rely solely on the
lexical matches. As an example, let us con-
sider the following two sentences: T: Puja
lives in Delhi. and H: Puja does not live in
Delhi, If we compare these two sentences us-
ing lexical matching it will produce a consid-
erably high similarity score. Thus the system
will decide these as textually entailed, but ac-
tually they are not so. In order to handle this
situation we define the feature as following.
A document might contain more than one
negation words. In order to handle negation
at the document level we make use of stan-
ford NER tagger and RAKE key phrase ex-
tractor to identify NEs and keywords present
in a particular document. In every sentence in
a document we search for the keyword or NE.
If any of these or both are present in a sen-
tence, we pick up those sentences. We count
the number of negation words like ”no/not”
present in those sentences. We take those
count as the feature value. This is a very triv-
ial approach and needs further investigation.

3 Dataset Description

We evaluate the efficacy of our approach on the
RTE-6 and RTE-7 datasets for novelty detection
subtask. It is to be noted that these two datasets
were created aiming sentence-level novelty detec-
tion. However in the present work we focus on
detecting document level novelty. To investigate

3https://nlp.stanford.edu/software/CRF-NER.html

135

the implication of our methods for detecting nov-
elty of a document we create the Document Level
Novelty Detection (DLND) corpus.

3.1 Benchmark Datasets (RTE-6/7)
The novelty detection subtask was organized
in conjunction with the main tasks of RTE-6
(Bentivogli, 2010) and RTE-7 (Bentivogli, 2011)
tracks. In these tracks, organizers released a
benchmark dataset for novelty detection using TE.
We make use of this corpus to evaluate our sys-
tem. In RTE-6 the novelty detection dataset con-
sists both development and test sets. Each set con-
tains 10 different topics. Statistics of development
and test sets are shown in Table 2. There exists
multiple texts for each hypothesis in both devel-
opment and test datasets. The entailment decisions
are either Yes, i.e Non-novel or No i.e Novel for
each hypothesis and text pair.

Development Set Test Set

RTE-6 Topics 10 10
Hypotheses 183 199

RTE-7 Topics 10 10
Hypotheses 284 269

Table 2: RTE-6 and RTE-7 Novelty Subtask
Dataset Statistics

3.2 DLND Corpus
We prepare the Document Level Novelty Detection
(DLND) corpus by unbiased topic-wise crawling
of newspaper articles belonging mostly to poli-
tics and business genre for a period of five months
(from November 2016 - March 2017). The objec-
tive was to investigate, that for a given set of on-
topic relevant documents already seen/read by the
user, what is the novelty of an incoming on-topic
document to him/her? We follow the heuristics
that, on a given date, different newspapers would
report similar contents regarding a specific event,
and hence be content-wise non-novel to a reader
once s/he had already read one of them. Reporting
on subsequent dates on the same event would con-
tain some new information, hence could be con-
sidered as novel. For this we keep three on-event
reporting by different agencies as the Source doc-
uments usually chosen from the initial dates of re-
porting. Having read the source documents we
ask the annotators to annotate the on-event other
crawled documents from different dates as non-
novel or novel with respect to the source collec-
tion based on the information coverage and human
judgment. The final structure of DLND corpus

looks like as shown in Figure 1. Three annotators
with post-graduate level of knowledge in English
were employed to use their expertise for labeling
an incoming target document as novel if the target
document has minimum semantic/lexical overlap
with the source documents. A certain target doc-
ument was labeled as non-novel if there was max-
imum lexical/semantic overlap with the source
documents. We left out the indecisive cases for our
experiments. We found the inter-rater agreement
to be 0.82 in terms of Kappa co-efficient (Co-
hen, 1960) which is considered to be good as per
(Landis and Koch, 1977). Intuitively, we perceive

Figure 1: DLND corpus structure

the source collection of each event as the memory
of the reader whereas novel and non-novel are the
test instances against the knowledge of the reader.
The datasets consists of 202 different topics. For
each topic there exist at least one novel/non-novel
document and three source documents. We parti-
tion the whole corpus into train and test sets fol-
lowing the ratio of 7:3. Statistics of the datasets
for training and test set in terms of average doc-
ument length in three categories, namely Novel,
Non-Novel and Source documents are shown in
Table 3.

Novel Non-Novel Source
Training Set 3057 2337 2908
Test Set 1310 1001 1246

Table 3: Statistics of the DLND Datasets

4 Experiments, Results and Discussion

In this section we discuss the pre-processing done
on the datasets, results obtained through exper-
imentations and thereby analyze the errors. As
the documents were collected from the various
web sources, these were not well structured. We
pre-processed the documents by removing white
spaces.

136

4.1 Experiments

We calculate similarity scores between a target
(novel/non-novel) and source document using var-
ious similarity measures, and use these as features
in our classifiers. These scores are used to gen-
erate the feature vectors for classifier’s training
and/or testing. As already mentioned we used RF,
MLP and SVM as our classification algorithms.
These models are used to assign a class label (En-
tailed or Not Entailed) to each instance in the test
set. These predicted classes are compared to the
gold label to compute the final results.

Novelty and TE are highly co-related. In the
context of similarity, a target document is said to
be novel with respect to a collection of source
document(s) if it has very less similarity to the
sources. Otherwise, it is termed as novel. On the
other hand similarity and TE are directly propor-
tional if we keep aside the presence of negations in
the comparing texts. TE between two texts can be
judged by measuring the similarity between those
two particular texts. We can conclude that nov-
elty and TE are opposed to each other. Entailment
can be a way of judging the non-novelty of a doc-
ument. We report the results on test set of dif-
ferent classifiers in Table 4. Results reported in

Accuracy (Percentage)
Classifiers Maximum Averaging

SVM (Best Performing Classifier) 78.78 78.55
MLP 77.27 75.61
RF 74.24 69.73

Table 4: Results on DLND test datasets

Table 4 demonstrate that SVM in both the cases
performs best amongst all. This is not unexpected
keeping in mind the success of SVM in solving
a wide range of text classification problems with
features which are overlapping in nature. MLP
makes use of back-propagation technique to clas-
sify instances. In our setting we use 5 layers that
might have caused better accuracy. Random For-
est also seems to suit well to our task.

4.2 Results on benchmark datasets

We evaluate our model on the benchmark datasets
of RTE-6 and RTE-7 for novelty detection. The
task was to detect those hypotheses which are
novel (not-entailed) with respect to the corpus.
We show the results in Table 5, where P: Preci-
sion, R: Recall and F1: F-score. We also com-
pare the performance with the best systems re-
ported in RTE-6 (Houping Jia and Xiao, 2010)

and also in RTE-7(Tsuchida and Ishikawa, 2011).
The best result obtained in RTE-6 novelty detec-

P(%) R(%) F1(%)

RTE-6 (Houping Jia and Xiao, 2010) 72.39 97 82.91
Proposed Method 95.74 99.08 96.86

RTE-7 (Tsuchida and Ishikawa, 2011) 86.92 95.38 90.95
Proposed Method 96.97 99.73 98.33

Table 5: comparison of results obtained with the
best system’s results on RTE-6 and RTE-7

tion subtask is with the F-score of 82.91% by
(Houping Jia and Xiao, 2010). Syntactic (out-
put of MINIPAR parser, nodes matching texts and
hypotheses) and semantic (WordNet, Verb Ocean,
and LingPipe) matching between texts and hy-
potheses were employed for that purpose. An F-
score of 90.95% was obtained as the best score
by (Tsuchida and Ishikawa, 2011) on RTE-7 nov-
elty detection dataset, with mostly lexical match-
ing features in a machine learning framework. As
is evident, our proposed system successfully out-
performs those state-of-the-art techniques of RTE-
6 and RTE-7 by a significant margin.

4.3 Sensitivity Analysis of Features

In order to illustrate the contribution of each fea-
ture to our predicting class, we perform an abla-
tion study. Table 6 below reports the accuracy fig-
ures on training set (based on 10-fold cross valida-
tion) by removing one feature after another, where
the acronyms U.S.N, U.S.S, L.D, Keyword and NE
stands for Unigram similarity with respect to tar-
get (Novel/Non-Novel) document, Unigram simi-
larity with respect to source, Length Difference,
number of overlapping keywords and number of
overlapping Named Entities respectively. Table

Feature Removed Accuracy (%)
None 85.38

Cosine Similarity 84.85
Jaccard Similarity 85.10

Dice 85.17
Overlapping 85.13
Harmonic 84.85

U.S.N 83.60
U.S.S 84.06
L.D 85.03

Keyword 82.70
NE 83.12

Polarity 84.96

Table 6: Feature sensitivity analysis

6 shows that ‘unigram similarity with respect to
target document‘, # of keywords match, # of NE
match, and Cosine similarity are the most con-
tributing features to our experiments.

137

4.4 Error Analysis
Below we analyze the output of the system and
summarize the causes of the errors committed.

1. In our current work we assumed that more
the similarity at the lexical level, higher is
the chance that the document pair is entailed
to each other. The intuition behind this lexi-
cal matching based experiment was grounded
with a very basic assumption that more the
overlapping tokens between two comparing
documents higher is the chance of holding
TE relation between that pair of text snippets.
Although this assumption works up to a cer-
tain extent, but fails when semantics is to be
considered.

2. Presence of negation words often creates
problem in entailment decision. To overcome
this we make use of polarity based feature (i.e
presence/absence of negation words). This
intuition works well for the single occurrence
of negation word, but as we deal with docu-
ments there might be multiple negation words
in a particular document. Dealing with multi-
ple occurrences of negation words at the doc-
ument level is very challenging. We will in-
vestigate this in more details in the future.

3. Although the proposed system considers the
NEs and keywords, but it does not take Mul-
tiword Expressions (MWEs) into account.
Dealing with multi-word expressions may be
useful in taking entailment decision.

4. One of the major drawbacks of this system is
the sparsity problem. The system represents
a text with lexical-level sparse vectors. So,
there might be some instances (having differ-
ent vocabulary) for which similarity measure
can produce zero score, even though they are
highly entailed.

4.5 Comparisons with the state-of-the-art
In order to compare our method with state-of-the-
art systems we evaluate a recent method proposed
in (Dasgupta and Dey, 2016) on our DLND cor-
pus. This particular entropy-based approach pro-
duced novelty score (NS) of a document d with
respect to a collection c. We adapt the respec-
tive threshold criteria and infer that documents
with novelty score above (average+standard devi-
ation) are Novel and that with novelty score below

(average-standard deviation) are Non-Novel. We
left out the remaining average novelty class cases.

System Accuracy (%) F1 (%)
(Dasgupta and Dey, 2016) 67.94 70.34

Proposed Approach (Maximum-SVM) 78.78 93.49

Table 7: Comparison with the state-of-art

From Table 7 we could see that our proposed
Maximum method based on SVM classifier per-
forms better compared to the approach of (Das-
gupta and Dey, 2016) by a margin of almost 11
points in terms accuracy.

4.6 Tests of Significance
To analyze if the improvement obtained in our sys-
tem is statistically significant over the state-of-the
art, we perform t-test at 5% significance level. The
p-values for F-measures produced by 20 runs of
our system against the best performing systems of
RTE-6 was 5.30e-85 and for RTE-7 was 1.60e-74.
We also pitched our system’s F-measure against
that obtained by the approach of (Dasgupta and
Dey, 2016) on DLND for 20 runs and the p-value
was 2.27e-91. All the p-values thus are less than
0.05 and hence the improvement is statistically
significant and unlikely to be observed by chance
in 95% confidence interval.

5 Conclusion and Future Works

In this work we addressed the problem of detection
of novelty of a document with respect to on-topic
source document(s) using the concept of TE. We
built an entailment model based on supervised ap-
proaches that make use of features extracted from
the different lexical level similarity metrics. We
also created a dedicated resource for document
level novelty detection which may pave the way
for further research in this topic. Our evaluation
on DLND shows promising results to serve as a
strong baseline for further research. Evaluation on
the RTE-6 and RTE-7 datasets demonstrate the ef-
fectiveness of our approach over the existing liter-
ature methods on novelty detection. The research
carried out in these experiments opens up a new
avenue for detecting novelty of text at document
level using textual entailment.
In future, we would like:

1. To employ deep semantic features so that
the system can capture ambiguous sentences
contained in a particular document.

138

2. To investigate semantic textual similarity to
detect novelty of a document with deep learn-
ing techniques.

3. To address the sparsity problem, we in-
tend to incorporate WordNet based similar-
ity measures and explicit semantic analysis
that will use bag-of-word representation re-
trieved from the Wikipedia text. Also distri-
butional representation of words(word2vec)
may prove effective to capture semantics.

4. To see the performance of the best perform-
ing systems of RTE-6 (Houping Jia and Xiao,
2010) and in RTE-7 (Tsuchida and Ishikawa,
2011) applied to our DLND dataset.

Acknowledgments

We would like to acknowledge ”Elsevier Centre
of Excellence for Natural Language Processing”
at IIT Patna for supporting the research work fur-
nished here in this paper.

References
James Allan, Victor Lavrenko, Daniella Malin, and

Russell Swan. 2000. Detections, Bounds, and
Timelines: Umass and tdt-3. In Proceedings of topic
detection and tracking workshop, pages 167–174.

James Allan, Courtney Wade, and Alvaro Bolivar.
2003. Retrieval and Novelty Detection at the Sen-
tence Level. In Proceedings of the 26th annual in-
ternational ACM SIGIR conference on Research and
development in informaion retrieval, pages 314–
321. ACM.

Nada Almarwani and Mona Diab. 2017. Arabic Tex-
tual Entailment with Word Embeddings. In Pro-
ceedings of The Third Arabic Natural Language
Processing Workshop (WANLP), pages 185–190,
Valencia, Spain.

Garca Bermdez R.V. Velzquez L. Rodrguez R. Pino C.
Becerra R., Joya G. 2013. Saccadic Points Clas-
sification Using Multilayer Perceptron and Random
Forest Classifiers in EOG Recordings of Patients
with Ataxia SCA2. (eds) Advances in Computa-
tional Intelligence. IWANN. Lecture Notes in Com-
puter Science, 7903(3).

Magnini B. Dagan I. Dang H.T. Giampiccolo D. Ben-
tivogli, L. 2010. The Sixth PASCAL Recognizing
Textual Entailment Challenge. In Proceedings of
the Text Analysis Conference (TAC 2010), Novem-
ber 15-16, 2010 National Institute of Standards and
Technology Gaithersburg, Maryland, USA.

Clark P. Dagan I. Dang H. T. Giampiccolo D. Ben-
tivogli, L. 2011. The Seventh PASCAL Rec-
ognizing Textual Entailment Challenge. In In
TAC 2011 Notebook Proceedings, November 14-15,
2011, Gaithersburg, Maryland, USA.

Leo Breiman. 2001. Random Forests. Mach. Learn.,
45(1):5–32.

Praveen Bysani. 2010. Detecting Novelty in the Con-
text of Progressive Summarization. In Proceedings
of the NAACL HLT 2010 Student Research Work-
shop, pages 13–18, Los Angeles, CA, June. Asso-
ciation for Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A Library for Support Vector Machines.
ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27.

Charles LA Clarke, Nick Craswell, and Ian Soboroff.
2004. Overview of the TREC 2004 Terabyte Track.
In TREC, volume 4, page 74, National Institute of
Standards and Technology Gaithersburg, MD.

Jacob Cohen. 1960. A Coefficient of Agreement
for Nominal Scales. Educational and psychological
measurement, 20(1):37–46.

Kevyn Collins-Thompson, Paul Ogilvie, Yi Zhang, and
Jamie Callan. 2002. Information Filtering, Nov-
elty Detection, and Named-Page Finding. In TREC,
Gaithersburg,MD.

Wanderson Costa, Leila Maria Garcia Fonseca, and
Thales Sehn Körting. 2015. Classifying Grasslands
and Cultivated Pastures in the Brazilian Cerrado Us-
ing Support Vector Machines, Multilayer Percep-
trons and Autoencoders. In Machine Learning and
Data Mining in Pattern Recognition - 11th Inter-
national Conference, MLDM 2015, Hamburg, Ger-
many, July 20-21, 2015, Proceedings, pages 187–
198.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Proceedings of the First Inter-
national Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual
Object Classification, and Recognizing Textual En-
tailment, MLCW’05, pages 177–190, Berlin, Hei-
delberg. Springer-Verlag.

Tirthankar Dasgupta and Lipika Dey. 2016. Auto-
matic Scoring for Innovativeness of Textual Ideas.
In Workshops at the Thirtieth AAAI Conference on
Artificial Intelligence.

Lee R. Dice. 1945. Measures of the Amount of
Ecologic Association between Species. Ecology,
26(3):297302.

Evgeniy Gabrilovich, Susan Dumais, and Eric Horvitz.
2004. Newsjunkie: Providing Personalized News-
feeds via Analysis of Information Novelty. In Pro-
ceedings of the 13th international conference on
World Wide Web, pages 482–490. ACM.

139

Tengfei Ma Xiaojun Wan Houping Jia, Xiao-
jiang Huang and Jianguo Xiao. 2010. PKUTM
Participation at TAC 2010 RTE and Summarization
Track. National Institute of Standards and Technol-
ogy Gaithersburg, Maryland, USA.

Paul Jaccard. 1901. Étude Comparative de la Dis-
tribution Florale dans une Portion des Alpes et des
Jura. Bulletin del la Société Vaudoise des Sciences
Naturelles, 37:547–579.

Arun Jayapal. 2012. Similarity Overlap Metric
and Greedy String Tiling for Plagiarism Detection
at PAN 2012. In Pamela Forner, Jussi Karlgren,
and Christa Womser-Hacker, editors, CLEF (Online
Working Notes/Labs/Workshop), volume 1178 of
CEUR Workshop Proceedings, Rome, Italy. CEUR-
WS.org.

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian
Green, and Tom Sanocki. 2007. Harmonic Co-
ordinates for Character Articulation. ACM Trans.
Graph., 26(3), july.

Margarita Karkali, François Rousseau, Alexandros
Ntoulas, and Michalis Vazirgiannis. 2013. Efficient
Online Novelty Detection in News Streams. In In-
ternational Conference on Web Information Systems
Engineering, pages 57–71. Springer.

J Richard Landis and Gary G Koch. 1977. The Mea-
surement of Observer Agreement for Categorical
Data. biometrics, pages 159–174.

Xiaoyan Li and W Bruce Croft. 2005. Novelty De-
tection Based on Sentence Level Patterns. In Pro-
ceedings of the 14th ACM international conference
on Information and knowledge management, pages
744–751. ACM.

Bai L. Nguyen H.V. 2011. Cosine Similarity Metric
Learning for Face Verification. In Kimmel R., Klette
R., Sugimoto A. (eds) Computer Vision ACCV 2010.
ACCV 2010., volume 6493 of Lecture Notes in Com-
puter Science, pages 709–720, Berlin, Heidelberg.
Springer.

Cramer N. Rose S., Engel D. and Cowley W. 2010.
Automatic keyword extraction from individual doc-
uments. In M. W. Berry and J. Kogan (Eds.), Text
Mining: Theory and Applications: John Wiley and
Sons.

Liyun Ru, Le Zhao, Min Zhang, and Shaoping Ma.
2004. Improved Feature Selection and Redundance
Computing-THUIR at TREC 2004 Novelty Track.
In TREC, Gaithersburg,MD.

Tanik Saikh, Sudip Kumar Naskar, Chandan Giri, and
Sivaji Bandyopadhyay. 2015. Textual Entailment
Using Different Similarity Metrics. In Compu-
tational Linguistics and Intelligent Text Process-
ing - 16th International Conference, CICLing 2015,
Cairo, Egypt, April 14-20, Proceedings, Part I,
pages 491–501.

Tanik Saikh, Sudip Kumar Naskar, and Sivaji Bandy-
opadhyay. 2016. JU NLP@DPIL-FIRE 2016:
Paraphrase Detection in Indian Languages - A ma-
chine Learning Approach. In Working notes of FIRE
2016 - Forum for Information Retrieval Evaluation,
Kolkata, India., pages 275–278.

Barry Schiffman and Kathleen McKeown. 2005. Con-
text and Learning in Novelty Detection. In Pro-
ceedings of Human Language Technology Confer-
ence and Conference on Empirical Methods in Nat-
ural Language Processing, pages 716–723, Vancou-
ver, British Columbia, Canada, October. Association
for Computational Linguistics.

Tomoe Tomiyama, Kosuke Karoji, Takeshi Kondo,
Yuichi Kakuta, Tomohiro Takagi, Akiko Aizawa,
and Teruhito Kanazawa. 2004. Meiji University
Web, Novelty and Genomic Track Experiments. In
TREC.

M. Tsuchida and K. Ishikawa. 2011. IKOMA at
TAC2011: A Method for Recognizing Textual En-
tailment using Lexical-level and Sentence Structure-
level Features. National Institute of Standards and
Technology Gaithersburg, Maryland, USA.

Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag New York, Inc.,
New York, NY, USA.

Ellen M Voorhees. 2002. Overview of TREC 2002. In
Trec, National Institute of Standards and Technology
Gaithersburg, MD.

Ellen M Voorhees. 2003. Overview of TREC 2003. In
TREC, pages 1–13, National Institute of Standards
and Technology Gaithersburg, MD.

Charles L Wayne. 1997. Topic Detection and Tracking
(tdt). In Workshop held at the University of Mary-
land, volume 27, page 28. Citeseer.

Yi Zhang and Flora S Tsai. 2009. Combining Named
Entities and Tags for Novel Sentence Detection. In
Proceedings of the WSDM’09 Workshop on Exploit-
ing Semantic Annotations in Information Retrieval,
pages 30–34. ACM.

Yi Zhang, Jamie Callan, and Thomas Minka. 2002.
Novelty and Redundancy Detection in Adaptive Fil-
tering. In Proceedings of the 25th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 81–88.
ACM.

Min Zhang, Chuan Lin, Yiqun Liu, Leo Zhao, and
Shaoping Ma. 2003a. THUIR at TREC 2003: Nov-
elty, Robust and Web. In TREC, pages 556–567,
Gaithersburg,MD.

Min Zhang, Ruihua Song, Chuan Lin, Shaoping Ma,
Zhe Jiang, Yijiang Jin, Yiqun Liu, Le Zhao, and
S Ma. 2003b. Expansion-based Technologies in
Finding Relevant and New Information: Thu TREC
2002: Novelty Track Experiments. NIST SPECIAL
PUBLICATION SP, (251):586–590.

140

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 141–145

Is your Statement Purposeless? Predicting Computer Science Graduation
Admission Acceptance based on Statement Of Purpose

Diptesh Kanojia†,♣,?, Nikhil Wani‡,†, Pushpak Bhattacharyya†
†Center for Indian Language Technology, IIT Bombay, India

♣IITB-Monash Research Academy, India
?Monash University, Australia
†{diptesh, pb}@cse.iitb.ac.in
‡nick.nikhilwani@gmail.com

Abstract

We present a quantitative, data-driven ma-
chine learning approach to mitigate the
problem of unpredictability of Computer
Science Graduate School Admissions. In
this paper, we discuss the possibility of
a system which may help prospective ap-
plicants evaluate their Statement of Pur-
pose (SOP) based on our system output.
We, then, identify feature sets which can
be used to train a predictive model. We
train a model over fifty manually verified
SOPs for which it uses an SVM classifier
and achieves the highest accuracy of 92%
with 10-fold cross validation. We also per-
form experiments to establish that Word
Embedding based features and Document
Similarity based features outperform other
identified feature combinations. We plan
to deploy our application as a web service
and release it as a FOSS service.

1 Introduction

Computer Science (CS) graduate admissions pro-
cess often involves holistic evaluation of prospec-
tive applicant based on multiple subjective and
quantitative parameters (Ward, 2006). Amongst
these parameters the applicant’s Statement of Pur-
pose (SOP) serves as a document to convince its
readers’ i.e. the faculty on the selection committee
- that one has recorded solid achievements which
reflect promise for success in graduate study and
hence submission of such a good quality SOP be-
comes of paramount importance.

Furthermore, Graduate admissions to most Elite
universities in the United States of America (USA)
only open twice every year - Fall and Spring
semesters.

Terminology: We use the terms essay and SOP
interchangeably further during our discussion of
the work.

2 Motivation

Applicants spend a great deal of time writing
SOPs for the admissions process. A well writ-
ten SOP is a must for an applicant to ensure their
admission in any university, and more so for elite
universities. Their thoughts and ideas should be
organized in their statement. University guide-
lines1,2, Alumni blogs3, and Admission consul-
tancy blogs4 recommend spending ample time on
each SOP and tailoring it to perfection. They also
recommend stylometry for writing an essay i.e.
word limit, active voice, coherence, and continu-
ity. Various NLP applications like Essay grading
(Larkey, 1998), Text Summarization (Gupta and
Lehal, 2010) and Sentiment Analysis (Joshi et al.,
2015) utilize these features. Hence, we believe
that an application that evaluates their statement is
crucial. The key question that this paper attempts
to answer is:

‘ Can information gained from an SOP be used
to predict the outcome of a candidate application
for graduate school admissions? ’

3 Related Work

Ward (2006) discuss a qualitative model for Grad-
uate Admissions to Computer Science programs
but do not use any Machine Learning or Deep
Learning based techniques for estimating a like-
lihood. According to them, other factors which
affect the decision of the committee reviewing
the applications include Graduate Record Ex-
aminations (GRE) score, Undergraduate Grade

1http://grad.berkeley.edu/admissions/
apply/statement-purpose/

2http://admission.stanford.edu/apply/
freshman/essays.html

3http://alumnus.caltech.edu/˜natalia/
studyinus/guide/statement/q&a.htm

4http://www.happyschools.com/
strengthen-your-graduate-school-application/

141

Point Average (GPA), Letters of Recommenda-
tion (LORs), Financial preparation of a candidate,
Alignment with institute needs keeping in mind
the diversity goals of the university, and lastly the
Undergraduate Major of the candidate. They re-
quire the user to rate the application parameters
and provide ratings as an input to their system. As
an output, they provide an estimate of acceptance
based on their model5.

On the other hand, we employ the existing state-
of-the-art techniques, identify features and use
some of them to predict the acceptance of a can-
didate. We acknowledge that we do not model all
parameters described above.

Another similar study (Raghunathan, 2010)
tries to subjectively discuss the admissions process
and details the factors which participate in the de-
cision making process of an admission committee.
They break the components of a graduate school
admissions process and state that SOP is one of
the trickiest components of an overall application.
They also note that too long an SOP would de-
ter the chances of selection of the candidate. In
light of these studies, we focus on creating a model
which is able to grade an SOP based on ML tech-
niques.

Text Similarity and related measures (Choi et
al., 2010; Adomavicius and Tuzhilin, 2005; Go-
maa and Fahmy, 2013) have been extensively stud-
ied and used for various NLP applications viz. In-
formation Retrieval (Salton et al., 1983), Sense
Disambiguation (Resnik and others, 1999). To the
best of our knowledge, there is no reported study
which evaluates SOPs based on the features iden-
tified by us, or use ML and DL based techniques
of this kind, at the time of submission. Most of the
articles list various parameters which are consid-
ered by an admissions committee and a Statement
of Purpose (SOP) is a common factor among all.

4 Experiment Design and Setup

In this section, we provide details about our exper-
iment setup and features used for the classification
task.

4.1 Dataset

We create our dataset by collecting essays from
i) Acquaintances ii) Publicly disclosed SOPs from
personal websites, and iii) Admission consultancy

5http://www.cs.utep.edu/nigel/
estimator/

blogs. For calculating the similarity measures,
we concatenate the essays of the successful appli-
cants, and create a corpus which is used for com-
parison with both training and testing data.

We collect a total of 50 manually verified SOPs
from Elite Universities (low acceptance rate <=
15%) and rejected essays equally split into two
sets. We plan to release the dataset publicly un-
der the CC-BY-SA-4.06 license.

4.2 Methodology

We use conventional Machine Learning (ML) al-
gorithms (Hall et al., 2009) like Support Vec-
tor Machines (SVM) (Vapnik, 2013), Logistic
Regression (LR) (Walker and Duncan, 1967),
and Random Forest Decision Trees (RFDT) (Ho,
1998) for the task and provide a comparison in
Section 5.

We use deep learning approaches and deploy a
simple Feed Forward Neural Network to classify
the SOPs. We split our data in two folds where
the first half is used for training, and the second
half is then split into tuning and testing datasets.
We also use Multilayer Perceptron, another simple
Feed Forward Neural Network (NN) and perform
a standard 10-fold cross validation on our dataset.
We do acknowledge the modest size of our dataset,
but we provide rigorous experimentation includ-
ing an ablation test to verify that our performance
on all classes of our data are unbiased.

4.3 Experiment Design

We cluster the set of features in the following
groups - a) Textual Features - Feature values
based on text contained within the document, b)
Word Embedding based Features - Features
based on average of vector values provided by pre-
trained model on Google News Corpora, c) Sim-
ilarity Score based and Error based features -
Features based on Document Similarity, and other
features based on errors in the document. The last
set of features have been identified by us, and are
our contribution to the work. We, then, use the al-
gorithms mentioned above to calculate precision,
recall and F-Score on each feature set.

We also perform an Ablation test to see which
feature set combination is performing the best.

6https://creativecommons.org/
licenses/by-sa/4.0/

142

Classifier Pacc Prej Pavg Racc Rrej Ravg Facc Frej Favg

RFDT 0.86 0.79 0.83 0.76 0.88 0.82 0.81 0.83 0.82
LR 0.69 0.83 0.76 0.88 0.60 0.74 0.77 0.70 0.74

SVM 0.89 0.96 0.92 0.96 0.88 0.92 0.92 0.92 0.92
Neural Network Based

Multilayer Perceptron
(Train-Test Split) - - 0.82 - - 0.82 - - 0.82

Feed Forward NN (FFNN)
(Train-Tune-Test Split) - - 0.36 - - 0.60 - - 0.45

Table 1: Performance of our model on 10-fold cross validation

4.4 System Architecture

Our architecture, shown in figure 1, provides the
necessary details about the working of our system.
The system takes as input the essay of a prospec-
tive applicant, calculates feature values for Sim-
ilarity Score and Error based features along with
Word Embedding based features and predicts an
accept or reject based on the classification model
being used.

Figure 1: System Architecture

4.5 Features Used

We use the following textual features for evaluat-
ing the SOPs. These features have been identified
via surveying linguistic properties of a text which
may affect the organization and quality of an es-
say.

4.5.1 Word Embeddings based Features

1. Average Word Vector Scores - Average of
word vectors of each word in the statement
calculated using pre-trained Google News
word vectors (Mikolov et al., 2013).

4.5.2 Textual Features

1. PoS Ratios - Ratio of nouns, adjectives, ad-
verbs, and verbs to the entire text, obtained
using NLTK7 (Loper and Bird, 2002).

7http://www.nltk.org/

Individual Feature Sets (N-fold)
Features 2-F 5-F 10-F 50% Split
T [14] 54 46 44 40

WE [300] 48 78 40 44
SE [3] 48 56 56 49

Combination of Feature Sets
T + WE [314] 56 62 62 52
T + SE [17] 48 50 38 30

SE + WE [303] 90 92 92 92
T + WE + SE [318] 52 50 53 43

Table 2: Ablation test on feature sets using Multi-
fold Cross Validation

2. Discourse Connectors - It is the number of
discourse connectors in the essay computed
using a list of discourse connectors8.

3. Count of Named Entities - Number of
named entities in the essay. We tried using
this as a feature but this drastically lowered
the F-scores, and had to be avoided in the fi-
nal set of reported experiments.

4. Readability - The Flesch Reading Ease
Score (FRES) of the text (Flesch, 1948).

5. Length features - Number of words in the
sentence, number of words in the paragraph,
and average word length.

6. Coreference Distance - Sum of token dis-
tance between co-referring mentions.

7. Degree of Polysemy - Average number of
WordNet (Fellbaum, 2010) senses per word.

4.5.3 Document Similarity Score and Error
based Features

1. Cosine Similarity - Cosine Similarity Score
of an SOP with the corpus of accepted essays
dataset, where we ensure that the SOP being
compared is not a part of the accepted essay
corpus.

8http://www.cfilt.iitb.ac.in/
cognitive-nlp/

143

2. Similarity-based features using GloVe -
The similarity between every pair of content
words in adjacent sentences. The similarity
is computed as the cosine similarity between
their word vectors from the pre-trained GloVe
word embeddings (Pennington et al., 2014).
We calculate the mean and maximum simi-
larity values.

3. Spell Check Errors - We use PyEnchant9 to
embed a spell checker and count the number
of errors in each document. The count is then
used as another feature for training classifier.

4. Out of Vocabulary Words - We use the pre-
trained Google news word embeddings and
find out word vectors for every token in the
document. The tokens which do not return
any vector are either rare words or in all prob-
ability out of vocabulary words. We use the
count of such tokens as another feature set.

5 Results

We perform the experiments detailed in section 4.3
and report our results on 10-fold cross validation.
Among the experiments we perform, we achieve
the highest F-score of 92% using the SVM classi-
fier with an RBF Kernel. The results are shown in
table 1 and discussed in Section 6.

Table 1 clearly indicates that SVM outperforms
Random Forest Decision Trees (RFDT) with a
margin of 9%, Logistic Regression (LR) with a
margin of 18%, Neural Network based Multilayer
Perceptron with a margin of 10%, and another
Feed Forward Neural Network (FFNN) with a
margin of 47%. We further discuss the impact and
justifications of these results in Section 6.

We also perform a multi-fold ablation test, us-
ing SVM Classifier, on the feature sets identified
in section 4.3. The results for the ablation test are
shown in Table 2. The table clearly identifies that
Similarity Scores and Error based features along
with Word Embedding based features give us the
best results.

6 Discussion

In order to identify the features that contribute to
the modeled non-linearity of SVM and our best
reported accuracy of 92%, we conduct a compre-
hensive ablation test. Feature sets mentioned in

9http://pythonhosted.org/pyenchant/

Section 4.3 were considered. A total of 317 fea-
tures were ablated based on their sets via multi-
fold stratified cross validation experiments and ad-
ditionally in an experiment with 50% split of the
dataset as shown in the Table 2.

It was found that the 14 identified Textual (T)
features do not contribute significantly to our
model. We extrapolate that these features may
have worked better in another context such as Sen-
timent Analysis (Mishra et al., 2017), or Essay
Grading (Valenti et al., 2003), but not for the task
of SOP Classification. Our task primarily aims
at labeling an SOP with an accept or reject, how-
ever, we observe that Textual features do not dif-
ferentiate well between coherent and incoherent
essays. We also observe that Word Embedding
(WE) features of 300 dimensions contribute sig-
nificantly towards the accuracy of our final model.
While they do not contribute notably when used
to perform classification independently, combin-
ing them with Similarity Score and Error Based
(SE) feature set form our best reported model i.e.
SE + WE.

7 Conclusion and Future Work

In this paper we demonstrate the applicability of a
data driven approach to mitigate the unpredictabil-
ity of Computer Science graduate admissions pro-
cess. We build a corpus of fifty manually veri-
fied SOPs from Accepted applicants to Elite Uni-
versities (low acceptance rate <= 15%) rejected
SOPs. We show that a combination of Cosine Sim-
ilarity, Error based features and Word Embedding
based features outperform any of the textual fea-
tures based combinations, for this task. Based on
the ablation tests conducted, we model an SVM
classifier that predicts with significantly high ac-
curacy.

In future, we plan to integrate Parts-of-speech
(POS) based similarity measures and Recurrent
Neural Networks (RNN) (Cho et al., 2014) which
have been shown to work well with textual data.
Integration of other traditional metrics of a can-
didates application performance measure such as
GRE, Test of English as a Foreign Language
(TOEFL) / International English Language Test-
ing System (IELTS) score and GPA will further ro-
bustly extend this model. We also plan to translate
this novel research to an open source web applica-
tion which would allow prospective applicants to
evaluate their SOPs with our system.

144

References
Gediminas Adomavicius and Alexander Tuzhilin.

2005. Toward the next generation of recommender
systems: A survey of the state-of-the-art and pos-
sible extensions. IEEE transactions on knowledge
and data engineering, 17(6):734–749.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tap-
pert. 2010. A survey of binary similarity and dis-
tance measures. Journal of Systemics, Cybernetics
and Informatics, 8(1):43–48.

Christiane Fellbaum. 2010. Wordnet. Theory and
applications of ontology: computer applications,
pages 231–243.

Rudolph Flesch. 1948. A new readability yardstick.
Journal of applied psychology, 32(3):221.

Wael H Gomaa and Aly A Fahmy. 2013. A survey of
text similarity approaches. International Journal of
Computer Applications, 68(13).

Vishal Gupta and Gurpreet Singh Lehal. 2010. A
survey of text summarization extractive techniques.
Journal of emerging technologies in web intelli-
gence, 2(3):258–268.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten.
2009. The weka data mining software: an update.
ACM SIGKDD explorations newsletter, 11(1):10–
18.

Tin Kam Ho. 1998. The random subspace method
for constructing decision forests. IEEE transac-
tions on pattern analysis and machine intelligence,
20(8):832–844.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity
for sarcasm detection. In ACL (2), pages 757–762.

Leah S. Larkey. 1998. Automatic essay grading us-
ing text categorization techniques. In Proceedings
of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval, SIGIR ’98, pages 90–95, New York,
NY, USA. ACM.

Edward Loper and Steven Bird. 2002. Nltk: The nat-
ural language toolkit. In Proceedings of the ACL-02
Workshop on Effective tools and methodologies for
teaching natural language processing and computa-
tional linguistics-Volume 1, pages 63–70. Associa-
tion for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kuntal
Dey, and Pushpak Bhattacharyya. 2017. Leverag-
ing cognitive features for sentiment analysis. arXiv
preprint arXiv:1701.05581.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar, October. Association for Computational Lin-
guistics.

Karthik Raghunathan. 2010. Demystifying the ameri-
can graduate admissions process. StudyMode. com.

Philip Resnik et al. 1999. Semantic similarity in a
taxonomy: An information-based measure and its
application to problems of ambiguity in natural lan-
guage. J. Artif. Intell. Res.(JAIR), 11:95–130.

Gerard Salton, Edward A Fox, and Harry Wu. 1983.
Extended boolean information retrieval. Communi-
cations of the ACM, 26(11):1022–1036.

Salvatore Valenti, Francesca Neri, and Alessandro
Cucchiarelli. 2003. An overview of current research
on automated essay grading. Journal of Information
Technology Education: Research, 2(1):319–330.

Vladimir Vapnik. 2013. The nature of statistical learn-
ing theory. Springer science & business media.

Strother H Walker and David B Duncan. 1967. Esti-
mation of the probability of an event as a function
of several independent variables. Biometrika, 54(1-
2):167–179.

Nigel Ward. 2006. Towards a model of computer
science graduate admissions decisions. JACIII,
10(3):372–383.

145

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 146–154

Natural Language Programming with Automatic Code Generation
towards Solving Addition-Subtraction Word Problems

Sourav Mandal
Haldia Institute of Technology,

India
sourav.mandal@hithaldia.in

Sudip Kumar Naskar
Jadavpur University,

India
sudip.naskar@cse.jdvu.ac.in

Abstract

Solving mathematical word problems by
understanding natural language texts and
by representing them in the form of equa-
tions to generate the final answers has
been gaining importance in recent days.
At the same time, automatic code genera-
tion from natural language text input (nat-
ural language programming) in the field
of software engineering and natural lan-
guage processing (NLP) is drawing the at-
tention of researchers. Representing natu-
ral language texts consisting of mathemat-
ical or logical information into such pro-
grammable event driven scenario to find
a conclusion has immense effect in auto-
matic code generation in software engi-
neering, e-learning education, financial re-
port generation, etc. In this paper, we pro-
pose a model that extracts relevant infor-
mation from mathematical word problem
(MWP) texts, stores them in predefined
templates, models them in object oriented
paradigm, and finally map into an object
oriented programming (OOP)1 language
(JAVA) automatically to create a complete
executable code. The codes are then exe-
cuted automatically to output the final an-
swer of the MWP. The proposed system
can solve addition-subtraction type MWPs
and produced an accuracy of 90.48% on a
subset of the standard AI2 arithmetic ques-
tions2 dataset.

1 Introduction

Solving MWPs is a very longstanding research
problem; researchers in the field of Artificial Intel-

1http://docs.oracle.com/javase/
tutorial/java/concepts/

2http://allenai.org/data.html

ligence (AI), machine learning and NLP have pro-
posed various methodologies for solving MWPs
since 1960s. Word problems are formed using
natural language text rather than in mathemati-
cal notations (Verschaffel et al., 2000) and they
can be of any type of numerical problems based
on domains like mathematics, physics, geometry,
etc. (Mukherjee and Garain, 2008). Addition-
subtraction type MWP is an integral part of ba-
sic understanding of mathematics and elementary
school level curriculum. The objective of the
work presented here is primarily to generate com-
puter programs automatically from natural lan-
guage texts which when executed will produce the
desired answer. Comparison with existing MWP
solvers are not appropriate to this kind of work as
our end objective is not exactly to create the equa-
tion and solve the problem itself, but rather to gen-
erate a computer program to solve the problem and
thus it adds a new dimension to research in solving
MWPs. For example, “Dan has 64 violet marbles,
he gave Mary 14 of the marbles. How many vio-
let marbles does he now have?” is a word prob-
lem which is related to the subtraction or addition
operation. This particular problem can be solved
manually by noticing the structure of the problem
statement in which the first sentence indicates an
‘assignment’ operation and the second sentence
indicates a ‘subtraction’ operation associated with
the verb ‘give’ for Dan (primary owner) and ‘ad-
dition’ operation for Mary (secondary owner). Fi-
nal answer requirement is related to violet (at-
tribute) marble (item) in the possession of Dan.
The answer to this problem is simply obtained by
subtracting 14 from 64, i.e., 64-14=50.

In the OOP approach, we define ‘classes’ to rep-
resent real life entities and declare instances of
those classes called ‘objects’. To solve such prob-
lems, a computer programmer basically defines a
class – ‘Person’ with the data fields like name,
item name, item attribute and item quantity, and

146

a method, e.g., evaluate result(). Then he declares
objects ‘obj1’ and ‘obj2’ of this class. Therefore,
for the said example,
obj1.name = Den,
obj1.item name = marble,
obj1.item attribute = violet and
obj1.item quantity = 64
obj2.name = Mary,
obj2.item name = marble,
obj2.item attribute = violet and
obj2.item quantity = x (not given).
The operation associated with the verb ‘has’ is ‘=’
(assignment or observation) and can be coded as
obj1.item quantity = 64. The operations as-
sociated with the verb ‘give’ are both ‘-’ and ‘+’
i.e., subtraction and addition (negative transfer)
and can be coded as
obj1.item quantity = obj1.item quantity−14
and obj2.item quantity = obj2.item quantity
+14.
The arithmetic operators are selected based on the
verb categories (cf. Table 2) they belong to and the
operations can be executed from within a method,
e.g., ‘evaluate result()’. In the present work, the
verb categorization is rule-based and is determined
from the verb predicates (cf. Table 1).

The system first extracts and stores all the re-
quired information for the key entities – owners,
items, attributes, quantities, and the arithmetic op-
erations relevant to the verb semantics from the
MWP text. Then the system creates compos-
ite object entities resembling each unique owner-
item-attribute combination in the MWP, finds their
states and corresponding state transitions (if any)
on the basis of the operations or activities (verbs
they face) in that MWP, and generates the rele-
vant computer codes. However, automatic extrac-
tion of information from natural language text and
computer code generation are not trivial. More-
over, solving MWPs requires natural language un-
derstanding and reasoning which are very difficult
and most of the research in natural language pro-
cessing (NLP) tend to do away with it. There-
fore, solving MWPs automatically has remained
an open research challenge.

However, presently our system is unique in
three ways. Firstly, our system tries to capture how
a programmer can solve an MWP problem using a
JAVA like language and it acts as a bridge between
unstructured natural language and structured for-
mal language(s). This transformation from natural

to formal language (executable program) throws
immense challenges in the field of NLP and Infor-
mation Extraction (IE). Secondly, OOP paradigm
is used to model real world data driven tasks and
operations. Word problems are apt to be modeled
with OOP since it contains real world entities and
their specific activities, which motivated us to use
an object oriented approach for the present work.
The mathematical equation formation is not im-
portant here as all operations are represented with
JAVA programming statements which determine
the mathematical expressions. Once the desirable
complete JAVA program (cf. Figure 3) is formed
automatically, rest of the activities like compila-
tion and execution of the program to process the
result, are handled by the JAVA compiler itself
like any computer language programming assign-
ment and here lies the advantage of the proposed
approach. Finally, the proposed approach keeps
track of all the entities and their state transitions
throughout the text (cf. Figure 2) which makes it
much easier to answer any question based on the
text, not just the question actually present in the
MWP problem. It does not have to start process-
ing afresh for answering any other question based
on the same text.

The remainder of the paper is organized as fol-
lows. Section 2 presents an overview of relevant
related work. Section 3 provides a detailed dis-
cussion on the system components. Section 4 out-
lines the datasets, experiments and the correspond-
ing results together with some analysis, followed
by conclusions and avenues for further research in
Section 5.

2 Related Work

The research problem on generation of executable
computer programs for solving MWPs has not
been attempted so far to the best of our knowl-
edge. However, formal language modeling from
natural language text has been studied previously
in various domain by researchers mainly in soft-
ware engineering (Bryant et al., 2003; Lei et al.,
2013), web interfaces of databases (Alexander et
al., 2013), etc. Some researchers tried to repre-
sent natural language texts using regular expres-
sions (Kushman and Barzilay, 2013). Ballard and
Biermann (Ballard and Biermann, 1979) pro-
posed a natural language computing (‘NLC’) pro-
totype to process and evaluate small natural lan-
guage text word problems based on matrix com-

147

putation. They proposed a method to generate so-
lution from a matrix entry and solve problems like
“add five with the second positive entry in row 5”,
“double the fifth entry and add that to the last en-
try of that row”, etc. Each of these assignments
have some types of mathematical terminologies
like ‘add’, ‘double’, etc., which clearly indicates
the operation or operator. This research problem
is not exactly related to automatic program gen-
eration, rather it is about processing a matrix data
structure syntactically to generate the desired re-
sult based on matrix arithmetic. Liu and Lieber-
man (Liu and Lieberman, 2005) developed a sys-
tem ‘Metafor’ which converts a small description
of an event into a ‘Python’ program based on in-
teraction logs with respect to time and entity par-
ticipation. Kate et al. (Kate et al., 2005) tried to
represent natural language texts syntactically and
semantically into a formal representation that is
based mainly on deterministic context-free gram-
mar. They used “if-then” rules to develop a new
formal language ‘CLANG’ for processing natural
language text. Mihalcea et al. (Mihalcea et al.,
2006) first proposed a system that attempts to con-
vert natural language texts directly into computer
programs. They tried to identify various algorith-
mic steps, decisions and loop structures from En-
glish text representing any event and convert it into
a program skeleton using ‘PERL’ programming
language which is object oriented in nature. Fol-
lowing the “who does what” structure their sys-
tem develops a program skeleton and generates
the ‘PERL’ code for texts like “When customer or-
ders a drink, the bartender makes it”. They de-
veloped a model which creates different classes
like ‘Customer’, ‘Bartender’ and relevant meth-
ods like ‘order drink()’, ‘make drink()’ to sup-
port their actions. Our work is little relevant to
their work. Alongside, many researchers proposed
various methodologies to solve MWPs (Kushman
et al., 2014; Hosseini et al., 2014; Walker and
Kintsch, 1985; Fletcher, 1985; Roy and Roth,
2015; Shi et al., 2015; Mitra and Baral, 2016).
The work presented in this paper differs from these
works.

3 System Description

3.1 Mapping Input Texts to The Concept

Natural language texts representing some MWPs
typically contain multiple factual sentences and a
‘question sentence’ at the end (cf. the example

given in Section 1). Each sentence may or may not
have some mathematical meaning. Our objective
is to identify the key players or entities and their
state transitions from the first sentence they occur
in and till the last sentence. An MWP example
containing multiple sentences is given below.

“Harry has 15 blue and 10 green balloons.
He lost 5 blue balloons in the market. Then
he bought 3 green balloons from a shop. Tim
has 12 kites and 10 blue balloons. Tim gave
Harry 4 blue balloons.. ... How many green
balloons does Harry have? ”

This MWP problem involves 2 persons having
2 types of balloons, blue and green, and 1 per-
son having kites. Here owner entity names are
‘Harry’, ‘Tim’, and item entity names are ‘bal-
loon’ and ‘kite’, and item attributes associated
with the item ‘balloon’ are ‘blue’ and ‘green’. Our
objective is to map such information expressed
in natural language texts into object oriented pro-
gramming paradigm. Every sentence is consid-
ered as a state and throughout the input text sev-
eral state transitions take place with all unique
‘Owner–Item–Attribute’(OIA) objects (cf. Figure
2). Here we create objects like ‘Harry-balloon-
blue’, ‘Harry-balloon-green’, ‘Tim-balloon-blue’,
‘Tim-kite-null’ along with their respective quan-
tities. It is to be noticed that the owner does not
have to be a person always. Our system iden-
tifies all different types of owner, item (and at-
tribute, if any) combinations from the input text
and create ‘objects’ for each of them. It also iden-
tifies their state transitions that they go through
throughout the problem text. Most importantly,
if the text has question sentence like “How many
blue balloons are now with Harry?” or “ How
many kites does Tim have now?”, the system for-
mulates the answer by matching the ‘OIA’ object
in the question sentence. Our system carries the
information about all the ‘OIA’ objects and the
changes in quantities of the items (if any) occur-
ring in association with the operations (related to
the ‘verbs’) they face till their final state. There-
fore, after processing the question sentence and
identifying the ‘OIA’ object associated with it, the
system displays the final processed quantity of the
corresponding ‘OIA’ object as the answer.

3.2 MWP Text Simplification
To make the processing more convenient, the in-
put text is simplified first. Conjunctions are re-

148

moved and coreferences are substituted to con-
vert the input text into a simplified format so that
we can extract information with out any ambigui-
ties. We use Stanford CoreNLP3 suite 3.6.0 to per-
form the intermediate NLP tasks, e.g., POS tag-
ging, dependency parsing, coreference resolution,
etc., and extract relevant information. We remove
conjunctions like ‘and’, ‘,’ (comma), ‘but’, ‘, and’
and ‘, but’ from compound sentences and break
them into multiple simple sentences. The corefer-
ence mentions for pronouns like ‘he’, ‘she’, ‘his’,
‘her’ etc., are substituted with the corresponding
referred expressions so that we can extract the
owner entities directly and unambiguously.

3.3 Information Extraction based on
Semantic Role Labelling (SRL)

SRL techniques are mainly used to semantically
process texts and to define role(s) of every words
present in a text. For extracting information from
text, we used the SRL tool – Mateplus4 (Roth and
Woodsend, 2014; Roth and Lapata, 2015), which
was developed for meaning representations based
on the CMU SEMAFOR5 tool and frameNet6. Ta-
ble 1 shows the output of ‘Mateplus’ for the sam-
ple sentence “Sam gave Mary 23 green marbles.”.
Depending on the type of the predicates and also

ID Form POS Dependency Predicate Args:Locating
1 Sam NNP SUB - Donor
2 gave VBD ROOT Giving -
3 Mary NNP OBJ - Recipient
4 23 CD NMOD - -
5 green JJ AMOD - -
6 marbles NNS OBJ - Theme
7 ‘.’ ‘.’ P - -

Table 1: A sample SRL output

the verb grouping from VerbNet7, the verbs are
manually categorized and respective equations are
generated by the system (cf. Subsection 3.4).
Given the example, the predicate (e.g., ‘Giving’),
owners (e.g., ‘Donor’ as primary and ‘Recipient’
as secondary owner), items (e.g., ‘Theme’) and the
attribute(s) of the item(s) are extracted from the
SRL output (cf. ‘give’, ‘Sam’, ‘Mary’,‘marble’
and ‘green’ in Table 1 respectively). Depending
on the type (i.e., category) of the predicates, re-

3http://stanfordnlp.github.io/CoreNLP/
4https://github.com/microth/mateplus
5www.ark.cs.cmu.edu/SEMAFOR
6https://framenet.icsi.berkeley.edu
7http://verbs.colorado.edu/˜mpalmer/

projects/verbnet.html

spective ‘operations’ are identified for each ‘OIA’
triplet/object (cf. Section 3.4).

The system extracts all relevant information
from the input MWP texts, sentence by sentence,
identifying the owners, items, item attributes,
‘verb’, ‘cardinal number’ (or ‘quantity’) from the
SRL output (cf. Table 1) using a rule-based ap-
proach. These information are extracted from the
POS tag, and dependency relations combined with
‘predicates’ and relevant ‘arguments’. For ex-
ample, NNP/NN and SUB is an ‘owner’ entity,
NNP/NN and NMOD/PMOD/OBJ is a ‘secondary
owner’, NNS/NN and OBJ is an ‘item’, JJ and
AMOD/NMOD is an ‘item-attribute’. A maximum
of 5 conditions (rules) are used to identify each
type.

3.4 Verb Categorization & Equation
Formation

We studied the verbs appearing in the dataset (cf.
Section 4) and by manually analyzing the predi-
cates and arguments (cf. Subsection 3.3 and Table
1), we grouped the verbs into 5 categories based on
the frameNet frame definitions along with the sim-
ilarity of the verbs in terms of VerbNet verb group-
ing and probable arithmetic operational connota-
tion (=, +, -) as in Table 2. We carried out verb
categorization motivated by the work of (Hosseini
et al., 2014).

Category Verbs Operator
Observation have, find assignment
Increment gather, grow +
Decrement lose, spend −

Positive Transfer take, receive +and−
Negative Transfer give, sell, pay −and+

Table 2: Schema and operations for the verb cate-
gories.

For example, using the frame definition of ‘Giv-
ing8’ in the ‘frameNet’, we categorized ‘give’ in
the ‘negative transfer’ category where ‘-’ oper-
ator is associated with the donor/primary owner
(Sam in Table 1) and ‘+’ operator is associated
with the recipient/secondary owner (Mary in Ta-
ble 1). The frame definition for ‘Giving’ is
(Donor, [Recipient], Theme/Items, [Quantities],
[Time], [Location]....). Similarly, we categorized

8https://framenet2.icsi.berkeley.edu/
fnReports/data/frameIndex.xml?frame=
Giving

149

Category Examples Schema Entry Equations

(Null) Observation Joan has 40 blue balloons
[Joan, null, balloon

blue, 40]
Joan-balloon-blue.quantity=40

Increment Tom grew 9 watermelons
[Tom, null,

watermelon, null, 9]
Tom-watermelon-null.quantity=Tom-watermelon-null.quantity+9

Decrement Sally lost 2 of the orange balloons
[Sally, null, balloons,

orange, 2]
Sally-balloon-orange.quantity=
Sally-balloon-orange.quantity-2

Positive Transfer
Dan took 22 pencils

from the drawer
[Dan, drawer,

pencils, null, 22]
Dan-pencil-null.quantity=Dan-pencil-null.quantity+22

and drawer-pencil-null.quantity=drawer-pencil-null.quantity-22

Negative Transfer
Jason gave 13

of the seashells to Tim
[Jason, Tim, seashell,

null, 13]
Jason-seashell-null.quantity=Jason-seashell-null.quantity-13

and Tim-seashell-null.quantity=Tim-seashell-null.quantity+13

Table 3: Equation formation based on verb category and schema information

the verbs like ‘has’, ‘find’, ‘are’ having sim-
ilar kind of frame definitions in the ‘observa-
tion’ category representing the ‘=’ operation as
they do not refer any changes. We developed a
database schema to store the extracted informa-
tion from each input sentence by analyzing the
predicates associated with the verbs contained in
the MWPs. The schema is generic and defined
as [primary owner, secondary owner, item name,
item attribute, item count] for all categories of
verbs that could be present in the input text sen-
tences. Table 2 presents the verb categories (based
on only one sense of the verbs) and the corre-
sponding related operations. The ‘Positive Trans-
fer’ and ‘Negative Transfer’ categories represent
two operators connected with the ‘primary owner’
and ‘secondary owner’.

Table 3 presents the targeted equations re-
lated to the verb categories. The schema en-
try (cf. Table 3) includes extracted information
for primary owner, secondary owner, item name,
item attribute, item quantity from each sentence
in the input MWP text. Owner name (pri-
mary owner or secondary owner), item name and
item attribute, these 3 components create a single
‘OIA’ entity throughout the input text processing.
E.g., the sentence “Jason gave 13 of the seashells
to Tim” contains the primary owner ‘Jason’, sec-
ondary owner ‘Tim’, item name ‘seashell’ and
item attribute ‘null (no attribute)’ (cf. Table
3). Here, ‘Jason-seashell-null’ and ‘Tim-seashell-
null’ can be referred as two ‘objects’, say ‘Ob-
ject[0]’ and ‘Object[1]’, in the OOP scenario
where the ‘item quantity(i.e. 13) is subtracted
(i.e., -) from ‘Object[0]’ and added to ‘Object[1]’
since the verb ‘give’ belongs to the ‘Negative
Transfer’ category. Similarly, the sentence “Joan
has 40 blue balloons” will create an object entity
‘Joan-balloon-blue’ where the ‘OIA’ object is as-
sociated with the ‘assignment’ (‘=’) operator with
the ‘item quantity’(i.e. 40). The equation forma-
tions also follow the same directions as in Table

3. An input text sentence may not always have
‘secondary owner’ or ‘item attribute’. Therefore,
some of the schema entries are shown as ‘null’ in
Table 3.

Owner-Item-Attribute (object)

name:
 name of a owner (primary or secondary)

Item_name:
 name of item

Item_attribute:
 attribute of item

Item_quantity:
 quantity of item

Statement_list:
 executable
 program
 statements

prepared using verb categories

Verb

Sent_
sl
_no:
 sentence serial number

Verb_lemma:
 lemma of the verb

Primary_owner:
 actual owner

Secondary_owner:
 participating owner

Item_name:
 name of item

Item_attribute:
 attribute of item

Item_quantity:
 quantity of item

Operator1
:
 operator for primary owner

Operator2
:
 operator for secondary owner

Sentence

Sent_
sl
_no:
 sentence serial number

Sent_type:
 normal or question sentence

Sentenceline
 :
 complete sentence

Primary_owner:
 actual owner

Secondary_owner:
 participating owner

Item_name:
 name of item

Item_attribute:
 attribute of item

Item_quantity:
 quantity of item

Verb_lemma:
 lemma of the verb

Equation1
:
 for primary owner

Equation2
:
for secondary owner

Figure 1: Template-based information extraction.

3.5 Information Processing & Template
Filling

We followed a template based IE approach and
used three templates – ‘Sentence’, ‘OIA’ and
‘Verb’. Figure 1 describes the three templates.
After extracting all the relevant information, the
system stores them in the ‘Sentence’ and ‘Verb’
templates. Successively, the system identifies each
unique ‘OIA’ triplet such that at least one com-
ponent is unique with respect to the other triplets
(cf. Section 3.6). This procedure creates a num-
ber of instances of ‘OIA’ template based on the
identified unique triplets. Then by processing the
extracted information in the ‘Verb’ template, the
desired equation(s) is generated with the associ-
ated ‘OIA’ triplet(s) according to the verb cat-
egory (cf. ‘Equation’ column in Table 3) for
each sentence. The generated equations are then
added in the ‘sentence’ template as ‘Equation1’
(for primary owner) and as ‘Equation2’ (for sec-
ondary owner) (cf. Figure 1). Finally, real pro-
gramming ‘objects’ are created related to all the
‘OIA’ triplets. By matching and replacing the

150

Owner-Item-Attribute
/ Objects

Item
count(x)

Verb
lemma

Operation
Equation
statements

State no.
/ Sentence no.

mike-balloon-orange
/ obj[0]

8 have assignment obj[0].quantity=8 1 / 1

Sam-balloon-orange
/ obj[1]

14 have assignment obj[1].quantity=14 1 / 2

mike-balloon-orange
/ obj[0]

4 give -
obj[0].quantity=
obj[0].quantity-4

2 / 3

Sam-balloon-orange
/ obj[1]

4 give +
obj[1].quantity=
obj[1].quantity+4

2 / 3

Table 4: Generating program statements

triplets with the respective actual objects in the
‘equations’ (cf. ‘Equations’ column in Table 3)
of the ‘Sentence’ templates, the actual JAVA pro-
gramming statements are created (cf. Subsection
3.6 and Table 4). These program statements are
then appended according to the sequence of oc-
currence of the ‘OIA’ objects in a MWP following
their state diagrams (cf. Figure 2), which make up
the executable JAVA program (cf. Figure 3). The
system generates ‘Sentence’ templates equal to the
number of sentences in an MWP, ‘Verb’ templates
equaling the numbers of verbs existing, and an
‘OIA’ template for each unique ‘OIA’ object. The
last ‘Sentence’ template is the ‘question sentence’
which is separately analyzed to identify question
requirements. Extracted and processed informa-
tion stored in templates are finally stored in tables
using a relational database approach – MYSQL9.
This introduces structure into the unstructured nat-
ural language texts and also makes the processing
and reasoning tasks easier.

3.6 Automatic Program Generation Using
OOP Approach

3.6.1 Object Creation
In order to generate an object oriented program
from the input text, the first task is to represent the
identified unique ‘OIA’ combinations as real ‘Ob-
jects’ in OOP. E.g., if after simplification, the input
MWP text is “Mike has 8 orange marbles. Sam
has 14 orange marbles. Mike gave Sam 4 of the
marbles. How many orange marbles does Mike
now have?”, the system identifies 2 unique ‘OIA’
combinations – ‘Mike-marble-orange’ and ‘Sam-
marble-orange’. The identified ‘OIA’ triplets are
then represented as ‘obj[0]’ and ‘obj[1]’ using the

9http://www.mysql.co\ref{tab:
VerbCategories}.m/

OOP concept. These objects are the real instantia-
tion of the predefined class ‘OwnerItem’ (cf. Fig-
ure 3) resembling an ‘OIA’ template. The system
dose not consider the question sentence for object
creation.

3.6.2 JAVA Program Statements Generation
For the example in Section 3.6.1, the verb, ‘have’,
belongs to the observation category (cf. Table
2) and therefore generate the assignment (‘=”)
statements. The verb ‘give’ is the type of ‘neg-
ative transfer’ (cf. Table 2)and it produces the
statement having subtraction operation (‘-’) with
the primary owner ‘Mike’ (obj[0]) and addition
operation (‘+’) with the secondary owner ‘Sam’
(obj[1]), shown in the ‘Equation statements’ col-
umn in Table 4. The statements as a whole lead
to the executable program statements in JAVA lan-
guage. Table 4 shows, how the ‘OIA’ objects are
created, corresponding values are associated to the
objects, the mathematical operations are identified
from the verb lemma and the corresponding pro-
gram statements are generated from the same ex-
ample. The equations are first formed, e.g., “mike-
balloon-orange.quantity=8” (like ‘Equations’ col-
umn in Table 3) in which the ‘OIA’ objects are
later replaced by real objects and new equations
are formed, e.g., “obj[0].quantity=8” (cf. ‘Equa-
tion statements’ column in Table 4) using JAVA
programming syntaxes.

3.6.3 State Transition Diagram
Figure 2 demonstrates a simple forward “state
transition diagram” for all ‘OIA’ combinations
or resultant ‘OwnerItem’ objects for the example
mentioned earlier. A ‘state’ of an ‘OwnerItem’ ob-
jects is basically the sentence in the MWP texts
where it exists. An ‘OwnerItem’ object in the
program appears first in any one of the sentences

151

(first state) and moves towards the last sentence
they appear in (last state)of a MWP except the
question sentence (referred as forward transition).
The question sentence does not result in any state
change. Generally it does not have any operation
associated with it. Therefore, individual ‘Owner-

State-1

(first

sentence of

occurrence)

State-2

(second

sentence of

occurrence)

State-
m

(last

sentence of

occurrence)

input

OwnerItem

verb:
v1

item_quantity: x

OwnerItem

verb:
v2

item_quantity:
 y

OwnerItem

verb:
v3

item_quantity:
 n

Input text:
 Mike has 8 orange marbles. Sam has 14 orange marbles. Mike gave

Sam 4 of the marbles. How many orange marbles does Mike now have?

State-1

Mike-marble-orange

verb: have

item_quantity: 8

sentence 1

State-1

Sam-marble-orange

verb have

item_quantity: 14

sentence 2

State-2

Mike-marble-orange

verb - give

item_quantity: 8-4

sentence 3

State-2

Sam-marble-orange

verb give

item_quantity: 14+4

sentence 3

............

.....

State Diagram for Object[0] (
 Mike-marble-orange
)

State Diagram for Object[1] (
 Sam-marble-orange
)

Figure 2: State diagrams of the ‘OwnerItem’ ob-
jects

Item’ object entities have their own state transition
diagrams based on their presence in the sentences.
In every sentential state they may participate in an
operation or not. In Table 4, the ‘objects’ obj[0]
has 2 states, occurring in sentence numbers 1 and
3 and obj[1] has 2 states occurring in sentence
numbers are 2 and 3. Figure 2 gives a pictorial
representation of the sentential states of the ob-
ject entities and their forward transitions based on
the operations they performed. The last state of
any objects are having the final quantity associ-
ated to them. Analyzing the extracted information
from question sentence the object is identified for
whom the answer will be displayed (obj[0] in the
Figure 2). The state diagram in Figure 2 is related
to the CHANGE type word problems (Mitra and
Baral, 2016) having all quantities available for the
desired object in terms of answer generation. In
some cases, where the problems have an adverbial
modifier like all, total, together, etc (COMBINE
type (Mitra and Baral, 2016)), it is observed that
each unique object has single state and no tran-
sition. In such scenario, the statements (or related

state quantities) of all relevant objects are summed
up to generate complete JAVA code which pro-
duces final answer.

3.6.4 Executable Program Generation
After creation of the program statements for all
individual ‘OIA’ objects, they are integrated in a
predefined JAVA program skeleton in a rule-based
manner. The desired program statements are only
considered and added according to the sequence of
occurrence (i.e., events) in the given MWP. Fig-
ure 3 shows the generated program for the same
example text. The system processes the question
sentence to extract information about the ‘Owner-
Item’ about whom (or which) the question has
been asked and the presence of any modifier like
‘all’, ‘total’ etc (indicates summation). Subse-
quently, the extracted information is used to gener-
ate additional program statements (to be appended
at the end and not given in Figure 3) that processes
and displays the desired final answer. After the
program generation, compilation and execution of
that program are performed by the JAVA compiler
(JVM) itself to generate the final answer.

public class Evaluation {
 //main program

for execution

 public static void main(String
 args
[]) {

int
 total_owner=2;

int
 x=0;

// array of objects

OwnerItem
 obj
[] = new

OwnerItem
 [total_owner];

for (
int
 i = 0; i <
 obj.length
 ; i++) {

obj
[i] = new
 OwnerItem
 (); //object creation

}

obj
[0].item_count=8;

obj
[0].item_count=
 obj
[0].item_count-4;

obj
[1].item_count=14;

obj
[1].item_count=
 obj
[1].item_count+4;

obj
[0].
setname
("mike","balloon","orange");

obj
[0].display();

obj
[1].
setname
("Sam","balloon","orange");

obj
[1].display();}}

Generated Program-

class
 OwnerItem
 {
//class template

public String owner_name;

public String item_name;

public String item_attribute;

public
 int
 item_count = 0;

public void
 setname
(String name, String var,

String
 atr
) {

owner_name = name;

item_name = var;

item_attribute =
 atr
;

}

public void display() {// display states

System.out.println
 ("Owner is:" + owner_name);

System.out.println
 ("Item is:" + item_name);

System.out.println
 ("Item attribute is:" +

item_attribute);

System.out.println
 ("Count:" + item_count);}}

Input text
-
Mike has 8 orange marbles. Sam has 14 orange marbles. Mike gave Sam 4 of the marbles.

Output-
 mike-balloon-orange (
 obj
[0])= 4 (answer);
 sam
-balloon-orange(
 obj
[1])= 18

Figure 3: Automatically Generated Program

4 Dataset, Results and Discussions

There is a broad sense of natural language pro-
gramming available in literature, however, they do
not exactly relate to our objective or methodology.
Though no standard datasets are available specif-
ically for such work, we compiled a dataset con-
taining 189 questions. We selected word problems
from the dateset available with the work of (Hos-
seini et al., 2014) which is the same as the ‘AI2
Arithmetic Questions’ dataset. They compiled 395
addition-subtraction word problems with 3 subsets

152

– MA1, IXL, and MA2 with varying degree of
complexity. Our selection was based on the con-
straint that the sentences of each word problems
must have links between them towards the forward
movement of state transitions and each sentence
in a MWP (i) must not have any “missing infor-
mation” and (ii) must not be an “irrelevant sen-
tence” with respect to answer generation. For ex-
ample, the problems “Joan found 70 seashells on
the beach. She gave Sam some of her seashells.
She has 27 seashells. How many seashells did
she give to Sam?” contains a sentence having the
word ‘some’ which does not hold any definitive
cardinal value, instead indicates a operation, are
referred to as ‘missing information’. Another ex-
ample from the dataset is “Tom purchased a Bat-
man game for $ 13.60 , and a Superman game for
$ 5.06. Tom already owns 2 games. How much did
Tom spend on video games?. In this example, the
sentence “Tom already owns 2 games.” does not
have any actual relation with the desired result and
this kind of sentences are referred to as ‘irrelevant
sentence’. These cases were not included in the
dataset since our system presently does not have
the capabilities to handle them. We selected in to-
tal 189 problems10 from MA1 and MA2 (out of to-
tal 255 problems) based on the constraints. We did
not consider IXL since the corresponding prob-
lems involve more information gaps which call for
complex reasoning (due to ambiguities in owners,
items) that can not be handled by the proposed ap-
proach and some problems of MA1 or MA2 do not
fit with our objective.

The system generated syntactically correct pro-
grams in all cases, however, in terms of correct an-
swer generation (i.e., logically correct programs) it
produced an accuracy of 90.48% (171 out of 189)
on the test dataset. The system performed prop-
erly for texts containing CHANGE or COMBINE
information. Cases for which the system did not
produce correct results are given below with some
examples.

• No Link Among Owners, Participating
Operation: E.g., Dan had 7 potatoes and 4
cantaloupes in the garden. The rabbits ate
4 of the potatoes. How many potatoes does
Dan now have? (8 problems/44.5%)

• Wrong Program/ Answer Generation Due
10dataset available at: https://sites.google.

com/site/autocodegeneration/

to Various Reasons like Program Logi-
cal Errors, Sentence Sequence, Wrong IE/
SRL etc.: E.g., There are 7 crayons in the
drawer and 6 crayons on the desk . Sam
placed 4 crayons and 8 scissors on the desk
. How many crayons are now there in total ?
(7 problems/38.9%)

• Improper Reasoning of Question Sen-
tence: E.g., A restaurant served 9 hot dogs
during lunch and 2 during dinner today. It
served 5 of them yesterday. How many hot
dogs were served today? (3 problems/16.6%)

5 Conclusions

Object oriented analysis and design approach is
very useful for modeling any real world data and
event-driven scenario with ease. We only need to
identify the key entities and their roles in that sce-
nario. The main objective of our work is the gen-
eration of structured programs (JAVA based) auto-
matically from natural language MWP texts, not
exactly the solution of the MWPs itself, which can
be further extended to become a complete MWP
solver. The work is more relevant to natural lan-
guage programming (like Mihalcea et al. (2006))
rather than the development of an MWP solver.
We selected the MWP domain since it is event-
driven and involves operations like assignment,
addition, subtraction, etc., related to the associated
verbs. We tested our system on typically small in-
put texts containing only 3–4 sentences (i.e., be-
fore text simplification), however, the approach is
generic and it will also work for longer input texts.
The approach can also be extended for potential
use in question answering and summarization pur-
poses by identifying the key players like owners
and items for the domains that handle operations
like additions and subtractions. If we augment
the model with various ‘OIA’ entities and large
number of functionalities then the methodology
can represent any natural language text specific
to some domain into an object-oriented paradigm
and can add great power to automatic code genera-
tion from software requirement specifications and
software designs. We would also like to extend
the proposed OOP based approach to model and
solve word problems involving multiplication and
division and try to minimize the constraints.

153

Acknowledgments

Sudip Kumar Naskar is supported by Media Lab
Asia, MeitY, Government of India, under the
Young Faculty Research Fellowship of the Visves-
varaya PhD Scheme for Electronics & IT.

References
Rukshan Alexander, Prashanthi Rukshan, and Sin-

nathamby Mahesan. 2013. Natural language
web interface for database (NLWIDB). CoRR,
abs/1308.3830.

Bruce W. Ballard and Alan W. Biermann. 1979. Pro-
gramming in natural language: “NLC”; as a proto-
type. In Proceedings of the 1979 Annual Confer-
ence, ACM ’79, pages 228–237, New York, NY,
USA. ACM.

Barrett R Bryant, Beurn-Seuk Lee, Fei Cao, Wei Zhao,
and Jeffrey G Gray. 2003. From natural language
requirements to executable models of software com-
ponents. Technical report, DTIC Document.

Charles R Fletcher. 1985. Understanding and solving
arithmetic word problems: A computer simulation.
Behavior Research Methods, Instruments, & Com-
puters, 17(5):565–571.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learn-
ing to solve arithmetic word problems with verb cat-
egorization. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL, pages 523–533.

Rohit J. Kate, Yuk Wah Wong, and Raymond J.
Mooney. 2005. Learning to transform natural to for-
mal languages. In Proceedings, The Twentieth Na-
tional Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial In-
telligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, pages 1062–1068.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. In Human Language Tech-
nologies: Conference of the North American Chap-
ter of the Association of Computational Linguis-
tics, Proceedings, June 9-14, 2013, Westin Peachtree
Plaza Hotel, Atlanta, Georgia, USA, pages 826–836.

Nate Kushman, Luke Zettlemoyer, Regina Barzilay,
and Yoav Artzi. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2014, June 22-27, 2014,
Baltimore, MD, USA, Volume 1: Long Papers, pages
271–281.

Tao Lei, Fan Long, Regina Barzilay, and Martin C.
Rinard. 2013. From natural language specifica-
tions to program input parsers. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics, ACL 2013, 4-9 August 2013,
Sofia, Bulgaria, Volume 1: Long Papers, pages
1294–1303.

Hugo Liu and Henry Lieberman. 2005. Metafor: visu-
alizing stories as code. In Proceedings of the 2005
International Conference on Intelligent User Inter-
faces, January 10-13, 2005, San Diego, California,
USA, pages 305–307.

Rada Mihalcea, Hugo Liu, and Henry Lieberman.
2006. NLP (natural language processing) for NLP
(natural language programming). In Computational
Linguistics and Intelligent Text Processing, 7th In-
ternational Conference, CICLing 2006, Mexico City,
Mexico, February 19-25, 2006, Proceedings, pages
319–330.

Arindam Mitra and Chitta Baral. 2016. Learning
to use formulas to solve simple arithmetic prob-
lems. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers.

Anirban Mukherjee and Utpal Garain. 2008. A review
of methods for automatic understanding of natural
language mathematical problems. Artif. Intell. Rev.,
29(2):93–122.

Michael Roth and Mirella Lapata. 2015. Context-
aware frame-semantic role labeling. TACL, 3:449–
460.

Michael Roth and Kristian Woodsend. 2014. Com-
position of word representations improves semantic
role labelling. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL, pages 407–413.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1743–1752.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-
21, 2015, pages 1132–1142.

Lieven Verschaffel, Brian Greer, and Erik De Corte.
2000. Making sense of word problems. Lisse Swets
and Zeitlinger.

William H. Walker and Walter Kintsch. 1985. Auto-
matic and strategic aspects of knowledge retrieval.
Cognitive Science, 9(2):261–283.

154

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 155–164

Unsupervised Separation of Transliterable and
Native Words for Malayalam

Deepak P
Queen’s University Belfast, UK

deepaksp@acm.org

Abstract

Differentiating intrinsic language words
from transliterable words is a key step
aiding text processing tasks involving dif-
ferent natural languages. We consider
the problem of unsupervised separation of
transliterable words from native words for
text in Malayalam language. Outlining a
key observation on the diversity of char-
acters beyond the word stem, we develop
an optimization method to score words
based on their nativeness. Our method re-
lies on the usage of probability distribu-
tions over character n-grams that are re-
fined in step with the nativeness scorings
in an iterative optimization formulation.
Using an empirical evaluation, we illus-
trate that our method, DTIM, provides sig-
nificant improvements in nativeness scor-
ing for Malayalam, establishing DTIM as
the preferred method for the task.

1 Introduction

Malayalam is an agglutinative language from the
southern Indian state of Kerala where it is the of-
ficial state language. It is spoken by 38 million
native speakers, three times as many speakers as
Hungarian (Vincze et al., 2013) or Greek (Ntoulas
et al., 2001), for which specialized techniques
have been developed in other contexts. The grow-
ing web presence of Malayalam necessitates au-
tomatic techniques to process Malayalam text. A
major hurdle in harnessing Malayalam text from
social and web media for multi-lingual retrieval
and machine translation is the presence of a large
amount of transliterable words. By transliterable
words, we mean both (a) words (from English)
like police and train that virtually always appear
in transliterated form in contemporary Malayalam,
and (b) proper nouns such as names that need to

be transliterated than translated to correlate with
English text. On a manual analysis of a news ar-
ticle dataset, we found that transliterated words
and proper nouns each form 10-12% of all dis-
tinct words. It is useful to transliterate such words
for scenarios that involve processing Malayalam
text in the company of English text; this will avoid
them being treated as separate index terms (wrt
their transliteration) in a multi-lingual retrieval en-
gine, and help a statistical translation system to
make use of the link to improve effectiveness. In
this context, it ia notable that there has been re-
cent interest in devising specialized methods to
translate words that fall outside the core vocabu-
lary (Tsvetkov and Dyer, 2015).

In this paper, we consider the problem of sepa-
rating out such transliterable words from the other
words within an unlabeled dataset; we refer to
the latter as “native” words. We propose an un-
supervised method, DTIM, that takes a dictio-
nary of distinct words from a Malayalam corpus
and scores each word based on their nativeness.
Our optimization method, DTIM, iteratively re-
fines the nativeness scoring of each word, leverag-
ing dictionary-level statistics modelled using char-
acter n-gram probability distributions. Our empiri-
cal analysis establishes the effectiveness of DTIM.

We outline related work in the area in Section 2.
This is followed by the problem statement in Sec-
tion 3 and the description of our proposed ap-
proach in Section 4. Our empirical analysis forms
Section 5 followed by conclusions in Section 7.

2 Related Work

Identification of transliterable text fragments, be-
ing a critical task for cross-lingual text analysis,
has attracted attention since the 1990s. While
most methods addressing the problem have used
supervised learning, there have been some meth-
ods that can work without labeled data. We briefly
survey both classes of methods.

155

2.1 Supervised and ‘pseudo-supervised’
Methods

An early work(Chen and Lee, 1996) focuses on a
sub-problem, that of supervised identification of
proper nouns for Chinese. (Jeong et al., 1999)
consider leveraging decision trees to address the
related problem of learning transliteration and
back-transliteration rules for English/Korean word
pairs. Recognizing the costs of procuring train-
ing data, (Baker and Brew, 2008) and (Gold-
berg and Elhadad, 2008) explore usage of pseudo-
transliterable words generated using translitera-
tion rules on an English dictionary for Korean and
Hebrew respectively. Such pseudo-supervision,
however, would not be able to generate uncommon
domain-specific terms such as medical/scientific
terminology for usage in such domains (unless
specifically tuned), and is hence limited in utility.

2.2 Unsupervised Methods

A recent work proposes that multi-word phrases
in Malayalam text where their component words
exhibit strong co-occurrence be categorized as
transliterable phrases (Prasad et al., 2014). Their
intuition stems from observing contiguous words
such as test dose which often occur in translit-
erated form while occurring together, but get re-
placed by native words in other contexts. Their
method is however unable to identify single
transliterable words, or phrases involving words
such as train and police whose transliterations are
heavily used in the company of native Malayalam
words. A recent method for Korean (Koo, 2015)
starts by identifying a seed set of transliterable
words as those that begin or end with consonant
clusters and have vowel insertions; this is spe-
cific to Korean since Korean words apparently do
not begin or end with consonant clusters. High-
frequency words are then used as seed words for
native Korean for usage in a Naive Bayes classi-
fier. In addition to the outlined reasons that make
both the unsupervised methods inapplicable for
our task, they both presume availability of corpus
frequency statistics. We focus on a general sce-
nario assuming the availability of only a word lex-
icon.

2.3 Positioning the Transliterable Word
Identification Task

Nativeness scoring of words may be seen as a vo-
cabulary stratification step (upon usage of thresh-

olds) for usage by downstream applications. A
multi-lingual text mining application that uses
Malayalam and English text would benefit by
transliterating non-native Malayalam words to En-
glish, so the transliterable Malayalam token and
its transliteration is treated as the same token.
For machine translation, transliterable words may
be channeled to specialized translation methods
(e.g., (Tsvetkov and Dyer, 2015)) or for manual
screening and translation.

3 Problem Definition

We now define the problem more formally. Con-
sider n distinct words obtained from Malayalam
text, W = {. . . , w, . . .}. Our task is to devise
a technique that can use W to arrive at a native-
ness score for each word, w, within it, as wn. We
would like wn to be an accurate quantification of
native-ness of word w. For example, when words
in W are ordered in the decreasing order of wn

scores, we expect to get the native words at the
beginning of the ordering and vice versa. We do
not presume availability of any data other thanW;
this makes our method applicable across scenar-
ios where corpus statistics are unavailable due to
privacy or other reasons.

3.1 Evaluation

Given that it is easier for humans to crisply classify
each word as either native or transliterable (nouns
or transliterated english words) in lieu of attaching
a score to each word, the nativeness scoring (as
generated by a scoring method such as ours) often
needs to be evaluated against a crisp nativeness as-
sessment, i.e., a scoring with scores in {0, 1}. To
aid this, we consider the ordering of words in the
labeled set in the decreasing (or more precisely,
non-increasing) order of nativeness scores (each
method produces an ordering for the dataset). To
evaluate this ordering, we use two sets of metrics
for evaluation:

• Precision at the ends of the ordering: Top-
k precision denotes the fraction of native
words within the k words at the top of the
ordering; analogously, Bottom-k precision
is the fraction of transliterable words among
the bottom k. Since a good scoring would
likely put native words at the top of the order-
ing and the transliterable ones at the bottom, a
good scoring method would intuitively score

156

high on both these metrics. We call the aver-
age of the top-k and bottom-k precision for a
given k, as Avg-k precision. These measures,
evaluated at varying values of k, indicate the
quality of the nativeness scoring.

• Clustering Quality: Consider the cardinal-
ities of the native and transliterable words
from the labeled set as being N and T re-
spectively. We now take the top-N words and
bottom-T words from the ordering generated
by each method, and compare against the re-
spective labeled sets as in the case of stan-
dard clustering quality evaluation1. Since the
cardinalities of the generated native (translit-
erable) cluster and the native (transliterable)
labeled set is both N (T), the Recall of the
cluster is identical to its Purity/Precision,
and thus, the F-measure too; we simply
call it Clustering Quality. A cardinality-
weighted average of the clustering quality
across the native and transliterable clusters
yields a single value for the clustering quality
across the dataset. It may be noted that we are
not making the labeled dataset available to
the method generating the ordering, instead
merely using it’s cardinalities for evaluation
purposes.

4 Our Method: DTIM

We now introduce our method, Diversity-based
Transliterable Word Identification for Malayalam
(DTIM). We use probability distributions over
character n-grams to separately model transliter-
able and native words, and develop an optimiza-
tion framework that alternatively refines the n-
gram distributions and nativeness scoring within
each iteration. DTIM involves an initialization
that induces a “coarse” separation between na-
tive and transliterable words followed by iterative
refinement. The initialization is critical in opti-
mization methods that are vulnerable to local op-
tima; the pure word distribution needs to be initial-
ized to “coarsely” prefer pure words over translit-
erable words. This will enable further iterations
to exploit the initial preference direction to fur-
ther refine the model to “attract” the pure words
more strongly and weaken any initial preference to
transliterable words. The vice versa holds for the
transliterable word models. We will first outline

1
https://nlp.stanford.edu/IR-book/html/

htmledition/evaluation-of-clustering-1.html

the initialization step followed by the description
of the method.

4.1 Diversity-based Initialization
Our initialization is inspired by an observation on
the variety of suffixes attached to a word stem.
Consider a word stem |pu|ra|2, a stem commonly
leading to native Malayalam words; its suffixes
are observed to start with a variety of charac-
ters such as |ttha| (e.g., |pu|ra|ttha|kki|), |me|
(e.g., |pu|ra|me|), |mbo| (e.g., |pu|ra|mbo|kku|)
and |ppa| (e.g., |pu|ra|ppa|du|). On the other hand,
stems that mostly lead to transliterable words of-
ten do not exhibit so much of diversity. For exam-
ple, |re|so| is followed only by |rt| (i.e., resort) and
|po|li| is usually only followed by |s| (i.e., police).
Some stems such as |o|ppa| lead to transliterations
of two English words such as open and operation.
Our observation, upon which we model the initial-
ization, is that the variety of suffixes is generally
correlated with native-ness (i.e., propensity to lead
to a native word) of word stems. This is intuitive
since non-native word stems provide limited flex-
ibility to being modified by derivational or inflec-
tional suffixes as compared to native ones.

For simplicity, we use the first two characters of
each word as the word stem; we will evaluate the
robustness of DTIM to varying stem lengths in our
empirical evaluation, while consistently using the
stem length of two characters in our description.
We start by associating each distinct word stem in
W with the number of unique third characters that
follow it (among words in W); in our examples,
|pu|ra| and |o|pa| would be associated with 4 and 2
respectively. We initialize the native-ness weights
as proportional to the diversity of 3rd characters
beyond the stem:

wn0 = min

{
0.99,

|u3(wstem,W)|
τ

}
(1)

where u3(wstem,W) denotes the set of third char-
acters that follow the stem of word w among
words in W . We flatten off wn0 scores beyond
a diversity of τ (note that a diversity of τ or
higher will lead to the second term becoming 1.0
or higher, kicking in the min function to choose
0.99 for wn0) as shown in the above equation.

2We will represent Malayalam words in transliterated form for reading
by those who might not be able to read Malayalam. A pipe would separate
Malayalam characters; for example |pu| corresponds to a single Malayalam
character.

157

We give a small transliterable-ness weight even to
highly diverse stems to reduce over-reliance on the
initialization. We set τ = 10 based on our obser-
vation from the dataset that most word stems hav-
ing more than 10 distinct characters were seen to
be native. As in the case of word stem length, we
study DTIM trends across varying τ in our empir-
ical analysis. wn0 is in [0, 1]; analogously, (1 −
wn0) may be regarded as a score of transliterable-
ness.

4.2 Objective Function and Optimization
Framework

As outlined earlier, we use separate character n-
gram probability distributions to model native and
transliterable words. We would like these proba-
bility distributions support the nativeness scoring,
and vice versa. While the size of the n-grams (i.e.,
whether n = 1, 2, 3 or 4) is a system-level param-
eter, we use n = 1 for simplicity in our descrip-
tion. We denote the native and transliterable dis-
tributions asN and T respectively, withN (c) and
T (c) denoting the weight associated with the char-
acter c according to the distributions. Consider the
following function, given a particular state for the
N , T and wns:

∏

w∈W

∏

c∈w

(
w2
n×N (c)+ (1−wn)

2×T (c)
)

(2)

This measures the aggregate supports for words
in W , the support for each word measured as an
interpolated support from across the distributions
N and T with weighting factors squares of the
nativeness scores (i.e., wns) and transliterableness
scores (i.e., (1− wn)s) respectively. Similar mix-
ing models have been used earlier in emotion lex-
icon learning (Bandhakavi et al., 2014) and so-
lution post discovery (Deepak and Visweswariah,
2014). The squares of the nativeness scores are
used in our model (instead of the raw scores) for
optimization convenience. A highly native word
should intuively have a high wn (nativeness) and
a high support from N and correspondingly low
transliterable-ness (i.e., (1 − wn)) and support
from T ; a highly transliterable word would be ex-
pected to have exactly the opposite. Due to the de-
sign of Eq. 2 in having the higher terms multiplied
with each other (and so for the lower terms), this
function would be maximized for a desirable esti-
mate of the variables θ = {N , T , {. . . , wn, . . .}}.

Conversely, by striving to maximize the objective
function, we would arrive at a desirable estimate
of the variables. An alternative construction yield-
ing a minimizing objective would be as follows:

∏

w∈W

∏

c∈w

(
(1−wn)

2×N (c)+w2
n×T (c)

)
(3)

In this form, given a good estimate of the vari-
ables, the native (transliterable) words have their
nativeness (transliterableness) weights multiplied
with the support from the transliterable (native)
models. In other words, maximizing the objective
in Eq. 2 is semantically similar to minimizing the
objective in Eq. 3. As we will illustrate soon, it
is easier to optimize for N and T using the maxi-
mizing formulation in Eq. 2 while the minimizing
objective in Eq. 3 yields better to optimize for the
word nativeness scores, {. . . , wn, . . .}.

4.3 Learning N and T using the Maximizing
Objective

We start by taking the log-form of the objective in
Eq. 2 (this does not affect the optimization direc-
tion), yielding:

Omax =
∑

w∈W

∑

c∈w
ln

(
w2
n×N (c)+(1−wn)

2×T (c)
)

(4)
The distributions, being probability distribu-

tions over n-grams, should sum to zero. This con-
straint, for our unigram models, can be written as:

∑

c

N (c) =
∑

c

T (c) = 1 (5)

Fixing the values of {. . . , wn, . . .} and T (or
N), we can now identify a better estimate for N
(or T) by looking for an optima (i.e., where the
objective function has a slope of zero). Towards
that, we take the partial derivative (or slope) of the
objective for a particular character. :

∂Omax

∂N (c′)
=

(∑

w∈W

freq(c′, w)× w2
n(

w2
nN (c′) + (1− wn)2T (c′)

)
)
+λN

(6)
where freq(c′, w) is the frequency of the char-

acter c′ inw and λN denotes the Lagrangian multi-
plier corresponding to the sum-to-unity constraint
for N . Equating this to zero does not however

158

yield a closed form solution for N ′, but a simple
re-arrangement yields an iterative update formula:

N (c′) ∝
∑

w∈W

freq(c′, w)× w2
n(

w2
n + (1− wn)2

T (c′)
NP (c′)

) (7)

The N term in the RHS is denoted as NP

to indicate the usage of the previous estimate of
N . The sum-to-one constraint is trivially achieved
by first estimating the N (c′)s by treating Eq. 7
as equality, followed by normalizing the scores
across the character vocabulary. Eq. 7 is intuitively
reasonable, due to establishing a somewhat direct
relationship between N and wn (in the numer-
ator), thus allowing highly native words to con-
tribute more to buildingN . The analogous update
formula for T fixing N turns out to be:

T (c′) ∝
∑

w∈W

freq(c′, w)× (1− wn)
2

(
(1− wn)2 + w2

n
N (c′)
TP (c′)

) (8)

Eq. 7 and Eq. 8 would lead us closer to a max-
ima for Eq. 4 is their second (partial) derivatives
are negative3. To verify this, we note that the sec-
ond (partial) derivative wrt N (c′) is as follows

∂2Omax

∂2N (c′)
=

(−1)×
∑

w∈W

freq(c′, w)(w2
n)

2

(
w2
nN (c′) + (1− wn)2T (c′)

)2 (9)

It is easy to observe that the RHS is a prod-
uct of −1 and a sum of a plurality of positive
terms (square terms that are trivially positive, with
the exception being the freq(., .) term which is
also non-negative by definition), altogether yield-
ing a negative value. That the the second (partial)
derivative is negative confirms that the update for-
mula derived from the first partial derivative in-
deed helps in maximizing Omax wrt N (c′). A
similar argument holds for the T (c′) updates as
well, which we omit for brevity.

3http://mathworld.wolfram.com/
SecondDerivativeTest.html

4.4 Learning the nativeness scores,
{. . . , wn, . . .}, using the Minimizing
Objective

Analogous to the previous section, we take the
log-form of Eq. 3:

Omin =
∑

w∈W

∑

c∈w
ln

(
(1−wn)

2×N (c)+w2
n×T (c)

)

(10)
Unlike the earlier case, we do not have any con-

straints since the sum-to-unit constraint on the na-
tiveness and transliterableness scores are built in
into the construction. We now fix the values of all
other variables and find the slope wrt w′n, where
w′ indicates a particular word inW .

∂Omin

∂w′n
=
∑

c∈w′

2w′nT (c) + 2w′nN (c)− 2N (c)(
w′2n T (c) + (1− w′n)2N (c)

)

(11)
We equate the slope to zero and form an itera-

tive update formula, much like in the distribution
estimation phase.

w′n =

∑
c∈w′

N (c)
(w′2

n T (c)+(1−w′
n)

2N (c))∑
c∈w′

N (c)+T (c)
(w′2

n T (c)+(1−w′
n)

2N (c))

(12)

Using the previous estimates of w′n for the RHS
yields an iterative update form for the nativeness
scores. As in the model estimation phase, the up-
date rule establishes a reasonably direct relation-
ship between w′n and N . Since our objective is
to minimize Omin, we would like to verify the
direction of optimization using the second partial
derivative.

∂2Omin

∂2w′n
=

∑

c∈w′

N (c)T (c)−
(
w′nT (c)− (1− w′n)N (c)

)2
(
w′2n T (c) + (1− w′n)2N (c)

)2
(13)

We provide an informal argument for the pos-
itivity of the second derivative; note that the de-
nominator is a square term making it enough to
analyze just the numerator term. Consider a highly
native word (high w′n) whose characters would in-
tuitively satisfy N (c) > T (c). For the bound-
ary case of w′n = 1, the numerator term reduces

159

to T (c) × (N (c) − T (c)) which would be posi-
tive given the expected relation betweenN (c) and
T (c). A similar argument holds for highly translit-
erable words. For words with w′n → 0.5 where we
would expect N (c) ≈ T (c), the numerator be-
comesN (c)T (c)−0.25(T (c)−N (c))2, which is
expected to be positive since the difference term
is small, making it’s square very small in com-
parison to the first product term. To outline the
informal nature of the argument, it may be noted
that T (c) > N (c) may hold for certain characters
within highly native words; but as long as most
of the characters within highly native words sat-
isfy the N (c) > T (c), there would be sufficient
positivity to offset the negative terms induced with
such outlier characters.

Algorithm 1: DTIM
Input: A set of Malayalam words,W
Output: A nativeness scoring wn ∈ [0, 1] for

every word w inW
Hyper-parameters: word stem length, τ , n
Initialize the wn scores for each word using
the diversity metric in Eq. 1 using the chosen
stem length and τ

while not converged and number of iterations
not reached do

Estimate n-gram distributions N and T
using Eq. 7 and Eq. 8 respectively

Learn nativeness weights for each word
using Eq. 12

end
return latest estimates of nativeness weights

4.5 DTIM: The Method

Having outlined the learning steps, the method
is simply an iterative usage of the learning steps
as outlined in Algorithm 1. In the first invoca-
tion of the distribution learning step where previ-
ous estimates are not available, we simply assume
a uniform distribution across the n-gram vocab-
ulary for usage as the previous estimates. Each
of the update steps are linear in the size of the
dictionary, making DTIM a computationally light-
weight method. Choosing n = 2 instead of uni-
grams (as used in our narrative) is easy since that
simply involves replacing the c ∈ w all across the
update steps by [ci, ci+1] ∈ w with [ci, ci+1] de-
noting pairs of contiguous characters within the
word; similarly, n = 3 involves usage of contigu-

ous character triplets and correspondingly learning
the distributionsN and T over triplets. The DTIM
structure is evidently inspired by the Expectation-
Maximization framework (Dempster et al., 1977)
involving alternating optimizations of an objective
function; DTIM, however, uses different objective
functions for the two steps for optimization conve-
nience.

5 Experiments

We now describe our empirical study of DTIM,
starting with the dataset and experimental setup
leading on to the results and analyses.

5.1 Dataset
We evaluate DTIM on a set of 65068 distinct
words from across news articles sourced from
Mathrubhumi4, a popular Malayalam newspaper;
this word list is made available publicly5. For eval-
uation purposes, we got a random subset of 1035
words labeled by one of three human annotators;
that has been made available publicly6 too, each
word labeled as either native, transliterable or un-
known. There were approximately 3 native words
for every transliterable word in the labeled set,
reflective of distribution in contemporary Malay-
alam usage as alluded to in the introduction. We
will use the whole set of 65068 words as input to
the method, while the evaluation would obviously
be limited to the labelled subset of 1035 words.

5.2 Baselines
As outlined in Section 2, the unsupervised ver-
sion of the problem of telling apart native and
transliterable words for Malayalam and/or simi-
lar languages has not been addressed in literature,
to the best of our knowledge. The unsupervised
Malayalam-focused method(Prasad et al., 2014)
(Ref: Sec 2.2) is able to identify only transliter-
able word-pairs, making it inapplicable for con-
texts such as our health data scenario where in-
dividual english words are often transliterated for
want of a suitable malayalam alternative. The
Korean method(Koo, 2015) is too specific to Ko-
rean language and cannot be used for other lan-
guages due to the absence of a generic high-
precision rule to identify a seed set of transliter-
able words. With both the unsupervised state-of-
the-art approaches being inapplicable for our task,

4
http://www.mathrubhumi.com

5Dataset: https://goo.gl/DOsFES
6Labeled Set: https://goo.gl/XEVLWv

160

we compare against an intuitive generalization-
based baseline, called GEN, that orders words
based on their support from the combination of
a unigram and bi-gram character language model
learnt overW; this leads to a scoring as follows:

wGEN
n =

∏

[ci,ci+1]∈w
λ×BW(ci+1|ci)+ (1−λ)×UW(ci+1)

(14)
where BW and UW are bigram and unigram

character-level language models built over all
words in W . We set λ = 0.8 (Smucker and Al-
lan, 2006). We experimented with higher-order
models in GEN, but observed drops in evalua-
tion measures leading to us sticking to the usage
of the unigram and bi-gram models. The form of
Eq. 14 is inspired by an assumption similar to that
used in both (Prasad et al., 2014) and (Koo, 2015)
that transliterable words are rare. Thus, we ex-
pect they would not be adequately supported by
models that generalize over whole ofW . We also
compare against our diversity-based initialization
score from Section 4.1, which we will call as
INIT. For ease of reference, we outline the INIT
scoring:

wINIT
n = min

{
0.99,

|u3(wstem,W)|
τ

}
(15)

The comparison against INIT enables us to iso-
late and highlight the value of the iterative update
formulation vis-a-vis the initialization.

5.3 Evaluation Measures and Setup
As outlined in Section 3, we use top-k, bottom-k
and avg-k precision (evaluated at varying values
of k) as well as clustering quality in our evalua-
tion. For the comparative evaluaton, we set DTIM
parameters as the following: τ = 10 and a word-
stem length of 2. We will study trends against vari-
ations across these parameters in a separate sec-
tion.

5.4 Experimental Results
5.4.1 Precision at the ends of the Ordering
Table 1 lists the precision measures over various
values of k. It may be noted that any instantia-
tion of DTIM (across the four values of n-gram
size, n) is able to beat the baselines convincingly

on each metric on each value of k, convincingly
establishing the effectiveness of the DTIM for-
mulation. DTIM is seen to be much more effec-
tive in separating out the native and transliterable
words at either ends of the ordering, than the base-
lines. It is also notable that EM-style iterations
are able to significantly improve upon the initial-
ization (i.e., INIT). That the bottom-k precision is
seen to be consistently lower than top-k precision
needs to be juxtaposed in the context of the ob-
servation that there were only 25% transliterable
words against 75% native words; thus, the lift in
precision against a random ordering is much more
substantial for the transliterable words. The trends
across varying n-gram sizes (i.e., n) in DTIM is
worth noting too; the higher values of n (such
as 3 and 4) are seen to make more errors at the
ends of the lists, whereas they catch-up with the
n ∈ {1, 2} versions as k increases. This indi-
cates that smaller-n DTIM is being able to tell
apart a minority of the words exceedingly well
(wrt native-ness), whereas the higher n-gram mod-
elling is able to spread out the gains across a larger
spectrum of words in W . Around n = 4 and be-
yond, sparsity effects (since 4-grams and 5-grams
would not occur frequently, making it harder to
exploit their occurrence statistics) are seen to kick
in, causing reductions in precision.

5.4.2 Clustering Quality

Table 2 lists the clustering quality metric across
the various methods. Clustering quality, unlike the
precision metrics, is designed to evaluate the entire
ordering without limiting the analysis to just the
top-k and bottom-k entries. As in the earlier case,
DTIM convincingly outperforms the baselines by
healthy margins across all values of n. Conse-
quent to the trends across n as observed earlier,
n ∈ {3, 4} are seen to deliver better accuracies,
with such gains tapering off beyond n = 4 due to
sparsity effects. The words, along with the DTIM
nativeness scores for n = 3, can be viewed at
https://goo.gl/OmhlB3 (the list excludes
words with fewer than 3 characters).

5.5 Analyzing DTIM

We now analyze the performance of DTIM across
varying values of the diversity threshold (τ) and
word-stem lengths.

161

k=50 k=100 k=150 k=200
Top-k Bot-k Avg-k Top-k Bot-k Avg-k Top-k Bot-k Avg-k Top-k Bot-k Avg-k

INIT 0.88 0.50 0.69 0.90 0.40 0.65 0.90 0.41 0.66 0.90 0.38 0.64
GEN 0.64 0.10 0.37 0.58 0.11 0.35 0.60 0.15 0.38 0.64 0.17 0.41

DTIM (n=1) 0.94 0.64 0.79 0.90 0.56 0.73 0.90 0.49 0.70 0.92 0.48 0.70
DTIM (n=2) 1.00 0.78 0.89 0.94 0.68 0.81 0.93 0.57 0.75 0.95 0.52 0.74
DTIM (n=3) 0.86 0.76 0.81 0.91 0.75 0.83 0.92 0.69 0.81 0.92 0.64 0.78
DTIM (n=4) 0.82 0.74 0.78 0.87 0.69 0.78 0.83 0.62 0.73 0.85 0.65 0.75

Table 1: Top-k and Bottom-k Precision (best result in each column highlighted)

Native Transliterable Weighted Average
INIT 0.79 0.38 0.69
GEN 0.73 0.17 0.59

DTIM (n=1) 0.81 0.44 0.72
DTIM (n=2) 0.84 0.50 0.75
DTIM (n=3) 0.86 0.60 0.79
DTIM (n=4) 0.86 0.60 0.79

Table 2: Clustering Quality (best result in each
column highlighted)

τ → 5 10 20 50 100 1000
n = 1 0.72 0.72 0.72 0.72 0.72 0.72
n = 2 0.74 0.75 0.75 0.74 0.74 0.74
n = 3 0.77 0.79 0.78 0.78 0.78 0.78
n = 4 0.78 0.79 0.79 0.79 0.79 0.79

Table 3: DTIM Clustering Quality against τ

Stem Length→ 1 2 3 4
n = 1 0.64 0.72 0.75 0.56
n = 2 0.58 0.75 0.74 0.55
n = 2 0.59 0.79 0.69 0.60
n = 2 0.58 0.79 0.69 0.62

Table 4: DTIM Clustering Quality against Word
Stem Length (best result in each row highlighted)

5.5.1 Diversity Threshold

Table 3 analyzes the clustering quality trends of
DTIM across varying values of τ . The table sug-
gests that DTIM is extremely robust to variations
in diversity threshold, despite a slight preference
towards values around 10 and 20. This suggests
that a system designer looking to use DTIM need
not carefully tune this parameter due to the inher-
ent robustness.

5.5.2 Word Stem Length

Given the nature of Malayalam language where
the variations in word lengths are not as high as
in English, it seemed very natural to use a word
stem length of 2. Moreover, very large words are
uncommon in Malayalam. In our corpus, 50%
of words were found to contain five characters
or less, the corresponding fraction being 71% for
upto seven characters. Our analysis of DTIM
across variations in word-stem length, illustrated
in Table 4 strongly supports this intuition with
clustering quality peaking at stem-length of 2 for
n ≥ 2. It is notable, however, that DTIM degrades
gracefully on either side of 2. Trends across dif-
ferent settings of word-stem length are interesting
since they may provide clues about applicability
for other languages with varying character granu-
larities (e.g., each Chinese character corresponds
to multiple characters in Latin-script).

6 Discussion

6.1 Applicability to Other Languages

In contrast to earlier work focused on specific
languages (e.g., (Koo, 2015)) that use heuristics
that are very specific to the language (such as ex-
pected patterns of consonants), DTIM heuristics
are general-purpose in design. The only heuris-
tic setting that is likely to require some tuning for
applicability in other languages is the word-stem
length. We expect the approach would generalize

162

well to other Sanskrit-influenced Dravidian lan-
guages such as Kannada/Telugu. Unfortunately,
we did not have any Kannada/Telugu/Kodava
knowledge (Dravidian languages have largely dis-
joint speaker-populations) in our team, or ac-
cess to labelled datasets in those languages (they
are low-resource languages too); testing this on
Kannada/Telugu/Tamil would be interesting future
work. The method is expected to be less appli-
cable to English, the language being significantly
different and with potentially fewer transliterable
words.

6.2 DTIM in an Application Context

Within any target application context, machine-
labelled transliterable words (and their automati-
cally generated transliterations) may need to man-
ual screening for accountability reasons. The
high accuracy at either ends of the ordering lends
itself to be exploited in the following fashion;
in lieu of employing experts to verify all la-
bellings/transliterations, low-expertise volunteers
(e.g., students) can be called in to verify labellings
at the ends (top/bottom) of the lists with experts
focusing on the middle (more ambiguous) part of
the list; this frees up experts’ time as against a
cross-spectrum expert-verification process, lead-
ing to direct cost savings. We also expect that
DTIM followed by automatic transliterations of
bottom-k words would aid in retrieval and ma-
chine translation scenarios.

7 Conclusions and Future Work

We considered the problem of unsupervised sepa-
ration of transliterable and native words in Malay-
alam, a critical task in easing automated process-
ing of Malayalam text in the company of other
language text. We outlined a key observation on
the differential diversity beyond word stems, and
formulated an initialization heuristic that would
coarsely separate native and transliterable words.
We proposed the usage of probability distribu-
tions over character n-grams as a way of separately
modelling native and transliterable words. We
then formulated an iterative optimization method
that alternatively refines the nativeness scorings
and probability distributions. Our technique for
the problem, DTIM, that encompasses the initial-
ization and iterative refinement, was seen to sig-
nificantly outperform other unsupervised baseline
methods in our empirical study. This establishes

DTIM as the preferred method for the task. We
have also released our datasets and labeled sub-
set to help aid future research on this and related
tasks.

7.1 Future Work

The applicability of DTIM to other Dravidian lan-
guages is interesting to study. Due to our lack
of familiarity with any other language in the fam-
ily, we look forward to contacting other groups to
further the generalizability study. While native-
ness scoring improvements directly translate to re-
duction of effort for manual downstream process-
ing, quantifying gains these bring about in transla-
tion and retrieval is interesting future work. Ex-
ploring the relationship/synergy of this task and
Sandhi splitting (Natarajan and Charniak, 2011)
would form another interesting direction for future
work. Further, we would like to develop methods
to separate out the two categories of transliterable
words, viz., foreign language words and proper
nouns. Such a method would enable a more fine-
grained stratification of the vocabulary.

Transliterable words are often within Malay-
alam used to refer to very topical content, for
which suitable words are harder to find. Thus,
transliterable words could be preferentially treated
towards building rules in interpretable cluster-
ing (Balachandran et al., 2012) and for modelling
context in regex-oriented rule-based information
extraction (Murthy et al., 2012). Transliterable
words might also hold cues for detecting segment
boundaries in conversational transcripts (Kumma-
muru et al., 2009; Padmanabhan and Kumma-
muru, 2007).

References
[Baker and Brew2008] Kirk Baker and Chris Brew.

2008. Statistical identification of english loanwords
in korean using automatically generated training
data. In LREC. Citeseer.

[Balachandran et al.2012] Vipin Balachandran,
P Deepak, and Deepak Khemani. 2012. Inter-
pretable and reconfigurable clustering of document
datasets by deriving word-based rules. Knowledge
and information systems, 32(3):475–503.

[Bandhakavi et al.2014] Anil Bandhakavi, Nirmalie
Wiratunga, P Deepak, and Stewart Massie. 2014.
Generating a word-emotion lexicon from# emo-
tional tweets. In * SEM@ COLING, pages 12–21.

[Chen and Lee1996] Hsin-Hsi Chen and Jen-Chang

163

Lee. 1996. Identification and classification of
proper nouns in chinese texts. In COLING.

[Deepak and Visweswariah2014] P Deepak and
Karthik Visweswariah. 2014. Unsupervised solu-
tion post identification from discussion forums. In
ACL (1), pages 155–164.

[Dempster et al.1977] A. P. Dempster, N. M. Laird, and
D. B. Rubin. 1977. Maximum likelihood from in-
complete data via the em algorithm. Journal of the
Royal Statistical Society. Series B (Methodological),
39(1):1–38.

[Goldberg and Elhadad2008] Yoav Goldberg and
Michael Elhadad. 2008. Identification of translit-
erated foreign words in hebrew script. In Compu-
tational linguistics and intelligent text processing,
pages 466–477. Springer.

[Jeong et al.1999] Kil Soon Jeong, Sung Hyon Myaeng,
Jae Sung Leeb, and Key-Sun Choib. 1999. Auto-
matic identification and back-transliteration of for-
eign words for information retrieval. Inf. Proc. &
Mgmt., 35.

[Koo2015] Hahn Koo. 2015. An unsupervised method
for identifying loanwords in korean. Language Re-
sources and Evaluation, 49(2):355–373.

[Kummamuru et al.2009] Krishna Kummamuru,
Deepak Padmanabhan, Shourya Roy, and
L Venkata Subramaniam. 2009. Unsupervised
segmentation of conversational transcripts. Statis-
tical Analysis and Data Mining: The ASA Data
Science Journal, 2(4):231–245.

[Murthy et al.2012] Karin Murthy, P Deepak, and
Prasad M Deshpande. 2012. Improving recall of
regular expressions for information extraction. In
International Conference on Web Information Sys-
tems Engineering, pages 455–467. Springer.

[Natarajan and Charniak2011] Abhiram Natarajan and
Eugene Charniak. 2011. $sˆ3$ - statistical sandhi
splitting. In IJCNLP, pages 301–308.

[Ntoulas et al.2001] Alexandros Ntoulas, Sofia Stamou,
and Manolis Tzagarakis. 2001. Using a www
search engine to evaluate normalization perfor-
mance for a highly inflectional language. In ACL
(Companion Volume), pages 31–36.

[Padmanabhan and Kummamuru2007] Deepak Pad-
manabhan and Krishna Kummamuru. 2007.
Mining conversational text for procedures with
applications in contact centers. International
Journal on Document Analysis and Recognition,
10(3):227–238.

[Prasad et al.2014] Reshma Prasad, Mary Priya Sebas-
tian, et al. 2014. A technique to extract transliter-
ating phrases in statistical machine translation from
english to malayalam. In National Conference on
Indian Language Computing.

[Smucker and Allan2006] Mark Smucker and James
Allan. 2006. An investigation of dirichlet prior
smoothing’s performance advantage. Ir.

[Tsvetkov and Dyer2015] Yulia Tsvetkov and Chris
Dyer. 2015. Lexicon stratification for translat-
ing out-of-vocabulary words. In ACL Short Papers,
pages 125–131.

[Vincze et al.2013] Veronika Vincze, János Zsibrita,
and István Nagy. 2013. Dependency parsing for
identifying hungarian light verb constructions. In
IJCNLP, pages 207–215.

164

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 165–171

Known Strangers:

Cross Linguistic Patterns in Multilingual Multidirectional Dictionaries

Dr. Rejitha K. S.
Linguistic Data Consortium

Central Institute of Indian Languages

Manasa Gangothri, Mysore.

ksrejitha@gmail.com

Rajesha N.
Linguistic Data Consortium

Central Institute of Indian Languages

Manasa Gangothri, Mysore

n.rajesha@yahoo.co.in

Abstract
The multilingual multidirectional dictionary

gives the linguistic equivalent across the

languages. In order to build such a dictionary

in electronic form poses considerable

challenges to the lexicographer and the

dictionary architect. One of the major

challenges is linking lexical ambiguity across

languages. This paper intends to address that

issue along with many other challenges

involved in creating such a multilingual and

multidirectional dictionary.

1 Introduction:
Dictionaries are compiled with a view to provide
lexical and semantic information from thousands

of years. Electronic/digital dictionary does the

same by replacing the format of the traditional

printed dictionaries. An electronic dictionary,

though primarily designed to provide basic

information such as grammatical category,

meaning, usage etc. as the paper dictionaries,

they can also provide additional information like

pronunciation, motion pictures through

multimedia which paper dictionaries cannot.

The expression Electronic dictionary gained

momentum in the last quarter of the 20
th
 century

as a term for a specialized device - a handheld
computer dedicated to storing a lexical database

and performing lookup in it. Classical

lexicography demands a complex relationship

with linguistic theory. So is electronic

lexicography with computational linguistics.

Electronic dictionaries are a product of this

association and they also serve as tools and
feedstock for creating other products. An

electronic bilingual or multilingual dictionary

may be a digitized edition of a conventional

reference work perhaps augmented by types of

information specific of this medium (recorded

pronunciations, hyperlinks, full text search etc.).

Alternatively, it may be a system of monolingual

dictionaries of different languages interlinked at

the level of entries. [Ivan A Derhanski 2009]

If the construction of the multilingual

electronic dictionary is not just a collection of

digitized versions of printed dictionaries but to
offer facilities like multidirectional search,

extracting mono-lingual, bi-lingual, tri-lingual

dictionaries, root lexicons and even provide

backend support for translation systems then

designing such a dictionary database throws

practical challenges. Especially when such

database accommodates multiple languages at
one go and provides options for multidirectional

search. That means word of any language as

source can be sought in one or more target

languages catered by the dictionary system.

The creation of a multilingual dictionary

database concerns itself with the source of

information used for constructing them. Most of

such endeavors primarily rely on printed

dictionaries or machine readable versions of the

same. Currently we have the advantage of

electronic corpora which has been built for many

Indian Languages over the past decade.

Polysemy is seldom a serious problem in

human communication. Lexicographers have

traditionally been concerned with the best way to

account for the fact that one word can carry

several different meanings (Leacock C. and

Ravin 2000). Over time, lexicographic

procedures have been established that have

resulted in the listing of multiple dictionary

senses for polysemous words where sub-senses

are grouped together with their respective

definitions (Henri Béjoint 2000).

This paper addresses how the concepts

described in a lingua-franca provides a basis for

conducting cross-linguistic research there by
facilitating the creation of multilingual

dictionary capable of overcoming a number of

important linguistic problems.

165

The lexical under-specifications and lexical

ambiguity are among the major problems.

Sometimes one leads to the other. Lexical

ambiguity is one of the issues that a

lexicographer and the dictionary architect have
to face. This paper describes the observations

that a lexicographer encounters while handling

prototype of ‘concept-set-model’ architecture.

2 Review of literature:
When we took up the task of building

multilingual, multidirectional dictionary for

Indian languages, we researched few previous

initiatives. The Universidad Politécnica de

Madrid’s School of Computing have developed a

system for building multilingual dictionaries

based on multiple term equivalences known as

universal words. The system is based on

Princeton University’s WordNet database.

WordNet is a lexical database developed by

linguists at Princeton’s Cognitive Science

Laboratory. The database was designed to

inventory, classify and relate the semantic and

lexical content of the English language. The
system’s other mainstay are universal words.

The concept of universal word came out of the

UNL (Universal Networking Language) Project.

The aim of this project is to eliminate the

barriers of linguistic diversity by creating a

medium of information exchange through which

users can communicate in their own language.

Similar attempts were done in PanLex Project

that aims to help one to express any lexical

concept in any language. The endeavor like

BabelNet, which is developed with lexicographic

and encyclopedic coverage of terms, is a

semantic network which connects concepts and

named entities in a very large network of

semantic relations, called Babel synsets. Each

Babel synset represents a given meaning and

contains all the synonyms which express that

meaning in a range of different languages.

3 Our Approach:
Since our objective is narrow and is to make a

corpus based dictionary of Indian languages and

not of a semantic net. The paper is about

dictionary only. To make a multilingual

multidirectional digital dictionary the approach

of word to word linking across languages is not

practically feasible. Some concepts may never

have a word for it because the concept itself

could be alien to the language culture. For

example, there cannot be an equivalent word for

Kannada ‘mud̪d̪e’. mud̪d̪e is a kind of edible ball

prepared by cooking millet powder used majorly

in southern part of Karnataka. So does for ‘tulip’

flower in Telugu. Since the tulip flower is not

native to the culture of the Telugu speaking land.
In traditional dictionaries, such cases are dealt

with by describing source language word in

target language.

Word from language ‘A’ may have more than

one meaning which gets connected to a word in

language ‘B’ which may not share all the

meanings of the language ‘A’. Sometimes it may

have other meanings too which language ‘A’

word may not have.

Fixing a language as source and other

languages as target may bring only the concepts

of the source language culture and omits all

possible concepts that other languages may have.

A dictionary database based on such limited

concepts offers limited descriptions to the end-

user, primarily if the end user is searching

between two languages which are only target

languages in the database architecture. Making a

universal word-set is a good start but it will

eventually lack the language specific or region
specific concepts in the multilingual

multidirectional dictionary.

Words borrowed from same origin like Proto-

Dravidian or Sanskrit to two different languages

may not carry the same concept with them. So it

is evident that word to word linking across

languages is not a feasible solution even at the
stage of polysemy or borrowed words like

tatsamas. Thus we have to lean back to the basic

principles of linguistics where it is the concept

that exists as the fact and we label it differently

in different languages.

As the Vedic hymn say “Ékam sáth víprā
bahudhā́ vadanti”. (The fact exists and the

learned one call it by different names -Rigveda)

The world existed before any language came

into existence. When languages evolved with its

vocabulary its primary job was to label the

things and actions. Those words later fell into

different grammatical categories like noun, verb,

adjective, adverb etc.

According to Ferdinand de Saussure the

signified is the concept, the meaning, the thing

indicated by the signifier (Language). It need not

be a 'real object' but is some referent to which

the signifier refers. The language is built around

the concepts that exist in environment.
Let us consider the concept ‘leaf” and its

description as ‘The main organ of photosynthesis

and transpiration in higher plants’1. This

166

concept-set idea of leaf in four Dravidian

languages Malayalam, Tamil, Telugu, and

Kannada is as follows.

In Terminology, terms i.e. the “verbal

definition of a concept” need to be separated

from concept names since they belong to two

different semiotic systems. The first is a

linguistic system while the second is conceptual.

Similarly, term definitions written in natural

language need to be separated from concept

definitions written in a formal language. The

former are viewed as linguistic explanations

while the latter are considered logical

specifications of concept. The result is a new

kind of terminology called onto terminology

(Christophe Roche, Marie Calberg-Challot, Luc

Damas, Philippe Rouard 2009)

On the similar lines of onto terminology we

build our concept set which is a basic data unit
for a lexical entry. A concept set is a set which

has a concept described in Lingua-franca along

with its associated sense in connected languages

which in turn connected to related words in

Indian languages catered by the dictionary.

Our typical concept set looks as follows.

The 'concept-set-model' i.e. a Lexical item is

entered along with its synonyms and semantic

meaning linked with ‘concept’ (descriptive

meaning in lingua-franca) into the database. We

have chosen English as lingua-franca with its

probable word if exists in English. Based on the
concept the process is iterated in other

languages. In other words, we are following

indexation of ‘concept’. Here word is terminal or

leaf end of the linkage and not like a node of a

semantic network model.

In Central Institute of Indian Languages

(CIIL) the concept-set model based dictionary

architecture was built in 2010 (Rajesha N,

Ramya M and Samar Sinha 2011). We have the

advantage of electronic corpora which was built

in house for many Indian Languages over the

past decade by CIIL. We thought of using the

same to enrich our dictionary named ‘vāgartha’

(word and sense) that we are building in-house.

Since we are following the concept which is

the fact that exists, rather than any words to

connect with, the challenge of choosing a fixed

primary language is also eliminated. For the

purpose of management and to avoid confusions,
the method of entering the new concepts into the

dictionary restricts to one language at a given

point of time. Such language will be called as

Primary Language. All other languages will add

the entries and other respective fields in their

language in correspondence with the concepts

given by the Primary Language. After a fixed

period a different language will become the

Primary language so that the dictionary should

not miss any concepts which could be a cultural

specific item of a language community/region.

We devised a system where the concept is fixed

and the words act as labels attached to the
concepts. The concept and the primary language

word associated with it, is shown to the

��

இைல

ಎ�ೆ

���

Concept name Lingua Franca (English)

Verbal definition of a concept in Lingua Franca

Term definitions

written in natural

language 1

Term definitions

written in natural

language 2

Word 1

Word 2

Word n

Word 1

Word 2

Word n

167

connecting lexicographer. The system gives a

facility to transliterate the primary language

word if it would be of any help to the

lexicographer.

4 Observations:
Looking beyond the well-known issues

surrounding the treatment of polysemy in a

single language we find even greater problems

when it comes to accounting for polysemy

across languages. Overcoming these problems is

not only important for the design of traditional

lexicons but also crucial for the successful

implementation Multilingual Lexical Databases.

(Hans Christian Boas 2009)

Polysemy can pose problems in intra-lingual

and inter-lingual linkages.

4.1 Lexical Ambiguity in a language
In Intra-lingual linking the Lexical Ambiguity

words that are not even remotely connected in
conceptual sense bring ambiguity to the user. For

example the Malayalam word ‘ʋaɽʃam’ has two

senses as following.

1. ‘Year- A period of time containing 365 (or

366) days’
1

2. ‘Rain- Water falling in drops from vapour

condensed in the atmosphere’1.

The Dictionary database architect has to

arrange the data without any redundancy in

relational database. So the single lexical entry of

the word has to be connected with two or more

senses here. None of them is a sub-sense of the

other.

An end user search of database for Malayalam

word ‘aːɳʈə’ should fetch the description as well
as the synonyms of ‘aːɳʈə’; in such a case it will

obviously fetch ‘ʋaɽʃam’. But because the

‘ʋaɽʃam’ is connected with other words (like

‘maɻa’) in the sense of ‘Rain’, database should

not render ‘maɻa’ for ‘aːɳʈə’.

Tautologous: The organization of data should
follow the guideline. i.e., words should be

interlinked with all other synonyms and the

concept to which it is related. While writing

dictionary definitions many lexicographers

follow precise guidelines on how to define a

word.

In spite of this we find definitions like

Luncher — ‘Someone who is eating lunch’1

Magnetism — ‘The branch of science that

studies magnetism’1

These definitions are logically sound and

literally true but they are also tautologous. They

use the same words or roots in the definition as

are found in the headword. The lexicographer

has to understand that the architecture of the
database will be such that the definitions are not

only for the headword but to all the synonyms to

which the sense is connected. All these

synonyms are also headword candidates and part

of lexicon of that language. So none of those

words should be used in definition which leading

to tautologous entries.

4.2 Lexical Ambiguity across language
In practical scenario we observed four different

types of cross linguistic patterns and two

potentially confusing patterns. The following

table gives a description of these observations in

the multilingual database.

Patterns Description

A = A
Complete overlapping of word

senses

A ≠ A
No overlapping of word senses
even if words belongs to the same

origin or word conceptualization

A1 = A1

A2 ≠ A2

Semi overlapping of word senses.

The word may be having more

than one sense in a language-duo

of which one is common across

language but the other senses

may not.

A1 = A1

A2 = Null

Lexical under specification

leading to lexical ambiguity.

The word has a meaning in one

language similar to the other. In

addition to that the same word

has a specialized sense in the

prior which is absent in the later.

A ≠ A

 ↙↙↙↙

B ≠ B

Semi cross lexical ambiguity is

an extension of no overlapping

pattern where a pair of words

exists in a language-duo and one

of the word in the pair connect

with the one which are not their

replica

A ≠ A

 ⤩⤩⤩⤩
B ≠ B

Full Cross lexical ambiguity is an

extension of no overlapping

pattern where a pair of words
exist in a language-duo but both

of the words connect with the

ones which are not their replicas

Table: 1 Cross Linguistic Patterns

168

4.2.1 Complete overlapping:
The complete overlap of word senses; we find

"Overlapping polysemy" which refers to cases in

which items in two languages have exactly the

same meanings. In Indian language scenario,

normally some words have same origin like
proto-Dravidian or Sanskrit bor

different languages.

Let us consider an example of overlapping

polysemy among Malayalam ‘aʈi
‘aʈi’. The word carries four senses as follows:

1. To Beat (Verb)
2. The part of the leg of a human

the ankle joint (Noun)

3. The lower part of anything (Noun)

4. A linear unit of length equal to 12 inches or

a third of a yard (Quantifier)
1

We can observe the varying degrees of

polysemy exhibited by them and come to the

conclusion that the four senses exhibit "Almost

complete" overlapping polysemy patterns.

Overlapping polysemy poses no problems for

multilingual dictionaries.

4.2.2 No Overlapping:
In contrast to the above we observe common

phenomena that the word borrowed from the

same source into two different languages may

have diverging structure. For example ‘
in Kannada and Malayalam exhibit semantic

overlap when it comes to the basic sense

‘indication of something, highlighting, marking

something’. However they differ widely in their

meaning extensions when it comes to more

narrowed senses over time. In Kannada

‘laːɲʧana’ widely used to describe ‘Emblem

visible symbol representing an abstract idea’

This concept is not carried in Malayalam. But it

is carried as ‘Indication - Something that serves

to indicate or suggest’ The Kannada ‘

cannot be equated with Malayalam ‘

anymore. No overlapping poses an issue to the
lexicographer, so that simply looking into the

word and not the sense will not help while

connecting words.

4.2.3 Semi Overlapping:
We came across situations in which a word may

be having more than one sense in a language

of which one is common across language but the

other senses may not. For example both

Malayalam and Tamil have the word ‘

it is used in two senses in both languages. Only

The complete overlap of word senses; we find

"Overlapping polysemy" which refers to cases in

which items in two languages have exactly the

same meanings. In Indian language scenario,

normally some words have same origin like
Dravidian or Sanskrit borrowed into

Let us consider an example of overlapping

i’ and Tamil

’. The word carries four senses as follows:

2. The part of the leg of a human being below

The lower part of anything (Noun)

to 12 inches or

We can observe the varying degrees of

polysemy exhibited by them and come to the

conclusion that the four senses exhibit "Almost

overlapping polysemy patterns.

Overlapping polysemy poses no problems for

In contrast to the above we observe common

phenomena that the word borrowed from the

same source into two different languages may

have diverging structure. For example ‘laːɲʧana’
in Kannada and Malayalam exhibit semantic

overlap when it comes to the basic sense

‘indication of something, highlighting, marking

something’. However they differ widely in their

omes to more

narrowed senses over time. In Kannada

’ widely used to describe ‘Emblem - A

visible symbol representing an abstract idea’1.

This concept is not carried in Malayalam. But it

Something that serves

or suggest’ The Kannada ‘laːɲʧana’
cannot be equated with Malayalam ‘laːɲʧana’

anymore. No overlapping poses an issue to the
lexicographer, so that simply looking into the

word and not the sense will not help while

We came across situations in which a word may

be having more than one sense in a language-duo

of which one is common across language but the

other senses may not. For example both

Malayalam and Tamil have the word ‘kat̪t̪i’ and

in both languages. Only

one sense is a shared meaning and the other

sense is not mutually related. Both words share

the meaning ‘Knife - A weapon with a handle
and blade with a sharp point’1.

Malayalam ‘kat̪t̪i’ has a sense ‘

Destroyed or badly damaged by fire

Tamil ‘kat̪t̪i’ has a sense ‘Loudly

relatively high volume’.
1
 Simply because these

two words are sounds similar and connected in

one sense, database architecture should not allow

the sense of ‘Burnt’ to get linked with ‘Loudl

Concept-set-model will take care of it since the

words are connected to concepts rather than

words. But lexicographer has to be cautious not

to jump into conclusions by just looking at the

transliterated word that is offered to assist.

4.2.4 Lexical under specification leading

to lexical ambiguity:
The fourth type of cross-linguistic phenomenon

posing problem for the lexicographer is, cases in

which there are no clear equivalents in the target

languages. The word has a meaning in one

language similar to the other. In addition to that

the same word has a specialized sense in the

prior which is absent in the later, these cases

may lead to zero translations. When the word is

outside the culture of the target language and has

to be linked, usually lexicographer chooses to

borrow the word from source by transliterating
the word, (like English word ‘tulip’ is ‘

Kannada, as it describes a particular flower.) But

in this case lexicographer cannot borrow the

word as foreign word for the sake of dictiona

entry since it leads to polysemy.

Let’s have a look on such a case

Interface created for linking words to concept

one sense is a shared meaning and the other

sense is not mutually related. Both words share

A weapon with a handle

’ has a sense ‘Burnt -

maged by fire’ where as

’ has a sense ‘Loudly - With

Simply because these

two words are sounds similar and connected in

one sense, database architecture should not allow

’ to get linked with ‘Loudly’.

model will take care of it since the

words are connected to concepts rather than

words. But lexicographer has to be cautious not

to jump into conclusions by just looking at the

transliterated word that is offered to assist.

under specification leading

linguistic phenomenon

posing problem for the lexicographer is, cases in

which there are no clear equivalents in the target

languages. The word has a meaning in one

to the other. In addition to that

the same word has a specialized sense in the

prior which is absent in the later, these cases

may lead to zero translations. When the word is

outside the culture of the target language and has

apher chooses to

borrow the word from source by transliterating
the word, (like English word ‘tulip’ is ‘tulip’ in

Kannada, as it describes a particular flower.) But

in this case lexicographer cannot borrow the

word as foreign word for the sake of dictionary

face created for linking words to concept

169

 ‘rasaːjana’ of Kannada and ‘rasaːjana’ of

Bangla exhibit semantic overlap when it comes

to the basic senses describing mixture of two or

more elements. It is mainly used for the sense

‘Chemical - Material produced by or used in a
reaction involving changes in atoms or

molecules’1 in both languages. However they

differ widely in their meaning extensions when it

comes to more specialized sense. The Kannada

‘rasaːjana’ is used to describe ‘Ambrosia- Fruit

dessert made of bananas and other fruits with

shredded coconut’
1
. This concept is not carried

in Bangla. To give equivalent, the Lexicographer

cannot borrow it easily since it leads to creating

confusion because it is not familiar with the

language culture. In such cases lexicographer

can just describe the concept in Bangla to

convey the meaning to the user. Creating or

borrowing a word leads to other complications

like social acceptance of something which is not

at all part of culture.

In spite of its complexity to find proper

equivalents for difficult lexical items across,

linguistically it is necessary to account for them

within the Database. Without their inclusion,
neither humans nor machine will be able to

successfully use the database for translation

purposes.

4.2.5 Semi Co-lexical pattern
Even though a concept is not a lexical ambiguity

we observed a potentially confusing pattern for a

lexicographer. This is an extension of no

overlapping pattern where a pair of words exist

in a language-duo and one of the word in the pair

connect with the one which are not their replica

For example ‘upanjaːsa’and ‘kaːd̪ambari’ are

part of vocabulary of Kannada and Hindi. Both

words have Sanskrit origin.

Kannada ‘upanjaːsa’ is ‘Lecture - A speech

that is open to the public’
1
.

Hindi ‘upanjaːsa’ is, ‘Novel - an extended

fictional work in prose; usually in the form of a

story’1.

In Kannada ‘kaːd̪ambari’ is ‘Novel’ and in

Hindi ‘kaːd̪ambari’ is ‘Cluster-of-Clouds’
2
.

Both words are present in both languages. But

one of the words is having the meaning of the
other but the other words are nowhere

associated. Lexicographer should not take these

words lightly and connect as per their

understanding of the word in their language.

The Lexicographer has to take care of the

context which appears with the word before

connecting it into a sense in their language. Mere

identifying the word in their own language will

not help them anyway.

4.2.6 Full Co-lexical pattern
This is an extension of no overlapping pattern

where a pair of words exists in a language-duo,

having same origin but both of the words

connect with the ones which are not their

replicas. It is also a potentially confusing pattern

for a lexicographer.

For example, the words ‘samɕoːd̪ʰana’ and

‘anusand̪ʰaːna’ is present in both Kannada and

Hindi. Both words are having Sanskrit origin.

Kannada ‘samɕoːd̪ʰana’ carries the sense

‘Research - Systematic investigation to establish

facts’
1
. In Hindi ‘anusand̪ʰaːna’ is the word for

the same sense.

One of the senses that Kannada

‘anusand̪ʰaːna’ carries is ‘Modification- The act

of making something different in order to

achieve desired format’1. And in Hindi, word

‘samɕoːd̪ʰana’ goes with the sense. The word has

other senses like ‘examine’, ‘union’ etc in

Kannada.

In this case since both words are part of both
the languages vocabulary so the lexicographer

has to take extra care to look into the context

while connecting. Simply looking into the

transliteration form offered by the interface to

facilitate the lexicographer will not help and may

cause wrong connections.

Conclusion:
As per our observations every word is a new

word for the lexicographer. A lexicographer has

to take appropriate measures not to get mistaken

by looking at the source language word. We

mentioned our efforts to ensure appropriate
management of the multilingual and

multidirectional dictionary project. Once

developed, such a dictionary provides a vital

resource for cross lingual lexicographers and

programmers. At present the data building with

the approach of concept set modeling is being

carried out. Once the substantial data is entered
many more complexities and linking issues may

be created. Probable solutions for the same are to

be researched accordingly.

upanjaːsa

Kannada ≠
upanjaːsa

Hindi =
Kadamabari

Kannada ≠
Kadamabari

Hindi

170

Reference:
Christophe Roche, Marie Calberg-Challot, Luc

Damas, Philippe Rouard. 2009.

Ontoterminology: A new paradigm for

terminology. International Conference on

Knowledge Engineering and Ontology

Development. Madeira. Portugal. 321-326.

Hans Christian Boas (Ed.). 2009. Multilingual

FrameNets in Computational Lexicography:

Methods and Applications. Walter De Gruyter

GmbH & Co. Berlin.

Henri Béjoint. 2000. Modern Lexicography.

Oxford University Press. Oxford.

Ivan A Derhanski. 2009. Bi-and Multilingual

Electronic Dictionaries: Their Design and

Application to Low- and Middle-Density

Languages. Language engineering for lesser-

studied languages. IOS Press.

Leacock C. and Ravin. 2000. Polysemy.

Oxford University Press. Oxford.

Susan J. Behrens, Judith A. Parker (Ed). 2010.

Language in the Real World. Routledge. Oxon.

67-88.

Rajesha N, Ramya M and Samar Sinha. 2011

Lexipedia: A Multilingual Digital Linguistic

Database. Language in India Special Volume:

Problems of Parsing in Indian Languages. 52-55.

ISSN 1930-2940.
Timothy Baldwin, Jonathan Pool and Susan

M. Colowick. 2010. PanLex and LEXTRACT:

Translating all Words of all Languages of the

World. Coling: Demonstration Volume. 37-40.

Beijing.

1
 Wordweb English Dictionary

2 Lokbharati Brihat Pramanik Hindi Kosh

171

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 172–177

Tutorial for Deaf – Teaching Punjabi Alphabet using Synthetic

Animations

Lalit Goyal, Assistant Professor,

DAV College, Jalandhar.

goyal.aqua@gmail.com

Dr. Viahal Goyal, Associate Professor,

Punjabi University, Patiala.

vishal.pup@gmail.com

Abstract

Developing an automatic tool for educating

students has become essential in today’s world of

computerization. For differently abled people,

especially in India, where the resources are scares

for educating them, it becomes essential to

develop such technologies which give the

opportunity to each and every individual to get the

education online and free of cost. Research work

has been done to create HamNoSys notation of

atleast two words corresponding to each alphabet

of Punjabi Language. The HamNoSys notation

when used in JASigning animation tool produces

the synthetic animation. The synthetic animations

are better as compared to human videos in terms

of memory requirement, standardization, and

flexibility. Synthetic animations can be modified

as per the requirement whereas the human videos

cannot be modified. The only drawback that

seems is, these synthetic animations may lack the

natural non-manual component of sign. The

research work has been incorporated to produce

the web portal that displays the Punjabi alphabet

along with the picture related to that alphabet and

the synthetic animation with which that word is

signed in Indian Sign Language. The work is the

first of its kind for Indian Sign Language.

Keywords Indian Sign Language, HamNoSys,

SiGML, Punjabi Alphabet, Synthetic Animation

1 Introduction

Sign language is the visual spatial language

which is used by the differently abled hearing
impaired people to communicate. Sign Language

is the three dimensional language which uses the

3D space around the signer’s body using its
hands, arms, body postures, face expressions,

and head movements.

Among approximately 7105 known living

languages worldwide, there are 141 Sign

Languages depending upon the region in the

world. There are nearly 72 million people who

are hearing impaired among nearly 7 billion

people on earth. The situation is worst as 90% of

these differently abled people have very limited

or no access to education and other information.

[1][2].

In India, situation is worse; there are 5072914

persons who suffer from hearing disability.

Among them, only 546826 hearing impaired

persons are literate below primary education [3]

which accounts for only 10.78%.

Sign language is different for different

countries/regions as this language is not created

but it is evolved by deaf people. So, depending

on the region, the signs are different as well as

the grammar is also different depending on the

region. As far as Indian Sign Language is

concerned, it is categorized in manual and non-

manual signs which may be static signs or

dynamic signs. Static signs are those signs which

do not have any movement in their signs. The

dynamic signs are those which use the

movement of the hands, and the non-manual

features of the sign. Most of the signs used in the

Sign Language are dynamic signs.

Figure 1: ISL Type Hierarchy

The one handed signs are represented by a single

dominating hand whereas the two handed signs

are represented by both the hands of the signer.

172

Both one handed as well as two handed signs can

be either static or dynamic (having movements).

Each of the static and movement signs is further

classified into manual and non-manual signs.

Two handed signs with movements can be
further distinguished as: Type0 and Type1

signs.Type0 signs are those signs in which both

the hands are active i.e. both the hands are in
motion.Type1 signs are those signs in which one

hand (dominant) is more active as compared to

the other hand (non-dominant).

2 Review of Literature

The education is essential for the good social

life. The hearing impaired persons also required

to be educated so that they can communicate

with each other in their own language as well as

capable of communicating in their social life. In

India, various schools are available to impart

education to these people but these schools are

limited to only urban areas. Even the number of

schools is scarce in urban area. A lot of hearing

impaired persons have no access of education

and so they are cut off from the society.

A lot of work has been done in implementation

of sign language dictionary worldwide.

Dictionaries have been created in the form of

books which are obsolete in this day and age of

computerization. Video dictionaries are available

for sign languages of many countries like

America, Britain, Australia, Spain, Italy, and

even India. These video dictionaries can be

categorized as real character (human being)

producing the sign or computer generated

animated character (avatar) producing the sign.

A lot of Indian sign language dictionaries are

available which uses the real human being

producing the sign for an English word. No

Indian sign language dictionary is available

which uses computer generated character (ava-

tar) technology.

• The Ramakrishna Mission collaborated with

CBM International, Germany for a project on

sign language dictionary in year January

1999. The goal for the project was to

standardize Indian Sign Language. On

November 24, 2001, the first Indian Sign

Language dictionary was released which

contains more than 2500 signs. These signs

were taken from 42 cities in 12 States to

provide a common sign language all over

India[4]. The signs in this online dictionary

are videos of real human English Alphabets

are also included in the sign dictionary. This

dictionary does not contains any other

languages of India even Hindi alphabets are

not included.

• Spread the Sign, an international project by

Leonardo da Vinci supported by the European

Commission through the Swedish

International Program Office of Education

and Training. The goal of this project is to

share various sign languages from different

countries over the internet. The drawback of

this work is that it has videos for the words

rather than animations which take a long time

to load as compared to synthetic animations

[5]. The participation of various countries is

not upto the mark.

• Handspeak created is the American Sign

Language dictionary. The dictionary is

released on the domain handspeak.com in

2000. The website contains the ASL signs,

some variants of ASL signs, some verb inflec-

tions, and more. The dictionary is produced

and signed by native ASL bilinguals [6].

• Sign Smith [7] is a 3D illustrated dictionary

of ASL. It is used as educational software for

the hearing impaired people of America. It is

also an authoring tool to create ASL content.

A lot of work is done in developing the

dictionaries of sign language of various countries

but no work has been found in developing the
dictionary or tutorial for teaching the Punjabi

(Language of the state Punjab) alphabet.

3 Punjabi Alphabet

Punjabi is one of the 22 official languages of

India which is spoken in the state of Punjab. In

India, Punjabi is written in Gurmukhi alphabet
which is composed of vowels, consonants, vowel

diacritics.

The vowels and vowel diacritics are known as

Laga Matra where as consonants are known as

Vianjans. In Gurmukhi alphabet, there are a total

of 10 vowels, 10 vowel diacritics and 41

consonants.

173

Vowels

ਉ ਊ ਓ ਅ ਆ ਐ ਔ ਏ ਇ ਈ

Vowel Diacritics

◌ਾ ◌ਾ ◌ਂ ਿ◌ ◌ੀ ◌ੇ ◌ੈ ◌ੋ ◌ੌ ◌ੁ ◌ੂ

Consonants

ੳ ਅ ੲ ਸ ਹ

ਕ ਖ ਗ ਘ ਙ

ਚ ਛ ਜ ਝ ਞ

ਟ ਠ ਡ ਢ ਣ

ਤ ਥ ਦ ਧ ਨ

ਪ ਫ ਬ ਭ ਮ

ਯ ਰ ਲ ਵ ੜ

ਸ਼ ਖ਼ ਗ਼ ਜ਼ ਫ਼ ਲ਼

Other Symbols

◌ਂ ◌ੰ ◌ੱ

4 Real Vs Synthetic Video Dictionaries

Translation process from a source language to

target language requires a bilingual dictionary

between the source and target languages. In case

of translating Punjabi text to Indian Sign

Language, bilingual dictionary of Punjabi word

and Indian Sign Language is required. Punjabi-

ISL bilingual dictionary is completely different

from any other bilingual dictionary between the

spoken languages. The reason behind is that the

Indian Sign Language is the visual spatial

language which cannot be spoken or written. So,

irrespective of bilingual dictionaries of other

spoken languages, for each Punjabi word, the

corresponding ISL word is not the written word.

Here, the Punjabi word’s counterpart in ISL can

be a real human video, sign picture, coded sign

language text, or synthetic animation. All the

approaches have their own pros and cons but the

synthetic animations are well suited because of

scalability of computer generated avatar. A

comparison of all the media used for creating the

bilingual dictionary of English-SL has been

given in the following table:

Table 1: Comparison of Different Media for Representing the Sign

Kind of Media Pros Cons

Video Signs • Realistic

• Easy to create

• Time consuming to create

• High memory consumption

• Not supported by translation system

Pictures • Very less memory consumption • Time consuming to create pictures

• Not realistic as compared to videos

• Not supported by translation system

Coded Sign Language

Text (written form of SL)
• Minimal Memory consumption

• Supported by translation system

as it is the written form and can

be processed very easily

• Very difficult to read and

understand

• Required to be learnt

Synthetic Animations • Very less memory consumption

• Can be easily reproduced

• Supported by translation system

• Avatar can be made different

according to choice

• Not as realistic as human videos.

5 HamNoSys Notation

Sign Language is a three dimensional language

which cannot be written just like the other

spoken languages like English, Hindi, Punjabi

etc. But, researchers have created various writing

notations of sign language. The benefit of

writing notation is that the translation process

from a spoken language to sign language

becomes feasible. Even a writing notation of sign

language is must for creating the computer

174

generated character (Avtar) that can be

just like the human being. Various writing

notation available for writing the sign language

are Bébian Notation, Stokoe Notation

Notation, Hamburg Notation System

(HamNoSys), SignWriting (SW), si5s

SignScript, SLIPA etc. We have used

HamNoSys notation to create the animation of

the words related to Punjabi alphabet.

The Hamburg Notation System (HamNoSys) is a

phonetically based notation system that was

developed by Siegmund Prillwitz in 1984[8

the institute of German Sign Language,

University of Hamburg. HamNoSys notation is

rooted in the Stokoe notation with more detail

handling the non-manual component of the sign

also. Around 200 symbols are available in this

notation system to describe any sign. The

structure of this notation contains mainly four

components: Symmetry operator (in case both

the hands are used), NMF (to describe the non

manual features), Initial Configuration (contains

in sequence the hand shape, hand orientation,

and hand location), and Action/Movement (the

dynamic part or movement of the hands)

The syntax of HamNoSys notation is the

sequence of symbols of symmetry, non

features, hand features (hand shape, orientation,

location) and last the hand movements.

Following figure shows the basic structure of the

HamNoSys notation. The first component of

HamNoSys notation is always the symmetric

operator which is used for two handed signs. The

second component is for non-manual part of the

sign such as face expressions, head movement,

body movement, lips movement (for getting the

phonetic expression). The third component is for

hand shape, hand orientation, and hand location.

The forth component of the notation is the

movement of the hands in case of dynamic signs.

Figure 2: Structure of the HamNoSys

generated character (Avtar) that can be animated

just like the human being. Various writing

notation available for writing the sign language

Stokoe Notation, Gloss

Notation, Hamburg Notation System

si5s, SignFont,

We have used

HamNoSys notation to create the animation of

alphabet.

The Hamburg Notation System (HamNoSys) is a

based notation system that was

developed by Siegmund Prillwitz in 1984[8] at

the institute of German Sign Language,

HamNoSys notation is

rooted in the Stokoe notation with more detail

manual component of the sign

. Around 200 symbols are available in this

notation system to describe any sign. The

structure of this notation contains mainly four

components: Symmetry operator (in case both

the hands are used), NMF (to describe the non-

ration (contains

in sequence the hand shape, hand orientation,

and hand location), and Action/Movement (the

dynamic part or movement of the hands)

The syntax of HamNoSys notation is the

sequence of symbols of symmetry, non-manual

and shape, orientation,

location) and last the hand movements.

Following figure shows the basic structure of the

HamNoSys notation. The first component of

HamNoSys notation is always the symmetric

operator which is used for two handed signs. The

manual part of the

sign such as face expressions, head movement,

body movement, lips movement (for getting the

phonetic expression). The third component is for

hand shape, hand orientation, and hand location.

tation is the

movement of the hands in case of dynamic signs.

Structure of the HamNoSys

���������	
��
����������������������	
��
����������������������	
��
����������������������	
��
�������������

Figure 3: HamNoSys Notation for word

“Beautiful”

An advantage of HamNoSys is that it is

international and can be used to write any Sign

Language. This notation system was initially

handwritten, but a machine readable Unicode is

now available from the University of Hamburg.

This notation is iconic, has a formal syntax as

shown above and can be stored in a computer

database. The limiting part of this notation is that

it does not provide an easy way to describe non

manual features, such as facial expressions and

body movements but still the non

produced by using this notation is comparatively

better than other notations.

An XML encoding of HamNoSys called Signing

Gesture Markup Language (SiGML) is also

available. SiGML encoding is used to produce

the animation of the sign using an animation tool

JASigning [11]. It was developed for the

ViSiCast project by Richard Kennaway

Some of the symbols used in HamNoSys

notation are:

Figure 4: Symbol Set used in HamNoSys

Notation System

6 Tutorial for Punjabi Alphabet

Teaching Punjabi alphabet to hearing impaired
students is very hard because of lack of teaching

resources. We have tried an attempt to produce

the web portal which displays the
alphabet along with a word for that alphabet.

Along with the textual information (

���������	
��
����������������������	
��
����������������������	
��
����������������������	
��
�������������

: HamNoSys Notation for word

An advantage of HamNoSys is that it is

international and can be used to write any Sign

Language. This notation system was initially

handwritten, but a machine readable Unicode is

now available from the University of Hamburg.

formal syntax as

shown above and can be stored in a computer

database. The limiting part of this notation is that

it does not provide an easy way to describe non-

manual features, such as facial expressions and

body movements but still the non-manual part

roduced by using this notation is comparatively

An XML encoding of HamNoSys called Signing

Gesture Markup Language (SiGML) is also

available. SiGML encoding is used to produce

the animation of the sign using an animation tool

JASigning [11]. It was developed for the

ViSiCast project by Richard Kennaway [9].

Some of the symbols used in HamNoSys

: Symbol Set used in HamNoSys

Tutorial for Punjabi Alphabet

alphabet to hearing impaired
students is very hard because of lack of teaching

resources. We have tried an attempt to produce

the web portal which displays the Punjabi
alphabet along with a word for that alphabet.

Along with the textual information (Punjabi

175

Alphabet and corresponding word), a picture of
the word is also displayed. The animation is

produced in ISL describing how to produce the

sign for each word. For each Punjabi alphabet,
we have chosen two word for better

understandability. For a total of 31 alphabets, we

have created HamNoSys code for 61 words.

HamNoSys has an alphabet of about 200

symbols (Unicode of this notation system is

available) which covers almost all the hand
shapes, hand location, hand/palm orientation,

hand movement, and non-manual parts of the

sign. Later this HamNoSys can be converted into
SiGML (Signing Gesture Markup Language)

tags which are sort of XML tags that can be

animated by an animation tool using an Avatar.
The sequence of steps for creating the animation

from English word is as shown in the following

architecture [10]:

Figure 5: Architecture to Produce the

Animation from English Word

All the 61 signs are dynamic signs except the

sign of word ਨੱਕ (nose) which is static single

handed sign. Below table shows the list of words

corresponding to each Punjabi alphabet.

Table 2: Words with each Alphabet coded in

HamNoSys

S.No. Punjabi

Alphabet

Words

1 ੳ ਊਠ, ਉਗਂਲੀ
2 ਅ ਅੱਖ, ਅੰਬ

3 ੲ ਇੱਲ, ਇੰਜਣ

4 ਸ ਸੇਬ, ਸੰਤਰਾ
5 ਹ ਹਾਥੀ, ਿਹਰਨ

6 ਕ ਕੇਕ, ਕੱੁਤਾ
7 ਖ ਿਖੜਕੀ, ਖੰਬ

8 ਗ ਗਾਂ, ਗੰੇਡਾ

9 ਘ ਘਰ, ਘੋੜਾ
10 ਚ ਚੰਨ, ਿਚੜੀ
11 ਛ ਛੱਤਰੀ, ਛੱਲਾ
12 ਜ ਜਹਾਜ, ਜੰਗਲ

13 ਝ ਝੰਡਾ, ਝਰਨਾ
14 ਟ ਟਾਰਚ, ਟੋਕਰੀ
15 ਠ ਠੇਲਾ, ਠੰਡ

16 ਡ ਡੱਡੂ, ਡੱਬਾ
17 ਢ ਢੋਲ, ਢਾਲ

18 ਤ ਿਤੱਤਲੀ, ਤਰਬੂਜ

19 ਥ ਥਾਲੀ, ਥੈਲਾ
20 ਦ ਦੰਦ, ਦਰਖ਼ਤ

21 ਧ ਧਰਤੀ, ਧਾਗਾ
22 ਨ ਨੱਕ, ਨਾਰੀਅਲ

23 ਪ ਪਤੰਗ, ਪਾਣੀ
24 ਫ ਫੁੱਲ, ਫਲ

25 ਬ ਬੈਲਗੱਡੀ, ਬਤਖ

26 ਭ ਭੇੜੀਆ, ਭਾਲੂ

27 ਮ ਮੱਖਣ, ਮਛਲੀ
28 ਯ ਯੋਗ

29 ਰ ਰੇਲ, ਰਾਤ

30 ਲ ਲੋਮੜੀ, ਲੜਕੀ
31 ਵ ਵਾਲ, ਵਰਖਾ

Figure 6 : Screenshot of the Punjabi Alphabet

Tutorial

7. Conclusion

Automatic tool for learning Punjabi Alphabet by

the hearing impaired people is challenging task

because creation of synthetic animation for all

the words corresponding to Punjabi alphabets is

very difficult to create. This paper represents the

creation of synthetic animations using

HamNoSys notation for 61 words for all the
Punjabi alphabet. All the synthetic animations

are incorporated in the web portal. The present

work is important for hearing impaired people

176

because of scarce resources like deaf schools in
India. The tool can be very much beneficial for

imparting education to these differently abled

people.

References

[1] Ethnologue: Languages of the World. (2015).

Retrieved July 10, 2016, from

http://www.ethnologue.com/

[2] WFD | World Federation of the Deaf - World

Federation of the Deaf, WFD, human rights, deaf,

deaf people. (2015). Retrieved July 10, 2016,

from https://wfdeaf.org/

[3] Disabled Population by type of Disability, Age

and Sex - C20 Table. (2011.). Retrieved March

21, 2016, from

http://www.censusindia.gov.in/2011census/C-

series/c-20.html

[4] FDMSE-Indian SIGN LANGUAGE. Available

from: http:// enabled.in/wp/indian-sign-language-

dictionary-website/

[5] European sign language center. Available from:

http://efsli. org/

[6] Handspeak. Available from:

https://prezi.com/fugyte-

fvya6z/httpwwwhandspeakcomwordwwhomp4/

[7] VCOM3D. Sign smith products. Available from:

http:// www.vcom3d.com

[8] Hanke, T. (2004, May). HamNoSys-representing

sign language data in language resources and

language processing contexts. In LREC (Vol. 4).

[9] Kennaway, R. (2001, April). Synthetic animation

of deaf signing gestures. In International Gesture

Workshop (pp. 146-157). Springer Berlin

Heidelberg.

[10] Goyal, L., & Goyal, V. (2016). Development of

Indian Sign Language Dictionary using Synthetic

Animations. In Indian Journal of Science and

Technology, 9(32).

[11] JASigning. (2015). Retrieved October 15, 2016,

from

http://vh.cmp.uea.ac.uk/index.php/JASigning

177

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 178–187

SemTagger: A Novel Approach for Semantic Similarity Based Hashtag
Recommendation on Twitter

Kuntal Dey†, Ritvik Shrivastava?, Saroj Kaushik§, L Venkata Subramaniam†
†IBM Research, India; ?NSIT Delhi, India; §IIT Delhi, India

†{kuntadey, lvsubram}@in.ibm.com; ?ritviks.it@nsit.net.in; §saroj@cse.iitd.ac.in

Abstract

This paper proposes a semantic similar-
ity based novel approach, to assign or rec-
ommend a hashtag to a given tweet. The
work uses a Latent Dirichlet Allocation
(LDA) based learning approach. In the
training phase, we learn the latent con-
cept space of a given set of training tweets,
via topic modeling, and identify a group
of tweets that act as representatives of the
topic. In the inference phase, we cre-
ate a probability distribution of a given
test tweet belonging to the learned top-
ics, and find the semantic similarity of the
test tweet with representative tweets for
each topic. We propose two assignment
approaches. In one approach, we assign
hashtags to a target tweet, by obtaining
these from a set of representative training
tweets, that have the highest semantic sim-
ilarities with the target tweet. In the other
approach, we combine (a) the semantic
similarity of the target tweet with the rep-
resentative tweets, and (b) the assignment
probability of the target tweet to a given
topic, and assign hashtags using this joint
maximization. The hashtags are assigned
to the target tweet, by selecting the top-K
values from the combination. Our system
yields F-score of 46.59%, improving over
the LDA baseline by around 6 times.

1 Introduction

1.1 Background and Motivation
The hashtag recommendation problem for Twit-
ter addresses suggesting appropriate hashtags to
a user for assigning to a tweet they would post.
Recommendation of hashtags for Twitter mes-
sages has emerged as a mainstream area of re-
search. Practically, only around 10-15% Twitter

data tends to have hashtags, as observed by (Hong
et al., 2011). And yet, as observed in the litera-
ture, hashtags play a critical role in solving signif-
icant problems, e.g., information diffusion (Star-
bird and Palen, 2012) (Tsur and Rappoport, 2012),
topic modeling (Asur et al., 2011) and many other
problems as observed by the literature survey con-
ducted by Dey et al. (2017). All of the above in-
dicate that it is important to solve the problem of
hashtag recommendation.

The problem has been received with strong re-
search enthusiasm in recent times. Several re-
search solutions have been proposed. Some early-
breaking works include the works by Zangerle
et al. (2011), Ding et al. (2012) and Ding et al.
(2013), that follow approaches such as tf-idf and
translational models. Several other approaches
emerged over time. Topical models, such as Zhang
et al. (2014) and Gong et al. (2015), started finding
way into the literature. Deeper and more focused
methods started getting proposed, such as recom-
mending hashtags for tweets containing a hyper-
link by (Sedhai and Sun, 2014). Subsequently,
deep neural network based models emerged. We-
ston et al. (2014) predicted hashtags using a con-
volutional neural network (CNN) (Krizhevsky et
al., 2012) based approach, and learned semantic
embeddings of hashtags. Gong and Zhang (2016)
used CNN with attention mapping. They attained
an F-score of 39.8%, which is the best in the liter-
ature till date.

1.2 Central Idea

We observe that, while Dirichlet and specifically
Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) based approaches exist in the literature to
solve the problem at hand, these works tend to
model the topics appearing in a given target tweet
as a semantic (topical) alignment with the train-
ing tweets, and use the hashtags appearing in those
tweets for recommendation. An important aspect

178

that appears unexplored is the semantic similarity
of the target tweet, with the training tweets that are
topically aligned. In the current work, we hypoth-
esize that, considering the semantic similarity of
the training tweets that are topically (LDA-wise)
based aligned to the target tweet, and assigning
hashtags to the target tweet using this similarity, is
an effective methodology for recommending hash-
tags to tweets.

In the training phase, we use a LDA-based topic
modeling, to learn the semantic concept space
covered by the training tweets, and identify topics
via topic modeling. We identify a group of tweets
that act as representatives of the topic. For infer-
ence (assigning hashtags to a given target tweet),
we create a probability distribution of the target
tweet belonging to the learned topics. We sub-
sequently find the semantic similarity of the tar-
get tweet with representative tweets for each topic,
using a state-of-the-art model externally learned
specifically for Twitter (Dey et al., 2016).

We propose two variants for making the recom-
mendation. In one variant, we recommend hash-
tags to the target tweet, using the semantic sim-
ilarity of the target tweet with the representative
tweets for each topic derived, and picking from the
more similar training tweets. In the other variant,
we combine (a) the semantic similarity of a tar-
get tweet with the representative tweets for each
topic derived, and, (b) the assignment probabil-
ity of the target tweet to a given topic, to ob-
tain a combined score of each representative tweet
(across the different topics) to get selected. We
rank the representative tweets based on the score
of combination, and recommend hashtags based
upon the hashtags observed in the top-K ranked
tweets. We empirically determine K as 3, and ob-
serve that our methodology produces highly effec-
tive results, lifting the F-score by around 6 times
from the LDA baseline.

1.3 Our Contributions
The contributions of our work are the following.

• We provide a novel methodology to address
the problem of hashtag recommendation on
Twitter. Our approach replies upon recom-
mending hashtags to a given target tweet,
based on semantic similarity of the target
tweet with topically similar training tweets.

• We propose SemTagger, a framework where
we learn the latent concept space of a given

set of training tweets, via topic modeling, and
assign hashtags to test tweets using (a) a com-
bination of the semantic similarity of a test
tweet with representative training tweets, and
the assignment probability of the test tweet
to a given topic, and (b) assigning hashtags
by selecting the top-K values from the com-
bination thus computed.

• We empirically determine the effectiveness
of the proposed approach. In our experi-
ments, we observe that our methodology de-
livers an F-score of 46.59%, which is around
6 times higher compared to a corresponding
LDA baseline of 7.79%.

The rest of the paper is as follows. Section 2
provides an overview of the literature in the space
of Twitter hashtag recommendation. This is fol-
lowed by the details of our methodology in Sec-
tion 3. Section 4 presents the experiment design
and results. Section 5 is used for a brief discus-
sion of a few aspects of interest. The paper is fi-
nally concluded in Section 6.

2 Related Work

Hashtag recommendation has been established as
a well-accepted research problem for nearly a
decade now. Multiple approaches have been pro-
posed by researchers exploring the problem from
several aspects. In an early work, while solving
a sentiment classification problem, Davidov et al.
(2010) had attempted to address hashtags indica-
tive of sentiments. However, the first-ever work
that focused completely on hashtag recommenda-
tion, was carried out a year later, by Zangerle et
al. (2011). In this work, the authors used the tf-
idf approach to compare tweet-pair similarity, and
thus computed the similarity of a target tweet with
given training tweets. They subsequently retrieved
tweets with the most similar messages, and heuris-
tically ranked and recommended the hashtags that
appeared in the extracted tweets. In a body of
works that followed, Ding et al. (2012) and Ding et
al. (2013) converted the hashtag recommendation
to a translation problem. Their model is centered
around an unsupervised learning method using a
latent variable estimation based topical translation
model. They hypothesize that hashtags and trigger
words of tweets are two different languages with
the same meaning that occur in parallel. They use
“topic-specific word trigger to bridge the vocabu-

179

lary gap between the words in tweets and hashtags,
and discovers the topics of tweets by a topic model
designed for microblogs”.

Subsequently, a large number of research works
started emerging in the literature, that attempted to
solve the problem. Several novel approaches were
proposed, covering different aspects of the prob-
lem. One such work, that attempted to recommend
hashtags only to the tweets containing a hyperlink
in the content, was proposed by Sedhai and Sun
(2014). Their approach consisted of two phases.
In the first phase, they selected a set of candidate
hashtags using the attributes computed from tweet
content, such as hyperlinked documents, named
entities contained in the referred webpage as well
as present in the tweet, and the domain of the con-
tent of the webpage that the hyperlink refers to. In
the second phase, they formulate as a learning-to-
rank problem, and solve with RankSVM to aggre-
gate and rank the candidate hashtags selected in
the first phase.

Gong et al. (2015) proposed a Dirichlet based
method. They adopted a Dirichlet based mix-
ture model, incorporating types of hashtags as hid-
den variables. Motivated by Liu et al. (2012) and
philosophically akin to Ding et al. (2012) and Ding
et al. (2013), they also model assuming that hash-
tags and tweet content are parallel descriptions of
the same content.

A topic-based hashtag recommendation method
was proposed by She and Chen (2014). This work
treated hashtags as topic labels, and performed su-
pervised topic model learning over these labels,
to discover inter-word relationships. They treated
the words as one of two types: background words
that are prevalent in many of the tweets, and lo-
cal topic words that are more specific to that topic.
They inferred the probability that a hashtag will be
contained in a new tweet, and generated hashtags
for recommendation using a symmetric Dirichlet
distribution of the local and background words.
Zhang et al. (2014) proposed another topic-based
hashtag recommendation method. Their work
used a topical model based method, incorporat-
ing both temporal and personal information. They
extended over the well-established translational
model for hashtag recommendation. They divided
the time horizon into T epochs, and analyzed at
a per-epoch level to ensure temporal relevance of
recommended hashtags. They drew from a multi-
nomial word-topic distribution and recommended

the hashtags that have the maximum probabilities
in the draw. Among other works, Godin et al.
(2013) too proposed another effective topic-based
hashtag recommendation method.

The recent advances in deep neural network
based learning (deep learning), has motivated re-
searchers to attempt such techniques on the hash-
tag recommendation problem. In an early appli-
cation of deep learning on this problem, Weston
et al. (2014) predicted hashtags using a convo-
lutional neural network (CNN), and learned se-
mantic embeddings with hashtags. They posed as
a supervised learning problem, treating the hash-
tags as labels assigned to the tweet content. Their
model represents the words, as well as the entire
textual posts, as embeddings in the intermediate
layers of their deep-CNN architecture. The recent
work by Gong and Zhang (2016) used CNN with
attention mapping. They, too, converted the words
into embeddings, and used a local small window
based attention map, where each given window
surrounds a word around which the attention is
provided. They attained an F-score of 39.8%, lift-
ing the performance over a LDA baseline by 6.42
times, making the work the most effective hashtag
recommendation system known in the literature.

Our work uses the LDA-based models, but in-
troduces a novel mechanism of augmenting top-
ical similarity with semantic similarity of target
and training (known) tweets. This approach is
the first of its kind, and it outperforms the sys-
tems known in the literature except the work by
Gong and Zhang (2016). However, the practica-
bility of deep learning in real-life systems that are
often used from mobile phones, remains a ques-
tion till date. Deep learning on mobile phones has
remained a challenge 1 that has not been addressed
till date in a satisfactory manner. And yet, 85%
of the total usage time on Twitter happens on mo-
bile phones2. Our approach is lightweight, mak-
ing it practical and useful in real life, including
being usable from mobile phones. Thus, while in
terms of performance (F-score) metrics our model
is second to a deep-learning based model (Gong
and Zhang, 2016), practically, not counting the
deep learning systems that are not fit for use in
real-life solutions that often are executed on mo-
bile phones, our work establishes a new real-life
benchmark.

1https://conferences.oreilly.com/strata/strata-ca-
2017/public/schedule/detail/56179

2https://twitter.com/wsjtech/status/451886622788055040?lang=en

180

3 Details of Our Approach

We use a topic modeling and semantic similarity
driven approach to model our solution framework.
The details of SemTagger, our framework, are pre-
sented below.

3.1 Data Cleaning
The very first step followed in the training as well
as inference phases, is data cleaning. This com-
prises of the following steps.

• Removal of tweets without any hashtag:
In order to train our model, we need tweets
that necessarily contain hashtags. Further,
since the objective of the present work is to
perform hashtag recommendation, the target
(test) tweets that we shall assign hashtags to,
will also need to contain ground-truth hash-
tags assigned by the user posting the tweet.
The testing will be performed by hiding the
hashtags from the target tweets and assign-
ing the predicted hashtags to these tweets us-
ing our model; however, the performance of
our model will be validated by the ground-
truth hashtags that were hidden. Thus, all
the tweets we use for our process necessarily
need to contain at least one hashtag. Driven
by this requirement, we retain only those
tweets that contain at least one hashtag, and
eliminate the remaining tweets.

• Non-English tweet removal: Since the fo-
cus of our work is around tweets authored
in the English language, we eliminate the
non-English tweets from our dataset. The
language-marker field present in the raw
Twitter data indicates the language of each
given tweet, which is used to detect whether
a given tweet is in English or not. This frees
our dataset from extraneous and non-useful
tweets, and retains only the English tweets
that are of interest.

• Non-ASCII character removal: Since the
non-ASCII characters do not add value to the
work, we eliminate the non-ASCII content
present in each given tweet (that has been re-
tained otherwise), and retain the remaining
part of the text.

After the data cleaning process, we are left with
only English tweets, with at least one hashtag, and
containing no non-ASCII character.

3.2 Preprocessing
Both in the training and testing phases, we first
preprocess the dataset. This includes performing
the following operations on each tweet:

1. Tweet normalization: We normalize tweet
content, by resolving many colloquial on-
the-net expressions appearing as part of user-
generated social media text, but do not appear
in any traditional dictionary. For instance,
what appears as aaf on Twitter, is expanded
to as a friend after the tweet normalization
process. We normalize the tweets using a net
slang dictionary3 and Han-Baldwin normal-
ization corpus.

2. Stopword removal: Stopword removal is an
essential step of our process. This step en-
sures that the superfluous words with prac-
tically no information content for the task
under consideration are eliminated (such as
prepositions, article etc.). We perform stop-
word removal using an online dictionary4.

The architecture of the data cleaning and pre-
processing phases are given in Figure 1.

3.3 Topic Model-Based Training
We perform topic model-based training from the
given tweets, to construct a topic distribution
model. We subsequently identify a representative
set of tweets for each of the topics detected. The
training pipeline has been illustrated in Figure 2.

3.3.1 LDA-Based Topic Modeling
We perform LDA-based topic modeling on the
training tweet set. This is performed over two
steps.

First, a document is created as a concatenation
of all the tweets present in the training dataset,
minus the hashtags. That is, for a given set of
tweets T = {t1, t2, ..., tn}, containing hashtags
H = {h1, h2, ..., hm}, a document D is con-
structed as

D =
n⋃

i=1

ti −
m⋃

j=1

hj (1)

Next, the document is processed for LDA-
based topic modeling, and a set of topics Z =

3http://www.noslang.com/dictionary
4https://nlp.stanford.edu/IR-

book/html/htmledition/dropping-common-terms-stop-
words-1.html

181

Figure 1: Data Cleaning and Preprocessing

Figure 2: Training and Representative Tweet Set Identification

{z1, z2, ..., zl} are learned. Please note that, LDA
(Blei et al., 2003) is traditionally modeled as a
joint distribution in the following manner:

p(β1:K , θ1:D, z1:D, w1:D =
K∏

i=1

p(βi).
D∏

d=1

p(θd).

N∏

n=1

p(zd,n|θd)p(wd,n|β1:K , zd,n) (2)

Here, β1:K represent the topics where each βk is a
distribution over the given vocabulary, θd are the
topic proportions for document d, θd,k is the topic
proportion for topic k in document d, zd are the
topic assignments for document d, zd,n is the topic
assignment for word n in document d, and wd are
the observed words for document d. This process
learns the semantic concept space of the training
tweets, in form of latent topics.

3.3.2 Representative Tweet-Set Identification
We identify a set of tweets that act as representa-
tive tweets for each identified topic. For this, we
generate the probability distribution of each tweet
to belong to each topic derived, using LDA on
the tweet content. For each topic, we rank the
tweets by the probability value that a tweet be-
longs to the topic. We finally pick all the tweets

ranked within the top R, to form a representa-
tive tweet set of size R for that topic. The out-
put of the training process constitutes of a set of
topics Z = {z1, z2, ..., zl}, a set of representa-
tive tweets Tz,L = ∀(l ∈ L){tzl} = ∀(l ∈
L){t1,l, t2,l, ..., tn,l} associated with each topic.

3.4 The Hashtag Recommendation
Methodology

After topic training and representative tweet set
identification, the system becomes capable of as-
signing hashtags to target (test) tweets provided
as input. For this, we first create a probability
distribution of a given test tweet belonging to the
learned topics. This, again, is performed by gen-
erating the LDA-based probability distribution of
the tweet content, that quantifies “how much” a
tweet belongs to each topic. Using this baseline,
we propose a few variants (heuristics) based upon
semantic similarity detection, to perform hashtag
assignment to each given test tweet. We broadly
categorize these approaches in two categories: se-
mantic similarity based and joint probability max-
imization based hashtag recommendations.

3.4.1 Semantic Similarity Based
The first method we propose is a semantic similar-
ity rank based hashtag recommendation. Figure 3

182

Figure 3: Semantic Similarity Based Hashtag Recommendation

Figure 4: Joint Distribution Maximization Based Hashtag Recommendation

provides a block-level illustration of this method.
In this approach, we first select the best (highest
probability) Q topics out of Z, using the probabil-
ity distribution of the given test tweet. We mea-
sure the semantic similarity between the test tweet
and all the R representative tweets TZq across all
the top Q topics Zq. For measuring semantic sim-
ilarity, we use a transfer learning approach: we
use an external semantic similarity learning model
given by Dey et al. (2016), which was specifically
trained for semantic similarity quantification on
Twitter. We rank all theR∗Q representative tweets
by their semantic similarity scores with the test
tweet, and select the hashtags given by the top-K
ranked tweets, where K is an externally specified
integer.

3.4.2 Joint Distribution Maximization Based

The second method we propose uses the seman-
tic similarity based model as the baseline; how-
ever, unlike the earlier approach which was topic
distribution-agnostic for ranking the semantically
similar tweets, this is topic distribution-aware.
Figure 4 provides a block-level illustration of this
method. Here, we maximize the combination of
(a) the semantic similarity of the test tweet with
the representative tweets of a topic, and, (b) the
assignment probability of the test tweet to the
topic. If the assignment probability of a test (tar-
get) tweet t to a topic zl is P (t, zl), and the se-
mantic similarity of a test tweet t with one given
representative tweet tj of a topic is SS(t, tj), then,
the combined score for each<test tweet, represen-

tative tweet> pair is:

CS(t, tj) = P (t, zl)× SS(t, tj) (3)

We rank the CS(t, tj) values thus obtained, and
pick the top-K tweets based upon this rank to
select hashtags for the task of recommendation.
Thus, in this case, the semantic similarity values
of the representative tweets with the test tweet,
are not ranked directly; instead, first, the semantic
similarity values are combined (multiplied) with
the probability of the test tweet belonging to that
topic, and then, this combination (product value)
is ranked. We assign the hashtags by selecting
the top-K tweets in a decreasing (ranked) order of
product values, thus inherently selecting the max-
imal values from the combined distribution.

The overall process that we follow, is given in
Algorithm 1.

4 Experiments

We present the details of the experiments con-
ducted and results obtained below.

4.1 Data Description and Tools Used
Using Decahose5, we collect 10% random sample
of all the tweets made on Twitter for 31st January,
2016, and retain all the English tweets that have
at least one hashtag associated. We remove the
retweets and quoted tweets from both the training
and test tweets, as it is trivial to assign hashtags
to such tweets, given the actual or recommended
hashtags to the corresponding original tweets. We

5https://gnip.com/realtime/decahose/

183

clean the data to remove all hashtags that are sim-
ple stopwords 6, and remove the tweets that com-
prise of only such hashtags (if a tweet has other
hashtags too, we retain it). Further, we empirically
retain all the tweets that use at least one hashtag
which has been used between 200-500 times in the
original dataset. This produces a set of 251, 649
English tweets with at least one hashtag. We ran-
domly split into three sets: 175, 000 for training,
25, 000 for validation and the remaining 51, 649
for testing. We evaluate the effectiveness of our
system by comparing the recommended hashtags
with the actual hashtags present in the test tweets.
The dataset details are presented in Table 1.

Tweet Selection Criteria Count
Total tweets 34, 114, 982

English tweets 13, 410, 808

Tweets with at least one hashtag 2, 417, 163

Hashtag count based retention 251, 649

Training tweets 175, 000

Validation tweets 25, 000

Testing tweets 51, 649

Table 1: Data description

We use the Stanford NLP Toolkit (Manning et
al., 2014) for PoS tagging, Porter stemmer (Porter,
2001) for stemming the tweets, MALLET (Mc-
Callum, 2002) for training the LDA based topic
models, and Weka (Hall et al., 2009) for running
the semantic similarity model.

4.2 Experimental Results

To evaluate the performance of our system, we use
precision (Pr), recall (Re) and F-score (F1), com-
puted as Pr = Nc

Ns
, Re = Nc

Nt
and F1 = 2.P r.Re

Pr+Re ,
where Nc and Ns are the correct and total num-
ber of hashtags recommended for a given tweet re-
spectively, and Nt is the total number of hashtags
present in the semantically similar training tweets
under consideration. In an embodiment of our
methodology where the number of hashtags to be
predicted in the test tweet is provided as an input,
we perform experiments by limiting our system to
predict the required number of hashtags. We em-
pirically choose the size of the representative tweet
set R = 100; as well as, we empirically pick the
top Q = 3 topics that a test tweet is aligned to.

6https://nlp.stanford.edu/IR-book/html/htmledition/
dropping-common-terms-stop-words-1.html

4.2.1 Selecting K

Experiment F1(%) Experiment F1(%)
Top 1 36.67 Top 2 42.93
Top 3 46.59 Top 4 36.52

Table 2: Selecting the value of K using F-scores

Next, we select K, the number of representative
tweets to consider for computing semantic similar-
ity with the test tweet. In order to select an effec-
tive value of K, we vary the value of K from 1 to
higher values, and observe the impact of the val-
ues on the final F-score that our system produces.
Specifically, we use the semantic similarity match
based methodology described in Section 3.4.1. As
clear from Table 2, the impact of considering a
larger number of semantically similar representa-
tive tweet for comparison with a test tweet, is the
most effective for K = 3. Hence, we choose the
value of K = 3 for the subsequent experiments.

4.2.2 Joint Distribution Maximization
We compute the combination of the semantic sim-
ilarity of a test tweet with the given representative
tweets of the topics, and the probability of the rep-
resentative tweets to belong to the respective top-
ics, using Equation 3. The scores are ranked, and
we pick the tweets that are ranked in the top-K
to select hashtags for the task of recommendation.
We empirically observe K=3 to deliver the best
performance, wherein, the F1-score is 46.28%,
precision 34.33% and recall 70.99%.

4.2.3 At-Least-One vs. Multiple Correct
Predictions

One way to evaluate the effectiveness of our ap-
proach is to ask the following questions.

– How well does our methodology predict at
least one hashtag correctly? This is answered by
examining whether there is any overlap between
the recommended hashtags for the tweet and the
ground truth (actual hashtags seen in the tweet). In
the joint distribution maximization based recom-
mendation approach, we observe at least one hash-
tag to have been recommended (predicted) cor-
rectly in 66.74% cases.

– How well does our methodology predict more
than one hashtag correctly? This is answered by
examining whether at least two (or more) hash-
tags overlap, between the recommended hashtags
for the tweet and the ground truth (actual hashtags

184

seen in the tweet). In the joint distribution maxi-
mization based recommendation approach, we ob-
serve two or more hashtags to have been recom-
mended (predicted) correctly in 42.24% cases.

4.2.4 Comparison with Other Works
In absence of benchmark datasets for comparison,
we create a LDA-based baseline score. For this,
akin to the rest of our approach, we pick the top
3 topics that the test tweet is aligned to. For each
topic, we pick the one representative tweet that has
the highest likelihood of belonging to that topic
(amongst all the tweets that represent the topic).
We perform hashtag assignment to the test topic,
using the 3 training tweets thus selected across
the 3 topics. The LDA baseline gives 7.79% F1-
score. Since our system yields a best-case F1 per-
formance of 46.59% (with the semantic similarity
based approach), the lift we obtain over the LDA
baseline is 46.59/7.79 ≈ 6, which is large.

Method Lift
Naive Bayes 3.27
IBM1 (Liu et al., 2011) 3.55
TopicWA (Ding et al., 2012) 4.71
TTM (Ding et al., 2013) 5.87
SemTagger (Joint Maximization) 5.94
SemTagger (Semantic Similarity) 6
CNN+Att.-5 (Gong and Zhang, 2016) 6.42

Table 3: Lifts over the baseline, across methods

Further, we observe that, our model (F-score
46.59) yields an F-score higher than the literature
(39.8). However, in absence of benchmark data,
we compare our work with the literature using the
lift over the baseline LDA values. Table 3 captures
these values. Clearly, the lift obtained by our work
is comparable to Gong and Zhang (2016), and it
consistently outperforms the rest of the literature.

5 Discussion

We discuss a few interesting observations below.

5.1 Significance of Using Lift as a Measure

No standard dataset has been made available yet
for the task of hashtag recommendation. Further,
many of the existing literature have not released
codes, and reimplementation of these codes are al-
ways prone to errors. We note that, the method-
ology that has acted as the benchmark of base-
line, is the LDA-based approach. Given these ob-

servations, we use the list obtained by the model
over baseline LDA, as the approach for valida-
tion. Here, the well-known LDA baseline is imple-
mented. Subsequently, a ratio of the performance
(F-score) obtained by our system, is compared
with that obtained by the baseline LDA imple-
mentation. Further, comparing the performance of
our system with other works in the literature, be-
comes meaningful and error-free by this compari-
son mechanism, in spite of absence of benchmark
data as well as released codes for the task of Twit-
ter hashtag recommendation.

5.2 General Observations

Our model is highly novel, and the lift we ob-
tain (lift ≈ 6) is comparable to the state-of-the-
art (Gong and Zhang, 2016), and it outperforms
all other works available in the literature. Further,
our model is lightweight and robust, as opposed to
the computationally expensive deep-learning ap-
proach of the state-of-the-art. This makes our
work useful and effective in real-life applications.
We also note that the difference of performance
between the two models we proposed - the seman-
tic similarity based model and the joint optimiza-
tion based model - is not much, though, the former
model performs marginally better compared to the
later for the current dataset.

6 Conclusion

In this paper, we proposed a novel hashtag recom-
mendation approach for tweets, based on seman-
tic similarity. We used LDA-based topic model
training. For assigning hashtags to a target tweet,
we proposed two variants. In one variant, hash-
tags are assigned to a target tweet, such that, the
hashtags are obtained from a set of representa-
tive training tweets having the highest semantic
similarities with the target tweet. In the other
variant, we assigned hashtags to target tweets us-
ing (a) a maximization function that combines the
probability of a given target tweet belonging to a
topic, and the semantic similarity of representative
training tweets that belong to that topic, and (b)
assigning hashtags observed in the top-K ranked
tweets in the maximized combination. Empiri-
cally, our model produced a major lift of 6 times
over the LDA baseline. Our approach is robust and
lightweight, and usable in real-life settings. Sem-
Tagger, our propose model, will be useful in ap-
plications that recommend hashtags to users, for

185

assigning to tweets and other social network posts,
while they post text content on social network plat-
forms, and also, can be used in other social net-
work based applications.

References
Sitaram Asur, Bernardo A Huberman, Gabor Szabo,

and Chunyan Wang. 2011. Trends in social media:
Persistence and decay. In ICWSM.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Enhanced sentiment learning using twitter hashtags
and smileys. In Proceedings of the 23rd inter-
national conference on computational linguistics:
posters, pages 241–249. Association for Computa-
tional Linguistics.

Kuntal Dey, Ritvik Shrivastava, and Saroj Kaushik.
2016. A paraphrase and semantic similarity detec-
tion system for user generated short-text content on
microblogs. In COLING, pages 2880–2890.

Kuntal Dey, Saroj Kaushik, and L Venkata Subrama-
niam. 2017. Literature survey on interplay of top-
ics, information diffusion and connections on social
networks. arXiv preprint arXiv:1706.00921.

Zhuoye Ding, Zhuoye Zhang, and XuanJing Huang.
2012. Automatic hashtag recommendation for mi-
croblogs using topic-specific translation model. In
24th International Conference on Computational
Linguistics, page 265.

Zhuoye Ding, Xipeng Qiu, Qi Zhang, and Xuanjing
Huang. 2013. Learning topical translation model
for microblog hashtag suggestion. In IJCAI, pages
2078–2084.

Fréderic Godin, Viktor Slavkovikj, Wesley De Neve,
Benjamin Schrauwen, and Rik Van de Walle. 2013.
Using topic models for twitter hashtag recommenda-
tion. In Proceedings of the 22nd International Con-
ference on World Wide Web, pages 593–596. ACM.

Yuyun Gong and Qi Zhang. 2016. Hashtag recom-
mendation using attention-based convolutional neu-
ral network. In IJCAI, pages 2782–2788.

Yeyun Gong, Qi Zhang, and Xuanjing Huang. 2015.
Hashtag recommendation using dirichlet process
mixture models incorporating types of hashtags. In
EMNLP, pages 401–410.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten.
2009. The weka data mining software: an update.
ACM SIGKDD explorations newsletter, 11(1):10–
18.

Lichan Hong, Gregorio Convertino, and Ed H Chi.
2011. Language matters in twitter: A large scale
study. In ICWSM.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Zhiyuan Liu, Xinxiong Chen, and Maosong Sun. 2011.
A simple word trigger method for social tag sugges-
tion. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1577–1588. Association for Computational Linguis-
tics.

Zhi Liu, Chen Liang, and Maosong Sun. 2012. Topical
word trigger model for keyphrase extraction. In In
Proceedings of COLING. Citeseer.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In ACL (System Demon-
strations), pages 55–60.

Andrew Kachites McCallum. 2002. Mallet: A ma-
chine learning for language toolkit.

Martin F Porter. 2001. Snowball: A language for stem-
ming algorithms.

Surendra Sedhai and Aixin Sun. 2014. Hashtag rec-
ommendation for hyperlinked tweets. In Proceed-
ings of the 37th international ACM SIGIR confer-
ence on Research & development in information re-
trieval, pages 831–834. ACM.

Jieying She and Lei Chen. 2014. Tomoha: Topic
model-based hashtag recommendation on twitter. In
Proceedings of the 23rd International Conference on
World Wide Web, pages 371–372. ACM.

Kate Starbird and Leysia Palen. 2012. (how) will the
revolution be retweeted?: information diffusion and
the 2011 egyptian uprising. In Proceedings of the
acm 2012 conference on computer supported coop-
erative work, pages 7–16. ACM.

Oren Tsur and Ari Rappoport. 2012. What’s in a
hashtag?: content based prediction of the spread of
ideas in microblogging communities. In Proceed-
ings of the fifth ACM international conference on
Web search and data mining, pages 643–652. ACM.

Jason Weston, Sumit Chopra, and Keith Adams. 2014.
tagspace: Semantic embeddings from hashtags.

Eva Zangerle, Wolfgang Gassler, and Gunther Specht.
2011. Recommending#-tags in twitter. In Proceed-
ings of the Workshop on Semantic Adaptive Social
Web (SASWeb 2011). CEUR Workshop Proceedings,
volume 730, pages 67–78.

Qi Zhang, Yeyun Gong, Xuyang Sun, and Xuanjing
Huang. 2014. Time-aware personalized hashtag
recommendation on social media. In COLING,
pages 203–212.

186

Algorithm 1 THE SEMTAGGER ALGORITHM

1: function CleanAndPreprocess ():
2: t′r ← Raw tweets posted by user on Twitter
3: t′r ← t′r − t′h̃, i.e., remove all tweets without any hashtag
4: t′r ← t′r − t′ẽn, i.e., remove all tweets not in English
5: t′r ← t′r− char(non-ascii), i.e., remove all non-ASCII characters
6: t′r ← norm(t′r): perform tweet normalization using net-slang and Han-Baldwin
7: tr ← stopword remove(t′r): remove stopwords
8: return T ← {t1, t2, ..., tr, ..., tn}, the cleaned and preprocessed tweets

9: function LDABasedTopicModeling (Tweets T):
10: H ← {h1, h2, ..., hm}: set of hashtags present in the training set
11: D ← ⋃n

i=1(ti)−
⋃m

j=1(hj): concatenation of all tweets, minus all the hashtags
12: Z ← {z1, z2, ..., zl} ← LDA(D): the set of topics identified to be present in the document D
13: return Z, a set of topics learned over LDA

14: function RepresentativeTweetIdentification (Tweets T , Topics Z, Top-Ranks R as Integer):
15: for zl ∈ Z do
16: for ti ∈ T do
17: pti,zl ← LDA-based probability of tweet ti to belong to topic zl
18: t′zl ← insert ti in sorted order of the value of pti,zl
19: end for
20: tzl ←, retain the highest R values contained in t′zl , discard the rest
21: end for
22: return Tz,L ← {tzl}∀(l ∈ L)

23: function SemanticSimBasedRec (Target Tweet t, Topics Z, R representative tweets TZq across
all topics Zq, Integer K):

24: Find the probability pl of target tweet t to belong to each topic zl ∈ Z
25: Sort by pl and retain Zq, the top Q topics
26: for all retained topics Zq do
27: SS′(t, tZq)∀(tZq ∈ TZq)← semantic similarity of target tweet t with representative tweet tZq

28: end for
29: SS ← Sort(SS′(t, tZq))
30: return Hashtags present in the top-K ranked tweets in SS

31: function JointDistrMaxBasedRec (Target Tweet t, Topics Z, Integer K):
32: for all topics zl do
33: for all representative tweets tj in topic zl do
34: SS(t, tj)← semantic similarity of target tweet t with representative tweet tj
35: P (t, zl)← the LDA-based probability pt,zl of target tweet t to belong to topic zl ∈ Z
36: CS′(t, tj)← SS(t, tj)× P (t, zl)
37: end for
38: end for
39: CS ← Sort(CS′(t, tj))
40: return Hashtags present in the top-K ranked tweets in CS

187

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 188–196

Reasoning with Sets to Solve Simple Word Problems Automatically

Sowmya S Sundaram
Indian Institute of Technology, Madras

Chennai 600036
sowmya@cse.iitm.ac.in

Deepak Khemani
Indian Institute of Technology, Mandi

Himachal Pradesh 175005
khemani@iitmandi.ac.in

Abstract

A system, Magi, is proposed, which
analyses simple addition/subtraction
arithmetic word problems expressed in
English, represents them in the form
of schemas and sets, reasons with set
cardinalities and presents the final answer
in English phrases. It also provides simple
explanations. This work presents a study
of the features of a knowledge-based
system used for solving such a task.
It has been evaluated and has been
found to perform better than current
knowledge-based systems for similar
problems.

1 Introduction

Natural language understanding is one of the key
elements of human intelligence. Hence, it has
attracted the attention of a sizeable population
of researchers of artificial intelligence. The
first published work in this field (Bobrow, 1964)
attempted to solve word problems presented to
a computer in English. The appeal of solving
word problems lies in the fact that semantic
understanding is required to map the word
problem to a mathematical framework.

Consider the following example.
Input: Keith has 20 books . Jason has 21 books .
How many books do they have together?
Output: Altogether 41 books

Here, the system has to map the word ‘they’
to ‘Keith’ and ‘Jason’. This is an example
of co-reference resolution. Next, the notion of
associating ‘20 books’ to ‘Keith’ and ‘21 books’
to ‘Jason’ has to be captured. These relevant
details are also extracted. The last piece of
information required is the word ‘together’ that
signifies what is the goal of the problem. In

this work, these details are extracted by using the
Stanford Core NLP (Manning et al., 2014) suite
of tools extensively. Other approaches include
semantic parsing (Shi et al., 2015), learning
equation co-efficients (Kushman et al., 2014),
learning expression trees (Koncel-Kedziorski et
al., 2015) and so on. In this work, as the principle
was to build as precise a system as possible, we’ve
used a rule based approach. The motivation was
that if this tool was used by a student, she should
be able to see the trace of the solution.

In order to know what are the elements that
are to be extracted from the word problem,
some model of word problems must be encoded
into the system. This is the role of knowledge
representation. Here, knowledge representation
is in the form of schemas that are templates
for solving problems. They describe common
categories of word problems. The schema for
the above problem is ‘combine’ which describes
that the answer is the sum of entities in question.
Internally, this idea is represented as sets for
closer coupling to the semantics of the problem.

t0
Jason has B books
Keith has A books
———————–
A 20
B 21

The next step is reasoning. The schema
‘combine’ directs that the sum of the ‘books’
owned by ‘Jason’ and ‘Keith’ is required. The
answer is computed by adding the cardinalities of
A and B. The final answer, ‘41’ is presented as
‘Altogether 41 books’. The last step of generating
the answer is facilitated by the schema as well.

The challenges in this problem solving process
are high. This is because natural language
processing is difficult and often ambiguous or

188

may rely on implicit details. Magi resolves some
of the ambiguities by reasoning about implicit
events and making some assumptions. There
are some ambiguities in schema identification as
well which have been partially addressed using
some heuristics. While computing elementary
problems, numerical efficiency of computers
is much more. The challenging task is the
introduction of language and representing the
information extracted from the natural language.

2 Related Work

As mentioned, the work that pioneered the field
of natural language understanding was (Bobrow,
1964). The program, STUDENT, was able
to process sentences that followed a specified
template and could handle addition, subtraction,
division, multiplication and exponentiation.

Schemas were introduced by (Fletcher, 1985)
based on cognitive theory. It specified three
schemas - combine, compare and change. After
this, (Dellarosa, 1986) proposed ARITHPRO
which encoded some inheritance. For example,
dolls and balls are toys. If a problem described
dolls, balls and clothes and the task was to find
total toys, ARITHPRO would pick only relevant
entities.

Schemas were used relatively recently in
(Bakman, 2007). It could solve multi-step
problems and could ignore extraneous
information. However, the system did not
scale well as the complexity of natural language
increased. This is a common trait running through
all these knowledge-based systems. A major
stumbling block was the complexity of natural
language understanding. Many systems worked
on a subset of natural language called Controlled
Natural Language to resolve ambiguities.

After this system, as mentioned in (Mukherjee
and Garain, 2008), without a common standard
dataset to compare different algorithms, the
interest in this field died down. Also, the extensive
human effort involved in curating rules for these
systems was not encouraging.

In recent times, there has been a resurgence of
interest for this type of problems. In (Kushman et
al., 2014), word problems were solved by building
an empirical model that matched the numerals
in a word problem to co-efficients in a template.
Their domain was the set of word problems that
could be solved by a set of linear equations.

They achieved a commendable accuracy. (Zhou et
al., 2015) improved this work by using quadratic
programming on a simpler and more efficient
model. Another work (Hosseini et al., 2014)
used a state representation for arithmetic word
problems. It used machine learning to identify
the characteristic operation signalled by a verb.
They provided three datasets of varying difficulty
that have been used for evaluation in this paper
against their fully knowledge-based variant of
the code. (Shi et al., 2015) solves algebraic
word problems which reason about numbers and
their relations. It uses semantic parsing with a
custom-built language for their chosen domain.
The work presented in (Koncel-Kedziorski et al.,
2015) learns a model that maps natural language to
expression trees. They could solve single-variable
word problems effectively. As the narrative of
the problem became longer, the search space grew
exponentially. A knowledge based system could
potentially solve problems of arbitrary length
provided the sentences could be processed by it.
In (Mitra and Baral, 2016), there is a notion of the
categories of word problems where a model learns
to identify which category and the alignment of the
numbers to the template of the word problem. It is
the learning version of this work. The drawback it
faces is the heavy annotation required for learning
such an alignment. A recent work, (Ling et al.,
2017) uses deep learning to solve general word
problems and provide explanations for the same.
It solves problems which are in a competitive
exam style, with possible answer options. It
develops a language model and a mathematical
model simultaneously. Since the problem setting
is slightly different, its performance on existing
datasets is not available.

The knowledge based systems are precise but
can attempt few real-world problems as their
natural language processing is limited. On
the other hand, empirical systems can tackle a
wide gamut of problems but they are not as
precise as knowledge based systems. This work
hopes to maximise the trade-off between the
two methodologies by using statistically trained
parsers and a well-defined representation system.

3 The Process

As the dependency parser provided by (Manning
et al., 2014) is not robust for long sentences, the
given English word problem is first simplified and

189

then passed to the co-reference resolver and the
dependency parser. The simplification is based
on a set of rules derived from the part-of-speech
tags and the constituency parser. The parsers
extract relevant information for each sentence.
The sentences are then ordered in increasing order
of time by using the tense of the sentences.
After this, sets are created for each numerical
entity. Then, relationships between these sets
are established by schemas using the extracted
information. Finally, after reasoning with the
set cardinalities, the answer is displayed along
with the trace and explanation. This process is
explained in detail with a running example

Algorithm 1: The Problem Solving Process
Input: Word Problem: p
Output: String: expl, Number: ans

1 WordProblem p1 = simplify(p)
2 List<Steps> extractedInfo =

extract(p1.sentences())
3 List<Steps> orderedInfo =

rearrange(extractedInfo)
4 time = 0
5 questionSet = ∅
6 story = ∅
7 for each step in orderedInfo do
8 if event(step) then
9 time = time + 1

10 end
11 story = story.add(step,time)
12 story = story.apply(step.schema)
13 if step.isQuestion = true then
14 questionSet =

story.get(step,time).value
15 end
16 end
17 solve(story.sets)
18 expln = explain(story)
19 ans = questionSet.cardinality
20 Print ans
21 Print expln

4 Natural Language Understanding

The steps involved in natural language
understanding are explained briefly below.

• Resolve unknown entities - For example, if
the problem had sentences like, ‘There are 5
trees in a park. Park workers cut 2 of them’,

this is converted to ‘There are 5 trees in a
park. Park workers cut 2 trees.’ This is to
ease the task of the parsers.

• Simplifying sentences - Most long sentences
are split into simpler sentences. For instance,
‘Sally got 4 erasers and 3 pencils’ is split as
‘Sally got 4 erasers. Sally got 3 pencils.’

• Resolving co-references - This has been done
by using the ‘decoref’ annotator provided by
(Manning et al., 2014).

• Rule based information extraction - a set of
rules that work on the output given by the
dependency parser to extract the details of
each sentence .

• The retrieved information is then ordered
based on the tense of each sentence.

4.1 An Example

Let us see an example to illustrate the various
points described above. Consider the problem,
‘Molly owns the Wafting Pie Company. This
morning, her employees used 816 eggs to bake
pumpkin pies. If her employees used a total of
1339 eggs today, how many eggs did they use in
the afternoon?’.

4.1.1 Preprocessing
For this problem, the first step is to resolve
the pronoun ‘her’. After this step, our system
changes the input to, ‘Molly owns the Wafting
Pie Company. This morning, Molly’s employees
used 816 eggs to bake pumpkin pies. If Molly’s
employees used a total of 1339 eggs today, how
many eggs did Molly’s employees use in the
afternoon?’.

4.1.2 Simplification
As the sentences are relatively complex,
simplifying them brings much better results.
At the end of simplification, the problem is
changed to : ‘Molly owns the Wafting Pie
Company. Molly’s employees used 816 eggs to
bake pumpkin pies. Molly’s employees used a
total of 1339 eggs today. How many eggs did
Molly’s employees use in the afternoon?’. This is
achieved by examining the Part-Of-Speech(POS)
tag of every sentence, identifying the verb, and
extracting the relevant noun phrase and verb
phrase.

190

4.1.3 Information Extraction

Some rules are used to get the information
required for representation. Each sentence’s
analysis is enlisted below.

• ‘Molly owns the Wafting Pie Company’ -
this sentence is ignored because there is no
number involved. There are some exceptions
to this rule. If the sentence contains words
like ‘some’, that information is encoded.

• ‘Molly’s employees used 816 eggs to bake
pumpkin pies’ - this sentence is converted by
Magi as

owner1 : Molly’s employees
owner2 : (none)
verb : use
entity : egg
value : 816
keyword : use
procedure : reduction
tense : past
isQuestion : false
isAggregator : false

The ‘owner1’ and ‘owner2’ fields suggest
who are the participants. Here, only ‘Molly’s
employees’ are relevant. If the question
was ‘Sally gave 4 kites to Sam’, then the
two owners would be ‘Sally’ and ‘Sam’
respectively. This is extracted by a set
of rules. In this case, the subject of
sentence(denoted by the ‘nsubj’ tag) is taken
as the first owner. There are a set of keywords
and their associated procedures stored - this is
explained in more detail in the next section.
If the sentence contains one of the keywords,
it is retrieved from the sentence and stored
along with the corresponding procedure’s
name. The tense is stored by analysing
the POS tag. It is later used for ordering.
The field ‘isQuestion’ signifies whether this
step contains information that pertains to the
answer to be retrieved. On the other hand,
‘isAggregator’ states whether the sentence
contains any word that imply combination,
such as ‘total’, ‘altogether’, etc.

• ‘Molly’s employees used a total of
1339 eggs today.’ - a similar process

leads to the following data to be stored.
owner1 : Molly’s employees
owner2 : (none)
verb : use
entity : egg
value : 1339
keyword : use
procedure : reduction
tense : past
isQuestion : false
isAggregator : true

• ‘How many eggs did Molly’s employees use
in the afternoon?’ -

owner1 : Molly’s employees
owner2 : (none)
verb : use
entity : egg
value : (empty)
keyword : use
procedure : reduction
tense : past
isQuestion : true
isAggregator : false

By setting the ‘isQuestion’ flag, the system is
now equipped with the insight that the answer
required is the number of eggs Molly’s
employees used.

5 Knowledge Representation

5.1 Schemas

Schemas are templates that suggest how a problem
should be solved. They were applied to solve math
word problems first by (Fletcher, 1985). He used
three schemas - Combine, Change and Compare.
Let us consider the ‘Compare’ schema. A typical
example is ‘Rachel has 3 pencils. Tom has 3
pencils more than Rachel. How many pencils
does Tom have?’. The schema, ‘Compare’, and its
instantiation is given below:
(owner1) has (X) (object)
(owner2) has (Y) (object) more than (owner1)
(owner2) has (Z) (object)
Z = X + Y
(owner1) = ‘Rachel’, (owner2) = ‘Tom’, (object)
= ‘pencil’, (X) = 3, (Y) = 3.

Schemas have a structure that can be mapped to
the sentences given in the sentence along with an

191

equation connecting the variables. If two variables
are retrieved from the problem (in this example,
X and Y), the value of the third variable can be
computed.

The first disadvantage of this method is that it
is too rigid. All word problems are not expressed
in a format that is easy to map to this format. If
the question was changed as ‘Rachel has 3 pencils.
Tom has 3 more. How many does he have?’,
this particular schema would fail as it does not
exactly match the natural language input expected.
The second issue is that these three schemas are
inadequate to describe all types of problems. For
example, the problem ‘Samantha has 8 cookies.
She ate 3 of them. How many does she have
now?’, would not fit in any of the above schemas.
The ‘change’ schema is tailored to capture transfer
of ‘object’ from one person to another. Hence,
though it seems applicable, it is not so.

To counter these challenges, (Bakman, 2007)
describes his system ‘ROBUST’ that can handle
a larger number of schemas. Some ideas were
inspired by Script Applier Mechanism (SAM)
by (Schank and Abelson, 1975) which captured
semantics by grouping words from a dictionary
into categories. Similarly, instead of a single
keyword for schemas, ROBUST mapped a lot
of keywords to a single schema. For example,
‘eat’, ‘destroy’, ‘kill’ were keywords for the
‘termination’ schema. ROBUST concentrated on
the various possibilities of ‘change’ schema. It
also used schemas iteratively until all possible
equations were applied in order to handle
multi-step problems. It showed significant
improvements over existing systems.

5.2 Schemas and Time
From ROBUST’s emphasis on the ‘change’
schema, the next natural step is to capture
information about time. By explicitly assigning
timestamps to sentences, the search for schema
instantiation is made more focussed.

5.3 Schemas and Ambiguity
A classic example of ambiguity can be seen in
the problem ‘Samantha ate 8 cookies. Anne ate 4
cookies more than Samantha. How many cookies
did Anne eat?’. Here, the correct schema to be
used is ‘Compare’. However, due to the word
‘ate’, the ‘termination’ schema is also applicable.
If the ‘termination’ schema is applied, since there
is no information about the cookies any of them

had before or after, it cannot be instantiated. To
address this, the schemas are modified such that
the verb is variable and it can reason about any
verb. The narrative is represented in the following
manner.
t0
Samantha : eat : 8 : cookies
t1
Anne : eat : 8 + 4 : cookies

Hence, the template-matching is relaxed and
more problems can be solved.

5.4 Schemas and Sets

After introducing time, its related concepts and
reasoning about events while applying schemas,
there are still some problems which cannot be
addressed. Consider, ‘There are 70 students in a
class. If 65 students are present, how many are
absent?’.

These problems have no events, or tell-tale
keywords for helping the system solve problems.
The schema of combination usually implies an
aggregation over different owners. This a case
of set completion, where the 65 students are a
subset of the 70 students in class and the set of
students who are present is disjoint from the set of
absentees. Hence, the representation is shifted to
schemas with descriptions as sets.

Revisiting ‘Rachel has 3 pencils. Tom has 3
pencils more than Rachel. How many pencils
does Tom have?’, the ‘compare’ schema which
has been specialised as ‘compare-plus’ in Magi is
stored as :
(owner1) (verb) (X) (object)
(owner2) (verb) (Y) (object) more than (owner1)
(owner2) (verb) (Z) (object)
|Z| = |X ∪ Y |, X ∩ Y = ∅
(owner1) = ‘Rachel’, (owner2) = ‘Tom’, (verb) =
‘has’, (object) = pencil, |X| = 3, |Y | = 3.

Coming back to the set-completion scenario,
the narrative is represented as :
t0
class : has : A : students
class : has : B : present students
——————————————
A 70
B 65

While parsing the sentence, the behaviour of

192

antonyms is recorded and the case for subset
completion is set to be true, if the antonyms are
appropriately situated. If it is true, the statements
B ⊆ A,C ⊆ A,B ∩ C = ∅ are added
along with ‘class : has : C : absent students’.
Antonyms have been computed from https://
www.thesarus.com.

5.5 Magi’s Schemas
The schemas used by Magi are described in Table
1. The procedures are programming directives
and are more flexible than traditional schemas.
Implicitly, all sets are considered disjoint unless
set completion is involved. Even though the
description says ‘owner1’ and ‘owner2’, Magi is
implemented in such a way that it can reason
about different entities owned by the same owner
if required.

Schema Procedure Relations
combine Sum over all relevant

entities
|D| = |A ∪ B..|

comparePlus owner1 has A items,
owner2 has B items more,
owner2 has C items

|C| = |A ∪ B|

compareMinus owner1 has A items,
owner2 has B items less,
owner 2 has C items

|C| = |A− B|

increase owner1 had A items,
owner1 got B items more,
owner1 has C items now

|C| = |A ∪ B|

reduction owner1 had A items,
owner1 lost B items,
owner1 has C items now

|C| = |A− B|

set-completion A,B,C B ⊆ A,C ⊆ A

Table 1: Flexible Schemas used by Magi

6 Reasoning

In the straight-forward situation, reasoning is
simply a case of solving the equations relating set
cardinalities based on the axioms of set theory.
However, to address a larger type of problems,
some common sense rules have been added.

6.1 Handling Implicit Events
Consider the problem, ‘Last week Tom had $74.
He washed cars over the weekend and now has
$86. How much money did he make washing
cars?’. The word ‘wash’ is not a keyword, hence
it is not registered as an event. When the narrative
is being constructed, the first statement will
record that Tom has 74 dollars. As no event has
occurred, the timer is not incremented. After that,
the system encounters that Tom has 86 dollars
at the same time. Since this is not possible, it
introduces an event, ‘Tom gets 86 - 74 dollars’.
This is illustrated below:

t0
Tom : has : A : dollars
t1
Tom : get : C : dollars
t2
Tom : has : B : dollars
—————————–
A 74
B 86
C 12

The statements involved are |C| = |B| − |A|.

6.2 Assumption of Initial Conditions
Most schema-based systems fail due to some
missing information. For example, ROBUST
would fail to solve ‘Jane bought 10 cookies. She
ate 3 cookies. How many does she have now?’.
This is because, it would try to find some value as
the initial number of cookies Jane owned. Magi
sets initial values as ∅.

6.3 Reasoning about Events
Ideas from ‘Event Calculus’ described in
(Shanahan, 1999) have been used to construct
the narrative. For example, circumscription is
used in the problem, ‘Sam grew 4 watermelons,
but the rabbits ate 3 watermelons. How many
watermelons does Sam have?’ to reason that the
3 watermelons are actually a subset of Sam’s
watermelons. This idea was also employed by
(Hosseini et al., 2014). Also, common sense law
of inertia was implemented to state that entities
that were not affected by an event, continue to
persist across time steps.

6.4 Reasoning and Natural Language
Sometimes, reasoning is performed using
the extracted information presented for
representation. For example, the situation
where ‘Sam buy games for $35’ actually implies
that the event is ‘Sam spent 35 dollars’. Such
rules are also enforced.

6.5 Heuristics
Due to the complexity of processing natural
language and the limited rules available, the
numerals in the problem may not be correctly
assigned to the templates required for a schema
properly. Hence, some heuristics are used to
improve performance. As expected, they are
not sound. One consistent heuristic is, if Magi

193

retrieves a value that is already given in the
question, then search is repeated. Another
heuristic is, if the system is unable to represent
as desired, but has recognized that the question
needs aggregation, it simply returns the sum of all
entities.

7 Natural Language Generation

Since one of the driving factors behind this work
is to facilitate the understanding of students, an
attempt has been made to explain the answer
obtained in natural language. The trace of the
problem is recorded as the problem is solved and
then an explanation is generated. The quality of
generation is quite low at this point in time but the
intermediate representation is provided. This can
be taken up by a generation expert and designed.

One of the successful examples is illustrated
below.

7.1 Problem

John had 7 apples. Mary has gave some apples to
John. Now, John has 10 apples. How many apples
does Mary have?

7.2 Explanation

John has 7 apples.
Mary gives x apples.
Hence, John has 7+x apples.
Now, John has 10 apples.
Therefore, 7+x = 10
Mary gives 3 apples

7.3 Trace

John had 7 apples. Mary gave 3 apples to John.
John had 10 apples. John had 10 apples. Mary
had 3 apples.

This trace is concatenating the situation at every
time step. Hence, the statement John had 10
apples is repeated twice. We used SimpleNLG
(Gatt and Reiter, 2009) for generation.

8 Evaluation

Magi has been coded in Java 1.7 and has used the
same version of (Manning et al., 2014) parser as
the one used by ARIS (Hosseini et al., 2014) for
a fair evaluation. The work has been compared
against other knowledge based systems.

Magi has been evaluated on the three datasets,
DS1, DS2 and DS3 provided by (Hosseini et al.,

DS1 DS2 DS3 Avg
Magi 95.52 80.00 84.30 86.51

Gold ARIS 94.0 77.1 81.0 84.0
ROBUST 12.69 0.71 0 4.56

WolframAlpha 5.97 2.14 0.83 3.03

Table 2: Performance

2014). DS1 has 134 problems. DS1 and DS3
are similar in terms of the applicable schemas.
However, DS3 has more complex sentences and
has extraneous information. It has 121 problems.
DS2 involves the use of decimals which is difficult
for parsing. Also, DS2 has a lot of problems that
require set-completion, an issue whose solution
was the inspiration for this representation. It has
140 problems.

A comparison has been presented in Table
2 with respect to three other systems. One
is ROBUST (Bakman, 2007) which has been
discussed before. (Hosseini et al., 2014)
presented ARIS. It attempted to learn the
equation categorising verbs. They also presented
an algorithm for learning that information.
However, by limiting themselves to verbs (change
schemas), other schemas such as ‘combine’
and ‘compare’ were missed. As we have
not performed any empirical method to learn
the keyword-schema mapping, the system for
comparison is Gold-ARIS. (Wolfram, 2015) is
another system that solves math word problems
on the Internet without divulging implementation
details.

The increased performance over Gold ARIS is
because of the use of heuristics, addressing set
completion and handling implicit events. Also,
simplifying the problem and performing some
reasoning with the language helped reduce parser
errors mentioned in (Hosseini et al., 2014).
ROBUST performs relatively better with DS1
because it consists of simple sentences. As the
complexity of processing English increases, the
performance of both ROBUST and WolframAlpha
reduces.

8.1 Analysis of Errors

8.1.1 Absence of a Keyword
Consider “A restaurant served 9 pizzas during
lunch and 6 during dinner today. How many pizzas
were served today?”. Since there are no keywords
like “altogether”, the system did not recognize that
the “combine” schema is to be applied. Also, it
could not identify that lunch and dinner are parts

194

of “today”.

8.1.2 No Model for Intent
In “Joan decided to sell all of her old books.
She gathered up 33 books to sell. She sold 26
books in a yard sale. How many books does Joan
now have?”, the system couldn’t represent that
Joan hadn’t actually sold 33 books and was only
intending to sell them.

8.1.3 Issues in Extracting Entities
Consider “A ship full of grain crashes into a coral
reef. By the time the ship is fixed, 49952 tons
of grain have spilled into the water. Only 918
tons of grain remain onboard. How many tons of
grain did the ship originally contain?”. The system
did not recognize that the ship had spilled tons of
grain. The system represented it as “water has
49952 ton” and “water spill 918 ton”. Here there
are multiple entities that are interacting with each
other. These facets could not be extracted by the
rules designed for information extraction.

9 Discussion

While it has been presented that Magi is a good
knowledge-based system, the question remains
whether it is robust enough to have a recall
comparable with empirical systems. This is hard
to evaluate as empirical systems are usually tested
by cross validation. When a human expert makes
rules, she cannot subjectively claim that the rules
have made solely on the basis of a section of
the data. The fact that the system can achieve
a high accuracy shows that it does solve a large
number of problems. However, there may be
a problem of over-fitting in some sense. In
empirical systems, this is also possible because
often there is a considerable overlap of sentence
styles in the training and test examples. How
these systems fare with completely unseen data
would be an interesting experiment to compare
these algorithms. This work is not limited
to presenting a numerical answer. Rather, it
attempts to illustrate what are the components
required to build a product that would benefit
students - namely natural language understanding,
representation, reasoning and natural language
generation. A loss in precision implies that it
might induce confusion in a student’s mind. In
hindsight, the heuristics did drastically reduce
precision and doing away with them is part of the
future work.

9.1 Knowledge Acquisition Bottleneck

The primary reason knowledge-based systems
went out of vogue for natural language processing
is because of the knowledge acquisition
bottleneck. In this work, the types of word
problems were already established in the
literature. However, two sources of knowledge
acquisition bottleneck still exist - the mapping
between the schemas and the keywords as well
as the various rules and strategies to extract
information and represent them as schemas.
While a human expert can sift through the data
and come up with better rules than a learning
program in a simplistic domain such as this, the
generalisability of this approach is questionable.

9.2 Similarities between Knowledge-Based
and Empirical Systems

In this particular domain, there is often a need
to encode world knowledge in some form. In
empirical systems, it comes as the cost of
annotation and choice of hand-coded features.

9.3 The Need for Semantics

Many works (eg. (Shi et al., 2015)) recognize
the need for semantics for this class of problems.
A single word could completely change the
equation construction. Hence, it is imperative
that there must be some model of mathematical
computation.

10 Conclusion and Future Work

We have presented a knowledge-based system
to explore what are the exact sources of
information required in the quest for building a
student-friendly application that is precise. It
has been shown that to solve such problems,
world knowledge has to be encoded and semantic
understanding is required. Exciting developments
such as deep learning (Ling et al., 2017) in
natural language processing can learn the required
representation as well and succeed in building an
end-to-end system. However, it comes at the cost
of a huge amount of data that is not available at
this point in time for many mathematical problem
domains. Though we have introduced some level
of statistical analysis through parsers, it would
be beneficial to explore semantic parsing and
other approaches to map the natural language
description to an underlying representation with
higher precision for semantically richer domains.

195

References
Yefim Bakman. 2007. Robust understanding of

word problems with extraneous information. arXiv
preprint math/0701393.

Daniel G Bobrow. 1964. A question-answering
system for high school algebra word problems. In
Proceedings of the October 27-29, 1964, fall joint
computer conference, part I, pages 591–614. ACM.

Denise Dellarosa. 1986. A computer simulation
of childrens arithmetic word-problem solving.
Behavior Research Methods, Instruments, &
Computers, 18(2):147–154.

Charles R Fletcher. 1985. Understanding and solving
arithmetic word problems: A computer simulation.
Behavior Research Methods, Instruments, &
Computers, 17(5):565–571.

Albert Gatt and Ehud Reiter. 2009. Simplenlg:
A realisation engine for practical applications.
In Proceedings of the 12th European Workshop
on Natural Language Generation, pages 90–93.
Association for Computational Linguistics.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb
categorization. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 523–533.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into
equations. Transactions of the Association for
Computational Linguistics, 3:585–597.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. ACL (1), pages
271–281.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil
Blunsom. 2017. Program induction by rationale
generation: Learning to solve and explain algebraic
word problems. arXiv preprint arXiv:1705.04146.

Christopher D Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J Bethard, and David
McClosky. 2014. The stanford corenlp natural
language processing toolkit. In Proceedings
of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 55–60.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
ACL.

Anirban Mukherjee and Utpal Garain. 2008. A
review of methods for automatic understanding of
natural language mathematical problems. Artificial
Intelligence Review, 29(2):93–122.

Roger C Schank and Robert P Abelson. 1975. Scripts,
plans, and knowledge. Yale University.

Murray Shanahan. 1999. The event calculus
explained. In Artificial intelligence today, pages
409–430. Springer.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and
reasoning. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Lisbon, Portugal.

Stephen Wolfram. 2015. Wolfram—alpha. On the
WWW. URL http://www. wolframalpha. com.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen.
2015. Learn to solve algebra word problems
using quadratic programming. In EMNLP, pages
817–822.

196

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 197–204

Improving NER for Clinical Texts by Ensemble Approach using Segment
Representations

Hamada A. Nayel
Department of Computer Science
Benha University, Benha-Egypt

Mangalore University, Mangalore-India
hamada.ali@fci.bu.edu.eg

H. L. Shashirekha
Department of Computer Science

Mangalore University,
Mangalore-574199, India
hlsrekha@gmail.com

Abstract

Clinical Named Entity Recognition
(Clinical-NER), which aims at identifying
and classifying clinical named entities
into predefined categories, is a critical
pre-processing task in health information
systems. Different machine learning
approaches have been used to extract and
classify clinical named entities. Each
approach has its own strength as well as
weakness when considered individually.
Ensemble technique uses the strength of
one approach to overcome the weakness
of another approach by combining the
outputs of different classifiers in order
to make the decision thereby improving
the results. Segment representation is a
technique that is used to add a tag for
each token in a given text. In this paper,
we propose an ensemble approach to
combine the outputs of four different base
classifiers in two different ways, namely,
majority voting and stacking. We have
used support vector machines to train the
base classifiers with different segment
representation models namely IOB2,
IOE2, IOBE and IOBES. The proposed
algorithm is evaluated on a well-known
clinical dataset i2b2 2010 corpus and re-
sults obtained illustrate that the proposed
approach outperforms the performance of
each of the base classifiers.

1 Introduction

Named Entity Recognition (NER) is a leading sub-
task of information extraction originated from the
Sixth Understanding Conference (MUC-6) (Gr-
ishman and Sundheim, 1996), which aims at iden-
tifying Named Entities (NEs) in a text and clas-

sifying them into predefined classes. Names of
organizations, locations and persons are examples
of NEs in general newswire domain, while DNA,
RNA and protein are examples of NEs in biologi-
cal domain. In clinical domain, terms representing
problem, treatment and laboratory test are consid-
ered as NEs.

The exponential growth of health information
systems produce a massive amount of Electronic
Health Records (EHRs). It is vital to apply NER
for health information systems because EHRs
contain NEs representing laboratory test, prob-
lem and treatment in unstructured narrative doc-
uments (Friedman et al., 1994). Moreover, NER
in clinical domain (Clinical-NER) is an important
pre-processing task in health information systems
where further tasks of health information systems
depend essentially on the results of Clinical-NER.
Clinical-NER is a challenging problem because,
in addition to the general challenges of NER there
are other challenges resulting from the nature of
clinical NEs such as: -

1. Ambiguity:- the major sources of ambiguity
are abbreviations and acronyms (Pakhomov
et al., 2005), which are used routinely in clin-
ical texts. Two different cases cause the am-
biguity, (i) same abbreviation used for differ-
ent entities such as ”EF (Ejection Fraction)”
which is used as a medical problem as well
as a laboratory test, and (ii) an abbreviation
conflicts with a word such as ”VS” which is a
laboratory test as well as abbreviation for the
word ”versus”.

2. Multiple words entities:- most of clinical
entities consist of multiple words such as
”lower abdominal pain” and ”chest x-ray”.

3. Nested clinical entities:- some clinical enti-
ties occur as a part of longer entity such as

197

”BP (blood pressure)”, a laboratory test oc-
curs in ”control BP” which is a treatment.

4. Polysemy:- same clinical term can represent
different meanings based on the context, such
as ”inflammation” may refer to skin prob-
lem, a cellular level problem as well as non-
medical activity.

5. Synonymy:- a single medical concept can be
expressed as multiple words (Dehghan et al.,
2013) such as ”baby” and ”foetus” which
means the same in many medical contexts.

In addition to these challenges, there is no standard
nomenclature for clinical entities of same class.

1.1 NER approaches
The commonly used approaches for NER are dic-
tionary based approach, rule based approach, Ma-
chine Learning (ML) approach and hybrid ap-
proach (Keretna et al., 2015). In dictionary based
approach, a dictionary or lexicon, which contains
a finite set of named entities is used to look up
for the entities in texts. Rule based approach
uses well-designed domain specific hand crafted
rules by experts to match the entities. In ML
approach, ML algorithms such as Support Vec-
tor Machines (SVMs), Conditional Random Fields
(CRFs) and Maximum Entropy (ME) are used to
create a learning model using training set to de-
tect the boundaries of entities and classify them
into one of the predefined classes. Hybrid ap-
proach combines two or more approaches to iden-
tify NEs. ML approach either solo or hybrid with
another approach is preferable to use as they can
easily adopt to new domains as well as identify un-
seen entities. The major requirement of an ML ap-
proach is an annotated data set tagged by experts
(training data) to train the learning model.

1.2 General Framework of NER using ML
approach

Figure 1 shows the general framework of NER us-
ing ML approach. In this model, a training data set
is used to train the classifier and a set of untagged
data (testing data) is used to evaluate the perfor-
mance of the classifier. In tokenization phase, data
sets are tokenized into set of tokens or words. In
feature extraction phase, a set of features are ex-
tracted. Feature extraction is a very important
phase as the performance of the model depends
essentially on features. Then the features of the

Figure 1: Machine learning framework for NER

training data are used to learn the model and that
of testing data are used for evaluation. The suc-
cess of ML approach depends on the quality of
annotated training data, quality of the features ex-
tracted as well as the algorithm used for creating
the classification model. Each classification algo-
rithm has its strength as well as weakness when
used individually. Some classifiers give good re-
sults on some datasets whereas the same classifier
perform very bad on some other datasets. So, in-
stead of considering a single classifier, it will be
beneficially to pool the classifiers and then take
the collective decision similar to the decision taken
by a committee rather than an individual. This
technique which overcomes the weakness of some
classifiers using the strength of other classifiers is
termed as ”ensemble” and is gaining importance
for various applications. Ensemble classification
uses a set of classifiers preferably weak, diverse
and heterogenous classifiers as base classifiers and
combines the output of these base classifiers in dif-
ferent ways to get the final output. To achieve the
diversity of base classifiers, researchers are using
different feature sets, different training sets and/or
different classification algorithms. There are dif-
ferent approaches to create ensemble classifiers
such as bagging, boosting and stacking (Polikar,
2006). In bagging, different training subsets are
drawn with replacement from the entire training
data and each training data subset is used to train
each base classifier. The outputs of base classifiers
are combined using majority voting. Boosting is
similar to bagging, but the selection process of
training subsets subsequently gives more weight
to misclassified samples. Stacking uses outputs

198

IO IOB1 IOB2 IOE1 IOE2 IOBE IOBES
Treatment O O O O O O O

/ O O O O O O O
stay O O O O O O O

IHSS I-problem B-problem B-problem E-problem E-problem B-problem S-problem
AF I-problem B-problem B-problem E-problem E-problem B-problem S-problem

ESRD I-problem B-problem B-problem E-problem E-problem B-problem S-problem
on O O O O O O O
HD I-treatment I-treatment B-treatment I-treatment E-treatment B-treatment S-treatment

, O O O O O O O
IgA I-problem I-problem B-problem I-problem I-problem B-problem B-problem

nephropathy I-problem I-problem I-problem I-problem E-problem E-problem E-problem
on O O O O O O O

Table 1: An example of using different Segment Representation models

of base classifiers to train a new model, which is
known as meta-classifier (Wolpert, 1992) and the
meta-classifier is used for final classification.

1.3 Segment Representation
Segment Representation (SR) (Cho et al., 2013)
involves the process of assigning suitable class la-
bel to the words in a given text. SR models have
been applied for different tasks such as Part of
Speech (PoS) tagging and Noun Phrase chunking
(NP-chunking) (Wu, 2014). SR model comprises
set of tags, which determine the position of a to-
ken in NE, combined with the class label that NE
belongs to. The tags used in SR techniques are Be-
gin (B), End (E), Inside (I), Single (S) and Outside
(O). For example, SR for a token is B-XXX means
that word is the first word of a NE of class XXX.
SR can represent multiple word NEs and nested
NEs. Different models are used for segment repre-
sentation by different researchers. The primary SR
model IO (Béchet et al., 2000) assigns the tag I for
the tokens inside the entity and the tag O for the to-
kens outside the entity, but is not able to represent
the boundaries of two consecutive entities of the
same class. IOB1 model has been introduced to
solve this problem (Ramshaw and Marcus, 1995),
by assigning the tag B to the first token of consecu-
tive NEs of same class, while IOB2 model assigns
the tag B for the first word of each NE (Ratna-
parkhi, 1998). IOE1 and IOE2 models use same
concepts of IOB1 and IOB2 respectively, but as-
signs the tag E to the last token of NEs (Kudo and
Matsumoto, 2001). Sun et al. (2010) introduced
IOBE model which concerns with the beginning
and end of the NE. IOBE model assigns the tags
B and E for the first and last word of all NEs re-

spectively. IOBES model is a modified version of
IOBE model that is concerned with single word
NEs. In addition to IOBE tags, the IOBES model
assigns the tag S to the NEs of a single word. This
model differentiates between the single word and
multiple words NEs. Example of tagging the text
fragment ”Treatment / stay IHSS AF ESRD on HD
, IgA nephropathy on ..” with different SR models
is shown in Table 1.

2 Related Work

The research works carried out in ensemble ap-
proach uses different training data sets or different
learning algorithms to create the base classifiers.
Different ML algorithms such as SVM and CRF
have been used for Clinical-NER (Li et al., 2008).
Keretna et al. (2014), have introduced a hybrid
approach using rule-based and dictionary-based
approaches to identify drug names in unstructured
and informal texts. The system was evaluated
on i2b2 2009 medication challenge dataset and
reported 66.97% f-score. Dictionaries and rule-
based approaches have been extensively used to
extract clinical entities in clinical information
systems such as MedLEE developed by Friedman
et. al. (1994), MetaMap developed by Arnson
and Lang (2010) and cTAKES developed by
Savova et al. (2010). Gurulingappa et al. (2010)
trained CRFs on textual features enhanced with
the output of a rule-based NER system. They
evaluated their work using i2b2/VA 2010 medical
challenge dataset and reported 81.2% f-measure.
Halgrim et al., (2010) designed a hybrid approach
that comprised of CRF and Rule-based approach
for Clinical-NER. Zhang and Elhadad (2013) de-

199

Figure 2: Learning base classifiers

veloped an unsupervised approach for extracting
clinical entities from free text. They used inverse
document frequency as a base to filter candi-
date clinical NEs. Ekbal and Saha (2013) used
stacked ensemble approach to extract biomedical
NEs. Shashirekha and Nayel (2016) studied the
performance of biomedical NER using different
SR models. Keretna et al. (2015) introduced a
technique for boosting clinical-NER by extending
IOBES model, and have introduced a new tag to
resolve the problem of ambiguity. They evaluated
the proposed technique on i2b2/VA 2010 medical
challenge dataset. There is a growing interest in
studying Clinical-NER for non-English texts (Wu
et al., 2015; Spat et al., 2008). Wu et al. (2015)
trained a deep neural network model to extract
clinical entities from Chinese texts .

In this paper, we have proposed an ensemble al-
gorithm for Clinical-NER. Up to our knowledge,
this is the first work that uses SR models to achieve
diversity of base classifiers. Our approach is a
two-stage ensemble algorithm. In the first stage,
we have used SVM algorithm to create four base
classifiers with different SR models namely IOB2,
IOE2, IOBE and IOBES. Stacking using CRF as
a meta-classifier and Majority Voting have been
used separately to combine the results of base clas-
sifiers in the second stage.

Figure 3: Combining base classifiers using Major-
ity Voting

3 Methodology

We propose a two-stage ensemble approach for
clinical-NER. Figure 2 shows the framework of
first phase, where training data is used to learn
the base classifiers. We have used SVM algorithm
to learn four different base classifiers using differ-
ent SRs models namely, IOB2, IOE2, IOBE and
IOBES. In second phase, we have combined the
outputs of the base classifiers created in the first
phase using Majority Voting and Stacking sep-
arately which form the result of ensemble tech-
nique. Figures 3 and 4 show the framework of
second phase using Majority Voting and Stacking
respectively. We designed a SR converter module
to convert the dataset which is available in IOB2
model into other SR module.

3.1 Feature extraction

Features, the properties of tokens or words, are the
keystones of ML algorithms. The following fea-
tures were extracted for our system:-

1. Word length:- This is a numeric value that de-
termines the length of the current token.

2. Context words:- These are the words sur-
rounding the current word. The context win-
dow of size n means n words before the
current word and n words after the cur-
rent word, e.g. context window of size 3

200

Figure 4: Combining base classifiers using Stack-
ing

is wi−3...wi...wi+3 where wi is the current
word.

3. Word affixes:- These are prefixes and suffixes
of the current word. Prefix of length n is the
first n characters of the word, while suffix of
length n is the last n characters of the word.
We have used all suffixes and prefixes up to
length 5.

4. Part-of-Speech (PoS) tags:- PoS information
is a very important feature, it determines the
role of the word in the sentence. PoS tags are
extracted using GENIA tagger V3.0.211.

5. Chunk Information:- Chunk information is
useful when determining the boundaries of
NEs. chunk information is extracted using
GENIA tagger V3.0.21.

6. Word Normalization:- Two types of normal-
ization namely stemming feature and word
shape feature are used. Word stem means
the root of a word. GENIA tagger V3.0.21 is
used to extract the stems. There are two types
of word shapes, general word shape and sum-
marized word shape. In a general word X is
substituted for each capital letter, x for each
small character and d for consecutive dig-
its. In a summarized word shape, consecutive

1http://www.nactem.ac.uk/GENIA/tagger/

capital letters are replaced by X , consecutive
small letters by x and consecutive digits by d.

7. Orthographic features:- These features cap-
ture word formation information. The set of
all orthographic features extracted are shown
in Table 2.

8. Dynamic Feature:- It denotes the predicted
tags of the words preceding the current word.
This feature is calculated during running. An
example of dynamic feature of size 4 are the
tags t−4, t−3, t−2, t−1 corresponding to the
words w−4, w−3, w−2, w−1 , where current
word is w0.

9. Stop Words:- This is a logical feature which
fires only if the current word is a stop word.

10. Non-Word:- This is a binary value which
fires only if the word exists in entire dictio-
nary. We used Grady augmented dictionary
in qdapDictionaries package in R soft-
ware (R Core Team, 2017).

11. Head Nouns:- The noun phrase describes the
functionality or property of a clinical NE
called head noun (Ekbal and Saha, 2013).
For example, examination is the head noun of
”cardiovascular examination”. Head nouns
are very important as these play a key role
for correct classification of a clinical NE
class. Unigrams and bigrams are used as
head nouns. For domain dependency, train-
ing data is used to extract head nouns.

3.2 Support Vector machines
SVM is a binary classifier, which creates a hyper-
plane that discriminates between the two classes.
SVM can be extended to multi-classes problems
by combing several binary SVMs and combining
using a one-vs-rest method or one-vs-one method
(Hsu and Lin, 2002).

3.3 Evaluation Metrics
The performance of our system is reported in
terms of f-measure (Hripcsak and Rothschild,
2005). F-measure is a harmonic mean of Preci-
sion (P) and Recall (R). Denoting TP as the num-
ber of true positives, FP number of false positives
and FN as the number of false negatives, recall,
precision and f-measure are calculated as follow:

P =
TP

TP + TF

201

Feature Example
INITCAPS Tonsillectomy
ALLCAPS MCV, RBC
ENDCAPS pH, proBNP
INCAPS freeCa
CAPSMIX cTropnT
HASDIGIT pO2,calHCO3
HASHYPHEN hyper-CVAD
ALPHNUM B12
GREEK alpha
NUMBER 101.5
HASATGC LACTATE
PUNCT INR(PT)
ROMAN IV, CD

Table 2: List of orthographic features and exam-
ples

R =
TP

TP + FN

f −measure =
2 ∗ P ∗R
P +R

3.4 Dataset
Our model is eval on i2b2 dataset (Uzuner et
al., 2011), which was originally created for entity
and relation extraction purposes at i2b2/VA 2010
challenge. It includes 826 discharge summaries
for real patients from the University of Pittsburgh
Medical Centre, Partners Health Care and Beth Is-
rael Deaconess Medical Centre. Pittsburgh dis-
charge summaries was used as a test set in i2b2
challenge and other two sources used as a training
set. Statistics of the dataset is shown in Table 3.
Both testing and training sets are manually anno-
tated with three different named entities namely,
treatment, problem and test. It is important to note
that, there is lack of data sets that used for Clinical-
NER.

4 Experiments and results

The proposed method combines the outputs of
base-classifiers using two different approaches
namely Majority Voting and Stacked Generaliza-
tion.

For training the base classifiers, YamCha2

toolkit along with TinySVM-0.0923 is used.
While training, a context window of size 3 is
used (i.e. wi−3, wi−2, wi−1, wi, wi+1, wi+2, wi+3,

2http://chasen.org/t̃aku/software/yamcha/
3http://chasen.org/taku/software/TinySVM/

where wi is the current word) and the dynamic
features are set at three (i.e. the output tags
ti−3, ti−2, ti−1 of the three words wi−3, wi−2,
wi−1 preceding the current word wi will be con-
sidered).

In Majority Voting, the out of all base classi-
fiers are combined together and the output of fi-
nal system is decided based on majority voting. If
majority voting fail then the highest performance
output of the base classifiers is considered on fi-
nal output. For Stacked Generalization, an open
source implementation of CRF, CRF++ package4,
has been used for constructing a CRF-based meta
classifier.

The results of base classifiers and ensemble
classifiers using Majority Voting and Stacking are
shown in Table 4. The results show that, the best
base classifier is the classifier based on IOBE SR
model and the worst is the classifier based on IOE2
SR model. Both ensemble classifiers outperform
the base classifiers and ensemble using stacking
approach reported the best f-score.

5 Conclusion

Clinical-NER is a key task in health informa-
tion systems. Different approaches have been ap-
plied for Clinical-NER. Ensemble approach tries
to overcome the weakness of one approach by the
strength of another. In our paper, we have de-
signed an ensemble approach using majority vot-
ing and stacking techniques to combine the results
of base classifiers. We have used SVM for learn-
ing base classifiers using different SR models and
CRF classifier for learning the meta-classifier. Up
to our knowledge, it is the first work that uses SR
models for learning the base classifiers. The per-
formance of our approach outperforms the perfor-
mance of each of base classifiers.

References
Alan R Aronson and François-Michel Lang. 2010. An

overview of metamap: historical perspective and re-
cent advances. Journal of the American Medical In-
formatics Association, 17(3):229–236.

Frédéric Béchet, Alexis Nasr, and Franck Genet.
2000. Tagging unknown proper names using deci-
sion trees. In Proceedings of the 38th Annual Meet-
ing on Association for Computational Linguistics,
ACL ’00, pages 77–84, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

4https://taku910.github.io/crfpp/

202

Training set Test set Total
No. of Documents 349 477 826

Named Entities
Problem 11968 18500 30468

Treatment 8500 13560 22060

Test 7369 12899 20268

Table 3: Statistics of i2b2 dataset

Classifiers SR Model F-score
IOB2 77.31

Base IOE2 76.06

Classifier IOBE 77.48

IOBES 77.21

Ensemble Stacking 77.63
Classifiers Majority Voting 77.53

Table 4: Results of base and ensemble classifiers

Han-Cheol Cho, Naoaki Okazaki, Makoto Miwa, and
Junichi Tsujii. 2013. Named entity recognition with
multiple segment representations. Information Pro-
cessing & Management, 49(4):954 – 965.

A. Dehghan, J. A. Keane, and G. Nenadic. 2013. Chal-
lenges in clinical named entity recognition for deci-
sion support. In 2013 IEEE International Confer-
ence on Systems, Man, and Cybernetics, pages 947–
951, Oct.

Asif Ekbal and Sriparna Saha. 2013. Stacked ensem-
ble coupled with feature selection for biomedical en-
tity extraction. Knowledge-Based Systems, 46(0):22
– 32.

Carol Friedman, Philip O Alderson, John HM Austin,
James J Cimino, and Stephen B Johnson. 1994. A
general natural-language text processor for clinical
radiology. Journal of the American Medical Infor-
matics Association, 1(2):161–174.

R. Grishman and B. Sundheim. 1996. Message Un-
derstanding Conference-6: A Brief History. In Pro-
ceedings of the 16th International Conference on
Computational Linguistics, Copenhagen, June.

Gurulingappa H, Hofmann-Apitius M, and Fluck J.
2010. Concept identification and assertion classi-
fication in patient health records. In Proceedings of
the 2010 i2b2/VA Workshop on Challenges in Natu-
ral Language Processing for Clinical Data.

Scott Halgrim, Fei Xia, Imre Solti, Eithon Cadag, and
Özlem Uzuner. 2010. Extracting medication infor-
mation from discharge summaries. In Proceedings
of the NAACL HLT 2010 Second Louhi Workshop on
Text and Data Mining of Health Documents, Louhi

’10, pages 61–67, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

George Hripcsak and Adam S. Rothschild. 2005.
Agreement, the f-measure, and reliability in infor-
mation retrieval. Journal of the American Medical
Informatics Association, 12(3):296–298.

Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison
of methods for multiclass support vector machines.
Trans. Neur. Netw., 13(2):415–425, March.

S. Keretna, C. P. Lim, and D. Creighton. 2014. A
hybrid model for named entity recognition using
unstructured medical text. In 2014 9th Interna-
tional Conference on System of Systems Engineering
(SOSE), pages 85–90, June.

Sara Keretna, Chee Peng Lim, Doug Creighton, and
Khaled Bashir Shaban. 2015. Enhancing medical
named entity recognition with an extended segment
representation technique. Computer Methods and
Programs in Biomedicine, 119(2):88 – 100.

Taku Kudo and Yuji Matsumoto. 2001. Chunking
with support vector machines. In Proceedings of
the second meeting of the North American Chapter
of the Association for Computational Linguistics on
Language technologies, pages 1–8. Association for
Computational Linguistics.

Dingcheng Li, Karin Kipper-Schuler, and Guergana
Savova. 2008. Conditional random fields and
support vector machines for disorder named entity
recognition in clinical texts. In Proceedings of the
Workshop on Current Trends in Biomedical Natu-
ral Language Processing, BioNLP ’08, pages 94–
95, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Serguei Pakhomov, Ted Pedersen, and Christopher G
Chute. 2005. Abbreviation and acronym disam-
biguation in clinical discourse. In AMIA Annual
Symposium Proceedings, volume 2005, page 589.
American Medical Informatics Association.

R. Polikar. 2006. Ensemble based systems in deci-
sion making. IEEE Circuits and Systems Magazine,
6(3):21–45, Third.

R Core Team, 2017. R: A Language and Environment
for Statistical Computing. R Foundation for Statis-
tical Computing, Vienna, Austria.

203

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text chunking using transformation-based learning.
In proceeding of the Third ACL Workshop on Very
Large Corpora.

Adwait Ratnaparkhi. 1998. Maximum entropy mod-
els for natural language ambiguity resolution. Ph.D.
thesis, University of Pennsylvania, PA, USA.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo
clinical text analysis and knowledge extraction sys-
tem (ctakes): architecture, component evaluation
and applications. Journal of the American Medical
Informatics Association, 17(5):507–513.

H. L. Shashirekha and H. A. Nayel. 2016. A compar-
ative study of segment representation for biomedi-
cal named entity recognition. In 2016 International
Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI), pages 1046–
1052, Sept.

Stephan Spat, Bruno Cadonna, Ivo Rakovac, Christian
Gütl, Hubert Leitner, Günther Stark, and Peter Beck.
2008. Enhanced information retrieval from narrative
german-language clinical text documents using au-
tomated document classification. Studies in health
technology and informatics, 136:473.

Jiashen Sun, Tianmin Wang, Li Li, and Xing Wu.
2010. Person name disambiguation based on topic
model. In CIPS-SIGHAN Joint Conference on Chi-
nese Language Processing, page 391.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation, 18(5):552–556.

David H Wolpert. 1992. Stacked generalization. Neu-
ral networks, 5(2):241–259.

Yonghui Wu, Min Jiang, Jianbo Lei, and Hua Xu.
2015. Named entity recognition in chinese clinical
text using deep neural network. Studies in health
technology and informatics, 216:624.

Yu-Chieh Wu. 2014. A top-down information theo-
retic word clustering algorithm for phrase recogni-
tion. Information Sciences, 275:213 – 225.

Shaodian Zhang and Noémie Elhadad. 2013. Unsu-
pervised biomedical named entity recognition: Ex-
periments with clinical and biological texts. Journal
of Biomedical Informatics, 46(6):1088 – 1098.

204

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 205–211

Beyond Word2Vec: Embedding Words and Phrases in Same Vector Space

Vijay Prakash Dwivedi
CSED, MNNIT Allahabad

Allahabad, UP 211004, India
mail@vijaydwivedi.com.np

Manish Shrivastava
LTRC, IIIT Hyderabad

Hyderabad, TS 500032, India
m.shrivastava@iiit.ac.in

Abstract

Word embeddings are being used for sev-
eral linguistic problems and NLP tasks.
Improvements in solutions to such prob-
lems are great because of the recent break-
throughs in vector representation of words
and research in vector space models. How-
ever, vector embeddings of phrases keep-
ing semantics intact with words has been
challenging. We propose a novel method-
ology using Siamese deep neural networks
to embed multi-word units and fine-tune
the current state-of-the-art word embed-
dings keeping both in the same vector
space. We show several semantic rela-
tions between words and phrases using the
embeddings generated by our system and
evaluate that the similarity of words and
their corresponding paraphrases are maxi-
mized using the modified embeddings.

1 Introduction

Vector embeddings in computational linguistics is
a model that encodes words in a vector space.
These vector encodings are used in mathemati-
cal models and serve as a base for computation in
NLP.

Development of word embedding technique
started in 2000 when Bengio et al. built neural
probabilistic language models to reduce the high
dimensionality of word representations in contexts
by learning a distributed representation for words
(Bengio et al., 2003). After that, continuous re-
search has been done in the field resulting in re-
markable improvements in word vector represen-
tations as well as the methods of learning the em-
beddings (Mikolov et al., 2013a; Mikolov et al.,
2013b; Pennington et al., 2014). The primary rea-
son for the increase in quality and performance
of word vector embeddings is the huge growth of

data and and development in computational capa-
bilities as of today.

Natural language has both single word and
multi-word units. If we want vector semantics
to be near perfect, we need to embed multi-word
units with the same quality as we do with the sin-
gle word units. Improvements in phrase represen-
tation will eventually help the areas of question an-
swering, search and translation. For a phrase that
is similar to a certain word, the embedding of both
the word and phrase should be similar and should
lie in the same space. Only then a manipulation
on a word and its paraphrase embedding can prove
them to be similar.

Currently, compositional models are used to
build phrase embeddings with less emphasis on
building the compositions using deep learning and
more using specific composition functions. Our
major contribution in this work is employing deep
neural architectures to transform constituent word
embeddings of a multi-word units into its vector
representation. We build a Siamese deep neural
network architecture (Siamese LSTM, to be pre-
cise) that accepts two inputs, one being a word
while another a phrase. The energy function in the
Siamese network measures the similarity between
these two input units. In the course of training
the network, baseline word embeddings (Section
5.2) are modified and phrase embeddings are gen-
erated. We describe the model in detail in further
sections.

2 Related Work

There has been a significant development in phrase
embeddings after the word2vec breakthrough by
Mikolov et al. in 2013. Earlier, word vectors were
combined with some functions to create phrase
vectors. (Mitchell and Lapata, 2008) developed
systems with predefined composition operators.
In their work, they created datasets of similarity
for adjective-noun, noun-noun and verb-object bi-

205

gram units. They found the simple additive and
multiplicative function to be quite effective. How-
ever, these simple functions ignored word orienta-
tion in phrases and their interaction.

To make these compositions robust in order
to handle complex structures in sentences, Ma-
trix composition functions (Zanzotto et al., 2010;
Socher et al., 2012) and Tensor composition func-
tions (Bride et al., 2015) were proposed. In 2013,
Mikolov et al. generated phrase representation us-
ing the same method used for word representation
in word2vec (Mikolov et al., 2013a; Mikolov et
al., 2013b). High-frequency multi-word units such
as New York was embedded along with the words
by taking them as single token, or pseudo-words,
i.e. New York. Though this method is useful for
learning short phrase representations with good
quality, it does not generalize well to relatively
longer and rare occurring phrases in the dataset.

In 2011, Socher et al. used a recursive neu-
ral network to learn representations for multi-word
phrases. In particular, they used an unsupervised
autoencoder and their model performed well on
the sentiment classification task but not so well
on phrase similarity related problems. The pri-
mary reason for this was the low-dimensional rep-
resentations (upto 50) they had used to reduce the
computational complexity. More recently (Yu and
Dredze, 2015), the idea of learning composition
functions based on phrase structure and context
was proposed to compose phrase embeddings us-
ing baseline word embeddings.

The composition model developed by Yu and
Dredze used Feature-rich Compositional Transfor-
mations (FCT) from words to phrases in which the
summation weights were defined by the linguistic
features of component words such as POS tags,
head words and so on.

3 Methodology

We develop our model with the objective of train-
ing a system to predict similarity between a word
and a phrase leveraging a similarity dataset. In our
work, unlike the previous approaches, we capture
the sequence of words in a phrase and their inter-
action as well. This is achieved by using a recur-
rent neural network to train our model. The model
learns to generate phrase representations accord-
ing to its closest single word meaning. The more
the semantic similarity between the word and the
phrase, the closer is their similarity metric output

to 0 (1 otherwise). Table 1 shows some examples
giving more insight into this.

Input word Input phrase Output
remorse deep regret 0
athletes bring up 1
suez the suez canal 0
payment earth orbit 1

Table 1: Input-Output samples. ’Output’ is the
similarity metric output, i.e. 0 for similar and 1
for dissimilar

We join the outputs of the two inputs fed to the
network using a Siamese similarity function where
the input of one sub-network is the baseline em-
bedding of a word and the input of another sub-
network is the embeddings of constituent words of
a phrase which are fed sequentially. The two out-
puts thus obtained are the resultant vector embed-
dings of the corresponding word and phrase gener-
ated by our system. The weights learned are com-
mon during both the inputs. In this way, we build a
common abstract transformation for both the word
and the phrase.

While training our system over a large dataset
containing input-output pairs as in Table 1, the
model learns weights with which we build phrase
embeddings and fine-tune baseline word embed-
dings such that both are embedded in the same
space.

3.1 Siamese Neural Network

For the task of signature verification, Siamese
Neural Networks were first proposed by Bromley
et al. in 1993. After that, the architecture has been
used in several works of similarity and discrima-
tion such as for face verification (Chopra et al.,
2005), visual search (Liu et al., 2008), sentence
similarity (Mueller and Thyagarajan, 2016), simi-
lar question retrieval in Q/A (Das et al., 2016), etc.

Suppose Out(X) is a set of functions which has
a set of parameters W. In Figure 1, input A is first
given to the network. Then another input B is fed
and a similarity function gets the outputs of these
A and B, i.e. Out(A) and Out(B). Siamese network
learns a value of W such that the similarity metric
is small if Inp. A (first input) and Inp. B (second
input) are similar and large if they are not. The
similarity function can be defined as:

S(Inp.A, Inp.B) = ||Out(A)−Out(B)|| (1)

206

Figure 1: Siamese Neural Network

4 Model Architecture: Siamese LSTM

Long Short Term Memory Networks (LSTMs)
(Hochreiter and Schmidhuber, 1997) are often
used for problems with temporal (sequential) data.
Since in our work, we are dealing with phrases
which are sequences of words, we use LSTM net-
work in our Siamese architecture. We first briefly
describe LSTM networks and then the model ar-
chitecture in detail.

4.1 LSTM Networks

Long Short Term Memory Network is a special
variant of RNN which is capable of learning long-
term dependencies. Each cell of LSTM contains
four components: a memory state Ct, an output
gate ot that determines how the memory state af-
fects further units, as well as an input gate it
that controls what gets stored in and a forget gate
ft which determines what gets omitted from the
memory based on each new input and the current
state. Figure 2 shows the four components and
their interaction with the inputs and past and fu-
ture information.

Figure 2: Block diagram of LSTM Cell

The use of LSTM network helps our system to
learn the context of constituent words in a phrase.

4.2 Siamese LSTM
We use 3 layers of stacked LSTMs in our Siamese
network. The hidden layers and the number of
neurons were selected after repeated experiments
and we obtained best results with this configura-
tion. We limit the timesteps used in the LSTM to
5 since more than 99.8% of phrases in the dataset
we use (PPDB1) are constituted of 5 or less units
(words). Table 2 shows the composition of the
PPDB data in terms of the n-grams in the phrases.

Size→ XL
N-gram Nums Percentage
2-gram 2,98,536 79.40%
3-gram 60,657 16.13%
4-gram 13,132 3.49%
5-gram 2,993 0.80%
6-gram 682 0.18%
Total 3,76,000 100.0%

Table 2: Composition of the PPDB dataset of size
XL showing only 0.18% of the phrases are of more
than 5-grams; the scores are 0.15% & 0.12% for
XXL & XXXL sizes respectively

At each timestep t ∈ {1 . . . 5}, we use base-
line embeddings of the word at t. For cases (eg.
phrases of length less than 5 or word of length 1)
where there is no word at t, we use zero embed-
ding vector at that t.

Figure 3: Siamese LSTM model architecture; First
input to the network is a single word unit and sec-
ond input is a multi-word unit

Figure 3 illustrates the model architecture we
use. After training over a large dataset, the model

1http://www.cis.upenn.edu/˜ccb/ppdb/

207

learns the set of parameters W. ’embd’ is the resul-
tant embedding of the word or paraphrase which is
input to the network. The outputs of the two inputs
to the network are joined using a contrastive loss
function (Hadsell et al., 2006) which is defined as:

L = (1− Y)
1

2
(S)2 + (Y)

1

2
{max(0,m− S)}2

(2)
where Y is a binary label assigned to a pair Xa

and Xb (0 for similar and 1 for dissimilar), S is the
similarity energy function which is parameterized
by W and m is margin (Hadsell et al., 2006). We
use m = 1. When two pairs are not similar the
maximum energy metric outputs 1.

The gradient of the loss function with respect to
W shared by the LSTM networks, is computed us-
ing back-propagation. Adamax optimizer, a vari-
ant of the Adam optimizer (Kingma and Lei Ba,
2015) is used to update the parameters of the sub-
network.

5 Implementation

5.1 Dataset

We use PPDB dataset (Ganitkevitch et al., 2013)
of size XL which has 3,76,000 pairs of words
and their corresponding paraphrases. Since these
are word-paraphrase pairs, we label the output of
these pairs as 0. We augment the data by the same
number of negative pairs by choosing a phrase for
a word which is not its paraphrase. We label these
pairs as 1. Thus, we train our model on 7,52,000
data samples.

5.2 Base Input Embedding

As base word embeddings for the input layers, we
use GloVe2 word vector embeddings (Pennington
et al., 2014) of dimension 200.

The input pairs are passed through the Siamese
network with the final layers of each network
giving the resultant embeddings for words and
phrases. We have 300 stacked neurons in the fi-
nal layer of both the LSTM networks. This is the
dimension of our resultant embeddings.

6 Experiments and Results

We perform the following experiments and find
impressive results on various tasks.

2https://nlp.stanford.edu/projects/
glove/

6.1 Word - Phrase Similarity Task
In this experiment, we define a classification task
to determine if a word-phrase pair are semantically
similar. We feed a word-phrase pair to the trained
Siamese model and predict whether they are simi-
lar (S ≈ 0) or dissimilar (S ≈ 1).

We evaluate on the set of PPDB data (Section
5.1) left aside for validation. Out of the total data
size, we choose 2,00,000 word-paraphrase pairs
arbitrarily for the evaluation. Besides Siamese
LSTM, we also perform this experiment on a
Siamese Multi-layer Perceptron Network (MLP)
where the MLP has 4 layers of neurons. As per our
study in Table 2, we fix the MLP input to 5 words
where each input word is in the form of a 200-D
vector (we use padding and truncation for word
units which are not of length 5). Therefore, the
first layer has 1000 neurons. The remaining lay-
ers have 512, 512 and 300 neurons in order from
second to final layer. We carry out the similarity
task using Siamese MLP. However, we get better
results (Figure 4) on Siamese LSTM which is also
one reason why we chose it over Siamese MLP.
We report the best accuracy of 76.65% on this task.

Figure 4: Accuracy of similarity over dataset size

6.2 Nearest Words and Phrases
In our work, we fine-tune the current base word
embeddings while we generate phrase embed-
dings. Therefore, to validate the new vector em-
beddings of the words (300-D) which we obtain
at the final layer of the Siamese sub-network, we
perform this experiment.

For a pair 〈U, V 〉, where U & V can be a single
word or a multi-word unit, if U is given, we predict
V (Refer Table 5). We output a list of four units
which are closest to U in the vector space. We

208

Word Nearest Words
viewpoints perspectives, opinions, view-

point, views
upbeat optimistic, cautious, outlook,

gloomy
sales retail, selling, profits, profit
milder colder, mild, warmer, heavier
1600 1400, 1700, 1300, 1500
asem apec, asean, g20, summit
panelists attendees, moderators, jurists,

paragraphs
medal medals, awarded, won, silver

Table 3: Nearest words for a given word showing
that semantic relations are preserved even after the
modification in the base embeddings.

Word Nearest Phrases
viewpoints differing views, the viewpoints,

different opinions, different per-
spectives

upbeat optimistic about, overly opti-
mistic, more cautious, cautious

sales sales volume, sales orders, export
sales, the sales

milder relatively mild, cold weather,
even heavier, very mild

1600 1600 hours, 1300 hours, 1700
hours, 1100 hours

asem the asem process, apec leaders,
apec economies, summit meet-
ings

panelists discussion forums, two para-
graphs, selected topics, panel dis-
cussion

medal the gold medal, a gold medal, a
medal, the bronze

Table 4: Nearest phrases for a given word: we
show these for the same words as in Table 3 for
the ease of comparison

perform this task by calculating the cosine sim-
ilarity between the given U ’s embedding and all
the units’ embeddings in our vocabulary.

We finally select the top four ranked results for
every U using the embeddings our model has gen-
erated and show interesting sample results in Ta-
ble 3, Table 4 and Table 6. We notice several
instances where semantics are preserved even af-
ter fine-tuning the baseline embeddings using our

Experiment U V

Table 3 Word Word
Table 4 Word Phrase
Table 6 Phrase Phrase

Table 5: Experiments in this category; word is 1-
gram and phrase is n-gram where n ≥ 2

approach. The phrase representations generated
from this work also stays close to its correspond-
ing similar word’s embedding.

Phrase Nearest Phrases
are crucial are important, are needed, are

essential, are necessary
2005 to
2006

2005 to 2007, 2005 to 2008,
2003 to 2006, 2004 to 2005

the violence the acts of violence, the violent,
the prevalence of violence, the
cycle of violence

both leaders the two leaders, both members,
the leaders, leaders of the two
countries

president
hosni
mubarak

president mubarak, egyptian
president hosni mubarak, hosni
mubarak, the egyptian presi-
dent hosni mubarak

the correct-
ness

the objectivity, the veracity, the
originality, the propriety

musical
works

artistic works, musical instru-
ments, works of art, works well

Table 6: Nearest phrases for a given phrase

6.3 Semantic Similarity Task
We use the embeddings derived by our system to
evaluate the phrasal semantic similarity task of Se-
mEval20133 and compare our results with that of
the existing systems. The task of SemEval2013
5(a) is to determine if a word-phrase pair are se-
mantically similar (True for similar and False for
dissimilar) which is notably as same as the ex-
periment in Section 6.1. We report the results
(accuracy scores) of our system along with ex-
isting benchmark methods in Table 7. RAE is
the recursive auto-encoder model developed in
(Socher et al., 2011) wheras FCT-LM and FCT-
Joint are the Feature Rich Compositional Trans-
formation Models proposed by (Yu and Dredze,

3https://www.cs.york.ac.uk/
semeval-2013

209

2015) with Language Modeling and Joint Traning
(Language Modeling and Task-Specific) objective
respectively for updating the embeddings. We also
report our results with the Recursive Neural Net-
work (ReNN) based model developed by (Socher
et al., 2011; Socher et al., 2013) and obtain compa-
rable results with the state-of-the-art system devel-
oped for generating phrase representations evalu-
ated on this task.

Model SemEval2013 Test
RAE 51.75
FCT-LM 67.22
FCT-Joint 70.64
ReNN 72.22
Our System 72.14

Table 7: Performance on the SemEval2013 5(a)
Semantic Similarity Task

We see that the Siamese network based model
outperforms the RAE by significant margin. How-
ever, the ReNN still has the best performance.
Since the method proposed in this work is pri-
marily dependant on the dataset containing word-
paraphrase pairs, the larger this data size, the bet-
ter quality embeddings we can generate and the
performance on this task can be ultimately im-
proved.

7 Conclusion and Discussion

In this work, we present a novel approach in
building phrase vector embeddings by the use of
its constituent word vectors through a sequential
Siamese model. The Siamese network designed
for this task leverages a word-phrase similarity
dataset (PPDB) and generates embeddings of the
phrase keeping in consideration the word position
in the phrase, and its orientation and interaction
with neighbour words as well which, in particular,
is achieved using a Long Short Term Memory Net-
work. Unlike previous attempts in building com-
positional models for phrase representation, the
system presented in this paper does not employ
any manual feature based technique for building
phrase embedding or rely on a POS tag of partic-
ular word’s neighbour or head words, or any other
linguistic feature. Rather, we develop a similarity
based deep learning network with contrastive loss
which learns its weights after training and this set
of learned parameters function as an abstract trans-
formation which compose the phrase representa-

tion eventually. In addition, we fine-tune the base
word vectors using the same abstract transforma-
tion and embed both the words and phrases in the
same vector space.

The phrase representations derived from our
model are computationally efficient as compared
to recursive neural networks employed for this
task. Besides, we are able to generate compar-
atively higher dimension (300-D) vectors in this
work as compared to recursive networks (25-30D)
which have a higher computational complexity.
We show excellent results on phrase similarity task
using the vector embeddings produced from this
work. Also, semantic relationship between nearby
words-phrases and phrases-phrases has been pre-
served.

8 Future Work

Since the network used in this work is trained
on the paraphrase dataset, quality of phrase em-
beddings will improve if we use more exhaustive
set and large number of word-paraphrase pairs for
training. If we are able to extract more paraphrases
using bigger language corpus and use it for train-
ing our system, we can considerably improve the
quality of vectors derived. In future, we plan to ex-
tend this work to other languages as well by first
extracting paraphrases and then learning a similar-
ity model to derive phrase representations. How-
ever, efficient and reliable word vectors of higher
dimension is required for this work to be done.
Similarly, we intend to use phrase embeddings
generated by our model in several NLP applica-
tions with motive of improving the performance.

Acknowledgement

We would like to thank Naveen Kumar Laskari
for discussions during the course of this work and
Pruthwik Mishra and Saurav Jha for their valuable
suggestions.

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search (JMLR), 3:1137-1155.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

210

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. arXiv preprint arXiv:1310.4546.

Jeffrey Pennington, Richard Socher and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Association for
Computational Linguistics (ACL), pages 236-244.

Mo Yu and Mark Dredze. 2015. Learning Compo-
sition Models for Phrase Embeddings. In Transac-
tions of the Association for Computational Linguis-
tics (ACL), pages 227-242.

Jane Bromley, James W Bentz, Léon Bottou, Is-
abelle Guyon, Yann LeCun, Cliff Moore, Eduard
Sackinger, and Roopak Shah. 1993. Signature
verification using a siamese time delay neural net-
work. International Journal of Pattern Recognition
and Artificial Intelligence, 7(4).

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR), 1:539–546.

Yuanjie Liu, Shasha Li, Yunbo Cao, Chin-Yew Lin,
Dingyi Han, and Yong Yu. 2008. Understand-
ing and summarizing answers in community-based
question answering services. In International Con-
ference on Computational Linguistics (COLING),
1:497–504.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
Recurrent Architectures for Learning Sentence Sim-
ilarity. In AAAI Conference on Artificial Intelli-
gence.

Arpita Das, Harish Yenala, Manoj Chinnakotla and
Manish Shrivastava. 2016. Together We Stand:
Siamese Networks for Similar Question Retrieval.
In Association for Computational Linguistics (ACL),
pages 378-387.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Juri Ganitkevitch, Benjamin Van Durme and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of NAACL-HLT, pages
758–764.

Raia Hadsell, Sumit Chopra, Yann LeCun. 2006. Di-
mensionality Reduction by Learning an Invariant
Mapping. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR),
2:1735–1742.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Ng. 2012. Semantic Compo-
sitionality through Recursive Matrix-Vector Spaces.
In Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
1201–1211.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Ng. 2013. Parsing with compositional
vector grammars. In In Association for Computa-
tional Linguistics (ACL), pages 455–465.

Antoine Bride, Tim Van de Cruys, and Nicholas Asher.
2015. A Generalisation of Lexical Functions for
Composition in Distributional Semantics. In Asso-
ciation for Computational Linguistics (ACL), pages
281–291.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A Method for Stochastic Optimization. In The Inter-
national Conference on Learning Representations
(ICLR).

Fabio M. Zanzotto, Ioannis Korkontzelos, Francesca
Fallucchi, and Suresh Manandhar. 2010. Estimat-
ing Linear Models for Compositional Distributional
Semantics. In International Conference on Compu-
tational Linguistics (COLING), 1263-1271.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised Recursive Autoencoders for Pre-
dicting Sentiment Distributions. In Empirical Meth-
ods in Natural Language Processing (EMNLP), 151-
161.

211

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 212–219

Relationship Extraction based on Category of Medical Concepts from
Lexical Contexts

Anupam Mondal Dipankar Das Sivaji Bandyopadhyay
Department of Computer Science and Engineering

Jadavpur University, Kolkata, India
link.anupam@gmail.com, dipankar.dipnil2005@gmail.com,

sivaji cse ju@yahoo.com

Abstract

Medical information extraction is an
emerging task in healthcare services aim
to acquire crucial information of the con-
cepts like diseases, symptoms, and drugs
and also to identify their relations from
corpora. In the present article, we have
proposed a relationship extraction sys-
tem based on such categories of medi-
cal concepts. We have employed rule-
based as well as Support Vector Machine
(SVM) based feature-oriented approach
along with a domain-specific lexicon viz
WordNet of Medical Event (WME 2.0).
The lexicon assists in recognizing med-
ical concepts and their related features
like Parts-Of-Speech (POS), categories,
and Similar Sentiment Words (SSW). We
have opted only four fundamental cat-
egories diseases, drugs, symptoms, and
human anatomy of medical concepts as
provided in WME lexicon. Such cat-
egories play a crucial role in identify-
ing eight types of different semantic rela-
tions viz. drug-drug, disease-drug, and
human anatomy-symptom from the med-
ical context. Thereafter, we have val-
idated both rules and features-oriented
approaches and offers an average F-
Measures of 0.79 and 0.86 individually.

1 Introduction

The availability of medical documents such as re-
ports, discharge summaries, and prescriptions and
their related information are growing quickly. In
order to extract critical and crucial information,
the researchers have applied various statistical and
ontology-based approaches with well-known ma-
chine learning classifiers (Mondal et al., 2016b;

Uzuner et al., 2011). The extracted informations
are medical concepts (terms), categories (classes),
and their relations, which assist the experts such
as doctors and other medical practitioners as well
as the non-experts as patients in understanding the
problems (e.g. diseases, symptoms) and their re-
lated remedies (e.g. drugs).

The medical concepts are presented by the key
terms like words or phrases of the corpus whereas
the category refers to the fundamental classes of
medical concepts such as diseases and symptoms.
The assigned categories of medical concepts and
their in-between relations help to build a medical
annotation system. Besides, each sentence of the
corpus is presented as a medical context in this pa-
per. For an example, ”abdominal pain” denotes
the medical concept and its category is denoted by
”symptom” in the following medical context.

”Abdominal pain is a sign of early preg-
nancy.”.

In order to design our category based relation-
ship extraction system, we observed the following
major challenges:

A. The first challenge was how to identify the
medical concepts and their textual spans from un-
structured or semi-structured medical corpora. To
address this challenge, we have used WordNet of
Medical Events (WME), a domain-specific lexi-
con (Mondal et al., 2016a, 2015). The lexicon
provides a good coverage while extracting med-
ical concepts from our experimental dataset viz.
SemEval-2015 Task-61 and MedicineNet2.

B. The second challenge was how to decide the
set of categories for the medical concepts and as-
sign them. To overcome the first sub-challenge,
we adopted the help of a group of medical prac-
titioners and to cope-up with the second sub-

1http://alt.qcri.org/semeval2015/task6/
2http://www.medicinenet.com/script/main/hp.asp

212

Figure 1: An example of extracted relations using
proposed system.

challenge, we used the categorization system of
medical concepts (Mondal et al., 2017, 2016a).
The categorization system assists in assigning one
of the four medical categories such as diseases,
symptoms, drugs, and human anatomy to the con-
cepts.

C. The third and final challenge of the present
work was how to identify the relations between a
pair of medical concepts in a context and evalu-
ate the relations. To address this issue, we have
built a rule-based and a feature-based relationship
extraction systems, which help to predict the type
of relations between a pair of medical concepts.
Table 1 shows the proposed eight types of rela-
tions with illustrative examples. Besides, we have
manually prepared a labeled dataset, which con-
tains 2000 medical contexts and their tagged med-
ical concepts, categories, and relations as shown
in Figure 1.

In the present research, our primary motivation
was to build an annotation system which helps to
assign all four types of medical categories such as
diseases, symptoms, drugs, and human anatomy
and their related relations in a context. According
to the best of our knowledge, we are unable to find
any medical corpora which contain all the men-
tioned categories at a time. Afterwards, we have
discussed the contribution of the paper as follows,

I. A labeled dataset preparation by a group of
medical practitioners. The dataset has been la-
beled with medical concepts and their categories
and proposed eight types of category-based rela-
tions in a context. We have acquired the dataset
from SemEval-2015 Task-6 and MedicineNet re-
sources which contain around 2000 number of
medical contexts. The dataset helps to design and
validate the relationship extraction system.

II. Relationship extraction plays a key role in
identifying the semantic information from the cor-
pus. To extract these relations, we have proposed a
linguistic rule-based (Abacha and Zweigenbaum,
2011a; Hearst, 1992) and a feature-oriented ma-
chine learning (Rink et al., 2011; Zhu et al., 2009)

approach. The rule-based patterns help to iden-
tify the specific relations from the dataset, whereas
machine learning approach assists in extracting
generalize relations with promising accuracy. For
an example, the following medical context is able
to extract disease - symptom (illustration, inflam-
mation symptom for the adnexitis disease) and
symptom - human anatomy (illustration, inflam-
mation affect the uterus) relations.

”The adnexitis disease characterizes
inflammation symptom of attachments of the
uterus human anatomy.”

The proposed relation extraction system assists
in understanding the subjective information of the
corpus. Besides, these systems guide to build var-
ious applications namely, annotation and recom-
mendation system in healthcare services.

The overall structure of the paper is as follows.
Section 2 presents the related work carried out in
this field. Section 3 describes the dataset prepara-
tion and brat representation technique. Section 4
and Section 5 present the proposed relation extrac-
tion system and its evaluation approach. Finally,
Section 6 presents the concluding remarks related
to our study.

2 Related Work

2.1 Medical Ontologies and Lexicons

Biomedical information extraction research is
challenging due to the availability of a large num-
ber of daily produced unstructured and semi-
structured medical corpus. To represent the struc-
tured corpus and extracting the subjective and con-
ceptual information from the corpus, a domain-
specific lexicon is essential (Borthwick et al.,
1998). To this end, the standard vocabularies and
ontologies such as UMLS (Unified Medical Lan-
guage System) and SNOMED-CT (Systematized
Nomenclature of Medicine-Clinical Terms), and
lexicons like MEN (Medical WordNet) and WME
(WordNet of Medical Event) have used by the re-
searchers (Smith and Fellbaum, 2004; Kilgarriff
and Fellbaum, 2000; Mondal et al., 2016a).

2.2 Medical Category and Relation
Extraction

These ontologies and lexicons assist in extracting
the relevant information from the corpus such as
medical concept categories and relations between
medical concepts.

213

Relation Explanation and Example
Dr-SyDi A drug how helps to improve or cure or side effects the diseases or symptoms.

Warfarin is also used to reduce the risk of clots causing strokes or heart attacks.
Ha-SyDi A disease or symptom which effects a part of the body.

A painful inflammation of the big toe and foot.
Di-Sy The symptoms which reflect a disease.

Anal fissures typically cause pain and bleeding with bowel movements.
Dr-Dr How the drugs are related each other.

An oral lipid-lowering medicine (trade name Zocor) administered to reduce blood cholesterol levels;
recommended after heart attacks.

Sy-Sy How the symptoms are related each other.
A rhythmic tightening in labor of the upper uterine musculature that contracts the size of the uterus
and pushes the fetus toward the birth canal.

Di-Di How the diseases are related each other.
Kaposi’s sarcoma is a form of skin cancer that can involve internal organs.

MMT-SyDi The medical terms such as process and chemical components etc. how helps to refer the diseases or symptoms.
When you swallow or inhale these highly toxic products, you can experience life-threatening symptoms.

Ha-Ha How various body parts are related or effected each other under a situation.
Nodding movement of the head or body.

Note: Di− > Disease, Dr− > Drug, Sy− > Symptom, Ha− > Human anatomy, and MMT− > Miscellaneous Medical Term

Table 1: An illustration of the proposed eight types of relations for the medical context.

Eklund (Eklund, 2011) developed an annotation
system to extract the relations as diseases for treat-
ments from the scientific medical corpus. Yao, et
al. (Yao et al., 2010) extracted category relations
as cures, prevents, and side effects, which describe
the distinctive nature for the biomedical text (med-
ical papers) (Abacha and Zweigenbaum, 2011b;
Frunza and Inkpen, 2010). Franzen et al. (Franzén
et al., 2002) have annotated Yapex corpus with 200
medical abstracts to extract the category as pro-
teins. These ontologies are fundamentally look-
ing for extracting protein-protein interaction and
disease-treatment relations from corpora under a
BioText project (Rosario and Hearst, 2005).

Khoo et al. (Khoo et al., 2000) developed a
causal relations extraction system from abstracts
of biomedical articles by aligning manually con-
structed graph patterns with syntactic dependency
trees. Lee et al. (Lee et al., 2003) applied UMLS
to identify semantic relations between medical en-
tities. Their first method was able to extract 68%
of the semantic relations in their test corpus but if
many relations were possible between the relation
arguments no disambiguation performed. Their
second method (Lee et al., 2004) targeted the pre-
cise extraction of ”treatment” relations between
drugs and diseases. Manually written linguistic
patterns were constructed from medical abstracts
talking about cancer. Their system reached 84%

recall but an overall 48.14% precision. Embarek
and Ferret (Embarek and Ferret, 2008) developed
an approach to extract four kinds of relations (De-
tect, Treat, Sign, and Cure) between five kinds
of medical entities. The employed patterns were
constructed automatically using an alignment al-
gorithm which maps sentence parts using an edit
distance (defined between two sentences) and dif-
ferent word-level clues.

3 Dataset Preparation

The present section describes how we employed
a domain-specific lexicon namely WME 2.0 and
prepared an annotated dataset for relation extrac-
tion system. Also, discussed the brat environment
to visualize the tagged concepts, categories and re-
lations of our medical corpora.

Evaluation Data: We initially acquired corpora
from SemEval-2015 Task-6 and MedicineNet re-
sources. Thereafter, the corpora have been con-
verted into medical contexts in the form of sin-
gle sentences according to the presence of medi-
cal concepts for our experiment. Table 2 shows
the distributions of medical concepts and contexts
from SemEval, MedicineNet as well as WME 2.0
resources.

We randomly collected 2000 medical contexts
from the acquired corpora and manually labeled

214

SemEval-2015 Task-6 MedicineNet WME 2.0
Medical concepts 9786 9834 10186
Contexts (medical + non-medical) 10985 9076 -
Medical contexts 6774 7042 -

Table 2: A statistical distribution of unique num-
ber of the medical concepts and contexts from var-
ious resources.
by a group of medical practitioners in the brat
environment. Table 3 shows the distributions of
manually labeled category-based relations. In or-
der to label the corpus, the medical practitioners
have used WME 2.0 lexicon, which assists in un-
derstanding medical concepts and their categories
based on their glosses and semantics.

Relation Manually labeled
All relation 2071
Dr-SyDi 52
Ha-SyDi 198
Di-Sy 312
Dr-Dr 15
Sy-Sy 132
Di-Di 282
MMT-SyDi 927
Ha-Ha 153

Table 3: A statistics of manually labeled various
relations

WME Lexicon: In healthcare, a lexicon from
the medical domain is demanding to identify the
conceptual information such as category or senti-
ment from the corpus (Cambria, 2016). To this
end, we borrow the knowledge from WordNet of
Medical Event (WME 2.0), a domain-specific lex-
icon (Mondal et al., 2016a, 2015).

However, the current version of WME namely
WME 2.0 was enhanced with more sentiment and
semantic features for 10186 number of medical
concepts (Mondal et al., 2017, 2016a). WME 2.0
was added with affinity score, gravity score, Simi-
lar Sentiment Words (SSW), and category feature
along with the existing features of WME 1.0, e.g.,
gloss (descriptive explanation), Parts-Of-Speech
(POS), polarity score, and sentiment.

The conventional WordNet 3, a preprocessed
medical dictionary, and SenticNet 4 were applied
to prepare our present resource for extracting se-
mantic relations of concepts. Affinity score indi-
cates what extend two concepts are close to each
other by measuring the number of common sen-
timent words (SSW) appeared for a pair of con-
cepts within the range of 0 to 1. On the other
hand, gravity score identifies sentiment-oriented

3https://wordnet.princeton.edu/
4http://sentic.net/

relevance between medical concepts and their var-
ious glosses (descriptive explanations) and ranges
from -1 to 1. While -1 suggests no relation and
1 indicates strong relations either positive or neg-
ative, which helps to identify a proper gloss for
concepts. Besides, the assigned categories such as
diseases, drugs, treatments, human anatomy, and
MMT assist in extracting the subjective informa-
tion of the concepts.

For example, WME 2.0 lexicon presents the
properties of a concept say amnesia as of category
(disease), POS (noun), gloss (”loss of memory
sometimes including the memory of personal iden-
tity due to brain injury, shock, fatigue, repression,
or illness or sometimes induced by anesthesia.”),
SSW (memory loss, blackout, fugue, stupor), po-
larity score (-0.375), affinity score (0.429), gravity
score (0.170), and sentiment (negative).

Brat Annotation: We have used an annotation
tool namely brat to manually label the relations be-
tween a pair of medical concepts within their con-
texts. The tool helps to easily label the contexts,
which generate an annotation (.ann) file for each
input text (.txt) file. The .ann file has labeled med-
ical concepts along with their IDs (Ti), categories
(Disease, Drugs etc.), textual spans and concepts
and relations with IDs, categories and arguments.
Thereafter, we have written a python script to con-
vert the manually tagged annotation file into the
format according to our proposed system output.
The script assists in evaluating the proposed ex-
tracted relations.

For example, the following medical context de-
notes an annotated output as

”T1 Disease 1 39 Giant cell interstitial pneumo-
nia (GIP)”

”T2 Disease 59 77 pulmonary fibrosis”
”R1 Di-Di Arg1:T1 Arg2:T2”.
”Giant cell interstitial pneumonia (GIP) disease

is a rare form of pulmonary fibrosis disease.”

4 Relationship Extraction

Biomedical texts are primarily rich with subjective
information such as problems and treatments and
they are represented as medical concepts, category
and their relations in case of ours. Recognition
of important relations between medical concepts
is a challenging task due to lack of involvement of
domain-experts. Thus, to overcome the challenge,
we have proposed a relation extraction system by
utilizing the categories of medical concepts. To

215

Figure 2: A flow diagram of different types of
relations in medical context.

develop the category-based relation extraction sys-
tem, we have considered the following hypothe-
sis and proposed methodology viz. rule-based and
feature-oriented approach.

4.1 Hypothesis:
In the present research, we have considered four
primary categories of medical concepts diseases,
drugs, human anatomy, and symptoms and a com-
bined category MMT that refers to unrecognized
categories of medical concepts. To identify the
relationship between these categories, we have
adopted eight types of relations after close ob-
servations done by experts. Figure 2 shows the
overall presentation i.e how we proposed eight re-
lations based on various concepts and their cat-
egories in a context. Finally, we have classified
these relations into two major groups as combined
and direct. The combined relations are Ha-SyDi,
Dr-SyDi, and MMT-SyDi and rest of the five rela-
tions are presented as direct relation as mentioned
in Table 1.

We have also observed that two of the categories
(e.g., Disease and Symptom) are very close to each
other in their context level appearances and there-
fore we merged them to make a single category
(e.g., SyDi) instead of making the individual pair
of relation with other categories.

4.2 Proposed Methodology:
Rule-based Approach In case of relation ex-
traction, rule-based approach adopts various lin-
guistic textual patterns between the pair of medi-
cal concepts. To identify these patterns, we have
collected the promising pairs of the medical cate-
gory that are semantically or subjectively related

each other as shown in Figure 2. The consecutive
appearance of concepts has not been taken into
account in case of identifying rules because such
concepts are ambiguous in nature and conflicting
in their medical senses.

These identified patterns converted to Static
Surface Patterns (SSP) using various regu-
lar expressions and are labeled by our pro-
posed relations. An example, the linguis-
tic textual pattern ”<Drug> used to combat
<Disease>” is converted to static surface pattern
as ”<Drug>(.*?)<Disease>” with Dr-SyDi rela-
tion label.

The linguistic patterns help to reduce the man-
ual effort and enhance the list of patterns with new
relations where SSP assists in designing an au-
tomated relationship extraction system. Table 4
presents the number of extracted SSPs for eight
relations with the specific example.

Therefore, the following algorithm has been ap-
plied to extract the category-based relations be-
tween the pair of medical concepts in a context.
The output of the proposed system is shown in
Figure 3.

Algorithm:
1. Identify the category of annotated medical

concepts in a context and present them as C =
{MC1,MC2,...,MCn}, where MCn is nth identi-
fied medical concept with category in a context.

2. Compare the Static Surface Patterns (SSP)
with the pair of medical concepts from C.

2.1. If SSP matches with the pair of con-
cepts in C, then assigned the corresponding rela-
tion.

2.2. Else look for the next pair of concepts
in C as mentioned in Step 2.

3. If not found any relation in C then label ”No
relation” and move to next context (C).

4. Else combine the assigned relations with la-
beled concepts for the context (C) and move to
next context (C).

Feature-oriented Approach Relation extrac-
tion is presented as a multi-label classification
problem due to the presence of various types of
semantic relations between medical concepts. To
address this problem, we have considered feature-
oriented machine learning approach over rule-
based approach. The concerned features are cate-
gory, intermediate word sequence, POS, and SSW
of the pair of medical concepts in a context for our
experiment.

216

Relation Patterns Example
Dr-SyDi 12 <Warfarin/Drug> is also used to reduce the risk of <clots/Symptom>
Ha-SyDi 14 <coronary artery/Human anatomy> by a <thrombus/Disease>
Di-Sy 24 <halitosis/Disease> , is an <unpleasant odor/Symptom>....
Dr-Dr 6 <oral lipid-lowering medicine/Drug> trade name <Zocor/Drug>
Sy-Sy 10 <Frozen shoulder/Symptom> , also known as <adhesive capsulitis/Symptom>
Di-Di 18 <Kaposi’s sarcoma/Disease> is a form of <skin cancer/Disease>
MMT-SyDi 27 <toxic products/MMT> , you can experience <life-threatening symptoms/Symptom>
Ha-Ha 6 <vagus nerve/Human anatomy> included , emerge from or enter the <skull/Human anatomy>

Table 4: A statistics and examples of relation patterns in the contexts.

Figure 3: Output of the extracted relation using rule-based approach.

To identify the mentioned features, we have also
employed WordNet and WME 2.0 lexicons. These
lexicons help to assign the category, POS, and
Similar Sentiment Words (SSW) for the medical
concepts. Besides, we have written a python script
to recognize the intermediate word sequence be-
tween the pair of the concepts.

For example, the following medical context
identifies the features say 1. annotated medi-
cal concepts (”degenerative brain disorder” and
”dementia”) 2. POS labels (noun and verb) 3. in-
termediate word sequence (”(.*) that leads to (.*)”)
4. categories of medical concepts (disease and dis-
ease), and 5. SSW (”Alzheimer’s disease, Hunt-
ington’s disease, and Parkinson’s disease” and
”mental illness, madness, and insanity”), respec-
tively.

”Degenerative brain disorder that leads to de-
mentia.”

Figure 4 illustrates the steps to extract the re-
lations between a pair of medical concepts us-
ing proposed feature-oriented approach along with
machine learning classifier. Besides, we have ex-
tracted these features from the evaluation dataset
and processed through the linear Support Vec-
tor Machine (SVM) classifier to predict the rela-
tions. The following section discusses the evalua-

Figure 4: A flow diagram of the feature-oriented
relationship extraction system.

tion process for both of the proposed approaches.

5 Evaluation

We have used the state-of-the-art evaluation met-
rics such as precision, recall, and F-Measure 5

to validate the proposed relation extraction ap-
proaches.

Rule-based Relation Extraction In order to re-
duce the ambiguity of the extracted relations,

5https://en.wikipedia.org/wiki/Precision and recall

217

we have employed the same annotated medical
concepts and their categories in both rule-based
as well as feature-oriented approaches. Table 5
presents the distribution of manual and system
tagged category-based relations and their related
precision, recall, and F-measure.

Relation Manually labeled Extracted/Correct/Incorrect Precision Recall F-Measure
All relations 2071 2681 / 1881 / 780 0.70 0.91 0.79
Dr-SyDi 52 102 / 46 / 56 0.45 0.88 0.59
Ha-SyDi 198 233 / 178 / 35 0.76 0.90 0.82
Di-Sy 312 386 / 282 / 104 0.73 0.90 0.81
Dr-Dr 15 22 / 13 / 9 0.59 0.87 0.70
Sy-Sy 132 193 / 115 / 78 0.60 0.87 0.71
Di-Di 282 341 / 254 / 87 0.74 0.90 0.81
MMT-SyDi 927 1227 / 871 / 356 0.71 0.94 0.81
Ha-Ha 153 177 / 122 / 55 0.69 0.80 0.74

Table 5: A statistics of various relation identi-
fication between the pair of medical concepts in
context using rule-based approach.

Feature-oriented Relationship Extraction Be-
sides, to validate the feature-oriented system, we
additionally prepared a test dataset along with our
built-in evaluation dataset. The test dataset con-
tains rest of 11816 medical contexts as referred in
Table 2.

Thereafter, the features have been extracted
from the evaluation dataset and processed through
linear Support Vector Machine (SVM) classifier
to learn the proposed relation extraction model.
Hence, the test dataset has been applied to the
learned model for predicting and validating the ex-
tracted relations. Table 6 summarizes the result as
precision, recall, and F-Measure.

Relation Precision Recall F-Measure
All relations 0.92 0.81 0.86
Dr-SyDi 0.90 0.72 0.80
Ha-SyDi 0.91 0.80 0.85
Di-Sy 0.90 0.79 0.84
Dr-Dr 0.88 0.76 0.82
Sy-Sy 0.89 0.78 0.83
Di-Di 0.91 0.80 0.85
MMT-SyDi 0.93 0.82 0.87
Ha-Ha 0.88 0.72 0.79

Table 6: A statistics of various relation identi-
fication between the pair of medical concepts in
context using feature-oriented approach.

Finally, we have observed that the feature-
oriented approach provides a better F-Measure
(0.86) over the rule-based approach (0.79) for ex-
tracting relations. So, we conclude that both ap-
proaches are important to extract the mentioned
eight relations from the unstructured corpus.

6 Conclusion and Future Scope

In this article, we have focused on extracting
eight types of category-based relations of medical
concepts from the context. The relation extrac-
tion system facilitates to design various domain-
specific applications. We have employed two
well-known approaches such as rule-based and
feature-oriented. Also, we have manually pre-
pared an evaluation dataset to design and validate
the relation extraction system. The rule-based ap-
proach helps to understand the semantic knowl-
edge where linguistic features assist in improving
the accuracy of the system. Finally, the evaluation
section shows the effectiveness of the proposed re-
lation extraction approaches by offering the av-
erage F-Measures of 0.79 and 0.86 for the rules
and features-oriented techniques, respectively in
healthcare. In future, we will try to introduce new
relations for the medical concepts to build a re-
lation database, which helps to design a medical
recommendation system.

References
Asma Ben Abacha and Pierre Zweigenbaum. 2011a.

Automatic extraction of semantic relations between
medical entities: a rule based approach. Journal of
biomedical semantics 2(5):1.

Asma Ben Abacha and Pierre Zweigenbaum. 2011b. A
hybrid approach for the extraction of semantic rela-
tions from medline abstracts. In International Con-
ference on Intelligent Text Processing and Computa-
tional Linguistics. Springer, pages 139–150.

Andrew Borthwick, John Sterling, Eugene Agichtein,
and Ralph Grishman. 1998. Exploiting diverse
knowledge sources via maximum entropy in named
entity recognition. In Proc. of the Sixth Workshop
on Very Large Corpora. volume 182.

Erik Cambria. 2016. Affective computing and senti-
ment analysis. IEEE Intelligent Systems 31(2):102–
107.

Ann-Marie Eklund. 2011. Relational annotation of sci-
entific medical corpora. In LOUHI 2011 Third Inter-
national Workshop on Health Document Text Mining
and Information Analysis. page 27.

Mehdi Embarek and Olivier Ferret. 2008. Learning
patterns for building resources about semantic rela-
tions in the medical domain. In LREC.

Kristofer Franzén, Gunnar Eriksson, Fredrik Olsson,
Lars Asker, Per Lidén, and Joakim Cöster. 2002.
Protein names and how to find them. International
journal of medical informatics 67(1):49–61.

218

Oana Frunza and Diana Inkpen. 2010. Extraction of
disease-treatment semantic relations from biomedi-
cal sentences. In Proceedings of the 2010 Workshop
on Biomedical Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 91–98.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics-
Volume 2. Association for Computational Linguis-
tics, pages 539–545.

Christopher SG Khoo, Syin Chan, and Yun Niu.
2000. Extracting causal knowledge from a medical
database using graphical patterns. In Proceedings of
the 38th Annual Meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 336–343.

Adam Kilgarriff and Christiane Fellbaum. 2000.
Wordnet: An electronic lexical database.

Chew-Hung Lee, Christopher Khoo, and Jin-Cheon
Na. 2004. Automatic identification of treatment
relations for medical ontology learning: An ex-
ploratory study. ADVANCES IN KNOWLEDGE OR-
GANIZATION 9:245–250.

Chew-Hung Lee, Jin-Cheon Na, and Christopher
Khoo. 2003. Ontology learning for medical digi-
tal libraries. In International Conference on Asian
Digital Libraries. Springer, pages 302–305.

Anupam Mondal, Erik Cambria, Dipankar Das, and
Sivaji Bandyopadhyay. 2017. Auto-categorization
of medical concepts and contexts. Research in Com-
puting Science .

Anupam Mondal, Iti Chaturvedi, Dipankar Das, Ra-
jiv Bajpai, and Sivaji Bandyopadhyay. 2015. Lex-
ical resource for medical events: A polarity based
approach. In 2015 IEEE International Conference
on Data Mining Workshop (ICDMW). IEEE, pages
1302–1309.

Anupam Mondal, Dipankar Das, Erik Cambria, and
Sivaji Bandyopadhyay. 2016a. Wme: Sense, polar-
ity and affinity based concept resource for medical
events. Proceedings of the Eighth Global WordNet
Conference pages 242–246.

Anupam Mondal, Ranjan Satapathy, Dipankar Das, and
Sivaji Bandyopadhyay. 2016b. A hybrid approach
based sentiment extraction from medical context. In
4th Workshop on Sentiment Analysis where AI meets
Psychology (SAAIP 2016), IJCAI 2016 Workshop,
July 10, Hilton, New York City, USA.

Bryan Rink, Sanda Harabagiu, and Kirk Roberts. 2011.
Automatic extraction of relations between medical
concepts in clinical texts. Journal of the American
Medical Informatics Association 18(5):594–600.

Barbara Rosario and Marti A Hearst. 2005. Multi-way
relation classification: application to protein-protein
interactions. In Proceedings of the conference on

Human Language Technology and Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 732–739.

Barry Smith and Christiane Fellbaum. 2004. Medi-
cal wordnet: a new methodology for the construc-
tion and validation of information resources for con-
sumer health. In Proceedings of the 20th interna-
tional conference on Computational Linguistics. As-
sociation for Computational Linguistics, page 371.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation 18(5):552–556.

Lin Yao, Cheng-Jie Sun, Xiao-Long Wang, and Xuan
Wang. 2010. Relationship extraction from biomedi-
cal literature using maximum entropy based on rich
features. In 2010 International Conference on Ma-
chine Learning and Cybernetics. IEEE, volume 6,
pages 3358–3361.

Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and
Ji-Rong Wen. 2009. Statsnowball: a statistical ap-
proach to extracting entity relationships. In Pro-
ceedings of the 18th international conference on
World wide web. ACM, pages 101–110.

219

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 220–226

A Sinhala Word Joiner

Rajith Priyanga Surangika Ranatunga Gihan Dias

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

rpriyanga@yahoo.com, surangika@cse.mrt.ac.lk, gihan@uom.lk

Abstract

Sinhala is an agglutinative language

where many words are formed by joining

several morphemes. Word joining is a

basic operation in Sinhala morphology,

and is based on sandhi rules.

The Sinhala word joiner is a software

component which implements sandhi

rules to synthesise a word from two or

more morphemes. We studied Sinhala

word join rules based on grammar and

usage and implemented a library and a

standalone application to synthesise

Sinhala words. In addition to the joined

word, it also outputs the rule used for

joining. The tool uses a combination of a

corpus and hand-coded rules to improve

accuracy.

Keywords: Sinhala word joiner,

Morphophonemic tools, corpus based

scoring algorithm, sandhi rules

1 Introduction

Sinhala belongs to the Indo Aryan sub branch of

the Indo-European language family. It is a

descendent of the Sanskrit language, but was

heavily influenced by the Pāli language from the

second century B.C. as a result of the

introduction of Buddhism to Sri Lanka. Other

than from Pāli, Sinhala was influenced mainly by

Tamil, Arabic, Portuguese, Dutch and English

languages. Sinhala is written in its own script

which is a descendent of the Brahmi script.

Even though the Sinhala language and its script

have many similarities with their ancestors from

India, they have evolved uniquely over two

millennia.

There have been some attempts to implement

morphological synthesizers and analysers for

Sinhala verbs and nouns (Hettige and

Karunananda, 2011). The basic operation of

Sinhala word formation is joining a word with

affixes or other words. There is currently no

software tool to implement this operation, or the

disjoin operation for morphological analysis.

The objective of this work was to implement a

word joining tool for the Sinhala language tools

stack.

The functionality of the target tool is summarised

by a function ƒ that has inputs and outputs as

follows:

(combined word, rule) = ƒ(left, right)

Where

1. left and right are valid Sinhala words or

morphemes.

2. combined word is the valid joined form

of left and right. null is also a valid

value.

3. rule is the name of the join rule used for

the joining when combined is not null.

The rest of this paper is organized as follows. We

provide a brief introduction to the Sinhala

morphology and join rules in section 2. In

section 3, we briefly explain the related work

done on the areas related to Sinhala morphology

and word joining. In sections 4 and 5 we present

the challenges faced and our methodology of

solving this problem. Finally, in sections 6 and 7,

we present our results and conclusions.

2 Sinhala Morphology

Like Sanskrit, Sinhala is rich in inflectional and

derivational morphology. In inflection,

grammatical forms of a word are formed by

applying morphological operations on the lemma

(base word). (Karunarathilaka, 1995)

e.g. : minis + u → minissu (මිනිස් + උ → මිනිස්ු)

220

minis is the lemma of the noun man. u is the

suffix to generate the plural subject form of the

noun.

In derivational morphology, words of different

word classes or with different meanings are

formed by applying morphological operations on

the lemma.

e.g.: duk + pat → duppat (දුක් + පත් → දුප්පත්)

duk means suffering. pat means become. The

combined word duppat is an adjective that means

poor.

Based on the two-level morphology concept,

these morphological operations can be

represented in two stages. (Kimmo, 1984)

1. Lexical Representation

2. Surface Representation

e.g.:

1. Lexical representation of the plural subject

form of the noun lemma minis is (minis + u)

(මිනිස් + උ)

2. Surface representation of (minis + u) is

minissu (මිනිස්ු)

For morphological synthesis, both lexical and

surface representation rules should be applied.

Surface representation rules are generally based

on phonology and may transform both the left-

and right-hand morphemes. This transformation

is called morphophonemics.

In Sinhala, the most common types of word

joining are:

prefix + word → word

word (or lemma) + suffix → word

word + word → word

Where + is the join operator.

Most inflectional morphology operations are of

the “lemma + suffix → word” form.

e.g.: minis + u → minissu (මිනිස් + උ → මිනිස්ු)

Many derivational morphology operations are of

the “prefix + word → word” and “word + word

→ word” form.

e.g.: duk + pat → duppat (දුක් + පත් → දුප්පත්)

Meaning is as explained above.

pol + attạ → pollattạ (පපොල් + අත්ත →

පපොල්ලත්ත)

pol means coconut. atta means branch. pollatta

means the branch of a coconut tree.

In Sinhala, this set of morphophonemic rules are

called sandhi (join rules). Similar to the

Ashṭādhyāyī of Pāṇini in Sanskrit, The Sinhala

grammar book Sidat Saňgarā written in 13th

century A.D. by Vēdēha Swāmi describes some

of the grammatical aspects of the Sinhala

language.

There are nine join rules in Sinhala language

according to Sidat Saňgarā.

Following is an example of how the Sidat

Saňgarā has explained join rules. This join rule

is named Pūrwạ Swạrạ Lōpạ.

“pera sarạ lopā parạ sarạ gatạtạ pæminạ”

(පපර සර පලොපො පර සර ගතට පැමිණ)

Meaning: Vowel part of the last letter of the left

word is replaced by the first vowel in the second

word.

According to the above definition, there are two

conditions for this rule to be valid.

1. The last letter of the left word must be a

combined letter that has a consonant and

a vowel part

2. The first letter of the right word must be

a vowel.

The other join rules are similarly defined.

2.1 Sinhala Word Join Rules

We represent the join rules described in Sidat

Saňgarā in an easily understandable format as

follows.

Where

● Ci = consonant (e.g. k - ක්)

● Vi = vowels (e.g. a - අ)

● Individual letters at the word boundary

are written in square brackets. (e.g. [C1])

● Combined letters that have a consonant

and a vowel in it is written in [Ci|Vi]

form.

e.g.: ka = [k | a] (ක = ක් + අ)
● L and R are the remaining parts of the

joining morphemes.

221

1. Pūrwạ Swạrạ Lōpạ

L[C1|V1] + [V2]R → L[C1|V2]R

2. Parạ Swạrạ Lōpạ

L[C1|V1] + [V2]R → L[C1|V1]R

3. Swạrạ

L[C1] + [V1]R → L[C1|V1]R

4. Swạrādeshạ

L[C1|a] + [i]R → L[C1|e]R

L[C1|a] + [u]R → L[C1|o]R

L[C1|a] + [u]R → L[C1|ō]R

5. Gatrādeshạ

L[C1|V1] + [C2|V2]R → L[C1|V1][C3|V2]R

Where C3 is a member of {y, v, h, k, t, p, n,

m}

6. Pūrwạ Rūpạ

L[C1] + [C2|V2]R → L[C1][C1|V2]R

7. Gatrākshạrạ Lōpạ

L[n] + [C2|V2]R → L[ňg|V2]R

L[n] + [C2|V2]R → L[ňb|V2]R

8. Āgạmạ

L[C1] + R → L[C1|u]R

L[C1] + R → L[C1|i]R

L[C1|V1] + [V2]R → L[C1|V1][C3|V2]R

Where C3 = {y, v, r}

9. Dvitvạ Rūpạ

L[C1|V1] + [V2]R → L[C1][C1|V2]R

In addition to the above 9 join rules, we

identified a few more join rules in current

Sinhala. Some of them are directly taken from

Sanskrit and are used in loanwords. The

following join rule is an example of a rule that is

not in Sidat Saňgarā, but currently in use.

(Karunathilaka, 1995)

11. Parạ Rūpạ

L[C1] + [C2|V2]R → L[C2][C2|V2]R

3 Previous Work

In implementing an English to Sinhala machine

translator, Hettige and Karunananda (2011) have

implemented a morphological synthesizer. They

generate all the forms of all noun classes

considering the changes to the letters at the word

boundaries in the transformation. They have not

used generic joining rules for joining Sinhala

words and morphemes but have defined a large

number of specific finite state automata to handle

multiple letter combination at the word

boundaries. However, they do not cover all

combinations.

To obtain the indistinct singular subject form of

the noun lemma miti (short person) and balu

(dog) they implement 2 different automata,

which result in mittā and ballā respectively.

miti + ā → mittā (මිටි + ආ → මිට්ටො)
Remove ti (ටි) and append ttā (ට්ටො)

balu + ā → ballā (බලු + ආ → බල්ලො)

Remove lu (ලු) and append llā (ල්ලො)

They have implemented 85 FSA for Sinhala

noun formations. However, both of the above

transformations use the common join rule called

Dvitvạ Rūpạ, and may be defined as a single

FSA.

Also in their method, the FSA must be input to

the noun form synthesizer. For the same letter

combinations at word boundaries, different finite

state automata must be used for different word

morpheme combinations. It is not possible to

locate the correct FSA without a comprehensive

knowledge of the Sinhala language.

There are no other significant work done in the

area of Sinhala morphological synthesis or word

joining.

Word joiners have been implemented for other

Indic languages such as Hindi and Sanskrit. (Jha

et al., 2009; Hyman, 2009; Gupta and Goyal,

2017; Kumar et al., 2010) Some of them use the

join rules mentioned in the Ashṭādhyāyī of

Pāṇini. (Jha et al., 2009; Hyman, 2009; Gupta

and Goyal, 2017)

Most of them have used finite state transducers

to do the morphophonemic operations to obtain

the surface form. Most of the morphological tool

222

implementations for European languages also

use finite state transducers to obtain the surface

representation for the lexical representation

(Lauri et al., 1992). Finite state transducers have

been widely used in solving this morphology

problem in different language families.

4 Challenges

In Sinhala, for a given pair of morphemes, there

may be multiple matching join rules based on the

boundary conditions. Also, even when a single

join rule is applied, there can be multiple

possible outputs, all of which are not necessarily

valid for a given pair.

Accordingly, we have identified the following

scenarios for a pair of or morphemes.

1. There is only one matching join rule for the

pair. The combined form/forms generated by

the rule are

a. valid

b. partially valid

c. invalid

2. There are multiple matching join rules for

the pair and they yield the same combined

form. The combined form is

a. valid

b. invalid

3. There are multiple matching join rules and

they yield the different combined forms. The

combined forms are

a. valid

b. partially valid

c. invalid

In order to detect the correct join rule and the

correct join forms accurately, two options were

considered.

1. Using another set of rules, which can be

applied on top of the standard join rules to

eliminate false positives. e.g.: When joining

the naLu (නළු) and a (ආ), the Dvitvạ Rūpạ

join rule is also selected. It generates the

form nalla. (නළ්ළො). But there is an

elimination rule that says the letter L (ළ) is

not duplicated. Therefore, the form nalla is

eliminated.

2. Check against the set of all valid Sinhala

words, so that you can eliminate invalid

Sinhala words.

An attempt was made to collect the language

rules that can be used to detect the correct join

operation for a given pair. But it was found that

the documented secondary rule set is not

complete, so that in some scenarios, access to the

Sinhala vocabulary is needed to check the

validity of the combined forms.

Also, an attempt was made to learn these extra

rules from a sample data set with tuples of left,

right and combined forms. Sinhala being a low

resource language, it is difficult to collect an

accurately enriched data set large enough to

perform the learning to learn the complete rule

set.

Having access to a database of all valid Sinhala

words is also not practical. Also there are some

valid words generated as combined forms by the

join rules, that are not valid combined forms of

the given 2 words or morphemes.

Hence a combined solution is proposed. It

involves finite state transducers for each join rule

and non-tagged corpus of Sinhala words.

5 Methodology

In this research, we implemented a generic

Sinhala word joining tool based on the 9 base

rules and 4 additional join rules that are currently

in use.

Figure 1 shows the bird’s eye view of the word

joining process.

Due to the nature of the Sinhala join rules and

exceptions in the Sinhala language, finite state

Figure 1: Word joining process

223

transducers in isolation cannot solve the problem

accurately.

For a given left right word/morpheme pair, the

joiner applies all the applicable join rules. Some

finite state transducers arrive at end states and

yield combined forms. All the pairs of combined

forms and the join rules used to generate them

are returned as intermediate results. There can be

both false positives and true positives among

them.

A scoring algorithm is introduced to evaluate all

the combined forms generated by the join rules.

The purpose of the scoring algorithm is to assign

a score to each combined form generated by

finite state transducers.

The evaluator then selects the results with a score

larger than a threshold. The best value for the

threshold with respect to a given scoring

algorithm is obtained by regressing the joining

operation with different threshold values for a

sample data set with a manually verified results

set.

5.1 Scoring Algorithm

The following parameters are passed to the

scoring algorithm.

1. Left most word or morpheme

2. Right most word or morpheme

3. Combined form of the left and right.

4. Name of the join rule used to generate

the combined form

The algorithm returns an integer value as the

score for the given quadruple.

Our software application uses a corpus and some

hand coded elimination rules to derive the score.

It first checks whether the combined form is an

invalid joined form of the left and right words or

morphemes according to the elimination rules. If

it is invalid, the score is set as -1.

If the combined form is not invalid, the word is

looked up in the corpus. The occurrence

frequency of the word is set as the score. It is a

non-negative number.

For the current corpus, the threshold is set as 2.

This value has will depend on the size and

quality of the corpus. If this set to 0, the number

of false positives increases due to the impurities

in the corpus. If this is set to a larger value, the

number of false negatives increases since the

evaluator tends to reject valid combined forms

that have a low frequency of occurrence in the

corpus.

New scoring algorithms may be plugged-in to

the application to obtain better results.

6 Results

The precision and recall were measured for the

joining results of the following data sets.

6.1 Dataset 1

8 different grammatical forms of 50 Sinhala

nouns were generated by joining their lemma and

relevant suffixes. 412 noun forms are expected

for the 400 word-morpheme pairs.

6.2 Dataset 2

50 pairs of complete words are joined to generate

combined words.

6.3 Precision and Recall

True positives are the correct combined forms

for a given pair generated by the application as

the end results.

False positives are the incorrect combined forms

for a given pair generated by the application as

the end results.

False negatives are the expected combined forms

for a given pair, but not given by the application

as end results. Some of them were eliminated by

the scoring algorithm.

 True

positives

False

positives

False

negatives

Dataset 1 401 22 9

Dataset 2 46 0 4

Total 447 22 13

Precision = True positives / (True positives +

False positives)

= 447/(447+22)

= 0.9531

224

Recall = True positives / (True positives + False

negatives)

= 447/(447+13)

= 0.9717

7 Conclusion

7.1 False Positives

The analysis showed that the main reason for the

false positives is the lack of elimination rules.

E.g.

The input : ali + ā (අලි + ආ)

ali is the lemma of the noun elephant

ā is the suffix to form the singular subject form

Expected output : (aliyā - අලියො, āgamạ)

Actual outputs : (aliyā - අලියො, āgamạ), (allā

අල්ලො, dwithwạ rūpạ)

aliyā means elephant. allā means god Allah.

The word allā, though it occurs frequently in the

corpus, is not a valid combined form of the

lemma ali and the suffix ā.

Some false positives are due to the impurities in

the corpus.

We may add an exceptions database and

introduce more elimination rules to the scoring

algorithm to reduce the false positives.

7.2 False Negatives

The analysis showed that the main reason for the

false negatives is the incompleteness of the

corpus. The occurrence frequencies of the valid

combined forms that are not available in the

corpus are set as 0. Therefore, they are

eliminated by the evaluator.

It is not possible to create a corpus with all valid

Sinhala words. Therefore, we may use statistical

or machine learning methods to learn further

scoring rules.

7.3 Performance

Since our corpus contains 1.2 million entries

(including impurities) the database lookup takes

a considerable time on test machines. Therefore,

an average join operation for a given word pair

takes around 20 milliseconds on a 2.5 GHz

processor.

7.4 Future Enhancements

A possible future enhancement would be to

generate a large sample dataset of tuples of left

and right words or morphemes, combined forms

and rule name using the current word joiner tool

version, get them verified using human input and

use that dataset to mine the elimination rules

using statistical methods.

The elimination rules mined by this exercise may

also be used to implement a scoring mechanism

for words that are not available in the corpus.

References

[Department of Census 2012] Department of Census

and Statistics Sri Lanka. (2012). Census of Population

and Housing. Retrieved from

http://www.statistics.gov.lk/PopHouSat/CPH2011/Pa

ges/Activities/Reports/FinalReport/Population/FinalP

opulation.pdf

[Geiger 1938] Wilhelm Geiger (1938). A

Grammar of the Sinhalese Language. Ceylon Branch

of the Royal Asiatic Society (Colombo). Colombo.

[Gupta and Goyal 2017] Priyanka Gupta, and

Vishal Goyal (2017), Implementation of Rule Based

Algorithm for Sandhi-Vicheda Of Compound Hindi

Words. International Journal of Computer Science

Issues, vol. 14, no. 2, pp. 45–49

[Hettige and Karunananda, 2011] B. Hettige and A. S.

Karunananda. (2011), Computational model of

grammar for English to Sinhala Machine Translation.

2011 International Conference on Advances in ICT

for Emerging Regions (ICTer)

[Hyman, 2009] Malcolm D. Hyman. (2009). From

Pāṇinian Sandhi to Finite State Calculus. Lecture

Notes in Computer Science - Sanskrit Computational

Linguistics: 253–265

[Ido et al, 1997] Ido Dagan, Lillian Lee, and Fernando

Pereira. (1997). Similarity-based methods for word

sense disambiguation. Proceedings of the 35th annual

meeting on Association for Computational Linguistics

[Jha et al, 2009] Jha G.N. et al. (2009). Inflectional

Morphology Analyzer for Sanskrit. In: Huet G., Kul-

karni A., Scharf P. (eds) Sanskrit Computational

Linguistics. Lecture Notes in Computer Science, vol

5402. Springer, Berlin, Heidelberg

[Karunarathilaka, 1995] W.S.Karunathilaka. (1995).

Sinhala Bhasha Vyakaranaya, M.D. Gunasena,

Colombo, Sri Lanka

225

[Kimmo, 1984] Kimmo Koskenniemi. (1984) A

general computational model for word-form

recognition and production. Proceedings of the 22nd

annual meeting on Association for Computational

Linguistics

[Kumarathunga, 2000] Munidasa Kumarathunga

(2000). Vyakarana Vivaranaya. S. Godage. Colombo,

Sri Lanka

[Kumar et al, 2010] Anil Kumar, Vipul Mittal, and

Amba Kulkarni (2010). Sanskrit Compound

Processor. Lecture Notes in Computer Science

Sanskrit Computational Linguistics: 57–69

[Lauri et al, 1992] Lauri Karttunen, Ronald M.

Kaplan, and Annie Zaenen. (1992). Two-level

morphology with composition. Proceedings of the

14th conference on Computational linguistics

[Murali et al, 2014] N. Murali, R.j. Ramasreee, and K.

V. R. K. Acharyulu. (2014). Kridanta Analysis for

Sanskrit. International Journal on Natural Language

Computing, 3(3):33–49

[Porter, 1980] M.F. Porter (1980). An algorithm for

suffix stripping, Program, Vol. 14 Issue: 3, pp.130-

137

[Sharma et al, 2002] Utpal Sharma, Jugal Kalita, and

Rajib Das (2002). Unsupervised learning of

morphology for building lexicon for a highly

inflectional language. Proceedings of the ACL-02

workshop on Morphological and phonological

learning

226

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 227–235

Supervised Methods for Ranking Relations in Web Search

Sumit Asthana
Dept. of Computer Sc. and Engg.

IIT Patna, Patna
asthana.sumit23@gmail.com

Asif Ekbal
Dept. of Computer Sc. and Engg.

IIT Patna, Patna
asif@iitp.ac.in

Abstract

In this paper we propose an efficient tech-
nique for ranking triples of knowledge
base using information of full text. We
devise supervised machine learning algo-
rithms to compute the relevance scores
for item-property pairs where an item can
have more than one value.Such a score
measures the degree to which an entity
belongs to a type, and this plays an im-
portant role in ranking the search results.
The problem is, in itself, new and not ex-
plored so much in the literature, possibly
because of the heterogeneous behaviors of
both semantic knowledge base and full-
text articles. The classifiers exploit statisti-
cal features computed from the Wikipedia
articles and the semantic information ob-
tained from the word embedding concepts.
We develop models based on traditional
supervised models like Suport Vector Ma-
chine (SVM) and Random Forest (RF);
and then using deep Convolution Neu-
ral Network (CNN). We perform experi-
ments as provided by WSDM cup 2017,
which provides about 1k human judg-
ments of person-profession pairs. Evalu-
ation shows that machine learning based
approaches produce encouraging perfor-
mance with the highest accuracy of 71%.
The contributions of the current work are
two-fold, viz. we focus on a problem that
has not been explored much, and show the
usage of powerful word-embedding fea-
tures that produce promising results.

1 Introduction

Most of the prior works in information retrieval
(IR) focuses on retrieving information either using

semantic knowledge base or text. In the present
day, Information Retrieval (IR) often involves both
knowledge base as well as full text search. One
cannot succeed in retrieving semantic information
with the other.Knowledge base is good at return-
ing precise information, whereas full-text has the
benefit of a wide information coverage, for exam-
ple, Wikipedia articles. Therefore, it is impera-
tive that search uses information from both of the
above and tries to find a best approximation.

In our current work we discuss the problem
to rank, not entities from a full text search
but triples from knowledge bases with the same
subject and predicate properties. Let us con-
sider all the professions of a particular person,
for example of Arnold Schwarzenegger: Ac-
tor, Athlete, Bodybuilder, Businessperson, En-
trepreneur, Film Producer, Investor, Politician,
Television Director, Writer. All of them fol-
low: ”Arnold Schwarzenegger—profession—
ProfessionName”, but some of these are more
relevant and prominent whereas others are less.
Hence it would be good to come up with a met-
ric to segregate the most-relevant ones’ from the
less-relevant ones’. The concept of relevance in it-
self is ambiguous. So here we take the basis as the
amount of information in the Wikipedia article of
the entity.

This type of relevance plays an important role
in improving search engines as well as knowledge
bases upon which several question-answering sys-
tems are being built. For example, all three tasks
from the TREC 2011 Entity Track Balog et al.
(2011) ask for the lists of entities of a particu-
lar type. It is to be noted that ranking of triples
using both semantic knowledge base and fulltext
articles is not explored at the required level. In
order to solve this problem we at first propose
models based on supervised machine learning al-
gorithms, namely Support Vector Machine (SVM)

227

and Random Forest (RF). Therafter, we develop
model based on deep Convolutional Neural Net-
work (CNN).

1.1 Related Works

As already mentioned there have not been required
number of attempts for ranking triples. The task
has been taken up in Bast et al. (2015) with an
unsupervised approach. In Cedeño and Candan
(2011), authors have proposed an extension to Re-
source Description Frameowork (RDF) and they
called it as Ranked RDF. A ranking model is pro-
posed in Elbassuoni et al. (2009) for SPARQL
queries with possible text extensions based on lan-
guage models. The technique proposed in Di-
vidino et al. (2012) discusses how to combine sev-
eral kinds of scores associated with triples into
a meaningful ranking. In all these frameworks,
scores that are similar to our triple scores are as-
sumed to be given.

We start with the approach given in Bast et
al. (2015) and come up with new additional fea-
tures and methods over the existing one. The
key contributions of our current work are as fol-
lows: (i). we propose supervised machine learn-
ing models for triple ranking that exploits both se-
mantic knowledge base and full text information.
This is relatively a new direction of research; and
(ii). utilizing word embedding information ob-
tained from the Wikipedia knowledge along with
the statistical features. Evaluation of the mod-
els on WSDM datasets1show encouraging perfor-
mance. (iii) Through the on-going experiments
with deep learning based approaches we show that
deep CNN can yield promising results for this type
of problem.

2 Problem Description and Dataset

The problem that we tackle is related to ranking
the relevance of person-profession pairs based on
the information present in Wikipedia. This is an
example of a non-functional relation between an
entity and an abstract group. We have a set of per-
son names and their associated professions from
FreebaseBollacker et al. (2008). The goal is to
predict a score for each person-profession relation
between 0-7, with 7 being the most relevant. A
typical set of training examples is:
Wolfgang Amadeus Mozart Composer 7
Wolfgang Amadeus Mozart Pianist 5
Wolfgang Amadeus Mozart Violinist 2

Table 1: Dataset description
Filename Description
professions the 200 different professions

from professions.kb
professions.kb all professions for a set of

343,329 persons
profession.train relevance scores for 515 tuples

(pertaining to 134 persons) from
profession.kb

persons 385,426 different person names
from the two .kb files and their
Freebase ids

wiki-sentences2 33,159,353 sentences from
Wikipedia with annotations of
these 385,426 persons

profession.test relevance scores for 513 tuples
(pertaining to 134 persons) from
profession.kb

We use the dataset of WSDM cup-2017 triple1

scoring task, which provides a training and test set
comprising of 1,225 person-profession pairs. De-
tails are shown in Table 1. The labels had been ob-
tained via crowd-sourcing wherein 7 independent
judges rated each profession for a person as rele-
vant or non-relevant. The scores of these 7 judges
were then added to form the composite score de-
scribed above.

The training sets (the .train files provided
above) contain only tuples from the respective
.kb files. The person names are exactly the
names used by the English Wikipedia. That
is, http://en.wikipedia.org/wiki/PersonName takes
you to the respective Wikipedia page. For each
of the names in persons, there are sentences in
wiki-sentences (68,662 sentences for the most
frequently mentioned person, 3 sentences for the
least frequently mentioned person).

3 Machine Learning based Approach

In this section we describe our proposed approach
which starts with defining the problem and then
the specific components on word vector genera-
tion, feature extraction, query expansion etc.

3.1 Word Vectors
Word embedding (also known as distributed word
representations) persuade a real-valued latent se-
mantic or syntactic vector for each word from a

1http://www.wsdm-cup-2017.org/triple-scoring.html

228

large unlabeled corpus by using continuous space
language models. Better word representation can
be obtained if we have a large amount of training
data as the obtained real-valued vectors of words
become more representative. We use the pop-
ular word2vec3 tool proposed by Mikolov et al.
Mikolov et al. (2013a; Mikolov et al. (2013b) to
extract the vector representations of words. Ow-
ing to its simpler architecture which reduces the
computational complexity, this technique can be
used for large corpus. We train Word2Vec tool
on the ”wiki-sentences” corpus. The corpus was
first preprocessed by removing all numerals, spe-
cial symbols, and converting to lowercase. The
Word2Vec tool was then trained with feature size
of 400, window size of 8, Continuous Bag-of-Word
(BoW) model and min count of 15.

For each profession and person, we generate the
word vectors and concatenate to the respective fea-
ture vectors of the instances.

3.2 Query Expansion

We treat every given profession word as a topic
and apply the query expansion techniques Bast
et al. (2015) to expand the profession to a set
of 10 most relevant words related to the pro-
fession. For example, the profession Architect
when expanded yields the following set: archi-
tect,design,building,designed,architectural, build-
ings,church,built,house.

3.2.1 Logistic Regression
We learn a Logistic regression (LR) classifier for
each profession. The positive instances of the clas-
sifier denote the Wikipedia articles of persons who
only had that profession as mentions and negative
samples correspond to the persons who never had
that profession as mentions. We obtain this infor-
mation from Freebase. The LR classifier is trained
with the term frequency matrices of the Wikipedia
articles of person.We trained one LR classifier per
profession giving us a total of 200 LR classifiers,
one for each profession. Each such classifier was
trained using positive and negative instances cre-
ated from the Wikipedia articles. The positive in-
stance articles would be articles of people who
only had that profession as mentions. The nega-
tive articles are articles of people who did not have
that profession mention at all. Profession men-
tion for both positive and negative instances came

3https://code.google.com/p/word2vec/

from the persons file described above which has
all possible valid person-profession pairs for the
people in the dataset. Thus, the LR classifier for
a profession was trained to learn the distinction
between a set of articles segregated on the basis
of presence/absence of that profession. As a re-
sult, the entity of interest out of this training would
be the weights the LR classifiers assigned to each
word(features).

Looking at the top scoring word (features), it
was clear that they were words somewhat distin-
guishing the positive and negative instances. The
LR parameters were tuned using grid search. We
only use the classifier if it has an accuracy of more
than equal to 80%. We provide link to our query
expansion results that are present on github4.

For other cases, where the LR classifier failed to
segregate instances with sufficient accuracy on ac-
count of lack of enough data, the method described
below was resorted to.

3.2.2 Using word vectors:
Out of 200 professions, about 40 of them (e.g.
entertainer) do not have sufficient training data
which could lead to a decent accuracy. For such
instances, firstly word embedding vectors are cre-
ated and then top 10 most similar words are re-
trieved based on cosine similarities. The word
embeddings were trained as described above on
the wiki-sentences using the gensim toolkit5. We
use the most similar function provided by the
word2vec model which takes a word and returns
the vectors(and associated words) closest to the
given word in cosine similarity.

3.3 Features

After query expansion, we extract the following
features for each Person-Profession-Rank triple.
Features are extracted on the Wikipedia articles of
the person. Refer to 3.3 for a graphical overview.

1. Word count on full text(wcFull) - This feature
denotes the count of indicators (most simi-
lar words to a profession) and all profession
words are present on Wikipedia article of a
person.

2. Word count in opening text(wcOpen) -This
feature corresponds to the count of indicators

4https://github.com/codez266/turnip/blob/master/indicators-
pro

5https://radimrehurek.com/gensim/models/word2vec.html

229

Table 2: Scores for methods without word vectors(accuracy represents exact matches)
Method Accuracy(δ=0) Average Score Difference Kendall’s Tau
Counting(Baseline) 0.68 1.92 0.42
SVM 0.69 1.86 0.37
Random Forest 0.71 1.80 0.34

Table 3: Scores for methods(accuracy represents exact matches)
Method Accuracy(δ=0) Average Score Difference Kendall’s Tau
Counting(Baseline) 0.69 1.90 0.39
SVM 0.70 1.86 0.35
Random Forest 0.71 1.78 0.33

Figure 1: Features on Wikipedia article

and all profession words present in the intro-
duction text of Wikipedia article of person.

3. Word count in Category(catCount) -This in-
dicates the count of all profession words in
the category section of Wikipedia article.

4. Binary presence in full text(catBin) - This de-
notes the presence or absence of profession
words in the category section of an article.

5. Presence in opening text(binary)(bOpen) -
This feature denotes the presence or absence
of all profession words in opening text of
Wikipedia article of person.

6. (wVec) - This feature is defined based on the
word embedding vectors as defined earlier. It
is obtained by concatenating the word vectors
of a person name and profession name. E.g.
for
Wolfgang Amadeus Mozart Composer
7 we concatenate vectors of ”Wolfgang
Amadeus Mozart” and ”Composer” to
form an 800 dimension vector and add it to
the existing vector of other features as de-
scribed in this section.

Finally, we input a feature vector of dimension 805
to the classifiers.

3.4 Justification for using the additional
word vectors as features

As word2vec(Mikolov et al., 2013b) mentions
learning information about various features of
words with respect to their context, this informa-
tion in encoded in the dimensions of the vector.
We intend to use this dimensional information as
an input to the classifier so check if the contex-
tual information contains some signal to distin-
guish professions or not.

3.5 Classifiers
We develop models using three classifiers. We use
the scikit-learn library for implementation of these
classification models. The grid-search6 module
was used to optimize the above set of parameters
and get the best performing set.

1. Scores based on just the normalized raw
counts of words for professions associated
with a person. This method formed the base-
line and as such did not use any classifier.
The scoring was done based on normalizing
raw counts across person-profession pairs for
the same person.

2. SVM classifier which is developed with the
above set of features(Sec 3.3).

3. Random Forest classifier developed with the
above set of features(Sec 3.3).

For the last two cases, the instances with score 0-3
are mapped to label 0 and instances with score 4-7
are mapped to 1. During testing, binary output of

6http://scikit-learn.org

230

the classifier is projected in a similar manner to get
the final scores. The label prediction 0 is mapped
to 0-3 using the normalized raw counts as per the
first approach. The label prediction 1 is mapped
to 4-7 using the same approach. An example of
using normalized raw counts to generate scores:
For a person X, consider the professions with raw
counts of associated words:

• Actor - 20

• Director - 10

• screenwriter - 7

As per the information, actor would get a rating of
6-7, director would be scored as 3-4 and screen-
writer roughly 2-3.

The reason for adopting this hybrid approach
was that final rankings had to be from 0-7 which
reflected the degree of belongingness of profes-
sion to the person. However, this is a very fine-
grained scoring for a classifier and a ranking of
2/3 or 4/5 isn’t much different. If we had used
seven different labels, the classifier would have
tried to draw a fine decision boundary across all
seven classes, which isn’t feasible. Therefore, we
thought it best to use a classifier to segregate be-
tween relevant and non-relevant, and then adjust in
a post-processing normalization step to generate
scores with the dataset requirements(i.e between
0-7). This also has the benefit of being close to
how the users rated the person-profession pairs.
(Bast et al., 2015) mentions that each user chose
between relevant and non-relevant when presented
with the person-profession pair during the training
step.

We now move on to provide details about the
classification.

1. Counting Approach: Baseline: The base-
line model that we define is based on count-
ing profession word and its indicators in the
article of the person whom we have to rate.
Only profession word is not always indica-
tive of the actual person-profession relation.
For example, let us consider, ”Jolie made her
screen debut as a child alongside her father”.
Here, ”screen” or ”debut” somewhat con-
vey an acting profession. Hence, this obser-
vation necessitates the need for finding more
relevant words (i.e. indicator words) related
to a profession, which we also include in
the counting alongwith the main profession

Figure 2: Pipeline for Classification

word. This is the simplest approach which
involves counting the profession and its in-
dicator words and normalizing them linearly,
with the greatest of them achieving the score
7 and accordingly.

2. SVM based Approach: With a combination
of the features as described above, SVMs
(Joachims, 2002) are trained to learn the rel-
evance. Grid search is used to the tune
given parameters:(Best - Kernel: rbf, C: 1,
Gamma: 1)

• Kernel: rbf, linear
• C(Penalty Parameter):

0.01,0.1,1,10,100
• Gamma(Kernel Coefficient):

0.001,0.01,0.1,1,10

3. Random Forest based Approach: Similar
to SVMs, we use the same set of features
to learn Random Forest (Breiman, 2001).
The grid search parameters are set as:(Best
- max features: sqrt, n estimators: 10,
min samples split: 0.05)

• oob score: True
• max features: sqrt, log2
• n estimators: 10, 100
• min samples split: 0.05, 0.10, 0.15,

0.20

3.6 End to end pipeline
The relevance scoring mechanism consists of the
following stages: Fig. 2 shows the basic way of
training the classifier.

1. Indicator words generation for professions
for which enough data is available in the form
of articles of people in that profession. This

231

step uses learning an LR classifier per profes-
sion as described earlier. In parallel, we use
word2vec to generate indicator words for the
less prominent professions.

2. Each training instance is a person-profession-
rank triple and the test instance a person-
profession pair. We use the Wikipedia ar-
ticle of the person and the set of 10-15 in-
dicator words so generated along with the
original profession words to generate the fea-
ture values on the article. We get a feature
vector of length five from this. We append
the additional 800 dimensional vectors gener-
ated through word embedding (by Word2vec
tool) for the profession and person in each in-
stance. This produces a resulting vector of
805-dimension.

3. This vector is fed to the classifier discussed
above, which was trained to do a binary clas-
sification of relevant/non-relevant.

4. These binary classification labels from the
above classifier were then scaled to the values
between 0-7 (discussed in the introduction of
classifiers section) to conform to the output
standard for analysis.

4 Experiments and Analysis

4.1 Evaluation

We use three metrics to measure the efficiency of
the baseline and the proposed models.

1. Accuracy - The percentage of person-
profession triples that matched.

2. Kendall’s tau - τp = 1/Z(nd+p.nt) where nd
is the number of discordant (inverted) pairs,
nt is the number of pairs that are tied in the
gold standard but not in the predicted rank-
ing or vice versa, p is a penalization factor for
these pairs which we set to 0.5, and the nor-
malization factor Z (the number of ordered
pairs plus p times the number of tied pairs in
the gold standard). This is to account for the
tied rankings in the gold standardFagin et al.
(2004).

3. Average Score Difference - Average of the
difference of scores between gold mention
and predictions.

4.2 Scores and Best Features
We perform 10-fold cross validation on the train-
ing data for optimizing the model and evaluate on
the the test set. Table 2 shows the scores for SVM
and Random Forest along with the baseline. It
shows that random forest based model performs
slightly better than SVM. However, both of these
approaches perform better compared to the base-
line model.The 800-dimension concatenated word
vector of person and profession did not provide
generalization as we expected. A possible reason
could be the insufficient size of wiki-sentences
with only 33000k sentences, which were used for
training of Word2Vec tool. However it is to be
noted that that word embedding vectors were more
useful for generating the indicator words of a pro-
fession.

We measure the importance of each feature
and its effect (except word vectors). Impor-
tance to these features is extracted using fea-
ture importances data structure provided by
scikit-learn after training them.

wcO
pe

n

wcF
ull

ca
tC

ou
nt

bO
pe

n

ca
tB

in
0

0.1

0.2

0.3

0.4

4 · 10−2

0.32

3.8 · 10−2

0.22

0.37

Fe
at

ur
e

im
po

rt
an

ce

Relative Feature importance table

Clearly, wcOpen(word count in opening text)
and catCount(word count in category) do not have
convincing roles. A possible reason for this might
be that:

1. Opening text of Wikipedia and category do
not often enumerate all the professions.

2. Their relative counts in a small paragraph are
not sufficient.
The latter observation is backed by the fact
that binary word presence in the first para

232

(bOpen) is a good feature where we only ac-
count for the presence or absence of a profes-
sion word.

3. As expected, the full-text search of profes-
sion words along-with its indicators is a sig-
nificant feature.

4. The most important thing is the importance of
the binary feature of profession word in cat-
egory catBin, which shows that Wikipedia
categories are the reflection of subject matter
in a comprehensive manner.

4.3 Error Analysis
We perform a thorough analysis to understand the
shortcomings that still need to be tackled:

1. Popularity: The way human ranked the per-
sons is not very well defined and is hugely
affected by popularity. Popular personalities
get ranks for professions based on a lot more
prior knowledge than just a Wikipedia article.
Unpopular personalities are assigned ranks
based on what is directly visible in the ini-
tial glance of the Wikipedia article, in most
cases.

2. Amount of information: The ranks were also
affected by the amount of information present
in the Wikipedia article of a person. For ex-
ample, Ba. U has been rated as 2 for politi-
cian and 7 for Lawyer, although he has been
actively involved in politics, having been the
president two times. The only issue is that
his Wikipedia article is too short to provide a
substantial information.

3. Drawback of a linear relationship based on
word count: It is clear that the underlying
idea of indicator word count is not so much
useful. Often for very long articles the count
seems to lose its meaning. For example,
Napoleon has been rated as 7 for both politi-
cian and military officer, but given his long
description of military campaigns, military
officer seems to outweigh politician during
prediction.

4. Experiments with Word Vectors The word
vectors were trained on the wiki-sentences to
get the context from the Wikipedia mentions.
The use of word embedding vectors improves
the accuracy to some extent, and greatly helps

in deriving more contextual information for
25% profession words for which we had very
less person mentions from Freebase. This
shows that they can be used in places where
we have insufficient information in semantic
space to derive context.

4.4 Comparison with previous work

We’d like to mention that the previous work (Bast
et al., 2015) achieved an overall accuracy of 63%
with their method MLE combined. We achieved
an overall accuracy of about 70%. However, they
do better on the average score difference front,
getting 1.57 as best with the Count Combined
method. We report the best average score differ-
ence as 1.78 with Random Forests and word vec-
tor features. Kendall’s tau is 0.22 for them with
MLE combined whereas its 0.33 for us with ran-
dom forests. However, we mention that our train-
ing data was significantly less than (Bast et al.,
2015) because they used the entire Wikipedia for
training whereas we only used wiki-sentences for
word vector generation and individual Wikipedia
articles of persons for feature generation per in-
stance.

4.5 Relation to web-search

We mention Web search in the title because get-
ting relevance scores for several entity relation
pairs with different predicates but same entity can
help to show only the most significant one’s in
cases where only one or two results are required.
This is especially useful for filtering in today’s
world of search where search engines also take in-
formation from knowledge bases like Wikidata7.

5 Deep Learning based Approach

We exploit deep learning algorithm being moti-
vated from the fact that it does not require any fea-
ture engineering. For our deep learning based ap-
proach, we develop a model based on CNN. CNNs
are able to convolve over the entire text just like
on images and are able to extract features from
the text efficientlyKim (2014). We present the re-
sults achieved till now using CNN to identify sin-
gle relation entities, e.g people with only a sin-
gle profession. Though not complete, this step
is important as it can be extended to the multi-
profession case. The final ranking generation for

7https://www.wikidata.org/

233

Figure 3: Intuition for CNN

Figure 4: Deep network classifier for profession

multi-relation entities using CNNs is left as a fol-
lowup of this work or can be taken up anywhere
else.

Unlike the previous model, which had a differ-
ent classifier for identifying indicator words for
each profession, here we use a single deep network
classifier to find P (e|t) where ‘e‘ is the person en-
tity and ‘t‘ is the type(profession), i.e, we find the
degree of belongingness of the entity to the type.

Fig. 4 shows the basic way of training the clas-
sifier which is quite similar to one described in the
previous approach. We use both Convolution Neu-
ral Network (CNN) and Long Short Term Memory
(LSTM), but we found better results with CNN
and hence report the results using only this clas-
sifier.

The only difference is that we now use a single
classifier to classify across all person-profession
pairs and we now also include profession informa-
tion as a word vector of profession. The underly-
ing idea is to learn common high level representa-
tions that make a person and a profession similar.

Fig. 4 shows the basic way of training the clas-
sifier.

Fig. 3 shows the basic overview of the CNN

Table 4: CNN statistics
Samples 22638

Hidden Layers 2

Hidden Neurons 512, 64

Embedding Dimension 300

Precision 82%

model.
Parameters to the CNN classifier:

• Google-News word vectors8 of dimension
300.

• 50 filters of size 3 each and one convolutional
layer.

• GlobalMaxPooling and AveragePooling but
found that MaxPooling performed better in
all cases.

• Two dense layers after convolution, which
were formed after merging convolved
Wikipedia article of person and profession
vector Fig. 3.

• The first dense layer has 512 neurons and sec-
ond one has 64 neurons.

Table 4 shows statistics using CNN classifier
which was implemented using keras9. For efficient
scoring, we considered only first two thousand let-
ters in the Wikipedia article of each person.

It was found that CNN based classifier performs
very well while classifying single-profession enti-
ties as correct/incorrect pair, but when extended
to multi-profession entities it was somewhat not
able to distinguish the more relevant professions
from the less relevant one’s. We attribute this to
the noise introduced by several professions in the
Wikipedia article of the person and leave this as
an interesting task to explore as a follow-up of this
work, or elsewhere.

6 Conclusion

In this paper we have proposed supervised ma-
chine learning based solutions for handling triple
ranking in a mixed domain of knowledge base and

8code.google.com/p/word2vec/
9keras.io

234

full-text. We have explored two supervised clas-
sifiers with handcrafted features extracted on En-
glish Wikipedia along with word embeddings to
learn the rankings. Some of the features work well
to learn the rankings but more can be explored.
Moreover, by using CNN as a classifier to learn
representations of person-profession entities, we
have shown that deep learning can be applied to
this domain and provide and interesting alternative
method to explore further.

References
Krisztian Balog, Pavel Serdyukov, and Arjen P.

de Vries. 2011. Overview of the TREC 2011 en-
tity track. In Proceedings of The Twentieth Text
REtrieval Conference, TREC 2011, Gaithersburg,
Maryland, USA, November 15-18, 2011.

Hannah Bast, Björn Buchhold, and Elmar Haussmann.
2015. Relevance scores for triples from type-like
relations. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’15, pages
243–252. ACM.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In SIGMOD Conference, pages
1247–1250. ACM.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45(1):5–32.

Juan P. Cedeño and K. Selçuk Candan. 2011. R2df
framework for ranked path queries over weighted
RDF graphs. In Proceedings of the International
Conference on Web Intelligence, Mining and Seman-
tics, WIMS 2011, Sogndal, Norway, May 25 - 27,
2011, page 40.

Renata Queiroz Dividino, Gerd Gröner, Stefan
Scheglmann, and Matthias Thimm. 2012. Rank-
ing RDF with provenance via preference aggrega-
tion. In EKAW, volume 7603 of Lecture Notes in
Computer Science, pages 154–163. Springer.

Shady Elbassuoni, Maya Ramanath, Ralf Schenkel,
Marcin Sydow, and Gerhard Weikum. 2009.
Language-model-based ranking for queries on rdf-
graphs. In Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management,
CIKM 2009, Hong Kong, China, November 2-6,
2009, pages 977–986.

Ronald Fagin, Ravi Kumar, Mohammad Mahdian,
D. Sivakumar, and Erik Vee. 2004. Comparing and
aggregating rankings with ties. In PODS, pages 47–
58. ACM.

T. Joachims. 2002. Learning to Classify Text Using
Support Vector Machines – Methods, Theory, and
Algorithms. Kluwer/Springer.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Alessandro Moschitti,
Bo Pang, and Walter Daelemans, editors, Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, Oc-
tober 25-29, 2014, Doha, Qatar, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1746–1751. ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In NIPS, pages 3111–3119.

235

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 236–244

Malayalam VerbFrames

Jisha P Jayan
Centre for Development of

Imaging Technology
Thiruvanathapuram

jishapjayan@gmail.com

Asha S Nair
Centre for Development of

Imaging Technology
Thiruvanathapuram
ashanaircdit@
gmail.com

Govindaru V
Centre for Development of

Imaging Technology
Thiruvanathapuram

neithalloor@gmail.com

Abstract

Verbs acts as a major role in describing a
sentence meaning. Capturing of the syn-
tactic distributions of occurrence of a verb
in a sentence is the VerbFrame. This pa-
per tests the applicability of verbframe ap-
proach that has been developed for Hindi
language in Malayalam. Around 255
verbs were selected for this study, show-
ing the basic argument structure of words
with these verbs.
Keywords- verbframe; karaka relations;
semantic; syntactic;

1 Introduction

Verbs are the most important grammatical cate-
gory in any language. With the help of an action,
activity and state are denoted. The arguments of
the verb indicate various participants required by
the verb. Verbs play a noteworthy part in inter-
preting meaning of a sentence, therefore, the study
of the argument structure of a verb and their syn-
tactic behavior will provide the needed knowledge
base for intelligent NLP applications. Verbframe
is the gathering of the syntactic distribution of the
verb occurrence in any sentence. Paninian Gram-
matical Framework (PGF) is followed in creating
a Verbframe as verb plays the important role in the
sentence analysis.

The relation of verb with the alternate units of
a sentence, in a language may be encoded in vari-
ous ways. Among them, the word order and the
presence of case markers on the arguments are
very often used by computational linguists. There
are, however, languages in which the marking can
be present of the verb itself rather than its argu-
ments (Butt, 2010). Such types of relations fre-
quently reflect semantics of a verb, that-means the
syntactic behavior of the verb provides a good sup-
port to understand its semantics. Researchers also

encode other information such as tense, aspect,
modality, gender, number, person etc., with verb,
that allow language specific variations.

This paper is intended to develop verbframe for
Malayalam language which has got grammatical
roots from Dravidian and Aryan languages. This
paper presents the work in different stages, begin-
ning in Section 2 with the major works related.
Section 3 introduces the Verb Frame and its de-
scription . Section 4 describes the Verb frame for
Malayalam. Finally, Section 5 concludes the pa-
per.

2 State of Art

Some of the famous linguistic sources related to
verb argument structure, are discussed briefly in
this section. Levin’s work on verb classes (Beth,
1993) indicates the relationship between seman-
tic and syntactic behavior of the English verbs.
The verb behavior can be used to get an insight
into linguistically applicable aspects of the verb
meaning (Beth, 1995). VerbNet (VN) (Kipper,
2000) (Kipper, 2005) is a domain-independent; hi-
erarchical, wide-coverage of online verb dictio-
nary which extends Levin’s verb classes (Beth,
1993) and providing syntactic and semantic infor-
mation for English verbs. It is mapped to various
language resources such as Wordnett (Fellbaum,
1998), FrameNet, and PropBank. Each class of
verbs in VN is described by thematic roles, selec-
tional restrictions on the arguments, and syntactic
frames (Beth, 1993).

PropBank (PB) (Palmer, 2003) (Palmer, 2005)
is a corpus, annotated with verbal propositions
and their arguments. This has been extensively
used for semantic role labeling task in recent
times (CoNLL shared task 2004-05 and 2008-
2009). PB gives a layer of semantic annotation
upon the syntactic structures. PB represents the
verb argument depending on the valency of the
verb relations by Arg0, Arg1, Arg2, etc., (Palmer,

236

2002). Each set of argument labels and their def-
initions is called a frameset. As an example, con-
sider the frameset for the verb dance. This verb
takes the dancer:Arg0, dance:Arg1 , partner:Arg2
and audience:Arg3 as essential roles. It also has
non-essential roles such as location:Argm-loc and
time:Argm-tmp. This is for capturing spatio-
temporal aspects of verbs.

FrameNet (FN) (Baker et al., 1998) is an on-
line lexical resource for English, based totally on
frame semantics and supported by means of cor-
pus evidence. FN groups words in accordance to
the conceptual structures, i.e., frames that under-
lie them (Arun, 2008) . The paper describes three
major components such as: (1) Lexicon; (2) Frame
Database; (3) Annotated Example Sentences. The
Frame database deals with the descriptions of each
frame’s basic conceptual structure, and provides
the names and descriptions of the elements par-
ticipating in such structure (Begum, 2017). Anno-
tated Sentences are marked to illustrate the seman-
tic and morpho-syntactic properties of the lexical
items. Each frame contains numerous elements,
i.e., core (core arguments) and non-core (adjuncts
or peripheral roles) elements which are considered
as semantic roles. For example, core elements of
the frame Getting-up are person/animal getting up
from sleep and place of sleeping; non-core ele-
ments are time, purpose, etc.

All these resources looks into the argument
structure of English verbs. They gives the syn-
tactic and semantic information, and correlation
between them. These resources are also mapped
to each other making individual resources much
richer. In the work of creating verb frames for
Hindi, the argument structure of verb is captured
using Karaka relations which capture both syntac-
tic and semantic information about the verbs. Be-
tween Karaka relations, thematic roles and Prop-
bank annotation, a mapping is done . Begum et al.
(Begum, 2008) mentioned their experience with
the creation of Hindi verb frames. These frames
are further classified based on a Paninian gram-
mar framework using 6 Karaka relations. This
method considered the morphology, syntactic vari-
ations and semantics of the verb to divide it into
various classes.

Based on similar approach, Ghosh (Ghosh,
2014) created a resource for verb frames for com-
pound verbs in Bengali language. The main aim
of the paper is to investigate if the vector verb

from the compound verb is able to retain its case
marking properties and argument structure or not.
Additionally the knowledge and syntax associated
with verb frames can be utilized for categorizing
and analyzing the verb words for various NLP ap-
plications.

Soni et al. (Ghosh, 2013) explores the applica-
tion of verb frames and the conjuncts in sentence
simplification for Hindi language. The method
proposed by the authors includes usage of con-
juncts as a first level of sentence simplification.
This is followed by using verb frames enhanced
with tense, aspect and modality features. It is a
rule based system and its output is evaluated man-
ually and automatically using the BLEU score for
the ease of readability and simplification.

A semi-automatic annotator tool for verb
frames was developed by Hanumant et al (Redkar,
2016). The tool is used for extracting and generat-
ing the verb frames automatically from the exam-
ple sentences of Marathi wordnet. The paper ex-
plains the concept and working of the verb - frame
tool with its advantages and disadvantages. Other
related work by Schulte (Walde, 2009) has also
explored verb frames for the English language.

3 Verb Frames

In all languages, verb plays the major part-of-
speech category. Verbs are used to define actions,
activities and states. Ability of the verbs to choose
their arguments and/or adjuncts is termed as ‘verb
sub-categorization’or ‘verb valency’. Combina-
tion of functional units that are elicited by a verb
is refered to as verb frames. In linguistics, verb-
framing and satellite-framing are typological de-
scriptions of how verb phrases in different lan-
guages describe the path of motion or the manner
of motion, respectively (Redkar, 2016).

Verb frame generally constitutes verbal proposi-
tions and arguments of words surrounding a verb
in a given sentence. Each of the prepositional
words in a verb frame has arguments such as an
arc-label, otherwise called a semantic role label,
its necessity in a frame, case markers or the suf-
fixes, lexical type, relation of the word with head
verb, position with respect to head verb, etc. These
verb frames are developed to generate dependency
tree structures in a given language. Verb frames
on the basis of their argument demands categoriza-
tion of any verb. The verb frames show mandatory

237

Karaka1 relation for a verb. They are:

1. Karaka : dependency arc labels.

2. The necessity of the argument whether it is
mandatory (m) or desirable (d).

3. Case Markers / Vibhakti: post-position or the
case associated with the nominal.

4. Lexical category of the arguments.

5. The Position of the demanded nominal with
respect to verb whether it is left(l) or right(r).

Verb frames are built for the base form of a verb.
The demands undergo a subsequent change based
on the tense, aspect and modality (TAM) of the
verb used in the sentence. Knowledge about the
transformations induced on the base form of a verb
by TAM is stored in the form of transformation
charts for each distinct TAM.

In the present work we develop verbframe for
Malayalam based on Karaka theory developed by
IIIT-Hyderabad for Hindi.

4 Malayalam Verb Frame

Amid the semantic analysis, verb is taken as the
central, element of the sentence. According to
Paninian viewpoint, there are four levels in un-
derstanding any sentence (Bharati, 1995) namely
the surface level (uttered sentence), the vibhakthi
level, the Karaka level and the semantic level. The
Karaka level has related to semantics on one side
and on the other side with the syntax. Karaka re-
lation can be identified from markers/suffixes or
case endings after the noun. The Karaka relations
in Malayalam are analyzed from the point of vib-
hakthi and the postpositions that associate with it.
The types of verb and the vibhakthi markers in
Malayalam are illustrated in Figure 1 and Table 1
respectively.

The roles and the dependency relation based on
IIIT H approach, are shown in Table 2.

The genitive noun does not have any direct
grammatical or semantic relation with the verb but
only the noun modified by the genitive is related
to the verb. The Genetive case “hw_áoIneoõ-

2o” saMbhndhikaavibhakti otherwise Possessive
takes the markers “tÂ” nRe, “DtS” uTe.
Eg (a): cnatÂ A\ob° eÁq.

1karakas are the typed dependency labels in Computa-
tional Paninian Framework (Bharati, 1993)

No Case Case markers
1 nirddeeSika \o±u¥foI φ

Nominative
2 prathigraahika }]Xo}KnioI F

Accusative -e
3 samyojika hwubnPoI ¨Sm

Sociative -ooTu
4 uddeeshika mal ·m , \m

Dative kku ,nu
5 sambandhika hw_áoIn tÂ , DtS

Gentive -nRe,-uTe
6 aadhaarika Bcn[oI C², I²

Locative -il, -kal
7 prayoojika }]ubnPoI B²

Instrumental aal
8 sambhoodana hwu_n[oI p , n, u

Vocative long forms
9 ao}feoõ2o C² \oÁm

Ablative il ninn

Table 1: Case and Case Markers

ramanRe aniyan vannu.
Raman’s brother came.
Eg (b): AejqtS AÅ]l¼q .

avaLuTe amma paranjnju.
Her mother said.
Because of this, the genitive noun can be removed
from the sentence without affecting the grammati-
cality of the sentence

Dependency annotated data are used for devel-
oping Malayalam verb frames. The dependency
annotation is a collective process of Tokeniser,
Morphological Analyser, POS tagger, Chunker
and Dependency annotation. A raw text will be
given as the input and the text is converted into
tokens, identifies grammatical features of the
individual words, assigns parts of speech (POS)
tags to each word , groups them to phrases and the
dependency tree diagrams are drawn. Malayalam
has tendency to join a wide variety of suffixes with
a single word forming compound words, which
makes the process more complicated. Therefore
complicated words are spllited and then analysed
in the present analysis. As an example, consider
the following sentence.
aÊm õ¸W hn[\ºtj Au]¸o»m]k¹-

¼obo² _o6 , _o12 tteÊao\qI³ [ncnjw

ASºobo½q¾m .

maRRu bhakshaNa saadhanangngaLe apeek-
shiccu pazhangkanjnjiyil b6 , b12 vaiRRaminukaL

238

Figure 1: Verb types in Malayalam

dhaaraaLaM aTangngiyiTTuNTu.
In comparison to other food items, rice gruel is
rich in vitamins B-6 and B-12.
The sentenence is annotated as follows:
<Sentence id=”1”>
1 ((NP <fs af=’hn[-

\,n,ne,pl,3,d,F,NGaLe’ head=’hn[\ºtj’
name=’NP’ drel=’k2:VGF’>
1.1 aÊm QT QTF <fs af=’aÊm,qtf,,,,,,’ name=’a-
Êm’>
1.2 õ¸W JJ <fs af=’õ¸W,adj,,,,,,’ name=’õ-
¸W’>
1.3 hn[\ºtj N NN
<fs af=’hn[\,n,ne,pl,3,d,F,NGaLe’
name=’hn[\ºtj’>
1.4 Au]¸o»m PSP <fs af=’Au]n¸o-

»m,psp,,,,,,’ name=’Au]¸o»m’>
))

2 ((NP <fs af=’]k¹¼o,n,ne,pl,3,d,C²,il’
head=’]k¹¼obo²’ name=’NP2’
drel=’k7:VGF’>
2.1]k¹¼obo² N NN <fs af=’]k¹-

¼o,n,ne,pl,3,d,C²,il’ name=’]k¹¼obo²’>
))

3 ((NP <fs af=’_o6,n,ne,sg,3,d,0,0’
name=’NP3’ drel=’ccof:NULL CCP’>
3.1 _o6 N NN <fs af=’_o6,n,ne,sg,3,d,0,0’

name=’_o6’>
3.2 , RD PUNC <fs af=’&comma,punc,,,,,,’
name=’,’>

))
4 ((NULL CCP <fs af=’,,,,,,,’ dmrel=’k1:VGF’
name=’NULL CCP’>
4.1 NULL CC <fs af=’,,,,,,,’ name=’NULL’>

))
5 ((NP <fs af=’tteÊao-
\m,n,ne,pl,3,d,I³,kaLu’ head=’tteÊao\qI³’
name=’NP4’ drel=’ccof:NULL CCP’>
5.1 _o12 N NN <fs af=’_o12,n,ne,sg,3,d,0,0’
name=’_o12’>
5.2 tteÊao\qI³ N NN <fs af=’tteÊao-
\m,n,ne,pl,3,d,I³,kaLu’ name=’tteÊao\qI³’>

))
6 ((JJP <fs af=’,qtf,,,,,,’ head=’4’ name=’JJP’
drel=’pof:VGF’>
6.1 [ncnjw QT QTF <fs af=’[ncnjw,qtf,,,,,,’
name=’[ncnjw’>

))
7 ((VGF <fs af=’AS-

ºm,v,,,,,CD¾m,iTTuNTu’ head=’ASºobo-

½q¾m’ name=’VGF’ Participles m=’C½m’
Participles=’yes’>
7.1 ASºobo½q¾m V VM VF <fs af=’AS-

ºm,v,,,,,CD¾m,iTTuNTu’ name=’ASºobo½q¾m’

239

Karakas Case Case Marker Role
Karthru Karakam Nominative φ k1 Agent/Subject/Doer
Karma Karakam Accusative e k2 Object /Patient/Causer

F

Karna Karakam Instrumental aal k3 Instrument
B²

Sampradana Karakam Dative kku ,nu (·m , \m) k4 Recepient/Experiencer
Sociative ooTu(¨Sm)

Apadana Karakam Ablative il ninn k5 Source
C² \oÁm

Vishayadhikarana Locative C² k7 Locative (in general)
il

Deesaadhikarana k7p Location in space
Kaladhikarana k7t Location in time

Table 2: Karakas and Role (IIIT-H)

Participles m=’C½m’ Participles=’yes’>
))

8 ((BLK <fs af=’.,punc,,,,,,’ head=’.36’
name=’BLK’ drel=’rsym:VGF’>
8.1 . RD PUNC <fs af=’.,punc,,,,,,’ name=’.’>

))
</Sentence>

The dependency annotation is tree is given in Fig-
ure 2.

4.1 Diagnosis

Diagnosis of Malayalam verbfame is illustrated
with an example of a verb entry with the descrip-
tion and verb frame. Gloss explains meaning of
the particular verbal root. Arc label is to show the
dependency relation between any words and the
verb that exist in a sentence. Necessity is valency.
Valency is the the number of grammatical aspects
of verbs which combines other words in that sen-
tence. On the other hand, it is the capacity of verbs
that how many arguments, it can combine with it-
self at time. The distinction among the modifiers
and complements is mostly defined using valency,
which is a central notion in the theoretical tradi-
tion of dependency analysis (Theoritical tradition
of dependency analysis has limitation in Computa-
tional Linguistics that has discussed widely in re-
cent years. So it is not detailed here). Although
the exact characterization of this notion differs
from one theoretical framework to the other, va-
lency is usually related to the semantic predicate-
argument structure associated with certain classes
of lexemes, in particular verbs but sometimes also

nouns and adjectives (Nivre, 2005). The idea is
that the verb imposes requirements on its syntac-
tic dependents that reflect its interpretation as a se-
mantic predicate. Dependents that correspond to
the arguments of the predicate can be mandatory
or optional (Nivre, 2005). The valency frame of
the verb is generally taken to incorporate argument
dependents, however some theories also allow de-
sirable non-arguments to be included. Position ba-
sically refers to on which side of the verb, the par-
ticular word takes place in the sentence. That is,
the word can occur either on the left side of the
verb or right side of the verb. So, ’l’ stands for the
word left and ’r’ stands for the word right.

Verb::ASºm aTangngu
SID:: ASºm %VT%S1
Verb Sense::
Eng Gloss::to contain
Verb Class::
Verb in Same Class::
TAM for the verb root::CC½mD¾m i iTT uNTu

Frames::
Example::aÊm õ¸W hn[\ºtj Au]¸o»m

]k¹¼obo² _o6 , _o12 tteÊao\qI³

[ncnjw ASºobo½q¾m .

maRRu bhakshaNa saadhanangngaLe apeek-
shiccu pazhangkanjnjiyil b6 , b-12 vaiR-
RaminukaL dhaaraaLaM aTangngiyiTTuNTu.
In comparison to other food items, rice gruel is
rich in vitamins B-6 and B12.
FRAME ID::1

240

Figure 2: Dependency tree for given example

arc nec- Vibhakti Lex posn reln
label essity Type
k2 m I³F n l c

(kaLe)
k7 m C² n l c

(il)
k1 m I³ n l c

(kal)
pof m 0 n l c

In the verbframe file above as example, the
first feild gives the name of the verb. SID is
the unique sense identification number. It is rep-
resented as verb root%verb type%sense number.
The verb types in Malayalam are distinguished
into transtitive, intransitive and causative. Here
in the example the type of the verb is transtitive
and is represent by VT. Verbs in Same Class field
gives the list of all the verbs that have same mean-
ing as the given verb. Since Malayalam is a verb
final language, by default, all the words are kept
normally on the left side of the verb. Rarely, it
happens that particular word occurs on the right
side of the verb. As an example consider the fol-
lowing sentence:
F¹odqw õcX\nSy¿o\m XtÁ }fª tNdq¿n°

BWm \pdoa CuÃn³ }fao·qÁXm .

enkiluM bharatanaaTyattinu tanne shRaddha ce-
luttaan aaNu niilima ippoL shRamikkunnatu.
Nilima is now trying to focus on Bharatanatyam
itself.
In the above example, “BWm” aaN is the finite
verb and it occurs in between the given sentence.
These type of constructions are found mostly. In
such cases, the the words that follow the final

verbs are positioned on the right side. The verb
frame for above example is as follows :

arc nec- Vibhakti Lex posn reln
label essity Type
ccof m 0 avy l c

k4 m Dm n l c
(u)

vmod m B° v l c
(aan)

vmod- m DÁXm v l c
emph (unnatu)

Verbframe of a similar verb in different sen-
tences varies according to argument relations
(Karaka relations) change. For example, for the
verb “InWnw” kaaNaaM, different frames are
shown below.
Verb::InWm kaaN
SID::InWm%VT%S1
Verb Sense::
Eng Gloss::to see
Verb Class::
Verb in Same Class::
TAM for the verb root::Bw aaM
Frames::

Example::1
eÉqe\nS° }Knaºjqw t\²ebdqIjqw KX-

Ind }]vUoubntS \o²·qÁ a\Ijqw Fºqw

InWnw .

vaLLuvanaaTan graamangngaLuM nelvay-
alukaLuM gatakaala prauDiyooTe nilkkunna
manakaLuM engnguM kaaNaaM.

241

Valluvanadan villages, paddy fields and the abode
houses of Malayali Brahmins with its historical
pride can be seen.
FRAME ID::1

arc nec- Vibhakti Lex posn reln
label essity Type
k1 m Dw n l c

(uM)
adv d 0 adv l c

Example::2
CeotS DÉ eyru]nboÂo² \oÁm gouÈnºm \-

Kc¿otÂ , }]uXyIo»m cn}Xobo² Zp]ndwIsXw

BIqÁ DÃ|danb InkmN InWnw .

iviTe uLLa vyuupooyinRil ninnu Silloongng na-
garattinRE , pratyeekiccu raatriyil diipaalaMkRI-
taM aakuna ujjvalamaaya kaazhcha kaaNaM.
From the view point here, the city of Shillong, es-
pecially the magnificent view of the city decorated
with lights at night can be seen.
FRAME ID::2

arc nec- Vibhakti Lex posn reln
label essity Type
k5 m C²\oÁm n l c

(ilninn)
k1 d 0 n l c

Example::3
eouZf¿m tNÁn² }fpd¹bodqw _ndobodqw

Ht· cnab° h±Iyr½qI³ InWnw .

videeshattu cennaal sRIIlangkayiluM baaliyiluM
okke raamayan sarkyuuTTukaL kaaNaaM.
If you go abroad, the Ramayan circuits can be seen
especially in Sri Lanka and Bali.
FRAME ID::3

arc nec- Vibhakti Lex posn reln
label essity Type
vmod m 0 v l c
k7p m C² n l c

(il)
k1 d I³ n l c

(kal)

Example::4
_Imhlo² \oÁm AÕmIoudnapÊ± eS·qIok·q

anlo AidynuZeobqtS AÄdw InWnw .

baksaRil ninnu anjcu kiloomiiRRar vaTakkuk-
izhakku maaRi ahalyaadeeviyuTe ampalaM
kaaNaaM.

The temple of Ahalya Devi is located five kilome-
ters north-east from Buxar.
FRAME ID::4

arc nec- Vibhakti Lex posn reln
label essity Type
k5 m C²\oÁm n l c

(ilninn)
vmod m C v l c

(i)
k1 d I³ n l c

(kal)

Example::5
õncX¿o² arÁq }][n\ eoõnKºjo² t]½etc

InWnw : CuÐn - Bcy° ewfP± , }ZneoU ewf-

P± , awuKn³ - Bcy° ewfP± .

bhaaratattil muunu pradhaana vibhaagangngaLil
peTTavare kaaNaaM : intoo-aaryan , draaviDa
vaMshajar , maMgooL - aaryan vaMshajar.
There are three main groups in India: Indo-Aryan
tribes, Dravidian and Mangol-Aryan tribes.
FRAME ID::5

arc nec- Vibhakti Lex posn reln
label essity Type
k1 m A±F v l c

(are)
k1 d 0 n r c

Example::6
BwKoIw , enNoIw , hnX|oIw , Bincyw

FÁp Aõo\bcpXoI³ GÊ·ql»odqIujntS

aqSoubÊo² InWnw

aaMgikaM, vaacikaM, saatvikaM, aahaaryaM
enni abhinjayariitikal eeRRakkuRaccilikaLoTe
kaaNaaM.
Different styles of actings like Agikam, Vachikam,
Satvikam, Aharyam are found in a ritualistic art
form Mudiyettu.
FRAME ID::6

arc nec- Vibhakti Lex posn reln
label essity Type
k1 d I³ n l c

(kal)
k4 d I³¨SmF n l c

(kaLooTe)
k7 m C² n l c

(il)

It is clear from the above example that
verbframe of similar verb is different from the

242

other verb frames as the argument relations
namely the Karaka relations are changing. In the
present study, we have taken 3000 dependency an-
notated sentences for generating the verb frames.
Verb frames for 255 verbs 2 were generated from
these sentences.

There are some sentences which have 2 finite
verbs. Such sentences are not considered in the
present study. Examples for such a sentence:
AXo°tl A±Yw a\ôodn·n° B±·qw \oba

hinbw uXuS¾o ecqw FÁqw uXnÁqÁoÈ .

atinRe arthaM manassilaakkaan aarkkum niyama
sahaayaM teeTeeNTi varuM ennuM toonnunnilla.
It does not appear to have any legal assistance to
understand the meaning.
In the above sentence, the “FÁqw”(ennuM) is the
connector. To this connector, the two finite verbs
“ecqw”” varuM and “uXnÁqÁoÈ ”toonnunnilla
is joined in the dependency tree. The sentenence
is annotated as follows and the dependency tree
diagram is depiced in Figure 3.

5 Conclusion and Future Directions

5.1 Conclusion
Application of approach for generating verbframe
developed by IIIT-H seems to be adopted for
Malayalam languages. However we have to ex-
plore how does this can be made applicable for the
sentences which have two or more finite verbs.

5.2 Future Directions
This work can be further extended to classify the
verb frames according to the semantic nature of
the verb. Also attempts can be made to extract the
verb frames from dependency annotated corpora
though some machine learning approaches.

Acknowledgement

We acknowledge Consortium for Developing De-
pendency TreeBanks for Indian Languages and
its leader IIIT-Hyderabad, especially Prof. Dipti
Misra Sharma and Department of Electronics &
Information Technology (DeitY) , Government of
India .

References
Beth Levin. 1993. English Verb lasses and Alterna-

tions. A Preliminary Investigation, University of
Chicago press.

2Only finite verbs are considered.

Figure 3: Dependency tree for given example

Beth Levin and Malka Rappaport Hovav. 1995. Un-
accusativity: At the syntax-lexical semantics inter-
face., MIT press. 26.

Karin Kipper Schuler. 2005. VerbNet: A Broad-
coverage, Comprehensive Verb Lexicon, PhD dis-
sertation, Computer and Information Science De-
partment, University of Pennsylvania.

243

Karin Kipper, Hoa Trang Dang and Martha Palmer .
2000. VerbNet: Class based construction of a verb
lexicon, In AAAI/IAAI, 691 696.

Christiane Fellbaum. 1998. WordNet An Electronic
Lexical Database, MIT press.

Paul Kingsbury and Martha Palmer. 2003. PropBank:
the next level of treebank, In Proceedings of Tree-
banks and lexical Theories, Vol. 3.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles., In Computational linguistics, Vol.
31(1) , 71-106.

Paul Kingsbury and Martha Palmer. 2002. PropBank:
the next level of treebank, In Proceedings of the 3rd
International Conference on Language Resources
and Evaluation, pp. 1989-1993.

Rafiya Begum, Samar Husain, Lakshmi Bai, and
Dipti Misra Sharma. 2008. Developing Verb
Frames for Hindi., In LREC.

Collin F Baker, Charles J Fillmore, and John B Lowe
. 1998. The Berkeley FrameNet Project, In Pro-
ceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics ,
Association for Computational Linguistics. 6:86-90.

Rafiya Begum and Dipti Misra Sharma. 2017. De-
velopment and Analysis of Verb Frame Lexicon for
Hindi., In Linguistics and Literature Studies. 5(1):1-
22.

Rafiya Begum, Samar Husain, Arun Dhwaj, Lak-
shmi Bai, cc and Rajeev Sangal. 2008. Dependency
Annotation Scheme for Indian Languages., In IJC-
NLP. 721-726.

Sanjukta Ghosh. 2014. Making Verb Frames for
Bangla Vector Verbs., In Proceedings of 11th
Intl. Conference on Natural Language Processing.
305314.

Ankush Soni, Sambhav Jain, and Dipti Misra Sharma.
2013. Exploring Verb Frames for Sentence Simplifi-
cation in Hindi., In IJCNLP. 1082-1086.

Hanumant Redkar, Sandhya Singh, Nandini Ghag,
Jai Paranjape, and Nilesh Joshi. 2016. Verbfram-
ator: Semi-Automatic Verb Frame Annotator Tool
with Special Reference to Marathi., In Proceeding
s of 13th International Conference on Natural Lan-
guage Processing. pp-299.

Schulte im Walde and Sabine. 2009. The induction of
verb frames and verb classes from corpora., Corpus
Linguistics. An International Handbook. Mouton de
Gruyter, Berlin.

Akshar Bharati, Vineet Chaitanya, Rajeev Sangal,
and K V Ramakrishnamacharyulu. 1995. Natu-
ral language processing: a Paninian perspective.,
Prentice-Hall of India New Delhi.

Joakim Nivre. 2005. Dependency grammar and de-
pendency parsing., In MSI report. 5133(1959):1-32.

Akshar Bharati and Rajeev Sangal. 1993. Parsing free
word order languages in the Paninian framework, In
Proceedings of the 31st annual meeting on Associa-
tion for Computational Linguistics Association for
Computational Linguistics. 105-111.

Miriam Butt. 2010. The light verb jungle: still hack-
ing away., In Complex predicates in cross-linguistic
perspective Cambridge University Press. 48-78.

244

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 245–254

Hindi Shabdamitra: A Wordnet based Tool for Enhancing
Teaching-Learning Process

Hanumant Redkar, Nilesh Joshi, Sayali Khare, Lata Popale,
Malhar Kulkarni and Pushpak Bhattacharyya

Center for Indian Language Technology,
Indian Institute of Technology Bombay, India.

{hanumantredkar, joshinilesh60, sayali.khare92, popale.lata}@gmail.com,
malharku@gmail.com and pushpakbh@gmail.com

Abstract

Vocabulary building is fundamental to any
language learning and effective commu-
nication relies on the mastery of vocabu-
lary. Hindi is one of the widely spoken
languages in the world. However, there is
a scarcity of quality e-learning resources
for Hindi. Also, there is lack of e-learning
content which is in-sync with Hindi cur-
riculum. This was the motivation in build-
ing educational application, Hindi Shab-
damitra, for language teaching and learn-
ing. Hindi Shabhadamitra is an e-learning
tool developed using Hindi wordnet for
Hindi language learning. This is an in-
sight of the work reported by Redkar et al.
(2017) in which Hindi Shabdamitra en-
hances the teaching-learning process has
been presented. The paper presents the
teacher and user benefits of this e-learning
tool. Further, the user evaluation informa-
tion has been reported.

1 Introduction

Hindi language is a member of the Indo-Aryan
group of the Indo-European language family1.
Hindi is the official language of India and is 4th

among the most spoken languages in the world2.
Devanagari script is recommended as the official
script for Hindi3. Hindi in Devanagari script is a
part of most of the school curriculum and covers a
large spectrum of learners in India, and around the
world. A lot of digital content is available online
for learning Hindi. Most of this content is in the
form of conversation, stories, poems, games, etc.
However, less attention is given to learning of the

1urlhttps://www.britannica.com/topic/Hindi-language
2urlhttps://www.babbel.com/en/magazine/the-10-most-

spoken-languages-in-the-world
3urlhttp://www.constitution.org/cons/india/p17343.html

detailed grammatical and lexico-semantic features.
Also, there is a scarcity of digital resources in the
e-learning domain, especially in the formal setup
or curriculum-based setup.

The rapid change in technology and availabil-
ity of anytime, anywhere digital resources led to
the reduction in the cost of delivering the educa-
tion to the volume of students. As per Shams and
Seitz (2008); Sankey et al. (2010), e-learning en-
hances the performance of the students due to its
multi-sensory impact on education. As per Nation
and Newton (1997); Lin (1997); Carter (1987), vo-
cabulary teaching and learning should be done in
a systematic and structured manner.

Vocabulary learning is considered to be a central
activity for any language learning process (Alqah-
tani et al., 2015). Also, learning grammar is im-
portant to understand the syntax and semantics of
the word usage. Knowledge of vocabulary is one
of the primary reasons for learner’s ability and con-
fidence to communicate. Various languages learn-
ing strategies like repetition, context, usage and vi-
sual correlation were tested by language experts for
enhancing the vocabulary (Atasheneh and Naeimi,
2015; Butler et al., 2010).

The multi-modal learning environments have
been studied in different settings (Dale, 1969;
Mayer and Moreno, 2003; Moreno and Mayer,
2007; Shams and Seitz, 2008; Sankey et al., 2010)
which shows its positive impact on learners and al-
ways result in better learning and retention. Meth-
ods like self-directed technology (Lai et al., 2016),
mobile assisted language learning (Yang, 2013)
and gamification has arrived as an effective peda-
gogical strategies. These strategies help the learner
to engage and motivate to learn in a relaxed man-
ner (Werbach and Hunter, 2012; Figueroa Flores,
2015). Lexical and semantic relations of words
help in better understanding of vocabulary (Lin,
1997).

245

The Princeton WordNet4 or WordNet, have been
explored by Hu et al. (1998); Sun et al. (2011);
Brumbaugh (2015); Hiray (2015) for vocabulary
learning and other related language learning appli-
cations.

Keeping vocabulary and grammar learning as
pivotal to language learning, an e-learning tool,
Hindi Shabdamitra, has been developed based on
Hindi Wordnet5 (Redkar et al., 2017). This paper
presents an insight of the features and enhance-
ments in the teaching-learning process using Hindi
Shabdamitra.

The rest of the paper is organized as follows -
section 2 presents Hindi Shabdamitra, section 3 ex-
plains the functional and unique features of Hindi
Shabdamitra and the comparative study, section 4
provides enhancements in teaching-learning and
the benefits of end-users, section 5 describes the
user evaluation and field response. Finally, in sec-
tion 6 the paper is concluded with the scope for
future work.

2 Hindi Shabdamitra
Hindi Shabdamitra (िहदंी शब्दिमतर्, hiMdI shabdami-
tra)6 is a digital aid designed for assisting in teach-
ing and learning Hindi language (Redkar et al.,
2017). The end users of this e-learning tool are stu-
dents, teachers, parents and self-learners. It is de-
veloped for formal teaching-learning environment
as well as informal learning environment. The for-
mal setup is designed in correlation with school
curriculum. Self-learners, organizations, NGOs,
NRIs, etc., belong to the informal learning envi-
ronment. It uses Hindi Wordnet as a base resource
that has been remodeled for this aid by incorporat-
ing the multi-modal features. Further, the concepts
are grammatically enriched and simplified depend-
ing upon the understanding level of the learner.

A team of lexicographers, illustrators and na-
tive language speakers has contributed to build this
multi-modal resource which has formed the base of
Hindi Shabdamitra. The tool has an online web-
based and app-based interface for wider reachabil-
ity. Also, this tool can be made available offline
for anytime, anywhere learning. The interface al-
lows the search navigation in two ways – level wise
(िहदंी ज्ञान स्तर के अनुसार, hiMdii GYaana stara ke

4https://wordnet.princeton.edu/
5http://www.cfilt.iitb.ac.in/wordnet/

webhwn/
6http://www.cfilt.iitb.ac.in/

hindishabdamitra/

Figure 1: Features of a word पात (pAta, leaf) for
Class 8, lesson 1 in class-wise search interface

Figure 2: Features of a word राजा (rAjA, a king) for
proficient level in level-wise search interface

anusaara) and class wise (कक्षा के अनुसार, kaxaa ke
anusaara). This can be seen in figure 1 and 2.

Layered Interface
Hindi Shabdamitra interface has a layered architec-
ture. Depending on the proficiency of the learner,
the layers have been designed for learners, scaling
from the beginner to the proficient. The level of a
leaner is determined by using the class-wise profi-
ciency selection criteria as shown in table 1.

The same word can be studied by the learners at
all 5 levels. At each level, incremental information
is displayed. The depth of content displayed vary
from level to level. The detailed layer-wise list of
features have been provided in the next section.

Layer Level Class
Layer 1 Beginner (पर्ाथिमक) 1 and 2
Layer 2 Intermediate (माध्यिमक) 3, 4 and 5
Layer 3 Proficient (कुशल) 6, 7, 8, 9 and 10
Layer 4 Advanced (उŢत) 11 and 12
Layer 5 Proficient (िवशेषज्ञ) Above 12

Table 1: Proficiency selection criteria for Hindi
Shabdamitra

246

3 Features of Hindi Shabdamitra
Hindi Shabdamitra provides functional features
and unique features for the learners. These features
help learners in clearly understanding the concept.
Also, it aids the teachers and parents to explain
the concept in detail. The list of features with
respect to the classes and levels is given in ta-
ble 2. Following are the detailed description of
functional and unique features of Hindi Shabdami-
tra. These features are explained with the help
of Matthews (2007), Oxford dictionaries7, Online
dictionary for language technology8, Cambridge
dictionary9, Hindi Wordnet10, etc.

Functional Features
The functional features are most commonly found
in regular dictionaries or thesauri. These features
are available for all the levels.

1. Part of Speech (POS): Hindi Shabdamitra
has content based on the part of speech viz.,
noun, adjective, verb and adverb, as it is based
on the original resource, Hindi Wordnet.

• Noun / संज्ञा (saMGYaa) : One of the
classes of words whose characteristic
role is as an argument of a verb and
which is characteristically that of words
denoting concrete entities (Matthews,
2007). Nouns are known as संज्ञा (saM-
GYaa) in Hindi. Just like nouns in En-
glish, संज्ञा (saMGYaa) is also a names of
people, places, things and ideas. For ex-
ample:
– कमला (kamalaa, name of a lady)
– िदŦी (dillii, the capital city of India)
– िमठास (miThaasa, sweetness)
– गिणत (gaNita, mathematics)

• Adjective / िवशेषण (visheShaNa) : A
word of class whose most characteristic
role is as the modifier of a noun. Adjec-
tives are known as िवशेषण (visheShaNa)
in Hindi. For example:
– चतुर (chatura, clever)
– काला (kaalaa , black)
– लम्बा (lambaa, tall)

7https://en.oxforddictionaries.com
8http://www.odlt.org/
9http://dictionary.cambridge.org/

10http://www.cfilt.iitb.ac.in/wordnet/
webhwn/index.php

Levels 1 2 3 4 5
Classes 1, 2 3, 4, 5 6 to 10 11, 12 12+

Features
1 POS Yes Yes Yes Yes Yes

2 Multiple
Senses/Polysemy Yes Yes Yes Yes Yes

3 Audio Pronunciation Yes Yes Yes Yes Yes
4 Illustration/Picture Yes Yes No No No

5 (a) Simplified gloss
& example Yes Yes No No No

5 (b) Original gloss &
example No No Yes Yes Yes

6 Gender No Yes Yes Yes Yes
7 Synonym Yes Yes Yes Yes Yes
8 Antonym Yes Yes Yes Yes Yes
9 Number No Yes Yes Yes Yes
10 Countability No Yes Yes Yes Yes
11 Affix No No Yes Yes Yes
12 Junction No No Yes Yes Yes
13 Kinds of POS No No Yes Yes Yes
14 Indeclinable No No Yes Yes Yes
15 Spelling Variation No Yes Yes Yes Yes
16 Transitivity No No Yes Yes Yes
17 Hypernymy/Is Kind Of No No Yes Yes Yes
18 Hyponymy/Type Of No No Yes Yes Yes
19 Meronymy No No No Yes Yes
20 Holonymy No No No Yes Yes
21 Modifies Verb No No No Yes Yes
22 Modifies Noun No No No Yes Yes
23 Troponymy No No No No Yes
24 Causative No No No No Yes
24 Entailment No No No No Yes
25 Link Type No No No No Yes
26 Attribute No No No No Yes

Table 2: Class-wise and level-wise features of
Hindi Shabdamitra

– छोटा (ChoTaa, small, young)

• Verb / िकर्या (kriyaa) : One of a class of
lexical units whose characteristic syntac-
tic role is as a predicate or predicator and
which is characteristically that of words
denoting actions or processes. The verb,
specifically the action verb, is known as
िकर्या (kriyaa) in the Hindi language. For
example:
– खाता है (khaataa hai, eats)
– पीता है (piitaa hai, drinks)
– जाता है (jaataa hai, goes)
– खेलता है (khelataa, plays)

Note that the verbs given in the example
are for singular masculine subjects. For
feminine gender and singular number,
the verbs are conjugated as खाती है (
khAtI hai), पीती है (pItI hai) and जाती
है (jAtI hai). The plurals of the verbs
for both the genders are खाते हैं (khAte
haiM), जाते हैं (jAte haiM) and पीते हैं
(pIte haiM).

247

• Adverb / िकर्यािवशेषण (kriyaavisheSha-
Na) : A word of class whose most
characteristic role is traditionally that of
modifying a verb or verb phrase. For ex-
ample:
– धीरे (dhiire, slowly)
– जल्दी (jaldii, fast)
– पास) (paasa, near)
– आज) (aaja, today)

2. Multiple Senses/Polysemy : Polysemy refers
to the situation where the same word has two
or more different meanings. In level-wise
interface of Hindi Shabdamitra polysemy is
provided where a user can click on the next
button to get the another meaning of same
word, if available. However, in class-wise in-
terface there is only one word meaning, as
it corresponds to the meaning with the text-
books.

3. Audio pronunciation : The audio pronunci-
ations are recorded by the native Hindi speak-
ers, as to promote ‘Standard Hindi’. Hindi
Shabdamitra is provided with the audio of the
search-word.

4. Illustration (Image / Picture) : Illustrations
are drawn, keeping in the mind Indian con-
text. Illustrations are targeted to the learners
of level 1 and level 2 of the Hindi Shabdami-
tra. Following are the things taken into con-
sideration while illustrating a concept:

• Omitting the sensitive context, e.g., शव
(shava, a dead body). As it may cause
adverse effect on the kid, such illustra-
tions are omitted or expressed in a dif-
ferent way.

• Overlapping: If an illustration is drawn
for पूजा करना (pUjA karanA, to wor-
ship), it overlaps with आरती करना (AratI
karanA, do ritual) as well. Such in-
stances are avoided.

• One illustration for multiple concepts:
The illustration for बड़ा (baDa�A, big) has
its counterpart i.e., छोटा (ChoTA, small).
Here, for these concepts single illustra-
tion can be used.

• Abstract nouns: Abstract nouns are il-
lustrated with the base of provided ex-
ample or a specific situation. For e.g.,

Figure 3: Illustration of a word साथ (saatha)
.

साथ (saatha, company). A sample illus-
tration of an abstract noun साथ is shown
in figure 3.

5. Gloss or Definition :
The concept is defined by providing gloss or
definition of a word. Gloss is usually picked
from Hindi wordnet, however, it is simplified
in special cases.

(a) Simplified Gloss and Example: Hindi
Shabdamitra has provided simplified
gloss for level 1 and 2, i.e. for class 1
to 5. The gloss and example sentence
from original Hindi Wordnet is further
simplified by providing the simple words
in the definition so that the students at
these levels can easily pick-up and learn
concept comfortably.
If Hindi Wordnet gloss is completely or
partly difficult to understand then it is
simplified. For example, for a concept
नदी (nadI, river) having IndoWordNet11

Synset id 4430, the original Hindi
Wordnet gloss is जल का वह पर्ाकृितक
पर्वाह जो िकसी पवर्त से िनकलकर िनĄश्चत
मागर् से होता हĨआ समुदर् या िकसी दसूरे
बड़े जल पर्वाह में िगरता है (jala kA vaha
prAkRRitika pravAha jo kisI parvata
se nikalakara nishchita mArga se hotA
huA samudra yA kisI dUsare baDa�e
jala pravAha meM giratA haiM, a large
natural stream of water) (Bhattacharyya,
2010).

11http://www.cfilt.iitb.ac.in/indowordnet/

248

This concept is difficult to understand by
a level 1 and 2 learners, hence this gloss
is simplified as पवर्त से िनकलकर अपने
आप बहती हĨई पानी कĢ धारा (parvata se
nikalakara apane Apa bahatI huI pAnI
kI dhArA, river). Similarly, original
Hindi Wordnet example sentence, गगंा,
यमुना, सरस्वती, सतलुज, कावेरी, सरयू
आिद भारत कĢ पर्मुख निदयाँ हैं। (gaMgA,
yamunA, sarasvatI, sataluja, kAverI,
sarayU Adi bhArata kI pramukha
nadiyAMN haiM, Ganga, Yamuna,
Saraswati, Satluj, Kaveri, Sharayu, etc.
are India’s major rivers) is simplified to
“गगंा, यमुना बड़ी निदयाँ हैं। (gaMgA, ya-
munA baDa�I nadiyAMN haiM, Ganga,
Yamuna are major rivers).

(b) Original Hindi Gloss : If Hindi Word-
net gloss is easy to understand, it was
kept as it is for level 1 and 2. For e.g., for
a concept पदैल (synset Id: 6274), Hindi
Wordnet gloss is परैƁ से चलकर (pairoM se
chalakara, afoot) and Hindi Wordnet ex-
ample is वह िवŠालय पदैल जाता ह।ै (vaha
vidyAlaya paidala jAtA hai, he is going
to the school afoot). For levels 3, 4 and
5, the original gloss is kept as it is, as at
these levels, learners will understand the
concepts by reading the original Hindi
Wordnet gloss and examples, hence it is
not simplified further.

6. Gender / Ùलगं (liMga) : Grammatical cat-
egory dividing nouns into classes basically
characterizable by reference to sex. In Hindi,
there are two genders:

• Masculine / पुिŦंग (pulliMga): nouns de-
noting males.

• Feminine / ųीÙलगं (strIliMga): nouns
denoting females.

7. Synonym / समानाथीर् शब्द (samAnArthI
shabda) : Two lexical units with a shared
meaning. A synonym is a word or phrase that
means exactly or nearly the same as another
word or phrase in the same language. Words
that are synonyms are said to be synonymous,
and the state of being a synonym is called
synonymy. For example, िमतर् (mitra, friend)
and दोस्त (dosta, friend) are synonyms.

8. Antonym / िवलोम शब्द (viloma shabda) :
Words that have opposite meaning. In lexi-
cal semantics, opposites are words lying in an
inherently incompatible binary relationship,
like the opposite pairs बड़ा (badaa, big) - छोटा
(ChoTaa, small).

9. Number / वचन (vachana) : Inflectional cate-
gory basically distinguishing reference to one
individual from reference to more than one.

• Singular / एकवचन (ekavachana): Term
in the category of number, at least one
of whose roles is in referring to one in-
dividual as opposed to more than one.

• Plural / बहĨवचन (bahuvachana): Term
in the category of number, referring to
more than one, or more than some small
number of individuals.

10. Countability / गणनीयता (gaNanIyatA) :

• Countable / गणनीय (gaNanIya): A noun
whose syntax is that of ones denoting in-
dividuals that can be counted.

• Uncountable / अगणनीय (agaNanIya):
A noun whose syntax is characteristic of
a class whose members do not denote in-
dividuals that can be counted.

Unique Features
These features provide the deeper grammatical in-
formation, i.e., lexico-semantic relations. These
are not commonly found in regular dictionaries or
thesauri. These features are made available from
level 3.

11. Affix : Any element in the morphological
structure of a word other than a root.

• Prefix / उपसगर् (upasarga): An affix
which comes before the form to which
it is joined.

• Suffix / पर्त्यय (pratyaya): An affix that
comes after the form to which it is added.

• Root word / मूल शब्द (mUla shabda): A
form from which words or parts of words
are derived and which is not itself deriv-
able from any smaller or simpler form.

12. Junction / संÙध (saMdhi) : Ancient Indian
term for the modification and fusion of sounds
at or across the boundaries of grammatical
units. The major are स्वर (svara, vowel), व्यजंन
(vyaMjana, consonant) and िवसगर् (visarga).

249

13. Kind of POS
Kind of Noun / संज्ञा के पर्कार (saMjñA ke
prakAra) :

• Proper noun / व्यिक्वाचक संज्ञा (vyak-
tivAchaka saMjñA) : It is a name that
identifies a particular person, place, or
thing. These nouns refer to something
particular. For example, writeHi ����
(govA, Goa) and िशवाजी (shivAjI, Shiv-
aji) are proper nouns.

• Common noun / जाितवाचक संज्ञा (jAti-
vAchaka saMjñA) : Common Nouns are
words used to describe similar items or
a class of things. For example, a person
who studies is a student, a person who
practices medicine as a profession is a
doctor. िकताबें (kitAbeM, books), आदमी
(AdamI, man), दोस्त (dosta, friend), and
लड़कĢ (laDa�kI, girl) are common nouns.

• Abstract Noun / भाववाचक संज्ञा (
bhAvavAchaka saMjñA) : It is a
noun which refers to ideas, qualities,
and conditions - things that cannot
be seen or touched and things which
have no physical reality. सत्य (satya,
truth), बहादरुी (bahAdurI, bravery), खशुी
(khushI, happiness) are examples of
abstract nouns.

• Collective Noun / समूहवाचक संज्ञा
(samUhavAchaka saMjñA) : It refers
to groups of people or things. Names
are given to a collection of persons or
things are known as समूहवाचक संज्ञा
(samUhavAchaka saMjñA). These
words are used to refer to the whole
group as one. Examples are सेना (senA,
army), सभा (sabhA, assembly), पěरवार
(parivaar, family) are examples of
collective nouns in Hindi.

Kind of Adjective / िवशेषण के पर्कार (vishe-
ShaNa ke prakAra) :

• Qualitative / गुणवाचक (guNavAchaka)
: Describes the qualities of a person
or thing. Examples are अच्छा(achChA,
good, nice), लम्बा (lambA, Long), बाहरी
(bAharI, outsider), लाल (lAla, red), etc.

• Numeral /संख्यावाचक (saMkhyAvAcha-
ka) : Denotes number of person or
things. Examples are दो (do, two), कई
(kaI, many), थोड़े (thoDa�e, few), etc.

• Quantitative / पěरमाणवाचक (parimANa-
vAchaka) : denotes the amount or quan-
tity. Examples are दो िकलो (do kilo,
two kilograms), ज्यादा (jyaadA, Plenty,
More), etc.

• Pronominal /सावर्नािमक (sArvanAmika)
: A pronoun that is being used as an
adjective to modify a noun or another
pronoun. Examples are मेरी पुस्तक (merI
pustaka, my book), िकसका काम (kisakA
kAma, whose work), आपका सामान
(ApakA sAmAna, your stuff).

Kind of Verb / िकर्या के पर्कार (kriyaa ke
prakaara) :

• Simple verb / सरल िकर्या (sarala kriyaa)
: In Hindi, there are some verbs that are
composed of single word. These verbs
are called simple verbs. For example,
पूछना (puuChanaa, to ask), होना (honaa,
to be), etc.

• Conjunct verb / संयकु् िकर्या (saMyukta
kriyaa): It has different combinations
of more than one POS categories, viz.,
Noun + Verb, Adjective + Verb. A
conjunct verb is formed by joining
either a noun or an adjective with a verb.
For example, वह साफ़ करती है (vaha
saapha�karatii hai, she cleans).

• Compound verb / यौिगक िकर्या (yaugika
kriyaa): It has Verb + Verb combina-
tion, where one verb is semantically
contented and the other verb acts as
a modifier. For example, ले जाना (le
jaanaa, to carry away), etc.

• Causative verb / पर्ेरणाथर्क िकर्या (pre-
raNaarthaka kriyaa): Causative verb
denotes an action which is not directly
performed by the subject but indirectly
through some other agent. These are
verbs which end in “वाना” (vaanaa) and

250

"आना" (aanaa). Example are, करवाना
(karavaanaa, to cause to do) and कराना
(karaanaa, to cause to do).

Kind of Adverb / िकर्या िवशेषण के पर्कार (kriyA
visheShaNa ke prakAra) :

• Manner / रीितवाचक (rItivAchaka) :
Manner adverbs tell us about the way
something happens or is done. For ex-
ample:ध्यानपूवर्क (dhyAnapUrvaka, care-
fully).

• Place / स्थानवाचक (sthAnavAchaka) :
Place adverbs tell us about where some-
thing happens or where something is.
For example: ऊपर (Upara, above).

• Time /कालवाचक (kAlavAchaka) : Time
adverbs tell us about when something
happens. For Example : अभी (abhI,
now).

• Quantity / पěरमाणवाचक (parimANavA-
chaka) : Quantity adverbs modify the
quantity or intensity of an adjective or
verb. For example : िबल्कुल (bilkula,
surely, totally).

14. Indeclinable /अव्यय (avyaya) : A form which
does not have a distinct inflections. For exam-
ple पश्चात (paSHchaat, subsequently).

15. Spelling variation / शब्द-िवन्यास िविवधता
(shabda-vinyAsa vividhatA) : Words which
are having variation in their spellings. For ex-
ample नज़र (naja�ra, vision) and नजर (najara,
vision) has spelling variations.

16. Transitivity / संकर्ािमता (saMkrAmitA) :

• Transitive / सकमर्क (sakarmaka) : Con-
struction in which a verb is related to
at least two nouns or their equivalent,
whose semantic roles are characteristi-
cally those of an agent and a patient. For
example खाना (khaanaa, to eat).

• Intransitive / अकमर्क (akarmaka) : A
construction in which a verb is related to
a single noun or its equivalent. For ex-
ample सोना (sonaa, to sleep).

17. Hypernymy (is a kind of) / एक तरह का (eka
taraha kA) : A semantic relation between two
synsets to capture super-set hood. For exam-
ple, hypernymy of आम (aama, mango) is फल
(phala, fruit).

18. Hyponymy (type of) / पर्कार (prakAra) : A
semantic relation between two synsets to cap-
ture sub-set hood. For example, hyponymy
of आम (aama, mango) is दशहरी (dashaharii,
Dashahari).

19. Meronymy (part of) / का िहस्सा (kA hissA) :
Relation between lexical units where the ob-
jects, etc., denoted by one are parts of those
denoted by other. For example, meronymy of
आम (aama, mango) is गुठली (guThalii, seed).

20. Holonymy (whole of) /अिंगवाची (aMgivAchI)
: A semantic relation that holds between a
whole and its parts. For example, Holonymy
of गुठली (guThalii, seed) is आम (aama,
mango).

21. Modifies Verb / अथर्-संकुचन िकर्या (artha-
saMkuchana kriyaa) : Certain adverbs can
only go with certain verbs. Modifies Verb is
a relation to show connection between such
words. For example बाद (baad, beyond) mod-
ifies verbs होना (honaa, to be) and काम करना
(kaam karanaa , to work).

22. Modifies Noun / अथर्-संकुचन संज्ञा (artha-
saMkuchana saMGYaa) : Certain adjectives
can only modify certain nouns. For exam-
pleअÙधक (adhika, much) modifies nouns वस्तु
(vastu, thing), जीव (jiiva, being), etc.

23. Troponymy / पर्कारवाची (prakaaravaachii) :
Troponym denotes a specific manner elabo-
ration of another verb. It shows manner of an
action, i.e., X is a troponym of Y if to X is
to Y in some manner. For example, मुस्कुराना
(muskuraanaa, to smile) is a troponym of
हँसना (hansnaa, to laugh).

24. Causative / पर्ेरणाथर्क िकर्या (preraNaarthaka
kriyaa) : The Causative relation links the
causative verbs with the base verbs and show
interdependency between them. For exam-
ple, खाना (khaanaa, to eat) has causative verb
Ùखलाना (khilaanaa, to make someone eat).

25. Entailment / अपěरहायर्तावाची (aparihaary-
ataavaachii) : Entailment refers to a relation-
ship between two verbs. Any verb A entails
B, if the truth of B follows logically from the
truth of A. The relation of entailment is uni-
lateral, i.e., it is one way relation. For exam-
ple, खरार्टा लेना (kharraaTaa lenaa, to snore)
entails सोना (sonaa, to sleep).

251

26. Link Type : This has major three links as fol-
lowed:

• Ability Link आन्तर-योग्यता िनदेर्शी िकर्या
(aantara-yogyataa nirdeshii kriyaa) :
This link specifies the inherited features
of a nominal concept. For exampleमछली
(maCHlii, fish) has ability link to तरैना
(tairnaa, to swim).

• Capability Link बाŰ-योग्यता िनदेर्शी
िकर्या (baahya-yogyataa nirdeshii
kriyaa) : This link specifies the ac-
quired features of a nominal concept.
For example व्यिक् (vyakti, person) has
capability link to तरैना (tairnaa, to
swim).

• Function Link कर्म िनदेर्शी िकर्या (krama
nirdeshii kriyaa) : This link specifies
the function of a nominal concept. For
example िशक्षक (shikshak, teacher) has
functional link to पढ़ाना (paRhaanaa, to
teach).

27. Attribute गुणवाची (guNavaachii) : This de-
notes the properties of noun. It is a linkage
between noun and an adjective. For exam-
ple, पक्षी (pakshii, bird) has an attribute पखंदार
(pankhdaar, having wings).

3.1 A Comparative Study
A study of current digital resources used by var-
ious educational institution was done as a part of
the background study. The outcome showed a big
gap of quality resources which can cover aspects
of language learning viz. grammar, concepts, us-
age and pronunciations in an effective manner; and
which are based on the curriculum.

Some of the applications for language learning
which offer Hindi learning are Duolingo12, Hindi-
pod13, Rocket Language14, Italki15, etc. Some
applications made specifically for children are
dinolingo16 , akhlesh17, galligallisimsim18, etc.
Other online resources for Hindi language learn-
ing are bilingual dictionaries which provide only
the meanings of the words, such as Shabdkosh19,

12https://www.duolingo.com/
13https://www.hindipod101.com/
14https://www.rocketlanguages.com
15https://www.italki.com
16https://dinolingo.com
17http://www.akhlesh.com/
18http://www.galligallisimsim.com/
19www.shabdkosh.com/

Collins dictionary20, etc.
The common factor among all the above

resources is their inability of customization for
formal school setups. They are more focused on
individual learning (Redkar et al., 2017).

Advantages of Hindi Shabdamitra over the
above e-learning tools:

• Hindi Shabdamitra provides an insight about
deep grammatical features of a word/concept.

• It caters to school teachers, students and par-
ents by providing the curriculum based vo-
cabulary.

• It is based on a lexically rich resource, Hindi
Wordnet, whose features like lexico-semantic
and ontological relations provide much more
information.

• It provides both, systematic learning as well
as random learning approaches.

4 Enhancing Teaching-Learning Process
According to (Dike, 1989), audio-visual resources
do not only increase the motivation of the teach-
ers and learners, they add clarity to the topic taught
and make learning more interesting. The impact of
new technologies in educational contexts has been
mostly positive as new technologies have given ed-
ucators the opportunity to enhance their knowl-
edge, skills, and therefore enhance the standard
of education. Researchers have found that student
engagement, achievement and motivation are en-
hanced through integration of such technologies.

Hindi Shabdamitra facilitates learning with the
help of illustrations and pronunciation for multi-
sensory impact. This tool can assist the teachers in
better classroom management and make learning
Hindi an interesting activity (Redkar et al., 2017).

Learning Benefits
With the help of audio-visual methods for learning,
small children learn easily and effortlessly. Hence,
for the initial phases, in Hindi Shabdamitra, con-
cepts are pictorially depicted by providing illustra-
tions for level 1 and 2, as to understand a concept
easily. Most of the illustrations are simple and con-
vey the exact information.

Also, the words are provided with the audio pro-
nunciation. These words are recorded by native

20https://www.collinsdictionary.com

252

speakers of the language. The best thing about
having audio pronunciation is that the teacher can
play it multiple times, until the student understands
it properly. Another advantage is that the audio
reaches to the entire classroom, i.e., till the last
bench.

Hindi Shabdamitra promotes following aspects
with the help of audio-visual aids for learning:

• Experiential Learning:
Digital learning redefines the boundaries of a
classroom. Sitting in a class, the students ex-
perience the application of a concept through
dynamic content 21

• Flipped Classroom approach:
The reversal of traditional teaching which
provides active learning. Students are accus-
tomed to interacting with audio and video on
electronic devices, so it stands to reason that
they would digest educational content in this
manner as well22.

Teaching benefits
• Validation:

Words and their respective illustrations and
audio pronunciations give an advantage to the
teacher to validate whether the students un-
derstood the entire concept or not. S/he is able
to present the image and audio multiple times
for the clarity of the concept.

• Sharing the burden:
It is certainly difficult for a teacher to pro-
vide the meaning of every word. Since Hindi
Shabdamitra is focused on vocabulary learn-
ing, the teacher has an aid. Whenever a stu-
dent has a doubt about a specific word s/he
can simply search the word. The tool will
share the burden of the teacher.

• Effectiveness as an aid:
The teaching profession is filled with count-
less opportunities to enrich the academic lives
of students, while some concepts and edu-
cational objectives will be easy for students
to grasp, other will require you to think cre-
atively to ensure that important learning ob-
jectives are met. Using audiovisual aids in

21https://www.academia.edu/33866288/DIGITAL_
CLASSROOMS_A_BOON_FOR_ACHIEVING_QUALITY_
EDUCATION_IN_INDIA

22https://www.academia.edu/16071067/Effects_
of_Flipped_Classroom

teaching is one way to enhance lesson plans
and give students additional ways to process
subject information (Kunari, 2006).

5 Field Trial and User Response

As a part of testing the tool, the field trial of Hindi
Shabdamitra interface was done at some schools
with students & teachers’ participation in the exer-
cise. Also, an online survey was conducted. The
feedback was sought for the content, ease of han-
dling the application, classroom impact and overall
experience by teachers and students. Following are
the summarized observations:

• Hindi Shabdamitra helped teachers in ex-
plaining concepts clearly with the help of il-
lustrations and simplified concepts.

• The aid assisted the teacher in better class-
room management

• Reduced effort of reiterating the concepts for
better retention.

• Audio clips helped in understanding the pro-
nunciation of a given word.

• Having the standardized pronunciation by the
native Hindi speaker.

The application has been improved based on the
feedback received by students and teachers.

6 Conclusion and Future Work

The paper presents an insight of a Hindi Shabdami-
tra, an e-learning tool for teaching and learning
Hindi language by Redkar et al. (2017). A compar-
ative study of the existing technologies with Hindi
Shabdamitra was done where it is found to have
much more features. The field trial and survey was
conducted with which the observations and student
& teacher benefits have been reported here. This
tool definitely enhances the teaching-learning ex-
perience and has an exhaustive feature list which is
not there in many of the other e-learning products.
It caters to a wide range of audience and is avail-
able in both web-based and app-based formats.

In future, the authors intend to record the learn-
ing process of student, provide a teaching-learning
process flow, an interactive assessment module for
evaluations and other game based assessment mod-
ules for fun learning.

253

Acknowledgements
The authors would like to acknowledge the sup-
port and help by the members of Center for Indian
Language Technology (CFILT)23 and Hindi Shab-
damitra team. The funding agency, Tata Center for
Technology and Design (TCTD)24 has been instru-
mental and supportive throughout the development
of Hindi Shabdamitra.

References
Mofareh Alqahtani et al. 2015. The importance of vo-

cabulary in language learning and how to be taught.
International Journal of Teaching and Education
3(3):21–34.

Nasser Atasheneh and Maki Naeimi. 2015. Vocabu-
lary learning through using mechanical techniques
vocabulary learning strategy. Theory and Practice
in Language Studies 5(3):541.

Pushpak Bhattacharyya. 2010. Indowordnet. In The
WordNet in Indian Languages, Springer, pages 1–18.

Heidi Brumbaugh. 2015. Self-assigned ranking of L2
vocabulary: using the Bricklayer computer game to
assess depth of word knowledge. Ph.D. thesis, Arts
& Social Sciences:.

Shari Butler, Kelsi Urrutia, Anneta Buenger, Nina Gon-
zalez, M Hunt, and Corinne Eisenhart. 2010. A re-
view of the current research on vocabulary instruc-
tion. National Reading Technical Assistance Center,
RMC Research Corporation 1.

Ronald Carter. 1987. Vocabulary and second/foreign
language teaching. Language Teaching 20(01):3–16.

Edgar Dale. 1969. Audiovisual methods in teaching .

H L Dike. 1989. Strategies for producing instructional
materials .

Jorge Francisco Figueroa Flores. 2015. Using gamifi-
cation to enhance second language learning. Digital
Education Review 27:32–54.

Amit C. Hiray. 2015. Teaching and Learning of EAP
Vocabulary: A Web-based Integrative Approach at
the Tertiary Level in India. Ph.D. thesis, Dept. of
HSS, IIT Bombay.

X Hu, AC Graesser, Tutoring Research Group, et al.
1998. Using wordnet and latent semantic analysis to
evaluate the conversational contributions of learners
in the tutorial dialog. In Proceedings of the inter-
national conference on computers in education. vol-
ume 2, pages 337–341.
23http://www.cfilt.iitb.ac.in
24http://www.tatacentre.iitb.ac.in/digital_

aid.php

Kunari. 2006. Methods of teaching educational tech-
nology. Science Direct, New Delhi .

Chun Lai, Mark Shum, and Yan Tian. 2016. Enhanc-
ing learners’ self-directed use of technology for lan-
guage learning: the effectiveness of an online train-
ing platform. Computer Assisted Language Learn-
ing 29(1):40–60.

Chih-Cheng Lin. 1997. Semantic network for vocabu-
lary teaching. Journal of National Taiwan Normal
University (42):43–54.

P. H. Matthews. 2007. The Concise Oxford Dictionary
of Linguistics, volume 2nd Edition. Oxford Univer-
sity Press.

Richard E Mayer and Roxana Moreno. 2003. Nine ways
to reduce cognitive load in multimedia learning. Ed-
ucational psychologist 38(1):43–52.

Roxana Moreno and Richard Mayer. 2007. Interac-
tive multimodal learning environments. Educational
psychology review 19(3):309–326.

Paul Nation and Jonathan Newton. 1997. Teaching vo-
cabulary. Second language vocabulary acquisition
pages 238–254.

Hanumant Redkar, Sandhya Singh, Meenakshi Soma-
sundaram, Dhara Gorasia, Malhar Kulkarni, and
Pushpak Bhattacharyya. 2017. Hindi shabdamitra:
A wordnet based e-learning tool for language learn-
ing and teaching pages 23–28.

Michael Sankey, Dawn Birch, and Michael Gardiner.
2010. Engaging students through multimodal learn-
ing environments: The journey continues. In Pro-
ceedings ASCILITE 2010: 27th Annual Conference
of the Australasian Society for Computers in Learn-
ing in Tertiary Education: Curriculum, Technology
and Transformation for an Unknown Future. Univer-
sity of Queensland, pages 852–863.

Ladan Shams and Aaron R Seitz. 2008. Benefits of
multisensory learning. Trends in cognitive sciences
12(11):411–417.

Koun-Tem Sun, Huang Yueh-Min, and Liu Ming-Chi.
2011. A wordnet-based near-synonyms and similar-
looking word learning system. Journal of Educa-
tional Technology & Society 14(1):121.

Kevin Werbach and Dan Hunter. 2012. For the win:
How game thinking can revolutionize your business.
Wharton Digital Press.

Jaeseok Yang. 2013. Mobile assisted language learn-
ing: review of the recent applications of emerging
mobile technologies. English Language Teaching
6(7):19–25.

254

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 255–264

”A pessimist sees the difficulty in every opportunity; an optimist
sees the opportunity in every difficulty” – Understanding the

psycho-sociological influences to it

Upendra Kumar, Vishal Singh Rana, Srinivas PYKL and Amitava Das

Indian Institute of Information Technology, Sri City, AP, India, 517588

{upendra.k14, vishal.s14, srinivas.p amitava.das}@iiits.in

Abstract

This paper presents an empirical study to under-
stand how psycho-sociological factors influence
on optimism/pessimism at the individual level.
Optimists believe that future events are going to
work out for the best; pessimists expect the worst.
Their expectations manifest in their day-to-day be-
haviour and also reflects the way a person tweets
or behaves in online social media. To this end,
we have identified optimist/pessimist users from
Twitter, analyzed their personality (psychological)
and values & ethics (sociological) at the commu-
nity level. Empirical analysis reveals some inter-
esting insights and behavioral patterns related to
user level optimism/pessimism in different combi-
nations of psychological and sociological factors,
are reported.

1 Introduction

Optimists are people who tend to have favourable
outlook of their life whereas pessimists tend to
derive negative interpretations from the events
around them. Their approach towards life gen-
erally manifests in their day-to-day behaviour.
For example, they have different mechanisms to
cope with positive or negative events around them.
The first computational model to estimate the de-
gree of optimism/pessimism at tweet level as well
as user level has been introduced by [Ruan et
al.2016]. This paper could be seen as an exten-
sion to that work. Here we are trying to understand
how psycho-sociological factors influence on op-
timism/pessimism at individual level. To under-
stand psychological factors we have analyzed per-

sonality of each user using the Big5 Personality
Model [Goldberg1993]. On the other hand, to un-
derstand sociological factors we have used values
& ethics (Schwartz Values Model) [Schwartz1992]
model. Therefore, both the influencing factors
have been aggregated and analyzed at community
level (a community in a social network is consid-
ered to be a group of nodes densely connected in-
ternally and sparsely connected externally). The
presumption here was that two persons with same
personality trait but under distinct sociological in-
fluences at community level may react differently
and similarly people with different personalities
but in different sociological circumstances may re-
act exactly in the same way. However, [Ruan et
al.2016] had also discussed that personality is cor-
related with optimism [Sharpe et al.2011]. Pes-
simism is principally associated with neuroticism
and negative affect while optimism is primarily
associated with extraversion and positive affect
[Marshall et al.1992]. We draw motivations from
all these previous works and to this end this paper
reports a comprehensive empirical study to under-
stand how user level optimism/pessimism got in-
fluenced by person level psychology i.e. person-
ality and by societal level values & ethics at com-
munity level.

We report interesting results and correlations
related to influence of psycho-sociological factors
on optimists/pessimists on Twitter. A few societal
factors were found to to be more influencing than
other societal factors. For example, achievement
and conformity classes tend to be more influenc-
ing than other classes of values in promoting op-
timistic views in social media. Also a few social
factors (or community level factors) like achieve-

1
255

ment and stimulation were found to be more pos-
itively correlated than user level factors in opti-
mists. On the other hand, for pessimists power-
oriented and traditional settings seem to be more
correlated than other factors.

The paper is structured as follows. In Sec-
tion 2, we discuss the relevant research work
done in the area of computational models for op-
timism/pessimism as well as psycho-sociological
factors. The data sources used for building clas-
sifiers, fuzzy distributions of personality and val-
ues in the corpus and performance of classifiers
used to infer the distribution of different psycho-
sociological aspects are discussed in Section 2.
Section 3 describes the methodology used for ex-
tracting the semantic representation of a commu-
nity in terms of it’s values. Section 4 explains the
use of semantic interpretation of communities in
terms of their values and psycho-sociological pat-
terns of users for the calculation of aggregate de-
gree of optimism/pessimism under the influence of
different factors. In Section 5, important corre-
lations related to influence of different factors on
optimists/pessimists are discussed in detail.

2 Related Work

There has been a little research in the field
of computational models to predict the degree
of optimism. [Ruan et al.2016] developed the
first computational model for measuring the op-
timism/pessimism of users based on their social
media activity. 714 potential optimists and 614
potential pessimists were identified by searching
for specific phrases. After identification of poten-
tial optimists and pessimists, they created a ground
truth dataset through human annotation on a ran-
domly selected subset of corpus. In order to rank
the users according to degree of optimism and pes-
simism, Twitter users were sorted based on the
average scores assigned to their tweets.The top
25% were labelled as optimists whereas the bot-
tom 25% were labelled as pessimists.

Deeper understanding of human personality,
beliefs, ethics, and values has been a key research
agenda in Psychology and Social Science research
for several decades. One of the most accepted
and widely used frameworks for understanding
values is Schwartz Theory of Basic Human Val-
ues [Schwartz1992]. Schwartz’s 10-Values model
postulated and empirically verified (on data ob-

tained from a self-assessment questionnaire) the
existence of ten basic Values based on people’s
motivation. The Schwartz model was proved to be
very successful in psychological research as well
as in other fields. The ten basic Values are related
to various outcomes and effects of a person’s role
in a society [Argandoña2003]. The Values have
also proved to provide an important and powerful
explanation of consumer behaviour and how they
influence it [Kahle et al.1986].

In the recent years, there have been few ini-
tiatives to automatically identify various Big5
Personality traits of individuals from their lan-
guage usage and behaviour in social media [Gold-
berg1993]. A milestone in this area was the 2013
Workshop and Shared Task on Computational Per-
sonality Recognition1, repeated in 20142. Further
research work in the area of developing computa-
tional model for identifying Personality from lan-
guage usage on Facebook and Twitter has been
done in [Park et al.2015] and [Quercia et al.2011]
respectively. However, no computational model
for Schwartz’ Values has been tested or examined
before.

3 Obtaining Psycho-Sociological
Patterns of Users

The psycho-sociological backgrounds of an in-
dividual play a very crucial role in determin-
ing their inclination of being an optimist or pes-
simist. In our current work, we analyze two
psycho-sociolological aspects in correlation with
optimism/pessimism: personality and values. We
build two classifiers (by analyzing social media
content: tweets and activities) to estimate some-
one’s inclination towards optimism/pessimism:

Personality: [Goldberg1990] to determine
which personality types {openness, conscientious-
ness, extroversion, agreeableness, neuroticism}
are more inclined towards optimism/pessimism.

Values & Ethics: [Schwartz1992] to es-
timate the nature of values possessed by
optimism/pessimism, in terms of 10 values
{achievement, benevolence, conformity, he-
donism, security, self-direction, stimulation,
tradition, universalism} types proposed by
Schwartz.

1http://mypersonality.org/wiki/doku.php?id=wcpr13
2https://sites.google.com/site/wcprst/home/wcpr14

256

The psycho-sociological patterns thus ob-
tained, can be used as metrics to gauge someone’s
inclination towards optimism/pessimism. Such
finding could be helpful for various practical pur-
poses like online recommendation system, Twit-
ter could improve its “who to follow” suggestions,
online advertisement and etc by biasing the ran-
dom walks procedure used in link prediction al-
gorithms or adding regularization terms in matrix
factorization methods.

3.1 Data Sources

We used four datasets for our analysis : (1) Op-
timism/Pessimism dataset for replication of com-
putational model proposed by [Ruan et al.2016],
(2) Personality dataset for developing the compu-
tational model for predicting five personality traits
at user-level, (3) Values & Ethics dataset for devel-
oping a model for prediction of Values & Ethics
at user-level and (4) SNAP Dataset for analyzing
distribution of optimists/pessimists in influence of
different psycho-sociological factors.

Optimism/Pessimism: For the purpose
of developing computational models for Opti-
mism/Pessimism, we used the dataset proposed
by [Ruan et al.2016]. The Twitter conversations
dataset was obtained by searching for key-phrases
such as ”I am optimistic” for identifying op-
timistic users and keywords such as “hate”,
“unfair”, and “disgust” for identifying potential
pessimists. They identified 718 potential optimists
and 640 potential pessimists with maximum of
2, 000 tweets per user. A small subset of 500
potential optimists and 500 potential pessimists
were selected. To create a human annotated
ground truth dataset, 15 tweets for each user
were randomly selected. Further, each tweet was
annotated as potimist or pessimist.

Personality: The personality labeled gold cor-
pus (10K Facebook status updates of 250 users
and their Facebook network properties), released
in WCPR’133 workshop, was used to build the
personality model. From the Table 1, we can ob-
serve that the Facebook Personality corpus used
in WCPR’13 is balanced corpus with almost equal
distribution of users across all five different per-
sonality traits.

Values & Ethics: The Values & Ethics data
for 367 users was crowd-sourced along with users’

3
http://mypersonality.org/wiki/doku.php?id=wcpr13

Table 1: Flat distribution of Big5 Personality
types in the Facebook Personality corpus: Open-
ness (O), Conscientiousness (C), Extraversion (E),
Agreeableness (A), Neuroticism (N), The last col-
umn gives the Average Majority Baselines.

O C E A N Avg
70.40 52.00 38.40 53.60 39.60 50.80

Twitter Ids using Amazon Mechanical Turk as a
service, while ensuring that the participants came
from various cultures and ethnic backgrounds:
the participants were equally distributed across
the globe – Americans (USA, Canada, Mexico,
Brazil), South Asia (India, Pakistan, Bangladesh),
and a few East-Asians (Singaporeans, Malaysian,
Japanese, Chinese). The selected Asians were
checked to be mostly English speaking.

We obtained data from self-assessment based
psychometric tests using male/female versions of
PVQ, the Portrait Values Questionnaire [Schwartz
et al.2001]. The PVQ asks participants to an-
swer each question on a 1–6 Likert rating scale4.
A rating of 1 means “not like me at all” and 6
means “very much like me”. An example ques-
tion is “He likes to take risks. He is always look-
ing for adventures.” where the user should an-
swer while putting himself in the shoes of “He”
in the question. The standard practice is to ask
a fixed number of questions per psychological di-
mension. Therefore, there are five questions for
each of the ten Values classes, resulting in a 50
item PVQ questionnaire. Once all the questions in
the PVQ have been answered, for each user and
for each Values class, a score is generated by av-
eraging all the scores (i.e., user responses) cor-
responding to the questions in that class, as de-
scribed by [Schwartz2012]. Further, the rescaling
strategy proposed by [Schwartz2012] was used to
eliminate randomness from each response given
by a user as follows: for each user, the mean re-
sponse score was first calculated considering all
the responses s/he provided, and then the mean
score from each response was subtracted. See
[Schwartz2012] for more details on PVQ and the
score computation mechanism.

The ranges of scores obtained from the pre-
vious rescaling method may vary across different
Values classes. For instance, the ranges of the
rescaled scores for the Twitter Values corpus are as

4http://www.simplypsychology.org/likert-scale.html

257

Table 2: Flat distribution of Schwartz’ value
types in the corpora: Achievement (AC), Benev-
olence (BE), Conformity (CO), Hedonism (H),
Power (PO), Security (SE), Self-Direction (SD),
Stimulation (ST), Tradition (TR), Universal-
ism (UN). The last column gives the Average Ma-
jority Baselines.

AC BE CO HE PO SE SD ST TR UN Avg
81.00 78.70 73.30 77.10 50.10 76.30 83.40 73.60 52.60 82.00 72.80

follows: Achievement [−4.12, 3.36], Benevolence
[−1.56, 3.39], Conformity [−3.35, 3.01], Hedo-
nism [−5.18, 4.35], Power [−6.0, 2.27], Security
[−2.60, 2.40], Self-Direction [−1.61, 3.40], Stim-
ulation [−5.0, 2.63], Tradition [−4.49, 3.35], and
Universalism [−3.33, 3.30].5 Hence the follow-
ing normalisation formula was applied to move the
ranges of the different Values classes to the [−1, 1]
interval:

xscaled =
2 ∗ (x− xmin)

xmax − xmin
− 1

Further, for obtaining text data to train com-
putational model we collected tweets from users’
Twitter accounts. However, several challenges
have to be addressed when working with Twitter.
For example, several users had protected Twitter
accounts, so that their tweets were not accessi-
ble when using the Twitter API. In addition, many
users had to be discarded since they had tweeted
less than 100 tweets, making them uninteresting
for statistical analysis. In addition, some extreme
cases when users mentioned someone else’s (some
celebrity’s) Twitter account, had to be discarded.
Finally after filtering the data, we obtained a text
dataset of 367 users consisting of at least 100
tweets and maximum of 3200 tweets. Categori-
cal flat distributions of Values types are reported
in the Table 2.

SNAP Dataset: In order to analyze the be-
haviour of optimists/ pessimists at societal level,
the egocentric twitter network released by SNAP
is used. For the purpose of investigating the soci-
ological factors operating at societal level, 1,562
ground-truth communities spanning over 81306
nodes and 1, 768, 149 edges were considered for
further analysis (other communities having size

5The distribution of a particular value type over a corpus
was analysed using the Bienaymé-Chebyshev Inequality [Bi-
enaymé1853, Tchébichef1867], showing that, for example,
most of the Achievement instances (89%) were in the range
[−2.96, 2.84].

less than 5 and with number of tweets less than
100 were discarded).

3.2 Corpus Statistics

Categorical flat distributions of Personality and
Values types are reported in Table 1 and Ta-
ble 2, respectively. It is noteworthy that the
Facebook Personality corpus used in the Work-
shop on Computational Personality Recognition
shared task [Celli et al.2013] is quite balanced
because it was judiciously chosen from a larger
10K user data corpus collected in the myPersonal-
ity project.6 The shared task organisers chose the
right (desired) distribution for the released corpus,
but in a real-life setting it is almost impossible to
get a balanced data from any user population or so-
cial media platform. On the other hand, the Twitter
corpus, collected by us is skewed.

Moreover, both the Personality model and
Schwartz’ Values model support fuzzy member-
ship, which means that anyone having Open per-
sonality can have Agreeable nature as well, and
similarly that someone with Power orientation also
can have Achievement orientation. To understand
this notion, the fuzzy membership statistics of
Facebook Personality corpus and Twitter Values
corpus are reported in Figures 1 and 2 respectively.

On a careful analysis of Figure 1 one can
clearly observe how each Personality trait is over-
lapped with other Personality traits. For example,
for Openness (O), we can clearly see that almost
equal amount of people are positively oriented to-
wards all the remaining four Personality dimen-
sions. Similarly, Agreeable people are evenly dis-
tributed among three traits: Openness, Extrover-
sion and Conscientiousness, but very few of them
have in neurotic nature. On the other hand, the
class distribution of Neuroticism (N) is highly im-
balanced, as most of the people who are neurotic
are always eager to experience new things always
to satisfy their ever-changing mood. Further, it can
be inferred from the visualisation that very few ex-
troverts have neurotic nature, but many of them are
positively oriented towards Conscientiousness (C)
trait. It indeed makes sense as extrovert people
are outgoing and would like to mingle in differ-
ent circles of the society, and thus they are accom-
modative and less sentimental, i.e., less neurotic
but they are rather methodical i.e., conscientious.

6http://mypersonality.org

258

Figure 1: Fuzzy distributions of Big5 Personality traits in the myPersonality corpus. Similar to
Schwartz’s fuzzy distribution this table attempts to present the interconnection between different Per-
sonality traits.

Figure 2: Fuzzy distributions of Schwartz’ values in the Twitter corpus. Schwartz’ theory explains how
the values are interconnected and influence each other, since the pursuit of any of the values results in
either an accordance with one another (e.g., Conformity and Security) or a conflict with at least one other
value (e.g., Benevolence and Power).

It is also clear that the fuzziness is much higher
among the Values classes than among the Person-
ality traits. One possible reason is that Person-
ality has fewer number of classes than Schwartz
Values. Such overlapping nature of psychologi-
cal classes makes the computational classification
problem much more challenging than the classical
sentiment analysis problem.

3.3 Psycholinguistic and Network Fea-
tures

We explored exhaustive set of features includ-
ing – (f1) Word N-grams; (f2) Lingustic Fea-
tures (LIWC7; Harvard General Inquirer, MRC
psycholinguistic feature; Sensicon8); (f3) Speech-
Act classes; (f4) Sentiment Amplifiers (Exclama-
tion Marks, Quotes, Ellipses, Interjections, Emoti-
cons, Word/Sentence Length); (f5) Sentiment/
Emotion lexica (NRC emotion Lexicon [Moham-
mad et al.2013], Sentiwordnet [Esuli and Sebas-
tiani2007]); (f6) Topics words obtained from topic
model. A brief overview about personality, values,

7
http://www.liwc.net/

8
https://hlt-nlp.fbk.eu/technologies/sensicon

Table 3: Features used in psycho-sociological
models

Models f1 f2 f3 f4 f5 f6 F-Score
Personality + + + - - - 79.35%

Values - + + - - + 80.10%
Optimism/Pessimism + + - - + - 77.89%

and optimism/pessimism models and features used
are illustrated in 3.

3.4 Building Classifiers

We collected data from several sources to build
three classification models. Here for each model
we report the best classifier. The feature engineer-
ing required for improving performance of Per-
sonality and Values models is discussed in detail
in [Tushar Maheshwari2016]. All the results re-
ported in Table 3 are based on 10-fold cross vali-
dation on respective datasets.

Personality: The personality labeled gold cor-
pus (10K Facebook status updates of 250 users
and their Facebook network properties), released
in WCPR’139 workshop [Celli et al.2013], is used

9
http://mypersonality.org/wiki/doku.php?id=wcpr13

259

to build the personality model. Our SVM-based
model outperforms the state-of-the-art [Verhoeven
et al.2013] by 10%, achieving average F-Score of
79.35%. Features used in this model are reported
in Table 3.

Values & Ethics: For the values model we
crowd-sourced a Twitter corpus using the Ama-
zon Mechanical Turk10. Self-assessments were
obtained using the Portrait Values Questionnaire
(PVQ) [Schwartz et al.2001]. At the end of the
data collection process, data from 367 unique
users had been gathered, having 1,608 average
tweets per user (see supp. for details). The SVM-
based values classifiers achieves an average F-
Score of 80% using features reported in Table 3.

Optimism/Pessimism: A Multinomial Naive
Bayes classifier is trained on the dataset intro-
duced by [Ruan et al.2016], the state-of-the-art for
this work. We obtain an F-Score of 77.89% using
featues reported in Table 3), which is comparable
to the state-of-the-art i.e. 81% [Ruan et al.2016].

4 Semantic Interpretation of
Communities

In order to analyze the behaviour of opti-
mists/pessimists at societal level, the egocentric
twitter network released by SNAP is used. The
Twitter network, released by SNAP [Leskovec and
Krevl2015] (nodes: 81,306, edges: 1,768,149) has
been used to study community structure. We con-
sidered 1,562 ground-truth communities (after dis-
carding communities having size less than 5 and
with tweets less than 100).

In order to analyse whether people within the
same community tend to be homogeneous with re-
spect to their background values/ethics, we mea-
sure Shannon’s Entropy (measure of the uncer-
tainty) [Lin1991] for each dimension separately.

Higher entropy scores suggest lower simi-
larity. To calculate the entropy score vector
X(i) for a community C(i) consisting of n users
as u(1), u(2), u(3)...u(n), a matrix A(i) is created
where A(i,j) row vector represents the estimated
scores of each of the ten values for a user u(j)
and A(i,:,k) column vector represents the esti-
mated scores of kth class for all n users. The
A(i,:,k) column vector was transformed to a prob-
ability distribution vector N(i,:,k) using softmax-

10
https://www.mturk.com/

normalization:

N(i,j,k) =
exp(A(i,j,k))

||exp(A(i,:,k)||1

The entropy score X(i,k) for N(i,:,k) can be cal-
culated using the following formulation:

X(i,k) = −
n∑

j=1

N(i,j,k) ∗ logN(i,j,k)

Table 4: Illustrates entropy calculation for values
model. Here T(i) represents the binary estimate of
fuzzy distribution of values and S(i) represents the
zero-mean unit-variance scaled values of X(i) for
a community C(i). Similarly, binary estimates for
five personality traits P(i) of user u(i) are calcu-
lated.

AC BE CO HE PO SE SD ST TR UN
u(1) 0.91 0.47 0.02 0.07 0.32 0.24 0.65 0.78 0.94 0.10
u(2) 0.97 0.40 0.49 0.50 0.56 0.83 0.62 0.73 0.04 0.08
u(3) 0.99 0.75 0.50 0.72 0.38 0.60 0.75 0.02 0.57 0.62
u(4) 0.77 0.44 0.40 0.16 0.19 0.55 0.73 0.08 0.53 0.25
u(5) 0.29 0.02 0.26 0.56 0.41 0.23 0.95 0.02 0.79 0.86

X(i) 1.54 1.40 1.40 1.39 1.55 1.50 1.59 0.99 1.42 1.28
S(i) 0.87 -0.12 -0.12 -0.19 0.95 0.57 1.26 -2.35 0.00 -0.87
T(i) 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0

After normalization, N(i,:,k) vector represents
the probability distribution of kth Value class
across n users where entropy score X(i,k) rep-
resents the randomness in community along kth

Value class. The lower the randomness, higher the
kth class is dominant in the C(i) community. Now,
in order to obtain binary estimates T(i) for each
of the ten values and classes in C(i) community,
the entropy score vector X(i) is scaled using zero-
mean unit-variance method and for numerical val-
ues greater than 0, 1 was assigned and for numeri-
cal values less than 0, 0 was assigned as class label
for C(i) community. Instead of labelling a com-
munity C(i) with a class having minimum entropy,
the scaling approach is used for the purpose of pre-
serving the fuzzy distribution of values at commu-
nity level. The obtained T(i) vector represents the
fuzzy distribution of values and is thus a represen-
tation to capture the semantic information about
the community.

260

Figure 3: Openness Figure 4: Conscientiousness

Figure 5: Extraversion

Figure 6: Agreeableness Figure 7: Neuroticism

Figure 8: Psycho-Sociological Influences on Optimism/Pessimism over Twitter. For ith personality trait,
the radar chart visualizes I(i,:,0) and I(i,:,1) represents degree of optimism and pessimism respectively
over 10 classes of Values & Ethics.

261

5 Understanding Psycho-
Sociological Influences of Opti-
mism/Pessimism

The analysis for user-level estimation starts with
each user u(i) and it’s the binary estimates of
all five traits of the Personality (P(i)), proba-
bility estimates of ten classes of Values (V(i))
and probability estimates of degree of opti-
mism/pessimism (O(i)), obtained using the pre-
trained Big5 Personality model, Schwartz Values
model and optimism/pessimism models respec-
tively. The user-level estimation for the degree
of optimism/pessimism was done by averaging the
optimism/pessimism scores for each user. Further
the estimated scores for five personality traits, ten
values traits and degree of optimism/pessimism
was scaled using zero-mean unit-variance method
for each of the 16 classes independently.

To this extent, we have obtained P(j), V(j) &
O(j) representing the personality traits, values and
degree of optimism respectively for each user u(j)
and binary estimates T(i) representing the fuzzy
distribution of values for each community C(i).

Aggregate Analysis over Personality Traits:
For the purpose of understanding the distribution
of O(j) under the influence of P(j) and T(i) for
a user u(j) in community C(i), we divide our
analysis in five parts according to five different
traits of personality. The division of analysis ac-
cording to five personality traits will help us bet-
ter understand the influence of each of these per-
sonality traits on optimists/pessimists. Therefore,
for all users u(j) having a particular personality
trait, we go into the communities the user u(j)
belongs to and lookup the values of that com-
munity using T(i) as well as obtain the degree
of optimism/pessimism for that user from O(j).
In this way, we aggregate the degree of opti-
mism for each pair of personality trait and val-
ues class and obtain the distribution of degree of
optimism/pessimism under the influence of socio-
psychological factors. The aggregation of degree
of optimism/pessimism can be formulated as fol-
lows :

I(i,j,0) =
∑

u(k)|(P(k,i)=1)∩(T(k,j)=1)

O(k,j,0)

where I(i,j,0) represents the aggregate degree
of optimism for ith personality trait and jth value

class. Similarly, I(i,j,1) representing the degree
of pessimism is calculated by aggregating over
O(k,j,1).

6 Obtained psycho-sociological
patterns

On careful investigation of five radar plots (Fig-
ure 8) for each of the personality traits we discover
interesting patterns on how combination of per-
sonality trait and values influence the behaviour of
optimist/pessimist users on Twitter.

Influence of Psycho-Sociological Factors on
Optimists: In Figure 3, we can infer that people
with open personality are generally optimistic irre-
spective of the dominating values of their commu-
nity as individuals with high openness tend to seek
euphoric experiences resulting in positive expec-
tations. From Figure 4, it is evident that individu-
als high in conscientiousness are positively corre-
lated with very optimistic people in both achieve-
ment as well as stimulation oriented communities.
Since, people high in conscientiousness tend to
have obsession, they are expected to be optimistic
when they are surrounded by people aspiring to
achieve and face challenges. From Figure 5, it can
be observed that extroversion has positive corre-
lation with very optimistic people in communities
highly oriented towards achievement, conformity,
hedonism, security, self-direction and stimulation
owing to their high energy and positive emotions.
Further from Figure 6, we can observe that agree-
able people have very distinct radar profile por-
traying them as very optimistic people irrespective
of their social settings because of their compas-
sionate and cooperative nature.

Overall, from the radar charts, we propose the
order of dominance of societal factors (values &
ethics) over individual factors (personality) by ob-
serving that in certain social factors dominate over
all user-level factors : AC > CO > ST. For exam-
ple, achievement and stimulation oriented settings
encourage more optimistic views on social media
irrespective of different personality traits.

Influence of Psycho-Sociological Factors on
Pessimists: Open people in traditional or power
oriented settings seem to be more pessimistic ow-
ing to many restrictions posed in a traditional
community and quest for prestige in a power ori-
ented community. Similarly, for all other person-
ality traits, the traditional settings influence more

262

than an individual’s personality traits in promot-
ing pessimistic views. Except for agreeable peo-
ple, we can observe that power-oriented commu-
nity also increases the sense of pessimism among
people. In addition, for conscientious users be-
longing to security or self-direction oriented com-
munities are very pessimistic. The pessimistic na-
ture of the conscientious users can be explained
by the fact that their sense of responsibility cou-
pled with pressure for maintaining stability, secu-
rity and making independent choices in life may
lead to lowering their positive expectations.

On the other hand, a few outliers in the anal-
ysis can be seen due to accumulation of inaccura-
cies in the trained models of Values & Ethics as a
result of biased training data which is clear from
flat distribution of values in Table 2. For exam-
ple, on an average, optimism in users belonging to
communities high in universalism as well as pes-
simism in users belonging to communities high in
conformity is relatively high irrespective of their
personality traits.

7 Conclusion and future direction

This paper presents an empirical study to under-
stand how psycho-sociological factors influence
on optimism/pessimism at individual level.

However, we have only analyzed intra-
community psycho-sociological patterns in this
study, but we strongly believe that neighbouring
communities also have influential roles to play on
person level optimism/pessimism. In addition, we
need to study the influence of communities which
are not power-oriented or not achievement ori-
ented along with different personality traits. We
are working on analyzing and inferring other in-
fluencing factors using computational models.

References

[Argandoña2003] Antonio Argandoña. 2003.
Fostering values in organizations. Journal of
Business Ethics, 45(1–2):15–28.

[Bienaymé1853] Irénée-Jules Bienaymé. 1853.
Considérations à l’appui de la découverte de
Laplace sur la loi de probabilité dans la
méthode des moindres carrés. Imprimerie de
Mallet-Bachelier.

[Celli et al.2013] Fabio Celli, Fabio Pianesi,
David Stillwell, and Michal Kosinski. 2013.
The workshop on computational personality
recognition 2013. In Proceedings of the AAAI,
pages 2–5. AAAI.

[Esuli and Sebastiani2007] Andrea Esuli and
Fabrizio Sebastiani. 2007. Sentiwordnet: A
high-coverage lexical resource for opinion
mining. Evaluation, pages 1–26.

[Goldberg1990] Lewis R Goldberg. 1990. An al-
ternative” description of personality”: the big-
five factor structure. Journal of personality and
social psychology, 59(6):1216.

[Goldberg1993] Lewis R Goldberg. 1993.
The structure of phenotypic personality traits.
American psychologist, 48(1):26.

[Kahle et al.1986] Lynn R Kahle, Sharon E
Beatty, and Pamela Homer. 1986. Alternative
measurement approaches to consumer values:
The list of values (lov) and values and life style
(vals). Journal of consumer research, pages
405–409.

[Leskovec and Krevl2015] Jure Leskovec
and Andrej Krevl. 2015. {SNAP
Datasets}:{Stanford} large network dataset
collection.

[Lin1991] Jianhua Lin. 1991. Divergence
measures based on the shannon entropy.
IEEE Transactions on Information theory,
37(1):145–151.

[Marshall et al.1992] Grant N Marshall,
Camille B Wortman, Jeffrey W Kusulas,
Linda K Hervig, and Ross R Vickers Jr. 1992.
Distinguishing optimism from pessimism:
Relations to fundamental dimensions of mood
and personality. Journal of personality and
social psychology, 62(6):1067.

[Mohammad et al.2013] Saif M Mohammad,
Svetlana Kiritchenko, and Xiaodan Zhu. 2013.
Nrc-canada: Building the state-of-the-art in
sentiment analysis of tweets. arXiv preprint
arXiv:1308.6242.

[Park et al.2015] Gregory Park, H Andrew
Schwartz, Johannes C Eichstaedt, Margaret L
Kern, Michal Kosinski, David J Stillwell,
Lyle H Ungar, and Martin EP Seligman. 2015.

263

Automatic personality assessment through
social media language. Journal of personality
and social psychology, 108(6):934.

[Quercia et al.2011] Daniele Quercia, Michal
Kosinski, David Stillwell, and Jon Crowcroft.
2011. Our twitter profiles, our selves: Pre-
dicting personality with twitter. In Privacy,
Security, Risk and Trust (PASSAT) and 2011
IEEE Third Inernational Conference on Social
Computing (SocialCom), 2011 IEEE Third
International Conference on, pages 180–185.
IEEE.

[Ruan et al.2016] Xianzhi Ruan, Steven R Wil-
son, and Rada Mihalcea. 2016. Finding op-
timists and pessimists on twitter. In The 54th
Annual Meeting of the Association for Compu-
tational Linguistics, page 320.

[Schwartz et al.2001] Shalom H Schwartz, Gila
Melech, Arielle Lehmann, Steven Burgess,
Mari Harris, and Vicki Owens. 2001. Extend-
ing the cross-cultural validity of the theory of
basic human values with a different method of
measurement. Journal of cross-cultural psy-
chology, 32(5):519–542.

[Schwartz1992] Shalom H. Schwartz. 1992. Uni-
versals in the content and structure of values:
theoretical advances and empirical tests in 20
countries. In Advances in Experimental Social
Psychology, pages 1–65. In M. Zanna (Ed.),
Advances in experimental social psychology
(Vol. 25), New York: Academic Press.

[Schwartz2012] Shalom H Schwartz. 2012. An
overview of the schwartz theory of basic val-
ues. Online Readings in Psychology and Cul-
ture, 2(1):11.

[Sharpe et al.2011] J Patrick Sharpe, Nicholas R
Martin, and Kelly A Roth. 2011. Optimism
and the big five factors of personality: Beyond
neuroticism and extraversion. Personality and
Individual Differences, 51(8):946–951.

[Tchébichef1867] Pafnuty Lvovich Tchébichef.
1867. Des valeurs moyennes (translated
into French by N.V. Khanykov). Jour-
nal de Mathématiques Pures et Appliquées,
12(2):177–184.

[Tushar Maheshwari2016] Upendra Kumar Ami-
tava Das Tushar Maheshwari, Aishwarya Re-
ganti. 2016. Semantic interpretation of com-
munity in social networks. AAAI.

[Verhoeven et al.2013] Ben Verhoeven, Walter
Daelemans, and Tom De Smedt. 2013. En-
semble methods for personality recognition.
Proceedings of WCPR13, in conjunction with
ICWSM-13.

264

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 265–272

End to End Dialog System for Telugu

Prathyusha Danda1 Prathyusha Jwalapuram2 Manish Shrivastava3

Language Technologies Research Center
Kohli Center on Intelligent Systems

International Institute of Information Technology
Hyderabad, India

1danda.prathyusha@research.iiit.ac.in
2prathyusha.jwalapuram@research.iiit.ac.in

3m.shrivastava@iiit.ac.in

Abstract

This paper describes an end to end dia-
log system created using sequence to se-
quence learning and memory networks for
Telugu, a low-resource language. We au-
tomatically generate dialog data for Tel-
ugu in the tourist domain, using a knowl-
edge base that provides tourist place, type,
tour time, etc. Using this data, we train
a sequence to sequence model to learn
system responses in the dialog. In or-
der to add the query prediction for infor-
mation retrieval (through API calls), we
train a memory network. We also han-
dle cases requiring updation of API calls
and querying for additional information.
Using the combination of sequence to se-
quence learning and memory network, we
successfully create an end to end dialog
system for Telugu.

1 Introduction

There have been few attempts to create dialog sys-
tems for Telugu, which are mostly rule-based sys-
tems using ad-hoc user interactions to test the sys-
tem rather than over a set of prepared test dialogs
(Sravanthi et al., 2015; Reddy and Bandyopad-
hyay, 2006). This is primarily due to a lack of
dialog data as Telugu is a low-resource language.
Wen et al. (2016) proclaim that the greatest bot-
tleneck for statistical approaches to dialog system
development is the collection of appropriate data
which is especially true for task oriented dialog
systems; that for task-oriented dialog systems, in-
domain data is essential.

Dialog models using neural networks are able
to leverage the large amounts of data to learn
meaningful representations for natural language
and generation strategies, and require only a min-

imal amount of domain knowledge and handcraft-
ing (Serban et al., 2016). The neural networks are
used to represent both dialog histories and to pro-
duce output either through a generative model that
generates responses word-by-word conditioned on
a dialog context (which is the model this paper
uses) or through a discriminative model that is
trained to select an appropriate response from a
set of candidate responses (Serban et al., 2016).
We use both the models for generating system re-
sponses in our dialog system.

Sequence to Sequence learning (Sutskever et
al., 2014) has been used to build end-to-end train-
able non-task-oriented conversational dialog sys-
tems (Vinyals and Le, 2015; Shang et al., 2015;
Serban et al., 2015). This approach models di-
alog as a source to target sequence transduction
problem, applying an encoder network (Cho et al.,
2014) to encode a user query into a distributed
vector representation of its semantics, which con-
ditions a decoder network to generate each sys-
tem response. This has been extended to a task-
oriented system that interacts with a knowledge
base by Wen et al. (2016).

End-to-end dialog systems are trained on past
dialogs directly, with no assumptions made on the
basis of the domain or on the structure of the dia-
log, which makes scaling up automatically to new
domains easy (Bordes and Weston, 2017). As an
end-to-end neural model, Memory Networks (We-
ston et al., 2015a), with an attention based archi-
tecture, showed promising results for non goal-
oriented dialog (Dodge et al., 2016), and have also
been applied to question answering (Weston et al.,
2015b; Bordes et al., 2015) and language mod-
elling (Sukhbaatar et al., 2015). However, goal-
oriented dialog requires the system to ask ques-
tions to clearly define a user request, query knowl-
edge bases, etc., as extended by Bordes and We-
ston (2017).

265

We first create a corpus of Telugu dialog data in
the Tourist domain, which we then use to train our
sequence to sequence and memory network mod-
els. We report our results for system response gen-
eration through the sequence to sequence model,
and our results for API call generation, for retriev-
ing information from knowledge base, through the
memory network model. Through this combina-
tion of sequence to sequence learning and mem-
ory network, we successfully create an end-to-end
dialog system for the tourist domain in Telugu.

After discussing Related Work in Section 2,
we outline the tasks our system must perform in
Section 3, then we discuss the motivation behind
our system pipeline in Section 4, Section 5 de-
scribes dialog data creation strategy, followed by
sequence-to-sequence model for producing sys-
tem responses in Section 6, Section 7 deals with
the memory network layer for generating API
calls, finally followed by the conclusion and future
work in Sections 8 and 9 respectively.

2 Related Work

Ritter et al. (2011) first proposed using genera-
tive probabilistic models to model conversations
from micro-blogging websites, treating the re-
sponse generation problem as a statistical machine
translation problem, where the post is to be trans-
lated into a response. They find that generating
responses is a harder problem than language trans-
lation due to the wide range of possible responses
and a lack of alignment between the source and
the response.

Shang et al. (2015) extend the work by using re-
current neural networks, which they show outper-
form retrieval-based and SMT based methods for
generating responses to a post in Chinese, and are
able to generate multiple responses with variety.
Sordoni et al. (2015) go further by designing the
response generation to be conditioned on past dia-
log utterances that provide contextual information,
and also outperform MT and IR based models.

The end-to-end trainable, non-task-oriented
conversational dialog systems built by Vinyals
and Le (2015; Shang et al. (2015; Serban et
al. (2015) using sequence to sequence learning
(Sutskever et al., 2014) are promising chatbot sys-
tems but do not support domain specific tasks
and do not interact with knowledge bases such
as databases (Sukhbaatar et al., 2015; Yin et al.,
2015), and therefore cannot provide useful infor-

mation through their responses.
Wen et al. (2016) augment the sequence to se-

quence architecture with dialog history modelled
by a set of belief trackers, and a distributed rep-
resentation of user intent with delexicalisation and
weight tying strategies. Their system provides rel-
evant and appropriate responses at each turn and
also interacts with a database through a slot-value
pair representation of attributes. They achieve a
high task success rate and show that the learned
model can interact efficiently and naturally with
human subjects to complete an application specific
task.

Dodge et al. (2016) use Memory Networks (We-
ston et al., 2015a; Sukhbaatar et al., 2015) to train
non goal oriented dialog, which showed promising
results. Bordes and Weston (2017) train memory
networks to perform tasks non-trivial tasks such
as issuing API calls to knowledge bases and ma-
nipulating entities unseen in training; the bot is
also able to ask questions to fill missing informa-
tion. They show that memory networks can out-
perform a dedicated slot-filling rule-based base-
line, and even classical IR and supervised embed-
dings; they solve the task of issuing API calls.

3 Tasks

As part of our dialog system, there are four main
tasks we want to accomplish:

1. Generate appropriate system responses to
user utterances.

2. Generate API calls for information retrieval

3. Generate API calls for information retrieval
in case of updation.

4. Generate API calls for providing additional
information

API calls represent specific operations that appli-
cations can invoke at runtime to perform tasks,
one of which is querying data from the knowledge
base1. In our implementation, the API calls sim-
ply consist of the keywords that we use to query
the knowledge base to retrieve the highest rated
tourist location or to give additional information
such as address or phone number or opening time
of a tourist location. Additional information (Task
4) consists of phone number, address and opening
times.

1https://developer.salesforce.com/docs/atlas.en-
us.api.meta/api/calls.htm

266

Figure 1: Network Architecture

4 Motivation behind System Pipeline

A sequence to sequence model generates a sen-
tence by generating a sequence of words whereas
in memory networks a system response is gen-
erated by picking one from all the possible dia-
log candidates, mentioned in Bordes and Weston
(2017).

Hence, predicting system responses using a se-
quence to sequence model is preferable over mem-
ory networks. (See Figure 2)

5 Data Creation

In order to automatically create the substantial
amount of data required to train an end-to-end di-
alog system, we use an approach similar to the
one used by Bordes and Weston (2017). In Bordes
and Weston (2017), data is simulated based on an
underlying restaurant domain knowledge base that
has attributes such as type of cuisine, location, etc.
and can be queried using API calls.

Our knowledge base is similarly built on the
tourist domain, and has the attributes area, type,
tour duration, opening time, rating, phone number
and address2, of which area, type and tour dura-
tion are the 3 required keywords while opening
time, phone number and address are query-able
fields. Areas consist of place-names (such as Ban-

2https://en.wikipedia.org/wiki/List of tourist attractions
in Hyderabad

Figure 2: End to End System Pipeline

267

Figure 3: System Dialog Flow

jara Hills, Chanda Nagar Village, etc.) and types
consist of types of tourist locations such as histor-
ical, religious, zoo and amusement park. The tour
duration is the time in which the user wants to see
a place, such as 15 minutes, 30 minutes, etc. There
are a total of 30 areas, 4 types and 4 tour durations.

Based on this knowledge base, we generate
queries by choosing any of the three required fields
for a query, which are area, type and tour dura-
tion. Using natural language patterns in Telugu,
we create user and system utterances. We append
the keywords required for a query to the knowl-
edge base at the end of each dialog in the form
of an API call (e.g. api call banjara hills zoo 15,
api call banjara hills zoo 15 address). However,
since the knowledge base is in English, the API
calls are also in English.

There are 68 possible patterns for the user to
express 12 different intents and 9 possible patterns
for the bot and a total of 1920 possible API calls.
Although all the words in the language patterns
are in Telugu, certain words which are commonly
used in English are also transcribed and included,
helping us handle some code-mixed cases.

Different permutations of the patterns combined
with different entities in the knowledge base pro-
duce thousands of dialogs, which also include the
API call that is required for information retrieval.
See Figure 4 for an example of the dialog created
for Tasks 1 and 2.

The user could begin by providing no informa-
tion (Unone), which should prompt the system to
ask for the area (Sarea); the user could provide the
area in the first utterance (Uarea), which should
prompt the system to ask for the type (Stype); the

user may provide both the area and the type in the
first utterance itself (Uplace+type), which should
prompt the system to ask for the tour duration
(Stour duration), and so on, and finally the system
must be able to generate the correct corresponding
API call to retrieve an appropriate tourist location
or to give address or phone number of a particular
tourist place (Task 1, 2 and 4).

The user can always request a change in the re-
quired fields, which should lead to an update in the
API call. This forms a separate dataset for Task 3.

The possible paths are given in an example dia-
gram Figure 3; the path taken in the example dia-
log in Figure 4 is highlighted.

The order of the fields can be jumbled through
the utterances, but the system queries unfilled slots
deterministically, i.e., the user may begin by spec-
ifying the type of location they want to visit and
then be prompted to provide the area, whereas sys-
tem will prompt for area, type and tour time in that
order. Through this, we have 4 variations of the
dialog beginnings: user specifying area first, user
specifying type first, user specifying both area and
type, and user specifying neither.

We partition the data differently (therefore pro-
ducing differing amounts) for training the se-
quence to sequence model and the memory net-
works; this is described in their respective sec-
tions. The length of the dialogs varies from 5 to
12 system-user utterance pairs depending on the
combinations. The maximum possible length of
an utterance is 14.

We have released the data for public use so that
those who wish to use the Telugu data for research

268

Figure 4: Example Dialog Created

can do so.3

6 System Response Generation Using
Sequence to Sequence Learning

6.1 Training and Testing Data

In order to train a sequence to sequence learning
model that can incorporate dialog history, the dia-
log data is partitioned in such a way as to provide
instances with differing amounts of context. This
means that to predict system response St, the input
with context is U1, S1, ..., St−1, Ut. See Figure 5
for an example.

In each case, the queries are ordered determin-
istically; system must recognize the missing infor-
mation and ask the user to provide it accordingly.

Through such partitioning, we obtain 180,000
instances of dialog with context. We sample
20,000 instances for training and separate 3,000
instances for testing for Task 1 and Task 2, and the
same number of instances for Task 3 from its own
dataset.

6.2 Architecture

We use an Encoder-Decoder (Sutskever et al.,
2014) architecture for sequence to sequence learn-
ing, that uses one GRU (Cho et al., 2014) layer to
encode the input sentence one timestep at a time
to obtain a large fixed-dimensional vector repre-
sentation, and then uses another GRU with atten-

3https://github.com/dandaprathyusha/End-to-end-dialog-
system-for-telugu

tion to decode (Bahdanau et al., 2014) the output
sequence for that vector.

In Figure 1, xij corresponds to the one-hot vec-
tor of jth word in ith sequence. The hij is a vector
embedding xij . The wt,ij is the attention weight
of tth word in the output sequence corresponding
to hij . yt is the tth target word in the output se-
quence, with h′t−1 being the RNN hidden state.

The embedding layer over the encoder takes a
|Vin| sized vector and outputs a vector of hidden
size, where |Vin| is the size of the input vocabulary
and the hidden size is 256.

The loss function we use is negative log likeli-
hood. The model reaches peak accuracy before 10
epochs.

6.3 Experiments
We conduct five experiments with the sequence to
sequence model:

1. System response and API call prediction
without context (Task 1 and 2)

2. System response and API call prediction with
context (Task 1 and 2)

3. System response prediction with context for,
where only API call occurrence is predicted,
not the API call itself (Task 1)

4. System response and API call prediction with
context for updation (Task 1 and 3)

5. System response prediction with context for
updation, where only API call occurrence is

269

Figure 5: Examples of Varying Context Length

predicted, not the API call itself (Task 1 and
3)

In the third and fifth experiments, we replace the
full API call (api call kanchanbagh historical 15)
with just api call, which the sequence to sequence
model learns as a placeholder.

6.4 Results

No. Experiments Acc.
1 Without Context + API calls 59.8%
2 Context + API calls 85.54%
3 Context Without API calls 100%
4 Context + API calls 79.67%
5 Context Without API calls 100%

Table 1: Sequence to Sequence Experiment Re-
sults

We can see from the results in Table 1 (the first
column refers to experiment number) that the ad-
dition of context improves the accuracy. On ana-
lyzing the system utterances predicted during the
second experiment, we saw that sequence to se-
quence learning is quite poor at predicting the re-
quired API calls. This is possibly due to the vary-
ing lengths in place names, etc. due to which the
model is unable to predict all the components of
an API call.

The third and fifth experiments which showed
that the 14.46% error in the second experiment
and the 20.33% error in the fourth experiment is
mainly due to errors in predicting API calls, since
their removal results in complete accuracy.

7 Predicting API calls using Memory
Network

Since the sequence to sequence model performs
poorly in API call prediction, we use memory net-
works to learn the same.

API calls are specific operations for informa-
tion retrieval; we can consider predicting them
as a simple classification problem. Memory net-
works are therefore more suitable for this task than
a sequence-sequence model. They are unaffected
by the varying lengths of place names unlike the
sequence to sequence model.

The API call predicted by the Memory network
is used to retrieve the required information from
the knowledge base; typically a tourist location
which fits the criteria in the query, with the highest
rating.

7.1 Training and Testing Data

For Task 2 in memory networks, the input con-
sists of a complete dialog history that has all the
three fields of area, type and tour duration that are
required for the completion of the query, in any

270

order, up to, but not including, the api call place-
holder. The API call placeholder will be replaced
by the API call predicted using the memory net-
work.

In order to maintain an equal distribution of dif-
ferent combinations of queries (user specifies area
first, user specifies type first, user specifies both
area and type, user specifies none), we sample
24,000 instances of dialogs (6,000 of each type),
of which we separate 20,000 instances (5,000 of
each type) for training and 4,000 (1,000 of each
type) instances for testing.

For Task 3, the input starts from the first pre-
dicted API call up to, but not including, the fi-
nal api call placeholder. The final API call place-
holder will be replaced by the API call predicted
using the memory network. For this task, we sam-
ple 15,000 instances for training and 3,000 for
testing.

Task 4 is run only on memory network. The
input starts from the last predicted API call up to
the user’s query for additional information. We
train on 15,000 instances and test on 3,000.

7.2 Architecture
We use the architecture described by Sukhbaatar
et al. (2015), which is primarily a recurrent neu-
ral network (RNN) which reads from an external
memory before outputting a symbol. (See Figure
1)

A sequence of user (Ui) and system(Si) utter-
ances U1, S1, U2..., Sn−1 are taken as memory in-
put and the last user utterance Un, which is the
query q, whose corresponding system response is
an API call, is actual label a. The answer that
will be predicted a′ by our model is the system
response: API call.

In our model we are using layer-wise weight-
tying where the input and the output embeddings
are the same across different layers, i.e. A1 =
A2 = ... = AK = A and C1 = C2 =
...CK = C. The matrices A,C, of size d × V ,
and the final weight matrix W , of size V × d,
are jointly learnt by minimizing a standard cross-
entropy loss, where embedding dimension d is
150.

The memory network reaches peak accuracy
within 100 epochs for both tasks.

7.3 Results
In Table 2, Experiment 1 corresponds to Task 2,
Experiment 2 corresponds to Task 3 and Experi-

No. Experiment Acc.
1 API calls 100%
2 Updated API calls 99.93%
3 API calls for Add. Info. 100%

Table 2: Memory Network Experiment Results

ment 3 corresponds to Task 4. Our accuracy for
Task 2 and 3 in predicting API calls is on par with
Bordes and Weston (2017). We perform better
than Bordes and Weston (2017) in Task 4 since
we do not add knowledge base facts, correspond-
ing to the tourist location in the last API call, to
the dialog history.

Since the data conforms to certain templates,
the memory network performs very well. The ac-
curacy is likely to drop for real world data.

8 Conclusion

We create a fairly large corpus of Telugu dialog
data that can be used to train data-intensive models
like neural networks, and can be used for further
research.

We use the data to train a sequence-to-sequence
dialog model that performs very well on predict-
ing system responses, although it fares poorly with
predicting API calls for information retrieval. Us-
ing memory networks we solve the API call pre-
diction. We retrieve the highest rated tourist lo-
cations or other additional information from the
knowledge base using the API call.

Our system is the only end-to-end dialog system
to use deep learning methods in Telugu and pro-
poses a better and more flexible model than the ex-
isting rule-based dialog system by Sravanthi et al.
(2015; Reddy and Bandyopadhyay (2006), which
can handle very few patterns. Our system is on par
with the end-to-end dialog systems for English.

We have used a knowledge base in English and
are able to predict API calls in English despite the
dialogs being in Telugu. This means that we can
use existing knowledge bases in English to build
dialog systems in other low resource languages us-
ing similar methods of dialog data generation and
deep learning.

9 Future Work

The system can be improved by introducing more
initiative, for example, providing suggestions, tak-
ing negative responses into account, etc. The sys-
tem should also be able to handle cases where no

271

results are found for the user query by giving al-
ternatives.

The system must also be trained with more var-
ied data which has a greater number of patterns
occurring; ideally on a sizeable corpus of natural
dialog data created by native speakers. The sys-
tem can then be tested subjectively through human
evaluators.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Antoine Bordes and Jason Weston. 2017. Learn-
ing end-to-end goal-oriented dialog. Proceedings of
ICLR.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1724–1734.

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine
Bordes, Sumit Chopra, Alexander Miller, Arthur
Szlam, and Jason Weston. 2016. Evaluating prereq-
uisite qualities for learning end-to-end dialog sys-
tems. Proceedings of ICLR.

Rami Reddy Nandi Reddy and Sivaji Bandyopadhyay.
2006. Dialogue based question answering system in
telugu. In Proceedings of the Workshop on Multilin-
gual Question Answering, pages 53–60. Association
for Computational Linguistics.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the conference on empirical methods
in natural language processing, pages 583–593. As-
sociation for Computational Linguistics.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C Courville, and Joelle Pineau. 2015.
Hierarchical neural network generative models for
movie dialogues. CoRR, abs/1507.04808.

Iulian Vlad Serban, Ryan Lowe, Laurent Charlin, and
Joelle Pineau. 2016. Generative deep neural net-
works for dialogue: A short review. arXiv preprint
arXiv:1611.06216.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. Association for Computational Linguistics.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. Proceedings of
the ACM International Conference on Information
and Knowledge Management, pages 553–562.

Mullapudi Ch Sravanthi, Kuncham Prathyusha, and
Radhika Mamidi. 2015. A dialogue system for
telugu, a resource-poor language. In CICLing (2),
pages 364–374.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015a. Memory networks. Proceedings of ICLR.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015b. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2015. Neural enquirer: Learning to query tables.
arXiv preprint arXiv:1512.00965.

272

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 273–282

Investigating how well contextual features are captured by bi-directional
recurrent neural network models

Kushal Chawla1∗, Sunil Kumar Sahu2∗, Ashish Anand3

1Adobe Research, Big Data Experience Lab, Bangalore, Karnataka, India
2National Center for Text Mining, The University of Manchester, United Kingdom
3Department of Computer Science and Engineering, IIT Guwahati, Assam, India

kchawla@adobe.com
sunil.sahu@manchester.ac.uk
anand.ashish@iitg.ernet.in

Abstract

Learning algorithms for natural language
processing (NLP) tasks traditionally rely
on manually defined relevant contextual
features. On the other hand, neural net-
work models using an only distributional
representation of words have been suc-
cessfully applied for several NLP tasks.
Such models learn features automatically
and avoid explicit feature engineering.
Across several domains, neural models be-
come a natural choice specifically when
limited characteristics of data are known.
However, this flexibility comes at the cost
of interpretability. In this paper, we define
three different methods to investigate abil-
ity of bi-directional recurrent neural net-
works (RNNs) in capturing contextual fea-
tures. In particular, we analyze RNNs for
sequence tagging tasks. We perform a
comprehensive analysis on general as well
as biomedical domain datasets. Our ex-
periments focus on important contextual
words as features, which can easily be
extended to analyze various other feature
types. We also investigate positional ef-
fects of context words and show how the
developed methods can be used for error
analysis.

1 Introduction

Learning approaches for NLP tasks can be broadly
put into two categories based on the way features
are obtained or defined. The traditional way is
to design features according to a specific prob-
lem setting and then use appropriate learning ap-

∗∗Part of this work was done while authors were students
at IIT Guwahati.

proach. Examples of such methods include clas-
sification algorithms like SVM (Hong, 2005) and
CRF (Lafferty et al., 2001) among others for sev-
eral NLP tasks. A significant proportion of overall
effort is spent on feature engineering itself. The
desire to obtain better performance on a particu-
lar problem makes the researchers come up with
a domain and task-specific set of features. The
primary advantage of using these models is their
interpretability. However, dependence on hand-
crafted features limits their applicability in low re-
source domain where obtaining a rich set of fea-
tures is difficult.

On the other hand, neural network models pro-
vide a more generalised way of approaching prob-
lems in NLP domain. The models can learn rele-
vant features with minimal efforts in explicit fea-
ture engineering. This ability allows the use of
such models for problems in low resource domain.

The primary drawback of neural network mod-
els is that they are too complicated to interpret as
the features are not manually defined. Neural net-
works have been applied significantly to various
tasks without many insights on what the underly-
ing structural properties are and how the models
learn to classify the inputs correctly. Mostly in-
spired by computer vision (Simonyan et al., 2013;
Nguyen et al., 2015), several mathematical and vi-
sual techniques have been developed in this direc-
tion (Elman, 1989; Karpathy et al., 2015; Li et al.,
2016).

In contrast to the existing works, this study
aims to investigate ability of recurrent neural mod-
els to capture important context words. Towards
this goal, we define multiple measures based on
word erasure technique (Li et al., 2016). We
do a comprehensive analysis of performance of
bi-directional recurrent neural network models
for sequence tagging tasks using these measures.

273

Analysis is focused at understanding how well the
relevant contextual words are being captured by
different neural models in different settings. The
analysis provides a general tool to compare be-
tween different models, show that how neural net-
works follow our intuition by giving importance
to more relevant words, study positional effects of
context words and provide error analysis for im-
proving the results.

2 Proposed Methods

A sequence tagging task involves assigning a tag
(from a predefined set) to each element present in
a given sequence. We model Name Entity Recog-
nition (NER) as a sequence tagging task. We fol-
low BIO-tagging scheme, where each named en-
tity type is associated with two labels, B − entity
(standing for Beginning) and I − entity (standing
for Intermediate). The BIO scheme uses another
label O(standing for Other) for all the context or
non-entity words.

In this section, we discuss three methods to
calculate the importance score of context words.
Each method creates a different ranking of con-
text words corresponding to each entity type for
a given dataset. The methods range from simple
frequency based to considering sentence level or
individual word level effects. We assume that we
have a pretrained model M on a given dataset.

2.1 Based on word frequency

For a given sentence S ∈ test set D, consider
a window of a particular size around each en-
tity phrase (single or multi word, defined by true
tags) we in S. We increment the score (cor-
responding to we’s entity type e only) for each
of the context words present in this window by
one. For instance, the CoNLL-2003 shared task
data (described in section 3.2) has 4 entity types,
namely, organization (ORG), location (LOC),
person (PER) and miscellaneous (MISC). The
corresponding labels under BIO-tagging scheme
are B-ORG, I-ORG, B-LOC, I-LOC and so on. For
a 2-word phrase with true tags as (B-LOC, I-LOC),
the score corresponding to LOC for each context
word (with true tag as O) in the window is incre-
mented by one. Let the score for a context word
wc corresponding to entity type e in one sentence
be A(wc, e, S).

Hence the relevance score is calculated as fol-
lows:

I(wc, e) =

∑
∀S∈D

A(wc, e, S)

∑
∀wc

∑
∀S∈D

A(wc, e, S)
(1)

Using inverse frequency to account for irrele-
vant, too frequent words, the score can be calcu-
lated as follows:

(2)I(wc, e)

=




∑
∀S∈D

A(wc, e, S)

∑
∀wc

∑
∀S∈D

A(wc, e, S)







∑
∀e′

∑
∀wc

∑
∀S∈D

A(wc, e
′
, S)

∑
∀e′

∑
∀S∈D

A(wc, e
′ , S) + k




where k accounts for 0 counts and sum over
e
′

means summing over all the remaining entity
types. In our experiments, we use k=1 and a win-
dow size of 11 (5 words on each side). We refer to
these methods collectively as M WF in rest of the
paper.

2.2 Using sentence level log likelihood
In the M WF method, the relevance of each con-
text word is calculated irrespective of its depen-
dence on other words in the sentence. We define
another measure using sentence level log likeli-
hood to take into account the dependency between
words in a sentence. We refer to this method as
M SLL in rest of the paper.

Let the set of all context words beW and that of
all entity types be E. Define Swc,e as the set of all
sentences where both the word wc ∈W and entity
type e ∈ E are present. We say that an entity type
e is present in a sentence S, if ∃ a word ∈ S which
has it’s true tag corresponding to entity type e. Let
F (wc, e) be the size of set Swc,e.

Now, let the true tag sequence for a sentence
S be STAGS . For a context word wc ∈ S,
let L1(wc, S) be the negative log likelihood of
STAGS obtained from pretrained model M . Note
that since we are working at a sentence level,
L1(wc, S) will be same for all the context words
and entities present in S.

We adapt the erasure method of Li et al. (2016).
Here, we replace the representation of word wc

with a random word representation having same
number of dimensions and recalculate the negative
log likelihood for the true tag sequence STAGS .
Let this value be L2(wc, S). Intuitively, if S ∈
Swc,e and wc is relevant for the entity type e, the
probability of the true sequence should decrease
when the word is removed from the sentence. Cor-
respondingly, it’s negative log likelihood value

274

should increase. Hence, the score I(wc, e) for a
given word corresponding to the entity type can
be calculated in the following manner:

I(wc, e) =
1

F (wc, e)

∑

∀S∈Swc,e

L2(wc, S)− L1(wc, S)

L1(wc, S)

(3)

2.3 Considering left and right word contexts
separately

The relevance scoring method M SLL does not
distinguish between words present in the same
sentence. The third method, referred to as
M LRC, works at word level and calculates rel-
evance score of each word by distinguishing its
presence in the left or right side of the entity word.
The measure is defined in a way that it does take
into account of dependency between words in the
sentence. In a bi-directional setting, the hidden
layer representation for any word in a sentence, is
a concatenation of two representations - one which
combines words to the left, and the other which
combines the words to the right.

In the output layer, we combine the weight pa-
rameters and the hidden layer representation by
a dot product. We divide this dot product in two
parts as discussed below. Say the hidden represen-
tation is h and weight parameters corresponding
to a tag t ∈ T (set of all possible tags) are repre-
sented by pt. We can write the dot product pTt h as
a sum of two dot products pTt,LhL and pTt,RhR, rep-
resenting the contribution from left and right parts
separately. In our experiments, we also include the
bias term as a weight parameter.

Now, take a sentence S, a context word wc in
S, and an entity word we in S with true tag t
∈ T corresponding to entity type e ∈ E. Define
AvgSum(wc, we, S) as follows:

AvgSum(wc, we, S) =

∑
∀f∈T−{t}

pTf,KhK

α
(4)

where α is the size of the set T − {t} and K is
either L or R depending on whether the word wc

lies to the left or right of we respectively. Notice
that this sum is over all the false tags in set T for
the word we.

With the intuition that the important word
should have higher dot product corresponding to
true tag than to false tags, we define the score
L1(wc, we, S) as follows:

(5)L1(wc, we, S) =
pTt,K .hK −AvgSum(wc, we, S)

AvgSum(wc, we, S)

We again employ word erasure technique and
recompute the above score by replacing the rep-
resentation of word wc with a random word rep-
resentation. We call it L2(wc, we, S). Now,
we can compute the final score for this instance
L(wc, we, S) as:

(6)L(wc, we, S) =
L1(wc, we, S)− L2(wc, we, S)

L2(wc, we, S)

The relevance score I(wc, e) is then computed
by taking average of L(wc, we, S) over all in-
stances.

3 Experiments

We consider the task of sequence tagging problem
for evaluation and analysis of the proposed meth-
ods to interpret neural network models. In par-
ticular, we choose the three variants of recurrent
neural network models for Named Entity Recog-
nition(NER) task.

3.1 Model architecture
The generic RNN model architecture used for this
work is given in figure 1.

Figure 1: General model architecture for a bi-directional re-
current neural network in sequence tagging problem.

Input layer contains all the words in the sen-
tence. In the embedding layer, each word is rep-
resented by it’s d dimensional vector representa-
tion. The hidden layer contains a bi-directional
recurrent neural network which outputs a 2h di-
mensional representation for every word, where h
is the number of hidden layer units in the recurrent
neural network. In bi-directional models, both the
past and future contexts are used to represent the
words in a given sentence. Finally, a fully con-
nected network connects the hidden layer to the
output layer, which contains scores for each pos-
sible tag corresponding to every word in the sen-

275

tence. A sentence level log likelihood loss func-
tion (Collobert et al., 2011) is used in the training
process.

For this work, we experiment with standard bi-
directional Recurrent Neural Network (Bi-RNN),
bi-directional Long Short Term Memory Net-
work (Bi-LSTM) (Graves, 2013; Huang et al.,
2015) and bi-directional Gated Recurrent Unit
Network(Bi-GRU) (Chung et al., 2014). For sim-
plicity, we refer to these bi-directional models as
RNN, LSTM and GRU in rest of the paper.

3.2 Datasets

In this work, we use two NER datasets from
diverse domains. One is from generic domain
whereas other is from biomedical domain. Statis-
tics of both datasets are given in Table 1.

CoNLL, 2003: This dataset was released as a
part of CoNLL-2003 language independent named
entity recognition task (Tjong Kim Sang and
De Meulder, 2003). Four named entity types have
been used: location, person, organization and mis-
cellaneous. For this work, we have used the origi-
nal split of the English dataset. There were 8 tags
used I-PER, B-LOC, I-LOC, B-ORG, I-ORG, B-
MISC, I-MISC and O. We focus on three entity
types, namely, location (LOC), person (PER)
and organization (ORG) in our analysis. For this
dataset, we use pretrained GloVe 50 dimensional
word vectors (Pennington et al., 2014).

JNLPBA, 2004: Released as a part of Bio-
Entity recognition task (Kim et al., 2004) at
JNLPBA in 2004, this dataset is from GENIA ver-
sion 3.02 corpus (Kim et al., 2003). There are 5
classes in total - DNA, RNA, Cell line, Cell type
and Protein. We use all the classes in our analy-
sis. There are 11 tags, 2 (for begin and interme-
diate word) for each class and O for other con-
text words. We use 50 dimensional word vec-
tors trained using skip-gram method on a biomed-
ical corpus (Mikolov et al., 2013a; Mikolov et al.,
2013b). For this work, we calculate the relevance
scores for all the words which have their true tag
as O for any test instance in the two datasets.

3.3 Correlation measures

In the output (last) layer we take dot product be-
tween weight parameters and the hidden layer out-
puts and expect that this value (normalized) would
be highest corresponding to the true tag. To obtain
these similarities between distributions of hidden

layer outputs to the weight parameters, we con-
sider two other measures apart from dot product:

1. Kullback-Leibler Divergence: Given two
discrete probability distributions A and B,
the Kullback-Leibler Divergence(or KL Di-
vergence) from B to A is computed in the fol-
lowing manner:

DKL(A||B) =
∑

i

A(i) log
A(i)

B(i)
(7)

DKL(A||B) may be interpreted as a measure
to see that how good the distribution B ap-
proximates the distribution A. For our exper-
iments, we take normalized weight parame-
ters as A and hidden representations as B.
The lower this KL-divergence is, higher is the
correlation between A and B.

2. Pearson Correlation Coefficient: Given
two variables X and Y, Pearson Correlation
Coefficient(PCC) is defined as:

ρX,Y =
cov(X,Y)

σXσY
(8)

where cov(X,Y) is the covariance, σX and
σY are the standard deviations of X and Y
respectively. ρX,Y takes the values between
-1 and 1.

4 Results and Discussion

Throughout our experiments, we use 50 dimen-
sional word vectors, 50 hidden layer units, learn-
ing rate as 0.05, number of epochs as 21 and a
batch size of 1. The performance of various mod-
els on both the datasets is summarized in Table
1. Among the three bi-directional models, LSTM
performs the best.

4.1 Correlation Analysis
We analyze the correlation between the hidden
layer representations and the weight parameters
connecting hidden and output layers. Meeting our
expectation, this correlation of hidden layer val-
ues is found to be higher with the weight parame-
ters corresponding to the true tag for a given input
word. For instance, take a sentence from ConLL
dataset: “The students, who had staged an 11-hour
protest at the junction in northern Rangoon, were
taken away in three vehicles.”. Here, the word
“Rangoon” has it’s true tag as I-LOC and rest all

276

Dataset Instances Test Set Performance
Training Validation Testing Model Precision Recall F Score

CoNLL-2003 14987 3466 3684
RNN 83.42 81.77 82.59
LSTM 85.87 84.41 85.13
GRU 85.11 83.66 84.38

JNLPBA-2004 18046 500 3856
RNN 67.71 68.99 68.34
LSTM 67.94 72.69 70.23
GRU 67.55 70.05 68.78

Table 1: Statistics and performance of different models on two NER datasets used in this work.

are context words. Figure 2 plots the normalized
values for left side part of the hidden represen-
tation for “Rangoon”, along with corresponding
weight parameters for I-LOC and I-MISC tags. I-

Figure 2: Visualization of hidden representation of a LOC
entity word “Rangoon” and weight parameters corresponding
to true and false tags.

MISC has been chosen as it’s corresponding dot
product is maximum among all the false tags. The
high correlation between the hidden representa-
tion and weight parameters for the true tag can be
clearly observed from the figure.

Table 2 gives the correlation values for above
three measures corresponding to the “Rangoon”
instance.

Tag Dot Product KL Divergence PCC
I-LOC (True tag) 7.27 0.15 0.62

I-MISC (False Tag) 1.76 0.48 0.17

Table 2: Correlation values obtained corresponding to “Ran-
goon” instance from CoNLL dataset.

4.2 Analysis of Relevance Scores

In order to evaluate the ability of RNN models to
capture important contextual words, we do a qual-
itative analysis at both word and sentence levels.
This section provides instances from both CoNLL
and JNLPBA datasets to illustrate how the three
measures can be used to identify salient words
with respect to bi-directional model. Although we

compute word rankings using the three measures
described above, our demonstrations in the paper
primarily focus on the M LRC method. M LRC
is able to treat each word individually with due at-
tention to dependency on another words in a given
sentence.

At the word level, we further breakdown the vi-
sualizations into three types:

Fixing a word and a method: In this case,
we fix a particular word and use M LRC method.
We analyze how the importance scores change
with various models, entities and correlation mea-
sures. Figures 3a, 3b and 3c show heatmaps by
fixing the word “midfielder” and M LRC method
for CoNLL dataset. Based on our intuition, the
word “midfielder” should have higher importance
scores for PER entity. This is clearly visible in
the illustrations. All the three correlation mea-
sures are able to capture this intuition to a reason-
able extent. Similarly, figures 3d, 3e and 3f show
heatmaps for “apoptosis” on JNLPBA dataset.
The higher scores given to classCT (cell type) are
in agreement with the results of M WF method as
well as with our intuition as “apoptosis” indicates
cell death. It can also be observed that all the bidi-
rectional models do quite well in both these cases.

Fixing a model and a method: In this case, we
fix a particular model and try to visualize how the
models score different contextual words for dif-
ferent entity types. Figure 4 shows the heatmaps
by fixing RNN, LSTM and GRU respectively with
M LRC method (using dot product). Our intuition
that “captain”, “city” and “agency” would be rel-
evant for PER, LOC and ORG entities respec-
tively, is proved to be true as can be observed in
all of the cases. However, neural models are un-
able to associate “agency” with ORG as distinc-
tively as in case of “captain” and “city”. This
can be attributed to frequent occurrence of the
word “agency” in the context of words belonging
to PER or LOC entities, thereby, confusing the

277

(a) (b) (c)

(d) (e) (f)

Figure 3: Heatmaps showing the scores for different words across models, entities and methods on CoNLL dataset in part (a),
(b) and (c) and on JNLPBA dataset in (d), (e) and (f). Here, CT refers to cell type and CL refers to cell line.

(a) (b) (c)

Figure 4: Heatmaps showing the word scores fixing a model with M LRC method using dot product on CoNLL dataset.

models.

Fixing an entity and a method: Now, we
fix a particular entity to analyze which model
gives higher importance to different contextual
words for a particular entity. Figure 5 shows the
heatmaps by fixing entities protein, DNA and
RNA respectively with M LRC method. “pro-
tein”, “sequences” and “kinetics” have high fre-
quency scores for protein, DNA and RNA re-
spectively. The models capture this beautifully in
all the cases.

At a sentence level, we only consider our
best performing model, LSTM. Table 3 gives en-
tity wise word relevance scores for two individ-
ual sentences. It uses a sentence from CoNLL
dataset - “Saturday ’s national congress of the rul-
ing Czech (I-ORG) Civic (I-ORG) Democratic (I-
ORG) Party (I-ORG) ODS (I-ORG)) will discuss
making the party more efficient and transparent ,
Foreign Minister and ODS (I-ORG) vice-chairman
Josef (I-PER) Zieleniec (I-PER), said on Friday .”.
The tags for all entity words are mentioned along-
side each word. Notice the high scores for “vice-
chairman”, “ruling”, “congress”, “minister” meets
the intuitive understanding of these words. Inter-

estingly, round brackets get the maximum scores
for M SLL method, which may be attributed to
their frequent use with ORG entity words. Sim-
ilarly, sentence taken from JNLPBA dataset is:
“the number of glucocorticoid (B-protein) recep-
tor (I-protein) sites in lymphocytes (B-cell˙type)
and plasma cortisol concentrations were measured
in dgdg patients who had recovered from ma-
jor depressive disorder and dgdg healthy control
subjects .”. Again, higher scores for “sites” and
“plasma” for cell type are in agreement with over-
all scores given to them.

4.3 Positional effects of context words

In this section, we analyze how the position of
context words affects their scores obtained by
M LRC method. We do this analysis for real sen-
tences present in the test sets as well as on ar-
tificial sentences. We achieve this by applying
the proposed techniques at an individual sentence
level. For instance, Table 4 shows the relevant
scores of the word “minister” for entity PER ob-
tained by three models, in three test sentences
taken from CoNLL dataset. M WF method indi-
cates that “minister” has high importance for en-

278

(a) (b) (c)

Figure 5: Heatmaps showing the word scores fixing M LRC method and entities on JNLPBA dataset.

Word Score
(9.407
, 8.428

ruling 2.537
vice-chairman 1.41

of 1.203
national 0.901
discuss 0.732

congress 0.728
the 0.723
’s 0.486

minister 0.403
and 0.209

saturday 0.065
0 0.03

on 0
friday 0

) -0.002
said -0.023
will -0.045
party -0.068

making -0.072
transparent -0.088

efficient -0.09
foreign -0.184
more -0.202

(a)

Word Score(Pr) Score (CT)
control 0 0

and -0.193 0
major -0.487 -0.101

number 10.148 2.698
in 0.515 80.745

depressive 7.463 0.039
from 10.221 0.032
had 2.051 0.007
sites -0.025 18.487

0 0 0
subjects 0 0
plasma -0.083 0.001

recovered -0.388 -0.014
cortisol 0.134 0

who 0.933 -0.002
measured 0.639 0.001
healthy -0.047 0

of 36.08 4.335
dgdg -0.343 -0.001

patients 3.377 0.007
were 0.454 0.001

concentrations 0.014 0
the -0.613 2.572

disorder 10.723 0

(b)

Table 3: Entity wise relevance scores for words in two in-
dividual sentences using LSTM model: (a) Using M SLL
method for CoNLL instance and (b) Using M LRC method
with dot product for JNLPBA instance.

tity type PER matching with our intuition. How-
ever “minister” is likely to appear in different sen-
tences with different context and may not have
equal relevance as also indicated in the Table 4. In
the first sentence, there is no entity word for PER,
hence, the score for “minister”, corresponding to
entity PER is zero. In the second sentence, the
score is higher, though not too high as the word is
relatively far from the relevant entity word. How-
ever, the score is much higher in the third sentence
where “minister” is right before the entity words
“Margaret Thatcher”. Relative scores obtained by
using different neural models also match with the
general notion that RNN tends to forget long range
context (second sentence) compared to LSTM and
GRU, and is quite good for short distance context
(third sentence).

We further validate the above observation on
artificial examples. Figure 6a gives the position

(a)

(b)

Figure 6: Position vs relevance score plot for three models
for (a) “chairman” w.r.t. PER entity word “Josef” and (b)
“cytokines” w.r.t. protein entity word “erythropoietin”.

verses score plot for the word “chairman” with re-
spect to the PER entity word “Josef”. The po-
sition tells that how far to the left “chairman” is
from the entity word. We create sentences as fol-
lows - “chairman Josef .”, “chairman R Josef .”,
“chairman R R Josef .” and so on. Here, R repre-
sents a random word. It can be observed that how
LSTM and GRU assign a higher score to far off
words compared to RNN, justifying their ability to
include such words in making the final decision.

Figure 6b shows a similar plot for the word “cy-
tokines” and a protein entity word “erythropoi-
etin” using the same way of creating artificial sen-
tences. Interestingly, GRU assigns higher rele-
vance scores than LSTM and RNN, which is in
accordance with the high overall score it gives to

279

RNN LSTM GRU Sentence
0.0 0.0 0.0 Senegal proposes foreign minister for U.N. post .
0.163 2.576 1.031 He was senior private secretary to the employment and industrial relations

minister from 1983 to 1984 and was Economic advisor to the treasurer
Paul Keating in 1983 .

239.793 112.405 199.985 The ODS , a party in which Klaus often tries to emulate the style of
former British Prime Minister Margaret Thatcher , has been in control of
Czech politics since winning general elections in 1992

Table 4: Relevance scores for the word “minister” in three different test sentences from CoNLL dataset.

“cytokines” compared to the other two models.

Rank Word Score

1 by 66.162
2 the 22.223
3 in 3.576
4 expression 0.257
5 can 0.222
6 gene 0.221
7 which 0.079
8 over 0.079
9 important 0.003
10 may 0.002
11 establishing 0
12 type 0
13 cell 0
14 0 0
15 specificity 0
16 and 0
17 widening -0.001
18 range -0.016
19 recognized -0.364
20 be -0.475
21 modulated -0.534
22 degeneracy -0.857
23 sequences -0.917

Table 5: Relevance scores for an individual test sentence
from JNLPBA dataset, using LSTM and M LRC method
with dot product.

4.4 Error Analysis

The proposed methods can be effectively used to
conduct error analysis on bi-directional recurrent
neural network models. For a given sentence, a
negative score for a particular word means that the
model is able to make a better decision when the
word is removed from the sentence. Relevance
scores can be used to find out which words con-
fuse the model. Knowing what those words are,
is crucial to understanding why the model makes
a mistake in a particular instance. For example,
Table 5 shows the word importances for the sen-
tence - “the degeneracy in sequences recognized
by the otfs (B-Protein) may be important in widen-
ing the range over which gene expression can be
modulated and in establishing cell type specificity
.” The LSTM model makes a mistake here by

tagging “otfs” with tag B-DNA. Words “degener-
acy”, “sequences”, “widening”, “recognized” and
“modulated” all have a higher overall score for
DNA entity class than for protein. Hence, the
presence of these words in the sentence fool the
model into making a wrong decision.

In general, we observe that the presence of
words which have high scores for false entity types
tend to confuse the model. Position of words also
plays a vital role. Words which appear in a far
off or a different position than what they generally
appear in the training dataset, tend to receive neg-
ative or low scores even if they are important. For
instance, “minister” mostly appears to the left of
an entity word in the training dataset. If, in a test
case, it appears to the right, it ends up receiving a
low score.

5 Related Work

Various attempts have been made to understand
neural models in the context of natural language
processing. Research in this direction can be
traced back to Elman (1989) which gains insight
into connectionist models. This work uses prin-
cipal component analysis (PCA) to visualize the
hidden unit vectors in lower dimensions. Recur-
rent neural networks have been addressed in re-
cent works such as Karpathy et al. (2015). Instead
of a sequence tagging task, they use character level
language models as a testbed to study long range
dependencies in LSTM networks.

Li et al. (2015) build methods to visualize re-
current neural networks in two settings: senti-
ment prediction in sentences using models trained
on Stanford Sentiment Treebank and sequence-to-
sequence models by training an autoencoder on a
subset of WMT’14 corpus. In order to quantify a
word’s salience, they approximate the output score
as a linear combination of input features and then
make use of first order derivatives. Erasure tech-
nique helps us to do away with such assumptions

280

and find word importances in sequence labeling
tasks for individual entities.

Similar to present work, Kádár et al. (2016)
analyze word saliency by defining an omission
score from the deviations in sentence represen-
tations caused by removing words from the sen-
tence. This work, however, targets a different,
multi-task GRU framework, learning visual repre-
sentations of images and a language model simul-
taneously.

Another closely related work is Li et al. (2016).
They use erasure technique to understand the
saliency of input dimensions in several sequence
labeling and word ontological classification tasks.
Same technique is used to find out salient words in
sentiment prediction setting. Our work focusing
on sequence labeling task has several differences
with Li et al. (2016). Firstly, in case of sequence
labeling, Li et al. (2016) only focus on feed for-
ward neural networks while our work trains three
different recurrent neural networks on general and
domain specific datasets. Secondly, their analysis
in sequence labeling task is only limited to impor-
tant input dimensions. Instead, our work focuses
on finding salient words which are basic units for
most NLP tasks. Lastly, our M SLL method is an
adaptation of their method to find salient words in
sentiment prediction task. Unfortunately, for a se-
quence labeling task, this method is not very suit-
able. Since it only considers sentence level log
likelihood, it makes no distinction between vari-
ous possible entities such as person or organiza-
tion. Our M LRC method, which takes individual
word level effects into account, is more suitable.

A significant amount of work has been done in
Computer Vision to interpret and visualize neu-
ral network models (Simonyan et al., 2013; Ma-
hendran and Vedaldi, 2015; Nguyen et al., 2015;
Szegedy et al., 2013; Girshick et al., 2014; Zeiler
and Fergus, 2014; Erhan et al., 2009). Atten-
tion can also be useful in explaining neural mod-
els (Bahdanau et al., 2014; Luong et al., 2015;
Sukhbaatar et al., 2015; Rush et al., 2015; Xu and
Saenko, 2016).

6 Conclusions and Future Work

In this paper, we propose techniques using word
erasure to investigate bi-directional recurrent neu-
ral networks for their ability to capture relevant
context words. We do a comprehensive analy-
sis of these methods across various bi-directional

models on sequence tagging task in generic and
biomedical domain. We show how the proposed
techniques can be used to understand various as-
pects of neural networks at a word and sentence
level. These methods also allow us to study posi-
tional effects of context words and visualize how
models like LSTM and GRU are able to incor-
porate far off words into decision making. They
also act as a tool for error analysis in general by
detecting words which confuse the model. This
work paves the way for further analysis into bi-
directional recurrent neural networks, in turn help-
ing to come up with better models in the future.
We plan to take our analysis further by including
other aspects like character and word level embed-
ding into account.

References
[Bahdanau et al.2014] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

[Chung et al.2014] Junyoung Chung, Caglar Gulcehre,
KyungHyun Cho, and Yoshua Bengio. 2014. Em-
pirical evaluation of gated recurrent neural net-
works on sequence modeling. arXiv preprint
arXiv:1412.3555.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language pro-
cessing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537.

[Elman1989] Jeffrey L Elman. 1989. Representation
and structure in connectionist models. Technical re-
port, DTIC Document.

[Erhan et al.2009] Dumitru Erhan, Yoshua Bengio,
Aaron Courville, and Pascal Vincent. 2009. Visual-
izing higher-layer features of a deep network. Uni-
versity of Montreal, 1341:3.

[Girshick et al.2014] Ross Girshick, Jeff Donahue,
Trevor Darrell, and Jitendra Malik. 2014. Rich fea-
ture hierarchies for accurate object detection and se-
mantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 580–587.

[Graves2013] Alex Graves. 2013. Generating se-
quences with recurrent neural networks. arXiv
preprint arXiv:1308.0850.

[Hong2005] Gumwon Hong. 2005. Relation extrac-
tion using support vector machine. In International
Conference on Natural Language Processing, pages
366–377. Springer.

281

[Huang et al.2015] Zhiheng Huang, Wei Xu, and Kai
Yu. 2015. Bidirectional lstm-crf models for se-
quence tagging. arXiv preprint arXiv:1508.01991.

[Kádár et al.2016] Akos Kádár, Grzegorz Chrupała, and
Afra Alishahi. 2016. Representation of linguis-
tic form and function in recurrent neural networks.
arXiv preprint arXiv:1602.08952.

[Karpathy et al.2015] Andrej Karpathy, Justin Johnson,
and Li Fei-Fei. 2015. Visualizing and un-
derstanding recurrent networks. arXiv preprint
arXiv:1506.02078.

[Kim et al.2003] J-D Kim, Tomoko Ohta, Yuka Tateisi,
and Junichi Tsujii. 2003. Genia corpusa semanti-
cally annotated corpus for bio-textmining. Bioinfor-
matics, 19(suppl 1):i180–i182.

[Kim et al.2004] Jin-Dong Kim, Tomoko Ohta, Yoshi-
masa Tsuruoka, Yuka Tateisi, and Nigel Collier.
2004. Introduction to the bio-entity recognition
task at jnlpba. In Proceedings of the international
joint workshop on natural language processing in
biomedicine and its applications, pages 70–75. As-
sociation for Computational Linguistics.

[Lafferty et al.2001] John Lafferty, Andrew McCallum,
Fernando Pereira, et al. 2001. Conditional random
fields: Probabilistic models for segmenting and la-
beling sequence data. In Proceedings of the eigh-
teenth international conference on machine learn-
ing, ICML, volume 1, pages 282–289.

[Li et al.2015] Jiwei Li, Xinlei Chen, Eduard Hovy,
and Dan Jurafsky. 2015. Visualizing and un-
derstanding neural models in nlp. arXiv preprint
arXiv:1506.01066.

[Li et al.2016] Jiwei Li, Will Monroe, and Dan Ju-
rafsky. 2016. Understanding neural networks
through representation erasure. arXiv preprint
arXiv:1612.08220.

[Luong et al.2015] Minh-Thang Luong, Hieu Pham,
and Christopher D Manning. 2015. Effective ap-
proaches to attention-based neural machine transla-
tion. arXiv preprint arXiv:1508.04025.

[Mahendran and Vedaldi2015] Aravindh Mahendran
and Andrea Vedaldi. 2015. Understanding deep
image representations by inverting them. In Pro-
ceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5188–5196.

[Mikolov et al.2013a] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013a. Efficient estima-
tion of word representations in vector space. arXiv
preprint arXiv:1301.3781.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever,
Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases
and their compositionality. In Advances in neural
information processing systems, pages 3111–3119.

[Nguyen et al.2015] Anh Nguyen, Jason Yosinski, and
Jeff Clune. 2015. Deep neural networks are easily
fooled: High confidence predictions for unrecogniz-
able images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
427–436.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D. Manning. 2014. Glove:
Global vectors for word representation. In Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

[Rush et al.2015] Alexander M Rush, Sumit Chopra,
and Jason Weston. 2015. A neural attention model
for abstractive sentence summarization. arXiv
preprint arXiv:1509.00685.

[Simonyan et al.2013] Karen Simonyan, Andrea
Vedaldi, and Andrew Zisserman. 2013. Deep
inside convolutional networks: Visualising image
classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

[Sukhbaatar et al.2015] Sainbayar Sukhbaatar, Jason
Weston, Rob Fergus, et al. 2015. End-to-end mem-
ory networks. In Advances in neural information
processing systems, pages 2440–2448.

[Szegedy et al.2013] Christian Szegedy, Wojciech
Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. 2013.
Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199.

[Tjong Kim Sang and De Meulder2003] Erik F. Tjong
Kim Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. In Walter
Daelemans and Miles Osborne, editors, Proceed-
ings of CoNLL-2003, pages 142–147. Edmonton,
Canada.

[Xu and Saenko2016] Huijuan Xu and Kate Saenko.
2016. Ask, attend and answer: Exploring question-
guided spatial attention for visual question answer-
ing. In European Conference on Computer Vision,
pages 451–466. Springer.

[Zeiler and Fergus2014] Matthew D Zeiler and Rob
Fergus. 2014. Visualizing and understanding con-
volutional networks. In European conference on
computer vision, pages 818–833. Springer.

282

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 283–289

Correcting General Purpose ASR Errors using Posteriors

Sunil Kumar Kopparapu
TCS Research and Innovation - Mumbai
SunilKumar.Kopparapu@TCS.Com

C Anantaram
TCS Research and Innovation - Delhi

C.Anantaram@TCS.Com

Abstract

Speech based interfaces have gained pop-
ularity because of the advances in auto-
matic speech recognition (ASR) technol-
ogy, more recently, triggered by the use
of deep neural networks for acoustic and
language modeling. However, the per-
formance of any general purpose ASR
(gpASR) is poor especially for low re-
source languages and the performance de-
teriorate further for natural conversational
speech. In this paper, we propose a statisti-
cal approach to learn the corrections to en-
able the use of a general purpose ASR for
domain specific use. The proposed idea
is based on the observation that there are
three types of errors that occur in an ASR
output, namely, insertion, deletion or sub-
stitution of a word or a phoneme. We pro-
pose to model these errors statistically and
use these posteriors to develop a scheme
that is able to repair the ASR output. The
proposed system is able to handle ASR er-
rors spread across lexical words also.

1 Introduction

Speech is the most natural mode of communica-
tion to query for answers (Kopparapu, 2014). Use
of natural language speech to query for informa-
tion is gaining practical applicability in our day to
day activities. It is also believed that in the next
ten years there will be a ten times increase in the
number of speech interface we will be facing in
our day to day life (Fuhrmann et al., 2017). How-
ever recognition of natural language speech is not
always 100% accurate even when a state of the art
ASR engine is employed for a resource rich lan-
guage. There are several reasons, the significant
among them are the mismatch in the train and the

test conditions in terms of the acoustic modeling,
the accent, the language, the environment etc.

There have been several attempts to improve the
speech recognition accuracies (a) by fine tuning,
adapting or learning the acoustic models (AM)
to handle the train-test mismatch condition (Mo-
hamed et al., 2012); and (b) by configuring the
statistical language models (SLM) so that the per-
plexity of the search space can be reduced (Kom-
brink et al., 2012). However, these attempts are
either far from producing accurate speech to text
conversion especially for natural language speech
or make the speech recognition engine constrained
to perform for a very specific task or domain. Sub-
sequently, there have been several attempts to post
process (Ainsworth and Pratt, 1992; Nishizaki and
Sekiguchi, 2006; Bassil and Alwani, 2012) the
output of the speech recognition engine to identify
and correct the erroneous output.

Most work on ASR error detection and correc-
tion has focused on using confidence measures,
generally called the log-likelihood score, provided
by the speech recognition engine; the text with
lower confidence is assumed to be incorrect and
subjected to correction (Shi, 2008; Zhou et al.,
2005). Such confidence based methods are use-
ful only when we have access to the internals of
a speech recognition engine built for a specific
domain. As mentioned earlier, use of domain-
specific engine requires one to rebuild the inter-
face every time the domain is updated, or a new
domain is introduced. As mentioned earlier, our
focus is to avoid rebuilding the interface each time
the domain changes by using an existing ASR. As
such our method is specifically a post-ASR sys-
tem. A post-ASR system provides greater flexi-
bility in terms of absorbing domain variations and
adapting the output of ASR in ways that are not
possible during training a domain-specific ASR
system (Ringger and Allen, 1996). More recently,

283

there have been attempts to use a general purpose
speech recognition engine and then correct the
ASR output using bio-inspired evo-devo (Anan-
taram et al., 2015b; Anantaram et al., 2015a) and
statistical techniques (Anantaram and Kopparapu,
2017) based on features extracted from the refer-
ence and the ASR output text. The machine learn-
ing based system described in (Anantaram and
Kopparapu, 2017) is along the lines of (Jeong et
al., 2004) but differs in the sense that they use of
multiple features for training the Naive Bayes clas-
sifier instead of a single feature (syllable count) for
training used in (Jeong et al., 2004) in addition to
not using manual alignment between the ASR and
reference text. In (Twiefel et al., 2014) the au-
thors address the post correction of a general pur-
pose ASR by using (a) the closeness of phoneme
depending on the place and manner of articula-
tion to identify the confusability between the ac-
tual and the recognized phoneme and (b) using the
front-end and the linguist module of Sphinx. How-
ever their experiments seem to suggest that their
task is that of aligning the gpASR output text with
another sentence from a known finite set of sen-
tences.

In this paper, we use a novel approach to repair
the errors produced by a gpASR engine. We do not
assume, unlike (Twiefel et al., 2014) the availabil-
ity of reference pre defined sentences. In a very
broad sense we try to model the performance of
the gpASR engine for a certain environment and
domain which is then used to repair the ASR out-
put for all speech utterances coming from the same
environment and domain. The rest of the paper is
organized as follows. In Section 2 we formulate
the problem and describe an approach to model the
ASR for a specific domain and environment and in
Section 3 we describe the dataset used to evaluate
the proposed approach and give some preliminary
results. We conclude in Section 4.

2 Problem Formulation

Let
~R = /r1r2r3 · · · rm/

be a spoken sentence consisting ofM words that is
input to a speech recognition engine. For example,

~R =

{/who is the accountable
person for manufacturing
solutions/

Let the general purpose automatic speech

recognition (gpASR) output,

~O = ”o1o2o3 · · · on”

consisting of say N words such that ~O 6= ~R. For
example,

~O =

{
"who is accountable boston
for the men affecting
solutions"

which was obtained using Kaldi (Povey et al.,
2011) with Fisher acoustic models (gpAM) and
language models (gpLM) (Kaldi, 2015). Namely,

~R −→ gpASR
︸ ︷︷ ︸x

gpLM, gpAM

−→ ~O

Observe that M can be ≶ N . However, there
are only three type of operations that are possible
to transform ~O to ~R, namely, a word in ~O is either
deleted or is inserted or is substituted so that ~O can
become identical to ~R. Clearly, one insertion, two
deletions and two substitutions to ~O could make it
identical to ~R, namely,

"who is (φ
ins→the) accountable

(boston
sub→person) for

(the
del→ φ) (men

del→ φ)

(affecting
sub→manufacturing)

solutions"

~Op ←− word2phoneme
︸ ︷︷ ︸x

gpLexicon

←− ~O

Let each word in ~R and ~O be represented by its
phonetic equivalent so that

~Rp = r1r2 · · · rM
and

~Op = o1o2o3 · · · oN
such that {ri, oi} ∈ IP where IP is the set of
phonemes. Note that r1 in ~Rp is a phoneme while
r1 in ~R is a lexical word. In general there are 39
phones in IP , namely,

IP =





a, ae, ah, ao, aw, ay, b, ch,
d, dh, eh, er, ey, f, g, hh, ih,
iy, jh, k, l, m, n, ng, ow, oy,
p, r, s, sh, t, th, uh, uw, v,
w, y, z, zh





284

Subsequently, we can write

~Op =





hh uw ih z dh iy ah k aw n t ah b

ah l p er s ah n f r er m ae n y

ah f ae k ch er ih ng s ah l uw sh

ah n z
(1)

and

~Rp =

{hh uw ih z ah k aw n t ah b ah l b

ao s t ah n f r er dh iy m eh n ah

f eh k t ih ng s ah l uw sh ah n z.
(2)

Notice that even as a phonemic string, ~Op can be
transformed into ~Rp through one of the three oper-
ations, namely, deletion, insertion or substitution.

2.1 Computing Posteriors
We define an extension IP ′ = {IP, φ}, where the
element φ represents a null-phoneme. Given a cor-
pus of { ~Oi

p,
~Ri
p}Ki=1 pairs (K is large). Note that

the elements of ~Op and elements of ~Rp ∈ IP and
can take one of the 39 unique phones. Represent o
and r as p ∈ IP . Now we compute for all pi ∈ IP

Psub = P (pi
sub→ pj) =

#((pi ∈ ~Op)&(pj ∈ ~Rp))

#(pi ∈ ~Op)
(3)

where (a) #(pi ∈ ~Op) is the count of the
phone pi occurring in { ~Oi

p}Ki=1 and (b)
#((pi ∈ ~Op)&(pj ∈ ~Rp)) is the count of the
phone pi which occurs in { ~Oi

p}Ki=1 when pj

occurs in {~Ri
p}Ki=1. Similarly, we find

Pins = P (φ
sub→ pj) (4)

where pj occurs in ~Rp but does not occur in ~Op

and
Pdel = P (pi

sub→ φ) (5)

where pi occurs in ~Op but does not occur in ~Rp.

Note that we can compute P∗(pi
sub→ pj) for all

pi, pj ∈ IP ′, clearly P∗ is a 40 × 40 matrix. The
last column corresponds to Pdel while the last row
corresponds to Pins. We conjecture that these pos-
terior probabilities P∗(pi

sub→ pj) can be used to
model the ASR engine (see Figure 1) which in turn
can be used to repair the ASR output, namely,

~Op −→ repair
︸ ︷︷ ︸x
P∗

−→ ~Rp

Figure 1: P∗ for Kaldi (Povey et al., 2011) with
Fischer acoustic and language models. Note that
there are higher Pins.

2.2 Repair Approach
Now given an general purpose ASR output,
say, O1O2O3O4O5 · · ·ON identify the words Oi

which are not part of the domain along the lines
of (Anantaram et al., 2015a), using a domain on-
tology. The domain ontology (dLexicon) helps in
identifying all the Oi’s such that Oi /∈ dLexicon.

Then using the domain lexicon we con-
struct for each Oi the phoneme sequence
oi1, oi2, oi3, oi4, oi5, · · · , oim where each oij ∈ IP .
We then expand the phonemes that require correc-
tion as

expand(oi, φ) = φ, oi1, φ, oi2φ, oi3, φ, oi4,

φ, oi5, φ, · · · , φ, oim, φ (6)

by inserting φ between the phonemic representa-
tion of Oi. This extended phoneme string is cor-
rected using the posterior (P∗). Now for all iden-
tified oij and φ ∈ ε, find all pk ∈ IP ′ such that the
posterior

P∗(oj
sub→ pk) > τ and P∗(φ

sub→ pk) > τ. (7)

We form a lattice (L) using pk obtained in (7) ,
namely,

ε −→ P∗ −→ L
We search through this lattice, L, to identify the
best set of pk that results in the highest probability
score such that the resulting phoneme string rep-
resents a word in the domain, namely,

L −→ search, phoneme2word
︸ ︷︷ ︸x

dLexicon

−→ O′

285

where O′ is the corrected word corresponding to
Oi. Algorithm 1 captures this approach in greater
details.

Algorithm 1 Repair ~O.

Given ~O = O1O2O3O4O5 · · ·ON

Given τ , P∗/* Posterior */
Given cnt = 0, dLexicon /* Domain Ontology
*/

for k = 1, 2 · · ·N do
if Ok /∈ dLexicon then
α[cnt++]←− Ok

/* α contains all words /∈ dLexicon */
end if

end for

for l = 1, 2, · · · , cnt do
~o← Ol /* Using gpLexicon */
~ol ← expand(~o, φ) /* Expand using (6)*/
for pj ∈ ~ol do
knt = 0
for (pk ∈ IP ′) do

if (P (pj
sub→ pk) > τ) then

Lj,knt++ =
{
pk, P (pj

sub→ pk)
}

end if
end for
/* L is the lattice */

end for

Search through L to find the repaired ~o ′l
end for

O′l ← ~o ′l /* Using Lexicon */
/* O′l is the corrected word */

3 Experimental Results

3.1 Data setup
Experiments were carried out on a database of 700
spoken utterances by 7 different people, each of
them speaking 100 sentences. Each of the 7 speak-
ers were given a set of 100 different queries which
they were required to speak into a data collection
application built in-house. Each of them spoke
10 queries in a session and the 10 sessions were
recorded over a period of one or two days. The
spoken utterance was recorded in the wave for-
mat with 16 bits resolution and a sampling rate of
16 kHz. These 700 spoken utterances were first

converted to text using a general purpose speech
recognition engine, in our case Kaldi (Povey et al.,
2011) using the Fischer acoustic (Kaldi, 2015) and
Fischer language models. We built the gpLexicon
using the 700 decoded text outputs using an online
tool (CMU, 2017). Note that the general purpose
ASR (Kaldi) can output words which need not al-
ways be part of the domain Ontology (in our case
the domain was related to software industry). In
all there were 1426 unique words in the 700 ASR
text output (gpLexicon) and there were 372 unique
words in the domain lexicon (dLexicon). We di-
vided the 700 into 5 sets of 140 utterances each
and carried out a 5 fold validation, namely we used
4 sets, consisting of 560 sentences to compute the
posterior and 1 set consisting of 140 sentences to
test. In this paper, we present a sample example to
demonstrate the effectiveness of our approach.

3.2 Construction of P∗
We constructed the posteriors using the decoded
text (example, (1)) and the actual spoken text (ex-
ample, (2)) after converting both the text strings
into phonemes using a phonetic lexicon (we used
gpLexicon for ASR output text and dLexicon for
the actual spoken text). We aligned the two pho-
netic strings using edit distance algorithm which
came with (Povey et al., 2011). For (1) and (2) we
get
”hh, uw, ih, z, dh, (aesub→ah), (t del→ φ), ah, k, aw,
n, t, ah, b, ah, l, (bsub→p), (aasub→er), s, (t del→ φ),
ah, n, f, ao, r, (dh del→ φ), (ah del→ φ), m, (ehsub→ae),
n, (φ ins→y), ah, f, (ehsub→ae), k, (tsub→ch), (ihsub→er),
(φ ins→ih), ng, s, ah, l, uw, sh, ah, n, z”
which are used to compute the posterior as men-
tioned earlier. As seen there are 7 substitutions,
3 deletions and 2 insertions. A sample posterior
P∗ is shown in Figure 1 as a contour plot. The x-
axis represents the phonemes (from the actual text)
while the y-axis is the phonemes (in the words rec-
ognized by gpASR).

3.3 Sample Repair
As an example the general purpose ASR returned

"who is that accountable
boston for the men affecting
solutions"

when
/who is the accountable
person for manufacturing
solutions/

286

”boston"
b ao s t ah n

1 φ b φ ao φ s φ t φ ah φ n φ
2 ah p ah ah ah sh ah φ ah φ ah φ ah

3 ih φ ih φ ih φ ih r ih er ih l ih

4 k r k er k z k ah k r k ah k

5 t w t aa t ah t er t aa t k t

6 l l l ow l er l l l ae l r l

7 r ah r iy r ey r d r ih r ae r

8 s dh s sh s r s th s eh s ih s

9 d d d p d ih d dh d ey d m d

10 w t w v w ch w eh w uw w ng w

p er s ah n
”person"

Table 1: Lattice L constructed using the posterior P∗, used to correct ’b ao s t ah n’ to ’p er s
ah n’. The phones marked in bold are the ones that are picked during the lattice search.

was given as the audio input to the gpASR. The
output text ”boston" and ”men affecting"
are not part of the domain ontology (dLexicon).

We first converted the word ”boston" into
its phoneme equivalent using the general pur-
pose phonetic lexicon (gpLexicon), namely ’b
ao s t ah n’, then using the posterior P∗ we
constructed the lattice L (see Table 1) which
shows the top 10 phonemes that could replace the
phoneme output by the ASR based on the poste-
riorP∗. For example, the column associated with b

shows that P (b sub→ p) ≥ P (b del→ φ) ≥ P (b sub→ r)
etc. Note that we have captured the possible inser-
tion by appending φ between the phones, namely,
φ b φ ao φ s φ t φ ah φ n (6). Now traversing the
lattice L in Table 1 from left to right we can get φ
p φ er φ s φ φ φ ah φ n φ which is nothing but ’p
er s ah n’ which is part of our domain.

A similar repair mechanism described in Algo-
rithm 1 helps in correcting ”men affecting"
to the domain word ”manufacturing" as
shown in Figure 2. As a result the general purpose
ASR output

"who is that accountable
boston for the men affecting
solutions"

is corrected to

"who is that accountable
person for the manufacturing
solutions"

Note that this is not exactly what was spoken,

namely,

/who is the accountable
person for manufacturing
solutions/

Notice that the repair mechanism is unable to cor-
rect ”that" to ”the" and delete ”the" however
the repair mechanism is able to correct the non-
domain words by identifying phonetically equiva-
lent words in the domain. In this example and all
our experiments we choose τ in a manner that we
had the top 10 phonemes to form the lattice L.

Also notice that because the repair mech-
anism operates in the phoneme space it is
able to operate even if the error is spread
across words (example, ”men affecting"
−→ ”manufacturing"). This example sen-
tence clearly demonstrates the ability of the pro-
posed repair approach to correct the output of a
general purpose automatic speech recognition en-
gine based on the computed posteriors.

We measured the accuracy of improvement in
the ASR output, by looking at the edit distance
between (~O, ~R) and the edit distance between (~O′,
~R). Here ~R is the reference out (perfect ASR out-
put), while ~O is the output of the general purpose
ASR (in our case Kaldi ASR output) and ~O′ is the
repaired output based on Algorithm 1. It is ob-
served that the dis(~O′, ~R)≤ dis(~O, ~R). Namely,
the repaired output was always closer to the refer-
ence that the output of the general purpose ASR
engine (~O).

287

”men" ”affecting"
m eh n ah f eh k t ih ng

φ m φ eh φ n φ ah φ f φ eh φ k φ t φ ih φ ng φ
ah φ ah ah ah φ ah φ ah v ah ah ah φ ah φ ah ey ah n ah

ih n ih ae ih l ih er ih ah ih ae ih t ih r ih ah ih φ ih

k l k φ k ah k r k φ k φ k ah k ah k eh k d k

t ih t ih t k t aa t p t ih t f t er t φ t v t

m ae n ah f ae k er ih ng
”manufacturing"

Table 2: Lattice L constructed using the posterior P∗, used to correct ”men affecting".

4 Conclusions

Speech based applications are being increasingly
deployed for self help in enterprises. However
for resource deficient languages (including Indian
English) the performance of ASR engine is poor
especially for natural spoken utterances. While
there are two ways of getting over the poor per-
formance of ASR engine, namely (a) fine tuning
the AR engine in terms of acoustic and language
models; thereby making the ASR engine domain
specific or (b) using a general purpose ASR engine
and then correcting the ASR output using domain
ontology and in some way modeling the ASR be-
havior. The advantage of the second approach is
that of being able to use a readily available state
of the art ASR engine without having to build a
unique speech recognition engine for every appli-
cation. In this paper, we approach the problem of
correcting the general purpose ASR output using
posteriors. The main contribution of this paper is
the formulation of a posterior approach to repair
the output of a general purpose ASR engine as de-
picted in detail in Algorithm 1. We also showed
that the approach is able to repair the errors that
might be spread across lexical words.

5 Acknowledgements

The authors would like to thank Chirag Patel who
assisted in performing some experiments in the
earlier stages of this work.

References
W.A. Ainsworth and S.R. Pratt. 1992. Feedback strate-

gies for error correction in speech recognition sys-
tems. International Journal of Man-Machine Stud-
ies, 36(6):833 – 842.

C. Anantaram and Sunil Kumar Kopparapu. 2017.
Adapting general-purpose speech recognition en-

gine output for domain-specific natural language
question answering. CoRR, abs/1710.06923.

C. Anantaram, Rishabh Gupta, Nikhil Kini, and
Sunil Kumar Kopparapu. 2015a. Adapting
general-purpose speech recognition engine output
for domain-specific natural language question an-
swering. In Workshop on Replicability and Repro-
ducibility in Natural Language Processing: adap-
tive methods, resources and software at IJCAI 2015,
Buenous Aires.

C Anantaram, Nikhil Kini, Chirag Patel, and Sunil
Kopparapu. 2015b. Improving ASR recognized
speech output for effective NLP. In The Ninth Inter-
national Conference on Digital Society ICDS 2015,
pages 17–21, Lisbon, Portugal.

Youssef Bassil and Mohammad Alwani. 2012. Post-
editing error correction algorithm for speech recog-
nition using bing spelling suggestion. CoRR,
abs/1203.5255.

CMU. 2017. The CMU pronouncing dictio-
nary. http://www.speech.cs.cmu.edu/
cgi-bin/cmudict.

Ferdinand Fuhrmann, Anna Maly, Christina Leitner,
and Franz Graf. 2017. Three experiments on the
application of automatic speech recognition in in-
dustrial environments. In Nathalie Camelin, Yan-
nick Estève, and Carlos Martı́n-Vide, editors, Statis-
tical Language and Speech Processing - 5th Inter-
national Conference, SLSP 2017, Le Mans, France,
October 23-25, 2017, Proceedings, volume 10583 of
Lecture Notes in Computer Science, pages 109–118.
Springer.

Minwoo Jeong, Byeongchang Kim, and G Lee. 2004.
Using higher-level linguistic knowledge for speech
recognition error correction in a spoken q/a dialog.
In HLT-NAACL special workshop on Higher-Level
Linguistic Information for Speech Processing, pages
48–55.

Kaldi. 2015. Kaldi fisher english. http:
//kaldi-asr.org/downloads/build/2/
sandbox/online/egs/fisher_english/.

288

Stefan Kombrink, Tomas Mikolov, Martin Karafiát,
and Lukás Burget. 2012. Improving language mod-
els for ASR using translated in-domain data. In
2012 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2012, Ky-
oto, Japan, March 25-30, 2012, pages 4405–4408.
IEEE.

S.K. Kopparapu. 2014. Non-Linguistic Analysis of
Call Center Conversations. SpringerBriefs in Elec-
trical and Computer Engineering. Springer Interna-
tional Publishing.

A. Mohamed, G.E. Dahl, and G. Hinton. 2012. Acous-
tic modeling using deep belief networks. Audio,
Speech, and Language Processing, IEEE Transac-
tions on, 20(1):14 –22, jan.

Hiromitsu Nishizaki and Yoshihiro Sekiguchi. 2006.
Word error correction of continuous speech recog-
nition using web documents for spoken document
indexing. In Yuji Matsumoto, RichardW. Sproat,
Kam-Fai Wong, and Min Zhang, editors, Computer
Processing of Oriental Languages. Beyond the Ori-
ent: The Research Challenges Ahead, volume 4285
of Lecture Notes in Computer Science, pages 213–
221. Springer Berlin Heidelberg.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The kaldi speech recognition
toolkit. In IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding, number
Idiap-RR-04-2012, Rue Marconi 19, Martigny, De-
cember. IEEE Signal Processing Society. IEEE Cat-
alog No.: CFP11SRW-USB.

E.K. Ringger and J.F. Allen. 1996. Error correction
via a post-processor for continuous speech recogni-
tion. In Acoustics, Speech, and Signal Processing,
1996. ICASSP-96. Conference Proceedings., 1996
IEEE International Conference on, volume 1, pages
427–430 vol. 1, May.

Yongmei Shi. 2008. An Investigation of Linguistic
Information for Speech Recognition Error Detec-
tion. Ph.D. thesis, University of Maryland, Balti-
more County, October.

Johannes Twiefel, Timo Baumann, Stefan Heinrich,
and Stefan Wermter. 2014. Improving domain-
independent cloud-based speech recognition with
domain-dependent phonetic post-processing. In
Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, AAAI’14, pages 1529–
1535. AAAI Press.

Lina Zhou, Jinjuan Feng, A. Sears, and Yongmei Shi.
2005. Applying the naive bayes classifier to assist
users in detecting speech recognition errors. In Sys-
tem Sciences, 2005. HICSS ’05. Proceedings of the
38th Annual Hawaii International Conference on,
pages 183b–183b, Jan.

289

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 290–297

Retrieving Similar Lyrics for Music Recommendation System

Braja Gopal Patra1, Dipankar Das2, and Sivaji Bandyopadhyay2

1School of Biomedical Informatics,
The University of Texas Health Science Center at Houston, Houston, Texas, USA

2Department of Computer Science & Engineering, Jadavpur University, Kolkata, India
brajagopal.cse@gmail.com, dipankar.dipnil2005@gmail.com,

sivaji cse ju@yahoo.com

Abstract

Presently, millions of music tracks are
available on the web. Therefore, a mu-
sic recommendation system can be helpful
to filter and organize music tracks accord-
ing to the need of users. To develop a re-
commendation system, we need an enorm-
ous amount of data along with the user
preference information. However, there is
a scarcity of such dataset for Western as
well as Hindi songs. This paper presents
a similar lyrics retrieval system for Hindi
songs using features collected from lyrics.
A romanized Hindi lyric dataset is col-
lected from the web. The collected data-
set is noisy, and several forms of a single
word are present in it, thus an unsuper-
vised stemming algorithm is proposed to
reduce the size of N-grams. The Self-
Organizing Feature Maps (SOFMs) based
similar lyrics retrieval system achieves the
maximum F-measure of 0.749.

1 Introduction

The improvement in digital technology has led
the music digitally available to all Internet users.
The development of nanotechnology made stor-
age devices portable, and nowadays, any handheld
devices can store thousands of tracks. Whenever a
user has an enormous number of choices for listen-
ing to music (like browsing web or personal stor-
age devices), the user is overwhelmed by options.
The recommender system comes as a savior and
filters the songs that are suitable for that user at
that moment. It also maximizes the user’s satisfac-
tion by playing appropriate song at the right time,
and, meanwhile, minimize the user’s effort (Hu,
2014). The recommendation problem can be seen

as a ranking problem, and it creates a list of suit-
able songs for users.

Many music streaming services for Western
music emerged in recent years, such as Google
Play Music1, Apple music2, Last.fm3, Pandora4,
Spotify5, and so forth; and some of them are not
available in India. These music streaming applica-
tions store user preferences and recommend users
what they want to listen. In India, several music
streaming services were started recently and those
are Apple music, Gaana6, Hungama7, Saavn8, and
Wynk music9 etc. Most of them do not recommend
songs and those are just a music library. You-
tube is one of the video streaming services which
provides recommendations based on the collab-
orative filtering (Davidson et al., 2010). It also
provides facility to search using title of song and it
can also search a video using any keywords within
a lyric body only when full lyric is available in the
description.

There is a keen interest in accessing music con-
tents nowadays. Available search engines or in-
formation retrieval (IR) systems allow users to
search a song by the metadata such as song title,
artist, album name. Incorrect metadata can lead to
wrongly searched data, and without any metadata,
it is not possible to search a song. Again, the
current IR systems give particular search results
based on the query rather than similar lyrics to a
query. It was observed that a lyrics provide differ-
ent semantic information than audio for some of
Hindi songs, i.e., the annotators perceived differ-

1https://play.google.com/music/listen
2https://www.apple.com/music
3https://www.last.fm
4https://www.pandora.com
5https://www.spotify.com
6https://gaana.com
7http://www.hungama.com
8https://www.saavn.com
9https://www.wynk.in/music

290

ent moods while reading lyrics and listening to the
corresponding songs (Patra et al., 2016b). People
are interested in listening to songs specific to situ-
ation and mood (Duncan and Fox, 2005). There
is a need for recommendation system based on in-
formation within the music as well as the metadata
of music such as mood, genre, artist name, and so
on.

Music similarity measures can help to under-
stand why two music pieces are perceived alike
by the listener and to guide the user in efficiently
retrieving desired piece of music (Schedl et al.,
2011). Query by hamming helps to find an exact
song with respect to a query humming. Again, a
lyrics based retrieval system could be helpful for
searching similar songs. Till date, there is no such
lyrics retrieval system developed for Hindi songs.

In the present task, we collected a huge lyric
dataset for Hindi songs written in Romanized Eng-
lish characters. Though, developing lyrics re-
trieval system for Hindi songs of Romanized char-
acters is a difficult task. The main reason is that the
processing of such text is difficult for an n-gram
based system as a single word is written with dif-
ferent variations, for example, “Ajnabi” and “Ajn-
abiii”. The existing stemming and parts-of-speech
taggers are available for either utf or WX format of
Hindi characters. All sentiment lexicons are also
available in utf format and these can not be used
for Romanized characters.

Several text normalization techniques and an
unsupervised stemming algorithm have been im-
plemented to handle unstructured data. Finally,
we developed unsupervised IR systems to retrieve
similar songs with respect to a query song us-
ing Self-Organizing Feature Maps (SOFMs) and
Document level word embeddings followed by
a baseline system using Fuzzy C-means (FCMs)
clustering. The similar lyrics retrieval system can
be combined with existing metadata based recom-
mender to give a better performance. It is also
useful for recommending a song where little or no
metadata (genre, mood) is available.

This paper is organized as follows: Section 2
describes the related work on similar lyrics re-
trieval and works on Indian music. The dataset and
preprocessing techniques are discussed in Sec-
tion 3. Section 4 describes SOFMs and Doc2Vec
for developing the retrieval system. The developed
systems with comparisons are described in Sec-
tion 5. Finally, Section 6 concludes and provides

avenues for further work.

2 Related Work

Automatic playlist generation is one of the fun-
damental problem in music information retrieval
(MIR) to overcome the manual song selection.
Automatic playlist generation can be seen as re-
commendation problem. The biggest challenges
faced while developing recommendation system
are collecting a huge dataset and metadata, then
getting user preferences or feedback. The recom-
mender system can be developed based on both
audio and lyrics to solve the problem of manual
playlist selection or generation.

There have been multiple experiments which
process lyrics. Mahedero et al. (2005) performed
the language identification, structure extraction,
theme extraction, and similarity searches mainly
on Western lyrics. The mood (Hu et al., 2009;
Zaanen and Kanters, 2010) and genre (Mayer et
al., 2008) classification have also been performed
using lyric features of Western music.

Another interesting task named as LYRIC-
SRADAR was developed by Sasaki et al. (2014)
and they visualized the topics of Japaneses lyr-
ics by using a Latent Dirichlet Allocation (LDA).
Several experiments were performed on retriev-
ing similar lyrics for Western songs by (Mahe-
dero et al., 2005; Knees et al., 2007; Schedl et al.,
2011), Mandarin lyrics by (Wang et al., 2010), and
Chinese lyrics by (Han et al., 2015).

2.1 Experiments on Indian Songs

MIR in Indian songs is at early stage. Recently,
mood classification of Hindi songs have been per-
formed using audio (Ujlambkar and Attar, 2012;
Patra et al., 2013; Patra et al., 2016a), lyrics (Patra
et al., 2015), and combination of both (Patra et al.,
2016b; Patra et al., 2016c). The datasets used in
above experiments are small and not adequate for
development of recommendation system.

Some other tasks like raga identification of
south Indian Carnatic music (Sridhar et al.,
2011), multimodal sentiment analysis of Telugu
songs (Abburi et al., 2016), melody identification
of Carnatic music (Koduri et al., 2011), rhythm
analysis of Indian art music (Srinivasamurthy et
al., 2014) etc. have been performed till date. To
the best of author’s knowledge, almost no work
exists for retrieving similar lyrics for any of the
Indian songs.

291

3 Dataset and Preprocessing

3.1 Dataset

As no task on retrieving the similar lyrics has been
performed till date, no dataset is also available. A
total of 31,171 lyrics of Hindi songs have been
collected from several websites101112 using a web
crawler developed by us. Among them, 25,088
lyrics are in Romanized characters and 6,083 lyr-
ics are in utf-8 characters. It is good to develop
similar lyrics retrieval system on the lyrics hav-
ing utf-8 characters, but the number of such lyr-
ics is insufficient to develop an IR system. Thus,
we discarded the latter set of lyrics for the current
experiment and developed similar lyrics retrieval
system only on the Romanized lyrics.

There were many HTML tags and other junk
characters, thus, several preprocessing steps were
performed on the collected dataset to ensure the
quality. The variations in Romanized words mo-
tivated us to remove the duplicate characters and
perform stemming.

3.2 Preprocessing

We removed HTML tags and junk characters from
the lyrics. Mukhda (the starting stanzas of a song)
is repeated in lyric and the importance of words
in mukhda is higher than the words in antara (in-
side stanzas of a lyric) (Beaster-Jones and Sar-
razin, 2016). Again, we observed that the systems
are biased towards mukhda because of the higher
word frequency. We performed our experiments
both before and after removing repeated lines from
the lyrics.

As the number of n-grams is quite high, and a
huge computational power is required to perform
the search. Thus, preprocessing is an important
step reduce the n-gram size and the steps for pre-
processing are sequentially discussed as follows.

3.2.1 Removing Duplicate Characters
There were many words having multiple repeated
characters. To reduce the n-gram size, the fre-
quency of any repetitive character were reduced to
two. For example, the word ‘Ajnabiiiiiiiiii’ con-
tains multiple ‘i’ and those multiple occurrences
of ‘i’ was replaced by ‘ii’. At the end, word ‘Ajn-
abiiiiiiiiii’ became ‘Ajnabii’. Later on, the pro-
posed stemming algorithm is used on above word

10http://www.lyricsmint.com
11http://smriti.com
12http://www.indicine.com

to reduce ii to i.

3.2.2 Stemming Algorithm
It was observed that stemming algorithm improves
the performance of any information retrieval sys-
tem (Moral et al., 2014). Many words are written
in different forms, for example, the word ‘marega’
(to beat) is written as ‘maregaa’ in another lyric.
There are several tool for stemming or lemmatiz-
ation, but all of them are for either WX or utf-8
characters and these tools are not useful for cur-
rent scenario. Thus, an unsupervised stemming al-
gorithm was developed to reduce the number of n-
grams present in corpus and to improve the system
performance. We hope that the proposed unsuper-
vised stemming algorithm is useful for handling
noisy data from different languages.

The algorithm contains two main steps namely
collecting suffix and stemming. The first step de-
scribes how suffixes are collected from words by
comparing the similar words. Details of the first
step is given below.

First, all unique words are stored in a diction-
ary after sorting them alphabetically and length
wise. This step is performed to reduce the num-
ber of matching during stemming. For each word,
a suffix is searched by comparing with another
word starting with same character. If the differ-
ence between two words are less than equals to
three then rest of the words (after removing the
common characters) is considered as a suffix and
the word matching is done from the left to right.
For example, the words Ajnabi and Ajnabii have
only single character difference, i.e. i. Thus, i
is considered as suffix and inserted in the suffix
list. If difference between the words is more than
3, then rest of the words after removing common
characters may be a probable suffix. Such suf-
fixes are collected and checked manually before
implementing. The second step describes how
stemming is performed using the collected suffixes
and all inflected words are removed from the final
dictionary. The pseudo code for normalizing the
words is given in algorithm 1.

After using the stemming algorithm, the word
‘maregaa’ is normalized to ‘marega’. Several
words having different suffixes at the end were
observed in lyrics, for example, ‘dost’ (friend),
‘dosti’ (friendship), ‘doston’ (friends) and the
words ‘dosti’ and ‘doston’ are normalized to
‘dost’.

We removed stopwords while constructing the

292

Algorithm 1 Pseudo code for unsupervised stemming
1: procedure COLLECTING SUFFIX

2: Store all unique words in dict after sorting them alphabetically and length wise
3: for each wordi in dict do
4: for each wordj in dict do
5: if wordj .startswith(wordi) and len(wordj)-len(wordi) ≤ 3 then
6: wordj is inflected form of wordi
7: suffix list.append(wordj .replace(wordi))
8: else
9: if wordj .startswith(wordi) and len(wordj)-len(wordi) ≥ 4 then

10: diff suffix list.append(wordj .replace(wordi))
11: else
12: continue
13: Each suffix in diff suffix list is manually checked
14: procedure STEMMING

15: for each wordi in dict do
16: for each wordj in dict do
17: if wordj .startswith(wordi) then
18: x← wordj .replace(wordi)
19: if x in diff suffix list then
20: wordj is removed from dict

21: else
22: continue

n-grams. Initially, we had a list of stopwords for
Hindi, but it was in utf-8 format. Thus, another
stopword list was prepared manually in Roman-
ized format. This list contains all possible form
of a single word, for e.g. ‘yun’ and ‘yuun’. The
stopwords list contains 307 words in Romanized
format.

A total of 95,415 unigrams were obtained from
the whole corpus after removing the HTML tags
and junk characters. The number reduced to
94,960 after removing the stopwords from lyrics.
Further, the duplicate characters were removed
and this process obtained a total of 75,620 uni-
grams. Finally, the unsupervised stemming tech-
nique was used and it reduced the unigram size
to 37,693, though some errors were observed dur-
ing the stemming process. For example, stem-
ming algorithm trimmed the word ‘waaris’ (heir)
to ‘waar’ (attack) after comparing with the later
and after removing the suffix is.

4 Methods

4.1 Doc2Vec
Bag-of-words gained immense popularity in the
field of text processing, though they have two
weaknesses: they lose the ordering of the words

and also ignore semantics of the words (Le and
Mikolov, 2014). The document level word embed-
dings have been quite successful in several classi-
fication tasks, and it has the advantage over the
word embeddings that it is trained to reconstruct
linguistic contexts of words. Similarly, Doc2Vec
is an extension of word embeddings that learns to
correlate labels and words, rather than words with
other words.13 Doc2Vec has been successfully
used for several NLP related tasks such as sum-
marization (Pontes et al., 2016), sentiment ana-
lysis (Le and Mikolov, 2014) etc.

Initially, we trained all the lyrics using
Gensim14 library. Then, top 10 retrieved vectors
for each of the query vectors have been collected
for manual checking. We also trained Doc2Vec
model on lyrics after stemming all words using the
proposed stemming algorithm.

4.2 Self-Organizing Feature Maps

SOFMs are useful for clustering several
tasks (Vesanto and Alhoniemi, 2000) and it
has been successfully used for information
retrieval (Ahuja and Goyal, 2012). SOFMs

13https://deeplearning4j.org/doc2vec
14https://radimrehurek.com/gensim/models/word2vec.html

293

are a class of artificial neural networks, which
employ competitive learning (Kohonen, 1982).
SOFMs cluster similar data without the help
of training instances, and hence are said to
perform unsupervised learning. The algorithm is
started by initializing a set of randomly weighted
neurons in the input feature space, and care is
taken not to initialize two neurons with identical
weights. SOFMs work in two phases, namely
self-organizing phase and recall phase. In the
self-organizing phase, each neuron’s weight
vector is matched with an input vector, and the
best matching neuron and its neighborhood’s
weights are adapted to match the selected input.
As this kind of learning progresses, input-vectors
located far away from each other are mapped to
distant neurons. Thus, a grouping of close-by
input neurons is formed. In the recall phase, an
input vector which is unknown to the SOFMs are
matched with all the neurons, and the neighbor-
hood which forms its closest match is associated
with that new input vector (Kar et al., 2015).

In self-organizing phase, we considered fea-
ture vectors (N-grams) of songs and these were
mapped to the neurons to form an SOFMs cluster.
In recall phase, a query lyric feature vector was
matched with the cluster neighborhoods created
during the self-organizing phase. The nearest
matching SOFM neighborhood was selected as
the set of song ids corresponding to the query
song. The detailed steps of SOFMs are given in
algorithm 2.

N-gram feature: The n-gram feature plays an
important role in information retrieval. The Term
Frequency-Inverse Document Frequency (tf-idf)
scores of up to trigrams were considered as fea-
ture because the sparsity of the feature vector in-
creases significantly and the results get worse after
including higher order n-grams.

4.3 Evaluation

Manual checking is a tedious and time-consuming
task requiring human resource. There was no gold
standard dataset available for comparing perform-
ances of the developed systems. Thus, manual
evaluation was performed for calculating simil-
arity between a query and retrieved lyrics. To
keep the annotation process simple and reduce the
manual checking load, we selected only top ten re-
trieved lyrics for each query lyric.

We asked the annotator, whether the song is

Algorithm 2 Pseudo code for SOFMs
1: procedure SELF-ORGANIZING PHASE

2: Initialize a neuron field of k × k dimen-
sion, each having 1 × d dimensional weight
vector (no two weight vectors would be the
same).

3: Select winning weight vector
having the least Euclidean distance

(di,j =
√∑d

i=1 (xi,j − wi,j)
2) to input

vector
4: The winning neuron adapted using wk,j =
wk,j + η(xk,j − wk,j)

5: for each iteration do decrease learning
rate η and neighborhood size till convergence

6: procedure RECALL PHASE

7: Map input data to nearest clusters centers
(weight vectors).

similar to query lyrics or not. Second, whether
they would like to listen to retrieved song after
listening to the query-song. The annotators were
asked to provide a score on a scale from 0 to
1 to each of the ten retrieved lyrics for a single
query lyric based on above mentioned points. The
retrieved lyric is considered to be matched with
the query lyric if the similarity score provided by
the annotator is more than 0.7; the threshold was
selected experimentally. We wanted a trade off
between the system performance and quality of the
annotation. This value is selected to reduce the
annotation disagreement as well as the subjectiv-
ity of the annotators. Two annotators checked
each of the results. We also calculated the inter-
annotator agreement and it was 87%. Finally, pre-
cision (P), recall (R) and F-measure (FM) are cal-
culated based on the manual checking.

5 Results and Discussion

We have selected a total of 100 query lyrics for
testing system performances. For the test, we
chose lyrics by searching the top lyrics on the web
which are present in the collected dataset. The
rest 31,070 lyrics from entire dataset were used
for training the system. The systems and their per-
formances with detailed analysis are described be-
low.

5.1 Baseline System

A baseline system was developed for identify-
ing similar lyrics using Fuzzy C-means (FCMs)

294

clustering algorithm on 34,571 unigrams, and it
achieved F-measure of 0.42.

5.2 Doc2Vec based System
We trained Doc2Vec model using all data (i.e.
31,171 lyrics). There were two models, with and
without the unsupervised stemming algorithm. We
evaluated the Doc2Vec based system using same
100 query lyrics, and the systems achieved F-
measures of 0.670 without using the stemming al-
gorithm. Whereas F-measure increased to 0.692
after implementing the stemming algorithm, i.e.
an improvement of 0.022 was observed after per-
forming the stemming.

5.3 SOFMs based System
For the SOFMs based system, we changed the dis-
tance function from Euclidean to cosine similarity
as : Cosine Similarity (CS) = 1− u·v

||u||2||v||2
The n-grams were collected after removing

stopwords and duplicate characters as well as im-
plementing the unsupervised stemming algorithm.
The words having frequency one were also re-
moved from the total 37,693 unigrams and the fi-
nal unigrams dimension was 34,571. The main
reason was that we observed an improvement in
the F-measure of 0.008 after removing the uni-
grams with one frequency. The unigram based
system yields F-measure of 0.671 using the Euc-
lidean distance, and there was an improvement of
0.004 when cosine similarity was used for calcu-
lating the distance.

After adding bigrams to the above system, the
feature dimension increased to 50,321. The bi-
grams having frequency one is also removed from
the lists. The SOFMs based system obtained
F-measure of 0.711 using Euclidean distance,
and cosine similarity improved the F-measure by
0.007. We developed another system using n-
grams up to three, and the feature dimension
was 57,321. The similar lyrics retrieval system
achieved F-measure of 0.737 using SOFMs with
Euclidean distance. An improvement of 0.012 in
F-measure was observed using cosine similarity.
The detailed results were shown in Table 1.

The higher order n-grams were not included in
the study due to computational complexity. The
proposed stemming algorithm provides significant
computational cost cutting. In fact, we believe that
implementing SOFMs for this problem would not
be useful if the stemming algorithm was not used.
Finally, we removed the repeated lines of mukhda

from lyrics and developed another system using
only unigrams. We observed that the F-measure
fell by 0.12 in comparison to system developed
using all the words of mukhda. Thus, we have not
performed any experiments further using this set-
ting.

Algorithms P R FM
FCMsU (Baseline) 0.431 0.410 0.420
Doc2VecWTS 0.670 0.670 0.670
Doc2VecWS 0.691 0.693 0.692
SOFMsU (EU) 0.721 0.663 0.671
SOFMsU (CS) 0.721 0.667 0.674
SOFMsUB (EU) 0.727 0.696 0.711
SOFMsUB (CS) 0.732 0.704 0.718
SOFMsUBT (EU) 0.764 0.710 0.737
SOFMsUBT (CS) 0.779 0.718 0.749

Table 1: Performances of SOFMs and FCMs
based systems.
EU: Euclidean Distance, CS: Cosine Similarity,
WTS: Without Stemming, WS: With Stemming,
U: Unigram, UB: Unigram + Bigram, UBT: Uni-
gram + Bigram + Trigram

5.4 Discussion

The similar lyrics retrieval systems based on
SOFMs and Doc2Vec performed well as com-
pared to baseline system using FCMs. The
Doc2Vec based system failed to perform as good
as the system developed using SOFMs with n-
grams up to three. The Doc2Vec requires a huge
amount of training data to train itself and this
may be one of the reasons for low performance
of Doc2Vec system. Calculating the similarity in
the general text is much easier than doing it in the
lyrics due to the free word order nature and this
may be another reason for poor performance of
Doc2Vec based system. It can be stated that the
SOFMs work well for clustering similar lyrics. By
improving the accuracy of unsupervised stemming
algorithm, performances of SOFMs based similar
lyrics retrieval system can be increased. Again,
adding more number of lyrics can significantly im-
prove the accuracies of such systems.

We investigated the errors in SOFMs based sys-
tem. We found that there were some mistakes
due to spelling variations. For example, the song
“ab to hai tumase har kushii apanii” does not
match with a single song. There are many spelling
mistakes in this lyrics such as “kushii” (it should

295

be “khusii”), “apanii”, “tumase”, “mashahuur”,
“budanaam” etc. After removing stopwords, only
these words left for the test; thus no match is found
with the training dataset. The use of similar words
in a different sense makes it harder to identify
the similar lyrics in the case of SOFMs based
systems. In the case of Doc2Vec, we have not
removed stopwords while training the Doc2Vec
model; again this model observes the context in-
formation rather than only syntactic information
(matching the exact word); thus the above lyric has
fetched the results.

Searching the similar lyrics was also performed
by Mahedero et al. (2005) for Western songs.
They used cosine similarity to identify similar lyr-
ics. Another task, identifying similar lyrics based
on topics in Japanese songs was performed by Sa-
saki et al. (2014). They identified topics of lyrics
using LDA, and the evaluation was performed us-
ing the perplexity. To the best of author’s know-
ledge, no other comparable task has been per-
formed in either in Hindi or Western music.

6 Conclusions and Future Work

We developed a Hindi lyric dataset and implemen-
ted several techniques to clean the unstructured
data. An unsupervised stemming algorithm was
proposed to reduce the number of n-grams. We
hope these methods can be used in IR systems for
cleaning several unstructured data. The SOFMs
based similar lyrics retrieval system achieved the
maximum F-measure of 0.749 calculated on 100
query lyrics. We believe that this research will fa-
cilitate the development of recommendation in In-
dian music specifically for Hindi songs.

There are several directions for future work.
One of the most immediate tasks is to evaluate per-
formance of the proposed unsupervised stemming
algorithm. We used document level word embed-
dings though, word level embeddings and latent
dirichlet allocation (LDA) can be used in future
for developing lyrics retrieval systems.

In future, the inter-cluster cosine similarity can
be used for automatic evaluation. A weighted
score can be assigned to each portions of lyrics
(starting, middle, and end) for evaluation.

The mood words from lyrics can be collected
using unsupervised approach such as word em-
beddings and the derived mood information can
be used for ranking the results of similar lyrics
retrieval system. Ranking the retrieved lyrics is

another important factor for recommendation sys-
tem and is not considered during the evaluation of
current system. It is one of the limitations of cur-
rent developed system and ranking based evalu-
ation can be implemented in future.

Acknowledgments

The work reported in this paper is supported by
a grant from the “Visvesvaraya Ph.D. Scheme for
Electronics and IT” funded by Media Lab Asia of
Ministry of Electronics and Information Techno-
logy (MeitY), Government of India. The authors
are also thankful to the anonymous reviewers for
their helpful comments.

References

Harika Abburi, Eswar S. A. Akkireddy, Suryakanth
Gangashetti, and Radhika Mamidi. 2016. Mul-
timodal sentiment analysis of telugu songs. In Pro-
ceedings of the 4th Workshop on Sentiment Analysis
where AI meets Psychology (SAAIP 2016), pages
48–52.

Sudhir Ahuja and Rinkaj Goyal. 2012. Information
retrieval in intelligent systems: Current scenario &
issues. arXiv preprint arXiv:1206.3667.

Jayson Beaster-Jones and Natalie Sarrazin. 2016. Mu-
sic in Contemporary Indian Film: Memory, Voice,
Identity. Taylor & Francis.

James Davidson, Benjamin Liebald, Junning Liu,
Palash Nandy, Taylor Van Vleet, et al. 2010. The
youtube video recommendation system. In Proceed-
ings of the fourth ACM conference on Recommender
systems, pages 293–296. ACM.

Nancy Duncan and Mark Fox. 2005. Computer–aided
music distribution: The future of selection, retrieval
and transmission. First Monday, 10(4).

Yong Han, Li Min, Yu Zou, Zhongyuan Han, Song Li,
Leilei Kong, Haoliang Qi, Wenhao Qiao, Shuo Cui,
and Hong Deng. 2015. Lrc sousou: A lyrics re-
trieval system. In Proceedings of the International
Conference of Young Computer Scientists, Engin-
eers and Educators, pages 464–467. Springer.

Xiao Hu, J Stephen Downie, and Andreas F Ehmann.
2009. Lyric text mining in music mood classifica-
tion. In Proceedings of the 10th International Soci-
ety for Music Information Retrieval Conference (IS-
MIR 2009), pages 411–416.

Yajie Hu. 2014. A Model-Based Music Recommend-
ation System for Individual Users and Implicit User
Groups. Ph.D. thesis, University of Miami.

296

Reshma Kar, Amit Konar, Aruna Chakraborty, Basab-
datta Sen Bhattacharya, and Atulya Nagar. 2015.
Eeg source localization by memory network analysis
of subjects engaged in perceiving emotions from fa-
cial expressions. In International Joint Conference
in Neural Networks (IJCNN-2015). IEEE.

Peter Knees, Tim Pohle, Markus Schedl, and Gerhard
Widmer. 2007. A music search engine built upon
audio-based and web-based similarity measures. In
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 447–454. ACM.

Gopala K. Koduri, Marius Miron, Joan Serrà Julià, and
Xavier Serra. 2011. Computational approaches
for the understanding of melody in carnatic mu-
sic. In Proceedings of the 12th International Society
for Music Information Retrieval Conference (ISMIR
2011), pages 263–268.

Teuvo Kohonen. 1982. Self-organized formation of
topologically correct feature maps. Biological cy-
bernetics, 43(1):59–69.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1188–1196.

Jose P.G. Mahedero, Álvaro MartÍnez, Pedro Cano,
Markus Koppenberger, and Fabien Gouyon. 2005.
Natural language processing of lyrics. In Proceed-
ings of the 13th annual ACM international confer-
ence on Multimedia, pages 475–478. ACM.

Rudolf Mayer, Robert Neumayer, and Andreas Rauber.
2008. Rhyme and style features for musical genre
classification by song lyrics. In Proceedings of the
9th International Society for Music Information Re-
trieval Conference (ISMIR 2008), pages 337–342.

Cristian Moral, Angélica de Antonio, Ricardo Imbert,
and Jaime Ramı́rez. 2014. A survey of stemming
algorithms in information retrieval. Information Re-
search: An International Electronic Journal, 19(1).

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2013. Unsupervised approach to hindi music
mood classification. In Proceedings of the Mining
Intelligence and Knowledge Exploration, pages 62–
69. Springer International Publishing.

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2015. Mood classification of hindi songs
based on lyrics. In Proceedings of the 12th Interna-
tional Conference on Natural Language Processing
(ICON- 2015), pages 261–267.

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2016a. Labeling data and developing su-
pervised framework for hindi music mood ana-
lysis. Journal of Intelligent Information Systems,
48(3):633–651.

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2016b. Multimodal mood classification - a
case study of differences in hindi and western songs.
In Proceedings of the 26th International Confer-
ence on Computational Linguistics (COLING 2016),
pages 1980–1989.

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2016c. Multimodal mood classification
framework for hindi songs. Computación y Sis-
temas, 20(3):515–526.

Elvys L. Pontes, Juan-Manuel Torres-Moreno,
Stéphane Huet, and Andréa C. Linhares. 2016.
Tweet contextualization using continuous space
vectors: Automatic summarization of cultural
documents. In Proceedings of the CLEF (Working
Notes).

Shoto Sasaki, Kazuyoshi Yoshii, Tomoyasu Nakano,
Masataka Goto, and Shigeo Morishima. 2014. Lyr-
icsradar: A lyrics retrieval system based on latent
topics of lyrics. In Proceedings of the 15th Interna-
tional Society for Music Information Retrieval Con-
ference (ISMIR 2014), pages 585–590.

Markus Schedl, Time Pohle, Peter Knees, and Ger-
hard Widmer. 2011. Exploring the music similarity
space on the web. ACM Transactions on Informa-
tion Systems (TOIS), 29(3):14:1–14:24.

Rajeswari Sridhar, Manasa Subramanian, B. M.
Lavanya, B. Malinidevi, and T. V. Geetha. 2011.
Latent dirichlet allocation model for raga identific-
ation of carnatic music. Journal of Computer Sci-
ence, 7(11):1711–1716.

Ajay Srinivasamurthy, André Holzapfel, and Xavier
Serra. 2014. In search of automatic rhythm analysis
methods for turkish and indian art music. Journal of
New Music Research, 43(1):94–114.

Aniruddha M. Ujlambkar and Vahida Z. Attar. 2012.
Mood classification of indian popular music. In
Proceedings of the CUBE International Information
Technology Conference, pages 278–283. ACM.

Juha Vesanto and Esa Alhoniemi. 2000. Clustering
of the self-organizing map. IEEE Transactions on
neural networks, 11(3):586–600.

Chung-Che Wang, Jyh-Shing Roger Jang, and
Wennen Wang. 2010. An improved query by
singing/humming system using melody and lyrics
information. In Proceedings of the 11th Interna-
tional Society for Music Information Retrieval Con-
ference (ISMIR 2010), pages 45–50.

Menno Van Zaanen and Pieter Kanters. 2010. Auto-
matic mood classification using tf* idf based on lyr-
ics. In Proceedings of the 11th International Society
for Music Information Retrieval Conference (ISMIR
2010), pages 75–80.

297

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 298–304

Unsupervised Morpheme Segmentation
Through Numerical Weighting and Thresholding

Joy Mahapatra∗

Technische Universität Darmstadt
Germany

joymahapatra90@gmail.com

Sudip Kumar Naskar
Jadavpur University

Kolkata
sudip.naskar@cse.jdvu.ac.in

Abstract

This paper presents an unsupervised
model for morpheme segmentation of
words collected from any raw textual cor-
pus of a natural language. The model in-
corporates a numerical weighting scheme
with thresholding technique for finding le-
gitimate morphemes from a given input
corpus. Kneedle algorithm is used as a
thresholding technique for determining le-
gitimacy of the morphemes. We ran our
experiments on five languages – English,
Finish, Turkish, German and Bengali, and
the model performance is comparable to
the state-of-the-art systems.

1 Introduction

Morpheme segmentation of words is an essential
part of many linguistic and natural language pro-
cessing applications. Appropriate morpheme seg-
mentation helps to understand the hidden structure
of a language’s words and how new words can
be built from the existing words. In morpheme
segmentation, a word is divided into a stem mor-
pheme and a single affix morpheme (for one-slot
morphological languages) or multiple affix mor-
phemes (for multi-slot morphological languages).
Stem is also often referred to as base, root, lemma,
etc., although they have subtle differences and are
used in different contexts. An affix can be of
many types; some of the most commonly under-
stood affixes are prefix, suffix, infix, etc. However,
for the proposed model, only prefixes and suffixes
are considered. Two primary functional types of
morphemes exist in morphology: inflectional and
derivational morphemes. Inflectional morphemes
are affixes that are used to create variant forms of
a word in order to signal grammatical information;
but they do not change the meaning of the word.

∗*Work done while at Jadavpur University.

Derivational morphemes are affixes that are used
to derive new words with new meanings. Both
types of morphemes are considered in our work.

The presented model’s work principle falls into
the category of Unsupervised Learning of Mor-
phology (ULM) (Hammarström and Borin, 2011)
which usually outputs a morphological structure
description of a language from an input raw cor-
pus of that language, provided that the system may
need some semi-automatic or manual supervision.
The objectives of an ULM based approach can
vary. It generally ranges from demand for mor-
phological description of a language to finding
lexicon, paradigm list for stems, affix list, same-
stem decision, inflectional table and much more.
The objective of our proposed model is to discover
the stem set and an affix set given a large corpus
of a particular language.

Although there are many motivating factors
behind ULM from both linguistic and practical
point of view (Hammarström and Borin, 2011),
the three major motivations are - providing a
primary-step for language acquisition, reducing
time-consuming manual effort in morphological
analysis and language documentation. The first
motivation is elicited from the necessity of grab-
bing primary details and learning basic word struc-
tures for a newly observed language. The sec-
ond motivation is that unsupervised statistical ap-
proaches take less amount of time for accom-
plishing a task without taking much external ef-
forts and resources. The third motivating fac-
tor is drawn from a linguistics point of view. It
has been observed that in the current world, 80%
of the world’s languages (almost 7000 total lan-
guages) are spoken by only 100,000 speakers or
less (Ostler, 2008). It has also been observed that
many natural languages are at the verge of extinc-
tion (Krauss, 1992). Many linguists fear that with
the extinction of such languages, many cultures
and valuable information will be lost. They sug-

298

gest taking help from any immediate quick pro-
cedures to restore those almost extinct language
details (language documentation). A fast unsuper-
vised approach for morpheme segmentation can
provide an essential equipment for language doc-
umentation for such languages.

2 Related works

There exist many types of unsupervised mor-
pheme segmentation models and ULM based sys-
tems with their own strengths and weaknesses.
Hammarström and Borin (2011) classified the
ULM models into four underlying types.

The first type emerged as border separation in
words through substring frequency determination
which explores the idea that if a substring occurs
multiple times with other different substrings, then
the former substring could be an affix morpheme,
whereas the latter ones can be recognized as stem
morphemes. After finding such substrings, this
type of morphological analysis model tries to de-
fine the borders in words. The first-ever ULM
based system (Harris, 1955) falls in this category
of ULM which is a very popular ULM technique
till date. Few researchers (Golcher, 2006; Ham-
marström, 2009) suggested morpheme segmenta-
tion using entropy.

The second type uses grouping and abstracting
techniques and they first group all similar mor-
phological words into a particular cluster among
many existing ones, then find unique pattern for
each cluster of words in such a way that the pat-
terns can reveal all morphemes corresponding to
the clusters. his approach is also very common and
has multiple implementation examples (Schone,
2001; Yarowsky and Wicentowski, 2000; Wicen-
towski and Yarowsky, 2002; Wicentowski, 2004;
Majumder et al., 2007).

The third ULM based approach (Mayfield and
McNamee, 2003; De Pauw and Wagacha, 2007) is
quite similar to basic machine learning based ap-
proaches. It first represents each word by multiple
features and finally stems are separated from the
affixes based on the feature values.

The last type of ULM technique is quite similar
to the first ULM technique, with a small excep-
tion that prior to the border separation, words are
categorized based on their phoneme structure (Ro-
drigues and Cavar, 2007). This ULM technique
is applicable for non-concatenative morphology
analysis, whereas the rest of the ULM techniques

work mainly with concatenative morphological
languages. Our proposed approach falls in the first
category of ULM.

3 Proposed Method

The proposed morpheme segmentation model
takes a raw, unannotated word dataset of an arbi-
trary language as input. Using a numerical weight-
ing scheme with thresholding strategy, the model
ultimately produces a set of stems and a set of
affixes. The model also provides the morpheme
segmentation of the words. It is to be noted
that the model has been proposed and works well
with concatenative, one-slot morphological lan-
guages (e.g., Bengali), although it is applicable to
multi-slot morphological languages (e.g., Turkish,
Finnish, etc.).

The proposed morpheme segmentation model
for concatenative morphological languages has
three basic modules. The first module is responsi-
ble for finding all probable initial morphemes (i.e.,
stems and affixes) from a raw text corpus. The sec-
ond module scores the morphemes found by the
first step. The third module finds out the optimal
set of stems and affixes with unsupervised thresh-
olding.

3.1 Morpheme Generation

This module finds out all probable stems and af-
fixes by comparing every word with every other
word in a text corpus. For example, by compar-
ing the two words ‘pass’ and ‘passing’, one can
easily perceive that ‘pass’ and ‘ing’ could be the
stem and affix respectively. For an efficient stor-
ing and accessing mechanism of each stem, af-
fix and stem-derived word (i.e., surface word), an
implicit matrix (M) type structure is considered,
where the matrix columns represent stem-derived
words and the rows represent the stems. Each
element of the matrix represents an affix (i.e., a
prefix or a suffix) or null, which when applied to
the corresponding row-word, produces the corre-
sponding column-word. A snapshot of the matrix
is shown in Figure 1. Algorithm 1 outlines the pro-
cess of generating the stem-affix-word matrix from
the corpus words. To address the scalibility of this
alrogithm, we have included a short discussion in
Section 4.3.

299

Figure 1: Representation of corpus as stem-affix-word matrix

Input: Raw text corpus C of language L
Output: M, two-dimentional matrix, with size

|C| ∗ |C|, where |C| is the number of unique
words in C corpus

begin
foreach element (m) in matrixM do

m← ‘null′

end
foreach distinct word w1 in C do

foreach distinct word w2 in C do
if w2 = w1 + a1, where a1 is an affix

then
M[w1][w2]← a1

M[w1][w2].type← ‘suffix’
else if w2 = a1 + w1, where a1 is an

affix then
M[w1][w2]← a1

M[w1][w2].type← ‘prefix’
end

end
end

end
Algorithm 1: Generating all possible stems and
affixes

3.2 Weighting Morphemes

We propose a weighting scheme that provides a
ranking over the morphemes produced by Algo-
rithm 1; the hypothesis is that higher ranked mor-
phemes are likely to be legitimate morphemes of
the language. The proposed weighting scheme
works in three steps: independent scoring of the
affixes, stem scoring through all its possible af-
fixes, and joint stem-affix scoring.

3.2.1 Independent Affix Scoring
In this stage of the weighting scheme, every pos-
sible affix found inM is scored independently. If
an affix works as both prefix and suffix, then two
different scores are produced for that affix. The in-
dependent score for an affix is calculated from the
number of different possible stems which appears
adjacent to the affix. For an affix (ax), we refer to
this number as its branching factor (bfax). Equa-
tion 1 shows the calculation of independent score

(IS) of ax from the branching factor of ax.

IS(ax) = tanhβ(bfax − 1) (1)

This formulation of the affix score (as in Equa-
tion 1) was chosen for two major reasons. Firstly,
affixes whose branching factor is 1 are canceled
out since such affixes carry no or very little signif-
icance with regard to the legitimacy of the affix.
Secondly, we want high independent score (close
to 1) for all affixes above a certain value of branch-
ing factor so that affixes with very high branch-
ing factors can not dominate over affixes having
low branching factors. Although the parameter
β needs to be tuned for optimal performance, we
chose a value of 2 for β for our experiments. Fig-
ure 2 shows the tangent hyperbolic function (cf.
equation 1) for varying β values.

Figure 2: tanh(β(x-1)) function with varying β

Algorithm 1 only considers those stems which
appear as words themselves in corpus C. Algo-
rithm 2 alleviates this shortcoming and modifies
the matrixM to discover other possible legitimate
stems (that do not appear as words in C) with the
help of independent affix scores. Algorithm 2 can
also take care of morpheme segmentation in multi-
slot morphological languages to some extent.

3.2.2 Affix-Dependent Stem Scoring
This stage determines the affix-dependent score
(AdS) for each stem found by Algorithm 2. AdS

300

Input: Corpus C and MatrixM along with the
corresponding independent affix scores and
types

Output: M, enriched with probable corpus-absent
stems and adjusted for multi-slot morpheme
segmentation

begin
/* For multi-slot morphological

language */
foreach ax such that IS(ax) == 0 do

Build a set of sets, Sax , where,
Sax = {{ax1 , ax2 , ..., axn} : ax =
concat(ax1 .ax2 ...axn) and ∀iIS(axi) 6=
0};

if Sax 6= NULL then
Define mslot IS : sax

k ∈ Sax → N;
mslot IS(sax

k) =∑n
i=1{IS(axi

) : where axi
∈sax

k
}

cardinality(s
ax
k

)
;

BestSax → argmax
s∈Sax

mslot IS(s);

IS(ax)← mslot IS(BestSax);
end

end
/* Generating corpus-absent

possible stems */
foreach non-zero independent scored affix ax in
M do

foreach unique word wx in C do
if wx = newstem + ax or
wx = ax + newstem then

if no row with newstem inM then
MakeM[newstem] row;
∀i(M[newstem][i]←null);

end
M[newstem][wx]← ‘ax’;
setM[newstem][wx].type

accordingly
end

end
end

end
Algorithm 2: ModifyingM for multi-slot mor-
phological languages and corpus-absent stems

is an indicator of the genuineness of a detected
stem of being an actual stem. The AdS of a
stem depends on its associated affixes in M and
their independent scores. If a stem is associated
with more zero independent scored affixes than
non-zero independent scored affixes, then the stem
loses its genuineness of being a valid stem. The
more a stem is associated with non-zero indepen-
dent scored affixes, the more reliable the stem is.

The AdS of stemx is computed as in Equation
2 where S is the sum of independent scores of af-
fixes associated to stemx, X and Y represent the
number of non-zero and zero independent scored
affixes, respectively, associated with stemx, and
α(≥ 1) is a penalty factor for associated zero in-

dependent scored affixes.

AdS(stemx) =
S

X + α.Y
(2)

Through adjusting the value of α, the affix-
dependent score of a stem can be changed with the
number of zero independent scored affixes. Large
α value highly penalizes this score, whereas low
α value do the opposite. For our experiments we
fixed α as 2.

3.2.3 Joint Stem-Affix Scoring
IS(ax) determines the legitimacy of ax of being
an acutal affix. However, the linguistic authentic-
ity of an affix is always estimated along a stem.
For example, in English, the ‘ing’ suffix holds a
high independent score, but the chance of its asso-
ciation with the stem ‘k’ (i.e., k+ing) is very low
compared to the stem ‘watch’ (i.e., watch+ing), for
example. Therefore, a joint scoring mechanism
taking into account both affix and stem is required.

The joint stem-affix score (JSAS) of stemx

and ay is computed as in Equation 3.

JSAS(stemx, ay) = AdS(stemx)∗IS(ay) (3)

3.3 Finding Optimal Set of Stems and Affixes
with Unsupervised Thresholding

This is the final operational stage of the proposed
model which results in an optimal stem set and an
affix set (i.e., paradigm list) fromM based on the
JSAS scores. A threshold on JSAS is required
for achieving this. For the proposed model, a value
of 2 was considered for both β and α. The thresh-
old value (ThresholdJSAS) for JSAS is deter-
mined using the Kneedle algorithm (Satopaa et
al., 2011), an unsupervised approach for finding
the knee points on curves. The knee points in
a tunable system parameter’s curve represent ad-
vantageous values for that parameter which bal-
ance the overall system performance compared to
most of the other points in that curve. Unlike
other knee points detection approaches, the Knee-
dle algorithm does not incorporate any system spe-
cific information to find out the knee points. This
aspect of the Kneedle algorithm helps keep our
model almost unsupervised.

3.4 Justification of Our Morpheme
Weighting Scheme

Although intuitions behind deriving our mor-
pheme weighting scheme may look like a heuris-
tic procedure, actually, the weighting scheme is

301

firmly rooted in basic linguistic postulates. We
came up with those methods (equations) for the
weighting scheme after attending a few conven-
tional linguistic and mathematical rules. The
Independent Affix Scoring (IS) method can be
justified through the Zipf’s empirical law. It
has been observed for many years that most of
the languages and even random texts follow the
Zipf’s law (Li, 1992). According to the empir-
ical law, in a large dataset, for every individual
word (word) the multiplication of its rank in the
corpus (rword) and count frequency of the word
(CountFreqword) remains the same (i.e., rword ∗
CountFreqword ≡ constant). Figure 3 shows a
sample distribution of the Zipf’s law.

Figure 3: An Ideal Example of Zipf’s Law

From this empirical law, it is not difficult to un-
derstand that most of the lower ranked words of a
large corpus appear for a very few number of times
(e,g,. only once or twice). It might so happen that
these words with low empirical counts can also
possess new affixes. Those affixes will also exist
with an unquestionably low count. Therefore, we
formulated Equation 1 to select all those low count
affixes by assigning them identical weights as the
high counted affixes. On the other hand, the sec-
ond method of the morpheme weighting scheme,
Affix-Dependent Stem Scoring (AdS), can be jus-
tified when it is seen as a regular mathematical
normalization technique with adding denomina-
tor penalties for zero independent scored affixes
(since zero independent scored affixes are really
insignificant). The last method of the weight-
ing scheme, Joint Stem-Affix Scoring (JSAS), is
nothing but a single objective function comprised
of IS and AdS as two distinct objectives.

4 Experiments

4.1 Datasets and Experimental Setup

The proposed method of morpheme segmentation
was experimented on five languages – English,
Bengali, Finnish, German and Turkish. For En-
glish, Turkish, German and Finnish, we used the
Morpho-Challenge1 datasets which provide both
raw text corpora as well as gold-standard test-
sets. The gold-standard datasets mostly contain
multi-slot morpheme segmentation samples. The
datasets also come with evaluation results of a
baseline system (Morfessor) (Creutz and Lagus,
2007). The Morpho-Challenge datasets’ training
data contains 617,297, 2,338,323, 2,928,030 and
878,036 distinct Turkish, German, Finnish and
English words respectively. The test sets contain
1,000 words for each of those four languages. The
Dataset also provides a perl script for evaluation
on the gold-standard data. For Bengali, we used
a gold standard testset (containing 14,034 words)
developed in-house and collected a raw corpus
(containing 28,927 unique words) by crawling
an online Bengali newspaper. Unlike Morpho-
Challenge dataset, the Bengali gold-standard data
mostly contain single-slot morpheme segmenta-
tion examples. The output generated by the system
heavily depends on choosing a proper threshold
value for JSAS which we determined using the
Kneedle algorithm. Figure 4 graphically shows
the JSAS score thresholding by Kneedle algo-
rithm for the Bengali dataset.

Figure 4: Thresholding using Kneedle algorithm

1http://morpho.aalto.fi/events/morphochallenge2010/

302

Table 1: Evaluation Results
Metric System Bengali English Turkish Finnish German

Precision
B 0.488 0.456 0.421 0.464 0.433
MB - 0.813 0.896 0.906 0.828
P 0.853 0.763 0.695 0.612 0.746

Recall
B 0.842 0.713 0.627 0.675 0.630
MB - 0.417 0.177 0.143 0.197
P 0.724 0.622 0.573 0.542 0.526

F-measure

B 0.617 0.556 0.504 0.550 0.513
MB - 0.551 0.296 0.248 0.319
P 0.783 0.685 0.628 0.575 0.617
Best - 0.674 0.653 0.625 0.508

4.2 Evaluation

System performance was evaluated with preci-
sion, recall and f-measure (F1-measure) and the
evaluation results are reported in Table 1. We
developed a new baseline model which is simi-
lar to the proposed model except that it consid-
ers ISbaseline(ax) = bfax instead of transform-
ing the branching factor through hyperbolic tan-
gent function. Table 1 presents the performance
of the newly constructed baseline (B), Morfes-
sor baseline (MB), the proposed model (P) and
the best results (Best) reported so far on this
dataset2. The baseline model produces high re-
call, however, due to absence of a proper thresh-
olding mechanism, it results in low precision and
hence low F-measure. We observed that the pro-
posed model shows much better results for single-
slot morpheme segmentation compared to multi-
slot morpheme segmentation. With the aforemen-
tioned set-up, the best performance was observed
for Bengali (F-measure 0.783) and the lowest for
Finnish (F-measure 0.575). The proposed model
outperformed the best results reported so far for
English and German on this dataset. Considering
that our model is almost unsupervised and it does
not require any resources other than a vocabulary,
our model results are, overall, comparable with the
best results reported on this dataset obtained with
semi-supervised approaches.

4.3 Scalabiliy

To keep our morpheme segmentation method scal-
able towards large vocabulary, we introduced mul-
tiple trie data structures to implement the implicit
matrix structured shape for storing the stems and
affixes. The trie implementation significantly re-

2http://morpho.aalto.fi/events/morphochallenge2010/results/

duces our system running time because of its effi-
cient searching and storing mechanism compared
to an ordinary two-dimensional array.

Our model took 1,624.28616 seconds for find-
ing out all possible morpheme segmentations over
all the datasets for the mentioned languages. We
carried out the entire task on a computer with Intel
Core2Duo processor and 4 gigabytes RAM.

5 Conclusions

In this paper we presented an almost unsupervised
model for morpheme segmentation given a text
corpus. The proposed model uses statistical scor-
ing technique with an unsupervised thresholding
algorithm. The model performs bettter on single-
slot morpheme segmentation than multi-slot mor-
pheme segmentation. The proposed model yields
performance comparable to state-of-the-art perfor-
mance and outperforms the best results reported so
far on English and German.

Acknowledgments

We would like to thank the anonymous reviewers
for their feedback. Sudip Kumar Naskar is sup-
ported by Media Lab Asia, MeitY, Government of
India, under the Young Faculty Research Fellow-
ship of the Visvesvaraya PhD Scheme for Elec-
tronics & IT.

References
Mathias Creutz and Krista Lagus. 2007. Unsuper-

vised models for morpheme segmentation and mor-
phology learning. ACM Transactions on Speech and
Language Processing, 4(1), January.

Guy De Pauw and Peter Waiganjo Wagacha. 2007.
Bootstrapping morphological analysis of gikuyu us-
ing unsupervised maximum entropy learning. In

303

Proceedings of the eighth INTERSPEECH confer-
ence. Citeseer.

Felix Golcher. 2006. Statistical text segmentation with
partial structure analysis. Proceedings of KONVENS
2006, pages 44–51.

Harald Hammarström and Lars Borin. 2011. Unsuper-
vised learning of morphology. Computational Lin-
guistics, 37(2):309–350.

Harald Hammarström. 2009. Unsupervised Learn-
ing of Morphology and the Languages of the World.
Ph.D. thesis, University of Gothenburg.

Zellig S Harris. 1955. From phoneme to morpheme.
Language, 31(2):190–222.

Michael Krauss. 1992. The worlds languages in crisis.
Language, 68(1):4–10.

Wentian Li. 1992. Random texts exhibit zipf’s-law-
like word frequency distribution. IEEE Transactions
on information theory, 38(6):1842–1845.

Prasenjit Majumder, Mandar Mitra, and Dipasree Pal.
2007. Bulgarian, hungarian and czech stemming us-
ing yass. In Workshop of the Cross-Language Eval-
uation Forum for European Languages, pages 49–
56. Springer.

James Mayfield and Paul McNamee. 2003. Single
n-gram stemming. In Proceedings of the 26th an-
nual international ACM SIGIR conference on Re-
search and development in informaion retrieval,
pages 415–416. ACM.

Nicholas Ostler. 2008. Is it globalization that endan-
gers languages. UNESCO/UNU Conference: Glob-
alization and Languages: Building our Rich Her-
itage.

Paul Rodrigues and Damir Cavar. 2007. Learn-
ing arabic morphology using statistical constraint-
satisfaction models. AMSTERDAM STUDIES IN
THE THEORY AND HISTORY OF LINGUISTIC
SCIENCE SERIES 4, 289:63.

Ville Satopaa, Jeannie Albrecht, David Irwin, and
Barath Raghavan. 2011. Finding a” kneedle” in a
haystack: Detecting knee points in system behavior.
In Distributed Computing Systems Workshops (ICD-
CSW), 2011 31st International Conference on, pages
166–171. IEEE.

Patrick John Schone. 2001. Toward knowledge-free
induction of machine-readable dictionaries. Ph.D.
thesis, University of Colorado.

Richard Wicentowski and David Yarowsky. 2002.
Modeling and learning multilingual inflectional
morphology in a minimally supervised framework.
Ph.D. thesis, Ph. D. Thesis. Johns Hopkins Univer-
sity, Baltimore, Maryland.

Richard Wicentowski. 2004. Multilingual noise-
robust supervised morphological analysis using the
wordframe model. In Proceedings of the 7th Meet-
ing of the ACL Special Interest Group in Compu-
tational Phonology: Current Themes in Computa-
tional Phonology and Morphology, pages 70–77.
Association for Computational Linguistics.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In Proceedings of the 38th
Annual Meeting on Association for Computational
Linguistics, pages 207–216. Association for Com-
putational Linguistics.

304

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 305–311

Experiments with Domain Dependent Dialogue Act Classification using
Open-Domain Dialogue Corpora

Swapnil Hingmire Apoorv Shrivastava Girish K. Palshikar Saurabh Srivastava
{swapnil.hingmire, apoorv.shrivastava}@tcs.com

{gk.palshikar,sriv.saurabh}@tcs.com
TCS Research, Pune, India

Abstract

Dialogue Act (DA) classification plays a
major role in the interpretation of an ut-
terance in a dialogue and hence in the de-
velopment of a dialogue agent. Learning
a DA classifier requires large corpora of
annotated dialogues which require exten-
sive human efforts and cost. Additionally,
nature of dialogue varies based on domain
(e.g. tourism, healthcare, finance) as well
as the nature of dialogues (e.g. dialogues
that involve only queries and responses or
dialogues that involve planning or recom-
mendation). Hence, DA classifier trained
on a particular corpus may not perform as
per the expectations on another domain-
dependent or task-dependent dialogues. In
this paper, we propose Conditional Ran-
dom Field (CRF) based DA classifier,
which we train on an open-domain cor-
pus and extend it for a domain-dependent
corpus by enabling a domain expert to in-
corporate her domain knowledge in the
form of simple rules. Hence, our approach
does not need domain-dependent labeled
corpora. We show the effectiveness of
our proposed approach on two real-world
datasets.

1 Introduction

Dialogues are an integral part of human interac-
tions, and of arts such as literature, theatre, and
films. The presence of discernible common struc-
tures in dialogues, despite endless manifestations,
has fascinated linguists and artists for ages. With
the advent of virtual assistants (chatbots or dia-
logue agents), there is keen interest in building
systems that are capable of having natural and
meaningful dialogues with a human user. Dia-
logues also occur in other major applications, in-

cluding emails (Cohen et al., 2004), chats (Car-
penter and Fujioka, 2011), and web forums (like
Wikipedia discussions (Ferschke et al., 2012), stu-
dents discussion forums (Kim et al., 2010a), com-
ments sections in newspapers, and in community
QA systems (Bhatia et al., 2014) like StackOver-
flow.com.

The theory of dialogue acts provides an impor-
tant building block in efforts to understand and
model structure, function, and flow in dialogues.
A dialogue act (DA) represents an abstract cate-
gory of the essential meaning of an utterance (of-
ten a sentence or a fragment) in the context of
an ongoing dialogue. The meaning here usually
refers to the agent’s intention, the role and rela-
tionship of the utterance to the overall dialogue,
etc. The context of an utterance includes the dia-
logue state, the mental state, beliefs, and agenda
of the human user, and in general, any information
contained in previous utterances in the dialogue.

There is a well-accepted set of 43 DAs for
English (Stolcke et al., 2000), which have been
used to annotate several dialogue corpora; e.g.,
the human-human telephone English speech
Switchboard corpus, Berkeley ICSI Meeting
Recorder Digits corpus, etc. Labeling of the
DAs to various utterances in a dialogue bring
to the fore various relationships among the
utterances. For instance, if an utterance is
tagged with the DA YES-NO-QUESTION
then it is likely that the next utterance
will have the DA of either YES-ANSWER,
NO-ANSWER, NON-UNDERSTANDING or per-
haps OTHER-ANSWER like “I don’t know”.
These annotated dialogue corpora have been used
to build classifiers that automatically identify
the DA for any given utterance as part of a
given dialogue. DA classification is useful in
applications where a computer system is one
of the participants in the dialogues; examples:
customer help-desk (Bangalore et al., 2006),

305

tutoring systems (Litman and Silliman, 2004),
speech recognition, etc. But it is also used in other
applications such as machine translation.

Various machine learning techniques have
been used to build classifiers for DA, includ-
ing HMM (Stolcke et al., 2000), Bayesian Net-
works (Keizer, 2001), logistic regression (Boyer
et al., 2011), language models (Reithinger and
Klesen, 1997), multi-layer perceptrons (Wright,
1998), Conditional Random Field (CRF) (Kim et
al., 2010b) etc. Recently, several authors have ex-
plored deep learning based methods for DA clas-
sification (e.g. (Li and Wu, 2016; Khanpour et al.,
2016)). An important limitation of these classi-
fication approaches is they need a large annotated
corpus. More often, they are evaluated on the same
domain on which they are trained.

Recently there is increasing trend of building
domain specific chat-bots (e.g. domains like Insur-
ance, Finance, Healthcare, IT services helpdesks,
Tourism, etc.). It is important to note that conver-
sations in different domains have different char-
acteristics. For example, conversations recorded
in IT services help-desks are frequently occurring
queries (questions) and their responses, while con-
versations recorded in Tourism help-desk may in-
volve planning of a tour, purchase of insurance in
insurance domain, or recommendation of a prod-
uct are likely to involve long, and detailed conver-
sations. Additionally, some words have a domain-
dependent sense, for example, the word “escala-
tion” is used as a synonym to “complaint” in IT
services help-desks.

Hence, we hypothesize that a DA classifier
trained on an open-domain corpus may not cap-
ture characteristics of conversations for different
domains and hence, its performance may not be
optimal. One way to overcome this problem is to
build domain-dependent DA classifiers. However,
the creation of such classifiers requires huge cost
and human efforts. Hence it is important from the
practical point of view to build a DA classifier that
requires minimum cost and human efforts, at the
same time it can be used across multiple domains.

In this paper, we propose a CRF based DA clas-
sifier that uses a richer set of features which incor-
porate lexical, syntactic and semantic information
as well as dialogue history. Initially, we learn a
DA classifier on an open-domain corpus and then
allow a domain expert to incorporate her domain
knowledge in the form of simple rules. In our ap-

proach, we combine both statistical learning and
domain knowledge to build a domain-dependent
DA classifier.

The paper is organized as follows: In Sec-
tion 2, we propose our CRF and cue based ap-
proach for DA classification. Section 3 discusses
evaluation of our proposed DA classifier with re-
spect to a Deep Recurrent Neural Network (RNN)
based DA classifier proposed by (Khanpour et al.,
2016). In Section 4 we conclude and discuss fu-
ture prospects of our work.

2 Our Approach

We use cue-based approach for DA classification.
Cue phrases are single words, or combinations
of words in phrases, that can serve as reliable
indicators of some discourse function. A cue-
based model uses different sources of knowledge
(cues) for detecting a DA such as lexical, col-
locational, syntactic, prosodic, or conversational-
structure cues. This knowledge can then be fed
to a machine learning system for training a DA
classifier. There is a wide range of features used
in DA classification, including the words in each
utterance, syntactic information such as Part of
Speech (PoS) tags, pragmatic information, includ-
ing the discourse context as captured by the DAs
of preceding utterances, whether there has been a
change of speaker, and prosodic information from
the acoustic signal if the audio data is available.

Conditional Random Field (CRF) are often ap-
plied in machine learning for structured predic-
tions and can be thought of as the sequential
version of logistic regression, where logistic re-
gression is a log-linear model for classification,
CRF is a log-linear model for sequential label-
ing. Whereas an ordinary classifier predicts a la-
bel for a single sample without regard to neigh-
boring samples, a CRF can take context into ac-
count, which is the best match for a problem like
conversation analysis as in any conversation most
of the utterances are contextually dependent. For
example, a lot of information has already been dis-
cussed in the conversation till the current utter-
ance, and any new utterance will most likely to
keep the already discussed information in mind in-
stead of repeating the information.

We use CRF for training a model with fea-
tures that provide enough cues for classification
of dialogue acts, whether clearly distinguishing
DAs like THANKING and APOLOGY, or closely

306

related DAs which are hard to distinguish, e.g. all
question-related dialogue acts.

2.1 Modeling Steps
The steps for our model creation starts with text
cleaning from correction of spelling mistakes and
normalization of repeated symbols. In the next
step, we change each word to its lemma form, and
the corresponding PoS tags are obtained for each
of them. In the third step, word bi-grams and PoS
bi-grams are also added as features. After adding
these features (words, word bi-grams, PoS, PoS
bigrams), we introduce a few cue based features
for accuracy improvement. We observed that most
of the QUESTION classes have at least one of the
cues for a question, like any one word from WH-
Words (what, why, who, where, how) or a ques-
tion mark “?”. Hence, we add a feature to indicate
an utterance starting with a WH-Word is likely
to be a QUESTION. To discriminate QUESTION
classes further, we add features like presence of
WH-Words or collocations based question phrase
like “can I”, “are you”, etc.

We also add separate features for DAs
where cues for expressing gratitude, apology
or back-channel acknowledgment (like “Yeah”,
“okay”, “uh-huh”, etc) are present in an ut-
terance. Additionally, we add a feature for
CONVENTIONAL-OPENING as the opening ut-
terances of conversations contain words and
phrases along with expression of greeting like
“Hello”, “Welcome”, etc. and making it prone
to be tagged as STATEMENT.

In the end, we created following set of semantic
and syntactic features for training of model:

1. Lemmas of words

2. PoS tags

3. PoS tag and word lemma bigrams

4. presence of words that express apology

5. presence of Wh-word

6. presence of words that express gratitude

7. presence of words that indicate start of a con-
versation

8. presence of a question phrase

9. presence of a question phrase at the begin-
ning of an utterance

10. presence of words that express agreement
with the last utterance

3 Experimental Evaluation

We evaluate the performance of our algorithm
with Recurrent Neural Network based dialogue act
classifier proposed in (Khanpour et al., 2016).

3.1 Datasets

Training datasets:

Since our study focuses on classifying DAs in
open-domain conversations, we chose to evaluate
our model on Switchboard (SwDA) (Jurafsky et
al., 1997) and Dialog State Tracking Challenge 2
(DSTC21) datasets:

• SwDA: The Switchboard corpus (Godfrey et
al., 1992) contains 1,155 five-minute, sponta-
neous, open-domain dialogues. (Jurafsky et
al., 1997) revised and collapsed the original
DA tags into 43 DAs, which we use to eval-
uate our model. SwDA has 19 conversations
in its test set.

• DSTC2: The Dialog State Tracking
Challenge-2 dataset is a conversational
dataset of an automated restaurant assistance
system and its users, having a total of 2118
different conversations and a total of 19
different user goals which are mapped to 19
different dialogue acts based on similarity of
meaning.

Test datasets:

• DSTC2: we used DSTC2 for both training
and testing as it is a domain specific dataset.

• Mutual Funds: This dataset contains con-
versations between customers of an online
money management platform and customer
service associate through online chat. This
dataset is about queries regarding mutual
funds transactions through the platform. It
contains 26 conversations with total 572 con-
versational utterances. An example conversa-
tion between a customer and a help-desk as-
sistant with manually tagged DAs is given in
Table 1

1http://camdial.org/˜mh521/dstc/

307

Speaker Utterance Dialogue Act
Customer Please assist me in payment of MF ACTION-DIRECTIVE
Assistant Hi ! CONVENTIONAL-OPENING
Assistant This is Jim from ZZZ Mutual Funds Online

Assistance.
STATEMENT

Assistant How may I assist you ? WH-QUESTION
Customer I have started mf last month onlly STATEMENT
Customer please assist me how can I transfer amount for

this month
ACTION-DIRECTIVE

Customer Hello CONVENTIONAL-OPENING
Customer anyone is there ? STATEMENT
Assistant Surely I will assist you with the same. STATEMENT
Assistant Could you please help me with your regis-

tered Email ID and contact number for veri-
fication purpose ?

YES-NO-QUESTION

Customer fname.lname@xyz.com ABANDONED/UNINTERPRETABLE
Customer 99XX99XX99 ABANDONED/UNINTERPRETABLE
Assistant Thank you for the details provided. THANKING
Assistant Have you schedule any SIP from your mutual

fund account
WH-QUESTION

Customer I dont know much about this STATEMENT
Assistant Please provide your PAN No , Date of Birth

and Ending 4 Digits of your bank account
linked with Myuniverse Investment account

ACTION-DIRECTIVE

Customer ABCDE0000G ABANDONED/UNINTERPRETABLE
Customer DD / MM / YYYY ABANDONED/UNINTERPRETABLE
Customer 9999 ABANDONED/UNINTERPRETABLE
Assistant Thank you for the details provided. THANKING
Assistant Please be online , I shall check this for you. STATEMENT
Assistant Hello sir CONVENTIONAL-OPENING
Assistant As checked , you have schedule SIP from

your Account
STATEMENT

Customer Okay AGREEMENT/ACCEPT
Customer can you call on my number please YES-NO-QUESTION
Assistant Yes sir YES-ANSWERS
Assistant Thank you for contacting us. THANKING
Assistant Have a nice day. CONVENTIONAL-CLOSING
Customer thank you THANKING

Table 1: An Example Conversation from Mutual Funds Domain

3.2 Experimental Settings

RNN based approach (RNNDA)

We used the SwDA and DSTC2 dataset to train
RNNDA based model with LSTM layers as de-
scribed by (Khanpour et al., 2016). All conver-
sations in the training set were preprocessed, and
a randomized selection of one-third of them was
utilized as a development set to allow the LSTM
parameters to be trained over a reasonable number

of epochs. We used pre-trained Glove (Penning-
ton et al., 2014) word embeddings of 300 dimen-
sion vectors2. We used the NN packages provided
by (Lei et al., 2015a) and (Lei et al., 2015b). We
trained the model with following parameters kept
constant (dropout = 0, decayrate = 0.7, dimension
of hidden layer = 100, number of layers = 10 and

2http://nlp.stanford.edu/data/glove.
6B.zip

308

learning rate = 0.01)

CRF based approach (CRFDA)

As both SwDA and DSTC2 datasets are conversa-
tional datasets we trained CRFDA model for se-
quence labeling of dialogue acts. We used CRF
implementation from MALLET3 for training the
model.

3.3 Enhancing performance of CRFDA

In the CRFDA classifier for a given sentence out-
put is given as probability distribution across all
DAs. We analyzed these output distribution and
found that sometimes the correct DA is having
slightly less probability than the highest probabil-
ity DA, so to improve the prediction accuracy we
used priority rules for DAs.

Priority Rules:

If the probability difference of top two DAs is
within specified threshold and lower probability
DA is defined as the high priority then we over-
ride the algorithm predicted DA to the high pri-
ority DA. For instance, suppose we have defined
the threshold as 0.2 probability difference and we
have a priority rule defined as: DA1→DA2, then
DA2 is having higher priority than DA1 and when
in CRFDA output, DA1 is having higher proba-
bility than DA2 and their probability difference is
less than or equal to our threshold 0.2 than the DA2
(second highest probability dialogue act) is given
as prediction in place of DA1 (highest probability
dialogue act).

For example, an utterance with text “But
how come we weren’t doing this, say, twenty
years ago” which got tagged with STATEMENT
and WH-QUESTION as top two suggestions
with a probability difference of around 0.15
and we can clearly say that the utterance is
more of a question than a statement. To han-
dle such cases we defined a priority rule like
STATEMENT→WH-QUESTION with a accept-
able probability difference threshold of 0.3 Using
this rule whenever a sentence gets STATEMENT
and WH-QUESTION as top two predictions and
have a probability difference less than or equal to
0.3 than we change the algorithm prediction from
STATEMENT to WH-QUESTION. We defined few
more priority rules based on similar observations.

3http://mallet.cs.umass.edu

3.4 Analysis of Results

Table 2 show results of our experiments. We
can observe the impact of the domain on the per-
formance of both CRFDA and RNNDA classi-
fiers. When we trained RNNDA classifiers us-
ing SwDA- an open-domain corpus as a training
dataset and evaluated on the domain-dependent
datasets, the performance was poor. We can also
observe that when we trained RNNDA classifiers
using DSTC2- a domain-dependent corpus and
evaluated on the test dataset of DSTC2, the perfor-
mance is significantly higher when the classifiers
are evaluated on SwDA or Mutual Funds dataset.
In summary, a RNNDA classifier trained on one
corpus of one domain performs poor on dialogues
in another domain.

In Table 2, we can observe that CRFDA out-
performs RNNDA on both DSTC2 and Mutual
Funds dataset when SwDA corpus is used for
training. The performance CRFDA is compara-
ble to RNNDA when the dialogues from the same
domain are used for both for training and test-
ing. Hence, we can say that performance of both
RNNDA and CRFDA is sensitive to the domain
of dialogues.

We can also observe in Table 2 that addition of
a few manually defined rules to CRFDA classifier
(CRFDA + Rules) significantly improves its per-
formance.

4 Conclusions and Future Work

DA classification is an important task in building
Dialogue Agents. However, the creation of a suf-
ficiently large tagged dataset for a domain is a
highly challenging task as it exerts a high cogni-
tive load on the domain experts (which are likely
to be expensive). One approach is to use an open-
domain tagged dataset and use it across different
domains. In this paper, we proposed a CRF based
approach for learning a DA classifier on an open-
domain dataset and evaluated it on two differ-
ent domain-dependent datasets. In our approach,
we did feature engineering for linguistically mo-
tivated features so that the features will capture
how in-general a dialogue takes place. However,
for each domain and further for each domain-
specific task, dialogues have different character-
istics. To handle such a domain-dependent dia-
logues, we extended our approach through the in-
corporation of a few easy to define rules which
improved the performance of DA classification on

309

Training Corpus Test Corpus RNNDA CRFDA CRFDA + Rules

SwDA
SwDA 68.9 66.9 67.1
DSTC2 21.9 46.4 61.7

Mutual Funds 14.5 58.0 63.2
SwDA 11.1 21.5 21.7

DSTC2 DSTC2 94.1 89.8 90.1
Mutual Funds 33.2 32.9 43.3

Table 2: Comparison of DA Classification Accuracy for Different Datasets

domain-dependent datasets. In summary, towards
the goal of reducing knowledge acquisition over-
head in creating domain-dependent tagged cor-
pora for different domains, our approach uses ex-
isting open-domain corpus to learn a DA classifier
and enhances it using a set of manually defined
rules.

In future, we would like to do experiments with
a few more open-domain and domain-dependent
dialogues. We would also like to explore transfer
learning techniques for DA classification.

References
S. Bangalore, G. Di Fabbrizio, and A. Stent. 2006.

Learning the structure of task-driven human-human
dialogs. In Proc. 21st COLING, and 44th ACL,
pages 201–208.

Sumit Bhatia, Prakhar Biyani, and Prasenjit Mitra.
2014. Summarizing online forum discussions – can
dialog acts of individual messages help? In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 2127–2131, October.

Kristy Boyer, Joseph Grafsgaard, Eun Young Ha,
Robert Phillips, and James Lester. 2011. An affect-
enriched dialogue act classification model for task-
oriented dialogue. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1190–1199, June.

Tamitha Carpenter and Emi Fujioka. 2011. The role
and identification of dialog acts in online chat. In
Proc. Workshop on Analyzing Microtext at the 25th
AAAI, Conference on Artificial Intelligence.

W.W. Cohen, V.R. Carvalho, and T.M. Mitchell. 2004.
Learning to classify email into ”speech acts”. In
Proc. Empirical Methods in Natural Language Pro-
cessing (EMNLP-2004), pages 309–316.

Oliver Ferschke, Iryna Gurevych, and Yevgen Chebo-
tar. 2012. Behind the article: Recognizing dialog
acts in wikipedia talk pages. In Proceedings of the

13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 777–
786, April.

John J. Godfrey, Edward C. Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech
corpus for research and development. In Proceed-
ings of the 1992 IEEE International Conference on
Acoustics, Speech and Signal Processing - Volume
1, ICASSP’92, pages 517–520, Washington, DC,
USA. IEEE Computer Society.

D. Jurafsky, R. Bates, N. Coccaro, R. Martin,
M. Meteer, K. Ries, E. Shriberg, A. Stolcke, P. Tay-
lor, and C. Van Ess-Dykema. 1997. Automatic
detection of discourse structure for speech recogni-
tion and understanding. In 1997 IEEE Workshop on
Automatic Speech Recognition and Understanding
Proceedings, pages 88–95, December.

Simon Keizer. 2001. A bayesian approach to dialogue
act classification. In Proc. BI-DIALOG.

Hamed Khanpour, Nishitha Guntakandla, and Rod-
ney Nielsen. 2016. Dialogue act classification in
domain-independent conversations using a deep re-
current neural network. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 2012–
2021, Osaka, Japan, December. The COLING 2016
Organizing Committee.

Jihie Kim, Jia Li, and Taehwan Kim. 2010a. Towards
identifying unresolved discussions in student online
forums. In Proc. NAACL HLT, 2010 Fifth Workshop
on Innovative Use of NLP, for Building Educational
Applications, pages 84–91.

Su Nam Kim, Lawrence Cavedon, and Timothy Bald-
win. 2010b. Classifying dialogue acts in one-on-
one live chats. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’10, pages 862–871, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015a.
Molding cnns for text: non-linear, non-consecutive
convolutions. arXiv preprint arXiv:1508.04112.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi S.
Jaakkola, Kateryna Tymoshenko, Alessandro Mos-

310

chitti, and Lluı́s Màrquez i Villodre. 2015b. De-
noising bodies to titles: Retrieving similar ques-
tions with recurrent convolutional models. CoRR,
abs/1512.05726.

Wei Li and Yunfang Wu. 2016. Multi-level gated re-
current neural network for dialog act classification.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 1970–1979, Osaka, Japan,
December. The COLING 2016 Organizing Commit-
tee.

D. J. Litman and S. Silliman. 2004. ITSPOKE: An in-
telligent tutoring spoken dialogue system. In Proc.
HLT/NAACL.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Norbert Reithinger and Martin Klesen. 1997. Dialog
act classification using language models. In Proc.
EuroSpeech-97, pages 2235–2238.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for
automatic tagging and recognition of conversational
speech. Computational Linguistics, 26(3):339–373.

Helen Wright. 1998. Automatic utterance type de-
tection using suprasegmental features. In Proceed-
ings of the International Conference on Spoken Lan-
guage Processing 1998, page 1403.

311

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 312–321

Normalization of Social Media Text using Deep Neural Networks

Ajay Shankar Tiwari
Jadavpur University

India
ajaytiwari0210@hotmail.com

Sudip Kumar Naskar
Jadavpur University

India
sudip.naskar@cse.jdvu.ac.in

Abstract

This paper sets out to investigate ways of
normalizing noisy text that appear on social
media platforms like Facebook, Twitter,
Whatsapp, etc. We proposed a deep learn-
ing based approach to text normalization
using Recurrent Neural Network (RNN)
based Encoder–Decoder architecture with
Long Short Term Memory (LSTM). To
circumvent the unavailability of suitable
large noisy–clean parallel dataset, we de-
veloped synthetic datasets. We trained and
evaluated the proposed model on our syn-
thetic datasets and the WNUT1 shared task
dataset. The uniqueness of our approach is
in the use of synthetic datasets in a transfer
learning approach for improving the perfor-
mance of text normalization based on deep
neural models. Our transfer learning based
deep neural model produced state-of-the-
art results (F1 score 0.9098) outperforming
the previous best performing model on the
WNUT test set by 7%.

1 Introduction

There is a large quantity of user-generated content
on the web, characterized by social media, creativ-
ity and individuality, which has created problems
at two levels. Firstly, social media text is often un-
suitable for various Natural Language Processing
(NLP) tasks, such as Information Retrieval, Ma-
chine Translation, Opinion Mining, etc., due to the
irregularities found in such content. Secondly, non-
native speakers of English, older Internet users and
non-members of the in-groups often find such texts
difficult to comprehend. Prompt use of Internet
and the resulting noisy user generated text found
in different social media platforms such as social
networking sites, blogs, etc., cause a hindrance in

1https://noisy-text.github.io/2015/norm-shared-task.html

understanding casual written English, which often
does not conform to the rules of spelling, grammar
and punctuation.

In this paper, we present an approach for text
normalization of social media text. Our approach
uses a sequence to sequence model (Sutskever
et al., 2014) in which we tried Recurrent Neural
Network (RNN) based encoder-decoder approach
(Bahdanau et al., 2014) with Long Short Term
Memory (LSTM). The use of LSTMs for text nor-
malization in the present work is motivated by
(Sproat and Jaitly, 2016). We take a character
based LSTM approach motivated by the work of
(Ling et al., 2015) who showed that character based
approach is superior to word based approach for
neural network based sequence to sequence mod-
elling tasks2. Our LSTM model was trained with
attention mechanism (Bahdanau et al., 2014).

2 Related Work

Text Normalization is a well known task in the
field of NLP, particularly in the Social Media do-
main. Clark and Araki (2011) provides a detailed
survey on the challenges and applications of text
normalization in Social Media.

Researchers have shown that text normalization
is a major factor in improving performance of NLP
intermediate tasks like part-of-speech tagging (Han
et al., 2013) and NLP applications like machine
translation (Hassan and Menezes, 2013).

Research in text normalization started with
spelling correction with noisy channel model
(Kernighan et al., 1990; Mays et al., 1991). Since
then several different approaches have been pro-
posed by researchers. We report here a few of the
most prominent works on text normalization, with
a particular focus on social media.

2(Ling et al., 2015) showed improvement on the machine
translation task. Text normalization is conceptually very simi-
lar to and can be modelled as a machine translation task using
noisy–clean parallel corpus..

312

Statistical Approaches: In the early 1990’s, re-
searchers in the AT&T Bell Labs (Kernighan et al.,
1990) and IBM Research (Mays et al., 1991) car-
ried out independent work on spelling correction
using noisy channel model. This generative model
has remained the most dominant and successful
approach to text normalization until very recently.

Hassan and Menezes (2013) proposed an ap-
proach for normalizing social media text which
used random walk framework on a contextual simi-
larity bipartite graph constructed from n-grams se-
quences, which they interpolated with edit distance
. They used the proposed method as a preprocess-
ing step to improve machine translation quality on
social media text.

Pennell and Liu (2010) proposed text normaliza-
tion for text messages (SMS) to make them suitable
as input to speech synthesizer. They used statisti-
cal classifier which tries to learn when and which
character to delete and then reverse the mappings
to normalize short text messages.

Sproat et al. (2001) proposed a taxonomy of
non-standard words (NSW) and explored several
methods like n-gram language models, decision
trees, weighted finite state transducers, etc., for text
normalization of NSWs. They reported that a sys-
tematic class-specific treatment results in improved
text normalization.

Choudhury et al. (2007) proposed a Hidden
Markov model based text normalization approach
for SMS texts and texting language. Aw et al.
(2006) used SMT models to normalize noisy SMS
text by translating SMS text to Regular English text.
Mikheev (2000) solved three major problems in
text normalization: sentence boundary disambigua-
tion, disambiguation of capitalized words when
they are used in positions where capitalization is
expected, and identification of abbreviations.

Deep Learning Based Approaches: Deep
learning based approaches have emerged as a com-
petitive alternative in recent years and research
have been reported on deep learning based text
normalization.

One of the most prominent work on deep learn-
ing based approach to text normalization is (Sproat
and Jaitly, 2016) which proposed different RNN
architectures to normalize texts for text-to-speech
(TTS) Systems. The main focus of their work was
to normalize written texts to their correct spoken
form. The proposed system used LSTMs and at-
tention based Sequence-To-Sequence models (Bah-

danau et al., 2014). Sproat and Jaitly (2017) used
the same framework to build their TTS text normal-
ization models for English and Russian and trained
their models on huge amount of training data. Their
dataset consists of 1.1 billion English words and
290 million Russian words and they reported very
high accuracy, over 0.99 for both English and Rus-
sian. They also augmented their system with a
finite-state transducer (FST) filter to take care of
mistakes made by the RNN based model.

Deep Neural Network models suffer from the
Out-Of-Vocabulary (OOV) problem (Luong et al.,
2014), when text normalization is performed using
word based approach. Xie et al. (2016) solved this
problem by illustrating how character based neural
networks are much better in normalizing noisy and
user generated texts. They also showed that results
can be improved by introducing synthesized errors
in a datasets. They showed improvement using
noisy text collected from English learner forum.

Leeman-Munk et al. (2015) proposed a model
for normalizing noisy text which uses two aug-
mented feed forward networks (Glorot and Bengio,
2010), flagger to identify the word to be normalized
and at last a normalizer which provides the correct
output for one token at a time.

Chollampatt et al. (2016) showed that neural ma-
chine translation models are better in correcting
grammatical errors, a task closely related to text
normalization, as compared to phrase based sta-
tistical machine translation models (Wang et al.,
2014).

Other noticeable works in text normalization in-
clude the use of adaptive parser-centric strategy
(Zhang et al., 2013) to convert noisy texts into gram-
matically correct texts, unsupervised model using
semantic similarity and Re-ranking strategy (Li and
Liu, 2014). Torunoğlu and Eryiğit (2014) proposed
a cascaded approach for normalizing Turkish text
by dividing the main problem into sub problems
and solving them one by one. Liu (2012) used
character-block level SMT to normalize SMS and
Twitter text. Pusateri et al. (2017) reports the use
of bi-directional LSTM for the task of inverse text
normalization, the objective of which is the exact
opposite of (Sproat and Jaitly, 2016), i.e. to con-
vert the spoken form token sequence produced by
a speech recognizer into written form.

313

3 System Architecture

3.1 Recurrent Neural Network

The main motive behind using RNN for text nor-
malization is to utilize sequential content. Input
to the RNNs is the current information they see as
well as the previous information remembered by
them at that time. In Fig 1, taken from (Elman,
1991), “BTSXVPE” at the bottom shows the cur-
rent input and “CONTEXT UNITS” represents the
output at the previous step. The decision of recur-
rent net reached at time step ti affects the decision
it will reach one moment later at time step ti+1.
As discussed in (Quast, 2016), RNNs are called
recurrent because they perform the same task for
every element of a sequence, with the output being
dependent on the previous computations. It is often
said that recurrent networks have memory. Adding
memory to neural networks has a purpose: there
is information in the sequence itself and recurrent
nets use it to perform tasks. That sequential in-
formation is preserved in the recurrent network’s
hidden state which manages to span many time
steps as it cascades forward to affect the processing
of each new example. This feature of RNN makes
it an efficient approach for normalizing noisy text.

Figure 1: RNN Network Architecture

A drawback of the RNN is that, as the gap be-
tween the relevant information and the point where
it is needed widens, RNNs fail in remembering the
information. This problem with RNN was explored
by Bengio et al. (1994). To overcome this problem,
LSTM Networks were introduced by Hochreiter
and Schmidhuber (1997).

3.2 Long-Short Term Memory Network

As discussed in (Olah, 2015), LSTM networks are
another variety of RNNs, mainly used for learning
long-term dependencies. In standard RNNs, there
is always a chain of repeating modules containing
a simple structure.

LSTMs are a fairly simple extension of RNNs.

The objective of LSTM can be briefly described
into three points as follows.

• Deciding which information to remem-
ber/forget: The model needs to learn a sepa-
rate method to forget/remember information
when new inputs come in; it needs to know
which beliefs to keep and which ones to throw
away.

• Updating new information: When new in-
put comes in, the model first forgets any long-
term information it decides it no longer needs.
Then it learns which parts of the new input are
worth using and saves them into its long-term
memory.

• Handling long-term dependencies: Finally,
the model needs to learn which parts of its
long-term memory are immediately useful and
therefore it needs to focus on.

3.3 RNN Encoder–Decoder
RNN Encoder–Decoder models (Cho et al., 2014)
can be stated a sequence to sequence mapping be-
tween two sequences, learned using two RNNs,
one on either side, encoder and decoder, which are
trained jointly. For example, in our model, sen-
tences having erroneous words were kept at the en-
coder side and the corresponding sentences having
correctly spelled words were kept at the decoder
side. The encoder part receives a sequence and then
coverts it into an encoded representation of the se-
quence, which is further decoded by the decoder
to provide the output sequence. RNN encoder-
decoder models may contain different cells like
GRU or LSTM, or simply RNN. It is quite obvious
that the encoded representation of a sequence must
be a fixed size vector.

The encoder encodes an input sequence into a
fixed-length vector representation and the decoder
decodes a given fixed-length vector representation
into an output sequence.

3.4 Attention-based Bidirectional RNN
Model

Attention Mechanisms in Neural Networks are
(very) loosely based on the visual attention mech-
anism found in humans. Our bidirectional RNN
encoder consists of forward and backward RNNs.
Using attention mechanism, the decoder gives at-
tention to different parts of the input sequence at
each step of the output generation .

314

4 Data Sets and Resources

As discussed in Section 3.4, we trained a mono-
lingual encoder-decoder based S2S model for our
task, where the encoder encodes the input incorrect
text and the decoder produces the correct text as
output. We consider noisy texts and their corre-
sponding corrected version as a parallel data on
which we train our S2S model. However, it is a
well known fact that deep neural network models
(S2S in our case) typically require large amount of
training data. Obtaining such large parallel training
data, particularly for the social media domain is
a major challenge itself in text normalization re-
search. Therefore, in the absence of such parallel
training data, we constructed synthetic data, i.e. ar-
tificially developed parallel dataset in which one
side consists of sentences having misspelled and
noisy words and the other side consists of sentences
containing correctly spelled and normalized words.
The noisy side (having misspelled words) of the
parallel data was created by randomly replacing
words in a clean text corpus with the help of four
different dictionaries mentioned in Section 4.1. All
of these dictionaries consist of parallel list (a hash
table) of correct words and their corresponding in-
correct noisy versions, where the correct word is
stored as a key and the values for those keys are
one or many misspelled words corresponding to
the key.

4.1 Dictionaries

We used Peter Norvig Copus3, one of the most pop-
ular resource in text normalization research, there
were containing 7,841 correctly spelled words and
their corresponding misspelled version(s). A snap-
shot of the Peter Norvig Corpus is shown below.

......
looking: loking, begining, luing, look*2, locking,
lucking, louk, looing, lookin, liking
eligible: eligble, elegable, eligable
scold: schold, skold
......

However, the Peter Norvig corpus is a general
domain spelling error corpus, i.e., it is not specifi-
cally designed for noisy social media content and
as such does not contain spelling error phenomena
that are typical to social media text. To include the
flavour of errors which occur in social media con-
versations, we used two spelling error dictionaries

3http://norvig.com/ngrams/spell-errors.txt

provided by the WNUT 2015 shared task4 on “Nor-
malization of Noisy Text” which contain one to one
mapping of incorrect words to correct words. The
two dictionaries contain 3,804 and 41,182 [correct,
incorrect] word pairs respectively. To make the
dataset even noisier, we also constructed another
social media spelling error dictionary containing
652 new word pairs by manually observing dif-
ferent Whatsapp Group chat conversations, public
comments on Facebook’s posts and Facebook Con-
versations.

4.2 Synthetic Dataset Preparation

We crawled 500K sentences from different news do-
main websites such as Fox News5, The Guardian6,
Yahoo News7 and CNN News8 and then with the
help of Peter Norvig’s corpus we prepared a syn-
thetic noisy dataset by replacing some words in
each sentence with their corresponding misspelled
words, if found in the Peter Norvig corpus. If there
exist multiple misspelled versions for the same
word in the Peter Norvig corpus, then the choice of
misspelled word was taken randomly. Since many
of the sentences were very long in the crawled cor-
pus, we broke them (both the original sentence
and the corresponding noisy sentence) down to se-
quences of five-grams in order to keep the sequence
length shorter. Here sequence length refers to the
number of characters in a sequence. Thus, we cre-
ated a synthetic parallel dataset, Synthetic1, and
Table 1 shows how our parallel synthetic dataset
look like, in which the misspelled words are shown
as underlined.

We also created another synthetic dataset
(Synthetic2) using a Chat Conversation dataset9

in a similar manner, however, with two noticeable
changes. For this dataset we did not split the se-
quence into n-grams because in this dataset se-
quence length was not too large as compared to
Synthetic1 dataset and we took the help of all
the four dictionaries to create the parallel dataset.
The chat conversation dataset belongs to the Cor-
nell Movie Dialogue dataset (Danescu-Niculescu-
Mizil and Lee, 2011) and it contains conversational
data extracted from movie scripts. The dataset was

4https://noisy-text.github.io/2015/norm-shared-task.html
5http://www.foxnews.com/
6https://www.theguardian.com/international
7http://noornotews.yahoo.com/
8http://edition.cnn.com/
9https://github.com/1228337123/tensorflow-seq2seq-

chatbot/tree/master/data

315

Raw Corpus
...
The government guidance will be reviewed early next year after a period of public comment
...

Clean Text Noisy Text
...
The government guidance will be reviewed
government guidance will be reviewed
guidance will be reviewed early
will be reviwed early next
be reviewed early next year
reviewed early next year after
...

...
The govment guidence will be reviewed
guverment guidence we’ll be reviewed
guidance wil be reviewed erly
wiull be reviewed eigly next
be reviewed erly enxt yeer
reviewed erly nexst year afert
...

Table 1: A snapshot of the Synthetic1 dataset

originally built for building chat systems. We con-
structed our synthetic data from this raw data. With
Synthetic2, our main motive was to build a very
noisy dataset containing errors that are typical to so-
cial media. Therefore, we replaced as many words
as we could find in the two WNUT dictionaries and
our social media dictionary. At last, we checked
if any of the non-replaced words in a sequence
occurs in keys of the Peter Norvig corpus, and if
found, they were also replaced with a correspond-
ing (randomly chosen) misspelled word. Thus, we
created the parallel dataset Synthetic2 reflecting
errors typical of social media text. A snapshot of
the Synthetic2 dataset is shown in Table 2.

Other than these synthetic datasets, we also used
the standard training dataset released by the WNUT
2015 shared task on “Normalization of Noisy Text”.
This dataset consists of real Twitter data containing
different types of abbreviations used and errors
made in social media conversations.

Thus, we ended up with three different datasets10

– Synthetic1, Synthetic2 and WNUT. Table 3
presents the dataset statistics of all the datasets
that we used to train and evaluate our models.

5 Proposed Models

Model 1 (M1) : This model was trained and tested
on the Synthetic1 training and test set, respec-
tively. A batch size of 305 was considered and
model was trained for 20 epochs at constant learn-
ing rate of 0.001. In this dataset sequence length
was 74. Training this model took 20 hours (1
hour/epoch) on a single GPU. This model was built

10We will release the synthetics datasets and make available
for text normalization research upon publication of the paper.

as a general purpose spelling corrector for regular
English sentences.

Model 2 (M2) : From this model onwards, all
our models are focused mainly on in social media
text. This model was trained and tested on the
Synthetic2 training and test set, respectively. The
sequence length of was 214 and batch size was kept
to 32. The model was trained for 4 epochs as after
4th epoch, loss function started diverging and after
making changes in the learning rate, there was no
sign of convergence of loss. Learning rate was kept
constant for 4 epochs at 0.001. Training this model
took 16 hours (4 hour/epoch) on a single GPU.

Model 3 (M3) : This model was also trained
and tested on Synthetic2 dataset, however, the se-
quence length was kept to 160. We decreased the
sequence length so that we could train our model
for more number of epochs. Decreasing the se-
quence length made the training dataset smaller
to 1,29,590 sentences, we refer to this dataset as
Synthetic3. We were able to train this model for
7 epochs by changing the learning rate form 0.001
to 0.0001 after 4 epochs. Training this model took
17.5 hours (2.5 hour/epoch) on a single GPU.

Model 4 (M4) : This model was trained and
tested on WNUT datasets. Sequence length was
kept at 160 and model was trained for 50 epochs
and batch size for this experiment was 32. Learning
rate was changed from 0.001 to 0.0001 and then
back to 0.001, in between the epochs after observ-
ing the behaviour of the loss function. Training this
model took 2.5 hours (3 minutes/epoch) on a single
GPU.

Model 5 (M5): This model was trained on
the merged training datasets of Synthetic3 and

316

Clean Text Noisy Text
... ...
Not the hacking and gagging and spitting part. Not tne hackinq und gaggin nd spittin part.
Please.’, “You’re asking me out. Plz.’, “You’re askin meh out.
That’s so cute. What’s your name again?” That’s sou cute. What’s yur nyam again?”
... ...

Table 2: A snapshot of Synthetic2 dataset

Statistics

Datasets
Training Set Test Set

Sentences Words Sentences Words
Incorrect Correct Total Incorrect Correct Total

Synthetic 1 495,000 1,345,500 1,129,500 2,475,000 5,000 15,520 9,480 25,000
Synthetic 2 139,683 953,881 385,792 1,339,673 1,000 7,569 4,101 11,670
Synthetic 3 129,690 856,256 325,456 1,181,781 1,000 6,528 3,594 10,122

WNUT 2,950 19,903 27,482 44,385 1967 11,239 18,182 29,421

Table 3: Dataset Statistics

WNUT. The model was trained for 15 epochs. Loss
function was constant at 0.001 and batch size was
256. Training this model took 18.75 hours (1.25
hours/epoch).

Model 6 (M6): This model was built using trans-
fer learning approach by using the trained weights
of model M3 for further training of the model on
the WNUT dataset. Sequence length was kept at
160 and the model was trained for 10 epochs. The
batch size was 32. The objective behind using
transfer learning approach was to make use of the
additional synthetic training dataset and hopefully
to improve the system performance on the WNUT
test set.

Model 7 (M7): This is another model built using
transfer learning approach, however, in this case
training was first carried out on the WNUT datasets
for 20 epochs and then the learned weights were
further used to retrain the model on the Synthetic3
dataset (10 epochs). Loss function for this model
was constant at 0.001 and the batch size was 128.
Training this model on the WNUT dataset and the
Synthetic3 dataset took 65 minutes (3.25 min-
utes/epoch) and 6.5 hours (40 minutes/epoch), re-
spectively.

“Negative log Likelihood” was used as the loss
function for all the experiments (M1–M7) as ac-
cording to (Lewis and Gale, 1994), this loss func-
tion proved to be quite perfect for Sequence to Se-
quence models. “ADAM” optimizer as described in
(Kingma and Ba, 2014) was used for all the experi-
ments. All models mentioned here, used 3 layers
on each side encoder & decoder.

6 Experimental Setup

Before loading the datasets for experiments, we
padded the data. For faster computation, input
sequences were divided into number of batches.
Since there were variations in sequence length, we
padded the data to make them all having uniform
length. “EOS” token was kept at the end of each
sequence, to identify its end. Shorter length se-
quences were padded with trailing zeros. We used
word2index dictionary containing key as all char-
acters and numbers as their indices. “EOS” and
“PAD” were given “0” and “1” index respectively.
The length of this dictionary was 98. The synthetic
data and the dictionaries mentioned in Section 4.1
will be made publicly available for research upon
publication of the paper.

Our models were built using deep learning li-
brary Tensorflow11. TensorFlow allows to effi-
ciently perform specific machine learning number-
crunching operations like derivatives on huge ma-
trices . With Tensorflow, processing can be easily
distributed across CPU cores, GPU cores, or mul-
tiple devices like multiple GPUs and even across
a distributed network of computers. Python12 was
used for preparation of the dataset as mentioned in
section 4.2 and scripting of the models.

7 Results

Since the proposed model can also mistakenly mod-
ify some correct words that should not be changed,
precision and recall are the most suitable metrics

11https://www.tensorflow.org/
12https://www.python.org/

317

for evaluating this scenario (Powers, 2011). Ac-
cordingly, we evaluated the proposed models using
precision, recall and F1-score. In the context of text
normalization, true positives refer to cases where
incorrect words are replaced by the correct words,
and true negatives represent correct words being
left as they are. False positives concern cases when
the model replaces a correct word by an incorrect
word. False negatives pertain two cases when the
model either does not provide any correction or
provides a wrong correction for an incorrect word.
Table 4 shows the evaluation results of all the ex-
periments mentioned in Section 5. For the benefit
of comparison, Table 5 groups these results into
two subsets - the ones evaluated on the synthetic
test sets and the others evaluated on the WNUT test
set. It is to be noted here that the models trained
only with the synthetic data (M1, M2 and M3) are
not meant to be evaluated with the WNUT test
set, however, for the sake of comparison, we also
evaluated these models on the the WNUT test set.

Among the experiments carried out only with
synthetic datasets, the best result (F1 Score =
0.9205) was achieved with M1. The other mod-
els trained on other synthetic datasets, M2 and M3,
could not achieve similar results since M2 and M3

could not be trained much due to their large se-
quence length. However, it is to be noted that only
the Peter Norvig spelling error corpus was used on
news domain data to introduce noise and prepare
the Synthetic1 dataset, while all the four dictio-
naries were employed to introduce noise in con-
versational data to prepare the Synthetic2 dataset.
Therefore, Synthetic2 dataset is much more reflec-
tive of social media data and hence more challeng-
ing. Among M2 and M3, since M3 was trained on
shorter sequences and was also trained for more
epochs, it was able to produce better performance
than M2.

Then we evaluated our models on the WNUT
dataset, the only standard dataset available for text
normalization research. Since the training dataset
size was very small, the model (M4) produced rel-
atively low performance (F1 Score = 0.8223) even
after training for 50 epochs. This relatively low
performance can be attributed to the very small
amount of training data (only 2,950 sentences) in
the WNUT dataset; deep learning based models
are known to perform poorly than traditional ma-
chine learning based methods on small training
data. However, this result is only next to the best

result (F1 Score = 0.8421) achieved in the WNUT
2015 shared task (Baldwin et al., 2015) in the con-
strained category.

M5, trained on a merged training set of
Synthetic3 and WNUT, produced better results
on both the Synthetic3 as well as WNUT test sets,
which can be observed by comparing the perfor-
mance of M5 with M3 and M4.

Both M6 and M7 make use of transfer learning
approach. M6 improves the model performance
on the Synthetic3 test set over M3, however, it
could not improve over M5. On the other hand,
M6 could not beat the performance of M4 on the
WNUT test set. The reason behind this could
be that M6 is essentially a pre-trained model M3,
trained on Synthetic3 and further trained on the
WNUT dataset. It is to be noticed however that
it provides huge improvement over M3’s perfor-
mance on the WNUT testset.

We changed the sequence of training in M7, i.e.,
first on WNUT and then on Synthetic3 dataset,
and also increased the batch size to 128. These
changes improved the model performance signifi-
cantly and provided the best performance on both
the Synthetic3 and WNUT test sets. It provided
an F1 Score of 0.9098 on the WNUT test set which
outperforms the best result (F1 Score = 0.8421)
reported in the WNUT shared task (Baldwin et al.,
2015).

Table 6 shows a comparison of the results ob-
tained by our systems against the two top perform-
ing systems in the WNUT shared task in both con-
strained and unconstrained track. Surprisingly, un-
constrained systems were not able to outperform
constrained systems in the WNUT shared task, as
is also noted in (Baldwin et al., 2015). However,
by making use of our synthetic training data and
using a transfer learning approach, we were able to
obtain state of the art results on the WNUT dataset.

Our models were able to correctly normalize so-
cial media specific errors and abbreviations. For
example “LOL” was normalized to “Laughing out
Loud” or “Lots of Laughs” depending upon the
context, “GM” was normalized to “Good Morn-
ing”, “k” to “ok” and so on. Among other types
of social media errors, “ohhhhhhhhhhhhhhhh” was
normalized to ”oh”, “b4” to “before”, “hiiiiiiiii”
to “hi”, etc.

318

Model Train
Sequence
Length

Test Precision Recall F1 Score

M1 Synthetic1 74
Synthetic1 0.9622 0.8822 0.9205

WNUT 0.1845 0.1756 0.1784

M2 Synthetic2 214
Synthetic2 0.8066 0.7204 0.7610

WNUT 0.2569 0.2356 0.2457

M3 Synthetic3 160
Synthetic3 0.9102 0.8595 0.8841

WNUT 0.3096 0.3156 0.3125
M4 WNUT 160 WNUT 0.8558 0.7915 0.8223

M5
Merged datasets

(Synthetic3 + WNUT)
160

Synthetic3 0.9366 0.9089 0.9225
WNUT 0.8569 0.8698 0.8633

M6
Transfer Learning

Synthetic3→WNUT
160

Synthetic3 0.9389 0.8856 0.9114
WNUT 0.8747 0.7260 0.7935

M7
Transfer Learning

WNUT→ Synthetic3
160

Synthetic3 0.9458 0.9056 0.9252
WNUT 0.9256 0.8945 0.9098

Table 4: Results of different models on synthetic and WNUT datasets

Synthetic Test Sets
Precision Recall F1 Score

M1 0.9622 0.8822 0.9205
M2 0.8066 0.7204 0.7610
M3 0.9102 0.8595 0.8841
M5 0.9366 0.9089 0.9225
M6 0.9389 0.8856 0.9114
M7 0.9458 0.9056 0.9252

WNUT Test Set
Precision Recall F1 Score

M4 0.8558 0.7915 0.8223
M5 0.8569 0.8698 0.8633
M6 0.8747 0.7260 0.7935
M7 0.9256 0.8945 0.9098

Table 5: Results of RNN based LSTM Models on
Synthetic and WNUT Test Sets

8 Conclusions & Future work

In this paper we presented a work on text normal-
ization using RNN based encoder-decoder LSTM
with an attention mechanism. We illustrate the
usefulness of our approach on a variety of noisy
datasets - standard real dataset as well as synthetic
datasets. We obtained state of the art results on the
WNUT dataset using our synthetic training data
and a transfer learning approach. Another impor-
tant contribution of this study is the development of
noisy–clean parallel synthetic datasets from user-
generated text reflecting both error patterns in reg-
ular text as well as social media. The proposed
model, with further improvisations, can be useful

in the field of social media to make social media
communications better and more understandable.

Our next goal is to construct a large real (i.e., not
synthetic) social media dataset, similar to WNUT,
suitable for training deep learning models which
will definitely help to improve text normalization
of social media texts. We would also like to explore
other deep learning based models for the task.

Acknowledgments

We would like to thank the anonymous reviewers
for their feedback. Sudip Kumar Naskar is sup-
ported by Media Lab Asia, MeitY, Government of
India, under the Young Faculty Research Fellow-
ship of the Visvesvaraya PhD Scheme for Electron-
ics & IT.

References

Aw, A., Zhang, M., Xiao, J., and Su, J. (2006). A
phrase-based statistical model for sms text nor-
malization. In Proceedings of the COLING/ACL
on Main conference poster sessions, pages 33–
40. Association for Computational Linguistics.

Bahdanau, D., Cho, K., and Bengio, Y. (2014).
Neural machine translation by jointly learn-
ing to align and translate. arXiv preprint
arXiv:1409.0473.

Baldwin, T., De Marneffe, M. C., Han, B., Kim, Y.-
B., Ritter, A., and Xu, W. (2015). Shared tasks of
the 2015 workshop on noisy user-generated text:
Twitter lexical normalization and named entity
recognition. In Proceedings of the Workshop on

319

Mode System Precison Recall F1 Score

Constrained
NCSU SAS NING 0.9061 0.7865 0.8421

NCSU SAS WOOKHEE 0.9136 0.7398 0.8175
M4 0.8558 0.7915 0.8223

Unconstrained

IHS RD 0.8469 0.8083 0.8272
USZEGED 0.8606 0.7564 0.8052

M5 0.8569 0.8698 0.8633
M6 0.8747 0.7260 0.7935
M7 0.9256 0.8945 0.9098

Table 6: Comparison of results between our systems and top two systems of the WNUT shared task

Noisy User-generated Text (WNUT 2015), Bei-
jing, China.

Bengio, Y., Simard, P., and Frasconi, P. (1994).
Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bah-
danau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase repre-
sentations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint
arXiv:1406.1078.

Chollampatt, S., Taghipour, K., and Ng, H. T.
(2016). Neural network translation models for
grammatical error correction. arXiv preprint
arXiv:1606.00189.

Choudhury, M., Saraf, R., Jain, V., Mukherjee,
A., Sarkar, S., and Basu, A. (2007). Investi-
gation and modeling of the structure of texting
language. International journal on document
analysis and recognition, 10(3):157–174.

Clark, E. and Araki, K. (2011). Text normaliza-
tion in social media: progress, problems and
applications for a pre-processing system of ca-
sual english. Procedia-Social and Behavioral
Sciences, 27:2–11.

Danescu-Niculescu-Mizil, C. and Lee, L. (2011).
Chameleons in imagined conversations: A new
approach to understanding coordination of lin-
guistic style in dialogs. In Proceedings of the
2Nd Workshop on Cognitive Modeling and Com-
putational Linguistics, CMCL ’11, pages 76–87,
Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Elman, J. L. (1991). Distributed representations,
simple recurrent networks, and grammatical
structure. Machine learning, 7(2-3):195–225.

Glorot, X. and Bengio, Y. (2010). Understanding
the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence
and Statistics, pages 249–256.

Han, B., Cook, P., and Baldwin, T. (2013). Lexical
normalization for social media text. ACM Trans-
actions on Intelligent Systems and Technology
(TIST), 4(1):5.

Hassan, H. and Menezes, A. (2013). Social text
normalization using contextual graph random
walks. In ACL (1), pages 1577–1586.

Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural computation,
9(8):1735–1780.

Kernighan, M. D., Church, K. W., and Gale, W. A.
(1990). A spelling correction program based
on a noisy channel model. In Proceedings of
the 13th Conference on Computational Linguis-
tics - Volume 2, COLING ’90, pages 205–210,
Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Kingma, D. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Leeman-Munk, S., Lester, J., and Cox, J. (2015).
Ncsu sas sam: Deep encoding and reconstruc-
tion for normalization of noisy text. In Proceed-
ings of the Workshop on Noisy User-Generated
Text at ACL, Beijing, China, pages 154–61.

Lewis, D. D. and Gale, W. A. (1994). A sequential
algorithm for training text classifiers. In Pro-
ceedings of the 17th annual international ACM
SIGIR conference on Research and development
in information retrieval, pages 3–12. Springer-
Verlag New York, Inc.

Li, C. and Liu, Y. (2014). Improving text normaliza-

320

tion via unsupervised model and discriminative
reranking. In ACL (Student Research Workshop),
pages 86–93.

Ling, W., Trancoso, I., Dyer, C., and Black, A. W.
(2015). Character-based neural machine transla-
tion. arXiv preprint arXiv:1511.04586.

Liu, Y. (2012). Improving text normalization us-
ing character-blocks based models and system
combination.

Luong, M.-T., Sutskever, I., Le, Q. V., Vinyals,
O., and Zaremba, W. (2014). Addressing the
rare word problem in neural machine translation.
arXiv preprint arXiv:1410.8206.

Mays, E., Damerau, F. J., and Mercer, R. L. (1991).
Context based spelling correction. Inf. Process.
Manage., 27(5):517–522.

Mikheev, A. (2000). Document centered approach
to text normalization. In Proceedings of the
23rd annual international ACM SIGIR confer-
ence on Research and development in informa-
tion retrieval, pages 136–143. ACM.

Olah, C. (2015). Understanding lstm networks.

Pennell, D. L. and Liu, Y. (2010). Normalization
of text messages for text-to-speech. In Acoustics
Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on, pages 4842–
4845. IEEE.

Powers, D. M. (2011). Evaluation: from preci-
sion, recall and f-measure to roc, informedness,
markedness and correlation.

Pusateri, E., Ambati, B. R., Brooks, E., Platek,
O., McAllaster, D., and Nagesha, V. (2017). A
mostly data-driven approach to inverse text nor-
malization. Proc. Interspeech 2017, pages 2784–
2788.

Quast, B. (2016). rnn: a recurrent neural network
in r. Working Papers.

Sproat, R., Black, A. W., Chen, S., Kumar, S.,
Ostendorf, M., and Richards, C. (2001). Normal-
ization of non-standard words. Computer speech
& language, 15(3):287–333.

Sproat, R. and Jaitly, N. (2016). Rnn approaches to
text normalization: A challenge. arXiv preprint
arXiv:1611.00068.

Sproat, R. and Jaitly, N. (2017). An rnn model
of text normalization. Proc. Interspeech 2017,
pages 754–758.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014).
Sequence to sequence learning with neural net-
works. In Advances in neural information pro-
cessing systems, pages 3104–3112.

Torunoğlu, D. and Eryiğit, G. (2014). A cascaded
approach for social media text normalization of
turkish. In Proceedings of the 5th Workshop on
Language Analysis for Social Media (LASM),
pages 62–70.

Wang, Y., Wang, L., Zeng, X., Wong, D. F., Chao,
L. S., and Lu, Y. (2014). Factored statistical
machine translation for grammatical error cor-
rection. In CoNLL Shared Task, pages 83–90.

Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D.,
and Ng, A. Y. (2016). Neural language cor-
rection with character-based attention. arXiv
preprint arXiv:1603.09727.

Zhang, C., Baldwin, T., Ho, H., Kimelfeld, B.,
and Li, Y. (2013). Adaptive parser-centric text
normalization. In ACL (1), pages 1159–1168.

321

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 322–327

Acronym Expansion: A Domain Independent Approach

Aditya Thakker *

Dwarkadas J. Sanghvi
College of Engineering

aditya.thakker@djsce.edu.in

Suhail Barot *

Dwarkadas J. Sanghvi
College of Engineering

suhail.barot@djsce.edu.in

Sudhir Bagul
Dwarkadas J. Sanghvi
College of Engineering
sudhir.bagul@djsce.ac.in

Abstract

Acronyms are present in usually all docu-
ments to express information that is repet-
itive and well known. But acronyms
can be ambiguous because there can be
many expansions of the same acronym.
In this paper, we propose a general sys-
tem for acronym expansion that can work
on any acronym given some context infor-
mation it is used in. We present meth-
ods for retrieving all the possible expan-
sions of an acronym from Wikipedia and
AcronymsFinder.com. We propose to use
these expansions to collect the context in
which these acronym expansions are used
and then score them using a deep learn-
ing technique called Doc2Vec. All these
things collectively lead to achieving an ac-
curacy of 90.9% in selecting the correct
expansion for given acronym on a dataset
we scraped from Wikipedia with 707 dis-
tinct acronyms and 14,876 disambigua-
tions.

1 Introduction

Acronyms are short descriptors made from im-
portant initial letters of a phrase. The phrase
here is referred as an expansion of that acronym.
Acronyms are used within these documents to
shorten complicated or oft-repeated terms.

Acronym usage is becoming more and more
common in emails, tweets, blog posts, etc. And
with the increasing popularity of mobile devices,
the use of acronyms on social platforms has in-
creased even more because typing in these devices
is difficult and acronyms provide a succinct way to
express information.

Usually, acronyms will be conveniently defined
at the point of the first usage, but sometimes a
document will omit the definition entirely, assum-
ing the readers familiarity with the acronym. For

example, WHO is often used as an acronym for
World Health Organization and usually people are
expected to know the expansion of it. Or take CSS
as an example, most of the documents wont even
mention the expansion of CSS because its such a
common acronym for Cascading Style Sheets. But
CSS can also mean Content-Scrambling System,
Closed Source Software, and Cross-Site Scripting.

Also, many natural language processing appli-
cations require preprocessing of a document. Text
normalization is one of the most important phase
of these preprocessing tasks. The basic task of text
normalization is to convert non-standard words
like numbers, abbreviations, dates, etc. into stan-
dard words, though depending on the task and the
domain a greater or lesser number of these non-
standard words may need to be normalized. In
this phase of text normalization, we need to ex-
pand all the acronyms in the document. Acronyms
are typically ambiguous because several expan-
sions exist for the same acronym as we saw in the
example before. For example, Cable News Net-
work and Convolutional Neural Network are both
expansions for the common acronym CNN. To
disambiguate these acronyms, we can use context
paragraphs that surround these acronyms to find
the actual expansion. 1

In our work, we have studied and created
an information retrieval system which takes any
acronyms along with some context words and
then will expand the acronym based on the score
it gives to all the possible expansions on the
acronym. As shown in the figure, the system will
search for all the possible expansions of the given
acronym on Wikipedia and Acronymfinder.com.
Once it has the list of all the expansions then it
will start finding occurrences of those phrases in
Wikipedia to get all the contexts in which it is
used. Our system will then represent each poss-

1* indicates these author is an equal contributor to this
work

322

Figure 1: Acronym Exoansion from Input to Output

bile expansion using a deep learning technique
called Doc2Vec (Mikolov et al., 2014) in high di-
mensional vector space. Doc2Vec (Mikolov et al.,
2014) which is used in our system can be seen as a
distributional semantic representation and this rep-
resentation is proved to be effective to compute the
semantic similarity between words based on the
context without any labeled data. The Doc2Vec
(Mikolov et al., 2014) embeddings represents the
expansions of acronyms in vector space. The
placement of each acronym expansion depends on
the context that it is used in. Once the system
has represented all the possible context vectors
associated with each expansion using Doc2Vec
(Mikolov et al., 2014), we can pick the expansion
whose context vector has the highest cosine sim-
ilarity score with the input context vector which
will then be our expansion for that given acronym.

To the best of our knowledge, we are the first to
apply Doc2Vec (Mikolov et al., 2014) embeddings
to this task. Experimental results show that our
system achieves a comparable accuracy of 90.9%
accuracy and is close to humans performance.

Our paper is mainly divided into the following
sections:

• In Section 1, we begin with an introduction
to the task of acronym expansion and briefly
describe our approach.

• In Section 2, we mention the issues with
acronym expansion and provide an overview
of the past approaches to the same problem.

• In Section 3, we descibe our proposed ap-

proach to the task of acronym expansion and
the creation of document embeddings from
context of acronym usage which is at the core
of our model.

• In Section 4, we explain our experimental
setup, describe how we gathered the dataset
and give results and observations of testing
on the datasets.

• In Section 5, we give our conclusions from
the experiments and also describe methods to
extend our approach to similar problems.

2 Related Work

The task of acronym expansion has been inten-
sively studied by various researchers using super-
vised learning algorithms. However, the perfor-
mance of these supervised methods depends on a
large amount of labeled data which is extremely
difficult to obtain.

In Hippocratic Abbreviation Expansion (Roark
et al., 2014) paper, they have used SVM, N-Gram,
and many hand-crafted feature engineering tech-
niques to identify the correct expansion of an
acronym.

In Acronym-Expansion Recognition and Rank-
ing on the Web (Jain et al., 2007), they use a
very similar technique of information retrieval
to find all the expansions of any acronyms and
then ranked them using co-occurence between
acronym and expansion, popularity and reliability
of sources.

323

One other difference between the work we re-
port from much of the recent work cited above is
that our work focuses on a more general system to
solve the problem. Most of the recent works we
have mentioned before are focused on some par-
ticular domain and hence use some domain spe-
cific techniques to achieve better accuracy. Our
system on the other hand only uses the textual
data present on Wikipedia to understand the con-
text and outputs the closest expansion similar to
input context.

3 Proposed Approach

Owing to the recent success in deep learning
frameworks, we sought to apply the techniques to
Acronym Expansion problem. But, the main chal-
lenge in these approaches is to identify the correct
expansion inspite of the many expansions for the
same acronym.

We propose to use the vast amount of data avail-
able on the internet to identify the correct expan-
sion for any acronym. Our approach involves us-
ing Document embeddings to understand the con-
text in which an acronym is used. Document em-
beddings (Mikolov et al., 2014) are a direct ex-
trapolation of the concept of Word Embeddings
(Mikolov et al., 2013). We extract the paragraphs
where the acronym was used and supply it to our
model. These paragraphs are then embedded in
high dimensional vector space, where vector prox-
imity is a direct measure of similarity of context.
This concept is explained further in detail in the
following sections.

Figure 2: Our Approach

3.1 Crawling Data

As shown in Figure 3, an acronym is given to our
system as input. The input is then used to search
for all the expansions that we can find for it. To
identify, whether any phrase is an expansion of the
given acronym, we have made 3 conditions that it
must follow:

• The first letters of the words must match the
acronym on the sequence

• The words can be separated using space (),
underscore() or dash (-)

• It can consist of stop words in between if the
first letters do not match

Implementing these rules, we were able to crawl
almost all the expansions that are possible of an
acronym.

After finding all the expansions that we could
crawl, we had a list of expansions that were pos-
sible expansions for the given input. Now, to find
the correct expansion, we wanted some contextual
data that was used when these expansions were
mentioned in any document. Our system would
then use the list of expansion to further search for
all the occurrences of that expansion and collected
some data that surrounds it. This surrounding data
is the contextual data that we need to identify the
correct expansion of the acronym given to us. The
amount of data (words) that we picked surroud-
ing the expansion was of size ranging from 2000-
5000 characters (at max). By 2000, we mean that
words in 1000 characters before the expansions
and words in 1000 characters after the expansion.

It might happen that our system would select an
expansion-context pair even if the same expansion
has already been fetched. We have purposely al-
lowed it because even if the expansion is same,
the context will be different in which the acronym
is used. The different contexts for same expansion
helps the system to find the correct expansion.

3.2 Model

It has become common practice to use word
embeddings (Mikolov et al., 2013) for semantic
analysis, the most famous implementations be-
ing Googles Word2Vec (Mikolov et al., 2013) and
Stanfords GloVe (Pennington et al., 2014). How-
ever, researchers have been experimenting, with
great success, with sentence/paragraph/document

324

Figure 3: Crawling and finding possible expansions

embeddings - commonly known as thought vec-
tors - for the past few years. Our model is based
on Googles Doc2vec (Mikolov et al., 2014) model.
It is a neural network architecture that outputs N
(number of paragraphs) labelled vectors each of
M dimensions.

We have trained our datasets on both the mod-
els proposed by Doc2Vec (Mikolov et al., 2014),
namely the distributed memory model and dis-
tributed bag of words model. The distributed
memory model takes into account the context of
the surrounding words while predicting a word,
while the distributed bag of words model does not.

According to Doc2Vec (Mikolov et al., 2014),
given a set of training words, we maximise aver-
age log likelihood as:

1

T

T−k∑

t=k

log p(wt|wt−k, ..., wt+k)

As per their model, prediction is handled by a
multiclass classifier (softmax) :

p(wt|wt−k, ..., wt+k) =
eywt

∑
i e

yi

We got marginally better results on the Doc2Vec
model, as compared to the Distributed Bag of
Words model.

As mentioned earlier, our implementation was
based on the Doc2vec model.

4 Experiments

We wanted to be absolutely comprehensive in our
approach, so we scraped 707 distinct acronyms

with their occurences and context in which they
had occured.

We got marginally better results on the dis-
tributed memory model, as compared to the dis-
tributed bag of words model.

For each acronym, we train a model with all
the context possibilities. We then calculate the
cosine similarity between every input-context and
crawled-context pair. Following that, we extract
the pair with the highest cosine similarity value.
To give some physical intuition, this means that
this pair of vectors are the closest together in vec-
tor space. We predict that the full form associ-
ated with the context selected above is the same
as the full form associated with the meaning. Us-
ing pythons in built sequence matcher, we match
the predicted expansion with the expansion asso-
ciated with the input context to verify the models
prediction and calculate accuracy.

So, for example, if CNN is the acronym at hand,
we have one context paragraph and a expansion
(Convolutional Neural Network) associated with
it, and several crawled context paragraphs (i.e.
places on Wikipedia articles where the acronym
CNN has occurred). Each context paragraph also
has a distinct expansion associated with it. Lets
take two distinct context paragraphs, one with a
expansion of ”Cable News Network” associated
with it, and another with the expansion ”Convo-
lutional Neural Network” associated with it.

We plot all 3 paragraphs in vector space, and
calculate the cosine similarity of the input con-
text and all the crawled-contexts pair-wise. So

325

Doc2Vec Model Embedding Size. Context/Source Length of Source/Context Traning Epochs Accuracy
Distributed Bag of Words 500 Context - 12 88.9%
Distributed Bag of Words 500 Context - 12 89.7%
Distributed Bag of Words 500 Context 2000 12 90.7%
Distributed Bag of Words 500 Context 2000 12 90.6%
Distributed Bag of Words 200 Source 2000 12 90.9%
Distributed Memory 200 Context 5000 12 88.4%
Distributed Memory 750 Context 2000 15 89.7%
Distributed Memory 200 Source 5000 15 86.1%
Distributed Memory 500 Context 5000 15 90.9%

Table 1: Results of experiments

here, cos sim(input context, crawled context 1)
and cos sim(input context, crawled context 2) are
compared. Now we select the pair with the
highest cosine similarity, lets say, (input context,
crawled context). meaning has a full form of
”Convolutional Neural Network” associated with
it. If crawled context also has a full form of
”Convolutional Neural Network” associated with
it, then our model has worked successfully, other-
wise not.

Figure 4: Doc2Vec (Mikolov et al., 2014) Plot for
Acronym ’API’

The Figure 4 is an approximate plot of the vec-
tor space for the acronym API. This was achieved
using Principal Component Analysis. Keeping in
mind that 500 dimensions are being condensed to
2 dimensions, this plot is for representation pur-
poses only, and is in no way indicative of the mod-
els accuracy.

Using the dataset mentioned before, we ran our
model on a total of 14,876 disambiguations for
707 distinct acronyms. We achieved an accuracy
of 90.9%.

4.1 Experimental Setup

We use this architecture for the network because
of the constraint on the dataset size caused by

scarcity of labelled data. We used a NVIDIA 970
GTX GPU and a 4.00 GHz Intel i7-4790 proces-
sor with 64GB RAM to train our models. As the
datasets in this domain expand, we would like to
scale up our approach to bigger architectures. The
results obtained on different experiments are given
in Table 1. We are able to achieve comparable ac-
curacies without using any domain specific feature
engineering.

4.2 Observations

A crawled input for our model ranges from 200
characters to 60,000 characters, as we wanted to
simulate real life scenarios as much as possible. A
learning rate of 0.025 was found to be ideal, cou-
pled with 12 epochs of training the same model.
Less than 10 epochs proved to cause a significant
decrease in accuracy due to undertraining. Greater
than than 15 epochs of training caused the same
problem, but due to overtraining, vectors of 500
dimensions for Distributed Memory model and
vectors of 200 dimensions for Distributed Bag of
Words model proved to be ideal on our datasets.
On smaller paragraphs, smaller dimensions of vec-
tors (100-150) seemed to lead to more accurate
predictions, whereas on larger prargraphs, larger
dimension vectors(800-1000) worked better.

In some special cases, if an acronym is found
in contexts with other acronyms, the models accu-
racy decreases. For example, in case of acronym
”ETC”, it can found in context of ”European
Travel Commission” also. So the cosine similar-
ity score of ”European Travel Commission” will
be very close to that of ”Et Cetera”. 2

5 Conclusion

The experimental results have shown that docu-
ment embeddings are a promising solution to the
acronym disambiguation problem. The results we

2Code available at: https://github.com/adityathakker/AcronymExpansion

326

achieved are stable even without using any hand-
crafted feature engineering which proves that it’s
a general data-oriented system.

For further work, we want to try this approach to
make recommendation engines that use such con-
textual data that surrounds any (product) name to
identify similar (product) names and recommend
them to users.

References

Tomas Mikolov, Quoc V. Le. 2014. Distributed Rep-
resentations of Sentences and Documents. Proceed-
ings of the 31 st International Conference on Ma-
chine Learning, Beijing, China,.

Brian Roark, Richard Sproat. 2014. Hippocratic Ab-
breviation Expansion. Proceedings of ACL 2014,.

Alpa Jain and Silviu Cucerzan and Saliha Azzam 2007.
Acronym-Expansion Recognition and Ranking on
the Web. IEEE International Conference on Infor-
mation Reuse and Integration (2007),.

Ronan Collobert,Jason Weston,Leon Bottou,Michael
Karlen,Koray Kavukcuoglu,Pavel Kuksa. 2011.
Natural Language Processing (almost) from Scratch.
Journal of Machine Learning Research, 12:2493-
2537, 2011,.

Dekang Lin and Xiaoyun Wu. 2009. Phrase cluster-
ing for discriminative learning.. Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP:,.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search,.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, Jeffrey Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. Proceedings of Neural Information Processing
Systems,.

Jeffrey Pennington, Richard Socher, Christopher D.
Mannin. 2014. GloVe: Global Vectors for Word
Representation. Empirical Methods in Natural Lan-
guage Processing (EMNLP),.

Sepp Hochreiter , Jrgen Schmidhuber. 1997. Long
Short-Term Memory. Journal Neural Computation
archive Volume 9 Issue 8, November 15, 1997 ,.

Diederik Kingma, Jimmy Ba. 2015. Adam: A Method
for Stochastic Optimization. International Confer-
ence for Learning Representations,.

Ilya Sutskever,James Martens, George Dahl,Geoffrey
Hinton. 2013. On the importance of initialization
and momentum in deep learning. Journal of Ma-
chine Learning Research,

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional Recurrent Neural Networks. IEEE TRANS-
ACTIONS ON SIGNAL PROCESSING, VOL. 45,
NO. 11, NOVEMBER 1997,.

Yoshua Bengio, Patrice Simard, Paolo Frasconi 1994.
Learning Long-Term Dependencies with Gradient
Descent is difficult. IEEE Transactions on Neural
Networks ,

327

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 328–337

Exploring an Efficient Handwritten Manipuri Meetei-Mayek Character
Recognition Using Gradient Feature Extractor and Cosine Distance Based

Multiclass k-Nearest Neighbor Classifier.

Kishorjit Nongmeikapam
Dept. of CSE

IIIT Manipur, India

Wahengbam Kanan Kumar
Dept. of ECE

NERIST, Nirjuli, India
kishorjit@iiitmanipur.ac.in wahengbam.kanankumar@gmail.com mike77info@gmail.com

Mithlesh Prasad Singh
Dept. of CSE

MIT, Imphal, India

Abstract

In this paper, a new approach for effi-
ciently extracting cognition out of a to-
tal of 56 different classes of handwrit-
ten Manipuri Meetei-Mayek (Indian lan-
guage) is being described. Although char-
acter recognition algorithms has been re-
searched and developed for other Indian
scripts, no research work has been re-
ported so far for recognising all the char-
acters of the Manipuri Meetei-Mayek.
The work begins with a thorough litera-
ture survey of existing works which high-
lighted the need of a good feature ex-
tractor as a pre-requisite for training the
classifier. The limitations are experimen-
tally removed using multiple sized cell
grids using Histogram of Oriented Gradi-
ent (HOG) descriptors as feature extractor.
HOG being a gradient based descriptor is
very efficient in data discrimination and
very stable with illumination variation.
For efficient classfication of the HOG fea-
tures of the Manipuri Meetei-Mayek, the
robust k-Nearest Neighbor was tweaked
suitably to recognize all the 56 classes of
the script. The proposed approach resulted
in an overall accuracy of 94.29% with a
training time of about 540.81 seconds.

1 Introduction

Handwritten character recognition is increasingly
gaining momentum owing to its applicable ar-
eas which can significantly reduce time But de-
veloping a more dependable approach or more
technically ’a system’ for recognizing handwrit-
ten characters for such regional scripts still poses
a challenge to researchers. Moreover, handwritten
Meetei-Mayek characters tend to be much more
complex in comparison to common English char-
acters due to the presence of modifiers, shape and

structure. These factors demand a sophisticated
pattern recognition algorithm that will be able to
efficiently handle the challenging task of classify-
ing these characters. In this paper, the design of
an OCR system for handwritten Manipuri Meetei-
Mayek is being discussed. The history and origin
of Meetei-Mayek can be found in detail in the lit-
eratures by [Wanghemcha ,2007; Mangang, 2003;
T.C. Hodson, 1908]. Manipuri or Meeteilon is
one of the scheduled language of India and also
the official language of Manipur, which is one of
the state located in the North-Eastern part of In-
dia. The script contains a total of 56 characters
which can classified into five different categories:
Iyek Ipee/Mapung Iyek which consists of 27 al-
phabets, Cheitek Iyek (8 symbols), Lonsum Iyek
(8 letters), Khudam Iyek (3 symbols) and Cheish-
ing Iyek which consists of 10 numeral figures. The
basic characters or the Iyek Ipee only appear as
the main character of a word which may be mod-
ified by adding one of the extended symbols or
Vowel modifiers to produce the required pronun-
ciation. All the original characters of the Ma-
nipuri Meetei-Mayek alphabets are drawn, winded
and wreathed based on the features of the human
anatomy. Accordingly, the names of the alpha-
bets are the names of the different parts of the hu-
man body from where they are derived [Mangang,
2003]. The Meetei-Mayek characters for which
recognition are performed in the current work is
shown in Fig. 1(a) along with the meaning against
their names.

2 Related Works

Introduction of Manipuri Meetei Mayek OCR is
in the infant stage whereas many research works
have already been carried out on other Indian
Scripts of different languages. Section 2.1 and 2.2
highlights the research works carried out on popu-
lar Indian languages and Manipuri Meetei-Mayek
respectively.

328

2.1 Research Works on other Indian
languages

Rani et al. focussed on the problem of recogni-
tion related to Gurumukhi script, they used dif-
ferent techniques for extracting features such as
projection histogram, background directional dis-
tribution (BDD) and zone based diagonal features.
These features extraction techniques were classi-
fied using SVM classifier as 5-fold cross valida-
tion with RBF (radial basis function) kernel. They
achieved a very high accuracy of 99.4% using a
combination of BDD and diagonal features with
SVM classifier. [Rani et al., 2012]. Pal et al.
proposed a system for recognizing offline Bangla
handwritten compound characters using Modified
Quadratic Discriminant Function (MQDF). Using
a 5-fold cross validation technique they were able
to obtain an accuracy of 85.90% from a dataset
of Bangla compound characters containing 20,543
samples [Pal et al., 2007]. Sharma et al. pro-
posed a scheme for unconstrained offline hand-
written Devnagri numeral and character recogni-
tion using quadratic classifier based on feature ob-
tained from chain code histogram. They were
able to achieve an average accuracy of 98.86%
for Devanagri numerals and 80.36% for Devana-
gri characters [Sharma et al., 2008]. Basu et
al. presented recognition system for handwrit-
ten Bangla alphabet using a 76 element feature
set which inluded 24 shadow features, 16 centroid
features and 36 longest-run features. The recog-
nition performances achieved for training and test
sets were 84.46% and 75.05% respectively [Basu
et al., 2005].

2.2 Research Works on Manipuri
Meetei-Mayek

Maring and Dhir described the recognition of
Meetei-Mayek numerals for both handwritten as
well as printed. Gabor filter was used for fea-
ture extraction and classification was carried out
using SVM. The experiment was carried out us-
ing 14x10 pixel images and overall accuracy of
89.58% and 98.45% were achieved for handwrit-
ten and printed respectively [Maring and Dhir,
2014]. Romesh et al. described the design of OCR
system for handwritten text in Meitei Mayek al-
phabets using ANN. The database consists of 1000
samples from which 500 samples were considered
as training database and the remaining samples
were kept for testing and validation purpose. They

observed that success of the system depended on
the feature used to represent the character as well
as on the segmentation stage of the test image
[Romesh et al.,2014] . Chandan and Sanjib in their
literature prsented a support vector machine based
handwritten numeral recognition system for Ma-
nipuri script or Meetei-Mayek. They used various
techniques for extracting features such as back-
ground directional distribution (BDD), zone-based
diagonal, projection histograms and Histogram
Oriented features which were then classified us-
ing SVM as 5-fold cross validation with RBF ker-
nel. They were able to achieve a maximum accu-
racy of 95% [Chandan and Sanjib, 2013]. Romesh
et al. described a way for simulating and mod-
elling handwritten Meitei Mayek digit using back-
propagation neural network approach. They were
able to achieve an overall performance of 85%
[Romesh et al., 2012]. Thokchom et al. pro-
posed methods for training backpropagation net-
work with probabilistic features, fuzzy features
and combination of both features for recognis-
ing handwritten Meetei-Mayek characters. They
were able to achieve an accuracy of 90.3% for the
proposed 27 class classifier neural network with
a combination of probabilistic and fuzzy features
[Thokchom et al., 2010].

3 System Design

The motivation of this paper is to propose a robust
method for classifying offline handwritten Meetei-
Mayek characters. The work began with a thor-
ough literature survey of the existing works in Ma-
nipuri Meetei-Mayek script. It was realized that
so far no literature exist which can successfully
or efficiently classify handwritten Meetei-Mayek
alphabets and numerals, which is due to the com-
plex nature of the script. However, previous works
reported on numerals alone were quite successful
as reported in section 2.2 under the heading ’Re-
search Works on Manipuri Meetei-Mayek’. In the
present work, the HOG feature extractor is used
prior to the k-NN classification process. A thor-
ough discussion is being highlighted by consider-
ing the experimental results for selecting the suit-
able combination of HOG cell size and the op-
timal value of neighbor (’k’) that can yield the
maximum accuracy. By keeping the HOG fea-
ture extractor fixed, two different distance metrics
that may be used with k-NN classifier is also be-
ing compared, which are Euclidean distance met-

329

ric and Cosine Similarity or distance metric.

To begin with, all the acquired sample images
are pre-processed to remove noise as well as for
extracting them individually. The pre-processing
steps are discussed in section 3.1. As a first ap-
proach, based on the work by [Dalal and Triggs,
2005], section 3.2 below describes a procedure for
efficiently discriminating feature sets from hand-
written Manipuri Meetei-Mayek script using His-
togram of Oriented Gradient (HOG) descriptors,
the affects of different cell sizes on the length of
the extracted features are also studied. Their fea-
ture extractor worked by dividing up an image into
small spatial regions or cells, each of these re-
gions accumulated a local 1-D edge orientations
over pixels of the cell, the combined histogram en-
tries formed the representation. In this work, mul-
tiple cell sizes for extracting HOG features have
been considered in order to determine which size
yielded better results for our current classification
problem. The extracted feature vectors were used
as training data for the k-NN classifier. Thus, we
were able to obtain a significant increase in overall
or average accuracy.

3.1 Processing the Handwritten Image

In this section, the stages prior to recognition
stage is being described.

3.1.1 Image Acquisition: In this stage raw data
is created and collected. A total of 5600 handwrit-
ten samples were collected from people having
different handwriting styles. Secondly, the image
samples were scanned using a scanner and saved
as jpeg file. A sample of the acquired handwrit-
ten image for the letter ’ (TIL)’ is shown in fig.
1(b).

3.1.2 Pre-processing In order to make the image
suitable for further processing the acquired images
must be pre-processed. The term pre-processing
refers to removal of any form of noise that is cor-
rupting the useful data so that efficiency as a result
of it is not decreased. For a character recognition
tasks, a binary image is sufficient to work with, so
the input gray image is suitably transformed using
thresholding. Morphological erosion is performed
so as to close the discontinuities between some let-
ter, square shaped structural element having size
equal to 2 is selected for the purpose. Morpholog-

(a) (b)

(c) (d)

Figure 1: (a) Meetei-Mayek Script (b) A Sample
of the Handwritten Character ’TIL (Ta)’ (c) Pre-
Processed Image (d) Each elements are detected
and then encapsulated prior to extraction of each
one of them

ical erosion is a simple operators in mathematical
morphology which is usually performed in binary
images or grayscale images. The purpose of the
operation is to erode or decay the boundaries of
regions of the foreground pixels (i.e. white pix-
els), and therefore the areas of foreground pixels
shrink in size, and holes within those regions be-
come larger. The morphologically eroded image
is finally converted into a binary image[16]. Fig.
1(c) shows the final image after pre-processing.

3.1.3 Extracting Individual elements Prior to
extracting each elements from the binary image so
obtained in the previous step, each of them must
be labelled so that automatic extraction from them
is possible. For this purpose each of the elements
are bounded by rectangular boxes. It can be seen
from fig. 1(d) that the size of each of the boxes
differ due to the fact that some character are big-
ger than others and vice-versa. The bounding box
property for each object is an array having 4 ele-

330

ment which is formatted as [x, y, w, h], where (x,y)
represents the row-column coordinates of the up-
per left corner of the box. w and h are the width
and height of the box. The next step is creating
a 4 column matrix that encapsulates all of these
bounding box properties together, where each row
denotes a single bounding box. It is necessary to
define a good illustration of these bounding boxes,
and thus a red box is drawn around each charac-
ters that was detected. Now, the final task is to
extract all of the characters and placing them into
a cell array because the character sizes are uneven,
so putting this into a cell array will accommodate
for the different sizes. A cell array is a type of
container used for indexing data called cells, each
cells may contain any type of data. Commonly
they may contain combinations of text and num-
bers, or list of strings, or numeric arrays of varying
sizes. Now simply looping over every bounding
boxes that we have and then extracting the pix-
els within each of them will result into a character
which can be placed in a cell array. Thereafter, us-
ing a loop function each of the characters in the
cell array are written in to the directory for further
usage.

3.2 Feature Extraction using Histogram of
Oriented Gradient descriptors

Detecting features in Meetei-Mayek script is a
complicated task due the similarity complex of
each characters. The very first requirement is
a robust feature detector which conforms to the
shape or structure of the input image so that char-
acters can be discriminated cleanly. The current
study inclines on the issues of feature set extrac-
tion from Handwritten Meetei-Mayek Script us-
ing the Histogram of Oriented Gradient (HOG)
descriptors. The features extracted by multiple
cell-sized HOG features are used as training data
for multiple classifiers, the details of which are
stated in section 3.3.2. The method evaluates nor-
malized histograms of gradient orientation of im-
ages in a dense grid. The most simple explana-
tion being because the shapes and appearance of
object can be characterized easily by using a dis-
tributing the edge detections even without exact
knowledge of the corresponding edge positions.
It is implemented by dividing up the image win-
dow into ”cells” which are small spatial regions.
Each cell will accumulate a local 1-D histogram
of gradient directions over the cell, and the com-

bined histogram entries form the notation. It is
also useful to properly equalize the contrast for
improved invariance to shadowing or illumination
effects before putting them to use. This feature is
achieved by accumulating a measure of ”energy”
of the local histogram over somewhat larger spa-
tial ”blocks” or region and then normalizing all of
the cell in the block. This is also referred to as
Histogram of Oriented Gradient (HOG) descrip-
tor. Then, cascading or tiling the detection win-
dow with a dense or overlapping grid of HOG de-
scriptors, and using such combined feature vector
with a kNN based window classifier will result in
a chain detection [Dalal and Triggs, 2005].

Implementation: The implementation of the
HOG feature descriptors for Meetei-Mayek script
is based on the research work by Dalal and
Triggs,2005. The detector has been tested in our
Manipuri Meetei-Mayek database which roughly
comprises of 56 different classes multiplied by
100 samples each. The training images comprises
roughly of 56 different classes times 75 samples
each. Pre-processing procedure detailed in section
3.1 is used to segment each of the character sam-
ples and finally the images were resized to 50x50
pixels. For testing, the remaining 25 samples for
each of the character/class are used to validate how
well the classifier performs on data that is differ-
ent than the training data. Although, this is not the
most representative data set, there is enough data
to train and test a classifier, and show the feasibil-
ity of the approach.

The data which are used for training the clas-
sifier are the HOG feature vectors extracted from
the input training images. Hence, it is important
that the feature vector encodes a sufficient amount
of information about the object. With the varia-
tion in cell size parameter, the amount of informa-
tion encoded by each feature vectors can be ob-
served. Each of the pixels in the image calculate
a weighted vote for an edge orientation histogram
channel. The weighted vote which is based on the
orientation of the gradient element are accumu-
lated into bins over local regions which is termed
as cells. The orientation bins are specified as a
logical scalar and they are evenly spaced from 0
degree - 180 degrees . In this case, the value of
scalar less than 0 are placed into a scalar +180 de-
gree value bin. The dark to light versus light to
dark transitions contained within some areas of an

331

(a) (b)

(c) (d)

Figure 2: (a) Sample of the Pre-Processed Meetei-
Mayek alphabet ’EE-LONSUM’ (b) 6x6 HOG
cell size (c) 7x7 HOG cell size (d) 8x8 HOG cell
size.

image can be differentiated by using signed orien-
tation. The bilinear interpolation of votes between
the neighbouring bin centres can reduce aliasing
for orientation as well as position. Increasing cell
size can be used for capturing large-scale spatial
information. It may be noted that cell size is spec-
ified as 2-element vectored form in pixels. The
suppression of changes in local illumination may
be reduced with increasing cell size,i.e. losing
minute details as a result of averaging. Therefore,
a reduction in the size of blocks will help in cap-
turing the significance of local pixels. However,
in actual practice the gradient parameters must be
varied by repeatedly training and testing for identi-
fying the optimal parameter settings. For instance,
in the current work the optimal block size of HOG
feature which must be maintained for efficiently
recognizing Meetei-Mayek Characters is explored
by considering the cell sizes viz. 6x6,7x7 and 8x8.
Fig. 2 shows the features extracted using HOG de-
scriptors for the Meetei-Mayek alphabet ’ (EE-
LONSUM)’.

The extracted HOG features are returned as 1xN
vector. The feature encodes local shape informa-
tion from regions or from point locations within an
image. Where, N is called HOG feature length and
is based on the image size and the function param-
eter values. Let us suppose Bimage is the number
of blocks per image, C is the cell Size, Nb is the
number of bins, Bo is the block overlap, Bsize is

the block size, sizeimage is the size of the image.
The following equations are used for appropriately
deducing the the value of N.

N = Bimage.Bsize.Nb (1)

where,

Bimage =
(
sizeimage

C −Bsize)

Bsize −Bo
+ 1 (2)

Table 1 highlights the detected features on Ma-
nipuri Meetei-Mayek for different cell sizes. It is
important to deduce the dimension of cell size that
gives us the best recognition performance when
combined with classifiers.

Table 1: Cell size versus HOG Feature length

Cell Size Length
6x6 1764
7x7 1296
8x8 900

3.3 Classification using k-Nearest Neighbor
classifier

The k-Nearest Neighbor is an example of a non-
parametric type of classifier, it has been used
widely as baseline classifying method in many
pattern recognition applications. The input to the
network consists of k nearest training samples in
the feature space, while the output is a member-
ship class. This means that, an n object is duly
classified based on a vote of majority among its
neighbors, the object is being classified or grouped
or assigned the class which is common among its
k neighbors nearest to it (it may be noted that k is
a small positive integer). In case k equals to 1 then
the object is assigned to the nearest neighbor. This
technique is also an example of a lazy-learning or
instance-based learning in which the functions are
considered locally until differed during classifica-
tion phase. It is also among the simplest of all
machine learning tools and yet powerful. It is also
quite sensitive to local distribution of data which
makes it quite peculiar [Cover and Hart, 1967]

The samples used for training the network are
vectors for the multi dimensional space where
each of them has a class label. The training phase
of the algorithm consists only of storing the HOG
features which were extracted from each of the
Manipuri Meetei-Mayek samples in section 3.2.

332

While, in the classification phase, the variable k is
user defined, an enlabeled vector is also classified
by specifying the class label which is the most
frequent and nearest to the query point among
the k training samples. The Euclidean distance
is the most commonly used distance metric, the
optimal value of k depends upon which types of
data we are working with. Even though larger
values of k has the capability to reduce noise
in the classification stage, it can also make the
boundaries between the different classes obscure.
In multiclass classification problems, it is helpful
to choose k to be an odd number as this avoids
tied votes. In the current work, for accurately
classifying Handwritten Manipuri Meetei-Mayek
characters, the value of k are chosen as 1,3,5,7
and 9 .

3.3.1 Distance Metric: Euclidean distance
metric is the most popular and widely used sim-
ilarity measure owing to its simplicity. However,
the training images are not all similar necessarily
in all features. Due to this limitation, in the current
work, the Cosine distance metric is being investi-
gated. A strength of it is that it can normalize all
feature vectors to unit length by comparing angle
between two vectors. .
Euclidean distance: Euclidean distance com-
putes the ordinary straight line distance between
any two points under consideration in the feature
space or the Euclidean space. The Euclidean dis-
tance between points p and q is the length of the
line segment joining them. In the cartesian co-
ordinate system, if p = (p1, p2, ...pn and q =
(q1, q2, ...qn are two points in Euclidean n-space,
then the distance (d) from p to q, or from q to p is
given by the Pythagorean formula:

d(p, q) = d(q, p) =

√√√√
n∑

i=1

(qi − pi)2 (3)

Cosine Distance or similarity It is a measure of
similarity between two non-zero vectors of an in-
ner product space that measures the cosine of the
angle between them. The cosine of 0deg is 1, and
it is less than 1 for any other angle. It is thus a
judgement of orientation and not magnitude: two
vectors with the same orientation have a cosine
similarity of 1, two vectors at 90deg have a simi-
larity of 0, and two vectors diametrically opposed
have a similarity of -1, independent of their mag-
nitude. Cosine similarity is particularly used in

positive space, where outcome is nearly bounded
in [0,1]. The cosine of two non-zero vectors can
be derived by using the Euclidean dot product for-
mula:

a.b = ||a||2||b||2cosθ (4)

Given two vectors of attribute A and B, the cosine
similarity cosθ is represented using a dot product
and magnitude as

cosθ =
A.B

||A||2||B||2
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(5)
where,Ai and Bi are components of vector A and
B respectively.
The resulting similarity ranges from -1 mean-
ing exactly opposite, to 1 meaning exactly the
same, with 0 indicating orthogonality (decorrela-
tion), and in-between values indicating intermedi-
ate similarity or dissimilarity [Manning, 2008].

Table 2: Accuracies for different pairs of HOG
sizes with k (neighbors) for the Euclidean metric.

HOG Size k Accu. (%) Training time (s)
6x6 1 88.2 1082.24
6x6 3 92.71 1179.24
6x6 5 89.36 1121.22
6x6 7 91.65 1042.87
6x6 9 90.21 1002.33
7x7 1 91.43 703.34
7x7 3 94.14 540.81
7x7 5 91.71 619.62
7x7 7 89.21 767.7
7x7 9 92.07 646.78
8x8 1 92.64 209.86
8x8 3 92.93 371.63
8x8 5 92.36 473.03
8x8 7 91.07 247.33
8x8 9 90.79 206.57

4 Experimental Results and Evaluation

The current section describes the experimental re-
sults of the handwritten Manipuri Meetei-Mayek
character recognition operation using Multiple
HOG feature vector with Multiclass k-NN clas-
sifier as described in section 3. The use of Co-
sine distance Metric based kNN classifier returned
a fully trained multiclass, error-correcting output
codes (ECOC) model using the training features or
HOG descriptors and the class labels in the HOG

333

Table 3: Accuracies for different pairs of HOG
sizes with k (neighbors) for the Cosine metric.

HOG Size K Accu. (%) Training time (s)
6x6 1 93 1011.64
6x6 3 93.93 1141.69
6x6 5 94.07 1108.44
6x6 7 94 1261.14
6x6 9 94.07 967.43
7x7 1 93.29 468.62
7x7 3 94.29 502.5
7x7 5 91.14 503.56
7x7 7 93.79 543.37
7x7 9 92.43 527.4
8x8 1 93.07 205.49
8x8 3 93.71 203.03
8x8 5 93.21 231.57
8x8 7 92.71 194.03
8x8 9 92.79 340.98

feature. The One-versus-one coding scheme was
employed. In this scheme, for each binary learner,
one class is positive, another is negative and the
software ignores the rest. This design exhaust all
combinations of class pair assignments. The num-
ber of Binary learners is K(K-1)/2, where k is the
number of unique class of labels [Escalera et al.,
2009], [Escalera et al., 2010]. In the current study,
a handwritten character Recognition for Meetei-
Mayek Script based on HOG feature descriptors
and trained by Cosine distance metric based kNN
is successfully implemented. Three different types
of HOG Cell Sizes have been considered which
were examined for accuracy by training the classi-
fier individually, i.e. 6x6,7x7 and 8x8. For each of
the cell size, five different values of k are consid-
ered, which are 1,3,5,7 and 9.

In other words, the study pattern is broken up
into two areas: firstly, HOG feature descriptors is
used with Euclidean distance based kNN, and sec-
ondly, HOG feature descriptors is used with Co-
sine distance based kNN. For each of these two
cases, fifteen different combinations each is being
used for determining the best combination of k and
HOG cell size that yields the best result. Table 2
and 3 shows the different combinations proposed
herein. The time taken to train each of the dif-
ferent combinations of classifiers are highlighted
in each area. In short, thirty different combina-
tions or classifiers were recorded in our current
work. Testing of the 30 different combinations

or classifiers were performed and recorded in six
different tables, i.e. two times each for 6x6,7x7
and 8x8 HOG cell sizes for Euclidean and Co-
sine distance metrics. However, owing to the im-
mense size of the tables or the confusion matrices
which were recorded for the current work, only
the 7x7 HOG cell size with Cosine Distance based
kNN success percentage for each of the 56 differ-
ent classes of the script are shown in table 4 and
5 in the current paper. Some of the characters like
’ (PA)’, ’ (KHOU)’, ’ (WAI)’ in table 4 have
very low accuracy in comparison to other charac-
ters. For the ’ (PA)’ character the accuracy in-
creased significantly from 68% to 80% which is
promising. However, the worst recognition rate
is achieved in case of ’ ’KHOU’ in which the
accuracy starts from just 20% and ends at a max-
imum of 24%. While most of the characters need
to be worked on for better efficiency, some oth-
ers characters like ’ ’ LAI’ ,’ ’ THOU’ and ’
’ WAI’ also needs an increase in accuracy. De-
spite the low accuracy readings mentioned above,
there are also twenty four (24) cases out of fifty six
(56) where the 100% accuracy hold all through-
out the different cell sizes viz. - ’ (0)’, ’
(4)’, ’ (7)’, ’ (8)’, ’ (9)’, ’ (KOK)’, ’
(TIL)’, ’ (NGOU)’, ’ (YANG)’, ’ (PHAM)’,
’ (GOK)’, ’ (RAAI)’ , ’ (BHAM)’, ’
(MIT-LONSUM)’, ’ (PA-LONSUM)’, ’ (NA-
LONSUM)’, ’ (TIL-LONSUM)’, ’ (EE-
LONSUM)’, ’ (ATAP)’, ’ (INAP), ’ (YET-
NAP), ’ (OTNAP)’, ’ (NUNG)’, ’ (QUES-
TION MARK)’, ’ (COMMA)’, and ’ (FULL-
STOP). The overall accuracy achieved by all the
30 different combinations shown in table 2 and 3
highlights a maximum accuracy of 94.29% when
k=3 and HOG feature size = 7x7. The time taken
to train this particular classifier was 502.5 seconds.

5 Conclusion

In this work, a novel approach for efficiently
recognising Handwritten Manipuri Meetei-Mayek
Characters is presented by means of comparison
between the Euclidean distance Metric based kNN
and Cosine distance Metric based kNN for multi-
ple HOG feature descriptors. About 5600 hand-
written samples of the 56 different classes of the
Manipuri Meetei-Mayek were collected from a
group of different people. The samples were then
pre-processed to remove the noise in and around
the letters followed by extraction of each letters

334

from the group. The maximum accuracy that we
were able to achieve was 94.29% with a train-
ing time of just 502.5 seconds by using the Co-
sine similarity based kNN classification. Thus, we
were able to achieve a 0.15% increase in the aver-
age recognition rate, along with 38.31 seconds de-
crease in training time in comparison to the com-
monly used Euclidean distance based kNN classi-
fier for Manipuri Meetei-Mayek classification.

Therefore, it can be stated that the com-
plex Meeitei-Mayek characters can be efficiently
recognised by using the a combination of 7x7
cell-sized HOG descriptors with multiclass Three
Nearest Neighbor (3NN) classifier. .

References
Andrew Blais and David Mertz. An introduction to

Neural Networks Pattern Learning with Backpropa-
gation Algorithm. Gnosis Software, Inc., July 2001.

Anita Rani, Rajneesh Rani and Renu Dhir. Combina-
tion of Different Feature Sets and SVM Classifier for
Handwritten Gurumukhi Numeral Recognition. In-
ternational Journal of Computer Applications (0975-
8887) Vol. 47, No. 18, June 2012.

Cover TM and Hart PE. Nearest neighbor pattern clas-
sification. IEEE Trans Inf Theory 13(1):2127, 1967.

Chandan Jyoti Kumar and Sanjib Kumar Kalita.
Recognition of handwritten Numerals of Manipuri
Script. International Journal of Computer Applica-
tions (0975-8887), vol. 84, No. 17, Dec. 2013.

Christianini, N., and J. C. Shawe-Taylor. An Introduc-
tion to Support Vector Machines and Other Kernel-
Based Learning Methods. Cambridge, UK: Cam-
bridge University Press, 2000.

Escalera, S., O. Pujol, and P. Radeva. Separability of
ternary codes for sparse designs of error-correcting
output codes. Pattern Recog. Lett., Vol. 30, Issue 3,
2009, pp. 285297.

Escalera, S., O. Pujol, and P. Radeva. On the decod-
ing process in ternary error-correcting output codes.
IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120134.

Manning CD, Raghavan P, and Schutze H. An introduc-
tion to information retrieval. Cambridge University
Press, Cambridge, 2008.

Maring Kansham Angphun and Renu Dhir. Recogni-
tion of Chesing Iyek/Eeyek-Manipuri Digits using
Support Vector Machines. IJCSIT, vol. 1, Issue 2,
April 2014.

N. Dalal and B. Triggs. Histograms of Oriented Gradi-
ents for Human Detection. In Proc. IEEE Computer
Vision and Pattern Recognition, pp. 1-8, 2005.

Ng. Kangjia Mangang. Revival of a closed account, a
brief history of kanglei script and the birth of phoon
(zero) in the world of arithmetic and astrology.
Sanamahi Laining Amasung Punshiron Khupham
(Salai Punshipham), Lamshang, Imphal, 2003.

N. Sharma, U. Pal,F. Kimura, and S. Pal. Recogni-
tion of Offline handwritten Devnagri characters us-
ing quadratic classifier. in Proc. Indian Conference
of Computer Vision Graph. Image Processing, 2006,
pp. 808-816.

Romesh Laishram, Pheiroijam Bebison Singh, Thok-
chom Suka Deba Singh, Sapam Anilkumar, and
Angom Umakanta Singh. A Neural Network Based
Handwritten Meetei Mayek Alphabet Optical Char-
acter Recognition System. IEEE International Con-
ference on Computational Intelligence and Comput-
ing Research, 2014.

Renato Kresch, and David Malah. Skeleton-Based
Morphological Coding of Binary Images. IEEE
Transaction on image processing, Vol. 7, No. 10, Oc-
tober 1998.

Romesh Laishram, Angom Umakanta Singh, N. Chan-
drakumar Singh, A. Suresh Singh, H. James. Simu-
lation and Modelling of Handwritten Meitei Mayek
digits using Neural Network Approach. Proc. of the
Intl. Conf. on Advances in Electronics, Electrical,
Electrical and Computer Science Engineering - EEC
2012.

Subhadip Basu, Nibaran Das, Ram Sarkar, Mahan-
tapas Kundu, Mita Nasipuri and Dipak Kumar
Basu. Handwritten Bangla alphabet recognition us-
ing MLP based classifier. 2nd National Conference
on Computer Processing of Bangla, pp. 285-291,
Feb 2005,Dhaka.

Tangkeshwar Thokchom, P.K. Bansal, Renu Vig and
Seema Bawa. Recognition of Handwritten Charac-
ter of Manipuri Script. Journal of Computers, Vol.
5, No.10, Oct. 2010.

T.C.Hodson. The Meitheis. Low price publications,
Delhi, 1908.

U. Pal, T. Wakabayashi and F. Kimura. Handwrit-
ten Bangla Compound Character Recognition using
Gradient Feature. 10th International Conference on
Information Technology,2007.

Wangkhemcha Chingtamlen. A short history of Kan-
gleipak (Manipur) part- II, Kangleipak Historical
& Cultural Research Centre. Sagolband Thangjam
Leirak,Imphal, India, 2007.

Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E.
Howard, W, Hubbard, L.D. Jackel. Handwritten
digit recognition with a back-propagtion network.
in Advances in Neural Information Processing Sys-
tems 2 (NIPS*89), David Touretzky, Ed., Denver,
CO, 1990, Morgan Kaufmann.

335

Table 4: Comparison of accuracy for each classes of the Manipuri Meetei-Mayek among different values
of k (where k is the number of neighbors in kNN) for the Cosine based kNN classifier and HOG feature
size of 7x7

Sl. No. Class Accuracy (%)
7x7 HOG Cell Size

Mayek Notation k = 1 k = 3 k = 5 k = 7 k = 9
Cheising
(Digits)

1 0 100 100 100 100 100

2 1 88 88 96 92 92

3 2 84 88 84 80 80
4 3 92 100 100 100 96
5 4 100 100 100 100 100
6 5 88 84 84 84 84
7 6 88 92 92 88 84
8 7 100 100 100 100 100
9 8 100 100 100 100 100
10 9 100 100 100 100 100

Eeyek Eepee
(Main Alphabet)

11 KOK 100 100 100 100 100
12 SAM 84 96 96 92 92
13 LAI 80 88 92 92 92
14 MIT 92 92 92 88 88

15 PA 68 80 80 80 80
16 NA 88 88 88 88 92
17 CHEEN 92 92 100 96 100

18 TIL 100 100 100 100 100
19 KHOU 24 24 24 20 20
20 NGOU 100 100 100 100 100
21 THOU 84 84 88 76 68
22 WAI 84 72 68 72 84
23 YANG 100 100 100 100 100
24 HUK 96 96 96 96 96
25 UN 96 96 96 96 100
26 EE 88 88 88 88 88
27 PHAM 100 100 100 100 100
28 ATIYA 100 96 96 96 96

336

Table 5: Comparison of accuracy for each classes of the Manipuri Meetei-Mayek among different values
of k (where k is the number of neighbors in kNN) for the Cosine based kNN classifier and HOG feature
size of 7x7 (Contd. from table 4).

Sl. No. Class Accuracy (%)
7x7 HOG Cell Size

Mayek Notation k = 1 k = 3 k = 5 k = 7 k = 9
Lom Eeyek

(Addl. Alph.)
29 GOK 100 100 100 100 100
30 JHAM 96 96 96 96 96
31 RAAI 100 100 100 100 100
32 BAA 100 96 96 96 96
33 JIL 96 96 96 96 96
34 DIL 92 100 92 92 92
35 GHOU 88 92 96 96 96
36 DHOU 84 88 92 92 92
37 BHAM 96 100 100 100 100

Lonsum
(Short Alph.)

38 KOK-LONSUM 96 96 96 92 92
39 LAI-LONSUM 88 92 88 92 92
40 MIT-LONSUM 100 100 100 100 100
41 PA-LONSUM 100 100 100 100 100
42 NA-LONSUM 100 100 100 100 100
43 TIL-LONSUM 100 100 100 100 100
44 NGOU-LONSUM 92 96 96 96 96
45 EE-LONSUM 100 100 100 100 100

Cheising
(Vowels)

46 ATAP 100 100 100 100 100

47 INAP 100 100 100 100 100

48 UNAP 92 96 96 96 96
49 SOUNAP 96 96 96 96 96
50 YETNAP 100 100 100 100 100

51 OTNAP 100 100 100 100 100

52 CHEINAP 92 92 92 88 92
53 NUNG 100 100 100 100 100

Khutam
(Punctuation)

54 QUEST. MARK 100 100 100 100 100

56 COMMA 100 100 100 100 100
56 FULLSTOP 100 100 100 100 100

337

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 338–347

A Modified Cosine-Similarity based log Kernel for Support Vector
Machines in the Domain of Text Classification

Rajendra Kumar Roul
Dept of Computer Science
BITS,Pilani-Goa Campus

Zuarinagar
Goa-403726, India

rkroul@goa.bits-pilani.ac.in

Kushagr Arora
Dept of Computer Science
BITS,Pilani- Goa Campus

Goa-403726, India
kushagrarora786@gmail.com

Ishaan Bansal
Dept of EEE

BITS,Pilani- Goa Campus
Zuarinagar

Goa-403726, India
ishaan.bansal.29@gmail.com

Abstract

The popularity of the internet is increas-
ing day-by-day, which makes tough for
the end-user to get desired pages from the
web in a short time. Text classification, a
branch of machine learning can shed light
on this problem. State-of-the-art classi-
fier like Support Vector Machines (SVM)
has become very popular in the domain
of text classification. This paper studies
the effect of SVM using different kernel
methods and proposes a modified cosine
distance based log kernel (log cosine) for
text classification which is proved as Con-
ditional Positive Definite (CPD). Its clas-
sification performance is compared with
other CPDs and Positive Definite (PD)
kernels. A novel feature selection tech-
nique is proposed which improves the ef-
fectiveness of the classification and gath-
ers the crux of the terms in the corpus
without deteriorating the outcome in the
construction process. From the experi-
mental results, it is observed that CPD ker-
nels provide better results for text classi-
fication when used with SVMs compared
to PD kernels, and the performance of the
proposed log-cosine is better than the ex-
isting kernel methods.

Keywords: Classification, Conditional positive
definite kernels, Cosine distances, Positive definite
kernels, Support Vector Machines

1 Introduction

Text classification plays a vital role in the do-
main of machine learning where the text data is
categorized into different groups of similar data
items. Many times the present search engine
retrieves invalid links and irrelevant web pages
for a submitted user query. This weakens the

trust of the user on the search engine and thereby
degrade its performance. Text classification,
a powerful machine learning technique which
categorizes an unseen document into its respective
predefined class can help in this direction. Two
basic classifications of web pages are there:
subject-based and genre-based (Qi and Davison,
2009). In subject-based classification, web pages
are classified based on their subject or content.
Topic hierarchies of web pages are built by this
approach. Web pages in genre-based classifica-
tion are classified into genre or functional related
factors, for example, some web pages genres are
“multimedia”, ”home page”, “online transaction”,
and “news headlines”. This classification helps
users to find their immediate interest from the web
without waiting for a long time. There are many
classification techniques that exist in real and
can be divided into two broad categories: eager
learner and lazy learner. According to eager
learner classification technique, the learner built a
classification model when the training dataset is
given before it receives the test dataset. It can be
thought as if the learning model is ready and eager
to classify the new test dataset. Examples of this
are decision tree, Bayesian network, support vec-
tor machine, rule and association based classifier
etc. But in lazy learner classification technique,
the things are different. Here, instead of building
a classification model, it simply stores the training
dataset, hence consumes extra space and after
seeing the test dataset, it does the classification
based on the similarity to the stored training
dataset. Examples include k-nearest neighbors
(k-NN) and Cased-based reasoning.

Content and Context of the web page play
major role during the classification process.
The sole content of the page including HTML
tags, images, text, videos help for classification.
Similarly, the hyperlink present in a web page

338

also decides the page classification. Binary and
multi-class are the two basic types of classifi-
cation exist for classifying the text documents.
Binary classification generally categorizes the
documents into one of two pre-defined classes
whereas multi-class classification handles more
than two classes. Classification again can be
either single-label or multi-label which is decided
depending on the number of labels that is going to
be assigned to a document. Exactly one class label
is to be assigned to a document in single-label
whereas more than one class label is assigned
to a document in multi-label classification. For
instance, three-class classification means the
classification problem consists of three classes
say ‘Business’, ‘Sports’ and ‘Movies’. Many
research works has done in the field of web
document classification (Aggarwal and Zhai,
2012)(Qiu et al., 2011)(Sebastiani, 2002) (Roul
et al., 2017)(Roul and Sahoo, 2017)(Roul et al.,
2016)(Roul and Rai, 2016).

Feature selection plays a major role in text clas-
sification because selection of important features
not only reduces the training time, but also in-
creases the performance of the classifier by reduc-
ing the irrelevant features from the corpus. Fur-
ther, the algorithms used for feature selection are
classified into the following three categories:

i. Filter methods (Kira and Rendell, 1992) do
not use any classifiers for feature selection in-
stead features are selected on the basis of sta-
tistical properties. Hence, these methods are
fast to compute and capture the usefulness of
the feature set which makes them more prac-
tical.

ii. Wrapper methods (Kohavi and John, 1997)
generate different subsets of features based
on some algorithms and test each subset us-
ing a classifier. To find the score of feature
subsets, wrapper methods use a predictive
model, whereas filter methods use a proxy
measure.

iii. Embedded methods (Lal et al., 2006) com-
bines the advantages of both the above two
methods and their computational complexity
lies between these two methods.

To make the classification process more efficient,
a good classifier is required. From the research, it

has been observed that the usage of SVM (Cortes
and Vapnik, 1995) in text classification has been
largely accurate. Many research works on text
classification using SVM kernel has been done
in the past (Lodhi et al., 2002)(Tong and Koller,
2001)(Zhang et al., 2008)(Maji et al., 2013).
Kernel (a similarity function which takes two
input feature vectors and find out how similar they
are) boost the performance of SVM especially
when the number of training documents is more
than the number of keywords/features. Kernel
can be used on those algorithms which support
the inner product that takes the advantage of
the nonlinear mapping of features into a high
dimensional space with less computational cost
(computing the kernel in a higher dimensional
space is easy, but computing the feature vector
corresponding to the kernel is computationally
expensive). Many researchers have worked on
SVM kernel (Hamsici and Martinez, 2009)(Hong
et al., 2016)(Ponte and Melko, 2017).

Do SVMs work well for text classification?
The theoretical basis for the good performance of
SVMs in classifying text documents is suggested
by Jaochims (Joachims, 1998) which establishes
the following reasons for the same.

i. High Dimensional Input Space: By using
overfitting protection, SVM does not depend
on the number of features and can able to
handle a large volume of feature space.

ii. Few Irrelevant Features: In text categoriza-
tion, getting rid of irrelevant features is not
of much help, as most features are relevant
for classification. So, one cannot easily over-
come the problem of high dimensional input
space by getting rid of some irrelevant fea-
tures.

iii. Sparse Document Vectors: It has been shown
that SVMs are well suited for classification
problems with dense concepts and sparse in-
stances.

In this paper, we studied different existing ker-
nels such as RBF, Linear, Polynomial etc. and
compare the classification accuracy of SVMs
using those kernels techniques. Boughorbel et.
al. (Boughorbel et al., 2005) in their work have
shown that using SVMs, Conditionally Positive
Definite (CPD) kernels provide more accurate

339

results than Positive Definite (PD) kernels while
classifying images. Knowing that SVMs perform
well in text classification, here we aim to show
that the performance of SVMs using CPD kernels
in classifying text document is better than using
normal PD kernels. We propose a new kernel
based on cosine distances (log cosine), and shown
that it is indeed CPD. A novel feature selection
technique is proposed in order to reduce the
size of the training feature vector which in turn
enhances the performance of the classification
process. Experimental results on different bench-
mark datasets show that the usage of log cosine
as a kernel in SVM for text classification is better
than the existing kernel methods.

The rest of the paper is organized on the follow-
ing lines: In Section 2, we have discussed the defi-
nitions and background details of the proposed ap-
proach. Section 3 discusses the proposed approach
followed by the experimental analysis discussed in
Section 4. Finally, in Section 5, we concluded the
work with some future enhancement.

2 Definitions and Basic Preliminaries

This section discusses few important classes of
kernels which includes the proposed modified
SVM log kernel based on cosine distance and
some other background details that are used in the
proposed approach.

Definition 1 (Gram Matrix) Let K : X ×X →
R be a kernel function. The matrix with en-
tries Kij := K(xi, xj) is called Gram matrix or
kernel matrix of K with respect to the patterns
x1, x2, · · · , xn.
Definition 2 (Positive Definite Matrix) A real
n × n matrix with entries Kij is called positive
definite matrix if

∑
i,j cicjKij ≥ 0 ∀ci ∈ R.

Definition 3 (Positive Definite Kernel) Let X be
a non-empty set and K be a symmetric kernel
function defined on X × X. If the matrix with el-
ements K(xi, xj) is positive definite ∀n ∈ N and
all x1, x2, · · · , xn ∈ X then K is called positive
definite kernel.

Definition 4 (Conditional Positive Definite Kernel)
Let X be a non-empty set. A symmetric kernel
K is called conditionally positive definite
if
∑n

i

∑n
j cicjKij ≥ 0 holds ∀n ∈ N,

x1, x2, · · · , xn ∈ X and ci ∈ R with∑n
i=1 ci = 0.

It is needed to show that the negative squared Eu-
clidean distance kernel i.e. K(x, y) = −‖x− y‖2
is conditional positive definite. The proof directly
follows from the definition and can be found in
(Cowling, 1983). The negative distance kernel is
also known as power kernel or triangular kernel.
We adapt another conditionally positive definite
kernel called log kernel, as a part of the study. The
log kernel is defined as

Klog(x, y) = − log
(
1 + ‖x− y‖β

)

On similar lines of the above result, one can easily
show that the log kernel is conditionally positive
definite.

2.1 Kernel based on Cosine Distances

After suggesting two Conditionally Positive Def-
inite kernels in negative squared distance and log
power kernel, we proceed to explore a new ker-
nel method based on cosine distances. The Cosine
distance (CosDis) is a variant of the Cosine Simi-
larity (CosSim) measure and defined as

CosDis = 1− CosSim

where CosSim = A·B
|A||B| , A and B are two

different instances.

We propose a modified kernel function based
on cosine distance. There are valid reasons why
one may prefer a kernel based on cosine distance
rather than the Euclidean distance. The reason
for doing so is mainly due to the specific advan-
tages of cosine similarity measures while classi-
fying the text documents (i.e. when the length
of two documents are unequal). It is beneficial
to abstract out the magnitude of the term vectors
so that one can remove the influence of document
length. Documents which are clustered using L2-
norm instead of direction (i.e. vectors having dif-
ferent directions can be clustered because of their
distances from the origin are similar) are highly
susceptible to Euclidean distance. When classi-
fying text documents, one uses the angular dis-
tance in order to categorize them by their over-
all sentiments. Relative frequencies of words in
the document and across documents are important.
Both of these features are exhibited by cosine dis-
tance measures. As a result, we propose a modi-
fied SVM log kernel based on cosine distance. The

340

modified kernel based on the cosine distance is de-
fined using equation 1.

K(x, y) = − log (1 + CosDis(x, y)) (1)

Before, we prove the above log kernel is condi-
tionally positive definite, we first state the follow-
ing theorem (Cowling, 1983).
Theorem 1 If K : X × X → (−∞, 0] is con-
ditionally positive definite then the following are
conditionally positive definite.

(i) For each α (0 < α < 1), −(−K)α.

(ii) − log(1−K).

According to Scholkopf (Scholkopf, 2001):
Theorem 2 If a kernelK is conditionally positive
definite thenK+b is conditionally positive definite
for any constant b ∈ R.
Since K(x, y) = −CosDis(x, y) = −1 +
CosSim(x, y) and CosSim(x, y) is positive def-
inite, therefore by Theorem 2, K is conditionally
positive definite. By applying Theorem 1, we can
prove K(x, y) := − log(1 + CosDis(x, y)) is
conditionally positive definite. So our proposed
cosine based log kernel is conditionally positive
definite.

2.2 Term Frequency and Inverse Document
Frequency

Term Frequency (TF) measures how often a term
t occurs in a document d whereas Inverse Doc-
ument Frequency (IDF) measures the impor-
tance of t in the entire corpus P . TF -IDF
(Sparck Jones, 1972) is a technique which finds
the importance of terms in a document based on
how they appear in the corpus. The TF-IDF is cal-
culated using equation 2.

TF -IDFt,d = TFt,d × IDFt (2)

where,

TFt,d =
number of occurance of t in d

total length of d

IDFt = log
(number of documents in P

number of documents contain the term t

)

2.3 Cosine-similarity
Cosine-similarity is a technique which measures
the similarity between two document vectors (

#»

d1
and

#»

d2) and can be represented as follows:

cos-sim(
#»

d1,
#»

d2) =

#»

d1.
#»

d2
»|d1| ∗

»|d2|

2.4 Fuzzy C-Means

Fuzzy C-Means (FCM) algorithm (Bezdek et al.,
1984) tries to distribute a finite collection of n doc-
uments into c clusters. It returns a list of c cluster
centroids along with a matrix which shows the de-
gree of membership of each document to different
clusters. It aims to minimize the following func-
tion:

Tm =
n∑

i=1

c∑

j=1

vmij ||dij ||2

where, distance dij = xi − cj , m generally set to
2 is the fuzzy coefficient, cj is the centroid(vector)
of cluster j, xi is the ith document, vij ∈ [0, 1] is
the degree of membership of xi with respect to cj

and (
c∑
j=1

vji = 1, i = 1, ..., n). One can iteratively

find the values of cj and vij updated with each it-
eration by using equations 3 and 4.

cj =

∑n
i=1 v

m
ij − xi∑n

i=1 v
m
ij

(3)

vij =
1

∑c
k=1(

||dij ||
||xi−ck||)

2
m−1

(4)

3 Proposed Methodology

Step 1 Pre-processing of Documents:
Consider a corpus having set of classes
(C = c1, c2, ..., cn) of documents (D =
d1, d2, ..., dp). All documents are pre-
processed which includes lexical-analysis,
stop-word elimination, stemming, and index
terms extraction. The term-document matrix
is constructed using the vector space model,
where TF-IDF value is used to measure the
weight of the term ti in its respective docu-
ment dj and is shown in the Table 1.

Table 1: Term-document matrix

d1 d2 d3 ... dp
t1 t11 t12 t13 ... t1p
t2 t21 t22 t23 ... t2p
t3 t31 t32 t33 ... t3p
.
.
.
tr tr1 tr2 tr3 ... trp

341

Step 2 Clusters formation:
The entire corpus is clustered to generate the
groups of similar terms. For this purpose,
traditional Fuzzy C-means clustering algo-
rithm (MacQueen and others, 1967) is ap-
plied on the term-document matrix of the cor-
pus which generates ‘s‘ term-document clus-
ters td = {td1, td2, ..., tds} having each tdi
of dimension b× p, where b is the number of
terms and is shown in the Table 2.

Table 2: Reduce term-document matrix

d1 d2 d3 ... dp
t1 t11 t12 t13 ... t1p
t2 t21 t22 t23 ... t2p
t3 t31 t32 t33 ... t3p
.
.
.
tb tb1 tb2 tb3 ... tbp

Step 3 Top features selection from each cluster:
Top features are selected from each term-
document cluster tdi using the following
steps:

i. Computing the cosine-similarity:
The centroid of tdi is computed using
equation 5.

»sci =

r∑
j=1

#»
ti

r
(5)

where sci is the centroid of tdi. Next,
the cosine-similarity score between each
term tj ∈ tdi and sci is computed using
equation 6.

cos-sim(
#»
tj ,

»sci) =

#»
tj .

»sci

| #»ti | ∗ | # »sci|
(6)

ii. Generating synonym list:
Select a term tj ∈ tdi randomly and
store its synonyms using WordNet1 in
a file synonym listold which will con-
stitute the synonym list for tj (exam-
ple shown in Table 3). Find the com-
mon terms between synonym listold
and tdi, and add them to a new synonym

1http://wordnet.princeton.edu/

list called synonym listnew and dis-
card them from tdi so that the synonyms
of tj will be no longer in tdi as they are
already present in the new synonym list
(synonym listnew) of tj . Remove the
old synonym list (synonym listold) of
tj . Repeat this step for the remaining
word of tdi till it get exhausted.

iii. Constructing feature vector:
Now for every randomly selected term
tj , there is a corresponding new syn-
onym list (synonym listnew) contain
its synonym terms. Next from each
synonym listnew of tj , select the top
m% terms having high cosine-similarity
scores and merge them to an array IFV
which will constitute the reduced feature
vector of tdi. The detail discussion are
shown in Algorithm 1.

Table 3: Synonym list of terms

Term Synonym list
Explain account for, clarify, define, elaborate,

interpret, justify,
Fast expeditiously, fleet, hastily, hasty,

quickly, mercurial, quick, rapid,
speedy, snappy, swiftly, rapidly,

snappily, speedily, posthaste, like a
flash

File directory, data, case, book, folder, list,
information, register, repository,

charts, documents, cabinet
Index pointer, mark, needle, indicator, ratio,

rule, symbol, formula, token
Program plan, schedule, curriculum, bill,

syllabus, record, timetable, bulletin,
arrangements

Thesaurus glossary, lexicon, terminology,
vocabulary, reference book, source

book

Step 4 Generating the training feature vector:
Repeat step 3 for all term document cluster
tdi and merge the terms of each IFV into a
final array RFV after removing all the du-
plicate terms. Now RFV is the required re-
duced training feature vector used for classi-
fication.

Step 5 Training SVM on reduced feature vector:
The SVM classifier is trained using the train-

342

Algorithm 1: Top feature selection
Data: Cluster tdi having cosine-similarity

values of each term tj
Result: Final feature vector (RFV) of tdi
Term List(TL)← φ
Synonym Listtj (SLtj)← φ
New Synonym Listtj (NSLtj)← φ
Extra List(EL)← φ //A two dimensional
list
TL← terms of tdi
for each term tj ∈ TL (selected randomly) do

SLtj ← all the synonyms of tj found in
Wordnet

for each term tk ∈ TL do
// except {tj}
if tk present in SLtj then

add tk to the NSLtj of tj and
drop tk from TL

end
end
EL← EL ∪NSLtj //merge the

synonym required list of tj to EL
NSLtj ← φ
SLtj ← φ

end
for each NSLtj ∈ EL do

select the top m% terms T having highest
cosine-similarity values from NSLtj
RFV ← RFV ∪ T

end
return RFV

ing feature vector (RFV) on positive definite
kernels such as linear, RBF, polynomial, and
sigmoid kernels. Following this, the SVM
is trained using conditionally positive defi-
nite kernels such as Negative Euclidean, log
Power kernels, and proposed log cosine ker-
nel.

4 Experimental Section

Four benchmark datasets are used for experi-
mental work (DMOZ2, 20-Newsgroups3, Reuters,
Classic34 and WebKB5). The details of these
datasets are discussed below:

2https://www.dmoz.org/
3http://qwone.com/∼jason/20Newsgroups/
4http://www.dataminingresearch.com/index.php/2010/09/classic3-

classic4-datasets/
5http://www.cs.cmu.edu/afs/cs/project/theo-

20/www/data/

4.1 20-Newsgroups

20-Newsgroups is a standard machine learning
dataset and it has 11293 training and 7528 test-
ing documents classified into 20 classes. Three
classes are taken into consideration (alt.atheism,
soc.religion.christian and misc.forsale) for exper-
imental purpose, consisting of total 1663 training
and 1107 test documents. Total number of terms
used is 20422 and among them, 16270 are used for
training.

4.2 DMOZ

DMOZ is one of the largest dictionaries on the
Web. It has 14 categories out of which 3 cate-
gories (Arts, Homes and Science) of 5238 docu-
ments are used for experimental purpose. Among
them, 3142 number of documents are used for
training and rest are used for testing. Total num-
ber of features is 24320 out of which 19886 are
considered for training.

4.3 Reuters

Reuters is a widely used text mining dataset. It has
5485 training and 2189 testing documents classi-
fied into 8 classes, where all class documents are
considered for evaluation. The total number of
terms used is 17582 and among them 13531 are
used for training.

4.4 WebKB

WebKB is a widespread text mining dataset in
which the web pages are collected from four dif-
ferent college websites. It has 2803 training
and 1396 testing documents classified into four
classes, where all class documents are considered
for evaluation. The total number of terms of all
these documents is 7606 and from that 7522 terms
are used for training.

4.5 Classic3

Classic3 is a widespread data mining dataset.
It has 4257 training and 2838 test documents
classified into 4 classes: cacm, cisi, cran, med,
having 3204, 1460, 1400, and 1033 documents
respectively. All the classes are considered in the
evaluation. The total vocabulary contained in all
documents is 21299 and from that 15971 terms
are selected for training.

We compute the test accuracy, 100-Fold cross
validation accuracy, precision, recall and F-Score

343

for aiding our comparison of various kernel tech-
niques. Tables 4 - 8 show the detail results of clas-
sification using SVMs on different kernels for var-
ious datasets (maximum results are marked as bold
in each table).

4.6 Performance Evaluation
The following parameters are used to measure the
performance of the classifier.

i. Accuracy (acc) is the ratio between the sum
of true positive cases, TP (number of docu-
ments that are that are classified correctly)
and true negative cases, TN (number of docu-
ments that are not classified correctly and are
not retrieved by the approach) with the total
number of documents, N = TP + FP + TN +
FN. It can be represented as follows:

acc =
(TP + TN)

N

where,
FP: number of documents that are not clas-
sified correctly and are retrieved by the ap-
proach and FN: number of documents that
are classified correctly and are not retrieved
by the approach.

ii. Precision (pr) is the fraction of the retrieved
documents by the classifier that are relevant.

pr =
(relevantdocuments) ∩ (retrieveddocuments)

retrieveddocuments

iii. Recall(re) is the fraction of the relevant doc-
uments that are retrieved by the classifiers.

re =
(relevantdocuments) ∩ (retrieveddocuments)

relevantdocuments

iv. F-measure (F) is the harmonic mean of pr
and re.

F = 2 ∗
(pr ∗ re
pr + re

)

4.7 Discussion
From the results of all the tables, it is observed
that positive definite kernels (RBF, Polynomial,
and Euclidean) perform poorly in classifying the
text documents; while conditionally positive def-
inite kernels (Linear, Log-Cosine (L-cos), Log-
Power (L-pow) and Negative Euclidean (N-Eue)
performed significantly better performance. Al-
though the Linear kernel based SVM performs

reasonably well but this might be due to the fact
that the rest of the positive definite kernels other
than the linear kernel are exponential in nature.
This highlights an inconsistency in the classifica-
tion of text documents using positive definite ker-
nel based SVMs.

The performance of the CPDs kernels is seen to
be significantly more accurate, precise, and con-
sistent than PDs. It is observe that both the log-
power and negative Euclidean based SVMs are
more effective in classifying the text documents.
Both the log-power and negative Euclidean ker-
nels deliver high precision which is significantly
higher than their positive definite counterparts. It
is important to note that the effective performance
of the proposed modified cosine similarity mea-
sure i.e. the log-cosine distance kernel (L-cos)
performs well compared to other CPDs on most
of the datasets. SVMs with the negative log
cosine kernel works well for text document clas-
sification and it is shown in Figure 1. Training
score is 1 when the number of training examples =
1000. With increase in the number of training ex-
amples, training score decreases slightly to reach
0.99. Cross-validation accuracy increases at a de-
creasing rate with increase in the number of train-
ing examples and it reaches to more than 90%.
Similarly, SVMs with log power kernel works well
for text classification. As it can be inferred from
the Figure 2 that the accuracy on training set re-
mains 1 regardless of the number of training exam-
ples. Cross-validation accuracy increases at a de-
creasing rate with increase in the number of train-
ing examples and it reaches to 91%.

5 Conclusion

In this paper, we assess the effectiveness of clas-
sifying text documents using support vector ma-
chines on numerous kernel functions. Experimen-
tal results on five most popular machine learning
datasets show that conditionally positive definite
kernels perform more consistently and accurately
than positive definite kernels. We also observed
that PDs that are exponential in nature perform
poorly in classifying the text documents, while the
non-exponential linear kernel performs reasonably
well. It is also proved that the proposed mod-
ified cosine distance based log kernel (L-cos) is
indeed conditionally positive definite and gener-
ates the best results in comparison to all other ex-
isting kernels. A new feature selection technique

344

Table 4: SVM Classification on 20-NG dataset

Kernel Accuracy 100FAcc Precision Recall F-score
RBF 37.23 40.32 28.45 25.19 26.72
Poly 35.34 35.27 30.27 25.65 27.76
Eucl 32.03 35.18 22.15 22.06 22.10

Linear 80.62 84.05 80.27 79.72 79.99
L-cos 85.06 87.83 83.81 82.81 83.30
L-Pow 83.55 86.45 83.72 82.53 83.12
N-Euc 83.73 86.78 83.59 82.74 83.16

Table 5: SVM Classification on DMOZ dataset

Kernel Accuracy 100FAcc Precision Recall F-score
RBF 40.73 48.35 53.22 44.56 48.52
Poly 38.43 45.24 30.71 35.35 32.86
Eucl 51.72 50.34 42.65 39.30 40.90

Linear 82.56 79.23 80.76 77.27 78.97
L-cos 84.38 85.81 81.84 80.88 81.35
L-Pow 79.98 81.48 80.70 83.35 82.00
N-Euc 81.71 82.47 80.52 78.27 79.37

Table 6: SVM Classification on Reuters dataset

Kernel Accuracy 100FAcc Precision Recall F-score
RBF 32.12 35.47 28.78 35.87 31.93
Poly 35.53 35.28 30.87 31.98 31.41
Eucl 22.56 38.65 42.71 38.54 40.51

Linear 79.46 80.38 76.83 74.67 75.73
L-cos 84.68 86.51 81.67 80.45 81.05
L-Pow 81.35 86.43 77.67 78.93 78.29
N-Euc 80.57 86.76 80.54 78.45 79.48

Table 7: SVM Classification on Classic3 dataset

Kernel Accuracy 100FAcc Precision Recall F-score
RBF 37.65 35.72 28.36 29.30 28.82
Poly 47.33 48.22 30.30 35.87 32.85
Eucl 32.06 35.13 22.15 20.08 21.06

Linear 81.63 83.98 79.24 79.87 79.55
L-cos 88.65 83.88 81.88 83.47 82.66
L-Pow 82.66 82.47 76.34 74.58 75.44
N-Euc 80.75 84.79 75.55 77.64 76.58

is proposed which increases the performance of
the classification results. To extend the work, it
is needed to prove and adopt other conditionally
positive definite functions as kernels for text docu-
ments classification. Further work can include the
clustering of text documents on different datasets
and observe the performance of these kernels us-
ing SVM.

References
[Aggarwal and Zhai2012] Charu C Aggarwal and

ChengXiang Zhai. 2012. A survey of text clas-
sification algorithms. In Mining text data, pages
163–222. Springer.

[Bezdek et al.1984] James C Bezdek, Robert Ehrlich,
and William Full. 1984. Fcm: The fuzzy c-means
clustering algorithm. Computers & Geosciences,
10(2):191–203.

345

Table 8: SVM Classification on WebKB dataset

Kernel Accuracy 100FAcc Precision Recall F-score
RBF 35.25 35.27 21.26 25.87 23.34
Poly 34.63 29.45 22.76 19.45 20.97
Eucl 32.05 31.14 22.67 24.32 23.46

Linear 77.26 75.22 71.73 70.98 71.35
L-cos 83.23 86.18 81.53 83.74 82.62
L-Pow 83.27 80.34 70.34 71.65 70.98
N-Euc 81.74 82.67 72.34 74.56 73.43

Figure 1: Training examples vs Accuracy (N-Log Cosine kernel)

Figure 2: Training examples vs Accuracy (Log power kernel)

346

[Boughorbel et al.2005] Sabri Boughorbel, J-P Tarel,
and Nozha Boujemaa. 2005. Conditionally positive
definite kernels for svm based image recognition. In
Multimedia and Expo, 2005. ICME 2005. IEEE In-
ternational Conference on, pages 113–116. IEEE.

[Cortes and Vapnik1995] Corinna Cortes and Vladimir
Vapnik. 1995. Support-vector networks. Machine
learning, 20(3):273–297.

[Cowling1983] Michael G Cowling. 1983. Harmonic
analysis on semigroups. Annals of Mathematics,
pages 267–283.

[Hamsici and Martinez2009] Onur C Hamsici and
Aleix M Martinez. 2009. Rotation invariant kernels
and their application to shape analysis. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 31(11):1985–1999.

[Hong et al.2016] Haoyuan Hong, Biswajeet Pradhan,
Dieu Tien Bui, Chong Xu, Ahmed M Youssef, and
Wei Chen. 2016. Comparison of four kernel func-
tions used in support vector machines for landslide
susceptibility mapping: a case study at suichuan
area (china). Geomatics, Natural Hazards and Risk,
pages 1–26.

[Joachims1998] Thorsten Joachims. 1998. Text cat-
egorization with support vector machines: Learn-
ing with many relevant features. Machine learning:
ECML-98, pages 137–142.

[Kira and Rendell1992] Kenji Kira and Larry A Ren-
dell. 1992. The feature selection problem: Tradi-
tional methods and a new algorithm. In AAAI, vol-
ume 2, pages 129–134.

[Kohavi and John1997] Ron Kohavi and George H
John. 1997. Wrappers for feature subset selection.
Artificial intelligence, 97(1):273–324.

[Lal et al.2006] Thomas Navin Lal, Olivier Chapelle,
Jason Weston, and André Elisseeff. 2006. Embed-
ded methods. In Feature extraction, pages 137–165.
Springer.

[Lodhi et al.2002] Huma Lodhi, Craig Saunders, John
Shawe-Taylor, Nello Cristianini, and Chris Watkins.
2002. Text classification using string kernels. Jour-
nal of Machine Learning Research, 2(Feb):419–444.

[MacQueen and others1967] James MacQueen et al.
1967. Some methods for classification and analysis
of multivariate observations. In Proceedings of the
fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland,
CA, USA.

[Maji et al.2013] Subhransu Maji, Alexander C Berg,
and Jitendra Malik. 2013. Efficient classification for
additive kernel svms. IEEE transactions on pattern
analysis and machine intelligence, 35(1):66–77.

[Ponte and Melko2017] Pedro Ponte and Roger G
Melko. 2017. Kernel methods for interpretable ma-
chine learning of order parameters. arXiv preprint
arXiv:1704.05848.

[Qi and Davison2009] Xiaoguang Qi and Brian D Davi-
son. 2009. Web page classification: Features
and algorithms. ACM computing surveys (CSUR),
41(2):12.

[Qiu et al.2011] Xipeng Qiu, Xuanjing Huang, Zhao
Liu, and Jinlong Zhou. 2011. Hierarchical text clas-
sification with latent concepts. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: short papers-Volume 2, pages 598–602. Asso-
ciation for Computational Linguistics.

[Roul and Rai2016] Rajendra Kumar Roul and Pranav
Rai. 2016. A new feature selection technique com-
bined with elm feature space for text classification.
In 13th International Conference on Natural Lan-
guage Processing, pages 285–292.

[Roul and Sahoo2017] Rajendra Kumar Roul and Ja-
jati Keshari Sahoo. 2017. Classification of research
articles hierarchically: A new technique. In Com-
putational Intelligence in Data Mining, pages 347–
361. Springer.

[Roul et al.2016] Rajendra Kumar Roul, Aditya Bhalla,
and Abhishek Srivastava. 2016. Commonality-
rarity score computation: A novel feature selection
technique using extended feature space of elm for
text classification. In Proceedings of the 8th annual
meeting of the Forum on Information Retrieval Eval-
uation, pages 37–41. ACM.

[Roul et al.2017] Rajendra Kumar Roul, Shubham Ro-
han Asthana, and Gaurav Kumar. 2017. Study
on suitability and importance of multilayer extreme
learning machine for classification of text data. Soft
Computing, 21(15):4239–4256.

[Scholkopf2001] Bernhard Scholkopf. 2001. The ker-
nel trick for distances. Advances in neural informa-
tion processing systems, pages 301–307.

[Sebastiani2002] Fabrizio Sebastiani. 2002. Machine
learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47.

[Sparck Jones1972] Karen Sparck Jones. 1972. A sta-
tistical interpretation of term specificity and its ap-
plication in retrieval. Journal of documentation,
28(1):11–21.

[Tong and Koller2001] Simon Tong and Daphne Koller.
2001. Support vector machine active learning with
applications to text classification. Journal of ma-
chine learning research, 2(Nov):45–66.

[Zhang et al.2008] Wen Zhang, Taketoshi Yoshida,
and Xijin Tang. 2008. Text classification
based on multi-word with support vector machine.

Knowledge-Based Systems, 21(8):879–886.
347

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 348–355

Document Embedding Generation for Cyber-Aggressive Comment
Detection using Supervised Machine Learning Approach

Shylaja S S, Abhishek Narayanan∗, Abhijith Venugopal∗, Abhishek Prasad∗

Department of Computer Science and Engineering
PES University, Bangalore, India

shylaja.sharath@pes.edu, abhishek.1010n@gmail.com, abhijith1998@gmail.com, abhishek.pes2016@gmail.com

Abstract

Cyber-bullying may be defined as the em-
ployment of technological means for the
purpose of harassing, threatening, embar-
rassing, or targeting a particular person. It
is also possible for Cyber-bullying to have
occurred accidentally. One of the major
challenges in identifying cyber-bullying
or cyber-aggressive comments is to detect
a sender’s tone in a particular text mes-
sage, email or comments on social me-
dia, since what a person may consider
to be a joke, may act as a hurting insult
to another. Nevertheless, cyber-bullying
may prove to be non-accidental in spe-
cific cases where a repetition in the pat-
tern of text in emails, messages, and on-
line posts is existent. In order to curb such
a social threat, this Paper proposes the us-
age of a combination of document em-
beddings along with different supervised
machine learning algorithms to get opti-
mized results in flagging cyber-aggressive
comments. Extensive experimentation in-
dicates that the SVM model with rbf ker-
nel combined with document embeddings
is capable of efficiently classifying unseen
test comments with an accuracy score of
88.465 % and has surpassed other models
in various evaluation metrics.

1 Introduction

Social media may be thought of as interactive me-
dia which let people read and write their views.
Social media lets people present their talent as it
gives the user freedom to build content and share it
with ease, to large groups or to the society. Hence,
social media is a platform where users not only

∗Authors contributed equally

generate data, but also consume it. Hence, any per-
son having an access to internet holds the ability to
produce media contents. As social media is popu-
lar among adolescents, cyber-bullying reports are
increasing day by day. Smith et al (2008), defined
cyber-bullying as an aggressive and intentional be-
havior of an individual or a particular group us-
ing electronic forms of contact that is carried out
repeatedly and over time against an individual or
a certain group who cannot easily defend them-
selves. Going by the definition of cyber-bullying
by Smith et al (2008), any behaviour showing
signs of bullying on social media is also consid-
ered cyber-bullying. Also, since it occurs online
and is anonymous to a certain extent, tracing such
behaviour to it’s source can be challenging. Hence
there is a need to have an effective cyber-bullying
detection system to monitor comments posted in
social media and efficiently flag comments as cy-
ber aggressive or safe.
The first step in this objective is to obtain manu-
ally labelled data for training and testing purposes,
in which comments have been collected from var-
ious social networking sites and have been la-
belled according to whether they are cyber ag-
gressive or not. Such labelled comments have
been taken from various sources in Kaggle and
Github websites. After accumulating a large num-
ber of comments from various datasets containing
manually labelled comments scraped from various
social media sites, they were split into datasets
containing 20645 training and 8817 testing com-
ments. Corresponding to the comments contained
in the datasets, vector representations or document
embeddings are generated by Doc2Vec which are
subsequently fed to the supervised machine learn-
ing algorithms for training and then predicting test
labels.
The organization of the remaining part of the Pa-
per is as follows. A summarized survey of various
related research experiments and literatures has

348

been elaborated in Section 2. The methodology
proposed has been explained in Section 3. Sec-
tion 4 includes the results obtained. The conclu-
sions obtained from these results has been given
in Section 5 along with a brief mention of the fu-
ture work to be carried out.

2 Related Work

Despoina Chatzakou et al (2017), in an at-
tempt to flag cyber-aggressive comments pre-
sented a method of classification by identifying
behavioural aspects of cyber-bullies which dif-
ferentiated their comments from others.They pre-
sented a principled and scalable approach for elic-
iting user, text, and network-based attributes of
Twitter users, by extracting a total of 30 features
and identifying the differentiating features. This
paper has used word embeddings among their fea-
tures.
In order to optimize detection of cyber aggres-
sive comments, Vikas S Chavan and Shylaja S S
(2015), proposed that using two additional fea-
tures, simultaneously with conventional feature
extraction techniques like TF-IDF and N-gram, in-
creases the accuracy of the system up to 86% us-
ing logistic regression. This paper included two
new features, which included pronoun capturing
and the use of skip-grams.
Liew Choong Hon and Kasturi Dewi Varathan
(2015), proposed a cyber-bullying detection sys-
tem for tweets, with their focus on five types of
words indicating cyber-bullying, which they de-
duced through their study. They used keyword
matching for flagging cyber-bullying in tweets af-
ter capturing the keywords from tweets by various
users.
Among other research activities carried out in the
field include an effort by Kelly Reynolds and April
Kontosthatis (2011), in which the data was accu-
mulated from the Formspring.me website and la-
belled using Amazon’s Mechanical Turk service.
This labelled data was then employed to train a
machine learning model to identify cyber-bullying
comments through the usage of the weka toolkit.
In related text classification problems such as sen-
timent analysis of comments, the incorporation of
paragraph vectors or document embeddings has
been found to be efficient for the purpose of gen-
erating dense and low dimensional feature vec-
tors for semantically representing entire comments
or paragraphs unlike the feature matrices obtained

from standard feature extraction techniques like n-
grams or it’s special case bag-of-words. An ex-
pedition was carried out by Parinya Sanguansat
(2016) in which the employment of an unsuper-
vised deep learning technique for numerically rep-
resenting text comments in the form of document
embeddings or paragraph vectors with machine
learning algorithms proved to be more effective
than standard methods for the task of sentiment
analysis of comments on social media. Since the
detection of cyber-aggressive comments is also a
binary text classification task, this Paper proposes
the incorporation of paragraph vectors as features
to be learnt for classification by machine learning
algorithms. Various classifiers are subsequently
tested and evaluated to come up with an effective
model for identification of cyber-aggressive com-
ments.

3 Proposed Method

The preliminary step involved in our proposed
methodology is to generate a vector sequence for
each of the comments in the dataset, that repre-
sents the semantic meaning of the document or
the comment, which can then be processed by
machine learning algorithms to associate test data
with labels. We perform extensive experimenta-
tion and evaluation on several machine learning
algorithms and compare the results based on these
parameters to find a suitable model which can ef-
ficiently perform the task involved.

3.1 Pre-Processing

The inability of machine learning algorithms to
process raw text directly is a keen issue in the field
of natural language processing. This brings out
the necessity for numerical representations of lin-
guistic units, for the purpose of which several stan-
dard feature extraction techniques such as Bag-of-
Words, n-grams, etc. Though these models have
been shown to be considerably effective and are
the state-of-the-art models for generating vector
representations for text, yet these models do not
take into account the order of words in a sentence,
which is an important parameter upon which the
detection of cyber-aggressive comments is depen-
dent. Also, there is a necessity for dense fea-
ture vectors of suitable dimensions unlike those
provided by the bag-of-words or n-gram models
which are sparse and high dimensional feature ma-
trices. Such dense feature matrices are also ob-

349

tained from other models such as word2vec, which
may be incorporated as well, but are more pre-
ferred in problems involving identification of anal-
ogous words or classification of topics in a sen-
tence. In order to tackle this issue of obtaining
a favourable feature matrix for the task, this Pa-
per proposes the incorporation of document em-
beddings or paragraph vectors generated through
Doc2Vec which is an unsupervised learning algo-
rithm to effectively generate semantic vector rep-
resentation of comments and paragraphs which
fits our purpose, as we deal with multiple line
comments as well. Though Doc2Vec consists of
two architectures for generating paragraph vec-
tors, namely the Distributed Bag of Words (PV-
DBOW) and the Distributed Memory (PV-DM)
models, the PV-DM architecture has been incor-
porated in our pre-processing step, not only due to
the fact that it outperforms the PV-DBOW model
as per the report by T Mikolov (2014) but also
because it takes into account word order, leading
to better results in flagging cyber-aggressive com-
ments.
Further details include a brief summarization of
the distributed memory model of Doc2Vec as used
in our pre-processing step.
In the distributed memory framework, every com-

Figure 1: The above figure portrays framework
for the purpose of learning paragraph vectors.This
framework includes the addition of paragraph to-
ken that is mapped to a vector via matrix D. In
order to predict the fourth, word the average or
concatenation of this vector with a context of three
words is used in this model. The paragraph vector
not only represents the missing information from
the current context but can also act as a memory
of the topic of the paragraph. Figure adapted from
the report in T Mikolov(2014)

ment or set of comments and all of the words
are associated with a corresponding unique vec-

tor representation for each depicted by separate
column matrices for comments and words. The
model is trained such that the vector representa-
tions play a role in predicting succeeding words,
taking into account various contexts which are
sampled from the comments. Typically, this pre-
diction task is performed by softmax or other
multi-class classifiers. The framework performs
concatenation operation for aggregating the vector
representations. Generally using stochastic gra-
dient descent, where the gradients are obtained
through the back-propagation algorithm, the vec-
tors are then trained. Therefore, since the er-
ror may be calculated at each step and be em-
ployed to upgrade the parameters of the model,
the framework is capable of capturing semantics
even though the vectors were initialized randomly.
Using gradient descent while performing an infer-
ence step , we retrieve the vectors corresponding
to a new comment or multiple lines of comments.
Thus, once the weights and vectors for seen com-
ments are obtained, the inference step helps in re-
trieving vectors for unseen comments as well.

In our experimentation, the sentences are tok-

Figure 2: Methodology involved in our proposed
method

enized and each set of tokens is associated with
a paragraph id or tag before training, indicating
the document type the sentence comes from. For
convenience in our experimentation, we generate

350

the document ids with respect to the files the com-
ments come from, because of which the training
and testing data is split into a pair of files each con-
taining cyber-aggressive and non cyber-aggressive
comments. The tags are then conveniently gen-
erated with a prefix indicating whether the data
is from training or testing dataset and whether
it is cyber-aggressive or non cyber-aggressive.
This prefix is coupled with a unique index for
each comment for uniqueness and to facilitate re-
trieval of vectors after training. This aggregation
of tagged tokenized comments from training and
testing pairs of datasets are shuffled randomly for
better training and eliminating any dependency on
the order of feeding the input, are then fed to the
Doc2Vec model for training. The training has
been performed for 10 epochs in order to obtain
better results. Though the number of epochs here
improves the training and model performance, yet
it is not a fixed parameter as such and is to be tuned
according to the purpose. Typically 10 epochs
is found to be sufficiently suitable for generat-
ing favourable features and therefore our experi-
mentation includes this parameter as such. After
training is performed, we extract the feature vec-
tors for training and testing data into separate ar-
rays with their corresponding labels in separate ar-
rays, for being fed to machine learning algorithms
for classification. The number of dimensions of
the dense feature vectors has been chosen to be
100, found to be optimum, neither being too high
or too low a value for being learnt by machine
learning algorithms. Since the training arrays are
arranged such that the cyber-aggressive and non
cyber-aggressive comments are grouped together,
we shuffle the arrays randomly to ensure that the
models remain independent of the feeding order of
the input vectors.

3.2 Classification

Following are the various Machine Learning Clas-
sification algorithms which have been trained us-
ing the document embeddings and tested for gen-
erating the predicted labels of test data :

3.2.1 Support Vector Machines (SVM)
Support vector machine, commonly referred as
SVM, is one of the most common machine learn-
ing algorithm used for performing binary classifi-
cation on data.It has always proved itself worthy
in the field of supervised machine learning.They
are motivated by the principle of optimal sepa-

ration, the idea that a good classifier finds the
largest gap possible between data points of differ-
ent classes.Ideally, the classification boundary will
be a curve or a hyper-plane that goes right down
the middle of the gap between classes, because
this would be the classification boundary which
will have the maximum distance from the nearest
data points (referred to as support vectors). This
algorithm being based on the principle of optimum
separation, is aimed at finding the largest distance
between data points of separate classes. Ideally,
the decision boundary for this classifier is a curve
or a hyper-plane such that it possesses the maxi-
mum distance to the nearest data points known as
support vectors. After training for classification
task, an SVM is capable of efficiently predicting
the class in which other data points fall, since there
is only a necessity of few support vectors, due to
which other data points may be neglected. We use
the following three kernels for the SVM model for
flagging cyber-aggressive comments.

linear kernel

K(X,Y) = XTY (1)

polynomial kernel

K(X,Y) = (γXTY + r)d, γ > 0 (2)

rbf (radial bias function) kernel

K(X,Y) = exp(−γ ‖ X − Y ‖2 /2σ2), γ > 0
(3)

Where r,d and gamma refer to the kernel param-
eters and K(X,Y) corresponds to the dot product
of input points mapped into the feature space Y
by the transformation function. However, only the
results for rbf kernel have been portrayed in Sec-
tion 4 since it is found to have maximum accuracy
among the three kernels and it also has surpassed
other kernels in various other evaluation metrics.

3.2.2 Logistic Regression
Logistic regression refers to the fitting of a linear
model to the data which gives a real number. Since
this number does not directly contribute to classi-
fication, it is fed into the logistic function which is
:

σ =
1

1 + e−x
(4)

The sigmoid function enables the normalization
of the numbers fed to be in the range 0 and 1,
which facilitates the interpretation of the number
obtained as a probability, which in this case is the
probability of comments being cyber-aggressive.

351

3.2.3 Bernoulli Naive Bayes Algorithm
The Bernoulli Naive Bayes classifier uses the im-
plementation of Naive Bayes training along with
it’s outstanding classification algorithms for the
given data, assuming the data distribution to be a
multivariate Bernoulli distribution, wherein mul-
tiple features may be included, however individ-
ual features are assumed to possess binary values.
Hence it is necessary for samples to be represented
as feature vectors with binary values. It is there-
fore necessary for the classifier implementation to
binarize data before learning if the data handled is
already not in the required form. Bernoulli naive
Bayes’s decision rule is build on :

P (xi | y) = P (i | y)xi + (1− P (i | y))(1− xi)
(5)

3.2.4 Decision Trees
Decision Trees work on a sequence of test queries
and answers with conditions which have been
structured as a tree. In such trees, the root node
and internal nodes consist of characteristic test
conditions for the purpose of segregating data with
different attributes. The terminal nodes of such
trees possesses an assigned label which is typi-
cally a 0 or a 1. For the purpose of classifica-
tion using a decision tree, the process begins at the
root node where the test condition is applied to a
data instance. Depending on the result of this step,
the relevant branch is chosen and followed subse-
quently, thereby leading to either another internal
node where a different test case is to be applied to
decide the further path or to a terminal leaf node,
where the data instance is associated with a class
label.

3.2.5 Random Forest Classifier
Random Forest Classifiers are composed of set of
diverse decision trees with the incorporation of
randomness in their construction. The predictions
of the individual classifiers are averaged to gener-
ate the prediction of the ensemble. The individual
trees of such an ensemble are sampled from the
training set with replacement. In these trees, when
a particular node is split, the split is performed
only after discovering the best way of splitting
among a subset of features which are chosen ran-
domly instead of the set of all features. There-
fore, random forest classifiers possess greater bias
than a single tree without randomness. However
this is compensated, often in excess by the lower

variance of random forests due to which an overall
good model is created.

4 Results

Extensive experimentation is performed by testing
and evaluating the models using the test dataset
consisting of 8817 comments in all.A detailed
comparison has been made by applying various
evaluation metrics on the different models.

4.1 Evaluation Metrics on various Models

The various evaluation parameters that we have
applied to compare the models when applied to the
test dataset are as follows :

4.1.1 Accuracy score

The accuracy score is a metric used in multi-label
classification tasks, which corresponds to a mea-
sure of the number of data samples which have
been accurately labelled according to the set of test
labels provided.

4.1.2 K-Fold Cross Validation

For evaluating a model using the K-fold cross-
validation technique, we take the original sam-
ple and then randomly split it into equal sized k
sub-samples , of which only a single sub-sample
is assigned for testing purpose, which is known
as the validation set. The remaining sub-samples
are used for the purpose of training of the models
to be evaluated. We repeat the process of cross-
validation k times , taking care that each of these
k sub-samples is involved in the process of testing
or validation only once. In order to obtain a single
value to evaluate the models, the arithmetic mean
of all of the k results thus obtained is taken. The
value of k has been taken as 20 in our experimenta-
tion, but in general k remains an unfixed parameter
as such.

4.1.3 Confusion matrices

A confusion matrix is an evaluation metric which
summarizes the prediction results obtained for a
classification problem. It provides exact counts of
the number of accurate and inaccurate predictions
made by a classifier for each class. For a binary
classifier, the information provided by such matri-
ces include all four possible ways by which data
may has been classified as follows :

352

(a) SVM with rbf kernel

(b) Logistic Regression

(c) Bernoulli Naive Bayes

(d) Decision Tree

(e) Random Forest

Figure 3: Confusion Matrices for the various mod-
els tested

• Frequency of accurate predictions stating an in-
stance to be negative.

• Frequency of inaccurate predictions stating an
instance to be positive.

• Frequency of inaccurate predictions stating an
instance to be negative.

• Frequency of accurate predictions stating an in-
stance to be positive.

4.1.4 Precision
Precision corresponds to a measure of relevance of
the results obtained from a model. It is given by.

Precision =
TP

TP + FP
(6)

where TP refers to the frequency count of true pos-
itives, whereas FP is the frequency count of false
positives.

4.1.5 Recall
Recall value is an evaluation metric which corre-
sponds to a measure of how many of the results
obtained from a model are actually relevant. Re-
call may be written as :

Recall =
TP

TP + FN
(7)

where TP corresponds to the frequency of true
positive predictions while the term FNP corre-
sponds to frequency of false negative predictions.

4.1.6 F-Beta-score
This metric corresponds to the weighted mean of
precision and recall . The best value of this metric
when evaluating a model is 1, the worst being 0.
The value of beta acts as the factor which deter-
mines the weight of precision final score. A beta
value less than 1 signifies that precision is weighed
more whereas a beta value greater than 1 indicates
recall is favoured. A beta value equal to one as
used in our evaluation indicates both are weighed
equally.

4.1.7 Area under ROC Curve
A receiver operating characteristic curve or ROC
curve refers to the plot of the true positive rate
or TPR values obtained against the false positive
rate or FPR values obtained for the models tested
at several threshold settings. The area under this

353

curve acts as an evaluation metric to obtain an op-
timum model. The best value of this score for an
ideal model is 1.0.

(a) SVM with rbf kernel (b) Logistic Regression

(c) Bernoulli Naive
Bayes

(d) Decision Tree

(e) Random Forest

Figure 4: Receiver Operating Characteristic
Curves for the various modes tested

Figure 5: Comparison of the various models based
on Accuracy Score and 20-Fold Cross Validation

RESULTS
Algorithm Accuracy

Score
20-Fold
Cross
Validation
Score

Time con-
sumed for
training
and pre-
diction (in
seconds)

SVM (rbf
kernel)

88.465 % 82.179 % 1619.232

Logistic
Regres-
sion

70.749 % 73.979 % 0.943

Bernoulli
Naive
Bayes

61.506 % 68.951 % 0.243

Random
Forest

83.033 % 78.759 % 17.489

Decision
Tree

72.734 % 70.666 % 13.303

Table 1: EVALUATION METRICS

RESULTS
Algorithm AUROC

Score
Precision Recall F-

score
SVM (rbf
kernel)

0.92 0.89 0.88 0.88

Logistic
Regres-
sion

0.59 0.63 0.71 0.62

Bernoulli
Naive
Bayes

0.55 0.62 0.62 0.62

Random
Forest

0.92 0.86 0.83 0.80

Decision
Tree

0.67 0.73 0.73 0.73

Table 2: EVALUATION METRICS

Figure 6: Comparison of the various models based
on AUROC Score and F1-Score

354

4.2 Inference

Based on our experiments with the tested mod-
els , in labelling the test comments as cyber
aggressive/non cyber aggressive, we have made
a detailed summarization of various models.
The metrics results have been specified in Table
1, Table 2 and in figures 3-6. Table 1 reflects
the contrast between the models with respect to
accuracy score, 20-fold cross validation score
and time consumed for training and prediction,
whereas in Table 2, we have evaluated the models
based on AUROC-Score, precision, recall and
f-score. Our evaluation of the tested models
indicate that the highest accuracy achieved is that
of the SVM model using rbf kernel, which is
approximately 88.465% with an AUROC score
of 0.92. Having surpassed other tested models
in effectively labelling the unseen test dataset,
such a model may effectively be used to flag
cyber-aggressive comments which may later be
used to estimate the performance of a manual
based flagging system over automated approaches.

5 Conclusion and Future Work

In this Paper, we have proposed the usage of
Doc2Vec to generate paragraph vectors or docu-
ment embeddings as features for supervised ma-
chine learning for flagging cyber-aggressive com-
ments. Document embeddings have been gener-
ated using Doc2Vec. We built a range of models
by learning the vector representations of various
comments by few supervised machine learning al-
gorithms, and applied various evaluation metrics
on the models to obtain a good efficiency in clas-
sifying comments. As a consequence of such
an experiment, we found that the Doc2Vec ap-
proach coupled with SVM classifier using rbf ker-
nel, gives an increased accuracy of approximately
88.465% in labelling test comments as cyber ag-
gressive/non cyber- aggressive.
Further future work may be directed towards fur-
ther optimization of the results obtained by apply-
ing deep learning techniques to the existing model.
Further work may also be directed towards incor-
porating an application programming interface for
real time identification of cyber-aggressive com-
ments on social media using a model efficient in
terms of both accuracy in classification as well as
time taken.

References
Despoina Chatzakou, Nicolas Kourtellis, Jeremy

Blackburn, Emiliano De Cristofaro, Gianluca
Stringhini, and Athena Vakali. 2017. Mean birds:
Detecting aggression and bullying on twitter. arXiv
preprint arXiv:1702.06877.

Vikas S Chavan and SS Shylaja. 2015. Machine learn-
ing approach for detection of cyber-aggressive com-
ments by peers on social media network. In Ad-
vances in computing, communications and informat-
ics (ICACCI), 2015 International Conference on,
pages 2354–2358. IEEE.

L Hon and K Varathan. 2015. Cyberbullying detection
system on twitter. IJABM, 1(1).

Jey Han Lau and Timothy Baldwin. 2016. An empiri-
cal evaluation of doc2vec with practical insights into
document embedding generation. arXiv preprint
arXiv:1607.05368.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 1188–1196.

Radim Rehurek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Citeseer.

Kelly Reynolds, April Kontostathis, and Lynne Ed-
wards. 2011. Using machine learning to detect cy-
berbullying. In Machine learning and applications
and workshops (ICMLA), 2011 10th International
Conference on, volume 2, pages 241–244. IEEE.

Parinya Sanguansat. 2016. Paragraph2vec-based sen-
timent analysis on social media for business in thai-
land. In Knowledge and Smart Technology (KST),
2016 8th International Conference on, pages 175–
178. IEEE.

Peter K Smith, Jess Mahdavi, Manuel Carvalho, Sonja
Fisher, Shanette Russell, and Neil Tippett. 2008.
Cyberbullying: Its nature and impact in secondary
school pupils. Journal of child psychology and psy-
chiatry, 49(4):376–385.

a. For training dataset :. http://www.github.com.

b. For testing dataset :. http://www.kaggle.com.

355

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 356–361

Coarticulatory propensity in Khalkha Mongolian

Ushasi Banerjee*, Indranil Dutta* and Irfan S.**

*The EFL University
**University of Illinois at Urbana-Champaign

banerjeeushashi@gmail.com, indranil@efluniversity.ac.in, irfans2@illinois.edu

Abstract

Acoustic variation brought about by V-to V
coarticulation needs to be perceptually compen-
sated by listeners, the lack of which results in a
language developing vowel harmony. This could
either be mechanico-inertial where the articula-
tory gestures of V1 perturb the V2 vowel space, or
anticipatory where the planning of the following
vowel perturbs the space of the former. Khalkha
Mongolian exhibits vowel-feature sharing of two
kinds: [ATR] and Round. In this paper we ex-
amine non-harmonic sequences in Mongolian to
verify coarticulatory directionality and propen-
sity. The results show that these non-harmonic
sequences exhibit a directionality and propensity
which is quite the opposite of those in harmonic
sequences. This finding suggests that coarticula-
tion works as an antithetical force in non-harmonic
patterns, the primary motive of which would be to
maintain contrast.

1 Introduction

Continuous acoustic variation in speech is un-
derstood to be brought about by overlapping ar-
ticulatory gestures (Öhman, 1966). Vowel-to-
Vowel (V-to-V) coarticulation is a special case of
non-contiguous coarticulation which helps model
acoustic patterns resulting from anticipatory artic-
ulatory planning on the one hand, and carryover
coarticulation on the other. Acoustic variation in
speech could also be attributed to vocal tract shape
differences, size, shape, and density of the seg-
mental inventory (Manuel, 1990; Manuel, 1999).
A uniform way of understanding the variation has
been to locate it in the dynamic and kinematic dif-
ferences in articulatory overlap. These differences
have been modelled variously in space and time
(Kirchhoff and Bilmes, 1999; Deng et al., 2006).
In V1CV2 sequences, the standard assumption has

been that the acoustics of V1 is perturbed by the
anticipatory production planning of V2 gestures,
while the mechanico-inertial properties of artic-
ulatory gestures of V1 are known to be respon-
sible for the acoustic perturbation of V2. Coar-
ticulatory acoustic variation in V-to-V sequences
once phonologized are known to provide the con-
ditioning for the development of vowel harmony
patterns (Przezdziecki, 2000; Ohala, 1994). Typ-
ically, in non-harmonic languages, acoustic vari-
ation resulting from coarticulation is perceptually
compensated by listeners. Lack of such percep-
tual compensation has been shown to be responsi-
ble for the development of vowel harmony patterns
(Beddor et al., 2002).

Coarticulatory propensity is the spatial and tem-
poral extent of coarticulation between or across
segments. Broadly speaking, coarticulatory re-
sistance or the intrinsic resistance to coarticula-
tion that segments with variable articulatory ges-
tures possess has also been shown to affect acous-
tic variation (Martin and Bunnell, 1981; Recasens,
1984). Nature and extent of coarticulation is
also governed by language specific properties such
as syllable structure (Manuel, 1999), coarticula-
tory resistance of the intervening consonant in V-
to-V segment sequences (Recasens et al., 1995).
In addition, the nature of contrast between seg-
ments has also been shown to affect the magnitude
of coarticulation in V-to-V sequences, especially
in languages that exhibit vowel harmony of the
type where distinctive features are shared between
vowels (Dutta et al., 2017) and in those where
vowel harmony results in vowel copying (Dutta et
al., 2016).

While there has been a substantial amount of
work on V-to-V coarticulation in both harmony
and non-harmony languages, in this paper we ex-
amine the magnitude and extent of V-to-V coartic-
ulation in Khalkha Mongolian. Khalkha Mongo-
lian exhibits both Advanced Tongue Root [ATR]

356

harmony and rounding harmony. Unlike, suffixal
harmony systems like Assamese (Mahanta, 2008),
Bengali (Shamim, 2011), and Telugu (Wilkinson,
1974; Kissock, 2009) where the direction of the
harmony is right-to-left, Khalkha, primarily, but
not exclusively is a stem internal harmony sys-
tem where the direction of the harmony proceeds
from left-to-right. Specifically, we examine the ef-
fect of formants from V1 on V2 and vice-versa
using a set of linear fixed effect model. We ob-
serve that the direction of coarticulation in non-
harmonic sequences is greater in the anticipatory
direction which is opposite to the direction of suf-
fixal vowel harmony in Khalkha Mongolian. We
also find this effect only in the F1 values and not in
the F2, which suggests that the coarticulatory for-
mant perturbation runs in the tongue height dimen-
sion and not in the tongue front-back dimension.
In section 2, we present a detailed phonological
account of the vowel harmony system in Khalkha
Mongolian. Following that in section 3, we pro-
vide details of our experimental methodology and
speech materials. In section 4, we present the pri-
mary findings of our study, and we conclude in
section 5 by motivating the need to understand the
nature of vowel contrasts that mitigate the coartic-
ulatory propensity and directionality, especially in
vowel harmony languages.

2 Vowel Harmony in Khalkha Mongolian

Vowel harmony is a phonological process that
restricts the co-occurrence of vowels (usually)
within a non-compound word. The Mongolian
vowel inventory is unevenly distributed in fea-
tures, consisting of seven vowels i, e, a, o, O, u
and U. These can be classified as pharyngeal: i,
e, u, o and non-pharyngeal:a,U, O. As can be no-
ticed, i does not have a pharyngeal counterpart.
We find two types of vowel harmony in Khalkha
Mongolian : [ATR] and Rounding. It affects roots
as well as derivational/inflectional suffixes. While
the initial vowel is assumed to be specified, the
non-initial vowels can be underlyingly /i/, /E/, or
/U/. The archiphonemes /U/ and /E/ have missing
features that are filled in through vowel harmony.
/U/ undergoes just [ATR] harmony, becoming ei-
ther /u/ or /U/, while, /E/ undergoes both [ATR]
and [round] harmony, becoming /e/, /a/, /o/, or /O/
(Godfrey, 2012).

2.1 [ATR] Harmony
ATR Harmony distinguishes tense and lax vowels
in Mongolian, which Svantesson (2005) refers to
as ‘pharyngeal’ and ‘non-pharyngeal’. Vowels in
non-compound words must share values for [+/-
ATR], depending on the root/stem vowel (at the
morpho-phonemic level).

• Trigger vowels: o, O, u, U, a, e (in initial po-
sitions)

• Target vowels: Archiphonemes /E/ and /U/

Alternations:

• /E/: /e/, /a/, /o/, or /O/

• /U/: /u/, or /U/

The vowel i in the initial syllable also forces the
following vowels in the non-compound word to be
[+ATR] (Svantesson, 1985).

In Nevins (2010) and Godfrey (2012), the har-
mony is conceptualized as a search-copy mecha-
nism by ‘needy’ vowels instead of there being har-
mony ‘trigger’s. In [ATR] harmony, the search
proceeds leftward and looks for the nearest con-
trastive instance of [ATR]. Once found, the value
is copied. If none is found, default [+ATR] is in-
serted.

2.2 Rounding Harmony
This phonological process influences vowels to
surface as rounded when the neighbouring vowel
(the root/stem vowel for Khalkha Mongolian) is
rounded. However, in most cases, conditions re-
ferring to tongue body position (height and/or
backness) are imposed on either the triggering el-
ement, the target, or both (Kaun, 1995).

In Khalkha Mongolian, we observe two condi-
tions for rounding harmony:

• The trigger must be nonhigh.

• The trigger and target must agree in height.

This kind of a system is similar to one seen in
Sibe, a Tungusic language of China (Li., 1996).

• Trigger vowels: /o/, and /O/

• Target vowels: Archiphoneme /E/

The archiphoneme /E/ surfaces as open rounded
vowels o, or O in the non-initial syllable when pre-
ceded by the same vowel. An open vowel that fol-
lows a non-open rounded vowel (u, u) must be un-
rounded (e or a) (Svantesson, 1985)

357

2.3 Transparent i

Transparent vowels are those vowels that may in-
tervene between the trigger and the target of har-
mony even when they bear the opposite value
for the harmonizing feature (Benus, 2010). Non-
initial i in Mongolian is transparent, i.e., it is com-
pletely ignored by vowel harmony; neither does it
participate in vowel harmony, nor does it block the
process. i is the only vowel phoneme that is fully
specified in non-initial vowels.

Example:
/po:r-ig-E/ po:r-ig-o *po:r-ig-e
(gloss) ’kidney-ACC-RFL’

In Benus (2010), phonetic and phonological in-
vestigation of transparent vowels under a dynamic
model show that transparent vowels are in fact
integral parts of harmonic domains. The pho-
netic properties of transparent vowels get inte-
grated over phonological selection of suffixal vow-
els.

2.4 Opaque u and U

Opaque vowels, in contrast, require a local agree-
ment relationship between the trigger and the tar-
get, i.e. there can be no intervening vowel (Be-
nus, 2010). In Khalkha, intervening non-open ve-
lar vowels block rounding harmony. Not only are
they not affected by vowel harmony, they also pre-
vent rounding harmony to spread across them.

Example:

/Or-Uŋ-ŋE/ Or-Uŋ-ŋa *Or-Uŋ-ŋO
(gloss) ’enter-CAUS-DPST’

This opacity, however, is restricted to rounding
harmony; these segments don’t behave so in the
process of [ATR] harmony (Godfrey, 2012). Pho-
netic factors have also been implicated in ground-
ing the phenomenon of opacity in ‘tongue root
harmony systems (Archangeli and Pulleyblank,
1994).

3 Materials and methods

Four female native Khalkha Mongolian speakers
were recorded at The EFL University. The mate-
rial block consisted of fifty-nine target words and
six distractors in carrier phrases of the type “pi
<target word/distractor> gesen”. Four repetitions
of each block were recorded for all speakers with

a five minute break within each block. Record-
ings were conducted in a quiet environment. The
total number of critical items was 59*4*4=944.
The data was presented to the speakers in Cyril-
lic script. The recorded speech was segmented
and annotated manually in Praat (Boersma and
Weenink, 2009).

Ten vowel formants from each V1CV2 sequence
were extracted using a Praat script (Boersma and
Weenink, 2009) FormantPro (Xu, 2007 2015). Ex-
tracted formants where normalized by using the
Lobanov method to eliminate specific speaker ef-
fects (Lobanov, 1971).

FN
n[V] =

(Fn[V] −MEANn)

Sn
(1)

Where FN
n[V] is the normalized value for formant

n of vowel V. MEANn is the mean value for for-
mant n for the speaker in question and Sn is the
standard deviation for the speaker’s formant n.

Linear Mixed Effects model from the lme4
package in R (Bates et al., 2015) was implemented
on the formant data to ascertain the effects of
the distal and proximal formants on coarticula-
tion. Distal formant data consisted of F1 and
F2 data from vowel midpoints representing the
steady-state formants where the V-to-V coarticu-
lation effects are most distal from the formant per-
turbations due to the intervening consonant. Prox-
imal formant data consisted of F1 and F2 data from
vowel offsets of V1 and vowel onsets of V2.

4 Statistical analyses and results

Vowel F1 and F2 plots on an X-Y euclidean plane
where plotted using the PhonR package (McCloy,
2016). The formant data visualizations provided
information about the relative positions of the
vowels and the areas of the vowel polygons for V1

and V2. In Fig.1 below the left panel represents
the steady-state positions and the vowel area poly-
gons for V1 and the right panel represents the same
for V2. We make two observations with respect to
the relative positions and the polygonal areas. The
mid-front vowel e is raised and is overlapped sig-
nificantly with the high front vowel i, while the e
is lower than the i. This pattern suggests that the
F1 and F2 values of e are perturbed by the pres-
ence of a high vowel in the V2 position, which in
turn implies a stronger anticipatory effect, at least
for the vowel e.

358

F2

F1

2 1 0 −1 −2

4

3

2

1

0

−1

−2

i

....

e

a:

..

u

a

..e:

....

u:u..

..:o

a..

e..

..:

i:

F2

F1

2 1 0 −1 −2

4

3

2

1

0

−1

−2

e

a..

i

....

u:

o
i..e:e..

..

u..
..

a

....

i:

Figure 1: Steady state distal formants: Vowel el-
lipses and polygons from V1T6, i.e., V1 mid-point
(Left panel) and V2T5; i.e.,V2 mid-point (Right
panel)

In Fig.2, the left panel represents proximal posi-
tions and vowel area polygons for V1 and the right
panel represents those for V2. It shows that in spite
of more overlapping effect due to the presence of
a consonant, the polygon area of V1 is still larger
than that of V2. From this, we make the observa-
tion that the effect of V2 on V1 is robust across
their different positions in time (vowel-mid posi-
tion, onset and offset). In Table 1., we present the
vowel polygon areas from these models (distal and
proximal). The values show that for all subjects,
the vowel polygon area for V1 is larger in compar-
ison to that of V2.

F2

F1

2 1 0 −1 −2

4

3

2

1

0

−1

−2

i
....

e

a:

..

u

a

..e:

....

u:u..
..:o

a..

e..

..:

i:

F2

F1

2 1 0 −1 −2

4

3

2

1

0

−1

−2

e

a..

i

....

u:
oi..e:e..

..

u....

a
....

i:

Figure 2: Proximal formants: Vowel ellipses and
polygons from V1T6, i.e., V1 mid-point (Left
panel) and V2T5; i.e.,V2 mid-point (Right panel)

We present results from a linear mixed effects
model which tested the variable and mutual ef-

Table 1: Vowel polygon areas of V1 and V2 from
distal and proximal formant measures

fect of F1 and F2 values from distal and proximal
V positions in order to quantify the coarticulatory
propensity in non-harmonic V1CV2 sequences.

In the first model, we test the effect of F1 from
T5 of V2 and a fixed effect of V2 on the F1 from V1

at T6. This model returns a t=3.543 with no sig-
nificant effect of V2. In the second model, we test
the effect of F1 from T6 of V1 and a fixed effect of
V1 on the F1 from V2 at T5. This model returns
a t=3.233 and a t=2.185 for vowel V1, /u:/. Here
Subject and Item function as random effects. Our
results indicate that there is significant covariation
of F1 values with slightly greater effect of V2 on
V1 suggesting that the directionality of coarticula-
tion as seen in the F1 values is in the anticipatory
direction, which is opposite to the direction of the
suffixal harmony system in Khalkha Mongolian.
Similar models on F2 do not show significant ef-
fects, with t=-0.044 and t=-0.020 for F2 of V1 at
T6 and F2 of V2 at T5, respectively.

5 Contrast and coarticulatory propensity
in vowel harmony systems

Stem-internal and stem + suffix harmonic se-
quences in Mongolian exhibit a left-right direc-
tionality. Lack of perceptual compensation (Bed-
dor et al., 2002) is known to contribute to the de-
velopment of vowel harmony systems, to the ex-
tent that it might regress to a radical case of vowel-
copying, such as in Telugu (Dutta et al., 2016;
Kissock, 2009; Sailaja, 1999). In this paper, we ar-
gue that in non-harmonic Khalkha Mongolian se-
quences the coarticulatory propensity is greater in
the anticipatory direction, opposite to the direction
of both ATR and rounding harmony, in an effort
to maintain contrast, where harmonic sequences
may lead to contrast obliteration in terms of fea-
tural neutralization. The directionality of coartic-
ulatory propensity, also suggests that articulatory
planing seeks to preserve contrast. Unlike the in-
tuitive notion of coarticulation as a force that con-
trives against contrast, Mongolian shows that it
might also be one that does not, and indeed it aug-

359

ments the force of contrast. Coarticulation could
be viewed as a force that is not merely function-
ing at the production end of language but also at
the planning end. In vowel harmony languages,
where lack of perceptual compensation for coar-
ticulatory acoustic variation may have lead to the
development of complex feature sharing in V-to-
V contexts, the V-to-V coarticulation patterns in
non-harmonic sequences seek to enhance contrast
by providing perceptual advantage through vari-
able coarticulatory propensity.

References
D. Archangeli and D. Pulleyblank. 1994. Grounded

Phonology. Current Studies in Linguistics. MIT
Press.

Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects mod-
els using lme4. Journal of Statistical Software,
67(1):1–48.

Patrice Speeter Beddor, James D. Harnsberger, and
Stephanie Lindemann. 2002. Language-specific
patterns of vowel-to-vowel coarticulation: acoustic
structures and their perceptual correlates. Journal of
Phonetics, 30(4):591 – 627.

S. Benus. 2010. Dynamics and Transparency in Vowel
Harmony. Universal Publishers.

Paul Boersma and David Weenink. 2009. Praat: doing
phonetics by computer (version 5.1.13).

Li Deng, Dong Yu, and Alex Acero. 2006. A bidi-
rectional target-filtering model of speech coarticu-
lation and reduction: Two-stage implementation for
phonetic recognition. Audio, Speech, and Language
Processing, IEEE Transactions on, 14(1):256–265.

Indranil Dutta, S Irfan, and KRS Harsha. 2016. Using
ANNs for vowel identification from V-to-V coartic-
ulation in non-harmonic VCV sequences. Presented
at the 15th Conference on Laboratory Phonology,
Ithaca, NY.

Indranil Dutta, Irfan S., Pamir Gogoi, and Priyankoo
Sarmah. 2017. Nature of contrast and coarticu-
lation: Evidence from Mizo tones and Assamese
vowel harmony. In Proceedings of Interspeech
2017, pages 224–228.

Ross Godfrey. 2012. Opaque intervention in Khalkha
Mongolian vowel harmony: A contrastive account.
Technical report, McGill Working Papers in Lin-
guistics, Volume 22.1,Winter 2012.

Abigail R. Kaun. 1995. The Typology of Round-
ing Harmony: An Optimality Theoretic Approach.
Cambridge University Press.

Katrin Kirchhoff and Jeff A Bilmes. 1999. Statisti-
cal acoustic indications of coarticulation. In Proc.
ICPhS, volume 99. Citeseer.

Dworak Kissock. 2009. Telugu vowel assimilation:
Harmony, umlaut, or neither? In Proceedings of the
Seventeenth Manchester Phonology Meeting.

Bing Li. 1996. Tungusic vowel harmony: description
and analysis. Holland, Institute of Generative Lin-
guistics, Amsterdam.

B. M. Lobanov. 1971. Classification of Russian vow-
els spoken by different speakers. The Journal of the
Acoustical Society of America, 49(2B):606–608.

Shakuntala Mahanta. 2008. Directionality and lo-
cality in vowel harmony: With special reference to
vowel harmony in Assamese. Netherlands Graduate
School of Linguistics.

S. Manuel. 1990. The role of contrast in limit-
ing vowel-to-vowel coarticulation indifferent lan-
guages. Journal of the Acoustical Society of Amer-
ica, 88:1286–1298.

S. Manuel. 1999. Cross-language studies: Relating
language-particular coarticulation patterns to other
language-particular facts. In W. Hardcastle and
N. Hewlett, editors, Coarticulation: Theory, data
and techniques. Cambridge University Press.

James G. Martin and H. Timothy Bunnell. 1981.
Perception of anticipatory coarticulation effects.
The Journal of the Acoustical Society of America,
69(2):559–567.

Daniel R. McCloy. 2016. Tools for phoneticians and
phonologists phonR. R package version 1.14.4.

Andrew Nevins. 2010. Locality in vowel harmony,
volume 55. MIT Press.

John J Ohala. 1994. Towards a universal, phonetically-
based, theory of vowel harmony. In Third Interna-
tional Conference on Spoken Language Processing.

Sven EG Öhman. 1966. Coarticulation in vcv ut-
terances: Spectrographic measurements. The Jour-
nal of the Acoustical Society of America, 39(1):151–
168.

Marek Przezdziecki. 2000. Vowel harmony and
vowel-to-vowel coarticulation in three dialects of
Yoruba. Working Papers of the Cornell Phonetics
Laboratory, 13:105–124.

Daniel Recasens, Jordi Fontdevila, and Maria Dolors
Pallarès. 1995. Velarization degree and coarticula-
tory resistance for /i/ in Catalan and German. Jour-
nal of Phonetics, 23(1–2):37 – 52.

Daniel Recasens. 1984. Voweltovowel coarticulation
in catalan vcv sequences. The Journal of the Acous-
tical Society of America, 76(6):1624–1635.

360

P Sailaja. 1999. Syllable structure of Telugu. 4:743–
746.

Ahmed Shamim. 2011. A reanalysis of Bengali vowel
assimilation with special attention to metaphony.
Master’s thesis, Graduate Center, City University of
New York.

Jan-Olof Svantesson. 1985. Vowel harmony shift in
Mongolian. Lingua, 67(1985):283–327.

Jan-Olof Svantesson. 2005. The Phonology of Mongo-
lian. Oxford University Press Inc, New York.

Robert W Wilkinson. 1974. Tense/lax vowel harmony
in Telugu: the influence of derived contrast on rule
application. Linguistic Inquiry, pages 251–270.

Yi Xu. 2007–2015. Formantpro.praat.

361

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 362–372

Developing Lexicon and Classifier for Personality Identification in Texts

1
Kumar Gourav Das

2
Dipankar Das

1
Department of Computer Science and Engineering

Future Institute of Engineering & Management, Kolkata, India
2
Department of Computer Science and Engineering

Jadavpur University, Kolkata, India
1
kumargouravdas18@gmail.com,

2
dipankar.dipnil2005@gmail.com

Abstract

Personality, an essential foundation of human

behavior is difficult to identify and classify

from texts because of the scarcity of explicit

textual clues. Several works were attempted

for personality identification by employing

well-known lexicons like WordNet, Senti-

WordNet, SenticNet etc. However, a lexicon

solely devoted for identifying different types

of personality is rare. Thus, in the present ar-

ticle, we have discussed the methodologies to

develop a personality lexicon from the Essay

dataset, a personality corpus based on Big

Five model. We have used a frequency based

N-gram approach to extract the unique words

as well as phrases with respect to each of the

Big Five personality classes. In addition to the

words, we have added another feature, corpus

based probability of occurrence into the lex-

icon. Finally, we have evaluated our lexicon

on a small Youtube personality dataset and

found satisfactory coverage. In addition, we

have developed a LIWC based classification

framework by employing several machine

learning algorithms followed by feature selec-

tion using information gain and correlation

techniques. SVM and Logistic Regression

achieved the maximum accuracies of 78.52%

and 62.26% with a reduced set of feature size

15 and 10 selected by information gain and

correlation attribute evaluation, respectively.

1 Introduction

Personality refers to the individual differences in

characteristic patterns of thinking, feeling and be-

having. Personality is considered as the most diffi-

cult human attribute to understand. Personality

traits are traditionally measured through the use of

questionnaires such as the Big Five Inventory

(BFI) (Tett and Rothstein ,1991). However, an

alternative approach is to analyze an individual„s

linguistic differences. Personality of a person is

reflected in his behavior and speech which indi-

rectly affects the job performance, one‟s effective-

ness in work. Not only in jobs, there are so many

other applications where we can use the advantage

of personality identification including social net-

work analysis e.g., Twitter (Pratama and Sarno,

2015), Facebook (Golbeck and Turner ,2011)

(Alam Firoj and Ricardi, 2013) (Iacobelli Culotta,

2013), recommendation systems (Golbeck and

Turner, 2013), sentiment analysis/opinion mining,

Author Profiling (Rangel Pardo and Daele-

mans,2015), construction of emotion lexicon (

B.G. Patra et al,2013)and many others. Personality

is correlated with many other aspects of our daily

life such as job success (R.P. Tett et al,1991), ma-

rital happiness (E.L. Kelly et al, 1987) too. Now,

the recent trend is automatic identification of per-

sonality from some text or audio or may be video

also. We can identify personality from various sin-

gle modes (audio, video, texts etc.) as well as in

multimodal way.

However, due to scarcity of proper audio

dataset based on personality, we have started our

experiment only on text dataset. We have used two

standard text dataset, Essay (Pennebaker,et al.

1999) and Youtube (J.I. Biel et al., 2013).

Personality research is being nurtured as a

developing field and only few works have been

done till date. There are lexicons like SentiWord-

Net 3.0 (S. Baccianella et al, 2010), LIWC

(Y.R.Tausczik et al, 2010) (F. Mairesse et al,

362

2007), Senticnet 3.0 (Cambria et al, 2012) etc.

which help in identifying personality. However, to

the best of our knowledge, there is no open source

lexicon that contains words/phrases of a particular

type of personality. Thus, one of our prime motiva-

tions is to develop lexicons for each of the Big

Five personality type, separately.

In the present work, we have classified

personality obtained from the written text based on

the model of Big Five personality classes. The Big

Five personality model is considered as a standard

model for personality traits. This Big Five perso-

nality model has been used in many personality

detection research works as they help in develop-

ing several applications.

According to Big Five model, personality

is assessed in five dimensions of OCEAN –

a. Openness (inventive, curious)

b. Conscientiousness (organized, efficient, sincere)

c. Extroversion (energetic, sociable)

d. Agreeableness (friendly, trustable and compas-

sionate)

e. Neuroticism (apprehensive, sensible)

 In the present work, we have developed

a lexicon of words and phrases corresponding to

each of the Big Five personality classes. However,

we have restricted ourselves to find only those

words that belong to only one particular class of

personality and not in any other class. The ap-

proach used in this work is fully automated and no

manual or human interaction has been carried out.

The hypothesis considered is a two tier filtration

strategy; first, we identified the distinct words of

each personality class that do not belong to any

other class by using the set disjoint operations. Us-

ing this approach, we have obtained four different

sets of words and phrases corresponding to each of

the Big Five personality classes. Thereafter, we

have considered the intersection of four different

set of words and phrases as previously obtained

and formed a lexicon for each personality class.

We have used a n-gram method where in case of

unigrams, we have obtained unique set of words

and in case of bigrams and tri-grams, we extracted

a unique set of phrases. Finally, the probability of

each word or phrase has been calculated in order to

add the occurrence probability information into

the lexicon. In addition, we have explored the

LIWC tool and developed a classification module

for identifying and classifying the instances of both

Essay dataset and Youtube personality dataset

with a reduced set of features identified using in-

formation gain and correlation based techniques.

The rest of paper is organized as follows. In Sec-

tion 2, we have discussed the related work ,in Sec-

tion 3 we have discussed about the dataset and

preprocessing . Section 4 describes the lexicon de-

velopment whereas Section 5 describes the deve-

lopmental phases of LIWC based classification

module. Finally, Section 6 mentions the observa

tions and comparisons followed by conclusions

and future work.

2 Related Work

Correlation between linguistic clues and personali-

ty traits have been identified to discover the way

for carrying research in the area of automatic per-

sonality classification. We mainly focused on clas-

sifying personality traits based on text due to

scarcity of multimodal dataset. To the best of our

knowledge, the field be in its infancy. Though sev-

eral researchers have started their struggles in iden-

tifying personality from text by adopting various

approaches, n-gram always has a huge impact in

most of the cases (J.Oberlander et al, 2006).

 We extracted linguistic features from essay da-

taset using a text analysis tool, Linguistic Inquiry

and Word Count (LIWC), (F.Mairesse et al. 2007),

(G.Sidorov2006). Several authors used the LIWC

tool for identifying the impacts of different linguis-

tic features on different personalities as discussed

in (Yla R.Tausczik et al, 2009), (F. Mairesse et al,

2007). LIWC is a text analysis tool that counts and

sorts words based on their psychological and lin-

guistic category. NRC is another lexicon that con-

tains more than 14000 distinct words annotated

with 6 emotions like anger, fear, sadness, joy, dis-

gust and surprise along with two types of senti-

ments like positive and negative. The NRC lexicon

has been used in other related work on personality

where the authors explored the features of NRC

and LIWC both (Mohammad et al., 2013) (G. Far-

nadi et al, 2014). MRC is a psycholinguistic data-

base that contains psychological and distributional

information of more than 150,00 words annotated

with 14 features like phonemes (Nphon), syllables

(Nsyl)(Coltheart, 1981) .

 On the other hand, rough set based machine

learning techniques have been used for personality

identification (Gupta et.al 2013) whereas Naïve

Bayes, KNN and SVM were also employed for

363

personality identification on Twitter texts (B. Y.

Pratama et al. , 2015). A few authors have also in-

vestigated the age and gender related information

from formal texts (Burger, J.D, 2011).

In contrast to such previous attempts, in the

present work, we aimed to develop a personality

lexicon of five different Big Five classes where the

words even phrases are categorized according to

the Big Five personality model. It has to be men-

tioned that one of our strict criteria that has been

followed here is that no word or phrase of a partic-

ular personality class should mingle with words of

other personality class. The words are also asso-

ciated with their probability scores which make the

lexicon useful for classifying personality from

texts. Moreover, we have used information gain

and co-relation techniques to conduct the feature

ablation study for developing a personality clas-

sifier also.

3 Dataset and Preprocessing

In order to start with our experiments, we have

used two text datasets. For developmental purpose,

we have used the Essay dataset (Pennebaker, J. W.,

2007) and for testing the coverage and perfor-

mance evaluation purpose, we have used the You-

Tube dataset (J.I. Biel, 2013). Huge number of

researchers used these two datasets to develop and

test various personality detection models. Thus, we

have considered these two as our gold standard

datasets.

3.1 Eassy Dataset

Essay dataset (Pennebaker, J. W., 2007) is a large

dataset that consists of 2468 text documents la-

beled with personality classes. The labeled perso-

nalities are based on the classes of Big Five

personality traits. The classes are Openness (O),

Conscientiousness(C), Extraversion (E), Agreea-

bleness (A) and Neuroticism (N).

3.2 Youtube Dataset

Youtube personality dataset (J.I. Biel, 2013) con-

sists of a collection of speech transcriptions, and

personality impression scores of 404 YouTube us-

ers. These files are also tagged with the Big Five

personality classes. Their speeches were tran-

scribed by professional annotators and the tran-

scriptions contains approximately 10K unique

words and 250K word tokens.

3.3. Preprocessing Text

3.3.1. Labeling

We have started our experiments by considering

each and every personality class separately because

we were trying to find out unique words or phrases

with respect to each of the Big Five personality

classes. For that very reason, at first, we consi-

dered only those files that belong to only one spe-

cific class. Each character of such a tuple of five

represents each of the Big Five personality classes

(e.g.Openness -Y, Conscientiousness -N, Extro-

version-N,Agreeableness-Y,Neuroticism-N)

represents the instance belongs to Openness and

Agreeableness). The basic steps of pre-processing

are mentioned below.

3.3.2. Lower case conversion

Change the whole text into lower case so as to

maintain consistency in our further approaches.

3.3.3. Tokenizing

Change each of the sentences into a collection of

single words.

3.3.4. Filtering

We have eliminated the stop words and numbers

because stop words are common words that have

no meaning but are compulsory to maintain the

grammatical structure of language (e.g., is, am

are). At first, we find out the count, i.e. the number

of texts that belong to only one specific personality

class and then the total number of texts that belong

to that specific class irrespective of whether the file

belongs to other classes or not. Then, we count the

total number of phrases and words for both these

two types of classes and calculated the percentage

of occurrence of phrases and words in one specific

personality class.

4 Lexicon Developing Module

We assumed that the words people use in their dai-

ly life reveals important aspects of their social and

psychological uniqueness. Our objective is to ex-

plore different methods to find out words that are

commonly used by the people belonging to a par-

ticular personality class. Therefore, we designed

the n-gram module to identify the words or phrases

that distinguishingly classify an instance of that

particular class.

364

4.1 N-gram Module

We developed a lexicon for different personality

classes that contains not only unigrams but bi-

grams and trigrams also. The distinctions between

linguistic styles and linguistic contents can be seen

in how two people may make a simple request.

E.g., “Would it be possible for you to give me a

glass of water?” and “Give me a glass of water”

both the sentences express the speaker‟s desire for

water and direct the listener‟s action. However, the

two utterances also reveal the speaker‟s personali-

ty. N-gram feature would help us to find the unique

words of each and individual personality type.

Thus, in order to find the unique words of each

personality class, we carried out different levels of

experiment. We try to find out those texts that be-

long to a specific personality class using Equation

1.

 Fig 1: Equation for unique word count

Consequently, the frequencies of those

unique words have been estimated. It was observed

that stop words do not help in detecting the perso-

nality. Thus, the stop words were removed for

counting the unigrams only but, for bigrams and

trigrams, the stop words were not removed as bi-

grams and trigrams were considered to be our po-

tential repositories of personality phrases. Initially,

we estimated top 300 n-grams for each class. Then,

using equation 1, we calculated the n-grams that

belong to only that class. Next, the same process is

repeated for obtaining top 500 and 1000 n-grams.

Similarly, the unique words of other personality

classes were also calculated.

E.g., a few instances of the lexicon formed

for each of the Big Five personality classes along

with their frequencies are “strange” that occurs in

openness class 18 times, “suppose” that occurs in

agreeableness class 14 times. The bigram “really

don’t” occurs in Neuroticism class 32 times. The

trigram “I don’t know occurs” in Extrovert class

40 times etc.

 #S1-Top 300 n-grams, #S2-Top 500 n-grams

 #S3-Top 1000 n-grams

 Fig 2: N-gram counts

4.2 Probability Calculation Module

The lexicon for each of the Big Five personality

classes has been prepared in our previous step.

Next, we need to find the occurrence in terms of

probability of each word based on Equation 2.

𝑷𝒘 =
𝑻𝒖
𝒄

𝑪𝒘
 (𝟐)

𝒘𝒉𝒆𝒓𝒆 , 𝑷𝒘

= 𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝒐𝒄𝒄𝒖𝒓𝒆𝒏𝒄𝒆 𝒐𝒇
𝒂 𝒘𝒐𝒓𝒅 𝒊𝒏 𝒕𝒉𝒂𝒕 𝒄𝒍𝒂𝒔𝒔
𝑻𝒖
𝒄 = 𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒖𝒏𝒊𝒒𝒖𝒆

𝒖𝒏𝒊𝒈𝒓𝒂𝒎 𝒐𝒇 𝒕𝒉𝒂𝒕 𝒄𝒍𝒂𝒔𝒔
𝑪𝒘 = 𝑻𝒐𝒕𝒂𝒍 𝒐𝒄𝒄𝒖𝒓𝒆𝒏𝒄𝒆 𝒐𝒇 𝒕𝒉𝒂𝒕 𝒘𝒐𝒓𝒅

 Fig 3: Equation for counting n-gram probability

 The range of probability is identified by the

lowest and the highest probability scores obtained

for each personality class. For example, if the word

W1 occurs X times in a particular Big Five class

say Z ,and the total number of unique unigram of Z

class is Y, the occurrence probability of that word

W1 is X/Y. The occurrence probability is also cal-

culated for both bigrams and trigrams. The proba-

bilities of unigrams are shown in Figure 3.

 From our experiment, we observed that initially,

we have started our experiment with top 300 n-

grams and as we are interested in finding only

those words that belong to only that specific class,

so we apply two tier filtering. However, in order

0
500

1000
1500
2000
2500

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
2

S
3

UNIGRAMBIGRAMTRIGRAM

N

A

E

C

O

𝑻𝒄= ∩𝒊=𝟏
𝒏

𝒘 (𝜽𝒄 − 𝜽𝒊) 𝒊∈𝒂𝒍𝒍 𝒄𝒍𝒂𝒔𝒔 𝒆𝒙𝒄𝒆𝒑𝒕 𝑪
° (𝟏)

𝒘𝒉𝒆𝒓𝒆 𝑻𝒘
𝒄

= 𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒖𝒏𝒊𝒒𝒖𝒆 𝒘𝒐𝒓𝒅𝒔 𝒐𝒇 𝒂
 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝒄𝒍𝒂𝒔𝒔

𝜽𝒄 = 𝒘𝒐𝒓𝒅𝒔 𝒃𝒆𝒍𝒐𝒏𝒈 𝒕𝒐 𝒂 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝒄𝒍𝒂𝒔𝒔

𝜽𝒊
° = 𝒘𝒐𝒓𝒅𝒔 𝒃𝒆𝒍𝒐𝒏𝒈 𝒕𝒐 𝒕𝒉𝒆 𝒓𝒆𝒂𝒎𝒊𝒏𝒊𝒏𝒈

 𝒇𝒐𝒖𝒓 𝒐𝒕𝒉𝒆𝒓 𝒄𝒍𝒂𝒔𝒔

365

#S1-Top 300 n-grams, #S2-Top 500 n-grams,

#S3-Top 1000 n-grams

 Fig 4: The occurrence probability graph of uni-

gram

to follow this technique, we achieved very less

number of words and phrases. Thus, we contin-

ue our experiments with top 500 and 1000 n-

grams. While increasing the size, we observed that.

#S1-Top 300 n-grams, #S2-Top 500 n-grams,

 #S3-Top 1000 n-grams

 Fig 5: The occurrence probability graph of bigram

#S1-Top 300 n-grams, #S2-Top 500 n-grams,

 #S3-Top 1000 n-grams

Fig 6: The occurrence probability graph of trigram

we have obtained more number of words and

phrases But, we get some words and phrases

whose individual frequency is very less and thus

their occurrence probability is also very less in that

class. Therefore, we can conclude that the words

do not have any influence in classification.

4.3 Evaluation

Now, we want to test it against on another dataset.

For testing, the dataset used is YouTube Dataset. A

simple algorithm for testing is defined in Figure 7.

We have adopted a strict evaluation scheme such

that each of the test documents should belong to

only one personality class. We do not get satisfac-

tory result. Overall we get 35% accuracy.

5 LIWC based Classification Module

The advancements in the field of personality trait

classification till could not answer the question that

which features are most significant for personality

 Fig 7: Algorithm for testing Youtube dataset

classification. Thus, initially, we have started with

some basic approach to build a lexicon for Big

Five personality class. However, we could not

achieve satisfactory results and thereafter we use

LIWC, a widely used text analysis tool to improve

our result.

5.1 LIWC

Linguistic Inquiry and Word Count, is a widely

used text analysis tool to efficiently classify texts.

We extracted 69 features of LIWC for each of the

documents. Then, we tried to reduce the size of the

feature set. The classifiers are then built on the re-

0

0.2

0.4

0.6

0.8

1

MIN MAX MIN MAX MIN MAX

S1 S2 S3

O

C

E

A

N

0
0.05

0.1
0.15

0.2
0.25

0.3

M
IN

M
A

X

M
IN

M
A

X

M
IN

M
A

X

S1 S2 S3

O

C

E

A

N

0
0.05

0.1
0.15

0.2

M
IN

M
A

X

M
IN

M
A

X

M
N

M
A

X

S1 S2 S3

O

C

E

A

N

Step 1. Split the text into sentences.

Step 2. Preprocess the dataset.

Step 3. Categorize each word of a sentence

using Big Five personality lexicon

Step 4. A sentence is classified into one of the

Big Five personality class based on the major-

ity class of the words of that sentence

Step 5. A file is classified into one of the Big

Five personality classes based on the majority

class of the sentences of that file.

366

duced set of features and the performances are

compared with respect to a complete set of fea-

tures. This research aims to show that the useful-

ness of LIWC on personality identification and

how different feature reduction techniques such as

Information Gain, PCA can help in getting better

result for classification.

5.2 Feature Extraction

LIWC was developed by Pennebaker et al., 2007.

It is a text analysis tool that is employed to quanti-

fy features and allowed for text classification and

prediction. LIWC is a dictionary that contains 80

categories. For each file, we consider each word

and search through the dictionary. If the target

word is found in the dictionary, the category count

of that word is incremented. Though the dictionary

contains 80 features, we initially started with our

experiment on 69 features. We count the number

of anger, sad, pronoun, posemo (positive emotion

word), negmo (negative emotion word) etc. Based

on the method, each file of essay dataset was fed

into the LIWC. The output file contains 69 features

and each feature has one of the Big Five personali-

ty traits as the classification label.

5.3 Classification

In order to validate the feature set, a number of

experiments have been performed to evaluate how

accurate they are in predicting Big Five personality

traits. A 10-fold cross validation was performed on

our feature set to assess the accuracy. We tested a

number of popular classification algorithms like

Support Vector Machine (libSvm), SMO, Multi-

layer Perceptron and Simple Logistic Regression.

5.4 Feature Selection

The feature set is reduced by selecting a subset of

original features. The removed features are not

used in classification anymore. One of the aims of

feature selection methods is to determine a subset

of features for which the accuracy is maximized.

5.4.1 Information Gain

As we want to determine which attribute in a given

set of training feature vectors is most useful we use

information gain. Information gain tells us how

important a given attribute of the feature vector is

thus helps in reducing the feature set size while

keeping the accuracy same. One of the most im-

portant contributions of this research is to deter-

mine the most important features among the 69

LIWC features that can used for classifying the Big

Five personality, keeping the accuracy same or

making it better.

By considering the top 10 LIWC features

of Information Gain, the obtained result was not

satisfactory. Then, on increasing the size of the

LIWC feature set with 15 more features, the result

was not improved. Finally with a LIWC feature set

of size 20, the result is nearly the same when com-

pared to the result that is obtained with a LIWC

feature set of size 69. Thus, in future, our aim will

be to strengthen the feature set by extracting fea-

tures from other lexicons like MRC, NRC and oth-

er optimization techniques like PCA.

5.4.2 Correlation Attribute Evaluation

After extracting features using LIWC, we wanted

to reduce the feature set size and that‟s why we

apply Information Gain. Now, we use another fea-

ture reduction technique, Correlation Attribute that

evaluates the worth of an attribute by measuring

the correlation between it and the class.

5.5 Result Analysis

Initially, the experiment has been performed on 69

features. We achieved better result on Libsvm on

radial basis function kernel compared to Libsvm

on polynomial kernel. Next, we tried to reduce our

feature set. We test our result using two feature

reduction techniques, one is Information Gain and

another is Correlation Attribute evaluation. We test

our results in two dataset, one is Essay dataset and

another one is Youtube dataset. In essay dataset,

we obtained very good result (accuracy of 78%)

and in Youtube dataset we achieved 56% accuracy.

In Table 1 and Table 2, we give the details of re-

sult.

5.5.1 Feature Level Analysis

In this experiment, we have observed the influence

of different LIWC features on classification. We

have done our experiment with different variations

of features and tried to analysis the Precession (P),

367

Recall (R) and F-measure (F) to identify the impor-

tance of different features.

From LIWC, we started our experiment with 69

categories of words. Using Information Gain, when

we ranked the attributes, we obtained top 10 fea-

tures like home, we, job, inhib (inhibition), excl

(exclusive) etc. which are very important impor-

tance of different features.

From LIWC, we started our experiment

with 69 categories of words. Using Information

Gain, when we ranked the attributes, we obtained

top 10 features like home, we, job, inhib (inhibi-

tion), excl (exclusive) etc. which are very impor-

tant categories for classification. Then, when we

increase the size, the categories like occup (occu-

pation), leisure, anger are added. Finally, when

we considered top 20 features, we achieved the

best classification result and some important fea-

tures like sad, negmo (negative emotions) which

were added further. Thus, we can say that among

69 features, these features have more importance

than other features.

Using correlation attributes and when we

rank the attribute under top 10 features, we get fea-

tures like smile, you, home, posfeel (positive feel-

ing) etc. Then, increasing size, we obtained

features like friends, time, school, eating etc. Fi-

nally, while considering top 20 features, we

achieved the best result on some features like we,

past, family, achieve, see etc. as mentioned in Ta-

ble 3 and Table 4.

6 Observation and Conclusions

A Personality Lexicon for Big Five Personality

classes have been developed. The main objective is

to find out some unique words that are mostly used

by a particular type of personality. According to

the design module, a lexicon with top 300, 500 and

1000 n-grams has been obtained. Our observation

says when we continue our experiment with top

300 n-grams, the size of our lexicon is small and as

we increase it to 500 n-grams and 1000 n-grams

our lexicon size increases but it also contains

words whose frequency in the text are very less.

On the other hand, in case of calculating

occurrence probability of individual word belong-

ing to a particular personality class, we observed

some issues. When we take top 300 word, the oc-

currence probability is very high and as we take

top 500 and 1000 n-grams, the occurrence proba-

bility decreases. As a result they do not help us

much in classification. Thus, we can conclude that

When we take top 300 n-grams, we get best result.

We developed our lexicon based on Essay

dataset and tested it on YouTube dataset. As there

is no topic related restriction on both dataset, the

datasets contains diverse topics and that makes our

job more difficult for personality identification and

thus to develop a proper lexicon of a personality

class becomes more difficult.

 For development of lexicon, we already

have discussed that we used two levels of filtering

to eliminate all the words except a few which be-

longs to a particular class only. In order to main-

tain this process, we eliminate many words that

may be important for us in classification. For ex-

ample, the frequency of word “Strange” occurs in

Openness class is 239 times and in Extrovert

class is 20 times as because we are interested to

find only those words that belong to Openness

class. We eliminate the word “Strange” from the

lexicon of Openness. As frequency of the words

“strange” is so high in open class, so it may be an

important unigram for the Openness class. So, for

better classification result, we have to apply some

threshold value which can be a future prospective

of thiswork.

By using only n-gram approach we didn‟t

get satisfactory result .Then we use LIWC for clas-

sification and we get very good result. Then we try

to reduce the feature set by reducing the size of the

feature set while keeping the accuracy same. We

then use information gain optimization technique

and reduce the size of the feature set from 69 to 20

while keeping the accuracy same.

368

Table 1: Result Analysis on different size feature set and on different classifier on Essay dataset

Classifier Accuracy (in %)

(Size = 69) (Size = 10) (Size = 15) (Size = 20)

#IG #CRA #I

G

#CRA #IG #CRA #IG #CRA

Libsvm(#1) 56.60 56.60 56.60 56.60 56.60 56.60 56.60 56.60

Libsvm(#2) 45.28 45.28 45.28 47.16 37.73 30.18 41.50 39.62

Multilayer Perceptron 49.05 49.05 56.60 45.23 52.83 47.16 43.39 50.94

Simple Logistic 49.05 49.05 52.83 62.26 58.49 62.26 52.83 60.37

SMO 56.60 56.60 56.60 56.60 54.71 56.60 54.71 56.60

Libsvm(#1):libsvm with on radial kernel. Libsvm(#2):libsvm with on polynomial kernel.#IG: Information

Gain. #CRA: Correlation Attribute.

Table 2: Result Analysis on different size feature set and on different classifier on Youtube dataset

#NOF=number of file, #P=precision, #R=Recall, #F=F-measure.

Table 3: Feature selection using Information Gain and analysis with respect to precession, Recall and F-

measure

 FEATURE #NO

F

#P #R #F

Smile, you, home, sports……………………….senses. 10 0.82 0.73 0.74

Friends, time, school…………………….smile, leisure 15 0.87 0.77 0.79

we, past, family…………..home ,achieve ,school 20 0.88 0.78 0.80

#NOF=number of file, #P=precision, #R=Recall, #F=F-measure.

Table 4: Feature selection using Correlation Attribute and analysis with respect to precession, Recall and

F-measure

Classifier Accuracy (in %)

(Size = 69) (Size = 10) (Size = 15) (Size = 20)

#IG #CRA #IG #CRA #IG #CRA #IG #CRA

Libsvm(#1) 78.52 78.52 78.18 73.48 78.52 77.51 78.52 78.52

 Libsvm(#2) 68.45 68.45 67.11 66.44 67.78 66.77 65.77 65.10

Multilayer Perceptron 63.75 63.75 33.55 35.23 42.61 41.27 47.31 56.71

Simple Logistic 41.94 41.94 30.20 31.87 28.18 32.88 30.20 32.88

SMO 38.92 38.92 25.50 30.53 26.84 31.20 29.86 35.23

Libsvm(#1):libsvm with on radial kernel. Libsvm(#2):libsvm with on polynomial kernel.#IG: Information

Gain. #CRA: Correlation Attribute.

 FEATURE #NOF #P #R #F

Eating, Home, we………………………home, job 10 0.86 0.78 0.79

We, Insight, occup…………………Other, Excl, Anger 15 0.88 0.78 0.80

See, prep, sad, motion………….anger, we, job, home 20 0.88 0.78 0.80

369

References

Alam Firoj, Evgeny A. Stepanov, and Giuseppe

Riccardi. "Personality traits recognition on so-

cial network-facebook." WCPR (ICWSM-13),

Cambridge, MA, USA (2013).

Burger, John D., John Henderson, George Kim, and

Guido Zarrella. "Discriminating gender on

Twitter." In Proceedings of the Conference on

Empirical Methods in Natural Language

Processing, pp. 1301-1309. Association for

Computational Linguistics, 2011.

Biel, Joan-Isaac, Vagia Tsiminaki, John Dines, and

Daniel Gatica-Perez. "Hi youtube!: Personality

impressions and verbal content in social video."

In Proceedings of the 15th ACM on

International conference on multimodal

interaction, pp. 119-126. ACM, 2013.

Biel, Joan-Isaac, and Daniel Gatica-Perez. "The

youtube lens: Crowdsourced personality im-

pressions and audiovisual analysis of

vlogs." IEEE Transactions on Multimedia 15,

no. 1 (2013): 41-55.

Baccianella, Stefano, Andrea Esuli, and Fabrizio

Sebastiani. "SentiWordNet 3.0: An Enhanced

Lexical Resource for Sentiment Analysis and

Opinion Mining." In LREC, vol. 10, pp. 2200-

2204. 2010.

Cambria, Erik, Catherine Havasi, and Amir

Hussain. "SenticNet 2: A Semantic and

Affective Resource for Opinion Mining and

Sentiment Analysis." In FLAIRS conference,

pp. 202-207. 2012.

Farnadi, Golnoosh, Shanu Sushmita, Geetha

Sitaraman, Nhat Ton, Martine De Cock, and

Sergio Davalos. "A multivariate regression

approach to personality impression recognition

of vloggers." In Proceedings of the 2014 ACM

Multi Media on Workshop on Computational

Personality Recognition, pp. 1-6. ACM, 2014.

Gupta, Umang, and Niladri Chatterjee. "Personality

traits identification using rough sets based

machine learning." In Computational and

Business Intelligence (ISCBI), 2013

International Symposium on, pp. 182-185.

IEEE, 2013.

Golbeck, Jennifer, Cristina Robles, and Karen

Turner. "Predicting personality with social

media." In CHI'11 extended abstracts on human

factors in computing systems, pp. 253-262.

ACM, 2011.

Golbeck, Jennifer, and Eric Norris. "Personality,

Movie preferences, and recommendations."

In Proceedings of the 2013 IEEE/ACM

International Conference on Advances in Social

Networks Analysis and Mining, pp.1414-1415.

ACM, 2013.

Hu, Rong, and Pearl Pu. "Enhancing collaborative

filtering systems with personality information."

In Proceedings of the fifth ACM conference on

Recommender systems, pp. 197-204. ACM, 2011.

Iacobelli, Francisco, and Aron Culotta. "Too

neurotic, not too friendly: structured personality

 classification on textual data." In Proc of

Workshopon Computational Personality

Recognition, AAAI Press, Melon Park, CA, pp.

19-22. 2013.

Kelly, E. Lowell, and James J. Conley. "Personalityand

compatibility: a prospective analysis of marital

stability and marital satisfaction." Journal of

personality and social psychology 52, no. 1 (1987):

27

Mairesse, François, Marilyn A. Walker, Matthias R.

Mehl, and Roger K. Moore. "Using linguistic cues

for the automatic recognition of personality in

conversation and text." Journal of artificial

intelligence research 30 (2007): 457-500..

.

Mohammad, Saif M., and Svetlana Kiritchenko.

"Using nuances of emotion to identify personality.

" Proceedings of ICWSM (2013).

Max. Coltheart. 1981. . ”the mrc psycholinguistic

database.””. The Quarterly Journal of Experimental
Psychology ,, 33.

Oberlander, Jon, and Scott Nowson. "Whose thumb is

it anyway?: classifying author personality from

weblog text." In Proceedings of the COLING/ACL

on Main conference poster sessions, pp. 627-634.

Association for Computational Linguistics, 2006.

Pratama, Bayu Yudha, and Riyanarto Sarno.

"Personality classification based on Twitter text

using Naive Bayes, KNN and SVM." In Data and

Software Engineering (ICoDSE), 2015

International Conference on, pp. 170-174. IEEE,

2015.

Pervaz, Ifrah, Iqra Ameer, Abdul Sittar, and Rao

Muhammad Adeel Nawab. "Identification of

Author Personality Traits using Stylistic Features:

Notebook for PAN at CLEF 2015." In CLEF

(Working Notes). 2015.

370

Pennebaker, James W., and Laura A. King. "Linguistic

styles: language use as an individual

difference." Journal of personality and social

psychology 77, no. 6 (1999): 1296.

Patra, Braja Gopal , Hiroya Takamura, Dipankar Das,

Manabu Okumura and Sivaji

Bandyopadhay.”Construction of Emotional

Lexicon Using Potts Model.”In IJCNLP ,pp.674-

679.2013.

Rangel F., Celli F., Rosso P., Potthast M., Stein B.,

Daelemans W. Overview of the 3rd Author

Profiling Task at PAN 2015 . In: Cappellato L.,

Ferro N., Jones G., San Juan E. (Eds.) CLEF 2015

Labs and Workshops, Notebook Papers. CEUR

Workshop Proceedings. CEUR-WS.org, vol. 1391.

Sidorov, Grigori, and Noé Alejandro Castro-

Sánchez. "Automatic emotional personality

description using linguistic data." Research in

computing science20 (2006): 89-94.

Tausczik, Yla R., and James W. Pennebaker. "The

psychological meaning of words: LIWC and

computerized text analysis methods." Journal of

language and social psychology 29, no. 1

(2010): 24-54.

Torii, Yoshimitsu, Dipankar Das, Sivaji

Bandyopadhyay, and Manabu Okumura.

"Developing japanese wordnet affect for

analyzing emotions." In Proceedings of the 2nd

Workshop on Computational Approaches to

Subjectivity and Sentiment Analysis, pp. 80-86.

Association for Computational Linguistics,

2011.

Tett, Robert P., Douglas N. Jackson, and Mitchell

Rothstein."Personality measures as predictors

of Job performance: a meta‐analytic review."

Personnel psychology 44, no. 4 (1991):703-742.

Wilson,Michael, “MRC psycholinguistic database:

Machine usable dictionary,version 2.00”

.Behavior Research Methods 20 .no. 1(1988):

6-10.

371

372

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 373–382

Transfer of Polarity Score for Sentiment Classification in Hindi

Vartika Rai Sakshee Vijay Dipti Misra Sharma
MT-NLP Lab,Kohli Center on Intelligent Systems

International Institute of Information Technology, Hyderabad -India
{vartika.rai,sakshee.vijay}@research.iiit.ac.in

dipti@iiit.ac.in

Abstract

Sentiment analysis in a resource scarce
language is a tedious task. We pro-
pose a novel method for transfer learn-
ing from a target language to English.
Our system doesn’t rely on labeled
data for the target language but in-
stead links itself onto already existing
and extensively labeled word-level lex-
ical resource in English (ESWN1) and
a semantic parser. Our proposed sys-
tem transparently needs no target lan-
guage sentiment corpus, and exploits
complex linguistic structure of the tar-
get language for sentiment prediction.
This cross lingual approach gives net
accuracy as 83.6%, an improvement of
5.4% over the baseline system.

1 Introduction
In late 2000’s, Hindi had least share in terms of
online presence. English and European Lan-
guages had major share on web and social
platforms.But after 2010, its presence has wit-
nessed a sharp growth in web texts, social me-
dia platforms, online personal assertive tools,
etc. There are over 200 million Hindi speak-
ers in north India alone. With more and more
people indulging themselves into using Hindi
as their communication language, this huge
amount of user generated corpus has created
a strong need to exploit Sentiment Analysis of
online web texts . Opinion Mining of these
texts can open a big door to not only this lan-
guage’s and its speakers’ properties but also
the culture and practices of that language.

Sentiment Analysis is a natural language
processing task that tries to identify nature

1http://sentiwordnet.isti.cnr.it/

of opinion in a piece of text. It can be with
respect to a sentence, document or even
aspects in sentences.
Key methods to extract/predict sentiment
can be classified into three types.

• Using Machine Learning - Predicting data
by applying supervised or semi super-
vised approach on features from the text .

• N-Gram Modeling/Bilingual Mappings :
Using N-gram models along with training
data for sentiment prediction.

• Using Subjective Lexicon : A Resource of
words or group of words (phrases) with
a polarity score assigned to each word.
Score in this case points towards the prop-
erties bore by that word for categorization
into positive, negative or neutral.

As Hindi is resource scarce language in terms
of standard and labeled datasets, dependence
on datasets which have low recall and coverage
for classification tasks result in low precision
and accuracy.
To solve this problem, a combination of above
approaches have resulted in what we call
Transfer Learning or Cross Lingual based ap-
proach,which is the task of predicting senti-
ments by testing in text of language L_target
(in this case, Hindi) by using a classifier
trained/labels on the corpus of another lan-
guage L_source(English). This paper adopts
the above approach of transfer learning be-
tween L_target and L_source to predict sen-
tence level sentiment labels in Hindi text. We
propose methods which are combination of

373

above mentioned key methods. Method 1 uses
Machine Learning techniques and classifiers
such as Naive Bayes and SVM in predicting
Sentence level score along with lexical resource
to label data. Method 2 is a complete unsuper-
vised approach which exploits highly accurate
ESWN to label chunk level scores in sentence
and hence calculate sentence level score using
these chunk scores. Method 1 gives overall ac-
curacy of 78.8 % and method 2 results in ac-
curacy of 83.6 %.

2 Challenges

• Weak Lexical Resources: Sufficient
resources like labeled data, Sentiment
Tagged words, tools and annotated data
for Hindi language are not available, and
those which are available are not as good
in coverage and accuracy standard as per
its English counterpart. And Annotated
corpora and tagger for Hindi language
is not as good compared to English lan-
guage, which makes the sentiment analy-
sis task time consuming.

• Free Word Order: Word order plays
important role in polarity detection.
Hindi is a free word order language means
there is no specific arrangement of words
in Hindi language i.e. subject(S), ob-
ject(O) and verb(V) comes in any or-
der whereas English is fixed word order
language i.e. subject-verb-object(SVO).
Word order has a significant role in de-
termining polarity of word and hence of
sentences, documents which it is a build-
ing unit of.Even the slightest variations
and changes in the word order affect the
polarity label.

• Multiple senses: Words in Hindi lan-
guage having same semantic meaning
may occur in multiple contexts, making
it tough to distinguish between senses and
hence pick one of them.

• Morphological Variations: Hindi lan-
guage is morphologically rich which
means that lots of information is incorpo-
rated already in the words as compared
to the English language.

• Co-reference resolution: Analysing
multiple expressions that refer to the
same thing. For example :

– “गीता शाम को Ƞनकली और वह सिĜज़यां खरɍदने
गयी” .

– Transliteration : geeta shaam ko
nikalee aur vah sabziyaan kha-
reedane gayee

– English : Geeta got out in the
evening and she went to buy vegeta-
bles. “वह” also refers to गीता. This
analysis is important while perform-
ing fine grained level sentiment anal-
ysis.

3 Literature Survey
A lot of work has been done until now in the
field of sentiment analysis for Hindi language
with purpose to classify text and create lexi-
cal resource. Existing multilingual and cross
lingual sentiment analysis approaches involve
extension of existing resources through trans-
lation, synset, concept linking to bridge the
gap. Recent methods based on learning com-
mon vector spaces for multiple languages have
also shown promise in some topics.
In terms of creating lexical resources and ex-
tensions, most notable contributions are from
Amitava Das and Bandopadhya [1],in which
they developed sentiwordnet for Bengali lan-
guage by Word level lexical-transfer technique
on English SentiWordNet using an English-
Bengali Dictionary. They also devised four
approaches to predict polarity of a word in [2]

A Fallback strategy was proposed by Joshi
et al. in [3] for Hindi language to create
lexical resource Hindi SentiWordNet (HSWN)
based on its English format. H-SWN
(Hindi-SentiWordNet) by using two lexical re-
sources (English SentiWordNet and English-
Hindi WordNet Linking) with using methods
namely: In-language Sentiment Analysis, Ma-
chine Translation and Resource Based Senti-
ment Analysis. Bakliwal et al.[4] created re-
source using a graph based method .They de-
picted how the synonym and antonym rela-
tions can be used to generate the subjectivity
lexicon by using the simple graph traversal ap-
proach with 79% accuracy on classification of
reviews.

374

A Graph based method was proposed by
Piyush Arora et al. [5] to build a subjective
lexicon for Hindi language, using WordNet as
a graph traversal resource. Small seed list of
opinion words was initially built and by using
WordNet and synonyms and antonyms of the
opinion words were determined and added to
the seed list. An efficient approach was de-
veloped by Namita mittal et al. [6] based on
negation and discourse relation to identifying
the sentiments from Hindi content by improv-
ing Hindi SentiWordNet (HSWN) by adding
more entries. They also created the rules for
handling negation and discourse and 80% ac-
curacy was achieved by their proposed algo-
rithm for classification of reviews.

Various alterations to features in training
set with supervised approaches have been used
in [7] [8] [9] [10] [11] [12] [13]

A simple technique to perform sentiment
classification based on an unsupervised lin-
guistic approach using SentiWordNet to cal-
culate overall sentiment score of each sentence
is expressed in [14].
In terms of approaches which involves cross
lingual methodology,which means training in
source language L_source and testing on
target language L_target, following notable
works have been published. Using an english
dataset, two Hindi language training datasets
are produced with different features by [15].
Balamurali (2012) used WordNet senses as fea-
tures for supervised sentiment classification.
They use the linked WordNets of two lan-
guages to connect the languages. [16]. Deep
learning framework is used in [17] to learn
feature representations for cross lingual ap-
proach.
But all of these approaches require at least
some amount of labeled data and complete in-
house resources with training data, heuristics
in that language and in case of cross lingual
approach, involves dependency on resource of
source language.

4 Experimental Setup

We conducted two experiments, one with de-
pendency on Hindi lexical resource and super-
vised in nature and another unsupervised in
nature with its dependence on lexical resource
in English. For supervised approach, classi-

fiers such as Naive Bayes and SVM are used,
and for unsupervised approach, Google Trans-
late is used translate chunks into L_target En-
glish and then we interlink chunk level senti-
ments to L_source for further processing.

4.1 Datasets
We have used data from following resources

4.1.1 Data Used
• Hindi News Sentences [18]

• English SentiWordnet(ESWN) as a lexi-
cal resource reference. [19]
Entries in this resource is modified as per
need of our task. Hence, for every word,
it matches the POS tag, most common or
most frequent used sense and then returns
score as a tuple, in which first entry is the
positive score of word and second entry is
the negative score.Since we already know
that second entry is the negative score, we
do not necessarily put ’-’ (minus sign) in-
front of it, to indicate its negative nature.

Examples:
– ESWN_Score(good) : (0.75,0.0)

It contains more than 8 senses, but it
returns most commonly used sense.

– ESWN_Score(evil) :
(0.375,0.5) if it occurs as Noun and
(0.0,0.875) if it occurs as adjective.

• Data extracted from websites such as
www.patrika.com/gadgets/
www.amarujala.com/
aajtak.intoday.in/

4.1.2 Resource Contribution
2000 sentences with political domain as its
background have been selected from above
sources and have been manually labeled into
three classes, Positive (P), Negative(N),&
Neutral/Statement (S) on the basis of anno-
tation guidelines.
Example:

लोगȋ को यह एक अċछा ǲवसाय नजर आने लगा ह।ै P
भारत के Ȣलए यह एक बुरा ȟदन साȠबत ɷआ N
नोȟटस पर सुनवाई सोमवार को होगी S

After one round of labeling sentence as
positive,negative or neutral, the data was

375

distributed into couple of more annotators
who also labeled the data according to their
understanding. Hence, each sentence was
labeled by 3 annotators. The sentence with at
least 2 similar label out of 3 were considered
and one more round of annotations were
conducted for them. At the end, the label
having >75% inter annotator agreement were
incorporated. This data also acts as our
evaluation model on experiments mentioned
in this paper.

4.2 Supervised approach using Hindi
lexicon

This experiments uses HSWN to label sen-
tence level polarities. After receiving labeled
sentence level polarities, classifier is run on
this data to predict unseen sentences into one
of the two classes, positive and negative.

4.2.1 Preprocessing
The first task is to run several iterations of
processing on data, in which each given sen-
tence is checked for noise and entries other
than Hindi words.Spelling mistakes are cor-
rected so that parser produces as accurate
parse trees as possible.
In example mentioned below , the original
word in corpus with its translated English
equivalent is mentioned in bracket, and then
, the same word after spelling correction and
its correct English form is mentioned.
1. अभीęन (Abinn) -> अȢभęन (Integral)
2. हाॅलमाकă (H�almark) -> हॉलमाकă (Hallmark)
The final task is appending the missing end
marker of sentence “|”.

4.2.2 Feature Vector from Parser
Each hindi sentence is run through Shallow
Parser 2 which produces a output which con-
tains complete description of the word, its
POS tag, its root form, morphological analysis
and representation in WX notation. At a big-
ger level, chunks are also assigned heads and
they have these properties too. Hence, whole
sentence is now rich with linguistic features of
all its words.
An example of feature set for a single word:
Hindi Word : असुȟवधा (English counterpart :
Inconvenience)

2http://ltrc.iiit.ac.in/analyzer/hindi/

असुȟवधा NN <fs af=’ असुȟवधा ,n,f,sg,3,d,0,0’
name=’asuviXA’>

4.2.3 Enhancing Feature Set
For each word in our parsed data, we incor-
porate not only its linguistic properties but
also its polarity. We use lexical resource
HSWN(Hindi SentiwordNet) [3] to retrieve po-
larities of words.

Algorithm 1
For Each word in Sentence
Search The word in HSWN :
if Present then

append that particular polarity as a fea-
ture into existing feature set
else

locate the English translated version in
ESWN and append that polarity.
end if

While translating, sense in preserved by tak-
ing into account the POS tag. And in case of
multiple senses present in the lexical corpus,
we take into account the most commonly and
frequent used sense. Hence, now we have
a feature set which has both linguistic and
polar properties.
Example :
अċछा JJ <fs af=’अċछा,adj,m,sg„d„’
name='अċछा' posn=’110’,score = ‘0.75,0.0’>

4.2.4 Preparing Training Data
We convert our feature set into a metric of :
1) TF features
2) TF-IDF features.
The weight of a term that occurs in a docu-
ments is simply proportional to the term fre-
quency, while a term’s inverse document fre-
quency (idf) is inverse function of the number
of documents in which it occurs.And,

tfidf(t, d, D) = tf(t, d) · idf(t,D) (1)

Python module Scikit Feature Extraction
Module was used to perform this. Feature
size obtained through this is roughly 20,000
which is pretty large to process with good re-
sults. Hence, we apply dimensionality reduc-
tion techniques such as Principal Component
Analysis(PCA) [20] to reduce the feature size
by 1/4th and the feature set now has a size of
5000.

376

4.2.5 Assigning score to sentence
The net score of sentence is weighted sum-
mation of polarity scores of all of its words.
These weights are designed through special
heuristics which is mentioned below.

A. Negative Dominance
It states that given a sentence, if the sum of
negative polarity of words is greater than 50%
of sum of positive polarity, we classify the
sentence as negative.

B. Chunk Rule
Given a chunk (format in which the sentences
occur in dataset), if a chunk contains a NEG
tag, it reverses the polarity of all the words
and hence the sentence till then.

C. Inflected Case
The equations Given a word with inflected
form, it is not necessary to have its polarity
similar to that of root word and has different
polarity assigned to it in HSWN. But in case,
the inflected word in unavailable, we tend to
derive its polarity from its root word, root
word being detected from the feature vector
produced by shallow parser (the second word
depicting the lemma(root) of the word).

4.2.6 Classifiers
Naive Bayes and SVM are run onto this to
classify sentence as Positive or Negative. Ac-
curacy is measured through manually labeled
corpus mentioned in contribution.

Naive Bayes
A Naive Bayes Classifier is based on Bayes’
theorem and is particularly used when the in-
put dimensions are high. Naïve Bayes classi-
fication is a text classification approach that
assigns the class c to a given document d as :

c∗ = argmaxcP (c/d) (2)

Where P(c|d) is the probability of instance d
being in class c [21].

SVM
Support Vector Machine Classifier constructs
N-dimensional hyper-plane represented by
vector w⃗ which separates data into two cate-
gories.SVM takes the input data and for each
input it predicts the class. SVM can be seen as

a constrained optimization problem, in which
class

cj1, −1 (3)

corresponds to either positive or negative class
that belongs to document dj , the solution can
be written as :
w⃗ =

∑
j αjcjdj , αj >= 0

Where w⃗ is a vector, cj is a class and dj is a
document [22].

4.3 Unsupervised Approach with
Transfer Learning from English to
Hindi

This approach works on the basis that each
sentiment bearing word polarizes the words
near it and hence the polarity around that
word is similar to that of word. So, for
each sentence, we extract chunk based polar-
ity, with assumption that each polarity bear-
ing word/words assign polarity to the whole
chunk, and instead of using lexical resource in
Hindi, we depend on already existing and quite
accurate lexical resource in English, English
SentiWordNet, to extract polarity scores for
those Hindi to English translated chunks and
then we transfer each chunk level score back to
its original Hindi chunk, hence labeling every
Hindi chunk with polarity score one by one.
This approach rules out the dependence on
Hindi labeled data and other resources which
isn’t that rich compared to ESWN.

377

Parsed Tree Example :
1 ((NP <fs af=शाम,n,f,sg,3,d,0मȅ,0 head="शाम">
1.1 शाम NN <fs af=शाम,n,f,sg,3,d,0,0 name="शाम">
1.2 को PSP <fs af=को,psp„„„’>

))
2 ((NP <fs af=मौसम,n,m,sg,3,d,0,0’ head="मौसम">
2.1 मौसम NN <fs af=मौसम,n,m,sg,3,d,0,0’ name="मौसम">

))
3 ((JJP <fs af=अċछा,adj,m,sg„d„ head="अċछा">
3.1 बɷत INTF <fs af=बɷत,n,m,sg,3,d,0,0’ poslcat=”NM”>
3.2 अċछा JJ <fs af=अċछा,adj,m,sg„d„’ name="अċछा">

))
4 ((VM <fs af=हो,v,any,any,any„0,0’ name="हो">
4.1 हो VM <fs af=हो,v,any,any,any„0,0’ name="हो">
4.2 गया VAUX <fs af=जा,v,m,sg,any„या१,yA1’ poslcat=”NM”>

))

Table 1: Shallow Parser Output

4.3.1 Sentence Parsing:
Given a sentence , Shallow parser is run on it,
which gives complete analysis of a sentence in
terms of Part of Speech , Morphology, Chunk-
ing etc. By using these properties, we will be
able to predict overall sentiment score.

Algorithm 2
for Each Sentence S: do

S_parsed = Shallow Parser(S)
end for

For example, given the sentence :
Hindi : शाम को मौसम बɷत अċछा हो गया.
Transliteration : Shaam Ko Mausam Bohot
Achha Ho Gaya
English : Weather got really good in the
evening.
Shallow parser output is shown in Table
1(above)
As seen, the whole sentence can be represented
as group of various chunks, with chunk heads.
We extract these chunks along with their POS
tags, and proceed to chunk processing step.

4.3.2 Chunk Processing Step:
In this step, we have chunks of sentences with
their POS tags. The algorithm for this is :

Algorithm 3
for each sentence S do:

for each chunk C in all chunks of S:
do

Translate(Chunk_hindi)-(Chunk_english)
end for

end for
In this step, each Hindi chunk of a sen-
tence in translated to english,& since we are
translating chunk with max of 5-6 words per
chunk,expected translation error is pretty low
as compared to translation of complete sen-
tence, which will help us to effectively map
sentiments,without using any hindi resource
and with assumption that sentiment remains
constant across these chunks.

4.3.3 Finding Sentiment:
Now, Each sentence S is a group of translated
english chunks(E_Chunks). For each english
chunk, we find its sentiment according to
following algorithm:

Algorithm 4
for for each english chunk C in E_Chunks:
do

for for each word w in chunk C: do
if if word in ESWN and its POS tags

match then
assign score to the word.

else if Word is present but not in
root form then

convert word to its root and go to
step 1

else
378

assign score as 0,0.
end if

end for
end for
This algorithm assigns each word with a spe-

cific polarity taking into account its context as
well. POS tags of words are used to distinguish
between word senses, For example:
In the given phrase, ‘ he has the will to live’,
the word ‘will’ is having NN as its POS tag,
while in the phrase, ‘I will go there tomorrow’,
the word ’will’ has VB tag.

So, it will have different score with respect
to its manner/sense of occurrence in the sen-
tence. Therefore, the POS tags need to match
with the one in lexical corpus to match the cor-
rect sense and therefore attach correct score
to the word. For words with multiple senses
and hence different scores, the most commonly
used sense is used for reference.
After marking each word with polarity score,
we can have two approaches to assign score to
the chunk:

Algorithm 5
if if a chunk contains more than one polarity
bearing word: then

chunk_score = max(score of all polarity
bearing words)
else

chunk_score = score of polarity or opin-
ion bearing word
end if
This step assigns a polarity score to the cur-

rent translated English chunk. Now, we trans-
fer this score back to its original untranslated
chunk, and after retrieving polarity scores all
chunks, we calculate sentence level polarity
by averaging out the chunks’ score with to-
tal number of chunks.
Here, total number of chunks are those which
actually contain any amount of polarity score
and are not completely neutral.
So, an important point to note in this step is
that not every chunk contributes to the over-
all polarity score of a sentence, while some
chunks might have net polarity as (p:0,n:0),
other might not have any polarity score due to
their semantic and syntactic space, and their
strict objective nature.

Example 1(positive label)
• Sentence: ǲापार मȅ बेहतर काम उपभोǘाɛ के Ȣलए

लाभŠद होता है ।

• Transliterated : vyaapaar mein behatar
kaam upabhoktaon ke lie laabhaprad hota
hai

• English : Better work in business is prof-
itable for consumers.

• Chunked: (ǲापार मȅ)_NP (बेहतर काम)_NP
(उपभोǘाɛ के Ȣलए)_NP (लाभŠद)_JJP (होता
ह)ै_VGF �

• English Chunks: (in buis-
ness)_(better work)_(for the con-
sumers)_(profitable)_(happens).

English Chunks Polarity(pos,neg)
in business (0.0,0.0)
better work (0.875,0.0)
for the consumers (0.0,0.0)
profitable (0.25,0.0)
happens (0.0,0.0)

Determining Average Polarity
Net average Polarity = (average positive po-
larity,average negative polarity)

• Average Positive Polarity : sum of all pos-
itive scores in chunks/ number of chunks
having score >0

• Average Negative Polarity : sum of all
negative scores in chunks/ number of
chunks having score >0

Following the mentioned steps,in this case
Average polarity : (0.56,0.0)
Since |positive polarity| > |negative polarity|
Label Generated : Positive

Example 2(negative label)
• Sentence: सही एȟडȫट�ग न होने के कारण ɮसरे ȟहĥसे

मȅ यह Ƞफġम कमजोर हो जाती ह।ै

• Transliterated : sahee editing na hone ke
kaaran doosare hisse mein yah philm ka-
major ho jaatee hai.

• English : Due to lack of proper editing,
this film becomes weak in the second part.

379

• Chunked: (सही एȟडȫट�ग)_NP (न होने के
कारण)_NP (ɮसरे ȟहĥसे मȅ)_NP (यह Ƞफġम)_NP
(कमजोर)_JJP (हो जाती ह)ै_VGF

• English Chunks :
(correct editing)_(Reasons for not be-
ing)_(In second part)_(this film)_(weak
becomes)

English Chunks Polarity(pos,neg)
correct editing (0.625,0.0)
Reasons for not being (0.0,0.675)
In second part (0.0,0.0)
this film (0.0,0.0)
weak becomes (0.125,0.5)

Average polarity : (0.25, 0.4)
Since |negative polarity| > |positive polarity|
Label Generated : Negative

4.4 Improvisation over Previous
Experiment

A different scenario is observed when a chunk
contains Negation tag. In most of the cases, It
is seen that it negates the chunk/word just pre-
vious to it. Therefore, presence if ’NEG’ tag
can alter the chunk level and hence sentence
level polarity calculated through the previous
experiment.So, we incorporate this factor too,
while predicting sentiments.

• If a current chunk has ’NEG’ tag:
– It nulls the polarity of previous chunk

if it is positive, and
– strengthens/adds up to the previous

chunk score if its already negative.

For example:
• Sentence: Ƞफġम कɏ कहानी अċछɍ नहȂ ह.ै
• Chunked: (Ƞफġम कɏ)_NP (कहानी)_NP

(अċछɍ)_JJP (नहȂ ह)ै_VGF.

• English chunks:
(film’s)_(story)_(good)_(is not)

English Chunks Polarity(pos,neg)
film’s (0.0,0.0)
story (0.0,0.0)
good (0.875,0.0)
is not (0.0,0.625)

• Sentence polarity without negation han-
dling: (0.44, 0.31)

– Which is positive (wrong label)

• Sentence polarity after negation handling:
(0.0, 0.675)

– Which is negative (correct label)

4.5 Results
Results depict that with supervised approach,
best case accuracy is 48.8% in case of Naive
Bayes and 78.2 % in case of using SVM as
our classifier,which is our baseline. In unsu-
pervised transfer learning based approach, the
accuracy is 83.6% which indicates the impor-
tance of lexical coverage and wideness if the
experimental approach is corpus based.

Naive Bayes Result
TF 40.8%

TF with heuristics 42.6 %
TF-IDF 44.6 %

TF-IDF with heuristics 48.8 %

Table 2: Naive Bayes

SVM Result
TF 62.7%

TF with heuristics 64.4 %
TF-IDF 74.6 %

TF-IDF with heuristics 78.2%

Table 3: SVM Classifier

Experiment Result
transfer learning

sentence level 82.2 %
Transfer learning with

negation handling 83.6%

Table 4: Transfer Learning

5 Conclusion
The experiments state one thing very clearly,
that the performance of system is in accor-
dance with the lexical resource at disposal, if
any. When we used Hindi lexicon, the per-
formance was not as good even though it was
a supervised learning approach. The problem
lies with the fact that Hindi SentiWordnet is
limited in its coverage area and is not as exten-
sive and rich in word level sentiment coverage

380

as its English counterpart. For example,Basic
word such as ‘नहȂ ‘ isn’t present in the list. So,
most of the sentiment bearing words couldn’t
get sentiment labels, and the translation ap-
proach used to enhance the coverage depends
on sense present in ESWN and acquired by
parsed output. Although translator is not up
to the mark for all time, as the sentence length
shrink to 4-5 words, it performs decent enough
to capture the underlying sentiment in that
chunk.
Naive Bayes and SVM performance were
hence, not very effective. When switched to
lexical resource in L_target English, and un-
supervised approach, the accuracy is increased
because sentiment across language remains
as preserved as possible because of minimal
translation error and better coverage.
This approach is also important because the
complete experiment depends on translation
and ESWN and the problem of low coverage
of lexical resource and no good training data
in resource scarce language doesn’t comes to
picture.
One important thing using translator is the
error while translating chunks having co-
reference to other part, or when the sentence
structure is of a very casual conversation. For
Example :

• अपने भȟवĤय कɏ कोई खबर नहȂ है उसे

• Transliterated : bhavishy kee koee khabar
nahin hai use

• Translation Output : There is no news of
his future

• Correct Translation : He has no idea of
his Future.

This makes it difficult in capturing the essence
of sentence and it becomes more of a general
statement than a concern and hence looses the
sentiment tag. While these errors were less in
number as chunks were rarely greater than 3-
4 words, its important to take these semantic
points to get better idea of what’s in the sen-
timent property of every sentence.

6 Future Work
Future work involves extension of our con-
tributed dataset to aspect level and increasing

its size to make it more useful and effective for
purpose of Sentiment Analysis in various do-
mains.
In second approach, incorporating more se-
mantic and sense information while translat-
ing and taking into account the contribution
of nearby chunks in determining a particu-
lar chunk polarity can increase the accuracy.
The relation between chunks can help seman-
tic properties intact. Also, a sophisticated
mathematical model can be developed to fig-
ure out sentence level polarity instead of aver-
aging the chunk scores.

References
[1] Amitava Das and Sivaji Bandyopadhyay. Senti-

wordnet for bangla. Knowledge Sharing Event-
4: Task, 2, 2010.

[2] Amitava Das and Sivaji Bandyopadhyay. Senti-
wordnet for indian languages. Asian Federation
for Natural Language Processing, China, pages
56–63, 2010.

[3] Aditya Joshi, AR Balamurali, and Pushpak
Bhattacharyya. A fall-back strategy for senti-
ment analysis in hindi: a case study. Proceed-
ings of the 8th ICON, 2010.

[4] Akshat Bakliwal, Piyush Arora, and Vasudeva
Varma. Hindi subjective lexicon: A lexical re-
source for hindi polarity classification. In Pro-
ceedings of the Eight International Conference
on Language Resources and Evaluation (LREC),
2012.

[5] Piyush Arora, Akshat Bakliwal, and Vasudeva
Varma. Hindi subjective lexicon generation us-
ing wordnet graph traversal. International Jour-
nal of Computational Linguistics and Applica-
tions, 3(1):25–39, 2012.

[6] Namita Mittal, Basant Agarwal, Garvit
Chouhan, Nitin Bania, and Prateek Pareek.
Sentiment analysis of hindi review based on
negation and discourse relation. In proceedings
of International Joint Conference on Natural
Language Processing, pages 45–50, 2013.

[7] Amandeep Kaur and Vishal Gupta. A survey
on sentiment analysis and opinion mining tech-
niques. Journal of Emerging Technologies in
Web Intelligence, 5(4):367–371, 2013.

[8] Braja Gopal Patra, Dipankar Das, Amitava Das,
and Rajendra Prasath. Shared task on senti-
ment analysis in indian languages (sail) tweets-
an overview. In International Conference on
Mining Intelligence and Knowledge Exploration,
pages 650–655. Springer, 2015.

381

[9] Subhabrata Mukherjee, Pushpak Bhat-
tacharyya, et al. Sentiment analysis in
twitter with lightweight discourse analysis. In
COLING, pages 1847–1864, 2012.

[10] Christiane Fellbaum. WordNet. Wiley Online
Library, 1998.

[11] Akshat Bakliwal, Piyush Arora, Ankit Patil,
and V Verma. Towards enhanced opinion clas-
sification using nlp techniques. In Proceedings of
the 5th international joint conference on natu-
ral language processing (IJCNLP). Chiang Mai,
Thailand, pages 101–107. Citeseer, 2011.

[12] Richa Sharma, Shweta Nigam, and Rekha Jain.
Polarity detection movie reviews in hindi lan-
guage. arXiv preprint arXiv:1409.3942, 2014.

[13] Shriya Se, R Vinayakumar, M Anand Kumar,
and KP Soman. Predicting the sentimental re-
views in tamil movie using machine learning al-
gorithms. Indian Journal of Science and Tech-
nology, 9(45), 2016.

[14] Monalisa Ghosh and Animesh Kar. Unsuper-
vised linguistic approach for sentiment classifi-
cation from online reviews using sentiwordnet
3.0. Int J Eng Res Technol, 2(9), 2013.

[15] Poonam R Gohad and Archana S Vaidya.
Hindi opinion mining for opinion target extrac-
tion. International Journal of Engineering Sci-
ence, 6733, 2016.

[16] AR Balamurali. Cross-lingual sentiment anal-
ysis for indian languages using linked wordnets.
2012.

[17] Sarthak Jain and Shashank Batra. Cross lin-
gual sentiment analysis using modified brae. In
EMNLP, pages 159–168, 2015.

[18] Dirk Goldhahn, Thomas Eckart, and Uwe
Quasthoff. Building large monolingual dictio-
naries at the leipzig corpora collection: From
100 to 200 languages. In LREC, pages 759–765,
2012.

[19] Stefano Baccianella, Andrea Esuli, and Fab-
rizio Sebastiani. Sentiwordnet 3.0: An enhanced
lexical resource for sentiment analysis and opin-
ion mining. In LREC, volume 10, pages 2200–
2204, 2010.

[20] Ian Jolliffe. Principal component analysis. Wi-
ley Online Library, 2002.

[21] Pedro Domingos and Michael Pazzani. On the
optimality of the simple bayesian classifier under
zero-one loss. Machine learning, 29(2):103–130,
1997.

[22] Corinna Cortes and Vladimir Vapnik. Support-
vector networks. Machine learning, 20(3):273–
297, 1995.

382

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 383–391

Scalable Bio-Molecular Event Extraction System towards Knowledge

Acquisition

Pattabhi RK Rao

AU-KBC Research Centre

MIT Campus of Anna

University, Chennai, India

pattabhi@au-kbc.org

Sindhuja Gopalan

AU-KBC Research Centre

MIT Campus of Anna

University, Chennai, India

sindhujagopalan@au-

kbc.org

Sobha Lalitha Devi

AU-KBC Research Centre

MIT Campus of Anna

University, Chennai, India

sobha@au-kbc.org

Abstract

This paper presents a robust system for the

automatic extraction of bio-molecular events

from scientific texts. Event extraction pro-

vides information in the understanding of

physiological and pathogenesis mechanisms.

Event extraction from biomedical literature

has a broad range of applications, such as

knowledge base creation, knowledge discov-

ery. Automatic event extraction is a challeng-

ing task due to ambiguity and diversity of

natural language and linguistic phenomena,

such as negations, anaphora and co-

referencing leading to incorrect interpreta-

tion. In this work a machine learning based

approach has been used for the event extrac-

tion. The methodology framework proposed

in this work is derived from the perspective

of natural language processing. The system

includes a robust anaphora and coreference

resolution module, developed as part of this

work. An overall F-score of 54.25% is ob-

tained, which is an improvement of 4% in

comparison with the state of the art systems.

1 Introduction

Tremendous growth in the field of biomedical

science has resulted in large amount of clinical

and biomedical medical data. Primarily, the bio-

medical research largely focused on genome data

analysis. Over the years, the application of new

technologies to health care has resulted in volu-

minous data that includes structured and unstruc-

tured clinical notes, patient data, imaging data,

etc. This growth also resulted in accumulation of

large number of biomedical texts, i.e. medical

literatures. It is important to extract useful infor-

mation from these data to benefit the researchers

for further findings. This requires the application

of data driven approaches. Data mining involves

the analysis and extraction of interesting patterns

from large amount of data. In recent times the

researchers are spending much effort on data

mining for bioinformatics. The previous applica-

tions of data mining and machine learning (ML)

to bioinformatics were on genetic data sets and

phenotype data. Now it has been extended to text

documents like clinical and biomedical data.

In the early days, the goal of natural language

processing in biomedical domain was to populate

the databases with biological information. This

can be done manually, but requires lots of effort

and is time consuming. Hence recognizing the

named entities (NEs) using computational tech-

niques could help in automatically populating the

database with biological information. The extrac-

tion of the information like event or relation be-

tween biomedical entities will help the research

community to compare the applicability of their

works with others. Finding related literatures

studying same biomedical entities is a crucial and

challenging task. For example, there are lots of

research publications related to “BRCA” gene.

Unifying all studies about this gene helps the

researchers to work on cancer therapy. The first

step for accomplishing this task is extracting the

biomedical named entities from literature and

finding the events and relations between them.

Therefore, mining the literature and extracting

the event between biomedical entities have lots

of applications in bioinformatics. Event extrac-

tion from scientific texts in biomedical domain

such as PubMed abstracts has attracted a lot of

interest in the last decade, especially for those

events involving proteins and other bio-

molecules. In the biomedical domain, an event

refers to the change of state of one or more bio-

medical entities, such as proteins, cells, and

chemicals. In the task of event extraction we

383

need to identify the types of the events and their

arguments. Event arguments include event par-

ticipants, which may be entities (e.g., proteins) or

other events. This structured definition of events

is associated with an ontology that defines the

types of events and entities, semantic roles, and

also any other attributes that may be assigned to

an event. Examples of ontologies for describing

bio-molecular events include the Genia Event

Ontology. Consider the below Figure 1

Figure 1: An Example for Event Occurrence in

Biomedical text

The above Figure 1 shows two events, binding

and phosphorylation. The first event belongs to

event type binding, where the event has two ar-

guments protein “p50 NF-kappaB”, which is the

theme and the second argument is the site “con-

sensus sequence”. The second event belongs to

the event type phosphorylation and the argu-

ments of this event is pronoun “its” which refers

to the protein “p50 NF-kappaB”, the theme of

first event and protein DNA-PK, cause of second

event. This example demonstrates the need for

anaphora resolution in event identification.

By identifying the events we can extract in-

formation like gene-protein interactions, gene-

chemical interactions and gene functions, etc.

The BioNLP 2013 shared task on Genia Event

extraction, has brought in more research groups

to work in this area and has increased the re-

search activity. Most of the systems which have

participated in the BioNLP-ST 2013 Genia event

(GE) extraction (Nédellec et al., 2013) have used

the support vector machine (SVM) based pipe-

line. Two of the systems had used rule based ap-

proach. And another two had used hybrid ap-

proach where both rules and SVM have been

used (Nédellec et al., 2013). In terms of use of

pre-processing tools all the systems have used

one of the deep parser tools such as McClosky-

Charniak-Johnson Parser, Stanford Parser for

syntactic processing. And some of the participat-

ing systems have also used external independent

resource such as UniProt (Bairoch et al., 2005),

IntAct (Kerrien et al., 2012), and CRAFT

(Verspoor et al., 2012). Below we explain top

two successful systems which have participated

in the BioNLP-ST GE task. Both these systems

have obtained an overall F-score of 50.97% and

50.74%.

Hakala et al., (2013) uses EVEX tool to ex-

tract the events. EVEX is a text mining resource

built on top of events extracted from all PubMed

abstracts and PubMed Central Open-Access full-

text documents (Landeghem et al., 2011). Evex

is built on top of “Banner” NER tool and

“TEES” extraction tool. It uses SVM to re-rank

the output of the EVEX resource output, sets a

threshold score, below which the events are re-

moved. The threshold score is obtained using a

linear SVM regressor on each sentence. The re-

sults for event types “binding” and “regulation”

are found to be lower and especially in “Meth-

ods” and “Captions” section of the documents.

Our work contributes to the application of data

mining approach to biomedical data. This paper

describes an event extraction system developed

using ML approach and rich feature set including

linguistic and biological domain motivated fea-

tures. It has been observed from the participating

systems in the BioNLP-ST 2013 that most of the

systems have not used coreference resolution.

Though the data had anaphora and coreference

annotation, the systems had not exploited the

annotations. In the present work we make use of

the coreference annotations provided in the data.

The use of coreference resolution has mainly

improved the extraction of event type “binding”.

 The main contributions of this work are as

follows:

1. We have developed a robust, scalable

event identification system, which can be

used for any of the biomedical domain

documents. The developed system archi-

tecture is robust and portable for any bi-

omedical text. The results obtained on

the test data of the BioNLP ST 2013 GE

task shows significant results compara-

ble to the state-of the art.

2. We have developed a biomedical domain

anaphora coreference resolution module

for resolving the protein coreference re-

lations. A general domain, robust anaph-

ora coreference resolution module has

been used and adapted (or customized)

with the use of biomedical coreference

annotations.

3. We have used open source tools such as

“Genia tagger”, CRF++ (Taku, 2005) for

the development of the syntactic and se-

mantic pre-processing. Thus this work is

384

easily implementable by other research-

ers.

 In the following section we describe the

corpora, features and the method used to develop

the system. The results are discussed in Section

3. The paper ends with the conclusion and future

works.

2 Method

The various approaches to event extraction task

are rule based, dictionary based, ML and Hybrid

approaches. This paper proposes a robust, scala-

ble BioEventTag system developed by using

graph-based ML technique Conditional Random

Fields (CRFs) (Lafferty et al., 2001). This system

is developed for the extraction of biological

events. We have used CRF++ tool, an open

source implementation of the CRFs algorithm. In

this section, we present the experiments per-

formed to extract the events from biomedical

texts. First, the input text is syntactically prepro-

cessed using Genia tagger. The pre-processing

includes sentence splitting, tokenization, PoS

tagging and chunking. Then in the next step se-

mantic pre-processing is performed where the

biomedical named entities (BNEs) are identified

and anaphors in the document are resolved. For

identifying the NEs we have used the biomedical

named entity recognition (BioNER) system de-

veloped by (Gopalan et al., 2016). We developed

an anaphora resolution system to resolve the

anaphors. Finally we developed an event extrac-

tion system which contains two modules. First

module identifies the event trigger and the sec-

ond module extracts the event from the text. The

system architecture is shown in Figure 2.

Figure 2: System Architecture

2.1 Corpora Collection and Analysis

We developed our system using a widely accept-

ed dataset BioNLP-ST 2013 (Genia Event Task

data). BioNLP-ST 2013 GE data was developed

to evaluate the applicability of event extraction

systems. The collection consists of 1210 titles

and abstracts and 34 full papers from the Open

Access subset of PubMed Central (Nédellec et

al., 2013). Table 1 shows the corpus statistics. It

is evident from the corpus statistics displayed in

Table 1 that the majority of the events (65.86%)

are “Regulation and Binding” event types. Thus

handling of these two event types properly is

very important to improve the system efficiency

and performance. In these two types of events

anaphora coreference resolution plays a signifi-

cant role.

S.No Description Statistics

1 Number of Abstracts + full

Papers

1210 +

34

2 Number of Words 2,63,133

3 Number of Proteins 16,427

4 Total Number of Events 9,364

5 Number of Anaphora and

Coreference relations to

Proteins

535

6 Number of Regulation and

Binding Event types

6,168

Table 1: BioNLP Genia Event (GE) Shared Task

Corpus Statistics

2.2 Feature Extraction

CRF++ is a general purpose tool and hence the

feature template needs to be specified in ad-

vance. This file describes the feature used for

training and testing. When the feature template is

given, CRF++ automatically generates a set of

feature function. The challenge in developing an

event extraction system using ML techniques lies

in designating the striking features and designing

of feature template. We have used window size

of 5 for this work. We describe in detail the fea-

tures used in developing our system.

Lexical features and Syntactic features such

as word, Parts of Speech (PoS) and chunk are

used. PoS help in disambiguating the sense of the

word in a sentence. PoS is an important feature

for extracting the events as most of the argu-

ments of an event are proper noun and event

trigger belongs to noun and verb category. Hence

PoS is a key feature for event extraction task.

Most of the event trigger and arguments are de-

scriptive i.e., they occur as a phrase. Hence

385

chunk tag will help in argument and event trigger

extraction.

Morphological Patterns: Prefix/suffix is used

as one of the features in our work. For example,

an event trigger like “phosphorylation”, has suf-

fix ‘-ation’, which means action or process. Pre-

fix/suffix of a token helps to boost the perfor-

mance of the system.

Biomedical Named Entities: BNEs are used

as features in our work. BioNER is the task of

extraction of BNEs like gene, protein, chemical

etc. from biomedical text. From Figure 1, we can

observe that the arguments of the events are

BNEs and hence BNEs are useful features for

argument identification task.

The combination of these features is used to

develop the template feature. The template file

sets up which features to use while running

CRFs. Each line in the template file represents

one template. The template is represented as

%x[row,col], where “row” specifies the relative

position from the current token and “col” repre-

sents the absolute position of the column.

2.3 Experiments

In this work we have followed two step ap-

proach, first the event trigger is identified and

then the event arguments. One important seman-

tic pre-processing module has been introduced in

this work. We have developed Anaphora and

Coreference resolution module as part of seman-

tic pre-processing. This is important to resolve

the anaphoric entities such as “these proteins”,

“it” which refer to proteins, chemicals etc. After,

incorporating the features, the system was trained

with the training corpus. We extracted the dis-

tinctive features to build the language models

based on conditioned features. Finally, by using

these language models, NEs in the testing corpus

are automatically labeled. The experiments per-

formed are detailed in this section.

Syntactic Pre-Processing: The syntactic pre-

processing of the data is performed using Genia

Tagger (Tsuruoka et al., 2005), where the data is

split into sentences and tokenized and then PoS

and chunk tags are added. The performance of

this tool for PoS tagging is 98.26% accuracy and

for chunking, the F-score obtained is 88.9% for

Noun Phrases and 95.2% for Verb phrases (Kang

et al., 2011).

Semantic pre-processing: The semantic pre-

processing of the data includes named entity tag-

ging and anaphora resolution. As the event in

biomedical text is established between the BNEs,

the identification of BNEs is important. Similarly

as described in Section 1, resolution of anaphora

is an essential step for event extraction that helps

in improving the system’s performance.

Biomedical Named Entity Recognition: The

BNEs are identified using the system developed

by (Gopalan et al., 2016). This portable system is

developed on three data sets, BioNLP/NLPBA

2004 dataset; BioNLP-ST 2013 (pathway cura-

tion task data) and BioCreative 2013 CTD track

data using ML approach. A rich feature set in-

cluding linguistic features and domain-specific

features were used to develop the system. For

BioNLP-ST corpus they obtained F-score of

83.73%. The BNEs belonging to calss simple

chemical, gene or gene product, complex and

cellular component are identified. We used this

system to identify the named entities from our

corpus. Named entities is one of the features used

for event argument identification. After identify-

ing the entities, the resolution of anaphora is per-

formed.

Biomedical Anaphora and Co-reference reso-

lution module: Anaphora is a compound word

consisting of the words “Ana” and “phora”.

“Ana” refers to back, upstream or back in an up-

ward direction. “phora” means the act of carry-

ing and denoted the act of carrying back stream.

Anaphora is a type of expression whose refer-

ence depends upon another referential element.

Reference is made based on the preceding part of

the utterance. It is the cohesion which points

back to some previous items. “The pointing

back” is called an anaphor and the entity to

which it refers is antecedent. The process of de-

termining the antecedent of anaphor is called as

anaphora resolution. Anaphora resolution in dis-

course is the task or process of identifying the

referents of expressions which we use to denote

discourse entities, i.e., objects, individuals, prop-

erties and relations that have been introduced and

talked about in the prior discourse. Biomedical

texts differ significantly from other text genres

such as newspapers and fiction writing. In bio-

medical texts, much background knowledge is

required for the reader to understand the relation

between the entities mentioned in the text. This is

a common aspect of scientific papers.

One of the common problems in biomedical

texts is a gene and the protein it encodes share

the same name, causing some ambiguity in the

text when the context does not provide enough

information to determine whether the writer is

talking about the gene or the protein. Though

there are writing conventions to avoid this ambi-

guity, it is common, however, that authors do not

386

follow these conventions properly. Other com-

mon issue is protein or gene names may coincide

with common English words, e.g. for (symbol for

foraging). These sources of ambiguity create

challenges to a system for automatic detection of

entities and events.

The distribution of different types of noun

phrases in biomedical articles differs from the

distribution in other general text. Pronouns are

very rare, accounting for about 3% of noun

phrases; whereas proper names, acronyms are

very frequent, giving mentions of genes, proteins

and names of other BNEs. In the WSJ Newswire

corpus the pronouns are 4.5% and in fiction part

of the brown corpus the pronouns are 22%. An-

other aspect in the pronouns distribution in the

biomedical texts is it has more plural pronouns

such as “these proteins”, “them”, “those pro-

teins”. This makes the task of anaphora and co-

reference resolution more challenging. It is ob-

served that in biomedical texts entities are com-

monly referred to using non-pronominal noun

phrases, like proper nouns, acronyms or definite

descriptions. Hence there is a need to focus on

these noun phrases (NPs) for a good event ex-

traction engine. The occurrence of acronyms and

NPs which have part-of relationships, linking

those in the co-reference chain is a challenging

aspect in biomedical coreference resolution.

Though there are many Anaphora and corefer-

ence resolutions systems developed for general

domain, there are very few works on anaphora

and coreference resolution in the biomedical do-

main. Castano et al., (2002) developed a sali-

ence-based system for anaphora resolution which

uses UMLS Semantic Network to obtain seman-

tic information. Gaizauskas et al., (2003) devel-

oped PASTA system, which implements an in-

ference-based coreference resolution module.

Yang et al., (2004) developed a supervised ML

approach for anaphora resolution and evaluated it

on a portion of the GENIA corpus. Gasperin et

al., (2009) developed a statistical anaphora reso-

lution system for biomedical domain. They have

tested their system on various corpora.

Here in this work, a general Newswire text

anaphora engine is customized to adapt to the

biomedical domain. So here anaphora and coref-

erence module is developed using a hybrid ap-

proach. An implementation of a general anaphora

and coreference resolution engine as described in

Lalitha Devi et al., (2011) is done here. The

main difference in the implementation is the cor-

pus used for training. Lalitha Devi et al., (2011)

use Newswire text documents, whereas in this

implementation, the anaphora and coreference

annotations provided in BioNLP-ST 2013 GE

task have been used. The results obtained from

this engine are post processed with rules specific

to biological domain. In the post processing stage

Genia ontology is used to provide the required

world knowledge to resolve the linking of acro-

nyms, for improving the resolution of acronyms

and definite descriptions. In Figure 3 the archi-

tecture of Anaphora and coreference module is

shown in detail.

Figure 3: System architecture for Anaphora Res-

olution

The features used are same as described in the

Lalitha Devi et al., (2011). Along with those fea-

tures, two more features specific to biological

domain are added. The new features are

1. Biological Entity type matching: ‘yes’ if

anaphor’s and candidate’s biological en-

tity type match, ‘no’ otherwise.

2. Is Entity type a gene or Protein? ‘Yes’ if

the anaphor entity type or candidate enti-

ty type is gene or protein, ‘no’ otherwise.

This feature is mainly to distinguish

which pairs can hold BNE relations, be-

cause most of the event types have ar-

guments as proteins or genes.

This module has been evaluated separately to

ascertain its efficiency as a standalone engine.

This has been tested on the gold anaphora anno-

tations provided in the test partition of the GE

task of the BioNLP 2013 shared task. We have

obtained a precision of 55.35%, recall of 58.36%

and F-score of 56.86%.

Event extraction: The whole task of event ex-

traction is divided into two sub-tasks. First the

event trigger is identified and then the event ar-

guments are extracted. The event extraction sub

task includes two phases, event start identifica-

387

tion and event end identification. We have used

the training and development partitions of the GE

task data for training and the test partition has

been used for testing the system. The experi-

ments performed for event trigger identification

and event extraction are described below.

Event Trigger Identification: Event trigger is

an important feature for extraction of event from

a document. The features used for event trigger

identification includes lexico-syntactic features

like words, PoS, chunk and morphological pat-

terns. The event trigger for event relation in-

cludes noun phrases containing action terms like

“regulation”, “interaction”, “phosphorylation”,

“expression” etc. In some cases, the event trigger

is verb phrases like “activates” that belongs to

event type “positive regulation”. Hence syntactic

features like PoS and chunk acts as prime fea-

tures for identification of event triggers. In addi-

tion to lexical and syntactic features, we have

also used another biomedical domain specific

feature, “trigger indicator”. Trigger indicator fea-

ture includes biomedical domain specific verbs

such as “binds”, “inhibit” etc. and biomedical

key terms like “translocation”, “methylation” etc.

This feature has a Boolean value “true” if do-

main specific verbs or key terms are identified in

the current word, else “false”. For event trigger

identification the data is first preprocessed and

features are extracted. After extracting the fea-

tures, the language model is built. The identifica-

tion of event trigger is followed by the identifica-

tion of event arguments.

Event Argument Identification: The event

extraction task includes extraction of event and

its arguments. For extraction of event arguments,

the event start and event end is identified. The

event trigger is identified in the first task and the

sentences with event trigger are given as input to

the event argument extraction module. The fea-

tures for event boundary identification are word,

PoS, chunk, event trigger and BNEs. The argu-

ments for the events are BNEs. Hence, giving

weightage to BNEs that occur before or after the

event trigger helps in the identification of argu-

ment boundaries. Using these features the lan-

guage models are built for event start boundary

and event end boundary. These models are used

for identifying and extracting the event of a text.

The event may have one argument or multiple

arguments. In case of events like “gene expres-

sion”, there will be one argument “theme”.

Whereas in case of events like “binding” and

“regulation”, there will be more than one argu-

ments such as “theme”, “cause” and “site”. Con-

sider the Example 1 given below.

Example 1:

Methyl-CpG-binding proteins (MBPs) are

thought to inhibit the binding of transcriptional

factors to the promoter.

In this Example 1 there are two events “nega-

tive regulation” and “binding”. The event trig-

gers are “inhibit” for negative regulation and

“binding” for binding event. The arguments for

“negative regulation” event is the theme “binding

of transcriptional factors”, which again is an

event, the cause “Methyl-CpG-binding proteins”

and the site “promoter”. This event has three ar-

guments. The second event is “binding” and the

arguments of this event are the theme “transcrip-

tional factors” and the site “promoter”. For this

event there are two arguments. The simpler

events mostly have one argument.

From this example we also observe that the

arguments of first event and second events are

overlapping and importantly the second event as

a whole is one of the argument of first event.

Both the events share same arguments and hence

the argument boundaries overlap. In these cases

we have processed the events separately i.e.

when there is more than one event in a sentence;

each event is processed one by one, while devel-

oping the models.

The event arguments are actually relations be-

tween the entities. Thus the event argument iden-

tification is modeled as the identification of ar-

gument spans for each argument of the event

trigger. The basic assumption is that each event

will either have an explicit or an implicit event

trigger. Event argument span identification is

split into four sub-phases for identification of

each boundary of each argument, i.e., the identi-

fication of Arg1’s two boundaries and Arg2’s

two boundaries. Four language models were built

for this purpose and Arg2-START, Arg1-END,

Arg1-START and Arg2-END were identified in

series, in that order. The output at each sub-phase

was fed as input to the next sub-phase. In other

words, in each sub-phase, the previously identi-

fied boundary is also used as a feature along with

the features explained in Section 2.2. The choice

of the order of identification of bounds was made

with the idea that it is easier to first find the

boundaries that are in close proximity to the

cause-effect marker – Arg1-END and Arg2-

START. Between these two, Arg2-START was

chosen first, arbitrarily. The same holds for the

choice of Arg1-START to be the third boundary.

The arguments need not be always adjacent to

388

the marker. Sometimes, the arguments can be in

the same sentence as the event trigger as shown

in Example 1. Sometimes, one of the arguments

is in the sentence immediately preceding that of

the event trigger.

3 Results and Discussion

This section describes the performance of our

system in terms of Precision, Recall and F score.

Precision is the number of NEs correctly per-

ceived by the system from the total number of

NEs identified, Recall is the number of NEs cor-

rectly detected by the system by the total number

of NEs contained in the input text and F-score is

merely the harmonic mean of precision and re-

call.

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

F score = (2 × Recall × Precision / (Recall +

Precision))

Where, TP means true positives, FN means

false negatives and FP means false positives.

 We evaluated our system on test parti-

tion of GE task data. The overall result and re-

sults achieved by the system for each event type

are demonstrated in Table 2 and Table 3. First,

we developed the system for event extraction,

without resolving the anaphors. Then we im-

proved the performance of the system by resolv-

ing the anaphors. We obtained F-score of 75.12%

for simple events, 62.11% for Binding Events &

Protein Modification Events, 35.31% for regula-

tion events and 49.27% for all event types with-

out resolving the anaphors. After resolving the

anaphors we observed that there is a significant

increase in the performance of the system for

identification of binding and modification events

and regulation events.
Event Types Precision Recall F-

score
Simple Events 78.65 71.89 75.12

Binding & Protein
Modification

Events

66.36 58.54 62.11

Regulation Events 41.43 30.77 35.31
Overall 60.15 41.73 49.27

Table 2: Results for event extraction- Without

Anaphora & Coreference resolution
Event type Precision Recall F-

score
Simple Events 78.75 71.94 75.76
Binding & Protein
Modification
Events

69.87 61.67 65.51

Regulation Events 46.15 35.42 40.08
Overall 67.15 47.73 54.25

Table 3: Results for event extraction-After

Anaphora & Coreference resolution

Although simpler events achieve good results

in event extraction task, the extraction of events

such as binding and modification events and reg-

ulation events is still difficult. We have made an

approach to improve the results of these complex

events by resolving anaphora and co-reference.

There are 445 anaphora relations in binding and

regulation event types. With the help of our

anaphora resolution engine we were able to iden-

tify the referents of 254 anaphor relations cor-

rectly. The anaphor relation consisted of pronom-

inal anaphors such as them, its, they etc. and

noun-noun anaphors such as “aforementioned

cytokines”, these proteins” etc. Consider the be-

low Example 2

Example 2
After 5 days, supernatants were collected and the

secretion of IFNgamma, IL4 and IL2 were

measured by ELISA. Samples from both nega-

tive controls had no detectable production of the

aforementioned cytokines.

In Example 2, the event trigger is “production”

and the event is “gene expression”. The argu-

ment for the event is “aforementioned cyto-

kines”, but this refers to IFNgamma, IL4 and

IL2. This is an example for noun-noun anaphora

relation. The main objective of this task is to

identify the protein involved in the event. If we

do not resolve the noun-noun anaphor “afore-

mentioned cytokines”, we will not be able to

identify the protein names. Hence resolving the

anaphors helped in the improvement of regula-

tion and binding events. To know the signifi-

cance of each features we conducted experiments

to check the performance of individual features.

The results for performance of individual fea-

tures are shown in Table 4.

Table 4: Results for Individual features

Features Precision Recall F-score

Lexical feature 37.87 23.13 28.53

Lexical feature

+Syntactic features
49.46 28.79 36.80

Lexical feature

+Syntactic features

+Event trigger

60.56 37.01 45.94

Lexical feature

+Syntactic features

+Event trigger +

BNEs

60.45 41.65 49.31

All above features +

Anaphora
67.15 47.73 54.25

For event extraction we have used lexical fea-

ture, syntactic features such as PoS and chunk,

event trigger and biomedical entities. When lex-

icon is used as feature we obtained precision of

389

37.87%, recall of 23.13% and 28.53% F-score.

A window size of 5 is used. Then we used syn-

tactic features along with the lexical feature.

Since PoS and chunk plays a key role in extrac-

tion of event trigger and arguments, we observed

that there were significant improvement in preci-

sion and recall of the system. There was a signif-

icant increase in F-score of about 8.27%. Then

we used event trigger as feature along with lexi-

cal and syntactic feature. Event trigger is very

important feature in event extraction task as it

signals the presence of event in a text. We ob-

tained good increase in performance with preci-

sion of 60.56%., recall of 37.01% and F-score of

45.94%. Then we used BNE features along with

the other features. BNEs are main features for

argument identification of an event. This feature

helped in heightening the system’s performance

with increase in F-score of about 3.37%. We ob-

tained an increase of 4.94% after resolving the

anaphors. The evaluation results show that the

system is comparable to state of art system.

4 Conclusion

This paper described an event extraction system

designed using the ML approach CRFs, with rich

feature set. We have evaluated our system on test

partition of GE task data and showed that the

system is comparable to state of art system. The

performance of the system based on individual

feature is outlined and have also exhibited that

the system render good performance by resolving

the anaphors.

Reference

John Lafferty, Andrew McCallum and Fernando C. N.

Pereira. 2001. Conditional random fields: probabil-

istic models for segmenting and labeling sequence

data, Proceedings of the Eighteenth International

Conference on Machine Learning, San Francisco,

USA, 282–289.

Kudo Taku. 2005. CRF++, An Open Source Toolkit

for CRF [online] http://crfpp.sourceforge.net (ac-

cessed 3 January 2013).

Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-

Jae Kim, Tomoko Ohta, Sampo Pyysalo and Pierre

Zweigenbaum. 2013. Overview of BioNLP Shared

Task 2013, Proceedings of the BioNLP Shared

Task 2013 Workshop, Sofia, Bulgaria, 1–7.

Sindhuja Gopalan and Sobha L. Devi. 2016. BNE-

Miner: mining biomedical literature for extraction

of biological target, disease and chemical entities,

Int. J. Business Intelligence and Data Mining,

11(2):190–204.

Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C.,

Boeckmann, B., Ferro, S., Gasteiger, E., Huang,

H., Lopez, R., Magrane, M., Martin, M.J., Natale,

D.A., O’Donovan, C., Redaschi, N., and Yeh.

L.S.L. (2005) ‘The universal protein resource (uni-

prot)’, Nucleic Acids Research, 33(1):154–159.

Samuel Kerrien, Bruno Aranda, Lionel Breuza, Alan

Bridge, Fiona Broackes-Carter, Carol Chen, Mar-

garet Duesbury, Marine Dumousseau, Marc Feu-

ermann, Ursula Hinz, Christine Jandrasits, Rafael

C. Jimenez, Jyoti Khadake, Usha Mahadevan, Pat-

rick Masson, Ivo Pedruzzi, Eric Pfeiffenberger,

Pablo Porras, Arathi Raghunath, Bernd Roechert,

Sandra Orchard and Henning Hermjakob. 2012.

The intact molecular interaction database in 2012,

Nucleic Acids Research, 40(1):841–846.

Karin Verspoor, Kevin B. Cohen, Arrick Lanfranchi,

Colin Warner, Helen L. Johnson, Christophe Roed-

er, Jinho D. Choi, Christopher Funk, Yuriy Malen-

kiy, Miriam Eckert, Nianwen Xue, William A.

Baumgartner, Michael Bada, Martha Palmer and

Lawrence Hunter. 2012. A corpus of full-text jour-

nal articles is a robust evaluation tool for revealing

differences in performance of biomedical natural

language processing tools, BMC Bioinformatics,

13(1): 207.

Jose Castano, Jason Zhang and James Pustejovsky.

2002. Anaphora resolution in biomedical literature,

Proceedings of International Symposium on Refer-

ence Resolution for NLP 2002, Alicante, Spain.

Robert Gaizauskas, Demetriou, G., Artymiuk, P.J.,

and Willett, P. (2003) Protein structures and infor-

mation extraction from biological texts: the PAS-

TA system, Bioinformatics, 9(1):135-143.

Xiaofeng Yang, Jian Su, Guodong Zhou and Chew L.

Tan. 2004. An NP-cluster based approach to coref-

erence resolution, Proceedings of COLING 2004,

Geneva, Switzerland, 226–232.

Jari Bjorne and Tapio Salakoski. 2013. TEES 2.1:

Automated Annotation Scheme Learning in the Bi-

oNLP 2013 Shared Task, Proceedings of the Bi-

oNLP Shared Task 2013 Workshop, Sofia, Bulgar-

ia, 16–25.

Kai Hakala, Sofie V. Landeghem, Tapio Salakoski,

Yves Van de Peer and Filip Ginter. 2013. EVEX in

ST’13: Application of a large-scale text mining re-

source to event extraction and network construc-

tion, Proceedings of BioNLP Shared Task 2013

Workshop, Sofia, Bulgaria, 26-34.

Sobha L. Devi, Pattabhi R. K. Rao, Vijay S. Ram,

Malarkodi C. S, and Akilandeswari A. 2011. Hy-

brid Approach for Coreference Resolution, Pro-

ceedings of 15th Conference on Computational

Natural Language Learning: Shared Task, Port-

land, Oregon, 93-96.

390

Sofie V. Landeghem, Filip Ginter, Yves Van de Peer

and Tapio Salakoski. 2011. Evex: A pubmed-scale

resource for homology-based generalization of text

mining predictions, Proceedings of BioNLP 2011

Workshop, Portland, Oregon, USA, 28–37.

Caroline V. Gasperin. 2009. Statistical anaphora reso-

lution in biomedical texts. A Technical report

based on a dissertation titled Statistical anaphora

resolution in biomedical texts, University of Cam-

bridge.

Ning Kang, Erik M. van Mulligen and Jan A. Kors.

2011. Comparing and combining chunkers of bio-

medical text, Journal of Biomedical Informatics,

44(2):354–360.

Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim,

Tomoko Ohta, John McNaught, Sophia Ananiadou

and Jun’ichi Tsujii. 2005. Developing a Robust

Part-of-Speech Tagger for Biomedical Text, Lec-

391

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 392–401

Co-reference Resolution in Tamil Text

Vijay Sundar Ram R. and Sobha Lalitha Devi

AU-KBC Research Centre,

MIT Campus of Anna University,

Chennai, India

{sundar,sobha}@au-kbc.org

Abstract

Natural Languages are cohesive. Cohesive-

ness is brought by various language phenom-

enons. Co-referring entities bind the sentence

through reference phenomenon. These co-

referring entities include various anaphoric

expressions namely pronominals, reflexives,

reciprocal, distributives, noun-noun anaphora

and definite descriptions. These co-referring

entities form the co-reference chains. In this

work, we present a methodology to identify

the co-reference chains in Tamil text. Evalua-

tion of the system shows encouraging results.

1 Introduction

Cohesiveness of the text is brought by various

language phenomenons. Co-referring entities

play a crucial part in binding discourse intra and

inter sententially. These co-referring entities

form a chain in the text. The present work is on

identifying the co-reference chains in Tamil text

by identifying the co-referring entities. The co-

referring entities consist of pronominal, recipro-

cal, reflexives, distributives, definite description

and noun-noun anaphora and their antecedents.

Co-reference chains are very essential in building

cutting edge natural language processing tools

such as profile building, entity based summary

generator, entity specific sentiment analyser etc.

Consider the following the discourse.

Ex. 1.a

raaju1,2 avanutaiya1 naNpan baaluvin2

Ramu(N) he(PN)+gen friend(N) Balu(N)-gen

viittiRku cenRaan.

house(N)+dat go(V)+past+3sm

(Raju went to his friend Baalu’s house.)

Ex. 1.b

ivarkaL2,3 oruvarukkoruvar3 nanku

They(PN) eachother(N) very_well(ADJ)

aRivaarkaL. (1.1.b)

know(V)+past+3p

(They know each-other very well.)

Ex. 1.c

baaluvin thaay siiththaa4

Balu(N)-gen mother(N) Sita(N)

oru aaciriyar. (1.1.c)

one(ADJ) teacher(N)

(Baalu’s mother Sita is a teacher.)

Ex. 1.d

baalu4 raajuvai1 than4 naNparkaL5
Balu(N) Raju(N)+acc his(PN) friends(N)

ovvoruvarukkum5 aRimukappatuththinaan.

everone(PN) introduced(V)

(Baalu introduced Raju to every-one of his

friends.)

There are various anaphoric expressions in the

above discourse (Ex.1) and following are the

pronominals, 1.‘avanutaiya’ [his] refers to ‘raaju’

(Ex.1.a), 2. ‘than’ [his] (Ex.1.d) refers to ‘baalu’

(Ex.1.d), ‘ivarkaL’ [they] in (Ex.1.b) refers to

‘raaju’ and ‘baalu’ present in (Ex.1.a) as two in-

dependent mentions. Here the antecedent of the

pronoun ‘ivarkaL’ is two independent nouns

‘raaju’ and ‘baalu’. This type of antecedents is

known as split-antecedents.

 The reciprocal ‘oruvarukkoruvar’ [each-other]

in Ex.1.b refers to ‘ivarkaL’ [they], the subject of

the sentence. In Ex.1.f, ‘ovvoruvar’ [every-one],

Distributive refers to ‘naNparkaL’ (friends). The

other type of anaphor is the noun-noun anaphor

which is present in most of the sentences.

This can be seen in the above exampla as

‘baalu’ in Ex.1.d refers to ‘baalu’ in the previous

sentence, ‘baaluvin’ in Ex.1.a. Similarly ‘raaju-

vai’ in Ex.1.d refers to ‘raaju’ in Ex.1.1.a. From

392

the above explanation we can form the co-

reference chain for each type of reference and

they are given below.

Following are the Co-reference Chains from

the example sentences from Ex.1.a to Ex.1.d.

 ‘raaju’ (Ex.1.a) , ‘avanutaiya’ [his]

(Ex.1.a), ‘raajuvai’ (Ex.1.d)

 ‘naNparkaL’ (Ex.1.d), ‘ovvoruvar’ [every-

one] (Ex.1.d)

 ‘raaju’, ‘baalu’ (Ex.1.a), ‘ivarkaL’ [they]

(Ex.1.b), ‘oruvarukkoruvar’ [each-other]

(Ex.1.b)

Thus the anaphoric expressions such as Pro-

nominal, Split-antecedents, Reciprocal, Reflex-

ives, Distributive, One anaphora, Definite-

Descriptions and Noun-Noun anaphora constitute

the co-reference chains. In the present work, the

co-reference chains are built by resolving these

anaphoric entities.

Co-reference resolution was the shared task in

DARPA’s Message Understanding Coreference

MUC-6 (1995) and MUC-7 (1997). These two

shared tasks were the early initiatives which kick

started machine learning based approach for co-

reference relation resolution task. Aone & Ben-

net (1995), McCharthy & Lehnert (1995), Fisher

et al. (1995) had used decision tree learning algo-

rithm to come up with co-reference resolution

system. . Aone & Bennet (1995) demonstrated

the system with Japanese texts along with Eng-

lish texts. Kelher et al. (1997) used maximum

entropy modelling technique to built co-reference

resolution engine. Cardie & Wagstaff (1999)

came up with an un-supervised learning ap-

proach to identify co-reference relation. They

have evaluated their engine on MUC-6 dataset.

Soon et al. (2000) used decision tree learning

approach to identify the co-referencing pairs and

used pair-wise model to build the co-reference

chains. Ng & Cardie (2002) enhanced Soon et al.

(2000) decision tree learning approach with more

linguistic and heuristic features. They used best-

first clustering methodology to build the co-

reference chains. First-order probabilistic model

was by Culcotta et al. (2007). Bengston and Roth

(2007) tried to present that the approach by Soon

et al. (2000) would perform better with better

features. They re-implement it with modified

features. Rahman & Ng (2011) employed cluster-

ranking approach to perform co-reference resolu-

tion. A multilevel sieve based approach was per-

formed by Raghunathan et al. (2010). SemEval

(2010) Coreference Resolution in Multiple Lan-

guages aimed to explore the portability of sys-

tems across languages, need for different levels

of linguistic information (Recasens, 2010).

The flow of the paper is as follows. In the fol-

lowing section, we present a brief introduction

on characteristics of Tamil. We have explained

our approach in the third section. In fourth sec-

tion, we have presented on the experiment, result

and observation. The paper concludes with the

conclusion section.

2 Characteristics of Tamil

Tamil belongs to the South Dravidian family of

languages. It is a verb final language and allows

scrambling. It has post-positions, the genitive

precedes the head noun in the genitive phrase

and the complementizer follows the embedded

clause. Adjective, participial adjectives and free

relatives precede the head noun. It is a nomina-

tive-accusative language like the other Dravidian

languages. The subject of a Tamil sentence is

mostly nominative, although there are construc-

tions with certain verbs that require dative sub-

jects. Tamil has Person, Number and Gender

(PNG) agreement. It is a relatively free word or-

der language, but when it comes to noun phrases

and clausal constructions it behaves as a fixed

word order language. Clausal constructions are

introduced by non-finite verbs. Tamil has copula

drop, accusative drop, genitive drop, and PRO

drop (subject drop).

3 Our approach

In this section, we present our approach to

identify the co-reference chain in Tamil text. In

most of the published works, single machine

learning technique with a set of features is used.

We have varied from other approaches by using

different methodologies and features for resolu-

tion of various anaphoric expressions as resolu-

tion of pronominals, reciprocal, reflexives, dis-

tributives requires syntactic features and resolu-

tion noun-noun anaphora and definite description

requires semantic features.

Our approach starts with preprocessing input

text with sentence splitter, tokeniser and syntac-

tic modules namely morphological analyser built

using paradigm based approach (Sobha et. al,

2013), PoS tagger (Sobha et. al, 2016) and

chunker using Conditional Random Fields

(CRFs) technique, and clause boundary identifier

built using CRFs with linguistic rules as features

(Ram et. al., 2012) and Named Entity recognizer

built using CRFs where statistical features are

used (Malarkodi et. al., 2012).

393

The preprocessed text is fed to various anaph-

ora resolution engines, pronominal resolution

engine, where the singular pronouns are resolved

using ML techniques and plural pronouns are

resolved using salient weights based approach;

reflexives, reciprocals and distributives are re-

solved using rule based approach; followed by

noun-noun anaphora resolution and definite de-

scription identification using CRFS techniques.

Using the different anaphors and their anteced-

ents, co-reference chains are built using pair-wise

clustering techniques with restriction rules. We

have described the methodologies of resolution

of various anaphoric expressions in the following

sub-section.

3.1 Pronominal Resolution

We have performed the resolution of singular

and plural pronouns with different techniques as

plural pronouns can have plural noun phrase, co-

ordinated noun phrases and split-antecedents.

Singular Pronoun Resolution: Singular pro-

noun resolution is built using Conditional Ran-

dom Fields (CRFs) technique (Kudo,2013).

Though CRFs is notable for sequence labelling

task, we used this technique to classify the cor-

rect anaphor-antecedent pair from the possible

candidate NP pairs by presenting the features of

the NP pair and by avoiding the transition proba-

bility. While training we form positive pairs by

pairing anaphoric pronoun and correct antecedent

NP and negative pairs by pairing anaphoric pro-

nouns and other NPs which match in person,

number and gender (PNG) information and

match Named entities (NE) constraints with the

anaphoric pronoun. NE constraints check for the

type of NE which can be the antecedent for a

particular pronoun, such person pronoun can

have Individual as antecedent and Location NE

can never be its antecedent. These positive and

negative pairs are fed to the CRFs engine and the

language model is generated. While testing,

when an anaphoric pronoun occurs in the sen-

tence, the noun phrases which match in PNG and

satisfies NE constraints with the pronoun, that

occur in the preceding portion of the sentence

and the four preceding sentences are collected

and paired with the anaphoric pronoun and pre-

sented to CRFs engine to identify the correct

anaphor-antecedent pair.

The features used in machine leaning tech-

nique are as follows.

Positional Features: Is the candidate ante-

cedent occur in the same sentence where the pro-

noun has occurred or in the prior sentences.

Syntactic Argument: The case marker af-

fixed to the NP helps in identifying the systactic

argument of the sentence such as subject, object,

indirect object, are obtained from the case suffix

affixed with the noun phrase. The case marker

information is available from the morphological

analysers output.

Linguistic Characteristics:

a) PoS tag and chunk information of Candidate

NP, suffixes affixed with the noun.

b) The suffixes which show the gender which

gets attached to the verb.

c) Whether the candidate NP (probable ante-

cedent) is Possessive.

Constraint Features: The constraint features

are obtained from clause boundary information.

If the pronoun is possessive, the nominative NP

within the clause has a high probability to be the

antecedent. If the pronoun is a non-possessive

pronoun, the nominative NP in the immediate

preceding clause has a high probability to be the

antecedent. So we check the position of the can-

didate NP with respect to clause boundary such

as whether the candidate NP occurs in current

clause or immediate clause or non-immediate

clause.

Plural Pronoun Resolution: Plural pronoun

resolution engine is developed using a salience

factor weights based approach. The antecedent

for a plural pronoun can be a plural Noun phrase,

co-ordinated NPs and Split antecedent.

We weigh each of the Noun phrase matching

in gender with the plural pronoun. The features

for the salience factors are obtained from the

syntactic parsing output. We have mentioned the

salience factors and its weights were as per Sob-

ha (2007). Following is the algorithm used in

resolving plural pronouns.

Step 1: If a plural pronoun occurs then Step 2.

Step 2: Collect all Noun phrases in the current

sentence and previous four sentences which

match with the gender of the plural pronoun.

Step 3: Each Noun phrase (NP) in the collection

of possible antecedent set is scored with salience

factor weights.

Step 4: The NPs re-sorted in descending order

with their weights.

394

Step 5: If the highest scored NP is a plural NP,

then it is selected as the Antecedent. Else step 6.

Step 6: If the highest scored NP is singular,

check if this NP is part of co-ordinated NP or

split antecedent, then choose the co-ordinated NP

or the split antecedent as the antecedent.

Check for Co-ordinated NP: Co-ordinated NPs

are those NPs which have the same scores as the

highest score NP.

Check for Split-antecedents: We attempt to

identify split-antecedents using selectional re-

striction rules of the verb, categorizing the nouns

based on its sub-categorization information and

ranking the possible antecedents using salience

weights.

Sub-categorization features explain the nature

of a noun. Sub-categorization information in-

cludes the features such as [animate], [con-

crete], [edible] etc. The verbs describe the ac-

tion or the process in the nature and this allow

the verbs to take nouns with specific sub-

categorization feature as its syntactic arguments.

This is defined as the selectional restriction rules

of a verb.

Ex.2

raam aappil caappittaan.

Ram(N) apple(N) eat(V)+past+3sn

(Ram ate an apple).

 Here in Ex.2 ‘raam’ (Ram) has the sub-

categorization feature [+animate, +human] and

‘aappil’ (apple) with [+edible]. The selectional

restriction features required by the verb

‘caappitu’ (eat) for selecting its subject and ob-

ject are [+animate] and [+edible] respectively. If

there is a violation in SR rules, the sentence can

be syntactically correct but it will not be seman-

tically correct. Verb has the right to select its ar-

guments. We have grouped the verbs according

to the sub-categorization information of the sub-

ject and object nouns. A group of commonly

used 1500 verb senses are analyzed and 500 se-

lectional restriction rules are derived by (Ananth

and Sobha, 2010). The sub-categorization fea-

tures of a noun are explained in the next section.

A sample rule is shown in fig 1.

Using the selectional restriction rules and the

sub-categorization information of nouns we try

to group the noun phrases to form groups which

can be possible split-antecedents.

Figure 1. Selectional restriction rule for ‘caapitu’

(eat).

Following are the steps involved in identifying

the split-antecedents. In the first step, we enrich

the nouns and the verbs with its sub-

categorization information, and selectional re-

striction rules respectively. The named entities

(NEs) are mapped to the sub-categorization fea-

tures, so we get the sub-categorization infor-

mation using the NE information as described in

the example Ex.3 and Ex.4.

Ex.3.

Person: [+living; +animate; +vertebrate;

+mammal; +human;]

Ex.4.

Location: [-living; -moveable; +landscape]

In the second step, when a plural pronoun is

encountered in the sentence, the preceding por-

tion of the sentence and two preceding sentences

are considered for analysis, as Gatt et al. (2009)

has shown that the distance between plural pro-

nouns and its antecedent are very few sentences

away. The noun phrases in the preceding sen-

tences are analysed and grouped to form the pos-

sible antecedents. For grouping the NPs, the NPs

need to satisfy the following matching condi-

tions.

a) The NPs can be grouped together if they

have same sub-categorization information or

till the last but one node in the ontology is

same. Example [+living; +animate;

+vertebrate; +mammal; +human; +female]

and [+living; +animate; +vertebrate;

+mammal; +human; -female] are considered

to be same since both are same till last but

one node and the exceptions are as follows:

In the case of NPs with sub-categorization

[+living] and do not have [+human], we look for

sub-categorization match between the NPs only

395

till [+living; +animate] and such NPs are

grouped together.

Following are the steps involved to form possible

candidates by grouping the NPs.

1. Identify the plural pronoun in nth sentence.

2. If the finite verb of the sentence having

plural noun or plural possessive pronoun

is followed by noun form of the verbs

such as ‘inai’ (merge), ‘manam’ (marry),

‘vivaakaraththu_cey’ (disvorce), ‘kaathal’

(love) then look for two nouns which sat-

isfy the sub-categorisation matching con-

dition in preceding two sentences, group

these two NPs as a possible split anteced-

ent candidate.

3. Consider sentence n-2th, n-1th and in nth

sentence consider the portion preceding to

the plural pronoun to form a candidate

sentence set.

4. For each sentence in the candidate sen-

tence set

a. Noun Phrases with conjunct suffix

‘um’ or conjunct word ‘maRRum’

(and) are united to form conjunct

NPs.

5. For each sentence in sentence set

a. If there exists NPs satisfying the

matching condition, then the NPs

are grouped together.

6. Group the NPs that occur in same syntac-

tic argument position and satisfy the

matching condition across nth, n-1th and n-

2th sentences.

Table 1 Salience Factors and its Weights
S.

No.

Salience Factors Weights

1 Same Ontology Nodes 30

2 NPs with following verbs 30

3 NPs with same syntactic argument

position

20

4 NPs with different syntactic argu-

ment position

10

5 NPs are syntactic argument for verbs

having same SR rules

30

6 NPs are syntactic argument for verbs

with different SR rules

10

7 NPs in current nth sentence 30

8 NPs in n-1th sentence 20

9 NPs in n-2th sentence 10

In the third step, when the possible anteced-

ents are formed by grouping the NPs, they are

ranked based on the salience factors derived from

the features of NPs such as the sub-

categorization information of NPs, the SR rules

of verbs followed by the NPs and the syntactic

argument position of the NPs in the sentences.

The salience factor weights are described in table

1. The weights for the salience factors were ini-

tially manually assigned based on linguistic con-

siderations and fine-tuned through experiments

(Ram & Sobha, 2016).

Resolution of Reflexives: The antecedent of

the reflexive is always the subject of the clause,

where the reflexive occur. So the antecedent of

the reflexive is identified with the rule based ap-

proach.

Resolution of Reciprocals and Distributives:

Reciprocals and Distributives are handled similar

to the reflexives. The antecedent of the Recipro-

cals and Distributives will the plural nominative

noun phrase in the same clause. The resolution of

the reciprocals and distributives are done using a

rule based approach.

Noun-Noun Anaphora Resolution: Noun-

Noun Anaphora resolution is the task of identify-

ing the referent of the noun which has occurred

earlier in the document. In a text, a noun phrase

may be repeated as a full noun phrase, partial

noun phrase, acronym, or semantically close

concepts such as synonyms or superordinates.
The engine to resolve the noun anaphora is built

using Conditional Random Fields technique.

Features used in Noun-Noun Anaphora Resolu-

tion are discussed below.

We consider the noun anaphor as NPi and the

possible antecedent as NPj. Unlike pronominal

resolution, Noun-Noun anaphora resolution re-

quires features such as similarity between NPi

and NPj.We consider word, head of the noun

phrase, named entity tag and definite description

tag, gender, sentence position of the NPs and the

distance between the sentences with NPi and NPj

as features.

Features used for ML

The features used in the CRFs techniques are

presented below. The features are divided into

two types.

Individual Features:

1. Single Word: Is NPi a single word; Is NPj a

single word

2. Multiple Words: Number of Words in NPi;

Number of Words in NPj

3. PoS Tags: PoS tags of both NPi and NPj.

4. Case Marker: Case marker of both NPi and

NPj.

396

5. Presence of Demonstrative Pronoun: Check

for presence of Demonstrative pronoun in

NPi and NPj.

Comparison Features

1. Full String Match: Check the root words of

both the noun phrase NPi and NPj are same.

2. Partial String Match: In multi world NPs,

calculate the percentage of commonality be-

tween the root words of NPi and NPj.

3. First Word Match: Check for the root word

of the first word of both the NPi and NPj are

same.

4. Last Word Match: Check for the root word

of last word of both the NPi and NPj are

same.

5. Last Word Match with first Word is a de-

monstrator: If the root word of the last word

is same and if there is a demonstrative pro-

noun as the first word.

6. Acronym of Other: Check NPi is an acronym

of NPj and vice-versa.

Definite Description Identification: Definite

Description (DD) is a unique denoting phrase of

an entity. Consider the example, Indian Prime

Minister Narendra Modi. Here the phrase “Indian

Prime Minister” describes about Person Entity

‘Narendra Modi’.

We used CRFs technique to identify the DD

relations. We have used the PoS, NE information

of the two NPs (possible definite description NP

and Entity NP) and two preceding and following

words as the feature to train the CRFs engine.

Co-reference Chain Builder: We used CRFs

technique to identify the DD relations. We have

used the PoS, NE information of the two NPs

(possible definite description NP and Entity NP)

and two preceding and following words as the

feature to train the CRFs engine. We have used

various constraint rules to generate the co-

reference chains from the co-referring antecedent

NP and anaphor NP pairs. We have built the con-

straint rules based on the types of the NPs in the

co-referring NP pairs. Co-referring pairs ob-

tained from different pronominal resolution en-

gines are treated with high confidence. Co-

referring NPs having exact match and not a par-

tial NPs of any other NP, then these pair of NPs

are considered for generating co-reference

chains. If one of the NPs in the co-referring NP

pair is a definite description, then the distance

between should be checked. If it is close by in

the same sentence then it is considered for co-

reference chain generation. If one of the NP is a

partial NP in the pair, then the distance between

the partial NP and its co-referring NP is checked.

If the distance is more than 3 sentences then the

pair is dropped. If both the NPs are partial NPs

and if the antecedent NP has a co-referring NP

within proceeding three sentences then we can

consider the pair for co-reference chain genera-

tion. The algorithm is presented as follows.

Algorithm for Generating Co-reference

Chains

Step1: Type of NP in each co-referring NP

pairs are identified.

Step2: For each of the identified co-referring

NP pair; do step3 to

Step3: Check for the types of NPs in the co-

referring NP pair,

 If both the NPs have exact match and not

a partial NP of the full NP then do step4.

 If co-referring pair is obtained from the

pronominal resolution engines, then do step4.

 If one of the NP is a definite Description

in the NP pair, check if the NPs occur close in

the same sentence, then do step 4.

 If the pair of NPs has a full NP and a

partial NP, check if the NPs are in close proximi-

ty, i.e. within the three preceding sentences, then

do step4.

 If the pairs of NPs have both partial NPs,

then check if the antecedent NP has a co-

referring NP in the preceding three sentences,

then do step4.

Step 4: Check if the NPs in the co-

referring NPs are part of one of the existing clus-

ters of co-referring NPs, then include these two

pairs in that cluster. Else, introduce a new cluster

with these two NPs.

Step 5: Each cluster is formed into a co-

reference chain.

4 Experiment, Results and Discussion

We have manually annotated 1000 Tamil new-

wires collected from online Tamil web pages

belonging to three domains, viz, sports, general

and disaster. We had two annotators and the in-

ter-agreement score is measured to be 0.78 kap-

pa score. We have used 80% of the annotated

corpus for developing the different anaphora

resolution engines and co-reference chain build-

er. The rest 20% of the annotated corpus is used

for testing the different anaphora resolution en-

gines.

397

In the following table 2, we have presented the

statistics of the annotated corpus.

Table 2: Basic Corpus Statistics

Details about Corpus Count

Number of Web Articles

annotated

 1,000

Number of Sentences 22,382

Number of Tokens 272,415

Number of Words 227,615

Following table 3, has the statistics of the dif-

ferent anaphoric expression annotated in the cor-

pus.

Table 3: Statistics of Anaphoric expressions in

the Corpus

S.No Type Number of Oc-

currence

1 Noun-Noun Anaphora
11,935

2 Anaphoric Pronominal
4,160

3 Definite-Description
1,890

4 Reflexives
29

5 Reciprocal
31

6 Plural pronouns with

split-antecedent
190

7 Distributives
8

 Total
18,243

The co-reference chains are evaluated with

standard evaluation metrics such as MUC, B-

Cubed, CEAFe, CEAFm and BLANC. The per-

formance scores for co-reference chain identifi-

cation are presented in table 4.

Table 4: Performance scores for Co-reference

chains

S.No. Metric Precision

(%)

Recall

(%)

F-Measure

(%)

1 MUC 51.21 35.5 41.94

2 B-CUB 74.8 52.71 61.84

3 CEAFm 46.31 46.31 46.31

4 CEAFe 30.2 44.73 36.06

5 BLANC 64.35 56.74 57.80

6 Average 53.37 47.19 48.79

The performance scores of various anaphora

resolution modules with system preprocessed

corpus and gold standard corpus as input is pre-

sented in table 5.

Table 5 presents the comparison of perfor-

mance scores between the results obtained by

giving preprocessed corpus, Gold standard and

system processed, as input to the anaphoric sys-

tems. This brings out the inherent errors of each

anaphora resolution systems and the errors intro-

duced by preprocessing modules. On analysing

the gold standard corpus result, we find pronom-

inal resolution and one-anaphora resolution need

improvement at the anaphora analysis level. The

tendency of pronominal resolution engine to

choose the first nominative as antecedent is one

of the reason and this needs further analysis.

Table 5 Comparison of Results with System Preprocessed Corpus and Gold standard Corpus as Input

S. No Task

System Preprocessed Corpus Gold Standard Corpus

Precision

(%)

Recall

(%)

F-Measure

(%)

Precision

(%)

Recall

(%)

F-Measure

(%)

1
Singular Pronoun

Resolution
79.04 62.87 70.03 81.63 75.39 78.38

2 Plural Pronoun 81.41 64.7 72.09 82.15 76.21 79.06

3 Reflexives 96.54 93.34 94.91 96.54 93.34 94.91

4 Reciprocals 98.17 97.39 97.78 98.17 97.39 97.78

5 Distributives 97.38 95.56 96.46 97.38 95.56 96.46

398

5
Definite-

Description
92.98 70 79.87 93.83 78.56 85.51

6

Noun-Noun

Anaphora Resolu-

tion

86.14 66.67 75.16 87.19 78.32 82.52

Table 6 Percentage Distribution of Errors introduced by Various Preprocessing Modules

S. No Task

In
tr

in
si

c
E

rr
o

rs
 o

f
th

e
a

n
a

p
h

o
ri

c

m
o

d
u

le
s

(%
)

T
o

ta
l

P
e
rc

e
n

ta
g

e
(%

)
o

f
E

rr
o

r

in
tr

o
d

u
ce

d

b
y

P

re
p

ro
c
es

si
n

g

m
o

d
u

le
s

Percentage of error contributed by Each Preprocessing

module

A
n

a
p

h
o

ri
c

N
o

n

a
n

a
p

h
o

ri
c

Id
en

ti
-

fi
ca

ti
o

n
 (

%
)

M
o

rp
h

o
lo

g
ic

a
l

A
n

a
ly

se
r
 (

%
)

P
o

S
 T

a
g

g
er

 (
%

)

C
h

u
n

k
er

 (
%

)

N
a

m
ed

E

n
ti

ty

R
ec

o
g

n
is

er
 (

%
)

1
Singular Pronoun

Resolution 21.62 8.35 10.86 26.14 40.65 22.35

 2 Plural Pronoun 20.94 6.97 12.56 27.44 37.23 22.77

 3 Reflexives 5.09 0 23 41.66 35.34

4 Reciprocals 2.22 0 41.45 32.15 26.40

5 Distributives 3.54 0 38.56 28.14 33.30

6
Definite-

Description 14.49 5.64
25.24 30.27 44.49

7

Noun-Noun

Anaphora Resolu-

tion

17.48

7.36

11.56 18.78 36.44 33.22

In table 6, we have presented the percentage of

intrinsic errors, the total percentage of errors in-

troduced by preprocessing modules to each

anaphora resolution engine and the percentage of

errors contributed by each preprocessing mod-

ules to the total preprocessing errors.

With the informations from table 6, we can

understand the importance of features derived

from each preprocessing module for developing

various anaphora resolution engines.

The output from the gold standard corpus as

input is analysed and the observations are dis-

cussed below.

In singular pronominal resolution engine,

which is built using CRFs techniques, the first

nominative NP is choosen as the antecedent if

the sentences have more than one nominative

NP. Consider the following discourse.

Ex. 5.a.

munnaal thalaivar coomuvin

Formar(N) leader(N) Soomu(N)+pos

aatharavaalaraana raamu

supporter(N) Ramu(N)

neeRRu peecinaar.

yesterday(Adv) talk(V)+past+3sh

Ex.5.b.

avar kuuRiyathu.

He(PN) say(V)+past+3sn

The antecedent for ‘avar’ 3rd person singular

honorofic pronoun in Ex.5.b is ‘raamu’ (Ramu)

in Ex.5.a. But the resolution engine identifies

‘munnaal thalaivar’ (former leader) as the ante-

cedent. This is also observed in plural pronoun

resolution engine. Consider the following dis-

course.

399

Ex.6.a

puunaikaL miinkaL neeRRu caappittana.

Cat(N)+Pl fish(N)+Pl yesterday eat(V)+past+3pc

(Cats ate the fishes yestreday.)

Ex.6.b

avai nalla katal miinkaL.

They(PN) good(Adj) sea(N) fish(N)+Pl

(They are good sea fishes.)

Consider the discourse Ex.6. The plural neuter

pronoun ‘avai’ in Ex.6.b, refers to ‘miiNkaL’

(fishes) in Ex.6.a. But the plural pronoun resolu-

tion engine identifies ‘puunaikaL’ (cats) which

occur as the first NP in the sentence. Plural pro-

nouns such as ‘naangkaL’ (we), ‘engkaL’ (our)

occur in discourse with explicit antecedent in the

discourse. The antecedent has to be understood

as the group related to the speaker. These kinds

are plural pronouns are not handled.

Noun-Noun anaphora resolution engine fails

to handle definite NPs, as in Tamil we do not

have definiteness marker, these NPs occur as

common noun. Consider the following discourse.

Ex.7.a.

maaNavarkaL pooRattam katarkaraiyil

Student(N)+Pl demonstration(N) beach(N)+Loc

nataththinar.

do(V)+past+3pc

(The students did demonstartions in the beach.)

Ex.7.b.

kavalarkaL maaNavarkaLai kalainthu_cella

Police(N)+Pl students(N) disperse(V)+INF

ceythanar.

do(V)+past+3pc

(The police made the students to disperse.)

Consider the discourse Ex.7. Here in both the

sentences ‘maaNavarkaL’ (students) has oc-

curred referring to the same entity. But these plu-

ral NPs occur as a common nons and the defi-

niteness is not signalled with any markers. So we

have not handled these kinds of definite NPs

which occur as common nouns.

5 Conclusion

We have presented a methodology to build co-

reference chains in Tamil text. Co-reference

chains are formed by the co-referential entities,

which bring cohesiveness to the text. Co-

referential entities include pronominals, pro-

nouns with split-antecedents, reflexives, recipro-

cals, distributives, noun-noun anaphora and defi-

nite descriptions and their antecedents. Each of

the anaphoric expressions is resolved using dif-

ferent methodologies as pronominal resolution

requires syntactic features and noun-noun anaph-

ora resolution and definite description identifica-

tion requires semantic features. The co-reference

chains are evaluated with standard metrics name-

ly MUC, B-Cubed, CEAFe, CEAFm, and

BLANC. The average precision is 53.37%, recall

of 47.19% and F-measure of 48.79%.

Reference

Ananth Ramakrishnan, A & Sobha Lalitha Devi 2010,

‘An alternate approach towards meaningful lyric

generation in Tamil’, Proceedings of the Workshop

on Computational Approaches to Linguistic

Creativity (CALC 2010), Association for

Computational Lingusitics (ACL), LA, USA, pp.

31-39.

Aone, C & Bennett, S 1995, ‘Evaluating automated

and manual acquisition of anaphora resolution

strategies’. In: 33rd Annual Meeting of the

Association for Computational Linguistics, pp.

122-129.

Bengtson, E & Roth, D 2008, ‘Understanding the

value of features for coreference resolution’, In

Proceedings of EMNLP, pp. 294-303.

Cardie, Claire & Kiri Wagstaff 1999, ‘Noun phrase

coreference as clustering’, In Proceedings of the

1999 Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very

Large Corpora, pp. 82-89.

Culotta, A, Wick, M, Hall, R & McCallum, A 2007,

‘First-order probabilistic models for coreference

resolution’, In Proceedings of HLT/NAACL, pp.

81-88.

Kehler Andrew 1997, ‘Probabilistic coreference in

information extraction’, In Proceedings of the

Second Conference on Empirical Methods in

Natural Language Processing, pp. 163-173.

Kudo Taku. 2005. CRF++, An Open Source Toolkit

for CRF [online] http://crfpp.sourceforge.net (ac-

cessed 3 January 2013).

Malarkodi C. S., Pattabhi R. K. Rao and Sobha

Lalitha Devi. 2012, Tamil NER – Coping with Real

Time Challenges, In Proceedings of Workshop on

Machine Translation and Parsing in Indian Lan-

guages, COLING 2012, Mumbai, India

McCarthy, JF & Lehnert, WG 1995, ‘Using decision

trees for coreference resolution’, In C. Mellish

(Ed.), Fourteenth International Conference on

Artificial Intelligence, pp. 1050-1055.

400

MUC-6 1995, Coreference task definition (v2.3, 8 Sep

95). In Proceedings of the Sixth Message

Understanding Conference (MUC-6), pp. 335-344.

MUC-7 1997, Coreference task definition (v3.0, 13

Jul 97). In Proceedings of the Seventh Message

Understanding Conference (MUC-7).

Ng, V & Cardie, C 2002, ‘Improving machine

learning approaches to coreference resolution’, In.

40th Annual Meeting of the Association for

Computational Linguistics, pp. 104-111.

Rahman, A & Ng, V 2011, ‘Narrowing the Modeling

Gap: A Cluster-Ranking Approach to Coreference

Resolution’, Journal of Artificial Intelligence

Research, vol. 40, pp. 469-521 R.

Raghunathan, K, Lee, H, Rangarajan, S, Chambers, N,

Surdeanu, M, Jurafsky, D & Manning, C 2010, ‘A

multi-pass sieve for coreference resolution’, In

Proceedings of EMNLP, pp. 492-501.

Ram, RVS, Bakiyavathi, T, Sindhujagopalan, R,

Amudha, K & Sobha, L., 2012, ‘Tamil Clause

Boundary Identification: Annotation and

Evaluation’, In the Proceedings of 1st Workshop

on Indian Language Data: Resources and

Evaluation, Istanbul

Ram, RVS & Sobha Lalitha Devi 2016, ‘How to

Handle Split Antecedents in Tamil?’, In

proceedings of Coreference Resolution Beyond

OntoNotes co-located with NAACL 2016, San

Diego, California.

Recasens, M, M`arquez, L, Sapena, E, Mart´I, MA,

Taul´e, M, Hoste, V, Poesio, M & Versley, Y 2010,

‘SemEval-2010 Task 1: Coreference Resolution in

Multiple Languages’, In Proceedings of the 5th

International Workshop on Semantic Evaluation,

ACL 2010, Uppsala, Sweden, pp. 1-8.

Sobha, L 2007, ‘Resolution of Pronominals in Tamil.

Computing Theory and Application’, The IEEE

Computer Society Press, Los Alamitos, CA, pp.

475-79.

Sobha Lalitha Devi, Marimuthu K, Vijay Sundar Ram

R, Bakiyavathi T and Amudha K. 2013, Morpheme

Extraction in Tamil using Finite State Machines,

In:Proceedings of Morpheme Extraction Task at

FIRE 2013

Sobha Lalitha Devi, Pattabhi RK Rao and R Vijay

Sundar Ram. 2016b, "AUKBC Tamil Part-of-

Speech Tagger (AUKBC-

TamilPoSTagger2016v1)". Web Download. Com-

putational Linguistics Research Group, AU-KBC

Research Centre, Chennai, India, 2016.

Soon WH Ng & Lim, D 2001, ‘A machine learning

approach to coreference resolution of noun

phrases’, Computational Linguistics, vol. 27, no. 4,

pp. 521-544.

401

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 402–407

Cross Linguistic Variations in Discourse Relations among Indian

Languages

Sindhuja Gopalan

AU-KBC Research Centre

MIT Campus of Anna
University, Chennai, India

sindhujagopalan@au-

kbc.org

Lakshmi s

AU-KBC Research Centre

MIT Campus of Anna
University, Chennai, India

lakssreedhar@gmail.com

Sobha Lalitha Devi

AU-KBC Research Centre

MIT Campus of Anna
University, Chennai, India

sobha@au-kbc.org

Abstract

This paper summarizes our work on analysis

of cross linguistic variations in discourse rela-

tions for Indo-Aryan language Hindi and

Dravid ian languages Malayalam and Tamil.

In this paper we have also presented an auto-

mat ic discourse relation identifier, which

gave encouraging results. Analysis of the re-

sults showed that some complex structural in-

ter-dependencies existed in these three lan-

guages. We have described in detail the struc-

tural inter-dependencies that occurred. Dis-

course relations in the three languages thus

exhibited complex nature due to the structural

inter-dependencies.

1 Introduction

Discourse relations link clauses in text and com-
pose overall text structure. Discourse relations
are used in natural language processing (NLP),
including text summarization and natural lan-
guage generation. The analysis and modeling of
discourse structure has been an important area of
linguistic research and it is necessary for building
efficient NLP applications. Hence the automatic
detection of discourse relation is also important.
The Indo-Aryan (Hindi) and Dravidian languages
(Malayalam and Tamil) share certain similarities
such as verb final language, free word order and
morphologically rich inflections. Due to the in-
fluence of Sanskrit in these languages they are
similar at lexical level. But structurally they are
very different. In this work we have presented an
analysis of the cross linguistic variations in the
discourse relations among three languages Hindi,
Malayalam and Tamil. Instead of identifying all
possible discourse relations we have considered

the analysis of explicit discourse relations and
developed an automatic discourse relation identi-
fication system. During error analysis various
structural interdependencies were also noted.

Discourse tagging for Indian languages Hindi,
Malayalam and Tamil has been done by Sobha et
al., (2014) Other published works on discourse
relation annotations in Indian languages are in
Hindi (Kolachina et al., (2012); Oza et al.,
(2009)) and Tamil (Rachakonda and Sharma
(2011)). Menaka et al., (2011) in their paper have
automatically identified the causal relations and
have described about the structural interdepend-
encies that exist between the relations. Similarly,
we observed the existence of structural interde-
pendencies between the discourse relations in
three languages, which we have explained in de-
tail. From the previous works on discourse rela-
tion annotation for various Indian languages, we
can observe that the study of discourse relations
is carried out for specific Indian language and
hence we attempted to discuss the cross linguistic
variations among Hindi, Tamil and Malayalam
languages.

Researchers have performed identification and
extraction of discourse relation using cue based
or statistical methods. Penn Discourse Tree Bank
(PDTB) is the large scale annotated corpora of
linguistic phenomena in English (Prasad et al.,
2008). The PDTB is the first to follow the lexi-
cally grounded approach to annotation of dis-
course relations. Marcu and Echihabi (2012)
have focused on recognition of discourse relation
using cue phrases, but not extraction of argu-
ments. Wellner and Pustejovksy (2007) in their
study considered the problem of automatically
identifying the arguments of discourse connec-
tives in PDTB. They re-casted the problem to
that of identifying the argument heads, instead of

402

identifying the full extents of the arguments as
annotated in PDTB. To address the problem of
identifying the arguments of discourse connec-
tives they incorporated a variety of lexical and
syntactic features in a discrimination log-linear
re-ranking model to select the best argument pair
from a set of N best argument pairs provided by
independent argument models. They obtained
74.2% accuracy using gold standard parser and
64.6% accuracy using automatic parser for both
arguments. Elwell and Baldridge (2008) have
used models tuned to specific connectives and
connective types. Their study showed that using
models for specific connectives and types of
connectives and interpolating them with a gen-
eral model improves the performance. The fea-
tures used to improve performance include the
morphological properties of connectives and
their arguments, additional syntactic configura-
tion and wider context of preceding and follow-
ing connectives. The system was developed on
PDTB. They used Maximum entropy ranker.
Models were trained for arg1 and arg2 selection
separately. They achieved 77.8% accuracy for
identifying both arguments of connective for
gold standard parser and 73.6% accuracy using
automatic parser. Ramesh and Yu (2010) have
developed a system for identification of dis-
course connectives in bio-medical domain. They
developed the system on BioDRB corpus using
CRFs algorithm. For PDTB data they obtained F-
score of 84%. They obtained F-score of 69% for
BioDRB data. For PDTB based classifier on Bi-
oDRB data, they obtained F-score of 55%. In this
work they did not focus on identification of ar-
guments. Versley (2010) presented his work on
tagging German discourse connectives using a
German–English parallel corpus. AlSaif (2012)
used machine learning algorithms for automati-
cally identifying explicit discourse connectives
and its relations in Arabic language. Wang et al.,
(2012) used sub-trees as features and identified
explicit and implicit connectives and their argu-
ments. Zhou et al., (2012) presented the first ef-
fort towards cross lingual identification of the
ambiguities of discourse connectives. Faiz et al.,
(2013) did explicit discourse connectives identi-
fication in the PDTB and the Biomedical Dis-
course Relation Bank (BDRB) by combining
certain aspects of the surface level and syntactic
feature sets. In this study we tried to develop a
discourse parser for all three languages for iden-
tification of connectives and its arguments.

Following sections are organized as follows.
Corpus Collection and Annotation is described in

section 2, cross linguistic variations in discourse
relations among three languages is given in sec-
tion 3, method used for the automatic identifica-
tion of discourse relation and the results are de-
scribed in section 4 and the various structural
interdependencies that occur in the three lan-
guages is described in section 5. The paper ends
with the conclusion section.

2 Corpus collection and Annotation

Health related articles were chosen from web and
after removing inconsistencies like hyperlinks a
total corpus of 5000 sentences were obtained.
Then we annotated the corpus for connectives
and its arguments. The discourse relation annota-
tion was purely syntactic. The arguments were
labeled as arg1 and arg2 and arg2 was chosen to
be following arg1. When free words occur, we
tag them separately and the discourse unit be-
tween which the relation is inferred is marked as
arg1 and arg2. When the connectives exist as
bound morphemes we keep them along with the
word to which it is attached and include it under
arg1. The annotated corpus contains 1332 explic-
it connectives in Hindi, 1853 in Malayalam and
1341 in Tamil. From the data statistics we can
observe that Malayalam language has more
number of connectives than Tamil and Hindi.
Annotated corpus is used to train the system and
the models are built for the identification of con-
nectives and arguments.

3 Cross Linguistic variations in Dis-

course Relations

The discourse relation in Indian language can be
expressed in many ways. It can be syntactic (a
suffix) or lexical. It can be within a clause, inter-
clausal or inter-sentential. The various cross lin-
guistic variations in discourse relation among the
three languages is analyzed and described below.

3.1 Discourse Connectives

Discourse relations can be inferred using Explicit
or Implicit connectives. Explicit connectives
connect two discourse units and trigger discourse
relation. The explicit connectives can be realized
in any of the following ways.

 Subordinators that connect the main
clause with the subordinate or dependent
clause. (For example: agar-to, jabkI in
Hindi, appoL, -aal in Malayalam and -
aal, ataal in Tamil).

 Coordinators which connect two or more
items of equal syntactic importance.

403

They connect two independent clauses.
(For example: “aur”, “lekin” in Hindi, “-
um”, “ennaal” in Malayalam and
“anaal”, “athanaal” in Tamil).

 Conjunct adverbs that connect two inde-
pendent clauses and modify the clauses
or sentences in which they occur. (For
example: “isliye”, “halaanki” in Hindi,
“athinaal”, “aakayaal” in Malayalam and
“enninum”, “aakaiyaal” in Tamil).

 Correlative conjunctions which are
paired conjunctions. They link words or
group of words of equal weights in a
sentence. (For example: “na keval balki”
in Hindi, “maathramalla-pakshe” in Mal-
ayalam and “mattumalla-aanaal” in Tam-
il).

3.2 Position of Connectives

In our approach we have done a syntactic based
tagging. In Hindi, Malayalam and Tamil dis-
course connectives can occur within a sentence
or between sentences. In all the three languages
inter sentence connectives are said to occupy
sentence initial position. Example 1 shows the
inter sentence discourse relation in Malayalam.
Example 1:
[chila aaLukaL mukhsoundaryam koottaan
Some people facial-beauty increase
kreemukaL upayogikkaaruNt.]/arg1
creams use
ennaal [athu guNathekkaaLeRe doshamaaN
But that goodness-more than harm-is
cheyyuka.]/arg2
do
(Some people use creams to increase their facial
beauty. But that will do more harm than good.)

We found that there exists a difference in the
position of conjunct adverb “although” among
the three languages. As in Example 2, in Hindi
this connective occurs in the sentence initial po-
sition whereas in Tamil and Malayalam this con-
nective occurs in the middle position and remains
agglutinated with the verb.
Example 2:
haalaaMki [yoga pakshaaGaath kii samasyaa kaa
although yoga paralysis problem's
sTaayii samaaDhaan karthaa hai]/arg2,
permanent solution do is
[yah samay lethaa hai evaM shramsaaDya
This time take is and painstaking
hai]/arg1
is
(Although yoga gives a permanent solution for
paralysis, this is time taking and painstaking.)

In Tamil and Malayalam the connective “and”
exists in the form as in Example 3. In Hindi sin-
gle lexicon “aur” serves this purpose.
Example 3:
[muuttukaLiluLLa kuRuththelumpu vaLaraamal
 in knee cartilage without
theymaanam atainthaalum]/arg1,
growing wear if get-and
[angkuLLa vazhuvazhuppaana thiravam
there smooth fluid
kuRainthupoonaalum]/arg2 muuttukaLil uraayvu
get less-and knee friction
eRpatum.
will develop
 (If cartilage in the knee gets wear without
growing and if the smooth fluid present there
becomes less, friction will develop in the knee.)

3.3 Agglutinated and intra sentence

In Malayalam and Tamil connectives can occur
as free words or bound morphemes. But in Hindi
only free word connectives exist as in Example
2.
Example 4:
[vayiRRil kutalpun irunthaal]/arg1 [vayiRu
In stomach ulcer is there-if stomach
valikkum]/arg2.
will pain
(If there is ulcer in stomach, stomach will pain.)

3.4 Paired connectives

In Hindi some discourse connectives were seen
as paired connectives. This type of connectives is
not noticed in Malayalam and Tamil.
Example 5:
yadhii [lagaathaar buKaar aa rahaa hai]/arg1 tho
if constantly fever coming is then
[uskii jaaNca avashaya karaaye]/arg2.
its check sure do
(If fever is coming constantly, then check it for
sure.)

In the above Example 5 “yadhii-to” is the
paired connective that occurs at the start of arg1
and arg2. Whereas in Tamil and Malayalam it
occurs as a single connective as in Example 4
and occurs agglutinated with verb.

3.5 Arguments of Relations

In our approach the label assignment is syntactic.
Sometimes, the arguments can be in the same
sentence as the connective. Sometimes, one of
the preceding sentence acts as an argument. Also
the argument can be a non-adjacent sentence. But
the text span follows the minimality-principle. In
Example 1 the connective “ennal” in Malayalam

404

connects two discourse units inter sententially.
The discourse unit that follows the connective is
arg2 and the preceding unit is arg1. In Example 4
the arguments for connective “-aal” in Tamil oc-
cur in same sentence.

4 Automatic identification of discourse

relation

4.1 Method Used

We have used the method adopted by Menaka et
al., (2011) for the identification of discourse rela-
tions. We have preprocessed the text for morph
analysis (Ram et al, 2010), part-of-speech tag-
ging (PoS) (Sobha et al, 2016), chunking (Sobha
and Ram, 2006), clause tagging (Ram et al,
2012). The implementation is done based on ma-
chine learning technique CRFs.

4.2 Conditional Random Fields

CRFs is an undirected graphical model, where
the conditional probabilities of the output are
maximized for a given input sequence. We chose
CRFs, because it allows linguistic rules or condi-
tions to be incorporated into machine learning
algorithm. Here, we have used CRF++ (Kudo,
2005), an open source toolkit for linear chain
CRFs.

4.3 Features Used

For the identification of connectives, we have
used PoS tagging information, morphological
suffixes and clause information as features for
Malayalam and Tamil. Morphological suffixes
such as conditional markers, causal markers, rel-
ative participle (RP) marker followed by postpo-
sition (PSP) and coordination markers were used.
For connective identification in Hindi, word, PoS
tagging information and chunk information were
used. For argument identification we have taken
PoS tagging information, chunk information,
morphological suffixes, and clause information,
combination of PoS and chunk information and
connectives as features.

4.4 Training and Testing

For identifying the discourse connectives, we
trained the system using the features for connec-
tives. In the next stage we train the system to
identify the arguments and their text spans. Here
we have built 4 language models for each of the
4 boundaries – Arg2-START, Arg1-END, Arg1-
START and Arg2-END motivated by the work
of Menaka et al., (2011). The system was trained
in 4 phases to develop 4 models. We used 4000

sentences from the corpus for training and 1000
sentences for testing. For testing, the sentences
are pre-processed similarly as training data. The
system identified the discourse markers in stage
1 and this output becomes input to stage 2. In
both the stages we used CRFs as the machine
learning algorithm.

The performance of our system is measured in
terms of Precision, Recall and F score. Precision
is the number of discourse relations correctly
perceived by the system from the total number of
discourse relations identified, Recall is the num-
ber of discourse relations correctly detected by
the system by the total number of discourse rela-
tions contained in the input text and F-score is
the harmonic mean of precision and recall.

The results for connective identification are
tabulated in Table 1.

 Precision Recall F-

score

Hindi 96.33 92.3 94.27

Malayalam 96.3 91.6 93.89

Tamil 95.35 94.18 94.76

Table 1: Results for Connective Identification

The argument identification results are given
in Table 2, Table 3, Table 4 and Table 5.

 Precision Recall F-

score

Hindi 76 72.2 74.05

Malayalam 78.5 72 75.1

Tamil 81.53 73.6 77.36

Table 2: Results for ARG1 Start

 Precision Recall F-

score

Hindi 75.9 72.2 74

Malayalam 78.8 72 75.23

Tamil 82 72.6 77

Table 3: Results for ARG1 End

 Precision Recall F-

score

Hindi 77.4 73.2 75.24

Malayalam 79.2 73 75.97

Tamil 81.5 72.6 76.79

Table 4: Results for ARG2 Start

 Precision Recall F-

score

Hindi 76.3 71.2 73.66

Malayalam 78.7 72.4 75.42

Tamil 82 72.7 77

405

Table 5: Results for ARG2 End

During error analysis it is noted that a good

number of errors are due to structural interde-
pendencies between discourse relations. When
there are such structures, there is a considerable
overlap in the arguments of two discourse rela-
tions leading to the improper identification of
boundaries by the system. These are discussed in
detail in the next section.

5 Structural Interdependencies between

discourse relations

Some very unique pattern of interdependencies
was seen existing between discourse relations for
Hindi, Malayalam and Tamil mainly due to the
free word order nature of those languages. Given
below are such patterns.

5.1 Embedding within itself

Due to the free word order nature of Indian lan-
guages this type of structure comes into being.
Consider the Malayalam Example 6 given below.
Example 6:
[pala padhathikaLum [ee karaaR
many plans this contract
sambhavikkaathathinaal]/arg1 natakkaathe
not-happen-hence failed
poyi.]/arg2
(This contract didn’t happen, hence many plans
failed.)

Here arg1 and marker is seen embedded inside
arg2.

5.2 Between Two Discourse Relations –
Containment

One most frequently occurring structural de-
pendency is that of embedding or containment of
the whole of a discourse relation within one of
the arguments of another discourse relation.
Example 7:
[lagbhag 25 se 50 prathishath roobelaa
approximately 25 from 50 percent rubella
saMkramaN kaa pathaa nahiM cal paathaa]/arg1i
infection know not get
aur [agar[iske lakshaN paidhaa hothe
and if its symptoms develop
haiM]/arg1j tho [[ve bhahuth hii
 is then they very
halke hothe haiN]/arg2i]/arg2j
light is
(Approximately 25 to 50 percent of rubella infec-
tion is not known and if its symptoms develop
then they are very light.)

The Example 7 shows that the arguments of
connective “agar-to” are contained within the
arg2 of connective “aur”.

5.3 Between two Discourse Relations –
Complete Overlap/Shared Argument

An argument may be shared by two discourse
relations in different ways.
Example 8:
naviina vaazhkkai muRaiyil vaakanagkalaip
modern life style vehicles
payanpatutthuvathaal]/arg1i [[nataippayiRci
use-because walking
enpathu kuRainthuvittathu]/arg2i]/arg1j.
is reduced
ithanaal [utalil cerum
Because of this in body accumulate
thevaiyaRRa kalorikaL cariyaaka
unwanted calories correctly
erikkappatuvathillai]/arg2j.
not burnt
(Because of using vehicles in modern life style
walking is reduced. Because of this, the unwant-
ed calories accumulated in the body is not burnt.)

In Example 8 the arg2 of the first discourse re-
lation is the shared argument for the second dis-
course relation.

5.4 Completely Independent Relations

Example 9:
[poshakaaharam nalki kuttiye
nourishing-food gave child
paripaalichu.]/arg1i engilum [kuttiyute
fostered But child's
arogyathil purogathiyilla.]/arg2i [atuthaghathathil
health-in no-progress next-stage-in
guLikakaL nalki.]/arg1j engilum [kuttiyte
vitamin tablets gave But child's
arogyam athe nilayil thutarnnu.]/arg2j
health same condition-in continued.

(Nourishing food was given for the child. But
the child's health had no progress. In the next
stage gave vitamin tablets. But the child's condi-
tion remained the same.)

In Example 9 there are two adjacent discourse
relations which are independent of each other.

6 Conclusion

We have presented our work on discourse rela-
tion identification for Hindi, Malayalam and
Tamil. An analysis of the discourse relations
among the three languages was performed and an
automatic identification system for discourse re-
lation was developed. By analyzing the results

406

structural dependencies were noted. By handling
this issue the performance of the system can be
improved which makes up our future work.

Reference

John L AlSaif. 2012. Human and automatic annota-

tion of discourse relations for Arabic, Ph.D. thesis,

University of Leeds.

Ben Wellner and James Pustejovsky. 2007. Automati-

cally Identifying the Arguments of Discourse Connec-

tives, Proceedings of EMNLP-CoNLL, Prague, 92-

101.

Balaji P. Ramesh and Hong Yu. 2010. Identifying

discourse connectives in biomedical text, Proceedings

of AMIA Annual Symposium, Washington, DC 657-

661.

Daniel Marcu and Abdessamad Echihabi. 2012. An

unsupervised approach to recognizing discourse rela-

tions, Proceedings of 40th Annual Meeting on Associ-

ation for Computational Linguistics, 368-375.

Robert Elwell and Jason Baldridge. 2008. Discourse

connective argument identification with connective

specific rankers, Proceedings of International Confer-

ence on Semantic Computing, Santa Clara, CA.

Rashmi Prasad, Nikh il Dinesh, Alan Lee, Elen i

Miltsakaki, Livio Robaldo, Aravind Joshi, and Bonnie

Webber. 2008. The Penn Discourse TreeBank 2.0,

Proceedings of Language Resources and Evaluation

Conference, Marrakech, Morocco.

Lanjun Zhou, Wei Gao, Binyang Li, Zhongyu Wei,

and Kam-Fai Wong. 2012. Cross-Lingual Identifica-

tion of Ambiguous Discourse Connectives for Re-

source-Poor Language, Proceedings of International

Conference on Computational Linguistics, Mumbai,

India, 1409-1418.

Ram, RVS, Bakiyavathi, T, Sindhujagopalan, R,

Amudha, K and Sobha, L. 2012. Tamil Clause

Boundary Identification: Annotation and Evaluation,

Proceedings of 1st Workshop on Indian Language

Data: Resources and Evaluation, Istanbul.

Ravi T. Rachakonda, and Dipti M. Sharma. 2011.

Creat ing an annotated Tamil corpus as a discourse

resource, Proceedings of 5th Linguistic Annotation

Workshop, Portland, Oregon, 119-123.

Sudheer Kolachina, Rashmi Prasad, Dipt i M. Sharma,

and Aravind Joshi. 2012. Evaluation of Discourse

Relation Annotation in the Hindi Discourse Relation

Bank, Proceedings of Language Resources and Eval-

uation Conference, Istanbul, Turkey, 823-828.

S. Menaka, Pattabhi R.K. Rao, and Sobha L. Devi.

2011. Automatic identification of cause-effect rela-

tions in tamil using CRFs, Proceedings of Computa-

tional Linguistics and Intelligent Text Processing,

Lecture Notes in Computer Science, 6608:316-327.

Sayeed I. Faiz, and Robert E. Mercer. 2013. Identify -

ing exp licit d iscourse connectives in text, Advances in

Artificial Intelligence, Lecture Notes in Computer

Science, 7884:64-76.

Sobha, L and Vijay Sundar Ram, R. 2006. Noun

Phrase Chunker for Tamil, Proceedings of the First

National Symposium on Modeling and Shallow Pars-

ing of Indian Languages (MSPIL) , IIT Mumbai, India,

194-198.

Sobha L. Devi, S. Lakshmi, and Sindhuja Gopalan.

2014. Discourse Tagging for Indian Languages, Pro-

ceedings of Computational Linguistics and Intelligent

Text Processing, Berlin, Heidelberg, 469-480.

Sobha L Devi, Pattabhi RK Rao and Vijay Sundar

Ram, R. 2016. AUKBC Tamil Part-of-Speech Tagger

(AUKBC-TamilPoSTagger 2016v1), web download,

http://www.au-kbc.org/nlp/corpusrelease.html.

Taku Kudo. 2005. CRF++, an open source toolkit fo r

CRF, http://crfpp.sourceforge.net .

Umangi Oza, Rashmi Prasad, Sudheer Kolach ina,

Dipti M. Sharma, and Aravind Joshi. 2009. The Hindi

discourse relation bank, Proceedings of Third Linguis-

tic Annotation Workshop, 158-161.

Vijay Sundar Ram, R, Menaka, S and Sobha Lalitha

Devi. 2010. Tamil Morphological Analyser”, in

“Morphological Analysers and Generators, LDC-IL,

Mysore, 1 –18.

Xun Wang, Suj Ian Li, Jiwei Li, and Wenj Le Li.

2012. Implicit Discourse Relat ion Recognition by

Selecting Typical Training Examples, Proceedings of

International Conference on Computational Linguis-

tics, Mumbai, India, 2757-2772.

Yannick Versley. 2010. Discovery of ambiguous and

unambiguous discourse connectives via annotation

projection, Proceedings of Workshop on Annotation

and Exploitation of Parallel Corpora (AEPC) , 83-82.

407

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 408–416

RULE BASED APPROCH OF CLAUSE BOUNDARY IDENTIFICATION

IN TELUGU

Ganthoti Nagaraju

Department of Linguistics

and Language Technology,

Central University of Kerala

gnagarajug62@gmail.com

Thennarasu S

Department of Linguistics

and Language Technology,

Central University of Kerala

 thennarasus@gmail.com

Christopher Mala

Center for Applied Linguis-

tics and Translation Studies,

University of Hyderabad

efthachris@gmail.com

Abstract

One of the major challenges in Natural Lan-

guage Processing is identifying Clauses and

their Boundaries in Compu-tational Linguis-

tics. This paper attempts to develop an Au-

tomatic Clause Bound-ary Identifier (CBI)

for Telugu lan-guage. The language Telugu

belongs to South-Central Dravidian language

fami-ly with features of head-final, left-

branching and morphologically aggluti-

native in nature (Bh. Krishnamurti, 2003). A

huge amount of corpus is studied to frame

the rules for identifying clause boundaries

and these rules are trained to a computational

algorithm and also discussed some of the is-

sues in identifying clause boundaries. A

clause boundary annotated corpus can be de-

veloped from raw text which can be used to

train a machine learning algorithm which in

turns helps in development of a Hybrid

Clause Boundary Identification Tool for

Telugu. Its implementation and evaluation

are discussed in this paper.

1. Introduction

A Clause is a grammatical unit that includes,

at minimum, a predicate and an explicit and

implied subject and expresses a proposition

(Crystel, 1980). In other words, a clause is

defined as a group of words having a subject

and a predicate. It is a well-known fact that a

sentence may contain one or more clause.

Simple sentences always have a single

clause. Analyzing these clauses in NLP is an

easy task. But when a sentence has more

than one clause it becomes difficult to pro-

cess. Identification of predicate and its de-

pendent thematic elements become even

more difficult. To solve this problem, identi-

fication of clause boundary is mandatory.

Clause Boundary Identification is the pro-

cess of dividing the given sentence into a set

of clause. Correct automatic detection of ma-

jor syntactic boundaries, in particular clause

boundaries help in improving many other

tools in NLP (Leffa, 1998; Ejerhed, 1988,

Vijay et al., 2009; Gadde et al., 2010). The

Telugu Clause boundary identifier (T-CBI)
is an automatic tool to identify boundaries of

clauses and mark their start and end points.

In another words, it identifies the structure

that underlies the sentence. Shallow parsed

sentence are used as input to T-CBI and fur-

ther parse the sentence and marks the clause

with their boundaries along with their appro-

priate tags. This module can be used in big-

ger NLP systems like Machine Translation

systems, Information Extraction and Infor-

mation Retrieval, Search Engines, etc.

The data driven (Puscasu, 2004) and rule

based (Leffa, 1998) approaches are promi-

nent in the development of a CBI. In order to

build a clause boundary identifier, using data

driven approach, one needs to have a good

clause boundary annotated corpus for train-

ing (Sharma et al, 2013). Such a corpus is

not available in the Telugu language. Hence

a Rule-Based approach is selected in the cur-

rent study to develop an efficient CBI for

Telugu. By using Morphological cues such

as agreement markers (person, gender, num-

ber) and case markers/ Tense Aspect Modal

408

(TAM) markers to identify the start and end

of the clause. Other than these, certain lexi-

cal cues are used to identify the CBI. Identi-

fied Thematic roles of the constituents are

used in the T-CBI for better performance of

the Rules. The development of automatic T-

CBI will be used to develop the clause

boundary annotated corpus for the task of

clause boundary identification from raw text

using machine learning process in NLP.

2. Review of Earlier Researches

Clause Boundary Identification started with

Eva Ejerhed’s Clause Identification System

(Ejerhed, 1988) for text to speech system.

Leffa (1998) has developed a rule-based sys-

tem to identify clauses from English to Por-

tuguese machine translation system. Pa-

pageorgiou developed a rule-based clause

boundary system as a pre-processing tool for

bilingual alignment parallel text (Papageor-

giou, 1997). Tomohiro Ohno et al. (2006)

built CBI for Japanese to implement Spoken

Monologue System. The dependencies with-

in a clause are identified by dividing a sen-

tence into clauses and executing stochastic

dependency parsing for each clause. Later,

the dependencies over clause boundaries are

identified stochastically, and the dependency

structure of the entire sentence is thus com-

pleted. This method executes dependency

parsing in two stages: at the clause level and

at the sentence level. According to their

evaluation, the recall of the system is 95.7%

and the precision is 96.9%. Phani Gadde et

al. (2010) have attempted to improve data

driven dependency parsing using clausal in-

formation. They have used Stagel parser of

Husain et al. (2009), to provide the clause

boundary information that is then incorpo-

rated as features during the actual parsing

process. They experimented with different

combinations of the information provided in

the data such as Vibhakti and TAM fields.

Daraksha Parveen et al. (2011) have built a

CBI for Urdu using Conditional Random

Field (CRF) as the classification method and

clause markers. A hybrid approach is pro-

posed to use both techniques i.e. rule based

and machine learning to build an identifier

for different clause boundaries of Urdu lan-

guage. Lakshmi, S. et al. (2012) have built a

clause boundary identification system for

Malayalam sentences using the CRF. Here,

the clause boundaries are identified using

grammatical features. Sobha L. et al. (2013)

have built Malayalam CBI using CRF. They

have developed a corpus with tagging of dif-

ferent type of clauses as well as the start and

end of the clause. They selected approxi-

mately 6415 tourism and 385 health corpus

sentences from the Web and the training set

consisted of 5000 sentences from both the

domains. Testing of the system was done

with 401 unseen sentences from the corpus

of tourism. They achieved a precision and

recall on different types of clauses of about

70% and 80% respectively. Aniruddha

Ghosh et al. (2013) have built CBI for the

Bengali language. They used a syntactic rule

based model with CRF, a machine learning

technique. They have achieved 73% and

78% of precision and recall respectively. Ra-

hul Sharma et al. (2013) have attempted to

build a clause boundary to Hindi Treebank

data. They have used the dependency at-

tachments and dependency annotated rela-

tions to mark clauses. They chose 16,000

sentences and conducted an exercise on 238

clauses and got the result of 94% of accuracy

in the clause boundary identification.

 3. Description of Rule Format.

Classification of Telugu Clauses

409

3.1. Finite Clauses

Finite Clause contains subject and finite

verb, the finite verb is in agreement with the

subject. Finite clauses are classified as Ver-

bal Predicate, Nominal Predicate and Com-

pound. Nominal predicate in sub-categorized

to Noun, Adjectival and Number-words and

Compound Clauses are sub-categorized to

Conjunctive and Disjunctive Clauses. Con-

junctive clauses are further sub-categorized

into co-ordinate, correlate and subordinate

clauses.

3.1.1. Verbal Predicate clause

In verbal predicate clause, a finite verb oc-

curs in the end of a sentence. It distinguishes

for tense such as past, present and future.

Each tense distinguishes positive and nega-

tive clauses. Examples for verbal predicate

clauses are given below:

Past Tense

i) Positive

nēnu āme-nu tiṭṭ ā-nu

I she ACC scold PST 1.SG.

 'I scolded her’

ii). Negative

nēnu āme-nu tiṭṭ a-lēdu

I she ACC scold INF- PST. NEG

'I did not scold her'

3.1.2. Nominal Predicate clause

Noun/adjective/number word phrase in its

predicate position agrees in gender, person

and number with the subject. In the case of

first or second person singular or in first per-

son plural in Telugu, they inflect with num-

ber and with person. The pronominal suffix-

es -ni/-nu, -mi/-mu and -vi/-vu are manifest-

ed on the predicate for first person singular,

first person plural and second person singu-

lar respectively.

i). Noun phrase in Predicate position:

nēnu oka abbāyi- ni

I a boy 1.SG.

 'I am a boy'

This is an example for nominal predicate

sentence. The subject nēnu agrees with the

nominal predicate. The agreement is mani-

fested with the marker -ni

ii). Adjective phrase in Predicate position:

nīvu/nuvvu poḍugu vāḍi-vi

you tall poss. 2.SG.

'You are a tall boy/guy'

The subject nīvu/nuvvu agrees with the ad-

jectival predicate. The agreement is mani-

fested with the marker -vi.

iii). Number word phrase in Predicate po-

sition:

mēmu muggu- ra-mu

we three 3.SG.H. 1.PL.

'We are three persons'

This is an example for number word predi-

cate sentence. The subject mēmu agrees with

the number-word predicate. The agreement

is manifested with the marker -mu. No Nom-

inal Predicate Agreement for 2.PL and

3.SG/PL.M/F/N

3.1.3 Compound Clause

A sentence containing two or more coordi-

nate independent clauses, usually joined by

one or more conjunction markers, but no de-

pendent clause, as in the below sentence.

e.g.: [The lightning flashed]MC and [the rain

fell.]MC

3.1.3a Conjunctive Clause

Some compound sentences are joined by a

conjunction. Some of the conjunction marker

in Telugu are: ani, mariyu, leka, (kāni),

kāka, Ena, kanuka, endukante.

Examples of compounds in sentences

include:

mā āyana panilo nimaGFulE unnāru

aMdukani nenu bajāruku velYlānu.

Other compound sentences are joined with a

semicolon. If a semicolon is used, it may or

may not have a conjunctive adverb.

410

i). Coordinative Clause

This is done using one of two or more claus-

es of equal status in a sentence, especially

when joined by a coordinating conjunction.

Here kāni is the coordinative marker.

mēmu vacc-ā- -mu kāni [vāḍu rā-lēdu

we come PST. 1.PL. but he come.INF

PST.NEG

'We came but he did not come.'

ii) Correlative Clause

A correlative conjunction is a paired con-

junction that links balanced words, phrases,

and clauses. The elements connected by cor-

relative conjunctions are usually parallel -

that is, similar in length and grammatical

form. Each element is called a conjoin. Some

of the Correlatives in Telugu are: le-

ka/kāka/gāka, kādu/kani and “-e kāka/-e

gāka/-V kūda.”

evaḍu vaccāḍ-ō vāḍu nā tammu-ḍu

who come RTM he ACC brother 3.SG.

 'The one who came is my brother'

Here we are using morphological cue

X-ō Y

ō-relative-correlative marker, X and Y are

clauses.

iii) Subordinate Clause

A subordinating conjunction is a word that

connects a main clause to a subordinate

clause. A main clause is an independent

clause that can stand alone by itself as a sen-

tence. In other words, a main clause does not

need any additional information to operate as

a sentence.

Here we use lexical cues:

X- COMP Y

COMP -complementizer, X and Y are claus-

es.

ani annā

anēdi anna

atlu aMte

 annatlu

MC1[nēnu vacc- ā- -nu]MC1 ani MC2[vāḍi-

to cepp- ā- nu]MC2

I come PST 1SG. COMP he ASS. say

PST. 1.SG

'I told him that I came'

3.1.3b. Disjunctive Clause

A coordinate construction is the one that us-

es a disjunctive conjunction to indicate a

contrast. The items on either side of the dis-

junctive conjunction are called disjunct.

Here we use morphological cues.

X- ō Y-ō Z

ō -Disjunctive marker, X, Y and Z are claus-

es

vast- ā- ḍ- ō rā- ḍ- ō nāku tēliyadu

come FUT. 3.SG.M DISJ come. FUT. NEG-

3.SG.M DISJ I-DAT do not know

`I do not know either he comes or not'

3.2. Non-finite Clauses

Non-finite clause are formed with non-finite

verb and verb does not marked with gender,

number and person suffixes in agreement

with grammatical subject of the sentence, but

they form by adding appropriate tense-mode

suffix to a verb stem. And they are always

depended and embedded.

3.2.1. Conditional clause

In this conditional clause we use morpholog-

ical cue -te `positive conditional marker'

-rākapōte/ rākuMṭe `negative conditional

marker'

SC[nuvvu addamu nu jāraviḍis-tē]SC

MC[adi pagilipō- tuM- di]MC

you mirror ACC. drop COND that break

FUT 3.SG.N.

 'If you drop the mirror, it will break'

This is an example for complex sentence

with conditional clause. As we noted here,

there are two clauses, one of them is subor-

dinate clause or dependent clause and the

other one is super ordinate clause or main

clause. The verb is present in both the sen-

tences. The subject nuvvu in SC ends with

conditional marker -tē and adi in MC agrees

the agreement and is manifested with the

marker -di respectively

411

3.2.2. Concessive clause

In this concessive clause we use morpholog-

ical cues. -inā `positive concessive marker'

-rākapōyinā/ -rākunnā `negative concessive

marker

SC[jōhn veḷl- inā]SC MC[mary veḷla-du]MC

John go CONCM Mary go 3.SG.

'Though John goes, Mary don't go'

This is an example for complex sentence

with concessive clause. As we noted here,

there are two clauses, one of them is subor-

dinate clause or dependent clause and the

other one is super ordinate clause or main

clause. The verb is present in both the sen-

tences. The subject Jōhn in SC ends with

concessive marker -inā and Mary in MC

agrees the agreement and is manifested with

the marker -du respectively.

3.2.3. Participle Clause

3.2.3a. Conjunctive Participle

We use morphological cues in this conjunc-

tive participle clause. -i `positive conjunctive

participle marker' -aka/ akuMḍā `negative

conjunctive participle marker'

MC[SC[ataḍu iḍli tin- i]SC kāṅī coffee trāga

lēdu]MC

he idli eat CP coffee drink NEG

'Having eaten idli, he didn’t take coffee'

This is an example for complex sentence

with verbal participle clause and also

forward control. As we noted here, there are

to clauses, one of them is subordinate clause

or dependent clause and the other one is su-

per ordinate clause or main clause. The verb

is present in both the sentences. The subject

ataḍu in SC ends with verbal participle

marker-i and in MC agrees the agreement

and is manifested with the negative marker

lēdu respectively.

sujāta snānaM ceyy- aka vāraM rōjulay- iM-

di

sujatha bath PV NCP week days PST 3.SG.

'Sujatha has not bathed from the last one

week'

According to Chekuri ramarao, in his book

Telugu Vakyam, he explained in this

sentence (48) also that it is a temporal ex-

pression, even though 'vāraM rōjulayiMdi' is

plural marker it takes only singular agree-

ment marker -di. In this case we should not

use yesterday, day before yesterday, etc. for

this sentence also. Here we have negative

participle marker -aka is there in the sen-

tence.

3.2.3b. Adjective Participle

We use morphological cues in this adjectival

predicate. -ina `positive past adjectival parti-

ciple marker' -tunna `positive durative adjec-

tival participle marker' -ē `positive future

adjectival participle marker' -ani `Negative

adjectival participle marker'

Adjectival participle form of verbs can be

pronominalized.

i) Past Adjectival Participle:

SC[nēnu vāḍi- ki icc- ina pustakaM]SC

I he-DAT give PP book

 'I gave a book to him'

This is an example for accusative nominali-

zation in complex sentences with adjectival

participle clause. As we noted here, the sub-

ject nēnu in SC ends with past participle

marker-ina and the accusative pustakaM is

nominalized as shown in the example. The

actual sentence is 'nēnu vāḍiki pustakaM ic-

cānu', before doing nominalization pustakaM

is in the accusative position.

nēnu vāḍi- ki ivv- ani pustakaM

I he DAT give NPP book

'I didn't give a book to him'

This is an example for accusative nominali-

zation in complex sentences with

adjectival participle clause. As we noted

here, the subject nēnu in SC ends with nega-

tive past participle marker -ani and the accu-

sative pustakaM is nominalized as shown in

the example. The actual sentence is ' nēnu

vāḍiki pustakaM ivva lēdu', before doing

nominalization pustakaM is in the accusative

position

412

ii) Durative Adjectival Participle

vāḍi- ki pustakaM is- tunna nēnu

he DAT book give DP i

'I am giving a book to him'

This is an example for nominative nominali-

zation in complex sentences with

adjectival participle clause. As we noted

here, the subject vāḍu in SC ends with dura-

tive participle marker -tunna and the nomi-

native nēnu is nominalized as shown in the

example. The actual sentence is 'nēnu vāḍiki

pustakaM istunnānu', before doing nominali-

zation nēnu is in the nominative position.

vāḍi- ki pustakaM ivv- ani nēnu

he DAT book give NDP i

'I am not giving a book to him'

This is an example for nominative nominali-

zation in complex sentences with adjectival

participle clause. As we noted here, the sub-

ject vāḍu in SC ends with negative durative

participle marker -ani and the nominative

nēnu is nominalized as shown in the exam-

ple. The actual sentence is 'nēnu vāḍiki

pustakaM ivvaḍaM lēdu', before doing nom-

inalization nēnu is in the nominative position

iii) Future Adjectival Participle:

vāḍi- ki pustakaM icc- ē nēnu

he DAT book give FP I

'I will give a book to him'

This is an example for nominative nominali-

zation in complex sentences with adjectival

participle clause. As we noted here, the sub-

ject vāḍu in SC ends with future participle

marker -ē and the nominative nēnu is nomi-

nalized. The actual sentence is 'nēnu vAdiki

pustakaM iswānu', before doing nominaliza-

tion nēnu is in the nominative position.

vāḍi- ki pustakaM ivv-ani nēnu

he DAT book give NFP i

'I will give a book to him'

This is an example for nominative nominali-

zation in complex sentences with adjectival

participle clause. As we noted here, the sub-

ject vāḍu in SC ends with negative future

participle marker -ani and the nominative

nēnu is nominalized as shown in the exam-

ple. The actual sentence is 'nēnu vAdiki

pustakaM ivvanu', before doing nominaliza-

tion nēnu is in the nominative position.

3.2.4. Gerundival Clause

In gerundival clause also we use morpholgi-

cal cues: -aḍaM `gerundival marker'

SC[vāḍi- ki cepp- aḍaM]SC MC[nā- ku

isṭaM lēdu]MC

 he DAT book GEND me DAT like NEG

 'I don't like telling him'.

This is an example for gerundival clause. As

we noted here, the subject vāḍu in SC

ends with gerundival marker -aḍaM.

3.2.5. Infinitival Clause
In infinitival clause we use morphological

cues. -a `infinitive marker', -a_ gānē 'as

soon as', -a_baṭṭi 'because'

 āme cepp- a- baṭṭi nēnu cēs- ā- nu

 she say INF because I do PST 1.SG

 'Because she told, I did'.

This is an example for infinitival clause. As

we noted here, the subject āmē in SC ends

with infinitival marker -baṭṭi.

Rule for Clause Identification

Rules for clause boundary identification are

described in the below:

413

4. Testing and Evaluation

We have taken 5000 sentence from tourism and

health domain corpus to test the rule set. This

corpus includes all type of sentence like Relative

Participle, Conditional, Main clauses and etc.

414

S.

No.

Clause Type No. of Sent

1 Conditional 907

2 Concessive 280

3 Verbal participle 1017

4 Adjectival participle 674

5 Gerundival 436

6 Non-finite 869

7 Relative 817

 Total 5000

These sentences were first processed with

shallow parser from which we extract Mor-

phological, POS and Chunk information later

this is given as input to simple parser which

assigns the karaka roles (thematic relation-

ships) which indeed helps the T-CBI perform

well. Evaluation of the Rules is given below.

Clause Type No. of

Sentence

Correct

Identi-

fcation

% of

recog-

nition

Conditional 907 857

Concessive 280 184

Verbal

participle

1017 802

Adjectival

participle

674 490

Gerundival 436 421

Non-finite 869 532

Relative 817 593

Total 5000 3879 77.58

Out of 5000 sentence T-CBI was able to

identify 3879 sentence correctly which

means the performance of the T-CBI can be

scaled to 77.58% of accuracy. Using this we

can create huge amount of corpus of CBI

pre-annotated.

5. Conclusion

Thus, this paper has attempted to show how

implicit clausal information captured in a

shallow parsed text can be extracted and are

used to develop CBI for Telugu. The paper

has also discussed some of the issues in iden-

tifying clause boundaries using the above

said approach. A plan has been implemented

with these rules in a computational algorithm

for future exercises. Once the rules are im-

plemented it would be easy to scale the per-

formance of the rules designed. A clause

boundary annotated corpus can be developed

from raw text which can be used to train a

machine learning algorithm which in turns

helps in development of a Hybrid Clause

Boundary Identification Tool for Telugu.

Reference

Bharati, S. Husain, B. Ambati, S. Jain,

D. Sharma and R. Sangal. 2008. `Two

Semantic features make all the differ-

ence in Parsing accuracy'. Proc. of

ICON-08.

Bharati, Vineet Chaitanya, Rajeev

Sangal. Natural Language Processing

A Paninian Perspective. Prentice Hall

of India (1995).

Ghosh, A. Das, and S. Bandyopadh-

yay, “Clause Identification and Clas-

sification in Bengali,” in Proceedings

of the 1st Workshop on South and

Southeast Asian Natural language

Processing (WSSANLP, 23rd Inter-

national Conference on Computation-

al Linguistics (COLING), Beijing,

August 2010, pp. 17-25.

E. Ejerhed, “Finding Clauses in Unre-

stricted Text by Finitary and Stochas-

tic Methods,” in Proceedings of the

2nd Conference on Applied Natural

Language Processing, Austin Texas,

1988, pp. 219-227.

Gadde, Phani, et al. 2010. "Improving

data driven dependency parsing using

clausal information." Human Lan-

guage Technologies: The 2010 Annu-

al Conference of the North American

Chapter of the Association for Com-

putational Linguistics. Association for

Computational Linguistics.

Lakshmi S, Vijay Sundar Ram R and

Sobha Lalitha Dev. 2012. Clause

415

Boundary Identification for Malaya-

lam Using CRF. In Proceedings of the

Workshop on Machine Translation

and Parsing in Indian Languages

(MTPIL).24th International Confer-

ence on Computational Linguistic

Sharma, Rahul, et al. 2013. "Automat-

ic Clause Boundary Annotation in the

Hindi Treebank." WSSANLP-2013:

83.

“A rule based approach for automatic Claus

boundary detection and classification in

Hindi" by Rahul Sharma and Soma Paul

[Proceedings of the Conference the 5th

Workshop on South and Southeast Asian

NLP WSSANLP - 2014].

416

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, page 417

Keynote Lecture-3

Towards Abstractive Summarization

Vasudev Verma
International Institute of Information Technology, Hyderabad, India

In this talk, I will be sharing our research journey of building summarization engines to produce various
flavors of summaries. Starting from single document summarization, our experience of building multi-
document summarization (MDS), query focused MDS, Update or Progressive summarization, guided
summarization, comparison summarization and personalized summarization systems can be seen as a
movement from Extraction based to abstraction based summary generation. We have used variations of
Relevance Based Language Model (RBLM) along with external knowledge sources, dependency parsing
and more recently deep learning techniques in building these systems. Since 2006, our team has
consistently performed well and ranked as a top team in various tracks of DUC (Document Understanding
Conference) and TAC (Text Analysis Conference) conferences conducted by NIST. I will also discuss our
recent attempts to create semi-abstractive summarization models using natural language processing based
approaches as well as deep learning based approaches.

417

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 418–426

”Who Mentions Whom?”- Understanding the Psycho-Sociological Aspects
of Twitter Mention Network

R.Sudhesh Solomon Srinivas P Y K L Abhay Narayan Amitava Das
Indian Institute of Information Technology, Sri City

{sudheshsolomon.r,srinivas.p,abhay.n,amitava.das}@iiits.in

Abstract

Users in social network either unicast or
broadcast their messages. At mention is
the popular way of unicasting for Twitter
whereas, general tweeting could be con-
sidered as broadcasting method. Under-
standing the information flow and dynam-
ics within a Social Network and modeling
the same is a promising and an open re-
search area called Information Diffusion.
This paper seeks an answer to a funda-
mental question - whether the at-mention
or the uni-casting pattern in social me-
dia is purely random in nature or there
is any user specific selectional preference?
To answer the question we present an em-
pirical analysis to understand the psycho-
sociological aspects of Twitter mentions
network within a social network com-
munity. To understand the psychologi-
cal pattern we have analyzed personality
(Big5 model: Openness, Conscientious-
ness, Extraversion, Agreeableness, Neu-
roticism) of users and to understand the
the sociological behavior we analyze val-
ues (Schwartz model:Achievement, Benev-
olence, Conformity, Hedonism, Power, Se-
curity, Self-Direction, Stimulation, Tra-
ditional, and Universalism) of all the
users inside a community. Empirical re-
sults suggest that personality and values
traits are indeed salient cues to under-
stand how the mention-based communica-
tion network functions. For example, we
notice that achievement-oriented commu-
nities talk to each other more often than
other people. We also observe that neu-
rotic people are more involved in commu-
nication within their community.

1 Introduction

Information diffusion is a process of spreading in-
formation or content within a network via a par-
ticular path or pattern. A significant amount of
research has been done in this area in the past few
years. However, most of the previous efforts con-
sidered only network topology for the diffusion
process.

To understand the propagation process we need
to understand who is connected with whom and
in what manner. At mention on Twitter is the
way of one-to-one conversation. The question
we raise here is whether the at-mention pattern
is purely random in nature or is there any user
specific selectional preference? Selectional pref-
erence implies to the choice that certain kind of
people make for direct communication but, while
they are interested in broadcasting they behave
differently. To understand the notion this paper
presents an empirical analysis to understand the
psycho-sociological aspects of Twitter mentions
network within a social network community. To
this end, we analyze personality and values of all
the users in a social network community. First, we
categorize social network communities based on
values types and analyze mention network within
each type (i.e. power, hedonic, etc.) of communi-
ties. We notice that achievement-type communi-
ties talk to each other more often than other peo-
ple. Then we analyze how people with certain
personality type (i.e. open, extrovert, etc.) inter-
act with other types of people inside a community.
We observe that conscientious people are more in-
volved in communication within their network.

Empirical results suggest that personality and
values traits are indeed a salient cue to under-
stand how the mention-based communication net-
work functions. In our analysis, we found that
the members from stimulation, achievement, and
benevolent oriented communities are closely con-

418

nected among themselves while the members in
other communities do not show significant con-
nectivity among themselves. Thus in our analy-
sis, we were able to find that universal, extrovert,
and open people prefer broadcasting over unicast-
ing messages (via @ mention).

Communication dynamics in human society is
a complex phenomenon. Here, in this paper,
we present empirical results to establish correla-
tions of the user’s unicasting behavior vs his/her
psycho-sociological traits. We believe that there
are many properties that are not considered (con-
tent of the message, age, gender) which affect the
at-mention dynamics in the social network. How-
ever, we are not considering those aspects of this
paper. Our future research is motivated towards
that direction.

2 Related Work

The research paradigm called information diffu-
sion seeks to answer how information spreads in a
social network and model how a given piece of in-
formation will propagate through a social network
- more precisely what a user will do with a particu-
lar tweet (lets say), will he/she either retweet it, at-
mention somebody or broadcast it again to spread
it over to a wider audience within his/her reacha-
bility in the network. Essentially researchers seek
to answer to the following questions :(i) which
pieces of information or topics are popular and
diffuse the most, (ii) how, why and through which
paths is the information diffusing, and will be dif-
fused in the future, (iii) which members of the net-
work play important roles in the spreading pro-
cess?

A considerable amount of work has been done
in modeling the process of information diffusion
in online social networks. Previous works on in-
formation diffusion have considered several influ-
encing factors such as speed, scale, range, influ-
ential nodes, network topology, topics and etc. In
the following paragraphs we are describing such
related works.

Research endeavors by (Kimura et al., 2010)
and (Wani and Ahmad, 2014) discussed diffusion
process based on network topology and they ex-
plain about the concept of influential nodes or
in simple terms, which node/s will influence the
other nodes in the diffusion process. (Kimura et
al., 2010) explains about combinatorial optimiza-
tion problem, which is a way to find out the most

influential nodes in a social network. In (Wani
and Ahmad, 2014) the authors explain about un-
derstanding the dynamics of social networks and
modeling the same, dynamics here refer to the
topological structure of the network. The authors
also explained about various information diffusion
parameters (diffusion rate, who influenced whom
etc.) in this work. Research by (Gomez Rodriguez
et al., 2013), tried to capture time dimension of the
diffusion pattern. The main motivation of the au-
thors in this work was to infer the edges and the
dynamics of the underlying network.

Some of the other works discussed about the
topic based diffusion pattern. Work by (Romero
et al., 2011), analyzed diffusion pattern based on
hashtags categorizations such as celebrity, games,
idioms, movies, tv, music, politics, sports, and
technology. To describe the diffusion patterns the
authors took two measures - Stickiness: The mea-
sure of the contingency of an information. The
peak value of the curve. Persistence: The time
for which an information stays on a particular dif-
fusion rate. The measure of rate of decay after
the peak. Then they empirically show how topi-
cal variations affect stickiness and persistence of
information diffusion patterns. The other inter-
esting work by (Apolloni et al., 2009) proposed
a probabilistic model to understand how two peo-
ple will converse about a particular topic based
on their similarity: based on demographic infor-
mation. The popular idea of homophily and het-
erophily and familiarity: based on time that they
spend together in same topic.

Retweeting is the famous way of information
cascading in Twitter. There are research endeav-
ors to predict how retweeting diffusion pattern
will be. The work by (Zaman et al., 2010) mod-
uled the information diffusion task as a predicting
modeling. Using a large scale data on who has
retweeted and what was retweeted a probabilistic
collaborative filtering model was built to predict
the future retweeting pattern. The model learnt
on parameters like the tweet source (the tweeter),
the user who was retweeting and the retweet con-
tent. Works by (Yang and Counts, 2010) discussed
about several influencing factors such as speed,
scale and range of retweeting behavior. The first
factor analyzed was Speed – whether and when the
first diffusion instance will take place. To perform
the analysis on speed, two models were used. The
first model answers when a tweet containing a par-

2
419

ticular topic is likely to be mentioned by another
tweet containing the same topic. For example,
when user A posts a tweet related to a topic XYZ,
how quickly another user (say user B), responds to
the tweet consisting XYZ mentioning user A. Sec-
ondly, the Cox proportional hazards model (Cox
and Oakes, 1984) was used to quantify the degree
to which a number of features of both users and
tweets themselves to predict the speed of diffusion
to the first degree offspring. The second factor ex-
plained and analyzed in this work is Scale – the
number of affected instances at the first degree. In
this work, the number of times a person is men-
tioned in the retweet trail relating to a topic was
analyzed and a probabilistic diffusion model has
been proposed. The last factor considered in this
work is Range – how far the diffusion chain can
continue on in depth. The analysis on range was
done by tracing a topic from a given start node to
its second and third degree of offspring nodes, and
so on.

A few works have discussed about behavior of
group of individuals - Herd Behavior: a social
behavior occurring when a group of individuals
make an identical action, not necessarily ignoring
their private information signals. However, user
level sentimental preference is being ignored so
far. Therefore, our current work is on understand-
ing user societal sentiment behavior. Our theoreti-
cal point of departure is in psycho-socio-linguistic
models, the Schwartz model Achievement, Benev-
olence, Conformity, Hedonism, Power, Security,
Self-Direction, Stimulation, Traditional and Uni-
versalism.. We hypothesis that people have natu-
ral preferences for direct communications. That
means certain type of people who possess one
value type have preference over other kind of peo-
ple of different value within their range. For ex-
ample, we observe that the traditional people are
less likely involved in communication (i.e, unicas-
ting) compared to other communities of people of
different value types.

3 Computational Psycho-Sociological
Models

In recent years, there have been significant efforts
on determining the opinion or sentiment or emo-
tion about a specific topic held by the author of a
piece of text, and on automatic sentiment strength
analysis of text, classifying it into either one of the
classes – positive, negative or neutral, or into Ek-

man’s classes – happy, sad, anger, fear, surprise,
and disgust. However, grouping people based on
positive, negative, or neutral comments and then
understanding their behavior would be spurious.
Therefore we propose, psycholinguistic and soci-
olinguistic models in order to capture user’s intrin-
sic selectional preferences.

The Big 5 personality (Goldberg, 1990) model
and Schwartz values (Schwartz, 2012) model can
be considered as a person level sentiment model
(depicted in table 1) and a societal sentiment
model, respectively. Traditional sentiment analy-
sis systems detect sentiment at text-level, whereas
the personality model aims at understanding the
sentiment/personality of each individual whereas
the Schwartz model describes the societal senti-
ment of groups of individuals forming communi-
ties in social networks.

Personality- User Level Sentiment: There has
been a growing interest in the scientific commu-
nity on doing automatic personality recognition
from their language usage and behaviour in so-
cial media. A milestone in this area was the 2013
workshop and shared task on Computational Per-
sonality Recognition (WCPR) (Celli et al., 2013),
repeated in 2014 (Celli et al., 2014). Two corpora
were released for the 2013 task. One is a Face-
book corpus, consisting of about 10,000 Facebook
status updates from 250 users, plus their Face-
book network properties, labelled with personal-
ity traits. The other corpus comprises 2,400 es-
says written by several participants labelled with
personality traits. The best performing system (F-
score = 0.73) was developed by (Verhoeven et al.,
2013). The various features and methods used by
all the participant groups can be viewed as either
linguistic and non-linguistic. Another relevant re-
search work on developing computational models
for personality on Twitter corpus of 335 users was
the (Quercia et al., 2011). They showed that a
user’s personality traits can be predicted only us-
ing three features : following, followers and listed
counts.

Personality Description
Openness Imaginative, insightful and have wide interest

Conscientiousness Organised, thorough and planned
Extroversion Talkative, energetic and assertive

Agreeableness Sympathetic, kind and affectionate
Neuroticism Tense, moody and anxious

Table 1: Description for OCEAN Model

3
420

Schwartz Values - Societal Sentiment: The
societal sentiment model introduced by Schwartz
and Bilsky (1990) and modified by Schwartz
(1992). The model defines ten basic and distinct
personal ethical values (henceforth only values),
that respectively are given in the table 2:

Values Description
Achievement sets goals and aims at achieving them
Benevolence seeks to help others and provide general welfare
Conformity obeys clear rules, laws and stuctures
Hedonism seeks pleasure and enjoyment

Power controls and dominates others, control resources
Security seeks health and safety

Self-direction wants to be free and independant
Stimulation seeks excitement and thrills
Tradition does things blindly because they are customary

Universalism seeks peace, social justice and tolerance for all

Table 2: Description for Schwartz Values

The computational Schwartz model has been
first proposed by (Maheshwari et al., 2017). The
authors released a corpus of 367 unique users hav-
ing 1,608 average tweets per user labelled with
values traits. The highest number of tweets for one
user was 15K, while the lowest number of tweets
for a user was a mere 100.

3.1 Psycholinguistic and Network Features
Several different types of features are used de-
pending upon classifiers. An exhaustive set of
features include – (f1) Word N-grams; (f2) POS
tags; (f3) Lingustic Features (LIWC1; Harvard
General Inquirer, MRC psycholinguistic feature;
Sensicon2); (f4) Network properties (network size,
betweenness centrality, density and transitivity);
(f5) speech-act classes; (f6) sentiment amplifiers
(exclamation marks, quotes, ellipses, interjec-
tions, emoticons, word/sentence length); (f7) mis-
spelt words (SMS slang, stressed words, capital-
ized words, wrong spellings); (f8) presence of
umm/bint or abu in username (a common suffix
for women and men respectively in Arabic); (f9)
Sentiment/Emotion lexica (NRC emotion Lexi-
con (Mohammad et al., 2013), Sentiwordnet (Bac-
cianella et al., 2010)); (f10) Topics words obtained
from topic model. A brief overview about the So-
ciological models and features used are illustrated
below.

3.2 Building Classifiers and Performance
We collected data from several sources to build
five classification models. Here, for each model,

1
http://www.liwc.net/

2
https://hlt-nlp.fbk.eu/technologies/sensicon

Features Model F-Score (SVM) F-Score (LR) F-Score(RF)
Lexicon Personality 0.78 0.62 0.65

Values 0.74 0.59 0.62
+Non-Linguistic Personality 0.79 0.66 0.68

Values 0.76 0.61 0.65
+Speech-Act Personality 0.80 0.70 0.71

Value 0.81 0.63 0.67

Table 3: Performance of Personality and Values
Models.

we report the best classifier. All the results re-
ported in Table 3 are based on 10-fold cross val-
idation on the respective dataset. Personality: A
SVM-based model outperforms the state-of-the-
art (Verhoeven et al., 2013) by 10%, achieving av-
erage F-Score of 79.35%. Values and Ethics: A
SVM-based values classifiers achieves an average
F-Score of 81%. Features used in this model (both
personality and values) are reported in Table 3.

4 Semantic Interpretation of
Communities

A community in a social network is considered to
be a group of nodes densely connected internally
and sparsely connected externally. In this paper,
we attempt to understand whether individuals in
a community possess similar personalities, values
and ethical background.

In order to analyze the behaviour of opti-
mists/pessimists at societal level, the egocentric
twitter network released by SNAP is used. The
Twitter network, released by SNAP (Leskovec and
Krevl, 2015) (nodes: 81,306, edges: 1,768,149)
has been used to study community structure. We
considered 1,562 ground-truth communities (af-
ter discarding communities having size less than
5 and with tweets less than 100).

In order to analyze whether people within the
same community tend to be homogeneous with re-
spect to their background values/ethics, we mea-
sure Shannon’s Entropy (measure of the uncer-
tainty) (Lin, 1991) for each dimension separately.

Higher entropy scores suggest lower similar-
ity. To calculate the entropy score vector X(i)

for a community C(i) consisting of n users as
u(1), u(2), u(3)...u(n), a matrix A(i) is created
where A(i,j) row vector represents the estimated
scores of each of the ten values for a user u(j)
and A(i,:,k) column vector represents the esti-
mated scores of kth class for all n users. The
A(i,:,k) column vector was transformed to a prob-
ability distribution vector N(i,:,k) using softmax-
normalization:

4
421

N(i,j,k) =
exp(A(i,j,k))

||exp(A(i,:,k)||1
(1)

The entropy score X(i,k) for N(i,:,k) can be cal-
culated using the following formulation:

X(i,k) = −
n∑

j=1

N(i,j,k) ∗ logN(i,j,k) (2)

AC BE CO HE PO SE SD ST TR UN
u(1) 0.91 0.47 0.02 0.07 0.32 0.24 0.65 0.78 0.94 0.10
u(2) 0.97 0.40 0.49 0.50 0.56 0.83 0.62 0.73 0.04 0.08
u(3) 0.99 0.75 0.50 0.72 0.38 0.60 0.75 0.02 0.57 0.62
u(4) 0.77 0.44 0.40 0.16 0.19 0.55 0.73 0.08 0.53 0.25
u(5) 0.29 0.02 0.26 0.56 0.41 0.23 0.95 0.02 0.79 0.86

X(i) 1.54 1.40 1.40 1.39 1.55 1.50 1.59 0.99 1.42 1.28
S(i) 0.87 -0.12 -0.12 -0.19 0.95 0.57 1.26 -2.35 0.00 -0.87
T(i) 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0

Table 4: Illustrates entropy calculation for values
model. Here T(i) represents the binary estimate of
fuzzy distribution of values and S(i) represents the
zero-mean unit-variance scaled values of X(i) for
a community C(i). Similarly, binary estimates for
five personality traits P(i) of user u(i) are calcu-
lated.

After normalization, N(i,:,k) vector represents
the probability distribution of kth value class
across n users where entropy score X(i,k) rep-
resents the randomness in community along kth

value class. The lower the randomness, higher the
kth class is dominant in the C(i) community. Now,
in order to obtain binary estimates T(i) for each
of the ten values and classes in C(i) community,
the entropy score vector X(i) is scaled using zero-
mean unit-variance method and for numerical val-
ues greater than 0, 1 was assigned and for numer-
ical values less than 0, 0 was assigned as class
label for C(i) community. Instead of labelling a
community C(i) with a class having minimum en-
tropy, the scaling approach is used for the purpose
of preserving the fuzzy distribution of values at
community level. The obtained T(i) vector rep-
resents the fuzzy distribution of values and is thus
a representation to capture the semantic informa-
tion about the community. Having built the model
and the classifiers we now try to understand the
Psycho-Sociological aspects of the mention net-
work in Twitter.

5 Understanding Psycho-Sociological
Aspects of Twitter Mention Network

Network Creation: From the obtained tweets of
the SNAP dataset, community level communica-

tion networks were created by looking at the @
mention in users tweets. For the network cre-
ation, Gephi API3 is used. In the networks each
node represents a user in the network and the
edge represents mention link. The users who are
never mentioned by somebody and never men-
tioned someone else were discarded at this stage
as they will not contribute anything in understand-
ing the dynamics of intra-community mention net-
work. Once networks were formed, we analyzed
their detailed characteristics. For example, let us
take into consideration the following network in
Figure 1 in order to analyze the following parame-
ters. The nodes in the network represent the users
are in the network and the edges represents the
connection between the users. It is also important
to note that not all the users in the network might
not be connected. For example, when we take Fig-
ure 1 into consideration we are able to find that
there are a total of 10 users labeled from A to J and
6 nodes(users) are connected within the network
whereas 4 nodes (users) are disconnected from the
network. After we created the network we tried to
understand the level of connectivity, after which
we analyzed the community type and the person-
ality type along with the mention pattern.

Figure 1: The network of users

Understanding the Level of Connectivity: To
understand the dynamics of intra-community men-
tion network we calculate user specific eigen-
vector centrality (Newman, 2008). Consider the
centrality of vertex i could be denoted by xi, could
be calculated by making xi proportional to the av-
erage of the centralities of i’s network neighbors
which is given in the below formula:

1/λ

n∑

j=1

Aijxj (3)

, where λ is a constant. Let us assume the exam-
3
https://gephi.org/

5
422

ple of Figure 1 here. In this case the eigen-vector
centrality for each node [A, B, C,....I, J] is calcu-
lated. The centrality measure is one of the most
fundamental measure in the network structure. It
is used to determine the central node, and helps in
identifying the centralized person who other peo-
ple are connected with in the social network (New-
man, 2008).

Community Type and Mention Patterns: Af-
ter calculating the eigen-vector centrality at the
user level i.e for each nodes, we calculated the
eigen-vector centrality for each community. This
analysis was done in order to determine how the
users behave with each others within their own
community. Now, lets say user ui is connected
with n number of users [uj , uk, ..., un,] via men-
tion links within a community. From Figure 1,we
are able to notice that A is connected to C,H,B and
I. D is connected indirectly to A via node H and
hence we consider D only while calculating the
eigen-vector centrality for node H. Now for user
A, we calculate pair-wise eigen-vector centrality
between each pair of users [(A, B), (A, C), (A, H),
(A, I)] and obtain a vector for the user A. To get the
final average intra-community connectivity score
for user A, all the n scores are further averaged
by dividing their sum by n. The score that is ob-
tained now is the average connectivity of the user
A within the community. Following this method
we obtain connectivity score of all the users within
the community and those scores are then further
averaged by the total number of users (excluding
users who never got mentioned or never mention
someone else) within the community. This score
obtained is the average score of the community
for that particular user. Similarly, average con-
nectivity scores are calculated for each community
in the SNAP network and further those obtained
scores are averaged based on community type (i.e.,
power, hedonic, etc.). These category-wise aver-
age connectivity scores are finally reported to un-
derstand the intra-community psycho-sociological
aspects of the Twitter mention network.

Personality Type and Mention Patterns: To
understand who is mentioning whom we consider
user specific average eigen-vector centrality. For
example, in the first iteration we take all the open
type people and find out their average eigen-vector
centrality over all communities. Then we further
divide them into 5 classes (i.e., open, conscien-
tious, etc.). Thus class-to-class average connec-

tivity (i.e., open-open, open-conscientious, open-
extrovert, open-agreeable, and open-neurotic) was
obtained. This process was repeated for all other
personality types.

Finally, for more granular understanding the
eigen-vector centrality scores were divided into
three bands - high, mid, and low. These values
were then scaled between 0-100 by looking at the
overall connectivity score (high, low) distribution
at corpus level as shown in Figure 3.

6 Obtained Mention Network Patterns

We present our findings in three parts. First part
details psycho-sociological patterns of the men-
tion network, whereas the second part tries to an-
swer the question – who-mentions-whom? Finally
we try to analyze the relationship between close-
ness and reciprocity of the community with differ-
ent community sizes.

Figure 2: Communication within each community
of the values model

Psycho-Sociological Patterns of Mention
Network: Figure 2 reports obtained results of our
empirical analysis. Results indicate that mem-
bers from stimulation, achievement, and benev-
olent communities are closely connected among
themselves while the members in other commu-
nities do not show significant connectivity among
themselves.

We also observe that people who are indepen-
dent, i.e, self-directed do not involve much in con-
necting themselves with other members in their

6
423

(a) Low connectivity (b) Medium connectivity (c) High connectivity

Figure 3: Psycho-sociological patterns of Twitter mentions network

community. Security oriented people i.e., those
who follow strict rules and regulations are found
to have reasonably balanced connectivity. Peo-
ple belonging to the traditional groups who fol-
low rituals blindly, are loosely connected to the
world. One significant observation was that the
universal people, who are the people tending to be
more inclined towards social justice and tolerance
show high connectivity with other people in the
community. Further analysis reveal that in general
universal people tend to unicast (i.e., @mention
someone specific) messages rather than broadcast
, which is justifiable to their nature. The mem-
bers of power-oriented communities are those who
seek to dominate other people in their community
and hence the communication is low among these
people.

Node Closeness
A 0.40
B 0.31
C 0.25
D 0.21
E 0.0
F 0.0
G 0.0
H 0.31
I 0.21
J 0.0

Table 5: Closeness Centrality for Figure 1

Who-Mentions-Whom: Results of this analy-
sis is reported in Figures 3a, 3b and 3c. The re-
sult is presented in three sets i.e., low, medium,
high connectivity. We notice that in the highly
connected communities, the neurotic people who
are mostly tense, moody, anxious are more con-
nected to other people in the network. Agreeable
and conscientious people also maintain a good re-

lationship with others. In the case of medium and
low connected communities , the neurotic peo-
ple tend to maintain good connectivity with oth-
ers than people possessing other values. We also
infer that extroverts (high,mid and low) also tend
to broadcast their messages rather than sending it
to someone specific, therefore their connectivity is
low in the mention network.

Similar practice has also been noticed by open
people in low connected group. Therefore, we
can conclude universal, extrovert, and open peo-
ple prefer broadcasting over unicasting messages
(via @ mention)

Closeness vs Reciprocity: In a connected
graph,the closeness or the closeness centrality of
a node is used to measure how close a particular
node is with respect to other nodes in the network.
It is calculated as the sum of the lengths of the
shortest paths between the particular node and the
other nodes in the graph. It can be seen that, the
more central the node is, the more closer it is to
the other nodes.

For example, in Figure 1 we are able to find
that node A is more closely associated with other
nodes and has the highest closeness centrality
among the other nodes. It is also observed from
Table 5 that those nodes which are not connected
in the network shown in Figure 1 are having 0 as
their closeness centrality measure.

The social norm of reciprocity is the expectation
that people will respond to each other in similar
ways. Therefore in a mention network, if a partic-
ular user mentions another user in his/her tweet
and the other user on the other hand mentions
him/her back then we can find that reciprocity can
be achieved between those two users. The result
is provided as an analysis of closeness vs reci-
procity for various sizes of the community in Fig-
ure 4. From the analysis, we observe that as the
size of the community increases the reciprocity de-

7
424

(a) Community Size = 6 (b) Community Size = 7 (c) Community Size = 8

(d) Community Size = 9
(e) Community Size = 11

(f) Community Size = 15

(g) Community Size = 16

Figure 4: Closeness vs. Reciprocity for various community sizes

creases and the closeness increases. This is be-
cause the closeness centrality is calculated for an
entire network and hence as the size of the network
increases the closeness tend to increase.

Reciprocity on the other hand is calculated for
the mentions network and as the size of the net-
work increases there is a high chance that two
users do not mention each other in their tweets.
Let us consider one example from our analysis,
here we consider the self-directed community of
people of community size 15 and 16 respectively.
From Figure 4 we are able to find that as the size
of the community increases from 15 to 16 the reci-
procity decreases and the closeness increases.

7 Conclusion and Future Work

This paper presents an empirical analysis to un-
derstand the psycho-sociological aspects of Twit-
ter mentions network within a social network com-
munity. Here, we take the explanatory approach;
however, we strongly believe that the obtained em-
pirical results could be further used to predict indi-

vidual/group communication behavior. We would
be woking on finding similar patterns in (i) Twitter
favorite network i.e., who has liked whom, and (ii)
Retweets network i.e., who retweets whose tweet.
We would also like to understand inter-community
mention network pattern – i.e., is there any selec-
tional preference when someone chooses to com-
municate with someone outside his/her commu-
nity? We believe that this kind of models may
become extremely useful in the future for vari-
ous purposes like Internet advertising (specifically
social media advertising), community detection,
computational psychology, recommendation sys-
tems, sociological analysis over social media.Now
that we have calculated various measures and ob-
tained analytical results. In the future, based on
these results given a community we try to predict
who will mention whom?

References
Andrea Apolloni, Karthik Channakeshava, Lisa

Durbeck, Maleq Khan, Chris Kuhlman, Bryan

8
425

Lewis, and Samarth Swarup. 2009. A study of in-
formation diffusion over a realistic social network
model. In Computational Science and Engineering,
2009. CSE’09. International Conference on, vol-
ume 4, pages 675–682. IEEE.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
In LREC, volume 10, pages 2200–2204.

Fabio Celli, Fabio Pianesi, David Stillwell, and Michal
Kosinski. 2013. Workshop on computational per-
sonality recognition (shared task). In Proceedings of
the Workshop on Computational Personality Recog-
nition.

Fabio Celli, Bruno Lepri, Joan-Isaac Biel, Daniel
Gatica-Perez, Giuseppe Riccardi, and Fabio Pianesi.
2014. The workshop on computational personal-
ity recognition 2014. In Proceedings of the 22nd
ACM international conference on Multimedia, pages
1245–1246. ACM.

David Roxbee Cox and David Oakes. 1984. Analysis
of survival data, volume 21. CRC Press.

Lewis R Goldberg. 1990. An alternative” de-
scription of personality”: the big-five factor struc-
ture. Journal of personality and social psychology,
59(6):1216.

Manuel Gomez Rodriguez, Jure Leskovec, and Bern-
hard Schölkopf. 2013. Structure and dynamics of
information pathways in online media. In Proceed-
ings of the sixth ACM international conference on
Web search and data mining, pages 23–32. ACM.

Masahiro Kimura, Kazumi Saito, Ryohei Nakano, and
Hiroshi Motoda. 2010. Extracting influential nodes
on a social network for information diffusion. Data
Mining and Knowledge Discovery, 20(1):70–97.

Jure Leskovec and Andrej Krevl. 2015. {SNAP
Datasets}:{Stanford} large network dataset collec-
tion.

Jianhua Lin. 1991. Divergence measures based on the
shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151.

Tushar Maheshwari, Aishwarya N Reganti, Upendra
Kumar, Tanmoy Chakraborty, and Amitava Das.
2017. Semantic interpretation of social network
communities. In AAAI, pages 4967–4968.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Mark EJ Newman. 2008. The mathematics of net-
works. The new palgrave encyclopedia of eco-
nomics, 2(2008):1–12.

Daniele Quercia, Michal Kosinski, David Stillwell, and
Jon Crowcroft. 2011. Our twitter profiles, our
selves: Predicting personality with twitter. In Pri-
vacy, Security, Risk and Trust (PASSAT) and 2011
IEEE Third Inernational Conference on Social Com-
puting (SocialCom), 2011 IEEE Third International
Conference on, pages 180–185. IEEE.

Daniel M Romero, Brendan Meeder, and Jon Klein-
berg. 2011. Differences in the mechanics of in-
formation diffusion across topics: idioms, politi-
cal hashtags, and complex contagion on twitter. In
Proceedings of the 20th international conference on
World wide web, pages 695–704. ACM.

Shalom H Schwartz and Wolfgang Bilsky. 1990. To-
ward a theory of the universal content and struc-
ture of values: Extensions and cross-cultural replica-
tions. Journal of personality and social psychology,
58(5):878.

Shalom H Schwartz. 1992. Universals in the content
and structure of values: Theoretical advances and
empirical tests in 20 countries. Advances in experi-
mental social psychology, 25:1–65.

Shalom H Schwartz. 2012. An overview of the
schwartz theory of basic values. Online readings in
Psychology and Culture, 2(1):11.

Ben Verhoeven, Walter Daelemans, and Tom
De Smedt. 2013. Ensemble methods for personality
recognition. In Proceedings of the Workshop on
Computational Personality Recognition, pages
35–38.

Mudasir Wani and Manzoor Ahmad. 2014. Survey of
information diffusion over interaction networks of
twitter. International Journal of Computer Applica-
tion, 3(4):310–313.

Jiang Yang and Scott Counts. 2010. Predicting the
speed, scale, and range of information diffusion in
twitter. ICWSM, 10:355–358.

Tauhid R Zaman, Ralf Herbrich, Jurgen Van Gael, and
David Stern. 2010. Predicting information spread-
ing in twitter. In Workshop on computational social
science and the wisdom of crowds, nips, volume 104,
pages 17599–601. Citeseer.

9
426

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 427–434

Study on Visual Word Recognition in Bangla across Different Reader
Groups

Manjira Sinha
Conduent Labs India

Bangalore, India

Tirthankar Dasgupta
TCS Innovation Labs

Kolkata, India
{manjira87, iamtirthankar, anupambas}@gmail.com

Anupam Basu
IIT Kharagpur

Kharagpur, India

Abstract

This paper presents a psycholinguis-
tic study of visual word recognition in
Bangla. The study examines the relation-
ship among different word attributes and
word reading behaviors of the two tar-
get user groups, whose native language is
Bangla. The different target user groups
also offer insights into the subjectivity of
written word comprehension based on the
readers background. For the purpose of
the study, reading in terms of visual stimu-
lus for word comprehension has been con-
sidered. To the best of the knowledge of
the authors, this study is the first of its kind
for a language like Bangla.

1 Introduction

Recognition and understanding of words are ba-
sic building blocks and the first step in language
comprehension. At this stage, the form (visual
representation) joins the meaning (conceptual rep-
resentation). Therefore, the cognitive load asso-
ciated with word reading is a significant contrib-
utor to the overall text readability. The present
study aims to capture the salience effects of dif-
ferent word attributes on the word reading perfor-
mance in Bangla, the second most spoken (after
Hindi) and one of the official languages of India
with about 85 million native users in India 1 . The
features studied in this work, encompass ortho-
graphic properties of a word like length in terms
of the number of visual units or akshars; number
of unique orthographic shapes i.e, the characteris-
tic strokes and complexity measures based on the
familiarity of the akshars and strokes in a word.
Phonological properties of a word such as number
of syllables and spelling to sound consistency have

1http://www.ethnologue.com/statistics/size

also been taken into account along with the seman-
tic attributes of a word like number of synonyms
and number of senses. Moreover, the feature list
also includes word collocation attributes such as
orthographic neighborhood size and phonological
neighborhood size, which situate the given word
with respect to other members in the vocabulary.
The effects of the word attributes have been mea-
sured in terms of the reaction time and perfor-
mance accuracy data obtained from empirical user
experiments.

The paper is organized as follows: Section 2
presents the relevant literature study, section 3
describes the participants details; section 4 and
5 states data preparation and the psycholinguis-
tic experiment respectively; section 6 presents the
feature descriptions and the experimental observa-
tions against words and non-words; finally, section
7 concludes the paper.

2 Related Works

Research in word recognition has been central to
many areas in cognitive-neuroscience (Frost et al.,
2005), educational processes (Seidenberg, 2013),
attention (Zevin and Balota, 2000), serial versus
parallel processing (Coltheart et al., 1993), con-
nectionism (Plaut et al., 1996) and much more.
Typically, two different techniques are used to
study visual word recognition: the lexical decision
tasks and the naming task (Balota et al., 2004). In
lexical decision task, a letter string is presented
to a participants are asked to decide whether the
given string is a valid word in their language.
On the other hand, in the naming task, partici-
pants are asked to read allowed a letter string as
quickly as possible. The time taken by a subject
to complete each task after the visual presentation
of the target is defined as the response time (RT).
An analysis of the reaction times of the subjects

427

reveals the actual processing of words in brain.
The early works in word recognition involves two
distinct models: the activation model or the lo-
gogen model (Morton, 1969) and the search model
(Forster and Bednall, 1976); both of these two
models are based on the fundamental premises of
the frequency effects in word recognition. The fre-
quency effect in word recognition claims that the
high frequency words are recognized more accu-
rately and quickly than the low-frequency words
(Murray and Forster, 2004). The logogen model
assumes recognition of words in terms of the acti-
vation of the constituent linguistic features (called
the logogens). Each logogen has got a base ac-
tivation value (also called the resting activation)
that facilitates the recognition process. The resting
activation of a given logogen is determined by its
frequency of occurrence. That is, high frequency
words have higher base activation value than the
low frequency words. The search model, on the
other hand, assumes that words are organized ac-
cording to their frequencies and are searched se-
rially. (Taft and Hambly, 1986) have a proposed
hybrid model that includes features of both the
activation and serial search process. The inter-
active activation (IA) model (Diependaele et al.,
2010) follows the connectionist approach and also
incorporates the logogen model. In this frame-
work, a word is initially perceived via the basic
orthographic, features which in turn activate the
higher level syntactic and semantic features. The
IA model also accounts for the word superiority
effect that assumes alphabets are recognized more
accurately and quickly when they occur in a word
as compared to a non-word (Grainger and Jacobs,
1996). An important extension of the IA model
is the dual-rout cascaded (DRC) model (Coltheart
et al., 2001). This model assumes two paral-
lel process of word recognition: the lexical route
and the sub-lexical route. The lexical route ac-
counts for the recognition process through the par-
allel activation of the orthographic and phonolog-
ical features of a word. On the other hand, the
sub-lexical route possesses a serial processor that
converts graphemic representations into phonemic
forms. As an alternative to two different process-
ing paths n the DRC model, the parallel distributed
processing model (PDP) (Seidenberg and McClel-
land, 1989) has proposed a single architecture to
explain different processing outputs. The model
incorporate the distributed nature by assuming that

each word is associated with some distinct activa-
tion pattern across a common set of features used
to recognize the word. The features may include,
orthography, phonology, morphology or semantic.
Generalizations of the PDP model for non-words
and irregular words have been proposed by (Plaut
et al., 1996)

3 Participants

In order to understand how the different cognitive
processes vary across different user groups, two
categories of users have been considered for each
user study. Group 1 consists of 25 native users
of Bangla in the age range 21-25 years, who are
pursuing college level education and group 2 con-
sists of 25 native users in the age range 13 to 17
years (refer to figure 1). In this paper, the vari-
ations in age and years of education have been
taken into account. Moreover, we have considered
a distribution over medium to low socio-economic
sections with monthly household income ranges
INR 4500 to INR 15000. The Socio-Economic
Classification (SEC) has been performed accord-
ing to the guidelines by the Market Research Soci-
ety of India (MRSI) 2. MRSI has defined 12 socio-
economic strata: A1 to E3 in the decreasing or-
der. The containment of the socio-economic range
was necessary as it directly affects education, lit-
eracy and thus the state of comprehension skills of
a reader. In addition, to capture the first-language
skill, each native speaker was asked to rate his/her
proficiency in Bangla on a 1-5 scale (1: very poor
and 5: very strong), see figure 2.

Figure 1: Participants’ details

2http://imrbint.com/research/The-New-SEC-system-
3rdMay2011.pdf

428

Figure 2: Proficiency in the mother tongue

4 Data preparation

From a Bangla corpus 3 of about 400,000 unique
words, we have sampled 3500 words for the study.
The words were selected in such a way that they
represent the ‘average’ words over the corpus. The
median values of word frequency distribution and
length distribution lie at 368 and 5 respectively
(refer to figur 3 for some sample words used in
experiment). In a psycholinguistics, to preserve
the experimental standard, it is essential to restrict
the participants from making any strategic guess
about the input stimuli. This has been achieved by
randomly introducing non-words in between the
valid words during the experiment. However, de-
signing non-words are a non-trivial process, and
often the reader’s response to the different types
of non-words opens up new insights into the pro-
cess of word comprehension. Some examples of
non-words are provided in figure 4.

5 Experimental Procedure

We have conducted lexical decision task (LDT)
experiment (Meyer and Schvaneveldt, 1971) to
study the visual recognition of Bangla words by
native speakers. In this experiment, a participant
is presented with a visual input, generally, a string
of letters that can be words, non-words or pseudo
words. Their task is to indicate, whether the pre-
sented stimulus is a valid Bangla word or not. The
reaction time against each participant and the ac-
curacy against each experimental stimulus across
all the participants are recorded for further analy-
sis. The time window for a user to submit any re-
sponse has been set at 4 seconds, failing that a No

3The Unicode corpus of Bangla was developed by the au-
thors as a part of a broader study, the details are not in scope
of this paper.

Response is recorded. In either cases it is followed
by hash signs (####) followed by the next letter
string with 2.5 second delay. No response against
a stimulus is automatically recorded as wrong re-
sponse by the user.

Fifty users from the two target user groups par-
ticipated in the LDT experiment. The 5000 exper-
imental words (2500 words and 2500 non-words)
were distributed randomly among 67 equal sized
75-word sets. Each user was presented maximum
of three sets a day with at least one hour gap be-
tween two sets. Before recording experimental
data, a sample set made up of 20 words was pre-
sented to the users to make them accustomed with
the experiment.

6 Observations

All the incorrect responses and extreme reaction
times (RT: the time taken to respond to a stimuli)
have been discarded. Participants and experimen-
tal words having less than 70% accuracy have also
been discarded. Finally, 440 words with RT of 42
(22 from group 1 and 20 from group 2) partici-
pants have been used for further study.

The RTs of each user have been normalized by
z-transformation (Balota et al., 2007). The mean
z-score over all users for a word has been com-
puted. Negative z-scores indicate shorter response
latencies. Paired t-test has been performed be-
tween results of the two user groups and p < 0.05
has been found signifying the difference between
reading characteristics of the two user groups.
Next, we have studied the influence of different
word features on the outcome of the lexical deci-
sion task. The word features studied in this paper
have been selected based on their prominence in
the literature (Yarkoni et al., 2008) and their rele-
vance with respect to Bangla. The features are:
•Morphological Family size: The morpholog-

ical family size of a word w comprises of all the
inflected, derived and compound paradigms that
contains the word w (De Jong IV et al., 2000).
•Word length (linear): The length is measured

in terms of the number of visual units or akshars;
as Bangla belongs to the abugida group, mere al-
phabetic word length does not reflect the difficulty
encountered in reading (Sinha et al., 2012b).
•Number of complex characters in a word:

Complex characters are the consonant conjuncts
or jukta-akshars present in a word.
•Number of unique shapes in a word:

429

Figure 3: Examples of valid-words for experiment 4

Figure 4: Construction of non-words for experiment

Bangla script uses the space in a non-linear way
and the akshars hangs from a distinct horizontal
head-stroke called mAtrA. The letters are made up
of combinations of different shapes or strokes. All
together 57 unique strokes have been identified
and indexed accordingly. The initial hypothesis is
that more the number of distinct shapes in a word;
the more difficult it is to comprehend.

•Orthographic word complexity: During vi-
sual word recognition, the reader has to recog-
nize the orthographic patterns (Selfridge, 1958).
Word level representations interact with the letter
level representations i.e, the characteristic shapes
or strokes (refer to). As no standard dataset on

Figure 5: characteristics strokes of Bangla akshars

shape combinations in Bangla letters is available,
the unique shapes or strokes have been identified
intuitively across all the Bangla letters including
the consonant conjuncts. The Bangla Akademi
font has been considered as standard Bangla or-
thography. All together 57 unique strokes have
been identified and numbered. Every Bangla letter
has been represented as a combination of the con-
stituent shapes. To capture the interactive nature

Figure 6: Mapping of Bangla akshars to character-
istics shapes

of visual complexity, an orthographic complexity

430

model has been derived in the following way:

(a) The difficulty (d(s)) of a characteristic shape
(i) or stroke is inversely proportional to its fa-
miliarity or frequency (f(s)). The frequency
of the shapes has been calculated from the
unique word list of the Bangla corpus with-
out considering the frequency of each word.

d(s) = 1/f(s). (1)

(b) The difficulty (d(a)) of an akshar (a) depends
on the sum of the complexity of its shapes
normalized by the number of shapes (n)

d(a) = 1/n
∑

i

d(si) (2)

(c) Finally, the difficulty (d(w)) of a word (w) is
the sum of the complexity of its constituent
akshars normalized by word length (l) and
multiplied by the inverse of the word fre-
quency (f(w))

d(w) = 1/f(w)
[
1/l
(∑

j

d(aj)
)]

(3)

•Orthographic & phonological neighborhood:
We have constructed akshar based, orthographic
shape based and phonological pattern based
neighborhood structure. The akshar based
distance measure treats all akshars as of same
visual complexity regardless of their orthographic
properties, this is the reason distance among
words based on orthographic strokes has been
treated separately. At each level of orthographic
information, the neighbors have been categorized
into three groups based on their distance from the
given word.
•Number of syllables: The syllabification of

the Bangla words has been performed using a
Bangla Grapheme to Phoneme conversion tool,
developed inhouse.
•Semantic neighborhood: This measure

represents the number of semantic neighbors
of a word within the lexical organization of the
language. This is computed from the semantic
lexicon described in (Sinha et al., 2012a).

The mean and standard deviation values of the
word features described above have been pre-
sented in figure 7. We have analyzed the RT cor-
responding to the above features using Spearman’s

correlation coefficient. The coefficient values be-
tween each word attribute and word recognition
performance for the two user groups have been
presented in figure 8.

From 8 we can observe that the correlation
coefficients values for lexical decision latencies
and decision accuracies are always less than 0.5,
though they are different for different groups. The
difference in the coefficient values may be at-
tributed to the different reading patterns of the two
groups. Number of syllables has similar corre-
lation coefficients as word length because most
often the akshars boundaries match the phono-
logical syllable boundaries. The measure of or-
thographic word complexity possess low correla-
tion coefficients with reaction times and accura-
cies, this can be an outcome of considering only
the orthographic attributes of a word, isolating it
from the phonological or semantic dimensions. In
future, the measure needs to be augmented with
those word features.

Number of unique shapes and complex char-
acters also do not show significant correlation.
Spelling to sound consistency also has a moder-
ate correlation with the groups. This shows that
speakers are not much sensitive towards the minor
inconsistencies in spelling to sound mapping. The
correlation coefficients of distant orthographic and
phonological neighbors, immediate orthographic
neighbors at shape level and semantic neighbor-
hood are not significant for both groups. These in-
dicate that after a threshold distance, the similar-
ity or dissimilar-ity of the given word with other
words in vocabulary does not affect the readers
decisions. In addition, at shape level, the num-
ber of immediate orthographic neighbors may be
unimportant due to the fact that often an akshar is
constituted with more than 2 characteristic ortho-
graphic shapes and therefore, while reading, such
minor changes in orthographic properties may go
unnoticed.

Finally, the present calculation of semantic
neighborhoods has been based on exhaustive lan-
guage information (Sinha et al., 2012c), but the
actual users may not possess such deep language
knowledge and therefore are less affected by the
semantic neighborhood structure. On the other
hand, the number of senses or meaning of a word
does not have inhibitory effect on the decision
making process as the no ambiguity had to be re-
solved here, instead the use of a word in different

431

Figure 7: Properties of valid words for experiment

contexts have increased its chance of encountering
with the native readers of Bangla more often.

Moreover, the decisions against non-words are
equally interesting to the decisions against the
valid words. Non-words such as kakShataNa [cor-
rect: (katakShaNa, time duration)], AkampIta
[correct: (akampita, steady)] and TAlAN [cor-
rect: (cAlAna, transaction)] have almost always
been perceived as correct words by the readers due
to their orthographic and phonological proximity
to the correct words. On the other hand, proper
non-word i.e, an arbitrary letter string such as Na-
jatathI has been accurately classified as invalid.
This indicates that the cognitive processes of read-
ing are sensitive to the probability of what akshar
pattern can occur in a valid Bangla word.

7 Conclusion

In this paper, we have presented a study on the
comprehension difficulty of visual word recog-
nition in Bangla stored as a lexical decision
database. Number of interesting observations has
been made from the experimental data and the ob-
servations have been complemented with rational
inferences based on them. The correlation coef-
ficients among word attributes and reaction time

data has revealed that individually no feature has a
large covariance factor, but the collective effect of
all of them determines the cognitive load for com-
prehension. Moreover, using a reference language
corpus based only on text from printed sources has
proven to be a short-coming for drawing meaning-
ful inferences. Some initial insights on the deci-
sions corresponding to the non-words have also
been presented.

References
David A Balota, Michael J Cortese, Susan D Sergent-

Marshall, Daniel H Spieler, and MelvinJ Yap.
2004. Visual word recognition of single-syllable
words. Journal of Experimental Psychology: Gen-
eral, 133(2):283.

D.A. Balota, M.J. Yap, K.A. Hutchison, M.J. Cortese,
B. Kessler, B. Loftis, J.H. Neely, D.L. Nelson,
G.B. Simpson, and R. Treiman. 2007. The en-
glish lexicon project. Behavior Research Methods,
39(3):445–459.

M. Coltheart, B. Curtis, P. Atkins, and M. Haller. 1993.
Models of reading aloud: Dual-route and parallel-
distributed-processing approaches. Psychological
Review; Psychological Review, 100(4):589.

Max Coltheart, Kathleen Rastle, Conrad Perry, Robyn
Langdon, and Johannes Ziegler. 2001. Drc: a dual

432

Figure 8: Correlation analysis between word attributes and data from LDT (correlation coefficients
marked with # are not significant (p-value > 0.05)

433

route cascaded model of visual word recognition and
reading aloud. Psychological review, 108(1):204.

Nivja H De Jong IV, Robert Schreuder, and R Har-
ald Baayen. 2000. The morphological family size
effect and morphology. Language and cognitive
processes, 15(4-5):329–365.

K. Diependaele, J.C. Ziegler, and J. Grainger. 2010.
Fast phonology and the bimodal interactive activa-
tion model. European Journal of Cognitive Psychol-
ogy, 22(5):764–778.

Kenneth I Forster and Elizabeth S Bednall. 1976. Ter-
minating and exhaustive search in lexical access.
Memory & Cognition, 4(1):53–61.

Stephen J Frost, W Einar Mencl, Rebecca Sandak,
Dina L Moore, Jay G Rueckl, Leonard Katz,
Robert K Fulbright, and Kenneth R Pugh. 2005. A
functional magnetic resonance imaging study of the
tradeoff between semantics and phonology in read-
ing aloud. NeuroReport, 16(6):621–624.

Jonathan Grainger and Arthur M Jacobs. 1996. Or-
thographic processing in visual word recognition:
a multiple read-out model. Psychological review,
103(3):518.

David E Meyer and Roger W Schvaneveldt. 1971. Fa-
cilitation in recognizing pairs of words: evidence of
a dependence between retrieval operations. Journal
of experimental psychology, 90(2):227.

John Morton. 1969. Interaction of information in word
recognition. Psychological review, 76(2):165.

Wayne S Murray and Kenneth I Forster. 2004. Serial
mechanisms in lexical access: the rank hypothesis.
Psychological Review, 111(3):721.

David C Plaut, James L McClelland, Mark S Seiden-
berg, and Karalyn Patterson. 1996. Understanding
normal and impaired word reading: computational
principles in quasi-regular domains. Psychological
review, 103(1):56.

Mark S Seidenberg and James L McClelland. 1989. A
distributed, developmental model of word recogni-
tion and naming. Psychological review, 96(4):523.

Mark S Seidenberg. 2013. The science of reading and
its educational implications. Language learning and
development, 9(4):331–360.

Oliver G Selfridge. 1958. Pandemonium: a paradigm
for learning in mechanisation of thought processes.

M. Sinha, T. Dasgupta, and Basu A. 2012a. A complex
network analysis of syllables in bangla through syl-
lablenet. In Sobha L Girish Nath Jha, Kalika Bali,
editor, Workshop on Indian Language and Data:
Resources and Evaluation, LREC, pages 131–138,
May.

M. Sinha, S. Sharma, T. Dasgupta, and Basu A. 2012b.
New readability measures for bangla and hindi texts.
Communicated in the 24th International Conference
on Computational Linguistics,2012, IIT Bombay,
August.

Manjira Sinha, Abhik Jana, Tirthankar Dasgupta, and
Anupam Basu. 2012c. A new semantic lexicon
and similarity measure in bangla. In Proceedings of
the 3rd Workshop on Cognitive Aspects of the Lexi-
con, pages 171–182, Mumbai, India, December. The
COLING 2012 Organizing Committee.

Marcus Taft and Gail Hambly. 1986. Exploring the co-
hort model of spoken word recognition. Cognition,
22(3):259–282.

T. Yarkoni, D. Balota, and M. Yap. 2008. Mov-
ing beyond coltheart?s n: A new measure of ortho-
graphic similarity. Psychonomic Bulletin & Review,
15(5):971–979.

Jason D Zevin and David A Balota. 2000. Prim-
ing and attentional control of lexical and sublexi-
cal pathways during naming. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
26(1):121.

434

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 435–446

Demystifying Topology of Autopilot Thoughts: A
Computational Analysis of Linguistic Patterns of Psychological

Aspects in Mental Health

Bibekananda Kundu and Sanjay Kumar Choudhury
Language Technology, ICT and Services

Centre for Development of Advanced Computing, Kolkata
E-mail: {bibekananda.kundu,sanjay.choudhury}@cdac.in

Abstract

The paper investigates topology of un-
controlled dynamic depressive thoughts
which is popularly known as “autopi-
lot” in the psychology domain. Per-
sistent homology, a mathematical tool
from algebraic topological has been
applied on Vector Space representa-
tion of tweets generated by users hav-
ing neurotic personality for determin-
ing the topological structure of autopi-
lot thoughts. State-of-the-art machine
learning techniques leveraging linguis-
tic resources akin to LIWC, WordNet-
Affect and SentiWordNet have been
applied for identifying neurotic per-
sonality from different Twitter users.
An initiative has been taken for em-
powering Neuro Linguistic Program-
ming (Bandler and Grinder, 1975; Ban-
dler and Grinder, 1979; Bandler and
Andreas, 1985) and other psychother-
apy techniques using Natural Language
Processing in the domain of Mental
Health.

1 Introduction
“Wherever there are sensations, ideas, emo-
tions, there must be words”

— Swami Vivekananda.
We use language for thinking, experienc-

ing, expressing, communicating and problem
solving. So, to analyze one’s thought pro-
cess, language is a symbolic medium. In psy-
chotherapy, language is considered as a pri-
mary tool to understand patients’ experiences
and express therapeutic interventions (Pen-

nebaker et al., 2003). All psychological in-
terventions rely on the power of language.
Psychotherapists rarely intervene directly in
their client’s lives, they create changes in the
thought process through conversation (Vil-
latte et al., 2015). According to Relational
Frame Theory (RFT) (Greenway et al., 2010),
people use linguistic frames to understand the
world around them, and subsequently solve
problems. RFT has been suggested as an
approach to understanding natural language
systems. The theory lends itself well to as-
sessment with Natural Language Processing
(NLP) precisely because it relies on under-
standing interaction between sensation, affect,
language, and behaviour. When someone uses
language, they are labelling their experience.
For example, someone might tweet “I need to
escape this world before I get crushed.” indi-
cating a fear based affective response. We are
planning to use NLP to assess this label (Pen-
nebaker et al., 2015). Simply labelling events
and their attributes as ‘positive’ or ‘negative’
increases associated memories and emotional
salience. This type of relational network can
be evoked with any number of internal or ex-
ternal stimuli, triggering the aforementioned
internal feedback loop, and leading to psy-
chological distress. For example, describing a
‘negative’ event such as a trauma can evoke
intense fear and sadness and subsequent sob-
bing (Miner et al., 2016; Althoff et al., 2016).
The person suffering from distress actually us-
ing a model of world which is very limited
and in this world he/she find no appropri-
ate choice from the options available to their
model of world (Bandler and Grinder, 1975;
Bandler and Grinder, 1979; Bandler and An-

435

dreas, 1985). Therefore, there is a requirement
of expanding the model of world i.e. impro-
vise the model to a better model which has
more options. Therefore, the therapeutic tech-
nique would be somehow transforming the ex-
isting model to a better model using a meta-
model and transformational grammar. The
linguistic theory plays a vital role to under-
stand the client model and transform it us-
ing transformational grammar (Bandler and
Grinder, 1975). Therefore, one of the key con-
cerns of psychotherapy is to understand topol-
ogy of the maladaptive autopilot thoughts and
changing the topology of thought process us-
ing Mindfulness (Collins et al., 2009), Collab-
orative Empiricism (Beck and Emery, 1979;
Kazantzis et al., 2013) and other talk ther-
apy techniques (Pawelczyk, 2011; Ebert et al.,
2015; Mayo-Wilson and Montgomery, 2013;
Mohr et al., 2013). In this regards, un-
derstanding of topology of uncontrolled dy-
namic depressive thought (known as “autopi-
lot thought” in psychology) is important for
evaluating mental health of patients. After a
brief discussion on psychological background
and motivation behind the work, we will un-
derstand how we can represent topology of
thought in the next section.

2 How to Represent Topology of
Thought

We are considering written text as a sym-
bolic representation of thoughts. To under-
stand the topology of “autopilot thoughts”,
we have collected tweets of neurotic person-
ality from Twitter applying a hybrid approach
combining Deep Learning based classification,
KL-Divergence (Manning and Schütze, 1999)
based Timeline Similarity Analysis and Rule-
based sentiment analysis technique leveraging
WordNet-Affect1 , SentiWordNet2 and psy-
cholinguistic resource akin to LIWC3. Detailed
data collection procedure has been discussed
in the section 3 and 4 .We are interested to
study the representation of words used by neu-
rotic persons in the Vector Space using Word
Embedding (Mikolov et al., 2013; Mesnil et
al., 2013) and topology (Sizemore et al., 2016)

1http://wndomains.fbk.eu/wnaffect.html
2http://sentiwordnet.isti.cnr.it
3http://liwc.wpengine.com/

of these semantically embedded words using
persistent homology (Zhu, 2013; Kaczynski et
al., 2004). We have intuition that timeline of
neurotic person contains different topological
structure than timeline of user having other
personality. Studies say that neurotic per-
son uses more first person pronoun, less so-
cial words, more negative emotion words (Pen-
nebaker, 2011). An introvert person uses sin-
gle topic, discusses more regarding problem,
uses few self-references, many tentative words,
many negation as compare to extrovert per-
son (Mairesse and Walker, 2007). Topological
data analysis using persistent homology has
been discussed in the section 5. In the next
section, we will discuss our data collection pro-
cedure from Twitter.

3 How to Collect Tweets of
Neurotic Persons

The proposed approach utilizes an ensem-
ble of state-of-the-art machine learning tech-
niques based on psycholinguistic features to
detect distress users (having neurotic person-
ality) from their social media text. We have
used Twitter API to search in the Twitter
using some seed words/phrases like “awful”,
“terrible”, “lousy”, “hate”, “lonely”, “hope-
less”, “helpless”, “crap”, “sad”, “miserable”,
“tired”, “sleep”, “hurt”, “pain”, “kill”, “die”,
“dying”, “stressed”, “frustrated”, “irritated”,
“depressed” etc. and name of some antide-
pression drugs like “Sertraline”, “Citalopram”,
“Clonazepam”, “Propanol”, “Prozac”, “Zopi-
clone”, “Fluoxetine”, “Quetiapine”, “Hydrox-
yzine” etc. Next, we have filtered out the
tweets starting with RT to avoid considering
retweets. We have also removed tweets con-
taining url. Thereafter, these tweets are sent
to (in house developed) Psychological Anno-
tation Interface for manual annotation. Fig-
ure 1 shows screenshot of the interface along
with some examples of negative tweets. An
annotator can label a tweet considering three
aspects Viz:
(a) Personal/Impersonal Emotion Labelling

(b) Polarity Labelling

(c) Psychological Annotation
Individual words in a tweet are annotated ac-
cording to Psychological Process as discussed

436

Figure 1: Psychological Annotation Interface

in (Pennebaker et al., 2015). Special care
has been taken during annotation to find out
“Linguistic Marker of Depression” (Bucci and
Freedman, 1981; Pyszcynski and Greenberg,
1987) in the tweet. Pronouns tell us where
people focus their attention. If someone uses
the pronoun “I”, it’s a sign of self-focus. De-
pressed people use the word “I” much more
often than emotionally stable people (Pen-
nebaker, 2011; Ramirezesparza et al., 2008;
Nguyen et al., 2014). Researchers have found
that people who frequently use first-person
singular words like “I”, “me” and “myself” are
more likely to be depressed and have more in-
terpersonal problems than people who often
say “we” and “us”. Using LIWC2001, (Stir-
man and Pennebaker, 2001) found that sui-
cidal poets were more likely to use first per-
son pronouns (e.g., “I”, “me”, “mine”) and
less first plural pronouns (e.g., “we”, “ours”)
throughout their writing careers than were
non-suicidal poets. These findings supported
the social engagement/disengagement model
of depression, which states that suicidal in-
dividuals have failed to integrate into society
in some way, and are therefore detached from
social life (Durkheim, 1951). Similarly, (Rude
et al., 2004) found that currently depressed

students used more first person singular pro-
nouns, more negative emotional words, and
slightly fewer positive emotion words in their
essays about coming to college, relative to stu-
dents who had never experienced a depressive
episode. These results are in line with (Pysz-
cynski and Greenberg, 1987) self-awareness
theory. Therefore, in our Psycho-logical An-
notation Interface, we have implemented a fea-
ture to highlight tweets with red back ground
containing First Person Personal Pronoun i.e.
“I”. Focus on temporal orientation of people
that is how often they emphasize the past,
present and future is necessary because it af-
fects their health and happiness (Zimbardo
and Boyd, 2008). We are interested the pro-
portion of a user’s tweets that the analytic
finds evidence in: Insomnia and Sleep Dis-
turbance which is often a symptom of men-
tal health disorders (Weissman et al., 1996;
De Choudhury et al., 2013), so we have cal-
culated the proportion of tweets that a user
makes between midnight and 4 am accord-
ing to their local time-zone. Therefore, dur-
ing annotation, special attention should be
given on the time perspective of the tweets.
Moreover, in the interface we have highlighted
tweets in grey colour that have been gener-

437

ated midnight assuming that the user have
sleeping problem or insomnia. From all la-
belled tweets, unique users name are auto-
matically extracted for analysis of their time-
lines. Thereafter tweets are extracted from
unique users’ timeline and annotated using the
aforementioned procedure. After annotation
of all tweets from a user timeline, the per-
sonality of tweet user is labelled in one of the
nine classes viz.Extravert, Introvert, Emotion-
ally Stable, Neuroticism, Agreeable, Disagree-
able,Conscientious,Unconscientious and Open
to Experience. This personality classes are
basically extended form of “Big Five Per-
sonality” (John and Srivastava, 1999) classes.
We are more interested for the users those
are labelled as “Neuroticism” after analyzing
the tweets from their timeline. Following the
above mentioned procedure, we have created
our training data. Manual analysis of tweets
collected from users’ timeline reveals that in-
formation contains in two neurotic users is
similar. Moreover, people discuss similar prob-
lem among their friend circles, therefore auto-
matic searching “friend” and “followers” of a
neurotic users increases the chance of getting
more data of similar nature automatically.
In this way collected training data has been
used to train our ensemble learner for detect-
ing depression from social media text in order
to collect more tweets from neurotic users. In
the next session, we will discuss the depression
detection technique using an ensemble classi-
fier.

4 Depression Detection from Social
Media Text

4.1 Why Social Media
Currently, depression is primarily assessed
through surveys. The standard approach to
diagnosing psychological health disorders is
through a series of clinically administered di-
agnostic interviews and tests (Weathers and
Davidson, 2001). However, assessment of pa-
tients using these tests is expensive and time-
consuming. Furthermore, the stigma associ-
ated with mental illnesses motivates inaccu-
rate self-reporting by affected individuals and
their family members, thus making the tests
unreliable. Commonly, the evaluation of a pa-
tient is typically performed through the use

of standardized questionnaires like Beck De-
pression Inventory (BDI)4 , Big Five Inven-
tary (BFI) (John and Srivastava, 1999) etc. A
patient’s answers are then compiled and com-
pared with disease classification guidelines,
such as the International Classification of Dis-
eases or the Diagnostic and Statistical Manual
(DSM), to guide the patient’s diagnosis. How-
ever, these diagnostic methods are not pre-
cise and have high rates of false positives and
false negatives. In addition, societal and finan-
cial barriers prevent many people from seek-
ing medical attention (Michels et al., 2006).
Many societies around the world stigmatize
and discriminate against people with mental
disorders, contributing to the unwillingness of
individuals to acknowledge the problem and
seek help (Fabrega, 1991). While psycholog-
ical treatments for depression can be effec-
tive (Cuijpers et al., 2008), they are often
plagued by access barriers and high rates of
attrition (Mohr et al., 2010). Internet inter-
ventions have been touted as an antidote to ac-
cess barriers, but they appear to produce more
modest outcomes (Andersson and Cuijpers,
2009), in part also due to high attrition (Chris-
tensen et al., 2009). In recent years, there
has been a tremendous growth in social inter-
actions on the Internet via social networking
sites and online discussion forums. In contrast
to clinical tests, the Internet is an ideal, anony-
mous medium for distressed individuals to re-
late their experiences, seek knowledge, and
reach out for help. Social media is an emerg-
ing tool that may assist research in this area,
as there exists the possibility of passively sur-
veying and then subsequently influencing large
groups of people in real time. (Ruder et al.,
2011) have shown that some Facebook users
do, in fact, post suicide notes on their profiles,
exposing the potential for suicide related re-
search in social media. The amount of publicly
available information spread across the realm
of social media is extensive. We prefer Twit-
ter because of its greater public availability of
data, larger user base, and it being a platform
of personal expression. Users generate over
400 million tweets per day (Bennett, 2012).
This large reservoir of information regarding

4http://www.hr.ucdavis.edu/asap/pdf_files/
Beck_Depression_Inventory.pdf

438

people’s daily lives and behaviours, if handled
correctly, can be used to study depression, sui-
cide and possibly intervene. Twitter is also
used for keeping in touch with friends and col-
leagues, sharing interesting information within
one’s network, seeking help and opinions, and
releasing emotional stress (Johnston and Hau-
man, 2013). Therefore, Twitter can be identi-
fied as an important surveillance tool for de-
tecting depression and suicidal patterns.

4.2 Methodology
We have applied an ensemble classifier to clas-
sify distress and non-distress user based on
their social media text collected from Twit-
ter. The ensemble classifier has been built us-
ing linear combination of Document Similarity
and Emotional Intensity Estimator. Weights
in this linear combination are estimated em-
pirically to achieve higher accuracy in this
classification task.

We have followed two approaches for detect-
ing depressive tweets viz.

(a) Document Similarity Measurement:
We have used KL-Divergence (Manning
and Schütze, 1999) to measure similarity
between searched user’s timeline and la-
belled tweets from all users’ timeline and
used the similarity score for final scoring
of negativity of the user. Applying La-
tent Dirichlet Allocation (LDA) (Blei et
al., 2003), we have estimated topic distri-
bution on the labelled negative5 and pos-
itive data extracted from users’ timeline.
We have used sklearn.lda.LDA library
to estimate topic distribution. Then we
have estimated the topic similarity of a
query user’s tweets (user whose person-
ality needs to be estimated) from their
timeline with these labelled negative and
positive tweets. Then we have estimated
the overall similarity score using the fol-
lowing equation:

SimilarityScore = 0.6 ∗ β + 0.4 ∗ γ (1)

where β and γ are the similarity scores
estimated using LDA and KL-Divergence

5In this paper we have used the term “negative
tweet” and “distressed tweet” interchangeably to rep-
resent the tweet generate by user having neurotic per-
sonality.

based topic distribution. Study shows
that theme-based retrieval does a better
job of finding relevant and effective docu-
ments (tweets in user timeline in our case)
for this application than conventional ap-
proaches (Dinakar et al., 2012b; Dinakar
et al., 2012a). All the weights used in
the above equations are empirically de-
termined.

(b) Emotional Intensity Measurement:
We have used following resources for mea-
suring emotional intensity of individual
tweet:

(a) SentiWordNet
(b) Manually classified lexicon based on

psychological process akin to LIWC.
(c) WordNet Affect

We have calculated NegetivityScore
combining LSTM (Hochreiter and
Schmidhuber, 1997; Gers et al., 2000;
Graves, 2012), a deep learning model
for detecting polarity from tweets and
rule-based approach using the above
mentioned resources and psycholinguistic
features.Features used in this classifi-
cation task are mainly psycholinguistic
types, other than that “Pattern of Life
Analytics”6 (Greetham et al., 2011;
Berkman et al., 2000; De Choudhury
et al., 2013), “Capitalized Text”, “Spe-
cialHashTag”, “Probability of Personal
Pronoun”, “UserName Conatining Spe-
cial Keywords” etc. have also been used.
Count of some common phrases like
“why me”, “I hate myself” etc. have also
been considered as important feature.
Examples of “SpecialHashTag” feature
are #depressionprobs, #thisiswhatde-
pressionlike, #depression, #suicide etc..
It have been seen that if userid of the
users contains some clue substrings
like “depressing”, “depression”, “hell”,

6Social engagement has been correlated with posi-
tive mental health outcomes. Tweet rate measures how
often a Twitter user posts and pro-portion of tweets
with @mentions measures how often a user posts ‘in
conversation’ with other users. Number of @mentions
is a measure of how often the user in question engages
other users, while Number of self @mentions is a mea-
sure of how often the user responds to mentions of
themselves.

439

“depressed”, “sad”, “cry”, “suicidal”,
“anxious”, “anxiety”, “lonely”, “die”,
“broken”, “stress”, “worthless”, “lost”
etc. the timeline of these users contains
depressive tweets. Therefore the users
having such userid have been considered
as an important feature. Tweets written
in Upper Case, are considered as impor-
tant assuming that these are written in
Upper Case for providing more impor-
tance/intensifying the emotion involved
in the tweet.We have used Theano, a
python based deep leaning library for
implementing our LSTM classifier7.
Final score for selecting neurotic persons
has been calculated as follows :

FinalScore = α ∗ SimilarityScore

+ (1 − α) ∗ NegetivityScore
(2)

Value of alpha (0 ≤ α ≤ 1) can be set
experimentally to achieve highest accu-
racy. We have seen empirically that bet-
ter result is found when the value of α
is 0.8. It has been observed that when
the FinalScore is greater than 0.14 then
the user can be accepted as neurotic per-
son. Following the procedure discussed
in section 3 and 4 we have collected 2500
negative tweets from the timeline of 12
Twitter users having neurotic personal-
ity. Same numbers of positive tweets have
been collected from the timeline of users
having tweets with hashtag #motivation-
altweet, #positivethinking, #motivation-
alquotes etc.

4.3 Vector Space Representation of
Distressed Tweets

After manual verification, we have converted
the negative and positive tweets into the multi-
dimensional Vector Space. Thereafter, using
“t-Distributed Stochastic Neighbor Embed-
ding” (t-SNE) technique (van der Maaten and
Hinton, 2008), the higher dimensional data
points are projected into a 2d plane. We have
used gensim8 python library to convert neu-
rotic persons’ tweets into Vector Space. We

7http://deeplearning.net/tutorial/lstm.html
8https://radimrehurek.com/gensim/

have considered 2000 dimensions and ±5 con-
text window during Word Embedding. Words
that are appeared at least 10 times in the
corpus have been selected for vector repre-
sentation. We have used t-SNE api available
in the sklearn.manifold library9 for dimen-
sionality reduction of these higher dimensional
points and visualization in the two dimension
space. Figure 2 shows representation of em-
bedding words in 2d space using t-SNE. We
can see semantically closer words are form-
ing clusters in the Vector Space. “Kill me”,
“Suicidal”, “destroy”, “Cutting” are appearing
closer to each other and “rejected”, “unloved”,
“worthless” are forming separate cluster. Sep-
arate cluster represent the different topic of
the thoughts those are having in the mind
of neurotic persons. Conversely, analysing
the tweets of positive minded people, we have
seen that “adorable”, “comfortable”, “eager”,
“hopeful”,“satisfied” etc. words are frequently
used in their timeline. Persistence homology
has been applied to the point clouds of pos-
itive and negative tweets separately. In the
next section we will discuss the topological
data analysis of negative and positive tweets
based on their vector representation.

5 Topological Data Analysis of
Tweets

Persistent homology (Zhu, 2013), a mathemat-
ical tool from topological data analysis has
been applied on the collected tweets for multi-
scale analysis on a set of points and identi-
fies clusters, holes, and voids therein. Persis-
tent homology can identify clusters (0-th order
holes), holes (1st order, as in our loopy curve),
voids (2nd order holes, the inside of a balloon),
and so on in a point cloud. It finds “holes” by
identifying equivalent cycles. Detailed discus-
sion on Persistent homology10 and Algebraic
Topology is out of scope of the paper. Inter-
ested readers can follow work of (Zhu, 2013;
Singh et al., 2008; Giblin, 2010; Freedman
and Chen, 2011; Zomorodian, 2001; Carlsson,
2008; Edelsbrunner and Harer, 2010; Hatcher,
2002). After representing the words in Vec-
tor Space, we have used these data points

9http://scikit-learn.org/
10http://outlace.com/

440

Figure 2: Representation of Words in Vector Space using t-SNE

Figure 3: Generated Vietoris-Rips Complexes on Negative Point Cloud with Incremental Values
of ϵ.

Figure 4: Generated Vietoris-Rips Complexes on Positive Point Cloud with Incremental Values
of ϵ.

441

to build Vietoris-Rips11 complexes of diame-
ter ϵ which are simplicial complexes V R(ϵ) =
{σ|diam(σ) < ϵ}. Here diam(σ) represents
the largest distance between two points in σ.
Distance measures varies according to differ-
ent contexts. Here we have used euclidean
distance for our purpose. Figure 3 and fig-
ure 4 show generated Vietoris-Rips complexes
on negative and positive point cloud respec-
tively. Here we can see, if we set ϵ too small,
then generated complexes may just consist of
the original point cloud, or only a few edges
between the points. If we set ϵ too big, then
the point cloud will just become one massive
ultradimensional simplex. Our intention is to
discover meaningful patterns in a simplicial
complex by continuously varying the ϵ param-
eter (and continually re-build complexes) from
0 to a maximum that results in a single mas-
sive simplex. Then we generate a diagram that
shows what topological features are born and
die as ϵ continuously increases. We assume
that features that persist for long intervals
over ϵ are meaningful features whereas features
that are very short-lived are likely noise. This
procedure is called persistent homology com-
putation as it finds the homological features of
a topological space that persist while we vary
ϵ. Persistent homology examines all ϵ’s to see
how the system of hole change (also known as
“Birth and Death process”). An increasing se-
quence of ϵ produces a filtration. Persistent
homology tracks homology classes along the
filtration to know for what value of ϵ does a
hole appear and how long the hole persists.
We have followed the methodology as reported
in (Carlsson, 2008) to study the homology of
the complexes constructed. The steps involve
in this methodology are as follows:

• Construct the R persistence simpli-
cial complex {Cϵ} using Vietoris-Rips
method.

• Select a partial order preserving map f :
N → R

• Construct the associated N-persistence
simplicial complex.

• Construct the associated N-persistence
chain complex {C∗(n)}n with co-efficients

11http://outlace.com/

in F .

• Compute the barcodes associated to
the N-persistence F-vector spaces
{Hi(C∗(n), F)}n

Please refer (Carlsson, 2008) for detail expla-
nation.

The “barcode plot” is a convenient way
to visualize persistent homology (Zhu, 2013;
Ghrist, 2007). Barcode plot shown in figure 5
and figure 6 are drawn based on increasing
sequence of ϵ and zeroth Betti number (β0)
calculated from positive and distressed tweets
respectively.

We have selected 500 data points randomly
from the word to vector representation of pos-
itive and distressed tweets for the filtration
process. The word to vector representation
using Word Embedding ensures that words
that share common contexts (semantics) in
the negative and positive tweets are located
in close proximity to one another in the Vec-
tor Space. Using persistent homology we are
trying to examine the topology of these se-
mantically oriented data points (words). The
number of connected components is an im-
portant topological invariant of a graph. In
topological graph theory, it can be interpreted
as the zeroth Betti number of the graph.
From figure 5, we can see that positive tweets
have less connected components (142 discon-
nected components out of 500 data points)
whereas figure 6 shows that negative tweets
have much more connected component com-
pare to positive tweets (only 7 disconnected
components). Less number of connected com-
ponents in users’ timeline represents wide vari-
ation of topics. Conversely, less number of dis-
connected components indicate that tweets are
much more focused towards some specific top-
ics. Manually investigating the contents of the
positive and negative tweets, we have seen that
users having neurotic personality discuss more
regarding their pain and problems. Hence,
topic discussed in their timeline more focused
to their problem area. On the other hand, pos-
itive minded users discuss on different topics
and also share ideas and thoughts among their
friends and followers. Therefore, tweets gener-
ated by them have wide variation of topics.
Barcode plot shown in figure 7 and figure 8 are

442

Figure 5: Barcode Plot of Positive Tweets at
Betti Dimension 0 (β0)

Figure 6: Barcode Plot of Distressed Tweets
at Betti Dimension 0 (β0)

Figure 7: Barcode Plot of Positive Tweets at
Betti Dimension 1 (β1)

Figure 8: Barcode Plot of Distressed Tweets
at Betti Dimension 1 (β1)

drawn based on increasing sequence of ϵ and
1st Betti number (β1) calculated from positive
and distressed tweets respectively. We can see
that figure 7 has very less number of holes and
number of holes in the figure 8 are much more
compare to figure 7. As the number of discon-
nected components are much more in the pos-
itive tweets, the chance of appearance of one
dimensional holes are less. Conversely, num-
ber of one dimensional holes are much more in
negative tweets because of less number of dis-
connected components. We have found that
number of one dimensional holes in positive
tweets is 1 and for negative tweets, it is 34.
This observation corroborates the first obser-
vations that the people with negative mind-
set has more oriented set of thoughts (focused
to their problem domain) than people having
positive mindset. The higher order homology
groups produces Betti numbers having values
zeros, as expected.

6 Conclusion

In this paper, we have proposed a novel ap-
proach for collecting tweets of neurotic per-
sons. Then these tweets are represented in the
Vector Space using Word Embedding and di-
mensionality has been reduced using t-SNE.
Persistent homology has been applied to anal-
yse the topology of tweets resembling autopi-
lot thoughts. Psychological features in term of
linguistic pattern has been discussed.

As a future work we are planning to ex-
plore, how natural language generation can

443

be applied for therapeutic text generation fol-
lowing RFT and based on topology of pa-
tients’ thought. We have hypothesized that
tweets having psychological features, linguistic
markers of depression are indicator of neurotic
user’s time line as per our understanding of lit-
erature. Therefore, as a future work we would
like to get expert guidance from psychothera-
pists for better understanding of the psycho-
logical process involved in Mental Health.

The work discussed in this paper is an ini-
tiative towards applying NLP in the domain of
Mental Health which will motivate researchers
for further exploration of linguistic markers
and topology involved in psychology.

References
Tim Althoff, Kevin Clark, and Jure Leskovec.

2016. Natural language processing for mental
health: Large scale discourse analysis of coun-
seling conversations. Transactions of the Asso-
ciation for Computational Linguistics.

G Andersson and P Cuijpers. 2009. Internet-based
and other computerized psychological treat-
ments for adult depression: a meta-analysis.
Cognitive Behavioral Therapy, 38(4):196–205.

R. Bandler and S. Andreas. 1985. Using Your
Brain for a Change.

R. Bandler and J. Grinder. 1975. The Structure of
Magic I: A Book About Language and Therapy.
Science and Behavior Books.

R. Bandler and J. Grinder. 1979. Frogs into
Princes: Neuro Linguistic Programming. Real
People Press.

Rush A. J. Shaw B. F. Beck, A. T. and G. Emery.
1979. Cognitive therapy of depression. Guilford
Publications, New york.

Shea Bennett. 2012. Twitter now seeing 400 mil-
lion tweets per day, increased mobile ad revenue,
says ceo@online.

Lisa F. Berkman, Thomas Glass, Ian Brissette,
and Teresa E. Seeman. 2000. From social
integration to health: Durkheim in the new
millennium? Social Science and Medicine,
51(6):843––857.

David M. Blei, Andrew Y. Ng, and Michael I. Jor-
dan. 2003. Latent dirichlet allocation. J. Mach.
Learn. Res., 3:993–1022.

W. Bucci and N. Freedman. 1981. The language
of depression. Bulletin of the Menninger Clinic,
45(4):334–358.

Gunnar Carlsson. 2008. Topology and data. Tech-
nical report.

H Christensen, KM Griffiths, and Farrer L. 2009.
Review adherence in internet interventions for
anxiety and depression. Journal of Medical In-
ternet Research, 11(2).

SE Collins, N Chawla, SH Hsu, J Grow, JM Otto,
and Marlatt GA. 2009. Language-based mea-
sures of mindfulness: initial validity and clinical
utility. Society of Psychologists in Addictive Be-
haviors, 23(4):743–749.

P Cuijpers, A Van Straten, L Warmerdam, and
N Smits. 2008. Characteristics of effective psy-
chological treatments of depression: a meta re-
gression analysis. Psychother Res, 18(2):225–36.

Munmun De Choudhury, Scott Counts, and Eric
Horvitz. 2013. Predicting postpartum changes
in emotion and behavior via social media. In
Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’13,
pages 3267–3276, New York, NY, USA. ACM.

Karthik Dinakar, Birago Jones, Catherine Havasi,
Henry Lieberman, and Rosalind Picard. 2012a.
Common sense reasoning for detection, preven-
tion, and mitigation of cyberbullying. ACM
Trans. Interact. Intell. Syst., 2(3):18:1–18:30,
September.

Karthik Dinakar, Birago Jones, Henry Lieberman,
Rosalind W. Picard, Carolyn Penstein Rosé,
Matthew Thoman, and Roi Reichart. 2012b.
You too?! mixed-initiative LDA story matching
to help teens in distress. In Proceedings of the
Sixth International Conference on Weblogs and
Social Media, Dublin, Ireland, June 4-7, 2012.

E. Durkheim. 1951. Suicide. Free Press, New
York.

DD Ebert, AC Zarski, H Christensen, Y Stikkel-
broek, P Cuijpers, M Berking, and H Riper.
2015. Internet and computer-based cognitive
behavioral therapy for anxiety and depression in
youth: a meta-analysis of randomized controlled
outcome trials. PLoS One, 10(3).

Herbert Edelsbrunner and John Harer. 2010.
Computational Topology - an Introduction.
American Mathematical Society.

Horacio Fabrega. 1991. Psychiatric stigma in non-
western societies. Comprehensive Psychiatry,
32:534–551.

Daniel Freedman and Chao Chen. 2011. Algebraic
topology for computer vision. Computer Vision,
5:239––268.

Felixv Gers, Jurgen Schmidhuber, and Fred Cum-
mins. 2000. Learning to forget contin-
ual prediction with lstm. Neural Comput,
12(10):2451–2471.

444

Robert Ghrist. 2007. Barcodes: The persistent
topology of data. Technical report.

Peter Giblin. 2010. Graphs, Surfaces and Homol-
ogy. Cambridge University Press.

Alex Graves. 2012. Supervised Sequence Labelling
with Recurrent Neural Networks, volume 385 of
Studies in Computational Intelligence. Springer.

David E Greenway, Emily K Sandoz, and David R
Perkins. 2010. Potential applications of rela-
tional frame theory to natural language systems.
In Proceedings of the Seventh International Con-
ference on Fuzzy Systems and Knowledge Dis-
covery (FSKD), pages 2955–2958. IEEE.

Danica Vukadinovic Greetham, Robert Hurling,
Gab rielle Osborne, and Alex Linley. 2011.
Social networks and positive and negative af-
fect. Procedia-Social and Behavioral Sciences,
22:4––13.

Allen Hatcher. 2002. Algebraic topology. Cam-
bridge University Press, Cambridge.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780, November.

O. P. John and S. Srivastava. 1999. The big-five
trait taxonomy: History, measurement, and the-
oretical perspectives. Handbook of personality:
Theory and research, 2:102–138.

Chan M.M Johnston, K. and M. Hauman. 2013.
Use, perception and attitude of university stu-
dents towards facebook and twitter. The Elec-
tronic Journal Information Systems Evaluation,
16(3):201–211, November.

T. Kaczynski, K. Mischaikow, and M. Mozek.
2004. Computational Homology. Springer.

Nikolaos Kazantzis, John Tee, Frank Dattilio, and
Keith Dobson. 2013. Collaborative empiricism
as the central therapeutic relationship element
in cbt an expert panel discussion. International
Journal of Cognitive Therapy, 6(4).

François Mairesse and Marilyn Walker. 2007. Per-
sonage: Personality generation for dialogue. In
In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics
(ACL), pages 496–503.

Christopher D. Manning and Hinrich Schütze.
1999. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, Cambridge, MA,
USA.

Evan Mayo-Wilson and Paul Montgomery. 2013.
Media-delivered cognitive behavioural therapy
and behavioural therapy (self-help) for anxiety
disorders in adults. Cochrane Database Syst
Rev, 9.

Grégoire Mesnil, Xiaodong He, Li Deng, and
Yoshua Bengio. 2013. Investigation of
recurrent-neural-network architectures and
learning methods for spoken language under-
standing. In Frédéric Bimbot, Christophe
Cerisara, Cécile Fougeron, Guillaume Gravier,
Lori Lamel, François Pellegrino, and Pas-
cal Perrier, editors, INTERSPEECH, pages
3771–3775. ISCA.

Kathleen M. Michels, Karen J. Hofman, Gerald T.
Keusch, and Sharon H. Hrynhow. 2006. Stigma
and global health: Looking forward. Lancet,
367:538–539.

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. CoRR,
abs/1301.3781.

Adam Miner, Amanda Chow, Sarah Adler, Ilia
Zaitsev, Paul Tero, Alison Darcy, and Andreas
Paepcke. 2016. Conversational agents and men-
tal health: Theory-informed assessment of lan-
guage and affect. In Proceedings of the Fourth
International Conference on Human Agent In-
teraction, HAI ’16, pages 123–130, New York,
NY, USA. ACM.

DC Mohr, J Ho, J Duffecy, KG Baron,
KA Lehman, L Jin, and D Reifler. 2010. Per-
ceived barriers to psychological treatments and
their relationship to depression. Journal of Clin-
ical Psychology, 66(4):394–409.

David C Mohr, Michelle Nicole Burns, Stephen M
Schueller, Gregory Clarke, and Michael
Klinkman. 2013. Behavioral intervention tech-
nologies: evidence review and recommendations
for future research in mental health. General
hospital psychiatry, 35(4):332–338.

Thin Nguyen, Dinh Phung, Bo Dao, Svetha
Venkatesh, and Michael Berk. 2014. Affective
and content analysis of online depression com-
munities. IEEE Transactions on Affective Com-
puting, 5(3).

Joanna Pawelczyk. 2011. Talk as Therapy: Psy-
chotherapy in a Linguistic Perspective. Walter
de Gruyter.

James W. Pennebaker, Matthias R. Mehl, and
Kate G. Niederhoffer. 2003. Psychological
aspects of natural language use: Our words,
our selves. Annual review of psychology,
54(1):547–577.

James W Pennebaker, Ryan L Boyd, Kayla Jor-
dan, and Kate Blackburn. 2015. The develop-
ment and psychometric properties of liwc2015.
UT Faculty/Researcher Works.

James W. Pennebaker. 2011. The secret life of pro-
nouns: What our words say about us. Blooms-
bury Press, New York.

445

T. Pyszcynski and J. Greenberg. 1987. Self-
regulatory perseveration and the depressive self-
focusing style: A self-awareness theory of de-
pression. Psychological Bulletin, 102:122–138.

Nairan Ramirezesparza, Cindy K. Chung, Ewa
Kacewicz, and James W. Pennebaker. 2008.
The psychology of word use in depression forums
in english and in spanish: Testing two text ana-
lytic approaches. In Proceedings of the ICWSM.

Stephanie Rude, Eva-Maria Gortner, and James
Pennebaker. 2004. Language use of de-
pressed and depression-vulnerable college stu-
dents. Cognition and Emotion, 18:1121–1133.

Thomas Ruder, Gary M Hatch, Garyfalia Am-
panozi, and Nadja Fischer. 2011. Suicide an-
nouncement on facebook. Crisis, 32(5):280–282.

Gurjeet Singh, Facundo Memoli, Tigran
Ishkhanov, Guillermo Sapiro, Gunnar Carlsson,
and Dario L. Ringach. 2008. Topological
analysis of population activity in visual cortex.
Journal of Vision, 8(8):1–18.

Ann Sizemore, Chad Giusti, Ari Kahn, Richard F.
Betzel, and Danielle S. Bassett. 2016.
Cliques and cavities in the human connectome.
arXiv:1608.03520.

S. W. Stirman and J. W. Pennebaker. 2001. Word
use in the poetry of suicidal and non-suicidal
poets. Psychosomatic Medicine, 63:517–522.

Laurens van der Maaten and Geoffrey Hinton.
2008. Visualizing high-dimensional data using
t-sne. Journal of Machine Learning Research,
9:2579–2605, November.

M Villatte, JL Villatte, and SC Hayes. 2015. Mas-
tering the Clinical Conversation: Language as
Intervention. Guilford Publications, Palo Alto,
CA, October.

Keane T. M. Weathers, F. W. and J. Davidson.
2001. Clinician-administered ptsd scale: A re-
view of the first ten years of research. Depres-
sion and Anxiety, 13:132–156.

Myrna M. Weissman, Roger C. Bland, Glorisa J.
Can-ino, Carlo Faravelli, Steven Greenwald,
HaiGwo Hwu, Peter R. Joyce, Eile G. Karam,
Chung-Kyoon Lee, Joseph Lellouch, Jean-Pierre
Lepine, Stephen C. Newman, Maritza Rubio-
Stipec, J. Elisabeth Wells, Priya J. Wickra-
maratne, Hans-Ulrich Wittchen, and Eng-Kung
Yeh. 1996. Cross-national epidemiology of ma-
jor depression and bi-polar disorder. Journal
of the American Medical Association (JAMA),
276(4):293––299.

Xiaojin Zhu. 2013. Persistent homology: An intro-
duction and a new text representation for nat-
ural language processing. In Francesca Rossi,

editor, Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelli-
gence, pages 1953–1959. IJCAI/AAAI.

P.G. Zimbardo and J.N. Boyd. 2008. The Time
Paradox: The new psychology of time that will
change your life. Free Press, New York.

Afra Joze Zomorodian. 2001. Computing and com-
prehending topology: persistence and hierarchi-
cal Morse complexes. Ph.D. thesis, University
of Illinois at Urbana-Champaign.

446

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 447–455

A Deep Dive into Identification of Characters from Mahabharata

Apurba Paul and Dipankar Das

Dept. of Computer Science and Engineering,
Jadavpur University,Kolkata,West Bengal,India

Abstract

The present paper describes the identi-
fication of story Characters from Indian
Mythological text "The Mahabharata". It
is observed that these Characters can be
found at word level and phrase level in a
sentence with some distinct patterns. In
order to find the Characters from the text,
two sets of features are considered at both
levels. Using a semi-supervised learning
approach we have prepared the training
data sets. Later on, we have employed
Chi-squared statistic to find the important
features, which is followed by the associa-
tivity analysis of those selected features.
After that, we developed training models
using NeuralNet and KNN classifiers for
both word and phrase levels and tested
the models. Our observation shows that
NeuralNet performs better than KNN with
88% and 76% accuracy at word and phrase
level respectively.Next, we have analyzed
different error measures followed by visu-
alization of co-occurred story Characters
of most frequent Characters.

1 Introduction

Characters has a significant role and takes part
in several activities throughout any stories. They
may or may not be lovable, respectable, honorable,
graceful, disgraceful, cruel, selfish but the read-
ers do need to understand them and why they act
the way they do in the texts. A character, being a
protagonist, is commonly on the good side while
the antagonist is the one he/she fights or has con-
flicts within the story. In the stories, Characters
may have dialogues, actions which influence the
plot of the texts, emotions etc. They respond to
events and other characters through what they say

or don’t say, what they do and don’t do, what they
think, and what they feel. Character’s thoughts in
response to the actions or words of others are ob-
viously a key to that Character’s personality. Like
thoughts, Characters emotions can instantly reveal
a Character’s personality and what he/she finds
important. If we dive deep in the story we can
extract the actions, thoughts, emotions and overall
personality of a Character easily. Since the Char-
acters are playing the major role in any story, we
can consider automatic identification of Charac-
ters from stories is one of the primary task .
In the similar context, we can find several Charac-
ters in the Indian epic "The Mahabharata". Here
the Characters may be protagonist or antagonist.
So the extraction and identification of Characters
are very important. In this text we can find that
a Character may appear in word level(NNP) or
it may appear in a phrase level(NP<<NNP). As
an example, "Yudhisthira"(NNP) is a Character
at word level and simultaneously "The Kuru king
Yudhishthira" (NP<<NNP) is also a Character at
phrase level. But it is also seen that only NNP
or NP<<NNP are not sufficient rule to identify
a Character in the texts. So the identification of
Characters at word and phrase level is the main re-
search issue addressed over here.
In this paper, we have employed two different ap-
proaches to address the presence of a Character in
Mahabharata. We have identified at word level a
set of 97 features and at phrase level a set of 51
features. With the help of these features we have
developed our data sets and later on devised two
different training models using semi supervised
approach. Next, we identified the set of impor-
tant features and their associativity among them.
After that we have tested our model and observed
the precision, recall, f-measure, kappa and errors.
In the rest of the paper, we have discussed related
work and the data preparation steps followed by

447

experiments, result and error analysis, visualiza-
tion of co-occurred Characters and conclusion.

2 Related Work

There are a few works done on Character Identifi-
cation from texts. Paul and Das (2017) proposed
a rule based system by which they can extract the
Character Adjectives from the Indian mythologi-
cal text Mahabharata. Valls-Vargas et al. (2015)
also proposed a feedback-loop-based approach to
identify the characters and their narrative roles
where the output of later modules of the pipeline is
fed back to earlier ones. Valls-Vargas et al. (2014)
proposed a case-based approach to character iden-
tification in natural language text in the context of
their Voz system. Valls-Vargas et al. (2013) pro-
posed a method for automatically assigning nar-
rative roles to characters in stories. Calix et al.
(2013) developed a methodology to detect sentient
actors in the spoken stories. Goyal et al. (2010)
proposed a system that exploits a variety of ex-
isting resources to identify affect states and ap-
plies to map the affect states onto the characters
in a story. Mamede and Chaleira (2004) devel-
oped a system (DID) which was applied to chil-
dren stories starts by classifying the utterances.
The utterances belong to the narrator (indirect dis-
course) as well as belong to the characters taking
part in the story (direct discourse). Afterwards,
this DID system tries to associate each direct dis-
course utterance with the character(s) in the story.
In the context of keyword extraction, statistical
approaches are often built for extracting general
terms (Van Eck et al., 2010).

3 Data Preparation

In this paper we consider Mahabharata as a case
study from where we choose aswamedha, asram-
vasika, mausala, mahaprasthanika and svargaro-
hanika parva(or Chapter) as our sample space. We
can observe that there exists a lot of Characters
which plays a significant role in these texts. At
first we annotate these Characters manually and
made a list of Characters out of it . Then to under-
stand the positions and occurrences of each Char-
acters we investigate each sentences in the texts
with the help of Stanford CoreNLP suite. We to-
kenized each sentences, annotate them with POS
tagger and generate syntactic parse tree by the
suite. After a detail observation of each sentence
in each text we developed a notion that Charac-

ters can be found in word level and phrase level as
well. We also observed that in most of the cases
at word level, a word is a Characters when its POS
tag is NNP. Similarly at phrase level, a phrase is
a Character when the root of the phrase is NP and
one of its descendant is NNP. The examples are
given below.

At word Level:
(NNP Narayana)=[Narayana]Character
At phrase Level:
(NP (DT the) (JJ holy) (NNP Rishi) (NNP
Vyasa)) = [The holy Rishi Vyasa]Character

3.1 Feature set Generation
The above observation helps us to extract differ-
ent features at word level and phrase level. The
list of features at both the levels with appropriate
examples are explained in the next sub section.

3.1.1 Word Level Features
For each NNP present in a sentence at word level
we have considered 97 different features. They are
displayed in Table 1:

Word Level Features(WLF)
Sl(W) Name Freq.
1 Extracted NNP word(Cw) 4152
2 NNP-tag 4152
3 Length of Cw 4152
4 Starting Index of Cw 4152
5 Ending Index of Cw 4152
6 Previous word of Cw 3583
7 Previous word tag of Cw 2584
8 Next word of Cw 4152
9 Next word tag of Cw 4152
10 Porter Stemmer word of

Cw
4152

11 Is porter Stemmed word
same with Cw?

4152

12 Snowball Stemmer word
of Cw

4152

13 Is snowball stemmed
word same with Cw?

4152

Immediate Pre and Post . . . Features of Cw
14-17 verb word and tag 2645,3158
18-21 adverb word and tag 1218,1381
22-25 preposition word and tag 2590,3042
26-29 noun word and tag 2741,3412

Continued on next page

448

Continued from previous page
Sl(W) Name Freq.
30-33 NNP word and tag 2199,2229
34-37 adjective word and tag 1445,2089
38-41 C. Conjunc. word and tag 1052,1611
42-45 determiner word and tag 2608,2554
46-49 existential word and tag 0092,0043
50-53 interjection word and tag 0001,0001
54-57 TO word and tag 0541,0959
58-61 Cardinal Number and tag 0255,0263
62-65 pronoun word and tag 1162,1773
66-69 Wh word and tag 0625,0771
Immediate Pre and Post . . . Distance from Cw
70,71 verb distance 2645,3158
72,73 adverb distance 1218,1381
74,75 preposition distance 2590,3042
76,77 noun distance 2741,3412
78,79 NNP distance 2199,2229
80,81 adjective distance 1445,2089
82,83 C Conjunction distance 1052,1611
84,85 determiner distance 2608,2554
86,87 existential distance 0092,0043
88,89 interjection distance 0001,0001
90,91 TO distance 0541,0959
92,93 Cardinal Number distance 0255,0263
94,95 pronoun distance 1162,1773
96,97 Wh distance 0625,0771

Concluded

Table 1: List of Word Level Features(WLF)

In the Table 1, mainly we have categorized the
set of features in three different sub categories.The
features from W1 to W13 are sub categorized as
general features of a context word(Cw), from W14
to W69, the features are sub categorized as Im-
mediate pre and post word and tag of Cw and
from W70 to W97, the features are responsible
for counting the word distance from the context
word Cw as immediate pre and post word dis-
tance, along with their frequencies.Here frequency
reveals the number of occurrences of a distinct fea-
ture in our sample space. As an example, consider
a feature set W14-17(verb word and tag). It con-
tains four different types of features.The W14 is
immediate pre verb word which is situated in the
left of Cw and W15 is its POS Tag with frequency
2645. Next, W16 is immediate post verb word sit-
uated in the right side of Cw in a sentence and
W17 identifies its POS Tag with frequency 3158.
Again as an example consider W70,71(verb dis-
tance). Here W70 calculates the word distance

of verb situated in the left of Cw as immediate
pre verb distance.The frequency of this feature is
2645. Likewise, the W71 finds the word distance
of verb situated in the right of Cw as immediate
post verb with frequency 3158.

Consider a sentence S1= "Having bowed down
unto Narayana, and to Nara, the foremost of men,
as also to the goddess Sarasvati, should the word
Jaya be uttered."

In the above sentence our context word(Cw)
is NarayanaCharacter. Some of the features ex-
tracted from the sentence S1 with respect to
NarayanaCharacter are explained in Figure 1.

3.1.2 Phrase Level Features
At phrase level, we have considered 51 different
features displayed in Table 2 for each NP<<NNP
pattern present in the sentences.

Phrase Level Features(PLF)
Sl(P) Name Freq.
1 Current head Node of the

phrase(Ch)
2991

2 The pre terminal yield Nodes
of Ch

2991

3 Leaves of the Ch(Cw) 2991
4 Path from Ch to ancestor

Node
2991

5 has ADJP as siblings of Ch? 0018
6 has ADJP as siblings of Ch? 0128
7 has CONJP as siblings of

Ch?
0006

8 has FRAG as siblings of Ch? 0001
9 has INTJ as siblings of Ch? 0001
10 has LST as siblings of Ch? 0001
11 has NAC as siblings of Ch? 0001
12 has NP as siblings of Ch? 0790
13 has NX as siblings of Ch? 0001
14 has PP as siblings of Ch? 0271
15 has PRN as siblings of Ch? 0016
16 has PRT as siblings of Ch? 0001
17 has QP as siblings of Ch? 0001
18 has RRC as siblings of Ch? 0003
19 has UCP as siblings of Ch? 0003
20 has VP as siblings of Ch? 0619
21 has WHADJP as siblings of

Ch?
0001

Continued. . .

449

Figure 1: Example of Word Level Features

Continued. . .
Sl(P) Name Freq.
22 has WHAVP as siblings of

Ch?
0001

23 has WHNP as siblings of Ch? 0001
24 has WHPP as siblings of Ch? 0001
25 has X as siblings of Ch? 0004
26 has COMMA as siblings of

Ch?
0788

27 has STOP as siblings of Ch? 0313
28 Ancestor Node of Ch(AnCh) 2991
29 has ADJP as siblings of

AnCh?
0008

30 has ADJP as siblings of
AnCh?

0088

31 has CONJP as siblings of
AnCh?

0028

32 has FRAG as siblings of
AnCh?

0001

33 has INTJ as siblings of
AnCh?

0001

34 has LST as siblings of AnCh? 0001
35 has NAC as siblings of

AnCh?
0001

36 has NP as siblings of AnCh? 1239
37 has NX as siblings of AnCh? 0001
38 has PP as siblings of AnCh? 0210
39 has PRN as siblings of

AnCh?
0016

40 has PRT as siblings of AnCh? 0018
41 has QP as siblings of AnCh? 0001
42 has RRC as siblings of

AnCh?
0001

Continued. . .

Continued. . .
Sl(P) Name Freq.
43 has UCP as siblings of

AnCh?
0001

44 has VP as siblings of AnCh? 0470
45 has WHADJP as siblings of

AnCh?
0001

46 has WHAVP as siblings of
AnCh?

0001

47 has WHNP as siblings of
AnCh?

0025

48 has WHPP as siblings of
AnCh?

0001

49 has X as siblings of AnCh? 0001
50 has COMMA as siblings of

AnCh?
0706

51 has STOP as siblings of
AnCh?

0446

Concluded

Table 2: List of Phrase Level Features(PLF)

In the Table 2 it can be observed that there are
mainly two different subcategories of features. All
the features from P1 to P27 are related to the
phrase(Cw) which is assumed to be a Character,
and rest of the features are related to the two level
up ancestor(parent of a parent of Current head
node,Anch), along with their frequencies. Here
frequency identifies the number of occurrences of
a particular feature in the sample space. As an ex-
ample, P1 contains the Current head Node of the
phrase(Ch) with frequency 2991 and P36 finds the
existence of any NP as a sibling of Ancestor Node
of Ch(AnCh). The frequency of P36 is 1239.

450

Again Consider a sentence S2= "The king,
in honour of Hari and naming him repeatedly,
fed the Island-born Vyasa, and Narada, and
Markandeya possessed of wealth of penances, and
Yajnavalkya of Bharadwaja’s race, with many de-
licious viands."

The important part of the parse tree of the above
sentence S2 is ,

S2parsed= (VP (VBN fed) (NP (NP (DT the) (JJ
Island-born) (NNP Vyasa)) (, ,) (CC and) (NP
(NNP Narada))))

In the above sentence our target phrase is the
Island-born VyasaCharacter. Figure 2 explains the
features P1,P2,P3 and P28 in details.

Figure 2: Example of Phrase Level Features
P1,P2,P3,P28

3.2 Training & Test set Preparation

To prepare the training sets for both word level and
phrase level we consider semi supervised learn-
ing approach. At first, we have extracted all the
features of each NNP present in mahaprasthanika
parva at word level and compare each NNP with
manually tagged list of Characters. The NNP’s
which are found in the list are annotated as Char-
acter and in case of unavailability they are termed
as Not_Character. In this way we have prepared
a data set, WDtraining . Next, we have extracted
all the features of each NNP present in svargaro-
hanika parva and prepared a dataset called WDtest
. After that we developed a learning model trained
on WDtraining data set using KNN-classifier and
test the model using WDtest . Then we calculate
the accuracy, precision, recall and f-measure of
WDtest. Later on all the NNP’s in WDtest dataset
are annotated properly and update the WDtraining
dataset by appending newly an-notated WDtest
dataset. This process is repeated for all other chap-
ters in our sample space. Finally we got an up-
dated dataset WDtraining which is considered as a

training set containing word level features for our
system. The results are discussed in Table 3.

Word Level (WDTraining)
Parva P R F
svargarohanika 0.43 0.44 0.43
mausala 0.62 0.64 0.60
asramvasika 0.63 0.63 0.63
aswamedha 0.71 0.69 0.68
P=Precision; R=Recall; F=F-measure

Table 3: Precision, Recall, F-measure at Word
Level

Similarly, at phrase level we have extracted all
the features of each NP<<NNP present in the ma-
haprasthanika parva and prepared a data set named
as PDtraining and trained a model with KNN Clas-
sifier. Next, we have extracted all the features of
each NP<<NNP present in svargarohanika parva
and prepared a dataset called PDtest which is ap-
plied on the trained model like word level process.
Here, we calculate precision, recall and f-measure
of PDtest . This process is iterated for other chap-
ters and finally we got updated PDtraining as a train-
ing set of phrase level. The results are observed in
Table 4.

Phrase Level (PDTraining)
Parva P R F
svargarohanika 0.52 0.56 0.50
mausala 0.67 0.65 0.63
asramvasika 0.60 0.62 0.60
aswamedha 0.58 0.52 0.44
P=Precision; R=Recall; F=F-measure

Table 4: Precision, Recall, F-measure on Phrase
Level

At last we choose virata parva as a test case,
annotate all the Characters present in the text and
made a list out of it. Next, we prepared the
data sets for word and phrase level, WTTest and
PTTestrespectively. Then we have mapped all the
NNP, NP<<NNP present in the virata parva with
Character and Not_Character which we will refer
to in the Result Analysis section.

4 Experiments

To find the important features in WDTraining and
PDTraining datasets we calculated the relevance
of the features by computing the Chi squared
statistic with respect to the Class level feature

451

using Rapid Miner tool1. The higher the weight
of a feature, the more relevant it is considered.
The value of the Chi Squared statistic is given by

X2 =
∑ (O − E)2

E
(1)

where, X2 is the chi-square statistic, O is
the observed frequency and E is the expected fre-
quency. Using this measure we got 46 important
feature at word level and 9 at phrase level. The
list of relevant features derived from the measure
at word level(Dw) is given in Table 5.

Word Level Features(Dw)
Sl Name
W1 Extracted NNP-word(Cw)
W4 Starting Index of Cw
W5 Ending Index of Cw
W6 Previous word of Cw
W7 Previous word tag of Cw
W8 Next word of Cw
W9 Next word tag of Cw
W10 Porter Stemmer word of Cw
W11 Is porter Stemmed word same with

Cw?
W12 Snowball Stemmer word of Cw
W13 Is snowball stemmed word same with

Cw?
Immediate Pre and Post . . . Features of Cw
W14 Pre verb word
W15 Pre verb tag
W16 Post verb word
W20 Post adverb word
W22 Pre preposition word
W23 Pre preposition tag
W26 Pre noun word
W27 Pre noun tag
W28 Post noun word
W29 Post noun tag
W30 Pre NNP word
W31 Pre NNP tag
W32 Post NNP word
W35 Pre adjective tag
W38 Pre C. Conjunction word
W39 Pre C. Conjunction tag
W64 Post pronoun word
W68 Post Wh word

Continued. . .

1https://rapidminer.com

Continued. . .
Sl Name
W69 Post Wh tag
Immediate Pre and Post . . . Distance from Cw
W70 Pre verb distance
W71 Post verb distance
W73 Post adverb distance
W74 Pre preposition distance
W75 Post preposition distance
W76 Pre noun distance
W77 Post noun distance
W78 Pre NNP distance
W80 Pre adjective distance
W82 Pre C Conjunction distance
W83 Post C Conjunction distance
W84 Pre determiner distance
W85 Post determiner distance
W95 Post pronoun distance
W96 Pre Wh distance
W97 Post Wh distance

Concluded

Table 5: List of Relevant Features at Word Level
(Dw)

Next, the list of relevant features at phrase level
extracted by the above method is described in Ta-
ble 6.

Phrase Level Features(Dp)
Sl Name
P1 Current head Node of the phrase(Ch)
P3 Leaves of the Ch(Cw)
P4 Path from Ch to ancestor Node
P12 has NP as siblings of Ch?
P20 has VP as siblings of Ch?
P26 has COMMA as siblings of Ch?
P27 has STOP as siblings of Ch?
P28 Ancestor Node of Ch(AnCh)
P36 has NP as siblings of AnCh?

Concluded

Table 6: List of Relevant Features at Phrase Level
(Dp)

Now with the help of Dw and Dp we prepared our
new training sets as Dwt and Dpt .Similarly we
have prepared our new test sets with these impor-
tant features as Dwtest and Dptest from the text vi-
rata parva .

4.1 Features Associativity Analysis

It is observed from the training data sets, Dwt and
Dpt, that some feature or set of features coexists

452

with other feature or set of features. This type
of relations can be found from the texts very fre-
quently in our sample space. To address this issue
we have applied FP-Growth algorithm in word and
phrase level. This algorithm calculates all frequent
feature/feature set from the data set by building a
FP-Tree data structure on the data sets Dwt and Dpt
. Some frequent relations of word and phrase level
are given below.

Word Level relations:
Word Level

Antecedent Consequent Confidence
W20 W14 0.258
W20 W83,W35 0.408
W23 W83,W31,W27 0.352
W20,W35 W14 0.381
W20,W83 W35,W31 0.381
Antecedent -> Consequent
W14=Immediate pre verb word of Cw
W20=Immediate post adverb word of Cw
W23=Immediate pre position tag of Cw
W27= Immediate pre noun tag of Cw
W31=Immediate pre NNP tag of Cw
W35=Immediate pre adjective tag of Cw
W83=Post C. Conjunction distance from Cw

Table 7: Features Associativity at Word Level

From Table 7 we can understand that for a distinct
context word, Cw,when we identify a value for the
feature,W20 in a sentence in the sample space, si-
multaneously we can find a value for the feature
W14 also with a confidence value 0.258.

Phrase Level relations:
Phrase Level

Antecedent Consequent Confidence
P3 P26 0.261
P26 P3 0.412
P3 P12 0.418
P12 P3 0.743
P26 P12 0.659
P12 P26 0.795
Antecedent -> Consequent
P3 = Leaves of the Ch(Cw)
P12= hasNP as siblings of Ch?
P26= hasCOMMA as siblings of Ch?

Table 8: Features Associativity at Phrase Level

Similarly in the Table 8, when we can observe a
value for the feature P3 then P26 is also observed
for context word Cw in a sentence of our sample
space with confidence value 0.261.

Where X–> Y implies that if X occurred then Y
also occurred; X means antecedent and Y means
consequent.

4.2 Classification Task
Here we have developed a training model using
NeuralNet and KNN classifiers with the help of
newly prepared datasets Dwt and Dpt .Later on we
have tested these models using our newly created
test sets Dwtest and Dptest .At word level Neural-
Net has better precision, recall and f-measure than
KNN classifier. At phrase level NeuralNet classi-
fier has better precision and f-measure than KNN
classifier. On the other hand KNN has better re-
call value than NeuralNet classifier at phrase level.
The precision, recall and f-measure of the two
classifiers are explained in Table 9 and Table 10.

Word Level
Classifiers P R F
NeuralNet 91.84 84.91 88.24
KNN 90.70 73.58 81.25
P=Precision; R=Recall; F=F-measure

Table 9: Precision, Recall, F-measure on Dwtest

Phrase Level
Classifiers P R F
NeuralNet 79.07 69.39 73.91
KNN 61.67 75.51 67.89
P=Precision; R=Recall; F=F-measure

Table 10: Precision, Recall, F-measure on Dptest

5 Result Analysis

Both the classifiers performed well in case of clas-
sifying the test data sets Dwtest and Dptest. Neural-
Net classifier has better accuracy than KNN classi-
fier in case of word level and phrase level. The ac-
curacies of both the classifiers for word level and
phrase level are discussed in Table 11.

Classifiers WAccuracy PAccuracy
NeuralNet 88.00% 76.00%
KNN 82.00% 65.00%
WAccuracy=Word Level Accuracy
PAccuracy=Phrase Level Accuracy

Table 11: Classification Accuracies

The confusion table on accuracies of Dwtest and
Dptest are given in Table 12 and Table 13 below.

453

Word Level
Classifiers NN NC CN CC
NeuralNet 45 4 8 43
KNN 39 4 14 43
C=Character;N=Not_Character

Table 12: Confusion table for dataset Dwtest

From Table 12 we can observe that NeuralNet
classifier has correctly classified 88 instances and
incorrectly classified 12 instances.Whereas KNN
classifier has classified 82 instances correctly and
18 instances incorrectly.

Phrase Level
Classifiers NN NC CN CC
NeuralNet 42 15 9 34
KNN 28 12 23 37
C=Character;N=Not_Character

Table 13: Confusion table for dataset Dptest

On the other hand in Table 13 at Phrase level,
NeuralNet classifier has classified 24 instances
incorrectly and 76 instances correctly.Similarly
KNN classifier has classified 35 instances incor-
rectly and 65 instances correctly.

6 Error Analysis & Observations

It can be observed that NeuralNet classifier has
lowest classification error and highest kappa value
at word level and phrase level as well. The classi-
fication error rate and kappa measure are observed
in Table 14.

Classifiers Word Level Phrase Level
CE K CE K

NeuralNet 12.00% 0.760 24.00% 0.519
KNN 18.00% 0.643 35.00% 0.303
CE=Classification Error rate; K=Kappa measure

Table 14: Error and Kappa of Dwtest and Dptest

The average absolute deviation of the prediction
from the actual value, i.e., Absolute Error of Neu-
ralNet classifier at word level is lower than KNN
classifier. Similarly the average of the absolute de-
viation of the prediction from the actual value di-
vided by the actual value, i.e., Relative Error, and
Root Mean Squared Error of NeuralNet classifier
at word level significantly lower than KNN classi-
fier. The details are explained in Table 15.

Word Level
Measures NeuralNet KNN
AE 0.16+/-0.28 0.31+/-0.19
RE 16.83+/-28.09 31.83+/-18.97
RMSE 0.32+/-0.00 0.37+/-0.00
AE=Absolute Error; RE=Relative Error(%)
RMSE= Root mean Squared Error

Table 15: Error Analysis of Dwtest

At phrase level also NeuralNet classifier has
lower Absolute Error, Relative Error and Root
Mean Squared Error than KNN classifier. The re-
sults are given in Table 16.

Phrase Level
Measures NeuralNet KNN
AE 0.36+/-0.24 0.41+/-0.25
RE 36.93+/-23.97 41.89+/-25.84
RMSE 0.44+/-0.00 0.492+/-0.00
AE=Absolute Error; RE=Relative Error(%)
RMSE= Root mean Squared Error

Table 16: Error Analysis of Dptest

7 Visualization of Co-Occurred
Characters

Now, we have measured the co occurrence of
all the Characters extracted at word level and
phrase level. We analyzed each sentence in our
sample space and calculated the co occurrence
of each Characters with others. As an example
we considered a Character found at word level
C="Abhimanyu". In the Figure 3 we have dis-
played the list of co occurred Characters related
to Character C.

Figure 3: Co occurred Characters w.r.t Character
Abhimanyu

454

8 Conclusion

In this paper our target is to identify the Characters
from the Mahabharata. Keeping this in mind at
first we have annotated all the Characters present
in the sample space. Then we have applied a semi
supervised approach with distinct features at word
level and phrase level to collect the Characters
from the texts and prepared the initial data sets.
Then we applied Chi Squares Statistic to find the
relevant features from the data sets. According to
the relevant features at word and Phrase level we
have reshaped our training and testing data sets.
Next, we have analyzed the associativity of fea-
tures using FP-Growth algorithm. Here we found
that some features has coexistence with other fea-
ture or set of features. Then we developed training
models at word level and phrase level with Neu-
ralNet and KNN classifier. Later we have tested
our model with our test data and accuracies, pre-
cision, recall, f-measure, kappa and different error
statistics are observed. As a part of the future work
we have planned to increase our sample space with
different varieties.

References
Ricardo A Calix, Leili Javadpour, Mehdi Khazaeli,

and Gerald M Knapp. 2013. Automatic detection
of nominal entities in speech for enriched content
search. In FLAIRS Conference.

Amit Goyal, Ellen Riloff, and Hal Daumé III. 2010.
Automatically producing plot unit representations
for narrative text. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 77–86. Association for Computa-
tional Linguistics.

Nuno Mamede and Pedro Chaleira. 2004. Character
identification in children stories. In Advances in nat-
ural language processing, pages 82–90. Springer.

Apurba Paul and Dipankar Das. 2017. Identification of
character adjectives from mahabharata. In RANLP.

Josep Valls-Vargas, Santiago Ontanón, and Jichen Zhu.
2013. Toward character role assignment for natural
language stories. In Proceedings of the Ninth Arti-
ficial Intelligence and Interactive Digital Entertain-
ment Conference, pages 101–104.

Josep Valls-Vargas, Santiago Ontanón, and Jichen Zhu.
2014. Toward automatic character identification in
unannotated narrative text. In Seventh Intelligent
Narrative Technologies Workshop.

Josep Valls-Vargas, Jichen Zhu, and Santiago Ontañón.
2015. Narrative hermeneutic circle: Improving

character role identification from natural language
text via feedback loops. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence.

Nees Jan Van Eck, Ludo Waltman, Ed CM Noyons,
and Reindert K Buter. 2010. Automatic term iden-
tification for bibliometric mapping. Scientometrics,
82(3):581–596.

455

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 456–465

Neural Networks for Semantic Textual Similarity

Derek S. Prijatelj
Duquesne University
Pittsburgh, PA 15282
prijateljd@duq.edu

Jonathan Ventura
University of Colorado

Colorado Springs, CO 80918
jventura@uccs.edu

Jugal Kalita
University of Colorado

Colorado Springs, CO 80918
jkalita@uccs.edu

Abstract

Complex neural network architectures
are being increasingly used to learn
to compute the semantic resemblances
among natural language texts. It is
necessary to establish a lower bound of
performance that must be met in or-
der for new complex architectures to be
not only novel, but also worthwhile in
terms of implementation. This paper
focuses on the specific task of determin-
ing semantic textual similarity (STS).
We construct a number of models from
simple to complex within a framework
and report our results. Our findings
show that a small number of LSTM
stacks with an LSTM stack comparator
produces the best results. We use Se-
mEval 2017 STS Competition Dataset
for evaluation.

1 Introduction

Scholars have attempted to capture the se-
mantics in natural language texts in a for-
mal manner for centuries. Even today, the
true meaning of a word can neither be quan-
tified nor computed, but methods have been
developed to express meaning numerically in
terms of co-occurrence and association. This
is called distributional semantics, and it plays
a key role in current approaches to represen-
tation of meaning, where although the actual
meaning remains unknown, computations can
be performed with words or phrases that share
the same usage, and therefore, have similar
meaning. The theoretical foundation lies in
the so-called distributional hypothesis, which
states that words that share the same context
tend to share similar meaning (Harris, 1954).

This hypothesis, which is claimed to hold true
for words, has been used to obtain vector rep-
resentations or embeddings for words (Mikolov
et al., 2013; Le and Mikolov, 2014). Build-
ing on such word embeddings, various meth-
ods have been proposed to obtain the meaning
of phrases, sentences, paragraphs and whole
texts. These include complex linear-algebra
based approaches, and more recently a vari-
ety of neural network architectures (Le and
Mikolov, 2014; Kiros et al., 2015). This re-
search concerns itself specifically with the sem-
antic representation of sentences, and com-
pares the different representations in the task
of semantic textual similarity matching.

Semantic textual similarity matching is the
task of determining the resemblance of the
meanings between two sentences. The dataset
used for this task is SemEvals’ 2017 Semantic
Textual Similarity corpus1 2. The task specifi-
cally is to output a continuous value on the
scale from [0, 5] that represents the degree
of semantic similarity between two given En-
glish sentences, where 0 is no similarity and 5
is complete similarity. In terms of machine
learning, this is a regression problem. The
2017 STS corpus contains 1186 English sen-
tence pairs with a corresponding rating and
249 pairs as the test set. The test set has
been labeled with the average of multiple hu-
man expert ratings that SemEval calls the
“gold standard”. The distribution of ratings
is stated to be as uniform throughout as it
could be, and the ratios of ratings for the test
set are similar to the training set’s ratings.

The models that are examined in this re-

1http://alt.qcri.org/semeval2017/task1/
index.php?id=data-and-tools

2http://ixa2.si.ehu.eus/stswiki/index.php/
Main_Page

456

search are simple neural network architectures
compared to some of the more complicated
models that are popular in recent natural lan-
guage processing research (Wan et al., 2016;
Wu et al., 2017b; Fu et al., 2016; Guo et al.,
2016; Liu et al., 2016a; Liu et al., 2017b; Liu
et al., 2017a; Liu et al., 2016b). Examining
the simple neural network architectures better
posits a perspective on creating new architec-
tures for practical applications. If a simple ar-
chitecture can perform equivalently or better
than a more complex model being proposed,
the new model is simply a new way to accom-
plish a task using a resource-hungry method.
Our simple models use perceptrons to sim-
ple LSTMs and bidirectional LSTMs and are
evaluated on the STS task. The major com-
ponents in these models are the pre-trained
word vectors, the sentence embeddings, and
the comparator of the two sentence embed-
dings that performs the regression.

2 Related Work

Pursuing better semantic representation for
phrases and sentences, and the use of such
representation to solve natural language pro-
cessing tasks have become popular due to the
influence of distributional semantics, in par-
ticular representations obtained using artificial
neural networks.

2.1 Semantic Representation

Mikolov invigorated the interest in distribu-
tional semantics with his team’s creation of
Word2Vec, a means for representing the co-
occurrences of words in written text as ele-
ments in a vector space (Mikolov et al., 2013).
This method is fairly successful, but by its very
nature, it creates embeddings for single words
(and common short phrases) only. Stanford
University developed another method of com-
puting the distributional semantics of words,
and this method is known as GloVe. GloVe is
similar to Word2Vec in that it computes the
co-occurrence frequency of words and creates
a vector of a specified dimension to represent
a word, but the methods they use are more
linear-algebra based (Pennington et al., 2014).
Either may be used for natural language pro-
cessing tasks depending on preference or per-
formance of the pre-trained word embeddings.

In this research, 300 dimensional GloVe word
vectors are used as the initial state of the word
vectors.

Various methods have been developed to
embed a sentence represented by a sequence
of words, each with its own vector. Some of
these methods involve the use of neural net-
works, including, but not limited to, LSTMs
and their variations (Wan et al., 2016; Palangi
et al., 2016; Chen et al., 2016; Liu et al.,
2017b). Most of these methods compute sen-
tence representations using methods similar to
those applied for word embeddings or as di-
rect extensions of such methods (Kiros et al.,
2015; Le and Mikolov, 2014). (Arora et al.,
2016) proposed a “simple but tough-to-beat
baseline for sentence embeddings” called the
SIF embedding method. SIF involves taking
the average of all the word vectors in a sen-
tence and removing the first principal compo-
nent. Arora et. al have reported it to be a
satisfactory baseline and it has been found to
provide strong results for many tasks.

2.2 Semantic Matching

A recently developed neural net approach
to semantic matching is the Matrix Vector-
LSTM (MV-LSTM) (Wan et al., 2016). MV-
LSTM finds the paired sentence embeddings
by processing the respective lists of word
vectors individually through separate bidirec-
tional LSTMs. The resulting sentence embed-
dings are then compared via a Matrix Vector,
otherwise known as a similarity tensor. The
important features of the similarity tensor are
obtained through k-max pooling and the k-
max pools are processed via a multilayered
perceptron.

There exist other recent architectures for
the semantic matching of sentences and they
have been used in the recent SemEval STS
2017 competition. These architectures are
listed in Table 3. ECNU accomplishes the
STS task by combining traditional natural lan-
guage processing methods with modern deep
learning through the use of an ensemble of
classifiers to average the two different parts’
scores (Tian et al., 2017). This method at-
tempts to use the best of both methods to
overcome the limitations in each other. An
ensemble of classifiers is a method of using var-
ious classifiers, in this case the traditional and

457

deep learning methods, and combining their
votes via some mathematical method, which
in ECNU’s case is simple averaging. (Hen-
derson et al., 2017) create the MITRE model,
which also uses an ensemble, but instead has
5 systems in their ensemble. Their systems
include a simple bag-of-words model, a re-
current convolutional neural network, an en-
hanced BiLSTM inference model, alignment
measures of strings, and the open source Take-
Lab Semantic Text Similarity System (Šarić et
al., 2012). Thus, both the MITRE and ECNU
systems use ensembles in an attempt to har-
ness the wisdom of the individual components
in their final classification for the STS task.

The BIT model makes use of WordNet to
create what is called a “semantic information
space (SIS)” (Wu et al., 2017a). SIS attempts
to obtain unique meaning of words by estab-
lishing the shared words of a certain mean-
ing as a unique information space. WordNet
(Miller, 1995) is a human created database
that defines how English words share mean-
ing, similar to an extended thesaurus. BIT at-
tempts to leverage the knowledge in WordNet
entered by actual humans to create a better
system and achieve competitive results. HCTI
uses a convolutional neural network in order to
handle the STS task (Yang, 2017). The con-
volutional neural network is simple, yet yields
competitive results.

FCICU is a model for solving the STS task
through the use of a sense-based and surface-
based alignment similarity method coupled
with an existing semantic network (Hassan
et al., 2017). FCICU uses BabelNet (Navigli
and Ponzetto, 2012) and an alignment method
to perform multilingual tasks in the SemEval
2017 competition. FCICU is an unsupervised
model.

The DT TEAM’s model (Maharjan et al.,
2017) uses Support Vector Regression (Smola
and Schölkopf, 2004), Linear Regression, and
Gradient Boosting Regressor with various fea-
tures that are carefully selected. DT TEAM’s
model uses many methods to generate the fea-
tures on which their model depends. The
DT TEAM’s performance in the English-
English STS task was second overall with
highly competitive scores. The ITNLPAiKE
model (Liu et al., 2017c) also uses a Support

Vector Regression model with feature engi-
neering. The features ITNLPAiKE uses are
ontology based, word embedding based, cor-
pus based, alignment based and literal based
features. The ITNLPAiKE model had rel-
atively competitive results in the English-
English STS task, and the authors found that
the ontology, word embedding, and alignment
based features were the most beneficial fea-
tures that they tested.

3 Examined Models

We examine a number of models that all share
the same architecture: Pre-trained word em-
beddings, a sentence embedding component,
and a comparator component. Figure 1 de-
picts this shared architecture. The sentence
embedding component takes the sequence of
word vectors that represents a sentence and
combines them into a single vector that rep-
resents the meaning of the original sentence.
The comparator component is the part of the
model that evaluates the similarity between
the two sentence vectors and performs regres-
sion to output the sentence pair’s similarity
score on a continuous inclusive scale from 0 to
5. For all components and individual neural
network units of the model, ELU activations
(Clevert et al., 2015) are used. The initial
weights of each unit are randomly initialized
using the He normal distribution (He et al.,
2015). For all models, RMSprop (Tieleman
and Hinton, 2012) is used as the optimizer
with a learning rate of 1e-4. Mean squared
error is the loss function for all models as
well. The metrics that are calculated are mean
squared error, and the Pearson correlation co-
efficient (PCC), or Pearson R. The SemEval
STS competition uses the PCC as the primary
metric of a model’s performance.

We examine different sentence embeddings,
as well as semantic matching processes as the
comparator component of the models. These
methods are compared to modified versions of
the MV-LSTM. A modified version also re-
places the similarity tensor with Euclidean dis-
tance to establish an understanding of the sim-
plified models’ performance; its results are not
reported. One of the models (called the L2-
LSTM) uses of bidirectional LSTMs for learn-
ing the sentence embeddings from the paired

458

Figure 1: The overall architecture of the sim-
ple models for the STS task. Two sentence
strings are are the inputs and one float in the
range [0, 5] is the output.

list of word vectors. We keep the multi-layered
perceptron at the end of the comparator com-
ponent for most models.

3.1 Pre-Trained Word Vectors

The models start with the input of two sen-
tences represented by strings. The words in
the sentences are replaced by word vectors us-
ing the provided pre-trained word embeddings,
which in this case is a set of GloVe word vec-
tors. This specific set of word vectors have 300
dimensions and were pre-trained on 840 billion
tokens taken from Common Crawl3. Different
pre-trained word vectors may be used in place
of this specific pre-trained set. After being em-
bedded into the pre-trained word vectors, the
data is randomly shuffled and then sent to the
sentence embedding component.

3.2 Sentence Embedding

The model component is responsible for tak-
ing a list of word vectors that represent a sen-
tence and embedding them into a single vec-
tor to represent the entire sentence. The sen-
tence vector compresses the size of the data
that represents the sentence, but synthesizes
important semantic information contained in
the sentence.

3.2.1 Smooth Inverse Frequency (SIF)

(Arora et al., 2016) propose a method of sen-
tence embedding called smooth inverse fre-
quency (SIF) as a simple baseline for all sen-
tence representations to surpass. The method
involves taking the mean of all word vectors
in a list and removing the first principal com-
ponent. They found that this simple method

3https://nlp.stanford.edu/projects/glove/

for sentence embedding creates satisfactory re-
sults. The hypothesis is that SIF removes the
effect of most common words that occur in
documents, and is akin to removing stop words
from consideration. SIF serves as the method
of sentence representation tested in all models
in this research.

The formal mathematical representation of
SIF is as follows: vs = 1

s

∑
w∈s

a
a+p(w)vw where

a = 1−α
αZ , vs = vs − uu>vs, where s is the cur-

rent sentence, w represents a word in the sen-
tence, vw is the vector representation of the
word, α is a hyperparameter, Z is the normal-
izing constant (the partition function) that is
roughly the same in all directions, p represents
the estimated probabilities of the words, and
u is the calculated first principal component.

3.2.2 LSTM

Sentences are sequences of words where order
matters and each word may modify any other’s
meaning despite their location in the sentence.
Given that sentences are sequences, it is only
natural to use the version of the recurrent neu-
ral network known as the LSTM. The version
of the LSTM used throughout model is based
on the original from (Hochreiter and Schmid-
huber, 1997). This sentence embedding com-
ponent consists of a single LSTM per sentence
with a number of hidden units in parallel equal
to that of the word embedding’s number of di-
mensions.

The traditional LSTM used is defined as
follows:

ft = σg(Wfxt + Ufht−1 + bf)

it = σg(Wfxt + Ufht−1 + bf)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σc(ct)

where xt is the input vector, ht is the output
vector, ct is the cell state vector, W , U and b
are the parameter matrices, and vectors ft, it,
and ot are the forget, input, and output gate
vectors respectively. σ represents the activa-
tion functions where σg is an ELU function
and σc is the hard sigmoid. Figure 2 depicts
this LSTM block architecture.

459

Figure 2: Example of the traditional LSTM
architecture with the modified activation func-
tions. The two arrows exiting from the side
are the LSTM’s recurrent connections. This
image was modified from Christopher Olah’s
original image5.

3.2.3 Stacked LSTMs

The stacked LSTMs’ construction is the same
as the the single LSTM, except that instead of
one LSTM per sentence there are two stacks of
LSTMs of equal length. All hyper-parameters
are the same otherwise. Various sized stacks
of LSTMs are experimented with, including 2,
3, 4, 5, and 10. Multiple LSTMs should be
able to capture the kernels of meaning in a
sentence. As stated by (Palangi et al., 2016),
the higher the number of LSTMs in the stack,
the better the predicted performance of the
sentence embedding.

A stack of LSTMs is simply multiple LSTMs
whose output is the input to the next LSTM
in the stack. The version of LSTM stacks used
in this research is sequential, meaning that
the processed sequence data from the LSTM is
saved and outputted to the next LSTM. The
final LSTM of the stack outputs a matrix with
the dimensions of batch size, and time steps.
Figure 3 indicates the input and output di-
mensions previously described.

Figure 3: Example of the input and output
dimensions of the layers in a small stack
of LSTMs as depicted by the Keras API
at https://keras.io/getting-started/

sequential-model-guide/.

3.3 Comparator

The comparator examines the two sentence
embeddings and performs regression on them
to find a continuous value on the inclusive
range from 0 to 5. This continuous value in-
dicates the level of similarity between the two
sentences, where 0 is no semantic similarity
and 5 is complete semantic similarity.

3.3.1 Perceptron

The simplest of all the comparators, the per-
ceptron with ELU as its activation is used as
the regression operation. The weights are ini-
tialized at random using the He normal dis-
tribution. The outputs from the sentence em-
beddings are concatenated and sent to a fully
connected dense layer, which then connects to
a single output node.

3.3.2 LSTM

In order to learn the relationship between the
words in the two sentences, an LSTM takes
the concatenated sequence output from the
two LSTM sentence embedding components.
This single LSTM performs the regression on
the two embeddings and learns how the two
embeddings relate to one another.

3.3.3 Stacked LSTMs

Applying the reasoning behind deep LSTM
stacks as proposed by (Palangi et al., 2016),

460

a stack of LSTMs is used as the comparator
of LSTM sentence embeddings. The process
is the same as the single LSTM comparator,
but instead with a stack of LSTMs. Varying
sizes of stacks are used, but match the size of
the LSTM stacks in the sentence embedding
component.

3.4 Simplified MV-LSTM: L2-LSTM

Unlike the other simple models that come in
parts, this model comes together as a whole. A
simplified version of the MV-LSTM from (Wan
et al., 2016) is also tested among the simple
models. This model matches the MV-LSTM
exactly except for the similarity tensor which
is replaced with an Euclidean distance calcula-
tion to compare the similarity to the two sen-
tence embeddings. Bidirectional LSTMs are
used for the sentence embeddings and the Eu-
clidean distance is followed by a multilayered
perceptron with 3 layers that cuts their den-
sity in half from the previous layer. The first
layer has 5 nodes. This simplified version of
the MV-LSTM is referred to as the L2-LSTM.

4 Implementation

The implementation was done using Keras6 on
an Ubuntu system with GPU support. The
training data is given to the neural networks
with mean squared error as their loss, due to
this being a regression problem. The model is
evaluated using cross-validation.

5 Evaluation Process

The STS Benchmark comprises a selection of
the English datasets used in the STS tasks
organized in the context of SemEval between
2012 and 2017. The selection of datasets in-
cludes text from image captions, news head-
lines and user forums. There are a total of
1186 ranked sentence pairs from various do-
mains such as image captions, Twitter news,
questions, answers, headlines, plagiarism, and
post-editing. Table 1 shows a few pairs of sen-
tences and their gold standard STS rankings
from this dataset.

Each model is evaluated on the sentence
similarity task. The results of various models
are compared in terms of Pearson Correlation

6https://keras.io/

Coefficient, as mentioned earlier. The Pearson
Correlation Coefficient is as follows:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where n is the number of samples, xi and yi
are the single samples indexed with i, x̄ and ȳ
are the two samples’ respective means.

6 Results

The results indicate that models with a bet-
ter capacity for memory storage are better
suited for solving the STS task optimally. The
simplified MV-LSTMs also perform approxi-
mately the same as a perceptron, and thus
should be discarded from use in practical ap-
plication for the STS task. However, these are
only simplified versions of the MV-LSTM.

6.1 LSTM

The single LSTM embeddings for both the
perceptron comparator and the single LSTM
comparator performed worse than any of the
models that included a stack of LSTMs. This
indicates that the memory of a single LSTM
compared to that of a stack of LSTM is un-
able to learn the semantic essence of a sen-
tence. This encourages the use of models with
increased memory due to their ability to learn
important semantic features of a sentence.

6.2 Stacked LSTMs

The stacked LSTMs performed the best over-
all with the paired stack of 10 LSTMs for em-
bedding and a perceptron comparator as the
best of all LSTM stack embedding and per-
ceptron comparator models. The stack of 2
LSTMs with a stack of 2 LSTMs as the com-
parator performed the best out of all of the
models with a .05 lead over the second place
model, the stack of 10 LSTMs and perceptron
model. The success of the LSTM stacks indi-
cates that these models are able to learn ker-
nels of meaning in the sentences and compare
them correctly to one another. The quality
performance from these models raise the stan-
dards for newer, more complex models for the
STS task.

6.3 Simplified MV-LSTM: L2-LSTM

The L2-LSTM performed worse than any of
the other models, except for the perceptron

461

Rank Sentence 1 Sentence 2

3 In the US, it will depend on the school. It really depends on the school and the
program.

2 I did this one time as well. I have this habit as well.

5 You do not need to worry. You don’t have to worry.

3 I remained under the banyan tree, ex-
hausted by my daily ritual of dragoon-
ing the men every two hours.

I remained under the banyan tree, ex-
hausted by my daily ritual of herding
the cats every two hours.

0 You need to read a lot to know what
you like and what you don’t.

You should tell a good story and
sometimes you have to tweak real-
ity/history to do so.

1 If you are not sure how to do it, don’t
do it at all.

If not, don’t do that and spend that
time with something you like to do.

Table 1: Example sentence pairs from the SemEval STS 2017 dataset

Simple Models’ Mean Pearson R across 10 K-Fold Cross Validation

Model Name Pearson R In-Sample Pearson R

2 LSTM Stack and 2 LSTM Stack 0.8608 0.9963

10 LSTM Stack and Perceptron 0.7824 0.9082

2 LSTM Stack and Perceptron 0.7595 0.8757

3 LSTM Stack and Perceptron 0.7235 0.8275

4 LSTM Stack and Perceptron 0.7150 0.8269

5 LSTM Stack and Perceptron 0.4538 0.6465

1 LSTM and Perceptron 0.4301 0.5445

1 LSTM and 1 LSTM 0.4163 0.9902

L2-LSTM 50 epochs 0.2740 0.3537

SIF and Perceptron 0.2214 0.8795

L2-LSTM 100 epochs 0.2183 0.3066

Table 2: The mean Pearson R out-of-sample and in-sample from k-fold cross validation where
k = 10. The LSTM and LSTM Stack embeddings were all computed with 50 epochs. The
SIF embedding and perceptron comparator were calculated with 100 epochs. The model names
are ordered by embedding component and comparator, except for the L2-LSTM model which
is combined embedding and comparator. In-Sample Pearson R is the Pearson R of the model
evaluated on the data used to train the model.

when compared to the MV-LSTM with 50
epochs. This indicates that either the bidi-
rectional LSTMs are not suitable for learning
the semantics between the two sentences, or
the similarity comparison with the Euclidean
distance is not as effective as the power of the
learning the sequences with LSTMs. Given its
performance roughly matches that of a percep-
tron, the L2-LSTM is a model not to be used
given its similar performance to, but greater
complexity than the perceptron.

6.4 Comparison with SemEval STS
2017 Results

We compare our results with papers and sys-
tems from SemEval STS 2017 (Cer et al.,
2017). These papers and systems use Pearson
Correlation Coefficient also for evaluation. Ta-
ble 3 presents the results of the top-performing
systems from the SemEval 2017 contest.

We must note that the papers published
in SemEval 2017 used the Training, Devel-
opment, Evaluation datasets whereas we per-
formed 10-fold cross-validation. Thus, the re-
sults are not quite comparable, but we feel
that cross-validation may be a better way to

462

Figure 4: The mean Pearson R across all test and validation sets in k-fold cross validation where
k = 10.

Team Paper PCC Results (3 or fewer runs)

ECNU (Tian et al., 2017) .8515, .8181, .8387

BIT (Wu et al., 2017a) .8400, .8161, .8222

HCTI (Yang, 2017) .8113, .8156

MITRE (Henderson et al., 2017) .8053, .8048

FCICU (Hassan et al., 2017) .8272, .8280, .8217

RTV none .8541, .8541, .8547

DT TEAM (Maharjan et al., 2017) .8536, .8360, .8329

ITNLPAiKE (Liu et al., 2017c) .8231, .8231, .8159

Table 3: Results of SemEval STS 2017 Competition in terms of Pearson Correlation Coefficient,
as published in (Cer et al., 2017)

evaluate than using a hand-selected Evalua-
tion dataset, but this point remains debatable.
In spite of this discrepancy, we claim that one
of our methods, namely “2 LSTM Stack and 2
LSTM Stack” shows better performance than
the approaches in Table 3.

7 Further Research

The performance of the simplified MV-LSTMs
bring into question the adequacy of the orig-
inal MV-LSTM for the STS task. The next
step is to evaluate the performance of the MV-
LSTM in the STS task and compare it to that
of the LSTM stacks. The results indicate that
models with a higher capacity for memory are
better suited to learn the semantic representa-
tion of the sentences and appropriately com-

pare them. These results encourage further re-
search in memory augmented neural networks
for use in learning the semantics of natural
languages. Exploring the implementation of
more complicated memory augmented neural
networks, such as the DNC model created by
(Graves et al., 2016), is the next step in pursu-
ing better performance in sentence embedding
and semantic textual similarity matching.

8 Conclusion

The performances of various simple neural net-
work models have been examined on the task
of semantic textual similarity matching us-
ing SemEval’s provided dataset. The model
to perform the best with a Pearson correla-
tion of 0.8608, based on the mean k-fold cross

463

validation, is the model where a stack of 2
LSTMs embedded the sentences and were then
compared with another stack of 2 LSTMs af-
ter concatenating the two sentence embedding
stacks’ sequences output. This supports the
findings that natural language tasks are se-
quence problems where the elements in the
sequence have interconnected relatedness, in
which neural networks with memory are bet-
ter at learning. Our findings also suggest that
there exist coherent subgroups of words in
a sentence whose meanings can learned and
composed to obtain the unique meaning of a
sentence. This supports the findings that MV-
LSTM also obtains. The evaluation of these
simple models for semantic textual similar-
ity serves as the lower bound to compare all
other models that have increased complexity
in their design. All future researchers should
ensure that their new model architectures sur-
pass these lower bounds.

References

[Arora et al.2016] Sanjeev Arora, Yingyu Liang,
and Tengyu Ma. 2016. A simple but tough-to-
beat baseline for sentence embeddings. Interna-
tional Conference on Learning Representations.

[Cer et al.2017] Daniel Cer, Mona Diab, Eneko
Agirre, Inigo Lopez-Gazpio, and Lucia Specia.
2017. Semeval-2017 task 1: Semantic textual
similarity-multilingual and cross-lingual focused
evaluation. arXiv preprint arXiv:1708.00055.

[Chen et al.2016] Jifan Chen, Kan Chen, Xipeng
Qiu, Qi Zhang, Xuanjing Huang, and Zheng
Zhang. 2016. Learning word embeddings from
intrinsic and extrinsic views. arXiv preprint
arXiv:1608.05852.

[Clevert et al.2015] Djork-Arné Clevert, Thomas
Unterthiner, and Sepp Hochreiter. 2015. Fast
and accurate deep network learning by ex-
ponential linear units (elus). arXiv preprint
arXiv:1511.07289.

[Fu et al.2016] Jian Fu, Xipeng Qiu, and Xuanjing
Huang. 2016. Convolutional deep neural net-
works for document-based question answering.
In International Conference on Computer Pro-
cessing of Oriental Languages, pages 790–797.
Springer.

[Graves et al.2016] Alex Graves, Greg Wayne, Mal-
colm Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwińska, Sergio Gómez
Colmenarejo, Edward Grefenstette, Tiago Ra-
malho, John Agapiou, et al. 2016. Hybrid com-

puting using a neural network with dynamic ex-
ternal memory. Nature, 538(7626):471–476.

[Guo et al.2016] Jiafeng Guo, Yixing Fan, Qingyao
Ai, and W Bruce Croft. 2016. Semantic match-
ing by non-linear word transportation for in-
formation retrieval. In Proceedings of the 25th
ACM International on Conference on Informa-
tion and Knowledge Management, pages 701–
710. ACM.

[Harris1954] Zellig S Harris. 1954. Distributional
structure. Word, 10(2-3):146–162.

[Hassan et al.2017] Basma Hassan, Samir Abdel-
Rahman, Reem Bahgat, and Ibrahim Farag.
2017. Fcicu at semeval-2017 task 1: Sense-based
language independent semantic textual similar-
ity approach. Proceedings of SemEval-2017.

[He et al.2015] Kaiming He, Xiangyu Zhang, Shao-
qing Ren, and Jian Sun. 2015. Delving
deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. CoRR,
abs/1502.01852.

[Henderson et al.2017] John Henderson, Elizabeth
Merkhofer, Laura Strickhart, and Guido
Zarrella. 2017. Mitre at semeval-2017 task
1: Simple semantic similarity. Proceedings of
SemEval-2017.

[Hochreiter and Schmidhuber1997] Sepp Hochre-
iter and Jurgen Schmidhuber. 1997. Long
short-term memory. Neural Computation,
9(8):1735–1780.

[Kiros et al.2015] Ryan Kiros, Yukun Zhu, Rus-
lan R Salakhutdinov, Richard Zemel, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler.
2015. Skip-thought vectors. In Advances in neu-
ral information processing systems, pages 3294–
3302.

[Le and Mikolov2014] Quoc Le and Tomas Mikolov.
2014. Distributed representations of sentences
and documents. In Proceedings of the 31st
International Conference on Machine Learning
(ICML-14), pages 1188–1196.

[Liu et al.2016a] Pengfei Liu, Xipeng Qiu, Jifan
Chen, and Xuanjing Huang. 2016a. Deep fu-
sion lstms for text semantic matching. In Pro-
ceedings of Annual Meeting of the Association
for Computational Linguistics.

[Liu et al.2016b] Pengfei Liu, Xipeng Qiu, and Xu-
anjing Huang. 2016b. Recurrent neural network
for text classification with multi-task learning.
arXiv preprint arXiv:1605.05101.

[Liu et al.2017a] Pengfei Liu, Xipeng Qiu, and Xu-
anjing Huang. 2017a. Adversarial multi-task
learning for text classification. arXiv preprint
arXiv:1704.05742.

464

[Liu et al.2017b] Pengfei Liu, Xipeng Qiu, and Xu-
anjing Huang. 2017b. Dynamic compositional
neural networks over tree structure. arXiv
preprint arXiv:1705.04153.

[Liu et al.2017c] Wenjie Liu, Chengjie Sun, Lei Lin,
and Bingquan Liu. 2017c. Itnlp-aikf at semeval-
2017 task 1: Rich features based svr for sem-
antic textual similarity computing. Proceedings
of SemEval-2017.

[Maharjan et al.2017] Nabin Maharjan, Rajendra
Banjade, Dipesh Gautam, Lasang J Tamang,
and Vasile Rus. 2017. Dt team at semeval-2017
task 1: Semantic similarity using alignments,
sentence-level embeddings and gaussian mixture
model output. Proceedings of SemEval-2017.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen,
Greg Corrado, and Jeffrey Dean. 2013. Effi-
cient estimation of word representations in vec-
tor space. arXiv preprint arXiv:1301.3781.

[Miller1995] George A Miller. 1995. Wordnet: a
lexical database for english. Communications of
the ACM, 38(11):39–41.

[Navigli and Ponzetto2012] Roberto Navigli and Si-
mone Paolo Ponzetto. 2012. Babelnet: The
automatic construction, evaluation and appli-
cation of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

[Palangi et al.2016] Hamid Palangi, Li Deng, Ye-
long Shen, Jianfeng Gao, Xiaodong He, Jianshu
Chen, Xinying Song, and Rabab Ward. 2016.
Deep sentence embedding using long short-term
memory networks: Analysis and application
to information retrieval. IEEE/ACM Transac-
tions on Audio, Speech and Language Processing
(TASLP), 24(4):694–707.

[Pennington et al.2014] Jeffrey Pennington,
Richard Socher, and Christopher D. Man-
ning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages
1532–1543.

[Šarić et al.2012] Frane Šarić, Goran Glavaš,
Mladen Karan, Jan Šnajder, and Bojana Dal-
belo Bašić. 2012. Takelab: Systems for

measuring semantic text similarity. In Pro-
ceedings of the First Joint Conference on
Lexical and Computational Semantics-Volume
1: Proceedings of the main conference and
the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic
Evaluation, pages 441–448. Association for
Computational Linguistics.

[Smola and Schölkopf2004] Alex J Smola and Bern-
hard Schölkopf. 2004. A tutorial on sup-
port vector regression. Statistics and computing,
14(3):199–222.

[Tian et al.2017] Junfeng Tian, Zhiheng Zhou, Man
Lan, and Yuanbin Wu. 2017. ECNU at
SemEval-2017 Task 1: Leverage kernel-based
traditional NLP features and neural networks
to build a universal model for multilingual and
cross-lingual semantic textual similarity.

[Tieleman and Hinton2012] Tijmen Tieleman and
Geoffrey Hinton. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural net-
works for machine learning, 4(2):26–31.

[Wan et al.2016] Shengxian Wan, Yanyan Lan, Ji-
afeng Guo, Jun Xu, Liang Pang, and Xueqi
Cheng. 2016. A deep architecture for semantic
matching with multiple positional sentence rep-
resentations. In Thirtieth AAAI Conference on
Artificial Intelligence.

[Wu et al.2017a] Hao Wu, Heyan Huang, Ping Jian,
Yuhang Guo, and Chao Su. 2017a. Bit at
semeval-2017 task 1: Using semantic informa-
tion space to evaluate semantic textual similar-
ity. Proceedings of SemEval-2017.

[Wu et al.2017b] Zongda Wu, Hui Zhu, Guiling Li,
Zongmin Cui, Hui Huang, Jun Li, Enhong
Chen, and Guandong Xu. 2017b. An efficient
wikipedia semantic matching approach to text
document classification. Information Sciences,
393:15–28.

[Yang2017] Shao Yang. 2017. HCTI at semeval-
2017 task 1: Use convolutional neural network
to evaluate semantic textual similarity.

465

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 466–475

Open Set Text Classification using Convolutional Neural Networks

Sridhama Prakhya†, Vinodini Venkataram‡ and Jugal Kalita‡

†School of Engineering & Technology, BML Munjal University, Gurugram, India
‡Department of Computer Science, University of Colorado Colorado Springs, USA

†sridhama@sridhama.com
‡{vvenkata,jkalita}@uccs.edu

Abstract

In a closed world setting, classifiers are
trained on examples from a number of
classes and tested with unseen examples
belonging to the same set of classes.
However, in most real-world scenarios, a
trained classifier is likely to come across
novel examples that do not belong to any
of the known classes. Such examples
should ideally be categorized as belonging
to an unknown class. The goal of an open
set classifier is to anticipate and be ready
to handle test examples of classes unseen
during training. The classifier should be
able to declare that a test example belongs
to a class it does not know, and possi-
bly, incorporate it into its knowledge as
an example of a new class it has encoun-
tered. There is some published research in
open world image classification, but open
set text classification remains mostly un-
explored. In this paper, we investigate the
suitability of Convolutional Neural Net-
works (CNNs) for open set text classifi-
cation. We find that CNNs are good fea-
ture extractors and hence perform better
than existing state-of-the-art open set clas-
sifiers in smaller domains, although their
open set classification abilities in general
still need to be investigated.

1 Introduction

With increasing amounts of textual data being gen-
erated by various online sources like social net-
works, text classifiers are essential for the anal-
ysis and organization of data. Text classification
usually consists of training a classifier on a la-
beled text corpus where individual examples be-
long to one or more classes based on their con-

tent, and then using the trained classifier to place
unseen examples in one of these classes. Pop-
ular text classification applications include spam
filtering, sentiment analysis, movie genre classi-
fication, and document classification. Traditional
text classifiers assume a closed world approach.
In other words, the classifier is implicitly expected
to be tested with examples from the same classes
with which it was initially trained. However, such
classifiers fail to identify and adapt when exam-
ples of previously unseen classes are presented
during testing. In real-world scenarios, a robust
trained classifier should be able to recognize ex-
amples of unknown classes and accordingly up-
date its learned model. This is known as the open
world approach to classification. Most research in
open set classification has been in the computer
vision domain, primarily in handwriting recogni-
tion (Jain et al., 2014), face recognition (Li and
Wechsler, 2005; Scheirer et al., 2013), object clas-
sification (Bendale and Boult, 2015; Bendale and
Boult, 2016) and computer forensics (Rattani et
al., 2015). Open set classification is important in
computer vision since the number of classes to
which a seen object can belong to is almost lim-
itless and datasets are available with training sam-
ples belonging to thousands of classes. Neverthe-
less, open set classification is important in natural
language processing as well. An example of an
open world text classification scenario is author-
ship attribution, where each author happens to be
a class. An open set text classifier must recognize
the author of a document to be one of the known
ones when appropriate. Importantly, the classi-
fier should also explicitly recognize when it fails
to classify an unseen document as written by one
of the known authors. Whether it is for historical
or fictional works from the past, or emails, social
media posts or leaked political documents, open
set classification may be immensely helpful.

466

In the recent past, many-layered Artificial Neu-
ral Networks (ANN) or deep learning techniques
(Goodfellow et al., 2016) have become popular in
Computer Vision and Natural Language Process-
ing. This is mainly attributed to the increase in
performance compared to standard machine learn-
ing techniques. As discussed later, current open
set text classifiers do not rely on deep learning
models. They employ either a clustering-based ap-
proach (Doan and Kalita, 2017) or a modified Sup-
port Vector Machine (SVM) (Fei and Liu, 2016).
To this end, we explore the possibility of using a
CNN for open set text classification and compare
it to existing techniques.

2 Related Work

To allow for the possibility that the set of classes is
open or expandable during deployment, the classi-
fication algorithms need to be adaptive. (Scheirer
et al., 2013) combine empirical risk and open
space risk due to the existence of a space in
which classification probabilities are not currently
known. Empirical risk comes from actual ex-
amples being misclassified by a trained classifier,
and the open space risk recognizes the fact that
the presence of unknown classes is likely to in-
troduce errors into classification decisions. Their
model reduces the risk by introducing parallel hy-
perplanes, one near the class boundary and an-
other far from it to introduce slabs of subspaces
for the classes, and then develops a greedy op-
timization algorithm that modifies a linear SVM
and moves the planes incrementally. This work
was extended to multi-class open set classification
by introducing what (Scheirer et al., 2014) call a
Compact Abating Probability (CAP) model. They
build a classifier called W-SVM using properties
of Extreme Value Theory for calibration of scores
produced by 1-class and binary SVMs. Extreme
Value Theory (EVT) (Smith, 1990; De Haan and
Ferreira, 2007; Castillo, 2012) is usually used to
deal with and predict rare events or values that oc-
cur at the tails of distributions. The unnormalized
probability of inclusion for each class is estimated
by fitting a Weibull distribution (Sharif and Islam,
1980) over the positive class scores from SVM
classifiers. The assumption here is when a trained
classifier cannot classify an example as belonging
to any of the known classes, it is a case of “fail-
ure” of the classifier and is deemed unusual. (Jain
et al., 2014) also use EVT to formulate the open

set classification problem as one of modeling pos-
itive training data at the decision boundary. They
introduce a new algorithm called the Pi-SVM for
estimating the unnormalized posterior probability
of class inclusion. Their approach is different from
the one introduced by (Platt and others, 1999) of
taking SVM outputs and converting them to prob-
abilities by fitting a sigmoid function to the SVM
scores.

(Bendale and Boult, 2015) present an approach
to minimize the weighted sum of empirical risk
and open set risk using thresholding sums of
monotonically decreasing recognition functions,
and use their approach to extend the Nearest Cen-
troid Classifier (NCM) (Rocchio, 1971). This
classifier represents classes by the mean feature
vector of its elements. An unseen example is as-
signed a class with the closest mean. The Near-
est Non-Outlier (NNO) algorithm (Bendale and
Boult, 2015) adapts NCM for open set classifica-
tion, taking into account open space risk and met-
ric learning. The nearest class mean metric learn-
ing (NCMML) (Mensink et al., 2013) approach
extends the NCM technique by replacing the Eu-
clidean distance with a learned low-rank Maha-
lanobis distance. This gives better results than the
former as the algorithm is able to learn features
inherent in the training data.

All the work mentioned so far have been in the
context of computer vision. Work in open set clas-
sification for textual data is limited. (Fei and Liu,
2016) use CBS learning (Fei and Liu, 2015) where
a document is represented as a vector of similari-
ties from centers of spheres that correspond to in-
dividual classes. Around the sphere that represents
positive examples of a class, they draw a slightly
bigger sphere to provide additional space for a
class to accommodate unseen examples. They also
use SVM hyperplanes to bound the bigger spheres.
The unbounded regions correspond to unknown
classes.

The Nearest Centroid Class (NCC) algorithm
(Doan and Kalita, 2017) builds upon the NCM,
but uses a density-based method following the
approach of the clustering algorithm called DB-
SCAN (Ester et al., 1996). They represent a class
not by a sphere but a set of density-connected re-
gions and also consider the centroids of these re-
gions and not the means.

In the context of deep learning, (Bendale and
Boult, 2016) adapt a CNN (Krizhevsky et al.,

467

2012) to perform open set classification in the vi-
sion domain. In closed set classification, the final
softmax layer of the CNN essentially chooses the
output class with the highest probability with re-
spect to all other output labels. Bendale and Boult
propose OpenMax, which is a new model layer
that estimates the probability of an input belong-
ing to an unknown class instead of softmax. (Ge
et al., 2017) adapt OpenMax to generative adver-
sarial networks (GANs) for open set vision prob-
lems. There have been no such attempts in the text
processing domain.

3 Method

Along the lines of existing open set techniques,
our work was also motivated by the Rocchio
method (Rocchio, 1971). We wanted to use pre-
trained word vectors (Mikolov et al., 2013) for
open set determination. This led us to perform
experiments to see whether simple cosine com-
putation can be used for open set classification.
We used a naive approach to construct document
vectors by averaging all word vectors (Le and
Mikolov, 2014) in a document. We calculated the
cosine similarities between the mean of all docu-
ment vectors and a test example. Due to the sim-
ilarities being too close (sometimes overlapping),
we concluded that calculating cosine similarity at
the document level was not suitable for open set
classification.

Prior open set text classification models (CBS
learning and NCC) do not use artificial neural net-
works. We decided to pursue a novel approach to
open set text classification that relied on a deep
learning model, viz. CNNs due to their ability
of extracting useful features. Since (Bendale and
Boult, 2016) explored the use of CNNs in open
set image classification, we started with their ap-
proach as the basis and extend the work as nec-
essary. The work of (Kim, 2014) in CNNs for
sentence classification helped us arrive at an ef-
ficient neural network architecture. Thus, we per-
form experiments with a single-layer CNN, using
the Weibull-modified final layer instead of soft-
max. We also examine if increasing the number
of CNN layers changes performance of open set
text classification. We develop a novel ensemble
approach to deal with the activations of the penul-
timate layer of the CNN. The penultimate layer is
the focus because this is the layer that contains the
real activations for nodes corresponding to the var-

ious classes for the problem at hand. Since these
are raw activations, in a standard CNN, they are
converted into probability-like values by perform-
ing the softmax operation.

softmax (x)i =
exi∑
j e

xj
(1)

However, in our case, there is an unknown class
to be considered as well and we do not know the
activations or probabilities associated with such
an unknown class. Therefore, this softmax layer
needs to be modified. (Bendale and Boult, 2016)
replace the layer that computes softmax with the
so-called OpenMax layer, which uses a learned
distance metric taking into account the open set
risk.

Our new model uses an ensemble approach to
make a decision with the activations in the penul-
timate layer. Our model is also incremental in na-
ture. This means, the model does not have to be
retrained after the introduction of a new unknown
class. This is because open set determination hap-
pens after training, rather than during or before.

In our experiments discussed here, we compare
the performance of our ensemble-based open set
text classifier with other open set classifiers that
have been previously used for image classification
and the methods of (Fei and Liu, 2016) and (Doan
and Kalita, 2017), which were used for open set
text classification.

3.1 Datasets
For efficacious open world evaluation, we must
choose a dataset with a large number of classes.
This allows us to hide classes during training.
These hidden classes can later be used during test-
ing to gauge the open world accuracy. We use the
following two freely available datasets.

• 20 Newsgroups (McCallum et al., 1998;
Slonim and Tishby, 2000) - Consists of
18,828 documents partitioned (nearly) evenly
across 20 mutually exclusive classes.

• Amazon Product Reviews (Jindal and Liu,
2008) - Consists of 50 classes of products or
domains, each with 1,000 review documents.

3.2 Evaluation Procedure
Traditional evaluation (closed set) occurs when the
classifier is assessed with data similar to what was
learned during training. The number of classes
presented during testing is equal to the number

468

the model was trained on. In open set evaluation,
the classifier has incomplete knowledge during the
training phase. Examples of unknown classes can
be submitted to the classifier during the testing
phase. During the training phase, we train the
classifiers on a limited number of classes. While
testing, we then present the model with additional
classes that were not learned during training. We
evaluate the performance of the classifier based on
how well it identifies these new classes. “Open-
ness”, proposed by (Scheirer et al., 2013; Scheirer
et al., 2014), is a measure to estimate the open
world range of a classifier. This measure is only
concerned with the number of classes rather than
the open space itself.

openness = 1−
√

(2× CT)/(CR + CE) (2)

where:

CT = number of classes used for training
CR = number of classes to be recognized
CE = number of classes used during

evaluation/testing

As a special case, when CT = CR = CE , the
value of openness is 0, i.e., it is the case of tradi-
tional classification when the numbers of classes
trained on, tested on, and recognized are the same.

Accuracy, precision, recall, and F-score are
used to measure the closed set performance of our
model. These metrics are expanded to the open set
scenario by grouping all unknown classes into the
same subset. A True Positive is when an exam-
ple of a known class is correctly classified and a
True Negative is when an example of an unknown
class is correctly predicted as unknown. False Pos-
itives (an unknown class predicted as known) and
False Negatives (a known class predicted as un-
known) are the two types of incorrect class assign-
ment. Figure 1 shows how openness varies with
the number of training classes when there are 10
testing classes.

4 Experiments

For all experiments, the CNN-static architecture
proposed by (Kim, 2014) is used. We use pre-
trained word2vec1 (Mikolov et al., 2013) vec-
tors as our word embeddings. These embeddings
are kept static while other parameters of the model

1https://code.google.com/p/word2vec/

2 3 4 5 6 7 8 9 10

Number of Training Classes

0.0

0.1

0.2

0.3

0.4

0.5

O
pe

nn
es

s

Variation of Openness (10 testing domains)

Figure 1: Variation of openness with number of
training classes

Table 1: CNN baseline configuration

Description Values
word embedding word2vec

filter sizes (3,4,5)
feature maps 100

activation function ReLU
pooling 1-max pooling

dropout rate 0.5
L2 norm constraint 0.0

are learned. According to the experiments of
(Zhang and Wallace, 2015), imposing an L2 norm
constraint on the weight vectors generally does not
improve performance drastically. Figures 3 and
4 show the accuracies achieved on the 20 News-
groups dataset while varying the L2 norm con-
straint. Increasing the L2 norm constraint proved
detrimental to the model accuracy. The configura-
tion details of the CNN used in all our experiments
are shown in Table 1. Figure 2 shows a depiction
of the CNN architecture we implemented. In our
case, we use a single static channel instead of mul-
tiple channels.

4.1 Multi-layer CNN
In addition to Kim’s architecture, we have also ex-
perimented with multi-layer CNNs. We used 2
convolutional layers, the initial layer used a ker-
nel of size 3 × 1, while the second layer used a
kernel of size 3 × 300. The first layer convolves
the same feature across multiple words of the doc-
ument. The second layer convolves all features
(obtained from the previous convolution) across
multiple (3 in our case) rows. The motive be-
hind this approach was to extract activation vec-

469

Figure 2: Model architecture with multiple filter sizes (3, 4, 5) for an example sentence

Figure 3: L2 constraint = 0.0, Model Accuracy:
0.710

Figure 4: L2 constraint = 3.0, Model Accuracy:
0.672

tors from the antepenultimate layer, which may
represent the document more accurately. Unfor-
tunately, the closed set (trained on 3 classes) accu-
racy of the muli-layer CNN was around 75%. The
accuracy decreased significantly as we increased
the number of training classes. A high closed set
accuracy is necessary to achieve respectable open
set results. Intuitively, the model must have a com-
prehensive understanding of what it knows. Only

then can it be competent enough to classify un-
known inputs correctly.

4.2 Ensemble Approach

In our open set classifier, we use an ensemble of
approaches to determine whether a test example
is from a known class or not. This ensemble in-
cludes probabilistic and high dimensional outlier
detectors.

4.2.1 Isolation Forest
The isolation forest algorithm (Liu et al., 2008) de-
tects outliers using combinations of a set of iso-
lation trees. Isolation trees recursively partition
the data at random partition points with randomly
chosen features. Doing so isolates instances into
nodes containing only one instance. The heights
of branches containing outliers are comparatively
less than other data points. The height of the
branch is used as the outlier score. The scores ob-
tained from the isolation forest are min-max nor-
malized and calculated for every training class.
Examples with scores below a predefined thresh-
old are labelled as unknown. In case of multi-
ple scores above the threshold, the example is as-
signed to the class with the highest score.

4.2.2 Probabilistic Approach
OpenMax (Bendale and Boult, 2016) is a new
model layer based on the concept of Meta-
Recognition (Scheirer et al., 2011). For all pos-
itive examples of every trained class, we collect
the scores in the penultimate layer of our neural

470

network. We call these scores activation vectors
(AV). We deviate from the original OpenMax by
finding the k-nearest examples to the centroid of
every training class. We refer to these examples
as k-Class Activation Vectors (k-CAV). For ev-
ery example in a training class, we calculate the
distances between the respective AV and the k-
CAVs. Doing so, results in k distances per AV.
We then take the average of these k calculated dis-
tances. As the number of classes in our dataset
is far less than those used in image classification,
the k-CAVs of a class are used represent a class
more accurately than a single mean activation vec-
tor. This also mitigates the effect of outlier AVs in
a class. We observed that when k is around 10,
the trade-off between performance and computa-
tion time is optimized. Therefore, for all experi-
ments, we fix the value of k = 10.

In our outlier ensemble, we use two distance
metrics – Mahalanobis distance and Euclidean-
cosine (Eucos) distance (Bendale and Boult,
2016). Ideally, we want a distance metric that can
tell us how much an example deviates from the
class mean. The Mahalanobis distance precisely
does this by giving us a multi-dimensional gener-
alization of the number of standard deviations a
point is from the distribution’s mean. The closer
an example is to the distribution mean, the lower is
the Mahalanobis distance. The Mahalanobis dis-
tance between point x and point y is given by:

d(~x, ~y) =

√
(~x− ~y)TC−1(~x− ~y) (3)

where C is the covariance matrix, among the fea-
ture variables calculated a priori. The Euclidean-
cosine distance is a weighted combination of Eu-
clidean and cosine distances.

The distances obtained are used to generate a
Weibull model for every training class. We use
the libMR2 (Scheirer et al., 2011) FitHigh method
to fit these distances to a Weibull model that re-
turns a probability of inclusion of the respective
class. Figure 5 shows the probabilities of inclusion
obtained from the generated Weibull model for 2
training classes belonging to the 20 Newsgroups
dataset. As an example deviates more from the
class center (k-CAVs), the probability of inclusion
decreases.

The sum of all inclusion probabilities is taken
as the total closed set probability. Open set prob-
ability (OSP) is computed by subtracting the total

2https://github.com/Vastlab/libMR

0.00 0.05 0.10 0.15 0.20 0.25
Distance from center

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y
of

 In
clu

sio
n

sci.space
rec.autos

Figure 5: Weibull distribution generated using
libMR for two classes belonging to the 20 News-
groups dataset

closed set probability from 1.

OSP = 1− total closed set probability (4)

We then compare the maximum closed set prob-
ability and total open set probability. If the total
open set probability is greater than the former, we
label the example as unknown, otherwise, the ex-
ample is assigned the class with the highest closed
set probability. Parameters like threshold and dis-
tribution tail-size can be be adjusted to decrease
the open-space risk.

Figure 6: Our ensemble model

We use a voting scheme to combine the three
approaches (Mahalanobis Weibull, Eucos Weibull
and Isolation Forest), see Figure 6. It has been
observed that Mahalanobis and Eucos perform
nearly the same. Predictions from the Isolation
Forest are usually used as a tie-breaker in case of
differing predictions. When all 3 predictions dif-
fer, we give the Eucos Weibull the highest priority.

5 Results and Discussion

Open set performance largely depends on the “un-
known” classes used during evaluation. This is es-
pecially true when classes are not completely ex-
clusive. The activation vectors of similar classes

471

Table 2: Experiments on Amazon Product Reviews dataset (10, 20 domains)

Amazon Product Reviews 10 Domains
25% 50% 75% 100%

our model 0.797 0.753 0.727 0.821
NCC § 0.61 0.714 0.781 0.854

cbsSVM* 0.450 0.715 0.775 0.873
1-vs-rest-SVM* 0.219 0.658 0.715 0.817
ExploratoryEM* 0.386 0.647 0.704 0.854
1-vs-set-linear* 0.592 0.698 0.700 0.697
wsvm-linear* 0.603 0.694 0.698 0.702

wsvm-rbf* 0.246 0.587 0.701 0.792
Pi-osvm-linear* 0.207 0.590 0.662 0.731
Pi-osvm-rbf* 0.061 0.142 0.137 0.148
Pi-svm-linear* 0.600 0.695 0.701 0.705
Pi-svm-rbf* 0.245 0.590 0.718 0.774

Amazon Product Reviews 20 Domains
25% 50% 75% 100%

our model 0.648 0.603 0.663 0.793
NCC § 0.606 0.657 0.702 0.78

cbsSVM* 0.566 0.695 0.695 0.760
1-vs-rest-SVM* 0.466 0.610 0.616 0.688
ExploratoryEM* 0.571 0.561 0.573 0.691
1-vs-set-linear* 0.506 0.560 0.589 0.620
wsvm-linear* 0.553 0.618 0.625 0.641

wsvm-rbf* 0.397 0.502 0.574 0.701
Pi-osvm-linear* 0.453 0.531 0.589 0.629
Pi-osvm-rbf* 0.143 0.079 0.058 0.050
Pi-svm-linear* 0.547 0.620 0.628 0.644
Pi-svm-rbf* 0.396 0.546 0.675 0.714

usually overlap in vector space. Similar to (Fei and
Liu, 2016; Doan and Kalita, 2017), we conduct
our experiments by introducing “unseen” classes
during testing. In reality, as the train-test partition
can be random, we arbitrarily specify the number
of testing domains. For every domain, we report
our results using 5 random train-test partitions for
each dataset. Both datasets are evaluated on the
same number of test classes (10, 20). We also eval-
uate our model on smaller domains, shown in Ta-
ble 4. The number of testing classes used during
training is varied in quarter-step increments (25%,
50%, 75% and 100%). We take the floor value
in case of fractional percentages. Using 100% of
the testing classes during training corresponds to
closed set classification.

Results of the Amazon Product Reviews and 20
Newsgroups datasets are shown in Tables 2 and 3
respectively. We report only the F-scores due to

space constraints. Classifiers used as baselines for
comparison are described below.

• 1-vs-rest-SVM - Standard 1-vs-rest multi-
class SVM with Platt Probability Estimation
(Platt and others, 1999)

• 1-vs-set-linear - 1-vs-set machine model
proposed by (Scheirer et al., 2013)

• W-SVM - Weibull-calibrated SVM (Scheirer
et al., 2014)

• Pi-SVM - SVM model that estimates the un-
normalized posterior probability of class in-
clusion (Jain et al., 2014)

• ExploratoryEM - “Exploratory” version of
Expectation-Maximization algorithm (EM)
(Dalvi et al., 2013)

• cbsSVM - Center-Based Similarity Space
SVM (Fei and Liu, 2016)

472

Table 3: Experiments on 20 Newsgroups dataset (10, 20 domains)

20 Newsgroups 10 Domains
25% 50% 75% 100%

our model 0.719 0.747 0.738 0.864
NCC § 0.652 0.781 0.818 0.878

cbsSVM* 0.417 0.769 0.796 0.855
1-vs-rest-SVM* 0.246 0.722 0.784 0.828
ExploratoryEM* 0.648 0.706 0.733 0.852
1-vs-set-linear* 0.678 0.671 0.659 0.567
wsvm-linear* 0.666 0.666 0.665 0.679

wsvm-rbf* 0.320 0.523 0.675 0.766
Pi-osvm-linear* 0.300 0.571 0.668 0.770
Pi-osvm-rbf* 0.059 0.074 0.032 0.026
Pi-svm-linear* 0.666 0.667 0.667 0.680
Pi-svm-rbf* 0.320 0.540 0.705 0.749

20 Newsgroups 20 Domains
25% 50% 75% 100%

our model 0.668 0.686 0.685 0.787
NCC § 0.635 0.723 0.735 0.884

cbsSVM* 0.593 0.701 0.720 0.852
1-vs-rest-SVM* 0.552 0.683 0.682 0.807
ExploratoryEM* 0.555 0.633 0.713 0.864
1-vs-set-linear* 0.497 0.557 0.550 0.577
wsvm-linear* 0.563 0.597 0.602 0.677

wsvm-rbf* 0.365 0.469 0.607 0.773
Pi-osvm-linear* 0.438 0.534 0.640 0.757
Pi-osvm-rbf* 0.143 0.029 0.022 0.009
Pi-svm-linear* 0.563 0.599 0.603 0.678
Pi-svm-rbf* 0.370 0.494 0.680 0.767

• NCC - Nearest Centroid Class model (Doan
and Kalita, 2017)

F-score performances of 1-vs-rest-SVM, 1-vs-set
SVM, W-SVM, Pi-SVM, and cbsSVM are from
study (Fei and Liu, 2016), marked as *. Re-
sults pertaining to the Nearest Centroid Class
model (NCC) are from study (Doan and Kalita,
2017), marked as §. Our model performs bet-
ter than cbsSVM and NCC classifiers in smaller
domains. Figure 7 shows the activation vectors
obtained from models trained on 2 classes plot-
ted in 2-dimensional space. The plots show dis-
tinct clusters of activation vectors. We believe the
CNN approach effectively isolates documents in
smaller domains compared to other SVM-based
approaches.

Unlike cbsSVM, our model is an incremental
model i.e., we do not have to retrain the model

Table 4: Open set results of Amazon Product Re-
views Dataset in smaller domains (3, 4, 5)

Classes Trained on Classes Tested on
3 4 5

2 0.802 0.824 0.808
3 - 0.725 0.763
4 - - 0.797

when new unknown classes are introduced. Such
models are more viable in real world scenarios.

6 Conclusion

Our incremental open set approach handles text
documents of unseen classes in smaller domains
more consistently than existing text classifica-
tion models, namely CBS learning and the NCC
model. This research can prove beneficial when

473

Figure 7: Activation vectors obtained from models trained on 2 randomized classes.

classifying novel data, applications of which can
be used to tackle tough text classification problems
in domains like forensic linguistics.

Our future work will involve improving the
number and diversity of classifiers used in the en-
semble. In addition, we plan to consider different
neural network architectures that learn sequential
information from text, namely variants of recur-
rent neural networks like Long Short-Term Mem-
ory networks with attention mechanism.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant Nos.
IIS-1359275 and IIS-1659788. We are thankful
for the support of BML Munjal University, partic-
ularly Prof. Sudip Sanyal and Dr. Satyendr Singh.
We also thank Diptodip Deb and Kyle Yee for
their insightful discussions and constant encour-
agement.

References
Abhijit Bendale and Terrance Boult. 2015. Towards

open world recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 1893–1902.

Abhijit Bendale and Terrance E Boult. 2016. Towards
open set deep networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 1563–1572.

Enrique Castillo. 2012. Extreme value theory in engi-
neering. Elsevier.

Bhavana Dalvi, William W Cohen, and Jamie Callan.
2013. Exploratory learning. In Joint European Con-
ference on Machine Learning and Knowledge Dis-
covery in Databases, pages 128–143. Springer.

Laurens De Haan and Ana Ferreira. 2007. Extreme
value theory: an introduction. Springer Science &
Business Media.

Tri Doan and Jugal Kalita. 2017. Overcoming the
challenge for text classification in the open world. In

Computing and Communication Workshop and Con-
ference (CCWC), 2017 IEEE 7th Annual, pages 1–7.
IEEE.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei
Xu, et al. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Kdd, volume 96, pages 226–231.

Geli Fei and Bing Liu. 2015. Social media text classi-
fication under negative covariate shift. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 2347–2356.

Geli Fei and Bing Liu. 2016. Breaking the closed
world assumption in text classification. In HLT-
NAACL, pages 506–514.

ZongYuan Ge, Sergey Demyanov, Zetao Chen, and
Rahil Garnavi. 2017. Generative openmax for
multi-class open set classification. arXiv preprint
arXiv:1707.07418.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. MIT press.

Lalit P Jain, Walter J Scheirer, and Terrance E Boult.
2014. Multi-class open set recognition using prob-
ability of inclusion. In European Conference on
Computer Vision, pages 393–409. Springer.

Nitin Jindal and Bing Liu. 2008. Opinion spam and
analysis. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, pages
219–230. ACM.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 1188–1196.

Fayin Li and Harry Wechsler. 2005. Open set
face recognition using transduction. IEEE transac-
tions on pattern analysis and machine intelligence,
27(11):1686–1697.

474

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou.
2008. Isolation forest. In Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference
on, pages 413–422. IEEE.

Andrew McCallum, Kamal Nigam, et al. 1998. A
comparison of event models for naive bayes text
classification. In AAAI-98 workshop on learning for
text categorization, volume 752, pages 41–48. Madi-
son, WI.

Thomas Mensink, Jakob Verbeek, Florent Perronnin,
and Gabriela Csurka. 2013. Distance-based image
classification: Generalizing to new classes at near-
zero cost. IEEE transactions on pattern analysis
and machine intelligence, 35(11):2624–2637.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

John Platt et al. 1999. Probabilistic outputs for sup-
port vector machines and comparisons to regularized
likelihood methods. Advances in large margin clas-
sifiers, 10(3):61–74.

Ajita Rattani, Walter J Scheirer, and Arun Ross. 2015.
Open set fingerprint spoof detection across novel
fabrication materials. IEEE Transactions on Infor-
mation Forensics and Security, 10(11):2447–2460.

Joseph John Rocchio. 1971. Relevance feedback in
information retrieval. The Smart retrieval system-
experiments in automatic document processing.

Walter J Scheirer, Anderson Rocha, Ross J Micheals,
and Terrance E Boult. 2011. Meta-recognition: The
theory and practice of recognition score analysis.
IEEE transactions on pattern analysis and machine
intelligence, 33(8):1689–1695.

Walter J Scheirer, Anderson de Rezende Rocha,
Archana Sapkota, and Terrance E Boult. 2013.
Toward open set recognition. IEEE transac-
tions on pattern analysis and machine intelligence,
35(7):1757–1772.

Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult.
2014. Probability models for open set recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence (T-PAMI), 36, November.

M Nawaz Sharif and M Nazrul Islam. 1980. The
weibull distribution as a general model for forecast-
ing technological change. Technological Forecast-
ing and Social Change, 18(3):247–256.

Noam Slonim and Naftali Tishby. 2000. Document
clustering using word clusters via the information
bottleneck method. In Proceedings of the 23rd an-
nual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 208–215. ACM.

Richard L Smith. 1990. Extreme value theory. Hand-
book of applicable mathematics, 7:437–471.

Ye Zhang and Byron Wallace. 2015. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
arXiv preprint arXiv:1510.03820.

475

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 476–484

Predicting User Competence from Linguistic Data

Yonas Demeke Woldemariam
Dep. Computing Science

Umeå University
Sweden

yonasd@cs.umu.se

Suna Bensch
Dep. Computing Science

Umeå University
Sweden

suna@cs.umu.se

Henrik Björklund
Dep. Computing Science

Umeå University
Sweden

henrikb@cs.umu.se

Abstract

We investigate the problem of predicting
the competence of users of the crowd-
sourcing platform Zooniverse by analyz-
ing their chat texts. Zooniverse is an
online platform where objects of differ-
ent types are displayed to volunteer users
to classify. Our research focuses on
the Zoonivers Galaxy Zoo project, where
users classify the images of galaxies and
discuss their classifications in text. We ap-
ply natural language processing methods
to extract linguistic features including syn-
tactic categories, bag-of-words, and punc-
tuation marks. We trained three supervised
machine-learning classifiers on the result-
ing dataset: k-nearest neighbors, decision
trees (with gradient boosting) and naive
Bayes. They are evaluated (regarding ac-
curacy and F-measure) with two different
but related domain datasets. The perfor-
mance of the classifiers varies across the
feature set configurations designed during
the training phase. A challenging part
of this research is to compute the com-
petence of the users without ground truth
data available. We implemented a tool that
estimates the proficiency of users and an-
notates their text with computed compe-
tence. Our evaluation results show that the
trained classifier models give results that
are significantly better than chance and
can be deployed for other crowd-sourcing
projects as well.

1 Introduction

The science crowd sourcing platform Zooniverse
hosts a large number of different projects where
volunteers/users (in this paper, the term “volun-
teer” is used interchangeably with “user”) help sci-

entists by classifying various kinds of data. In or-
der to make the experience as positive as possible
for the volunteers, so that they are more likely to
stay on and contribute to the projects, the Zooni-
verse team is very interested in anything that can
help them understand their volunteers better.

In this article, we explore how much the text
comments left by volunteers in the chat rooms ac-
companying the project Galaxy Zoo can help us
in determining their level of proficiency or com-
petence in classifying images. Proficiency is only
one among many interesting qualities, and the text
data is only one tool for measuring it. The output
from the machine learning algorithms we use can
be combined with other measures to learn more
about user proficiency. Here, though, we focus
on the following main question: Does the linguis-
tic data from the chats contain useful information
about the volunteers, in particular about the qual-
ity of their classifications?

The reason for focusing on Galaxy Zoo, rather
than one of the many other projects run by Zooni-
verse, is that it is one of the oldest and largest
projects, which means that there is quite a lot of
data available – many users, many classifications,
many text comments.

There are several challenges that have to be ad-
dressed when trying to answer our question. The
hardest one is how to measure the quality of users’
classifications. The problem is that there is no
ground truth data available. For most of the galaxy
photos that volunteers have classified, we do not
know the correct answer. No expert in the field
has studied and classified them, since the whole
point of using volunteers is that the experts do not
have the time to do so.

Our approach to this challenge is to use major-
ity votes, i.e., we consider the answer to a question
given by the majority of the users to be the cor-
rect one. This is by no means an unobjectionable
assumption. We describe our approach in more

476

detail and provide some justification for it in Sec-
tion 3.

Once a quality measure for each user that has
also provided sufficiently many textual comments
has been computed, we employ three different ma-
chine learning algorithms to the data in order to
see whether the values can be predicted from text.
Each algorithm is tested on six different sets of
features of the textual data. The algorithms we use
are k-Nearest Neighbors, Naive Bayesian Classi-
fication, and Decision Trees (with gradient boost-
ing).

The results achieved are not spectacular, but
they show that analysis of the textual data gives
a significantly better than chance prediction of
the quality of a users classifications. As mention
above, this can be combined with other measures
to get better predictions.

To investigate how well our methods generalize
to other settings we also test them on data from
the Zooniverse Snapshot Serengeti project. The
results are encouraging in that they are comparable
to the results for Galaxy Zoo.

We discuss related work in Section 2, the cal-
culation of majority votes in Section 3, the experi-
mental setup in Section 4, the experimental results
in Section 5 and, finally, the discussion in Sec-
tion 6.

2 Related work

In the literature a users’ competence refers to var-
ious kinds of competence. Automated essay scor-
ing, for instance, assesses an author’s writing com-
petence or capabilities by analyzing the author’s
text. An author’s competence can also refer to
competence or expertise in a specific topic that
he/she demonstrates by, for example, his/her writ-
ten argumentation in a chat discussing the topic.
An author’s competence can also be related to
the author’s competence in performing a specific
task (e.g. classifying galaxy images) and the au-
thor’s written text about the task performance can
be used to investigate whether there exist correla-
tions. We are interested in the correlation between
an author’s task performance competence (i.e. cor-
rect classification of galaxy images) and his/her
chat entries, where the text in the chat entries is
not necessarily about the task at hand.

Researchers have intensively investigated meth-
ods for automated essay scoring by statistical anal-
ysis of linguistic features extracted from text. Au-

tomated essay scoring is the process of automat-
ically analyzing text and grading it according to
some predefined evaluation criteria. In McNamara
et al. (2008), for instance, the authors investigate
to what degree high- and low-proficiency essays
can be predicted by linguistic features including
syntactic complexity (e.g. number of words before
the main verb). Their results indicate that high-
proficiency writers use a more complex syntax in
terms of the mean number of higher level con-
stituents per word and the number of words before
the main verb, than low-proficiency writers. In
addition, the results indicate that high-proficiency
writers use words that occur less frequently in lan-
guage. Chen and He (2013) improve automated
essay scoring by incorporating the agreement be-
tween human and machine raters. The feature set
to indicate essay quality includes lexical, syntac-
tic, and fluency features. The syntactic features
include sentence length, the mean number of sub-
clauses in each sentence, the sum of the depth of
all nodes in a parse tree as well as the height of the
parse tree. In Pérez et al. (2005), students’ essays
are assessed by combining an algorithm that in-
cludes syntactic analysis and latent semantic anal-
ysis.

Linguistic features in written text (e.g. chat)
have also been used to predict how competent
the authors are with respect to learning and un-
derstanding discussed chat topics. Dascalu et
al. (2014), for instance, assess the competences
of chat participants. To this end, they consider
the number of characters written by a chat user,
speech acts, keywords and the topics. In addi-
tion, social factors are taken into account. The au-
thors generate a social network graph that repre-
sents participants’ behaviors and participants can
be characterized as knowledgeable, gregarious or
passive. The social network is used to compute
metrics such as closeness, graph centrality, be-
tweenness, stress, and eigenvector.

Linguistic features have been used to predict
text-specific attributes (e.g. quality of text) as
well as author-specific attributes. In Kucukyil-
maz et al. (2008) the authors predict user-specific
and message-specific attributes with supervised
classification techniques for extracting informa-
tion from chat messages. User-specific attributes
include, for example, gender, age, educational
background, income, nationality, profession, psy-
chological status, or race. In Kucukyilmaz et al.

477

(2008) a term-based approach is used to investi-
gate the user and message attributes in the context
of vocabulary use and a style-based approach is
used to investigate the chat messages according to
the variations in the authors’ writing styles.

Another kind of author-specific attribute is the
self-confidence of an author. In Fu et al. (2017)
the authors investigate how confidence and com-
petence of discussion participants effect the dy-
namics and outcomes of group discussions. The
results show that more confident participants have
a larger impact on the group’s decision and that the
language they use is more predictive of their con-
fidence level than of their competence level. The
authors use bag of words, number of introduced
ideas, use of hedges (i.e. expressions of uncer-
tainty or lack of commitment) and expressions of
agreement as indicators for confidence.

Berry and Broadbent (1984) investigate the re-
lationship between task performance and the ex-
plicit and reportable knowledge about the task per-
formance (i.e. concurrent verbalization). The re-
sults indicate that practice significantly improves
task performance but has no effect on the ability
to answer related questions. Verbal instructions
of how to do the task significantly improves the
ability to answer questions but has no effect on
task performance. Verbal instructions combined
with concurrent verbalization does lead to a signif-
icant improvement in task performance, whereas
verbalization alone has no effect on task perfor-
mance or question answering. The authors Berry
and Broadbent (1984) use statistical comparisons
of questionnaires.

In Chen et al. (2014), the authors use ma-
chine learning techniques (e.g. logistic regression,
SVM) to assesss medical students’ competencies
in six geriatric competency domains (i.e. medica-
tion management, cognitive and behavioral disor-
ders, falls, self-care capacity, palliative care, hos-
pital care for elders). The medical students’ clini-
cal notes are analyzed and the used linguistic fea-
tures include bag of words, concepts, negation and
semantic type. The authors also use non-linguistic
features such as the number of clinical notes for
the competence assessment.

3 Computing majority votes

Schwamb et al. (2005) assess how competently a
volunteer can identify planetary transits in images.

This is done within the Planet Hunter project1

which is a crowd sourcing project for which volun-
teers classify planet images. A decision tree helps
volunteers in identifying light curves in the im-
ages and the volunteers then mark transit features
visible in the light curve which results in a so-
called transit box. The classifications are stored in
a database and for each entry question in the deci-
sion tree, the time stamp, user identification, light
curve identifier, and response are stored. In addi-
tion, the position of the transit box center, its width
and height are stored. As a gold standard synthetic
transit light curves are used (i.e. labelled images)
where these synthetic transits are mixed into the
images that are not labelled for the volunteers to
classify. In order to identify the most competent
volunteers a weight is assigned based on their ten-
dency to agree with the majority opinion and in
case they classified synthetic light curves on their
performance of identifying transit events. The user
weights’ are assigned in two stages. First, all users
start out equal and then the results of identifying
the synthetic light curves are used to obtain an
initial weighting. For every synthetic light curve
and volunteer classifier it is evaluated how well
the user identified the transit events. If a volun-
teer identified transits correctly her weight is in-
creased and if a volunteer did not mark any syn-
thetic transits (transit box) her weight is decreased.
For all the volunteers who classified non-synthetic
images the competence evaluation is based on ma-
jority opinion. A volunteer’s weight increases if
the volunteer is in line with the majority weighted
vote and is decreased if the volunteer is not in line
with the majority opinion.

One of the major obstacles to our investigation
was that there is no gold standard data available for
the Galaxy Zoo subjects. (A subject is the Zooni-
verse term for a unit that is presented to volunteers
for classification. In the case of Galaxy Zoo, this
is one photo taken by a telescope.) In other words,
we do not know what the correct classification for
the images are. This, in turn, means that there is
no way of computing a gold standard for the com-
petence level of the volunteers, since we cannot
with certainty determine whether they have classi-
fied an image correctly or not.

For these reasons, we had to find a way of es-
timating the competence levels. How best to do
this is not at all obvious. The one approach that

1planethunters.org

478

we have judged possible is to use majority votes,
in essence trusting that most classifications are
correct. This assumption is at least in part justi-
fied by the fact that if it were not true, the whole
Galaxy Zoo project would be pointless. The lack
of gold standard data prevented us from using a
more sophisticated model, where the volunteers
performance on classification tasks with a known
answer is used as an initial weighting, which is
then reinforced by considering majorities on other
classification tasks. Such an approach has been
used in Planet Hunters, another Zooniverse project
(Schwamb et al. (2005)).

In order to explain our approach in detail, we
must first say something about the structure of
the classification tasks the volunteers are presented
with. Each subject is associated with a decision
tree based flow chart of questions. The exact chart
varies slightly depending on which sub-project of
Galaxy Zoo the subject belongs to, but generally,
the volunteers are asked three to five questions for
each subject, where each of the questions follow-
ing the first one depends on the answers to the
previous questions. Since most subjects in the
database have between 10 and 20 classifications,
we determined that computing the majority votes
for a whole subject classification, including all the
questions from the flow chart, would not be ad-
visable, since the answers to the questions after
the first one vary to a surprising degree. We thus
made the pragmatic decision to only consider the
answers to the first question for each subject.

When a volunteer is presented with a subject,
the first question, irrespective of which sub-project
the subject belongs to, is whether the object in the
middle of the photo is a smooth galaxy, a galaxy
with features (a disc, spiral arms, etc.), or looks
like a star or some other artifact. There are thus
three possible answers to the first question. The
first step was therefore to calculate, for each sub-
ject, how many volunteers had given answers 1,
2, and 3, respectively. In order to have a reason-
able amount of data for each subject, we disregard
subjects with fewer than 10 classifications.

The next step was computing a competence
value for each volunteer that had done at least 10
classifications. Here, we again had some design
choices to make. The easiest approach would have
been to simply say that for each subject, the cor-
rect answer is the one that has gotten the most
votes, and then count, for each volunteer, how

many times they had given the correct answer and
dividing this number by the number of classifica-
tions the volunteer had performed. This approach,
however, has serious drawbacks. In the data set, it
is not uncommon to find subjects where no answer
has a clear majority. Consider a case where answer
1 has 12 votes, answer 2 has 10, and answer 3 has
4. Here, it is not clear which answer is actually
correct, and it would be bad to give a “full score”
to the volunteers that had given answer 1 and no
points at all to those that had given answer 2.

Instead, we decided to go by the assumption
that the more other volunteers agree with you, the
more reasonable your answer is. We thus calcu-
lated the competence score for a volunteer as fol-
lows. For each subject that the volunteer has clas-
sified, we divide the number of votes that agree
with the volunteer by the total number of votes,
getting a number in the interval [0, 1]. The score
for the volunteer is then the average of these num-
bers over all subjects the volunteer has classified.
This approach has the benefit of “punishing” a vol-
unteer more severely for an incorrect answer to an
“easy” question, where most other volunteers have
voted for another answer, while being lenient to-
wards false answers to “hard” questions. On the
downside, the users answering the hard questions
correctly, get less credit for this than they deserve.

4 Experimental setup

4.1 Text Analysis and Feature Extraction

We extracted text comments written by 7,839 vol-
unteer. We only targeted those users who clas-
sified at least 10 subjects and discussed at least
one of their classifications in chat text. The
users were divided into three categories of equal
size based on their computed competence levels
on a scale ranging from 0 to 1: low ([0, 0.52]),
medium ((0.52, 0.59]) and high ((0.59, 1]). Hav-
ing an equal number of users in each category
helps to achieve balanced data and in eliminating
bias during the machine learning phase. The raw
data was obtained from Zooniverse Galaxy Zoo as
a database dump. The entire text data contains
around 26,617 sentences with average sentence
length of 5.02. We extracted three types of lin-
guistic features out of the text data: bag-of-words,
syntactic and punctuation marks. The number of
classifications is also included in each feature set
as special feature or meta data.

479

4.1.1 Syntactic feature set

To extract syntactic features the Stanford proba-
bilistic context-free grammar (PCFG) parser was
used Klein and Manning (2003). These features
provide a lot of information about the complexity
of the syntactic structures used by the volonteers.
For each syntactic category, we made a correla-
tion analysis with classification competence. To
this end, we implemented a Java-based program
that reads user texts from the database stored on
the Mongodb server running on a local machine
and makes use of the PCFG model to construct
a syntactic parse or phrase-structured tree for the
texts. The program counts the frequency of syn-
tactic categories/constituent tags occurring within
the tree and then annotates the text with these tag
count information.

The non-leaf nodes in the resulting tree has
three major syntactical categories: lexical cat-
egories, functional categories and phrasal cate-
gories. The lexical categories are the part-of-
speech tags of the leaf nodes that represent con-
tent words that make up the parsed text, for ex-
ample, NN (noun), JJ (adjective), VB (verb), etc.
As the Stanford parser has been trained on the
Penn Treebank, we use the part-of-speech tags and
their notations used in the tree bank to label the
non-leaf nodes as well as to identify categories.
The functional categories contain items responsi-
ble for linking syntactic units, for example, DT
(determiner), IN (preposition), MD (modal), etc.
The phrasal categories represent different type of
phrases within a sentence for which the parse tree
is built, for example, NP (noun phrase), VP (verb
phrase) and AP (adjective phrase), etc. In the syn-
tactic feature set there are 66 numerical attributes
representing the frequency count of syntactic cat-
egories.

We attempted to analyze the correlation be-
tween the syntactic categories count with com-
puted competence values by looking at the corre-
lation coefficient(CC) calculated for each syntac-
tic category as summarized and shown in Figure 1.
The calculated CC values range [−0.05, 0.04], sta-
tistically speaking these values do not show that
there is a strong relationship. The Figure basi-
cally shows three types of relationships between
the syntactic categories and competence according
to the observed CC values: the first type of rela-
tionship is exhibited by the categories laid over the
left-hand side of the X-axis such as JJR (adjective,

comparative), PRP$ (possessive pronoun) and JJS
(adjective, superlative) they are negatively corre-
lated with competence, those concentrated around
the center such as S (simple declarative clause),
PRT (particle) and WP$ (possessive wh-pronoun),
do not seem to have a correlation with competence
and the third type of relationship is exhibited by
the categories close to the right-hand side of the
X-axis such as PRP (personal pronoun), SQ (in-
verted yes/no question) and SBARQ (direct ques-
tion introduced by a wh-word).

4.1.2 Punctuation mark feature set
We also extracted the frequency count of punctu-
ation marks including question mark, period, and
exclamation mark. Special characters such as #
and @ were also included. We also tried to per-
form a correctional analysis between each feature
in the set with competence as we did for the syn-
tactic feature set and we got quite similar results
in terms of the strength of their relationship. In
the punctuation mark feature set there are 7 nu-
merical attributes, that correspond to the selected
punctuation marks.

4.1.3 Bag-of-Words feature set
We used the text analysis package of Rapidminer2

and text-processing Java libraries to extract the
Bag-of-Words (BoW) and punctuation marks fea-
tures respectively. The text analysis involves split-
ting text into sentences, each sentence is further
split into words followed by stemming and part-
of-speech tagging. In the Bag-of-Words feature
set there are 19,689 attributes excluding the tar-
get (label) attribute, i.e competence. Each attribute
has a numerical value that represents the frequency
count of any token in a text.

By taking both an individual feature set
and combination of them, we came up with
6 feature set configurations: Bag-of-Words
(BoW),punctuation marks (Pun), punctuation
marks with Bag-of-Words (Pun+BoW), syntactic,
syntactic with Bag-of-Words (Syn+BoW), and the
combination of BoW, punctuation mark and syn-
tactic (BoW+Pun+Syn).

4.2 Training, Validation and Evaluation
We trained and evaluated three machine learn-
ing classifiers: Decision Trees (DT) with gradient
boosting, Naive Bayes (NB) and k-Nearest Neigh-
bor (KNN). These three methods were also used in

2rapidminer.com

480

Figure 1: The correlation between frequency of the extracted syntactic categories and computed
competence values

a previous study Woldemariam (2017) using Snap-
shot Serengeti data (another Zooniverse project).
As the implementation of these classifiers is avail-
able in Rapidminer Studio, we trained them on the
Galaxy Zoo data set after configuring the model
parameters associated with each classifier.

We adopted the best practices of the machine
learning life cycle that includes randomly sam-
pling and dividing the data into a training set, a
validation (development) set and a test (evalua-
tion) set, deciding the size of each set and bal-
ancing the proportion of examples in each class of
users. According to this, the classifiers are trained
on 80% of the entire text corpus with the selected
feature sets. The remaining 20% is used to eval-
uate the trained models. We set aside 10% of the
training set as a development data set to optimize
model parameters.

4.2.1 Training
The classifiers were trained with the different
feature sets. The feature sets are applied for
each classifier as shown and denoted in the Ta-
ble 1, first, Bag-of-Words (BoW), second, punc-
tuation marks (Pun), third, punctuation marks
with Bag-of-Words (Pun+BoW), fourth, syntactic,
fifth, syntactic with Bag-of-Words (Syn+BoW),
and sixth, the combination of BoW, punctuation
mark and syntactic (BoW+Pun+Syn). Each clas-
sifier is trained 6 times with these 6 feature set
configurations. Thus, in total, 18 (3*6) classifiers

models are produced for the subsequent validation
phase. The training set contains texts from 6,262
unique users.

4.2.2 Validation
As a part of the training phase, we attempted to
answer whether the trained classifiers are statis-
tically significant before we evaluate them. We
performed a null-hypothesis (H0) test, aiming at
checking that the prediction made by the mod-
els is not likely just by random chance. In the
null-hypothesis we assume that the mean accuracy
value before and after testing the models is the
same. However, in principle any effective model
must have a greater mean accuracy after the test-
ing and reject H0.

In statistics there are different ways of testing
the null hypothesis and the most widely used ap-
proach for machine-learning problems associated
with models significance test is a T-test. Basically,
there are two important parameters in the T-test, a
t-value and a p-value. The t-value indicates that
how far the mean of the test sample is from the
known mean (µ0), for example, the accuracy mean
before testing a model, depends on the size(n),
mean (x̄) and the standard deviation(s) of a test
sample as shown in the Equation 1. The p-value
shows how likely the two means are to be equal.
Once the t-value is calculated, the p-value can be
obtained from a T-table by using degrees of free-
dom (df).

481

t =
x̄− µ0

s√
n

(1)

So, we performed the t-test for each model with
the development set. We found that all the models
scored a p-value below 0.001.

4.2.3 Evaluation
The models were evaluated with two equal size
test sets by using accuracy and F-measure metrics.
The first set is from the same domain as the train-
ing set, and the second one is from the Zooniverse
Snapshot Serengeti forum discussion posts.

To be able to use the Snapshot Serengeti data,
we had to overcome the mismatch of the intervals
of the competence scales of the two domains. We
had to use a strategy that allows adapting the way
that the competence scale for the Galaxy Zoo is
divided to label its users to the Snapshot Serengeti
users. In Woldemariam (2017), there are two
scales used to divide the Snapshot Serengeti users,
the first scale divides the user into three groups
(Low, Medium and High) and the calibrated scale
divides the users into five groups (very Low, Low,
Medium, High, very High). Thus, we decided to
use the first scale, as it is closer to the Galaxy Zoo
scale in terms of the number of divisions, though
the intervals between the groups are not exactly
the same.

5 Results

The results of the trained classifiers on the test sets
are summarized in Table 1. We consider two per-
formance metrics: accuracy and F-measure. To
calculate accuracy we take the fraction of true pos-
itive and true negative instances (correctly clas-
sified instances) among the test instances, while
the overall F-measure is computed by macro-
averaging the F-measure values over classes. That
means the harmonic mean of precision and recall
of each class, i.e. the local F-measure of each
class, is calculated, then we take the average value
over classes as an overall F-measure.

The first thing to notice is that the accuracy
scores are low. Since there are three classes in our
data (Low, Medium, and High), a random clas-
sifier would be expected to have an accuracy of
33%. In our tests, the best classifiers achieve an
accuracy of just over 40%. There are, however,
reasons why this is not as negative a result as it
might seem. First, we work with relatively little

data, since most Galaxy Zoo users do not write
comments, and no gold standard data is available.
There is therefore reason to hope that the approach
would yield better results in similar settings, but
where more data is available. Second, for the in-
tended use case, Zooniverse, any result that is sta-
tistically certain to be better than random is useful.
Zooniverse needs a better understanding of their
volunteers, both when evaluating the results from
classification tasks and in order to learn how to en-
courage and educate the volunteers. Our classifi-
cation methods can be combined with other user
data to generate such knowledge.

Another interesting aspect is that the results
for Snapshot Serengeti are not significantly worse
than those for Galaxy Zoo, which indicates that
the approach generalizes and can be deployed for
other projects as well.

Analyzing the data in more detail, the k-Nearest
Neighbors (KNN) classifier performs best over-
all and in particular when syntax is not involved.
When using syntax, it is slightly worse and is
sometimes outperformed by the Decision Trees
(DT) classifier. It is also interesting that on the
Galaxy Zoo data, the best performance (KNN on
BoW and PunMM and DT on Syn) are seen when
classifiers use only one of the three feature sets.
Combining the sets seem to muddy the waters. A
partial explanation for this could be that BoW has
so many more features than the other two sets.

We also note that the performance of DT and
KNN are so similar that we cannot, based on our
tests, confidently say that one is a better choice
than the other for this task.

The Naive Bayesian (NB) classifiers generally
performed the poorest. One potential reason for
this is that KNN and DT have flexible model pa-
rameters, such as k for KNN and the number and
depth of the trees for DT. These values were noted
to greatly impact the prediction accuracy during
the validation phase. For example, by varying the
value of k of KNN model, we achieved about 5%
increase in accuracy. Varying the values of the pa-
rameters of the kernel-based NB did not help very
much in the improvement of its performance.

We also observe that Punctuation mark (PunM)
feature set gives the best accuracy value of 40.32%
and F-measure value of 40.05%, in this case the
Galaxy Zoo test set is used. Generally, accord-
ing to the evaluation and comparison performed on
this test set, the feature sets or their combinations

482

Table 1: Models Evaluation and Comparison Results, the All(3) column is equivalent with
BoW+PunMM+Syn

Metric Domain Classifier
Feature set

BoW PunMM PunMM+BoW Syn Syn+BoW All(3)

Accuracy
(in %)

Galaxy
Zoo

DT 39.55 39.49 38.85 39.74 39.55 39.55
NB 38.08 37.64 37.32 38.27 38.27 38.27

KNN 40.06 40.32 40.00 39.30 39.23 39.11

Snapshot
Serengeti

DT 39.30 38.66 39.04 38.85 39.30 40.19
NB 37.70 37.44 37.83 37.64 37.64 37.96

KNN 40.26 39.94 39.74 40.26 40.19 39.87

F-
measure
(in %)

Galaxy
Zoo

DT 38.79 39.17 38.25 39.37 38.79 38.79
NB 37.36 36.76 34.87 37.49 37.49 37.49

KNN 39.85 40.05 39.68 38.74 38.68 38.47

Snapshot
Serengeti

DT 34.42 36.89 38.19 35.21 34.42 30.53
NB 37.68 37.61 37.61 37.63 37.63 38.10

KNN 38.08 37.16 36.87 37.45 37.41 36.72

used in study can be put in this order based on
their relative influence on the prediction of com-
petence from text: PunMM, BoW, PunMM+BoW,
Syn, Syn+BoW or BoW+PunMM+Syn. The rank-
ing changes a bit when the Snapshot Serengeti
test set is used for the evaluation i.e. BoW,
Syn, Syn+ BoW or BoW+PunMM+Syn, PunM,
PunM+BoW. This ranking style compares the fea-
ture sets based on their impact on a single best
classifier among the three (DT, KNN and NB).
There are other ways of ranking the feature sets
that consider the average performance of all the
three instead concerning both accuracy and F-
measure.

We also tried to analyze how the Punctuation
mark, the syntactic features and their combination
affect of the performance of the classifiers over the
Bag of Words features. Regardless the domains of
the test sets involved in the evaluations, we ob-
serve that the performance of NB (BoW based)
is improved by adding syntactic and punctuation
marks features. Likewise, the DT (BoW based) is
affected by adding syntactic and the combination
of syntactic and punctuation mark features.

6 Discussion

The approaches used in this study, from user com-
petence calculation to machine learning tasks, can
be improved or possibly yield different results
with alternative strategies proposed in the follow-
ing paragraphs.

The most obvious approach is to use data la-

beled by domain experts. For Galaxy Zoo, such
data is not available, but we could consider other
possibilities, such as a semi-supervised bootstrap-
ping method if we had a small amount of la-
beled data. Semi-supervised bootstrapping meth-
ods have been effective in various text analysis
problems, such as topic and sentiment-based text
classification Zhou et al. (2013). In competence
estimation, to reduce dependency on majority vot-
ing, we train a classifier on a small dataset labeled
by experts sampled from the training corpus. We
then use the classifier to label the remaining un-
labeled samples in the training corpus and retrain
the classifier iteratively until we reach certain stop
criteria.

Feature wise, in addition to the selected feature
sets, we could use more features such as univer-
sal dependencies, character n-gram, bag-of-topics.
The syntactic feature set extracted can be further
enriched with features extracted using a depen-
dency parsing to describe and represent the syntac-
tic structure of users text better. Dependency pars-
ing captures the dependency relationships between
syntactic units/words and has been used to im-
prove the accuracy of text classification tasks Nas-
tase et al. (2006). As a part of improving our re-
search results, we have also carried out prelimi-
nary experiments on a character n-gram and bag-
of-topic features, where we describe a user text
with topic words extracted using a topic modeling
technique. We found that both types of features
improve the accuracy of the trained models to a
certain degree.

483

Finally, using multiple metadata information
about users from other external data sources, for
example, capturing their participations in either
other seasons of the Galaxy Zoo project or other
projects of Zooniverse, may help to better model
the users competence.

References

D. C. Berry and D. E. Broadbent. 1984. On the re-
lationship between task performance and as-
sociated verbalizable knowledge. The Quar-
terly Journal of Experimental Psychology,
Section A. 36(2):209–231.

H. Chen and B. He. 2013. Automated essay scor-
ing by maximizing human-machine agree-
ment. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 1741–
1752.

Y. Chen, J. Wrenn, H. Xu, A. Spickard, R. Haber-
mann, J. Powers, and J. D. Denny. 2014.
Automated assessment of medical students?
clinical exposures according to aamc geri-
atric competencies. In AMIA Annual Sym-
posium Proceedings Archive, 375–384.

M. Dascalu, E-V. Chioasca, and S. Trausan-Matu.
2008. ASAP–an advanced system for as-
sessing chat participants. In AIMSA: Inter-
national Conference on Artificial Intelli-
gence: Methodology, Systems and Appli-
cations, volume 5253 of Lecture Notes in
Computer Science. Springer. 58–68.

Y. Woldemariam 2017. Predicting competence
from text. In Proceedings of The 21st World
Multi-Conference on Systemics, Cybernet-
ics and Informatics (WMSCI), 147–152.

L. Fu, L. Lee, and C. Danescu-Niculescu-Mizil.
2008. When confidence and competence
collide: Effects on online decision-making
discussions. In Proceedings of the 26th In-
ternational Conference on World Wide Web,
WWW ?17, 1381–1390.

D. Klein and C.D. Manning. 2003. Accurate un-
lexicalized parsing. In Proceedings of the
41st Meeting of the Association for Compu-
tational Linguistics, 423–430.

T. Kucukyilmaz, B. Cambazoglu, C. Aykanat, and
F. Can. 2008. Predicting user and message
attributes in computer-mediated communi-
cation. Information Processing and Man-
agement, 44(4):1448–1466.

D.S. McNamara, S.A. Crossley, and P. M. Mc-
Carthy. 2010. Linguistic features of writing
quality. Written Communication, 27(1):57–
86.

D. Pérez, A. M. Gliozzo, C. Strapparava, E. Alfon-
seca, P. Rodríguez, and B. Magnini. 2005.
Automatic assessment of students? free-
text answers underpinned by the combina-
tion of a bleu-inspired algorithm and latent
semantic analysis. In Proceedings of the
Eighteenth International Florida Artificial
Intelligence Research Society Conference,
Clearwater Beach, Florida, USA, 358–363.

M. E. Schwamb, C. J. Lintott, D. A. Fischer, M.
J. Giguere, S. Lynn, A. M. Smith, J. M.
Brewer, M. Parrish, K. Schawinski, and R.
J. Simpson. 2012. Planet hunters: Assessing
the kepler inventory of short-period planets.
The Astrophysical Journal, 754(2):129.

V. Nastase, J. Shirabad, and M. Caropreso. 2006.
Using Dependency Relations for Text Clas-
sification. Proceedings of the 19th Cana-
dian Conference on Artificial Intelligence,
12–25

Y.Haralambous, Y. Elidrissi, and P. Lenca. 2014.
Arabic Language Text Classification Using
Dependency Syntax-Based Feature Selec-
tion. Proceedings of the 19th Canadian
Conference on Artificial Intelligence

G. Zhou, J. Li, D. Zhao, and Y. Feng. 2013. Semi-
supervised Text Categorization by Consid-
ering Sufficiency and Diversity . Natural
Language Processing and Chinese Comput-
ing., 105–115.

484

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 485–494

Neural Morphological Disambiguation Using Surface and
Contextual Morphological Awareness

Akhilesh Sudhakar
IIT (BHU), Varanasi, India
akhileshs.s4@gmail.com

Anil Kumar Singh
IIT (BHU), Varanasi, India

nlprnd@gmail.com

Abstract

Morphological disambiguation, partic-
ularly for morphologically rich lan-
guages, is a crucial step in many NLP
tasks. Morphological analyzers provide
multiple analyses of a word, only one of
which is true in context. We present
a language-agnostic deep neural sys-
tem for morphological disambiguation,
with experiments on Hindi. We achieve
accuracies of around 95.22% without
the use of any language-specific fea-
tures or heuristics, which outperforms
the existing state of the art. One con-
tribution through this work is build-
ing the first morphological disambigua-
tion system for Hindi. We also show
that using phonological features can
improve performance. On using phono-
logical features and pre-trained word
vectors, we report an accuracy of
97.02% for Hindi.

1 Introduction
Morphologically inflected words are derived
from a root by modifying it (e.g., by apply-
ing prefixes, suffixes and infixes) based on lin-
guistic features (manifested as the inflection
tagset). Morphological analysis involves ex-
tracting this root word and the set of features
that describe the inflected form. These anal-
yses contain syntactic and semantic informa-
tion about inflected words. Table 1 shows an
example for the Hindi word ‘पूरे’ [pUre]1. Ex-
isting morphological analyzers typically work
in isolation, meaning that they generate multi-
ple analyses of a word, purely based on surface
structure. For many NLP tasks like machine

1We use the Roman notation popularly known as
WX for representing Hindi words

translation and topic modeling, however, it is
essential to know which morphological analy-
sis is correct in the context of the sentence.
Morphological disambiguation aims to solve
this problem. The task of disambiguation is
non-trivial and is complicated by the depen-
dencies of the correct analysis on the surface
structure of the inflected word, on the surface
structures of the neighboring words, and on
the analyses of neighboring words.

We present a deep neural morphological dis-
ambiguation system that leverages context in-
formation as well as surface structure. While
we have experimented on Hindi in our work,
we report accuracies without employing any
language-specific features to show that our
system can generalize across different lan-
guages. We also show performance boost by
using phonological features and pre-training of
word vectors. To the best of our knowledge,
this is the first ever non-naive morphological
disambiguation system to be built for Hindi.

Like other Indo-Aryan languages, Hindi is
morphologically rich and a word form may
have over 40 morphological analyses (Goyal
and Lehal, 2008). Though the inflectional
morphology of Hindi is not agglutinative, the
derivational suffixes are. This leads to an ex-
plosion in the number of inflectional root forms
(Singh et al., 2013). One of the reasons for
our focus on Hindi is that it has a wide cov-
erage of speaking population, with over 260
million speakers across 5 countries2 and is the
fifth most spoken language in the world3. We
present four neural architectures for this task,
each different from the others by the nature
of context information used as disambiguating

2https://www.ethnologue.com/statistics/size
3The exact rank may be a matter of debate due to

the socio-linguistic scenario in South Asia, with some
surveys claiming it to be even more popularly spoken.

485

Root Category Gender Number Person Case TAM Suffix
pUrA adj m sg - o - -
pUrA adj m pl - d - -
pUrA adj m pl - o - -
pUrA n m pl 3 d 0 0
pUrA n m sg 3 o 0 0
pUra v any sg 2 - ए e
pUra v any sg 3 - ए e
pUra v m pl any - या yA

Table 1: Morphological analyses of the word `पूरे' [pUre] (A ‘-’ indicates that the feature is not
applicable and an ‘any’ indicates that it can take any value in the domain for that feature)

evidence. We assess our results by implement-
ing an existing state-of-the-art system (Shen
et al., 2016) on our Hindi dataset. Our system
outperforms this state-of-the-art system.

2 Related Work

There is very little directly corresponding pre-
vious work on morphological disambiguation
and it cannot be formulated in the same way
as POS tagging. This is because the number
of classes is fixed in POS tagging, whereas it
is variable in our problem. Still, since part
of speech (POS) tagging is a closely related
task, the work on POS tagging can also pro-
vide useful insights. However, morphological
disambiguation is a harder task to perform
than POS tagging. The earliest approaches
to POS tagging were rule-based (Karlsson et
al. (1995), Brill (1992)) and required a set of
hand-crafted rules learnt from a tagged cor-
pus. More recently, Kessikbayeva and Ci-
cekli (2016) present a morphological disam-
biguation system using rules based on disam-
biguations of context words.

Statistical approaches are also used for mor-
phological disambiguation. Hakkani-Tür et
al. (2000) propose a model based on joint con-
ditional probabilities of the root and tags. Sak
et al. (2007) use a perceptron model, while
other statistical models use decision trees as
by Görgün and Yildiz (2011). Hybrid ap-
proaches have also been tried, with Orosz and
Novák (2013) using an approach combining
rule-based and statistical approaches, to prune
grammar-violating parses.

The use of deep learning for morphologi-
cal disambiguation, has been explored. Straka
and Straková (2017) build a neural system for
tasks such as sentence segmentation, tokeniza-
tion and POS tagging. Plank et al. (2016)

build a multilingual neural POS tagger. While
we draw insights from works on tasks such
as POS tagging, we bear in mind that POS
tagging and morphological disambiguation are
significantly different. Morphological disam-
biguation is more complex because it works
with multiple categories and not just part-
of-speech. This introduces sparseness in the
model, as well as considerations of whether
the different categories are dependent on each
other, on how to combine classifiers for each
category, etc. The number of analyses for a
word also varies.

Yildiz et al. (2016) propose a convolu-
tional neural net architecture, which takes
context disambiguation into account. Shen
et al. (2016) use a deep neural model with
character-level and well as tag-level LSTMs to
embed analyses. Our work shares certain as-
pects in common with theirs but is different in
many ways. We experiment on Hindi (which
has significantly different morphological prop-
erties from the three languages they explore),
use different neural structures, show the effect
of language specific phonological features and
study the impact of unsupervised pre-training
of embeddings under different settings. Fur-
ther, as mentioned earlier, we consider their
results to be state-of-the-art because theirs is
a language-agnostic system which gives state-
of-the-art results on all 3 languages they have
experimented on. We show that our model
gives better performance than an implemen-
tation of their best model on Hindi.

3 Neural Models

We present four models for morphological
disambiguation. Some aspects are common
among them. They all use a deep neural net-
work, which, given the current word in con-

2
486

sideration and one of the candidate morpho-
logical analyses of the word, acts as a binary
true/false classifier. A final softmax layer out-
puts probabilities for correct and incorrect,
based on whether the candidate analysis is cor-
rect or not. An ideal classifier would predict
the probability of correct as 1 and incorrect
as 0 for the correct morphological analysis of
the word. As is usual in word sense disam-
biguation, we make the ‘one sense per colloca-
tion’ assumption (a word in a particular con-
text has only one correct morphological anal-
ysis), with which our dataset is in accordance.
The choices of neural architectures used by us
are influenced by the findings in the work of
Heigold et al. (2016), in which the authors con-
clude that on morphological tagging tasks, dif-
ferent neural architectures (CNNs, RNNs etc.)
give comparable results, and careful tuning of
model structure and hyperparameters can give
substantial gains. We also draw insights from
their work on augmenting character and word-
level embeddings.

3.1 Terminology Used
For each of ‘category’, ‘gender’, ‘number’,
‘person’, ‘case’, ‘TAM’ and ‘suffix’, we use the
term ‘feature’. We call each of the values of a
feature for a particular word, a ‘tag’. For in-
stance the feature ‘gender’ can have tags ‘M
(male)’, ‘F (female)’ and ‘N (neuter)’. The
root and the tagset together make up a mor-
phological analysis for a word. We use the
term ‘candidate analysis’ to refer to each
of the morphological analyses generated by the
analyzer for a given word.

3.2 Broad Basis for the Architectures
We first establish an intuitive and statistical
foundation to justify our decision choices in
building the deep neural network. We extract
dependencies between roots and features from
the work by Hakkani-Tür et al. (2000), noting
that the assumptions used for Turkish by the
authors hold good for Hindi too. We also ob-
tain surface-information-related dependencies
from the work by Faruqui et al. (2016). The
following is the full set of extended dependen-
cies:

• Dependency #1: The root of a word
depends on the roots as well as the fea-

tures of all previous and following words
in the window

• Dependency #2: Each feature of a
word depends on the roots and the fea-
tures of all previous and following words
in the window

• Dependency #3: Each feature of a
word depends on the root of the current
word, as well as all other features of the
current word

• Dependency #4: The root and each
feature of a word depend on the surface
form of the word

• Dependency #5: The root and each
feature of a word depend on the surface
forms of the word as well as those of all
previous and following words in the win-
dow.

In all these four models, the following network
components are also consistent.

Figure 1: Architecture for the word surface
vector. ‘i’ indicates the ith input word.

3.3 Word Input
Word inputs to the network are embedded at
two levels. A word embedding vector is gener-
ated using the word as a whole. Each charac-
ter in the word is also embedded in a character
embedding vector and these character embed-
dings are fed, in sequence, to a bidirectional
GRU. The output vector of the GRU and the

3
487

word embedding vector are concatenated to-
gether to form the ‘word surface vector’
that takes into account surface features of the
word. The part of the network that generates
the word surface vector is shown in Figure 1.

The character-level GRU allows for captur-
ing of surface properties of a word, and takes
into account Dependency #4 (section 3.2).
We obtain marginal accuracy gains (of around
0.1%) by using a GRU instead of an LSTM at
the character-level.

3.4 Candidate Analysis Input
Candidate analysis inputs to the network are
treated as two inputs: the root word and rest
of the tags. The root is treated in the same
exact fashion as the word inputs (for the same
reasons mentioned in the above section) with
the only difference being that all words share a
common embedding layer, while all roots share
a separate common embedding layer. Conse-
quently, a corresponding ‘root surface vec-
tor’ will be generated as described for each
root input. Tagsets are represented as binary
vectors, with positional encoding. The root
surface vector and all the tag encodings are
treated as a sequence and fed as input to a
bidirectional LSTM. This design choice, in-
cluding the bidirectionality, has been made to
address Dependency #3 (section 3.2). We call
the output vector of this LSTM, the ‘root fea-
tures sequence vector’. The part of the
network architecture that generates the root
features sequence vector is shown in Figure 2.

3.5 Hyperparameters and Training
All GRUs and LSTMs have a hidden layer size
of 256, and deep GRUs and LSTMs have a
depth of 2 layers. Deep convolutional net-
works have a filter width of 3, hidden layer
size of 64 and depth of 3 layers. The model
can run for 10,000 epochs but we make use of
early stopping with a patience of 10 epochs
in order to keep the generalization error in
check. This is a validation-based early stop-
ping on the development set. The word and
root embedding layers have a dimension of
100, while the character embedding layer has
a dimension of 64. All models use the categor-
ical cross-entropy loss function and the Adam
optimization method as proposed by Kingma
and Ba (2014). The sequence of words in each

Figure 2: Network architecture for generating
the root feature sequence vector. The sub-
script i indicates the morphological features
of the ith input word. These might be candi-
date analyses or correct analyses, depending
on where (training or testing) they are used in
other figures.

sentence act as a mini-batch during training.
The best model is saved for predictions on the
test data.

3.6 Baseline Model
As mentioned earlier, since there does not ex-
ist a non-naive state of the art system for
Hindi, we use a low baseline model that picks
one candidate analysis at random and predicts
this to be the correct morphological analy-
sis for the given word. This4 is the default
for building several machine translation (MT)
systems, such as the Sampark5 system, for In-
dian languages. The most that is currently
done for these MT systems is to apply some
agreement based rules6. Proper evaluation of
these modules may be needed, but it is beyond
the scope of this paper. It must be mentioned
here that the baseline we have picked is a weak
baseline. However, we have done so for a cou-
ple of reasons. Firstly, we compare our results
to the state-of-the-art system mentioned ear-
lier and show performance gain. Therefore it
is not a case of inflation of results using a weak

4The so called ‘pick one morph’ module.
5http://sampark.org.in
6The ‘guess morph’ module.

4
488

baseline. Secondly, we have presented 4 mod-
els which show a gradation of performance on
this task (as shown in Table 5). Thirdly, the
baseline presents the case when absolutely no
character, word or context-level information is
available to the model. We believe that since
we study the impact of each of these kinds
of knowledge on the models’ performance, we
must also study the case when none of this
knowledge is available.

3.7 Model 1
This model solely relies on the surface infor-
mation of the current word to make predic-
tions about its morphological analysis. Given
a current word and the root and tags of the
candidate analysis, the model uses only the
word surface vector (section 4.2) with the root
features sequence vector (section 4.3) of the
candidate to make predictions. Figure 3 shows
the exact structure of the network used.

Figure 3: Structure of Model 1. The subscript
‘0’ indicates the current word. P(T) and P(F)
indicate probability of True and False respec-
tively.

3.8 Model 2
This model makes use of not only the current
word’s surface information but also the surface
information of all words in a window which has
4 words to the left and 4 words to the right of
the current word in the sentence. (We exper-
iment with values from 2 to 6). Building the
model this way accounts for Dependency #5
(section 3.2). This model uses out-of-sentence
tokens too, to ensure that words towards the

beginning and end of the sentence also have a
full window. The word surface vectors (section
4.2) of all the words in this window, along with
the root features sequence vector (section 4.3)
of the candidate are fed into a bidirectional
LSTM in this model. Figure 4 shows the ex-
act network structure used.

Figure 4: Model 2. The subscript ‘0’ indi-
cates the current word, the subscript ‘-m’ rep-
resents any word in the left context of the cur-
rent word and the subscript ‘+m’ represents
any word in the right context of the current
word. P(T) and P(F) indicate probability of
True and False respectively.

3.9 Model 3
This model makes use of not only the current
word’s surface information and the surface in-
formation of all words in a window which has
5 words to the left of the current word in
the sentence, but also the correct morpho-
logical annotations of the words in this left-
context. This model partially accounts for
Dependency #1 and Dependency #2 (section
3.2). The word surface vector (section 4.2) of
each word is concatenated with the root fea-
tures sequence vector (section 4.3) of the word
to give a ‘complete vector’. Complete vectors,
each concatenated with their own convolutions
are fed as inputs to a deep LSTM. Model 3
uses the network structure shown in Figure 5,
except that Figure 5 shows the model using

5
489

the current word’s left and right context, while
Model 3 uses only its left context.

Figure 5: Model 4. Model 3 also has a sim-
ilar configuration except for the context of
the current word. The subscript ‘0’ indicates
the current word, the subscript ‘-m’ represents
any word in the left context of the current
word and the subscript ‘+m’ represents any
word in the right context of the current word.
P(T) and P(F) indicate probability of True
and False respectively.

3.10 Model 4
Model 4 is similar to Model 3, except that this
model makes use of surface information and
correct morphological annotations of not only
words to the left but also to the right of the
current word. The complete window for the
current word has 4 words to the left and 4
words to the right of it. (We experiment with
values from 2 to 6). This model takes into ac-
count all the dependencies mentioned in sec-
tion 3.2. Figure 5 shows the network structure
for Model 4.

It must be mentioned here that Model 3
and Model 4 are slightly complex due to the
presence of a CNN and further concatenation
of the convolved inputs with the original in-
puts. We have conducted experiments on sim-
pler versions of Model 3 and Model 4 but with
poorer results (an average drop in accuracy of

1.2%). An elaborate discussion of these re-
sults is not possible due to space constraints.
Specifically, we used the same context as used
in these two models but did not use the inter-
mediary CNN in these simpler experiments.
The reasons for the performance improvement
upon using a CNN could be that CNNs have
proved to be particularly useful for classifica-
tion tasks on data that has the property of lo-
cal consistency. This is evident from previous
work on using CNNs for similar classification
tasks such as those by Collobert et al. (2011),
Yildiz et al. (2016) and Heigold et al. (2016).
Well-formed sentences of any language (Hindi,
in our case) display local consistency because
they have a natural order, with context words
forming abstractive concepts/features. Hence,
a CNN was an intuitive choice for our task.

4 Experimental setup

4.1 Dataset
We use a manually annotated Hindi Depen-
dency TreeBank7, which is part of the Hindi-
Urdu Dependency TreeBank (HUTB)8 as the
source of the correct morphological analysis
of words in the context of their sentences.
The treebank annotates words from sentences
taken from news articles and textual conversa-
tions. Each word in every sentence of the tree-
bank is annotated with the correct morpholog-
ical analysis. We use a morphological analyzer
for Hindi9, which was developed earlier, but
is now used for the Sampark MT system and
other purposes. We use it to generate the dif-
ferent possible morphological analyses for each
word (in isolation) in the treebank. For each
word in the treebank, the candidate analysis
matching the word’s treebank-annotated mor-
phological analysis is labeled as true while all
other candidate analyses are labeled as false.
In the entire dataset, we ensure that out of
all the candidate analyses of a word, there is
one that matches the treebank annotation for
that word. Table 2 provides specific statistics
about the dataset used. Table 3 describes the
features of a morphological analysis as well as
provides the domain of possible tags (values)
for each feature.

7http://ltrc.iiit.ac.in/treebank_H2014
8http://verbs.colorado.edu/hindiurdu
9http://sampark.iiit.ac.in/hindimorph

6
490

Attribute Count
Total words 298,285
Unique words 17,315
Manual additions of 115432

treebank annotation
Ambiguous words 179,453
Unambiguous words 118,742
Sentences in treebank 13,933
Mean sentence length 21.40
Mean morphological

analyses per word 2.534
Mean morphological analyses

per ambiguous word 3.550
Standard deviation of morpho-

-logical analyses per word 1.620
Maximum morphological

analyses for a word 10

Table 2: Dataset statistics

Feature List of possible tags
name

Root Not fixed
Category Noun(n), Pronoun(pn), Adjective(adj)

verb(v), adverb(adv)
post-position(psp), avvya(avy)

Gender Masculine(m), Feminine(f),
Neuter(n)

Number Singular(sg), Plural(pl), Dual(d)
Person 1st Person(1), 2nd Person(2),

3rd Person(3)
Case Direct(d), Oblique(o)
TAM है,का,ना,में,या,या1,से,ए,

कर,ता,0,था,को,गा,ने
Suffix kA,e,wA,WA,yA,nA,ko,ne,

0,kara,gA,yA1,meM,se,hE

Table 3: Domain of tags (values) for each fea-
ture. The tag ‘TAM’ denotes the tense, aspect
and modality marker.

We would like to mention here that since
our system is built to pick the correct analysis
from the morphological analyses generated by
the analyzer, it assumes that every word has
a set of candidate analyses. In the context of
our task, it is not relevant to discuss the case
when the morphological analyzer itself fails to
provide candidate analyses.

Table 4 shows the number of ambiguous
words and the total number of words used
for training, development and testing. The
test set is held-out and is used solely for re-
porting final results. The development set is
used to validate and tune model hyperparam-
eters. During testing, the model is provided
with only the different candidate morpholog-
ical analysis outputs from the morphological
analyzer, for each word. The correct analyses
(also referred to as annotations in the follow-

Phase Ambiguous Words Total Words
Training 149,540 248,572
Development 11,963 19,885
Testing 17,950 29,828

Table 4: Word counts in training, development
and test splits

ing section) provided by the treebank for each
word are used to calculate the reported accu-
racies.

4.2 Methods of Testing
Models that use morphological analyses of the
context words (Models 3 and 4) have access to
correct annotations of these contexts during
training and validation but not during test-
ing. During testing, in order to provide ‘cor-
rect annotations’ of words in the context of
a word, to these models, we use Model 2 or
Model 3. This is because Model 2 does not
itself use context annotations and Model 3 it-
self uses only left context annotations (it can
hence, predict the correct morphological anal-
ysis for each word in the test data from left to
right, treating the predictions of the previous
words as the correct annotations of the left-
context of the words that occur next). How-
ever, in the case where Model 3 is being used
as the test set annotator, a strategic choice has
to be made for annotation. A greedy strategy
would pick the morphological analysis with the
highest softmax probability of being the cor-
rect annotation and annotate the word with
this annotation. However, the greedy strat-
egy fails if the model makes mistakes towards
the start of a sentence or performs poorly on
only some types of words, because these errors
propagate to every consecutive word and get
compounded. In order to avoid these kinds of
errors, we use a beam search with width 10
for pre-annotating the test set in the case of
context-based models.

5 Results and Analysis

Table 5 presents performance accuracies of dif-
ferent models and with different methods used
to annotate test data in the cases where an
initial pre-annotation of test data is needed,
as discussed in the previous section. As men-
tioned before, model accuracy is calculated by
comparing each trained model’s predictions on

7
491

Model Pre-testing Accuracy on Accuracy on
Test Data Ambiguous All Words

Annotation Words
Model

Baseline NA 29.40 38.43
S-O-T-A S-O-T-A 90.13 92.06
Model 1 NA 80.21 83.96
Model 2 NA 87.35 89.18
Model 3 Treebank 93.82 96.17
Model 3 Model 2 89.40 93.35
Model 3 Model 3 91.23 94.90
Model 4 Treebank 94.77 97.59
Model 4 Model 2 90.41 94.74
Model 4 Model 3 92.65 95.22

Table 5: Performance of different models (all
accuracies are percentages). S-O-T-A stands
for state-of-the-art, which is the full-context
model of Shen et al. (2016). The accuracy
gain we have achieved over S-O-T-A is 2.8%
on ambiguous words and 3.43% on all words.

the test data with the correct analyses from
the treebank data, regardless of which model
was used for the initial test annotation (if any).
The standard measure for accuracy is used:

of correct disambiguations
total # of words in test set

For practical purposes, the best performing
system is the last row in Table 5, i.e., in which
Model 4 uses Model 3 for pre-annotating the
test set (though the 7th row has the highest
accuracy, we cannot assume treebank anno-
tations on the test data as well). Table 5
also presents the results of using the exist-
ing state of the art (S-O-T-A) model on our
Hindi dataset. We have used the best perform-
ing model (on our Hindi dataset) proposed by
Shen et al. (2016), the full-context model, as
the state of the art. The accuracy gain we
have achieved over state of the art is 2.8% on
ambiguous words and 3.43% on all words.

We suggest possible reasons for the observed
performance behavior in table 5. Typologi-
cally, Hindi is a Subject-Object-Verb, head-
final language and uses post-positional case
marking. This means that on an average,
words show disambiguation dependencies on
the words following them. However, there is
also disambiguation evidence for a word to be
gained from its left context. For instance, ad-
verbs usually occur before (to the left of) the
verb or object they refer to. Similarly, relative
clauses, adjectives and articles are written be-
fore the noun they refer to. Model 4 uses the

morphological analyses of the right-context of
a word as well as the left context and hence
is able to leverage information from both pre-
ceding and following words. Hence it is able
to achieve better performance than Model 3.
Models 2 and 1 do not leverage evidence about
the morphological analysis of the words in the
window and perform worse than the other two
models. This shows (as is also quite intuitive)
that the morphological analysis of the context
is far stronger evidence in disambiguating a
word, than just the surface forms of the words
and its context. Model 2 performs better than
Model 1 as it has access to the surface forms of
the surrounding words, which in turn provide
some level of knowledge about their inflected
properties.

From control experiments, we conclude that
our gain over the state of the art is due to
factors that include careful tuning of hyper-
parameters, increasing model complexity and
leveraging the strength of combining models.
At the end of section 3.10, we have already
described the advantage of using a CNN. The
existing state of the art does not leverage this
advantage. Further, in allowing Model 3 to
pre-annotate the test data, we have allowed
our full-context model to take advantage of the
strengths of a left-to-right model, which is also
something that the existing state of the art
does not explore.

5.1 Language-specific Enhancements
While the reported results in Table 5 are
obtained without using pre-training of word
vectors or phonological features, we also ex-
perimented with using these enhancements.
We present results on the experimental setup
where we train using Model 4 and pre-
annotate the test set using Model 3. All per-
formance improvements are reported as those
obtained over and above the performance of
this particular experiment setup.

5.1.1 Pre-training of Word Vectors
We pre-trained word embeddings using the
word vector representation methods proposed
by Bojanowski et al. (2016). This method
makes use of an unsupervised skip-gram model
to generate word vectors of dimension 100.
We used an augmented corpus comprising of
Wikipedia text dump for Hindi, as well as

8
492

Model Accuracy Accuracy
gain over

Baseline (%)
Baseline 38.43 0
Model 4 95.22 147.74
Model 4 +

Pre-training 96.64 151.47
Model 4 +

Phonological Features 96.04 149.91
Model 4 +

Pre-training +
Phonological Features 97.02 152.46

Table 6: Performance with language-specific
enhancements

the collection of news articles and conversa-
tions that the Hindi treebank annotated words
come from. Using vector pre-training gave us
an accuracy improvement of 1.42%. One of
the main reasons for the performance boost
obtained during pre-training could perhaps
be that the pre-trained word vectors capture
syntactic and morphological information from
short neighbouring windows.

5.1.2 Use of Phonological Features
Morphology interacts closely with phonology
and there is ample work on the phonology-
morphology interface (Booij, 2007). It is quite
intuitive, therefore, to use phonological fea-
tures (Chomsky and Halle, 1968) for a mor-
phological problem. Besides, Hindi is written
in the Devanagari script, in which the map-
ping from letters to phonemes is almost one to
one. Each letter can therefore be represented
as a set of feature-value pairs, where the fea-
tures are phonological features such as type
(whether consonant or vowel), place, manner
etc. (Singh, 2006). This is true for almost
all languages that use Brahmi-derived scripts.
Phonological features are incorporated into
the model by concatenating them with the
character-level embeddings for words. We ob-
serve a performance enhancement of 0.82%
upon using these phonological features.

Employing pre-training as well as phonolog-
ical features boosted our model’s performance
from 95.22 % to 97.02%. These enhanced re-
sults are summarized in Table 6.

6 Future Work
We plan to test all our models on different lan-
guages and analyze which models perform best
on each language and hope to be able to cor-

relate these results with the linguistic phono-
morphological properties of the languages. We
will also try out this model in the Sampark10

machine translation system to evaluate the ef-
fect it has on translation.

Recently, an attention-based machine trans-
lation model was proposed by Bahdanau et
al. (2014) that defines a selective context
around a word rather than a fixed window for
all words. Models 3 and 4 can be modified
to use an attentional mechanism based on the
context words’ positional and morphological
properties. This would allow these models to
increase their range of information-capturing
across words in the sentence, without losing
information due to propagation in a recurrent
unit running across a large window. Experi-
ments have been done in the past for morpho-
logical disambiguation using Conditional Ran-
dom Fields (CRFs). It might be interesting to
see the hybrid use of CRF models with the
models we propose.

7 Conclusion

We propose multiple deep learning models for
morphological disambiguation. We show that
the model that makes use of morphological
information in both the left and right con-
text of a word performs best on this task, at
least in the case of Hindi. We also study the
effect of different context settings on model
performance. The differences in performance
obtained using these different context set-
tings, we believe, follows from the typological
and morphological properties of the language.
Hence, we also believe that different languages
may work better with different models that
we propose. The use of phonological features
enhances the quality of predictions by these
models, at least in the case of Hindi.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-

10https://sampark.iiit.ac.in/sampark/web/
index.php

9
493

tors with subword information. arXiv preprint
arXiv:1607.04606.

Geert Booij. 2007. The interface between morphol-
ogy and phonology. Oxford University Press.

Eric Brill. 1992. A simple rule-based part of speech
tagger. In Proceedings of the Third Conference
on Applied Natural Language Processing, ANLC
’92, pages 152–155, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Noam Chomsky and Morris Halle. 1968. The
Sound Pattern of English. Harper & Row, New
York.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. 2011. Natural language processing (al-
most) from scratch. Journal of Machine Learn-
ing Research, 12(Aug):2493–2537.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig,
and Chris Dyer. 2016. Morphological inflection
generation using character sequence to sequence
learning. In Proc. of NAACL.

Onur Görgün and Olcay Taner Yildiz. 2011. A
novel approach to morphological disambiguation
for turkish. In Computer and Information Sci-
ences II, pages 77–83. Springer.

Vishal Goyal and Gurpreet Singh Lehal. 2008.
Hindi morphological analyzer and generator. In
Emerging Trends in Engineering and Technol-
ogy, 2008. ICETET’08. First International Con-
ference on, pages 1156–1159. IEEE.

Dilek Z Hakkani-Tür, Kemal Oflazer, and Gökhan
Tür. 2000. Statistical morphological disam-
biguation for agglutinative languages. In Pro-
ceedings of the 18th conference on Computa-
tional linguistics-Volume 1, pages 285–291. As-
sociation for Computational Linguistics.

Georg Heigold, Guenter Neumann, and Josef van
Genabith. 2016. Neural morphological tagging
from characters for morphologically rich lan-
guages. arXiv preprint arXiv:1606.06640.

Fred Karlsson, Atro Voutilainen, Juha Heikkila,
and Arto Anttila, editors. 1995. Constraint
Grammar: A Language-Independent System for
Parsing Unrestricted Text. Walter de Gruyter
& Co., Hawthorne, NJ, USA.

Gulshat Kessikbayeva and Ilyas Cicekli. 2016. A
rule based morphological analyzer and a mor-
phological disambiguator for kazakh language.
Linguistics and Literature Studies, 4(1):96–104.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. In Pro-
ceedings of the 3rd International Conference on
Learning Representations (ICLR).

György Orosz and Attila Novák. 2013. Purepos
2.0: a hybrid tool for morphological disambigua-
tion. In RANLP, volume 13, pages 539–545.

Barbara Plank, Anders Søgaard, and Yoav Gold-
berg. 2016. Multilingual part-of-speech tag-
ging with bidirectional long short-term mem-
ory models and auxiliary loss. arXiv preprint
arXiv:1604.05529.

Haşim Sak, Tunga Güngör, and Murat Saraçlar.
2007. Morphological disambiguation of turk-
ish text with perceptron algorithm. Computa-
tional Linguistics and Intelligent Text Process-
ing, pages 107–118.

Qinlan Shen, Daniel Clothiaux, Emily Tagtow,
Patrick Littell, and Chris Dyer. 2016. The role
of context in neural morphological disambigua-
tion. In COLING, pages 181–191.

Pawan Deep Singh, Archana Kore, Rekha
Sugandhi, Gaurav Arya, and Sneha Jadhav.
2013. Hindi morphological analysis and inflec-
tion generator for english to hindi translation.
International Journal of Engineering and Inno-
vative Technology (IJEIT), pages 256–259.

Anil Kumar Singh. 2006. A computational pho-
netic model for indian language scripts. In Con-
straints on Spelling Changes: Fifth Interna-
tional Workshop on Writing Systems. Nijmegen,
Nijmegen, The Netherlands.

Milan Straka and Jana Straková. 2017. Tokeniz-
ing, pos tagging, lemmatizing and parsing ud 2.0
with udpipe. Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 88–99.

Eray Yildiz, Caglar Tirkaz, H. Bahadir Sahin,
Mustafa Tolga Eren, and Ozan Sonmez. 2016.
A morphology-aware network for morphological
disambiguation. In Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence,
AAAI’16, pages 2863–2869. AAAI Press.

10
494

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 495–502

WORD SENSE DISAMBIGUATION FOR MALAYALAM IN A
CONDITIONAL RANDOM FIELD FRAMEWORK

Junaida M K
IT Education Centre
Thalassery Campus
Kannur University

junaidashukoor@
gmail.com

Jisha P Jayan
Centre for Development of

Imaging Technology
Thiruvanathapuram

jishapjayan@gmail.com

Elizabeth Sherly
Indian Institute of

Information Technology and
Management-Kerala
Thiruvanathapuram

sherly@iiitmk.ac.in

Abstract

Word Sense Disambiguation (WSD) or
Lexical Ambiguity Resolution is one of
the pressing problems in Natural Lan-
guage Processing (NLP), which identifies
the correct sense of an ambiguous word in
the specific context in a given sentence.
WSD is considered as a harder problem
as it depends on a set of classes, which
vary depending on the context. This pa-
per describes two algorithms Conditional
Random Field (CRF) and Margin Infused
Relaxed (MIRA) in a CRF framework for
Malayalam WSD. This framework makes
use of the contextual feature information
along with the parts of speech tag fea-
ture in order to predict the various WSD
classes. For training set, number of am-
biguous words has been annotated with 25
WSD classes. The experimental results of
the 10 fold cross validation shows the ap-
propriateness of the proposed CRF based
Malayalam word sense tagger.

1 Introduction

Word Sense Disambiguation is an intermediate
task which is necessary at one level or another
to accomplish in most natural language process-
ing tasks. The development of an automatic Word
Sense Disambiguation requires either a sense in-
ventory, usually obtained from a dictionary, the-
saurus or a large annotated corpus. The signifi-
cant amount of information about the word and its
neighbours of a particular word in a context gives
a sense of a particular word which can be useful
in a language model for different speech and text
processing applications. In English ’line’ (cord,
division, formation, phone, product, text), ’hard’
(difficult to achieve, intense, intense, for surfaces,
things), interest (stake, involvement, interesting-
ness, pastime, the thing that is important, charge

for borrowing money) are the words with multiple
meanings and such words are called polysemy.

WSD is a major subtask of Machine Transla-
tion, have relevant significance in almost every
application of language technology, including in-
formation retrieval, lexicography, knowledge min-
ing/acquisition and semantic interpretation, and is
becoming increasingly important in new research
fields such as the cognitive Computing, semantic
web, bioinformatics etc.

Automatic WSD systems are available for many
languages like English, Spanish, Chinese and
some Indian languages. Malayalam being an un-
structured language, faces a severe problem in the
work on automatic WSD. Malayalam is an agglu-
tinating language that exhibits very rich system
of morphology and many senses, which is chal-
lenging. The basic components required for de-
veloping good WSD is the availability of Malay-
alam dictionary/thesaurus and labelled text cor-
pus. For example,Consider the following sentence
from Malayalam: Rn° BetÂ Icw]oSo»q

(njan avanTe karaM piTiccu) with the meaning
I took his hand and cnaq AetÂ epSotÂ Icw

AS»q (raamu avanTe veeTinTe karaM aTaccu)
with the meaning ramu paid his tax.The word I-

cw (karaM) have different meanings Tax or Hand.
Here the distinction of the sense of the word Icw

(karaM) is complex due to the lack of capitaliza-
tion information and free word order of the lan-
guage.

This paper is organized into different sections.
First section dealt with the introduction part. The
second section explains the major works carried
out in this area. The third and fourth sections de-
scribe the complexity of Malayalam language and
the Machine learning approach using CRF frame-
work based on two algorithms CRF and MIRA.
The next two sections explain the proposed work
and implementation. The seventh section includes
the experimental results obtained. The eighth sec-

495

tion concludes the paper with future works that can
be done as an outcome of this work.

2 Related Works

There are many approaches used for identifying
WSD. The two main approaches are Dictionary
based and Corpus based. The Dictionary-based
method, uses external knowledge resources, which
define explicit sense distinctions for assigning the
correct sense of a word in context. In corpus-
based methods, machine-learning techniques are
used to induce models of word usages from large
collections of text examples. Both knowledge-
based and corpus -based methods have their own
benefits and drawbacks. The former approach
mainly uses external lexical resources like dictio-
naries, thesaurus, WordNet etc. They are easy to
implement as it requires only simple look up of
knowledge resources like machine readable dic-
tionary. The corpus based methods use techniques
from statistics and machine learning to induce lan-
guage models. Learning can be done with su-
pervised or unsupervised methods, which learns
sense classifiers from annotated data with minimal
or partial human supervision respectively. Many
standard machine learning techniques have been
applied, including Naive Bayes (NB), Maximum
Entropy (ME), Exemplar-based (kNN), Decision
Lists (DL), Support Vector Machines (SVM) etc.
Naive Bayes algorithm is one of the simplest algo-
rithm, which uses Bayes rule and given the class
labels conditional independence of the features are
assumed. It has been applied to many experiments
in Natural Language Processing as well as WSD
with considerable success (Yuret, 2004).

The information theory in particular,The Maxi-
mum Entropy approach provides a flexible way to
combine statistical evidences from many sources.
It has been applied to many NLP problems and
also appears as alternative in WSD (Suarez, 2002).
Chatterjee (2009) presented a trainable model ap-
plies the information theory for Word Sense Dis-
ambiguation (WSD) for resolving the ambigu-
ity of English words. Decision Lists were used
for lexical ambiguity resolution in Spanish and
French accent restoration (Yarowsky, 1994) and
used in other work for WSD (Yarowsky, 1995).
Parameswarappa (2011) described the machine
learning techniques with naive bayes classifier for
Kannada target word sense disambiguation using
compound words clue and syntactic features in a

local context.

Lesk (1986) was one of the first researchers who
tried to disambiguate Machine Readable Dictio-
naries (MRD) using Simplified Lesk algorithms.
His algorithm became well-known among WSD
researchers. His algorithm was primarily an over-
lap based algorithm which suffers from overlap
scarcity. These methods, highly rely on lexical
resources such as machine readable dictionaries,
thesaurus etc. For English, this method achieved
50-70% accuracy in correctly disambiguating the
words. The work (Sinhar, 2004) mainly focused
on Hindi. They used contextual overlap between
sentential context and extended sense definitions
from Hindi Word Net. Sense bag was created
by extracting words from synonyms, glosses, ex-
ample sentences, hyponyms, and glosses of hy-
ponyms, example sentences of hyponyms, hy-
pernyms, and glosses of hypernyms, example
sentences of hypernyms, meronyms, glosses of
meronyms, and example sentences of meronyms.
A context bag was created by extracting words in
the neighborhood i.e. one sentence before and af-
ter, of the polysemous word to be disambiguated.
The sense which maximized the overlap was as-
signed as winner sense. By using word co- oc-
currences of the gloss and the context (Gaona,
2009) presented a measure for sense assignment
useful for the simple Lesk algorithm. Based on do-
main information and WordNet hierarchy (Kolte,
2009) proposed unsupervised approach to WSD.
The words in the sentence contribute to determine
the domain of the sentence. The availability of
WordNet domains makes the domain-oriented text
analysis possible. The domain of the target word
can be fixed based on the domains of the content
words in the local context. This approach can be
effectively used to disambiguate nouns.

In Malayalam only a few works have been pub-
lished. A knowledge based approach to Malay-
alam WSD (Haroon, 2010) has been done. It
is based on a hand devised knowledge source
and uses the Lesks and Walkers algorithm and
also using the concept of conceptual density with
Malayalam WordNet as the Lexical resource. The
knowledge based system will result in poor ac-
curacies because of the dependency of the algo-
rithm on the stored tag words within the knowl-
edge source.

496

3 Complexity of Malayalam

This section introduces the linguistic preliminaries
of Malayalam language and complexities involved
in the Malayalam Word Sense Disambiguation.
The world languages are classified into fixed word
order and free word order. In fixed word order the
words constituting a sentence can be positioned in
a sentence according to grammatical rules in some
standard ways. On the other hand, in the free word
order no fixed ordering is imposed on the sequence
of words in a sentence. The English language is
example of fixed word order language and San-
skrit is pure free word order language. Generally
Malayalam is a free word order language and ag-
glutinating language and exhibits very rich system
of morphology. Morphology includes inflection,
conflation (sandhi), and derivation. Word Sense
Disambiguation is a difficult task in Natural Lan-
guage Processing, In addition to the difficulties in-
volved in Word Sense Disambiguation, the com-
plexity level is even more in unstructured language
like Malayalam. Here we will briefly describe the
complexities involved in our work. For example,
consider a sentence Ae° \SÁq With the mean-
ing He walk and ubnKw \SÁq With the mean-
ing Meeting executed. Here the distinction of the
sense of the word \S is very complex due to the
lacks of capitalization information and free word
order of the language. Applying stochastic models
to the WSD problem requires large amounts of an-
notated data in order to achieve reasonable perfor-
mance. Stochastic models have been applied suc-
cessfully to English, German and other European
languages for which large sets of labeled data are
available. The problem remains difficult for Indian
languages (ILs) due to the lack of such large an-
notated corpora. This is due to the fact that many
different encoding standards are being used. Also,
the number of Malayalam documents are available
in the web is comparatively quite limited. Malay-
alam word sense disambiguation is of interest due
to a number of applications like machine transla-
tion, text summarization, information retrieval.

To begin with, this experiment requires a sense
tagged corpus in -order to achieve considerable ac-
curacy for disambiguation. Developing corpus is
a tedious and very time consuming task. The next
issue involved in this work is the unavailability
of sense inventory which will decide appropriate
senses to the specific word in a context. The most
appropriate meaning of a word is selected from

a predefined set of possibilities, usually known
as sense inventories. An efficient POS tagger in
Malayalam is required to extract Word Sense Dis-
ambiguation, which also requires large corpus for
training.

4 Machine Learning Using CRF

Statistical methods work by employing a proba-
bilistic model containing features of the data. Fea-
tures of the data, that can be understood as rules set
for the probabilistic model, are created by learn-
ing the resulting corpora with properly marked
tags. The probabilistic model then uses the fea-
tures to calculate and determine the foremost prob-
able tags. As such, if the annotated features of the
data are correct and reliable, the model would have
a high likelihood to find almost all the tags within
a text.

CRF has found its application in many domains
that may deal with the structured data. They
are considered to be state of the art techniques
for many applications in NLP. CRFs are a prob-
abilistic framework (Wallachi, 2004) that is used
for labeling and segmenting structured data, such
as sequences, trees and lattices. CRFs bring to-
gether the best of generative and classification
models. These are mainly undirected graphical
models (Zhang, 2013). The underlying idea is that
of defining a probability distribution which is con-
ditional over label sequences given a particular ob-
servation sequence, rather than a joint distribution
over both label and observation sequences. A key
advantage of CRFs is their great flexibility to in-
clude a wide variety of arbitrary, non - indepen-
dent features of the input (McCallum, 2002). The
primary advantage of CRFs over HMMs is their
conditional nature, which result in the relaxation
of independent assumptions required by HMMs
in order to ensure tractable inference. Addition-
ally, CRFs avoid the label bias problem (Lafferty,
2001).

Margin Infused Relaxed Algorithm (MIRA) is a
machine learning algorithm for multi-class classi-
fication problems. It has been introduced (Cram-
mer, 2003). It learns set of parameters (vector or
matrix) by processing all the given training ex-
amples one at a time, according to each training
example parameters are updated. So that the cur-
rent training example is classified correctly with a
margin against incorrect classifications at least as
large as their loss. The change of the parameters

497

is kept as small as possible. A two-class version
called binary MIRA is not requiring the solution of
a quadratic programming problem, so it is simple.
Binary MIRA can be used in an onevs-all config-
uration, it can be extended to a multiclass learner
that approximates full MIRA, but may be faster to
train. The flow of the algorithm looks as follows:

Figure 1: Algorithm MIRA

In the present work, we propose a machine
approach using two different algorithms namely
CRF and MIRA of Conditional Random Field
framework for unrestricted Malayalam text WSD.
The main steps involved are corpus collection,
preprocessing, tagging, training and analysis. The
template for training the CRF engine is defined.
A lot of work is being done in the fields of cor-
pus building, creating an efficient POS tagger and
subject identification in Malayalam language.

5 Implementation

For WSD implementation, is used CRF++ and the
experiment was carried out on different Malay-
alam ambiguous words. The template file contains
the features specified for training and testing. The
template file has multiple lines, each corresponds
to a particular composite feature. It helps in gen-
erating n-gram features from the feature columns.
The variables U and B are used to represent the
features which denotes uni-gram and bi- gram re-
spectively. The template line that starts with U
predicts the current label generating n weights for
n different labels. The template line which starts
with B defines the current and previous labels gen-
erating n*n weights in the model. The composite
feature is expressed by %x[i,j] with respect to the
current labels. The template for CRF is defined as
follows:

Unigram
Unigram U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]
U05:%x[-1,0]/%x[0,0]
U06:%x[0,0]/%x[1,0]
U10:%x[-2,1]
U11:%x[-1,1]
U12:%x[0,1]
U13:%x[1,1]
U14:%x[2,1]
U15:%x[-2,1]/%x[-1,1]
U16:%x[-1,1]/%x[0,1]
U17:%x[0,1]/%x[1,1]
U18:%x[1,1]/%x[2,1]
U20:%x[-2,1]/%x[-1,1]/%x[0,1]
U21:%x[-1,1]/%x[0,1]/%x[1,1]
U22:%x[0,1]/%x[1,1]/%x[2,1]
Bigram
B

In order to accommodate common words and
senses, we have used manually collected sentence
from various Malayalam newspapers, Wikipedia
articles, blogs, books, novels etc. Table 1 shows
these words and sense.

In order to avoid inconsistencies present in
spelling, spacing and punctuation, preprocessing
is done by thoroughly checking the database.
Then manual tagging of polysemous words and
parts of speech tagging were carried out.

Feature selection plays an important role in ma-
chine learning. The experiments have been car-
ried out using the basic context information and
Parts of speech tag combination of word and tag
context. The features are binary valued functions
which associate a tag with various elements of
the context. The experiments used two groups
of features: word and word + part-of-speech bi-
grams. Following are the details of the features
that have been applied to WSD task. Word fea-
tures are lexical features, unique words that oc-
cur in the training set in a specific window range.
Word feature contains the following attributes. w-
2, w-1, w, w+1, w+2, (w- 2,w-1,w), (w-1,w,w+1),
(w,w+1,w+2) , where the last three correspond to
collocations of three consecutive words. Word +
POS features are lexico-syntactic features com-
bining POS information in a predefined range of

498

Word Senses (classes)
chw (rasaM) Xn²]cyw, Ilo, Cww, cqNo, ta±·qlo

(taal˜paryaM, kaRi, ishTaM, ruci, mer˜kkuRi)
\S (naTa) }Iob, \S·qI ,]So

(kRIya , naTakkuka , paTi)
ASo (aTi) NqeSjem ,]nZw, XÈm

(cuvaTaLav , paadaM , tall)
en\w (vaanaM) an\w, Aõoan\w

(maanaM , abhimaanaM)
D¿cw (uttaraM) alq]So, uNnuZny¿cw, Xnºm

(maRupaTi, coodyoottaraM, taangng)

Table 1: Ambiguous Words and Senses (Classes)

Figure 2: Block Diagram

the particular word. Word + POS feature con-
tains w-2,w-1, w, w+1, w+2, with parts of speech
information p, (w,p), (p-1,p). The tagging was
performed using BIS tagset. Four taggers have
been implemented based on the CRF and MIRA
model. The first tagger (Word) makes use of the
simple contextual feature, whereas the second tag-
ger (Word+POS) uses parts of speech information
features along with the simple contextual features.
Each tagger is trained and tested using both the
models, CRF based stochastic tagging scheme and
MIRA. The same training corpus has been used to
estimate the parameters for all the models.

6 Experimental Results

For the evaluation of this experiment we have used
n-fold crossvalidation method due to the lack of

huge amount of corpus.Usually data is split in
to 70% for training and 30% for testing or in
some cases 80% for training and 20% for testing.
Although this distribution is commonly used for
large datasets, it presents a challenge for smaller
datasets and it might lead to problem of represen-
tativeness of the training or testing data. For these
experiments, the method of n-fold cross validation
is used divided in ten sets, each set containing 10%
of the total data, therefore a ten-fold cross vali-
dation. The 10-fold was chosen mainly because
the amount of data used for the experiments is not
considered to be big as in most other applications.
Because of that, fewer partitions were employed
in order to ensure that a reasonable number of
instances are included in each partition.Therefore
it is necessary to ensure that random sampling is
done in a way that guarantees that each class in the
data set is properly represented in both the training
and test sets.

The evaluation of the CRF and MIRA based
models has been done using evaluation matrices.
We have implemented two CRF and MIRA based
models using Word feature and Word + POS fea-
ture.The classification is performed for skewed
and highly imbalanced data, accuracy is very high
and it does not reflect exactly the performance of
the classifier. For this reason, precision (P), recall
(R) and F-measure (F) scores are reported, which
shows how precise and complete the classification
is on the positive class. The TP, TN, FP and FN
refer to true positives, true negatives, false posi-
tives and false negatives respectively. In a binary
class based classification context, the terms posi-
tive and negative used in these definitions are asso-
ciated with membership to one of the two semantic
classes involved inc the classification (senses).

499

Figure 3: Sample Tagged Corpus

For example, where disambiguation involves
the classes an\w and Aõoan\w, TP (TN) refers
to the an\w (Aõoan\w) test occurrences correctly
classified as such by the system. Likewise, FP
(FN) refers to those Aõoan\w (an\w) test occur-
rences that have been misclassified by the system
as belonging to class an\w (Aõoan\w).

The experimental results for the 10-fold cross
validation test for the CRF-based Malayalam word
sense disambiguation system with Word feature
and Word+POS feature are presented in 2 and 3
respectively.

The system has demonstrated overall average
precision, recall, F- measure values of 58.688,
53.678, and 52.359 respectively for Word Feature.
The result shows the overall average precision, re-

Figure 4: Analysis of F-measure result

call, F-measure values are 61.387, 49.454, and
51.75 respectively for Word +POS feature.

The experimental results for the 10-fold cross
validation test for the MIRA-based Malayalam
word sense disambiguation system with Word fea-
ture and Word+POS feature are presented in Ta-
ble 3. The system has demonstrated overall aver-
age precision, recall, F- measure values of 62.598,
63.045, and 59.829 respectively for word feature
and 61.387, 49.454, and 59.75 word+POS feature
respectively.

The performance evaluation of the models are
done using F-measure. Using the value of F-
measure the performance result presented in Fig
2 shows that in word feature and word + POS
feature, MIRA model outperforms with the CRF
model. The use of simple contextual feature give
a little improvement for both CRF and MIRA
model. Using the F measure, the performance
results displayed in the above figure show that
regardless of the contextual features or POS in-
formation feature the MIRA-based tagger outper-
forms CRF based framework.

7 Conclusion and Future Directions

7.1 Conclusion

This work addresses CRF based word-sense dis-
ambiguation with two different approaches. CRF
provides flexibility to include diversity of features.
We have used two algorithms in CRF framework
which is basic Conditional Random Field algo-
rithm and Margin Infused Relaxed (MIRA) algo-

500

Test Set Word Feature Word + POS Feature
Sl. no Precision Recall F-measure Precision Recall F-measure

1 57.25 43.74 47.72 58.42 54.2 49.53
2 69.08 56 56.84 67.09 53.99 57.15
3 42.36 46.09 41.29 66.18 50.22 55.13
4 41.34 43.69 40.04 56.69 48.9 49.81
5 68.85 65.27 61.99 61.11 46.2 48.95
6 52.3 56.63 52.22 61.11 50.6 52.88
7 70.05 65.72 62.59 68.39 51.47 55.08
8 66.01 57.69 55.89 68.14 45.83 52.61
9 60.31 52.27 53.94 44.3 40.22 41.47
10 59.33 49.68 51.07 62.44 52.82 54.89

Average 58.68 58.69 52.35 61.387 49.454 51.75

Table 2: RESULTS OF 10 FOLD CROSS VALIDATION USING CRF FOR WORD AND WORD+POS
FEATURE

Test Set Word Feature Word + POS Feature
Sl. no Precision Recall F-measure Precision Recall F-measure

1 73.48 71.33 71.05 58.42 54.51 54.88
2 51.9 66.7 56.04 56.37 66.4 57.46
3 73.22 73.71 68.75 60.79 56.07 56.01
4 49.14 54.7 46.13 72.59 63.15 65.55
5 62.1 60.03 58.79 59.49 52.99 52.05
6 67.24 71.2 66.46 70.16 57.22 61.85
7 68.44 58.01 60.62 67.99 57.52 59.8
8 59.5 57.24 55.72 69.05 67.75 65.59
9 70.41 69.83 67.25 62.42 54.87 56.81
10 50.55 47.7 47.48 63.52 63.54 62.44

Average 62.598 63.045 59.829 63.926 59.402 59.244

Table 3: RESULTS OF 10 FOLD CROSS VALIDATION USING MIRA FOR WORD AND
WORD+POS FEATURE

rithm. A word sense tagger is created for Malay-
alam to get an effective word disambiguation us-
ing CRF and MIRA. The system is evaluated with
manually created words and the accuracy is mea-
sured using n-fold cross validation. Results based
on the value of F-Measure shows that the per-
formance of MIRA gives the best results with an
overall average for word feature precision, recall,
F-measure of 62.598, 63.045 and 59.829 respec-
tively for 10-folds. The experimental results are
very promising when large amount of annotated
corpus was used and handling morphology ex-
haustively. More words and senses can be added
to this so as to increase the accuracy. Other ma-
chine learning techniques like Naive Bayes clas-
sifier, ME, Neural Networks etc can be applied in
this study and the results so obtained can be com-

pared with the existing works.

References
Yuret D. 2004. Some experiments with a naive bayes

wsd system.In Senseval-3: , Third International
Workshop on the Evaluation of Systems for the Se-
mantic Analysis of Text. 265-268U.

Suarez A Palomar. 2002. A maximum entropy-based
word sense disambiguation system.., InProceedings
of the 19th international conference on Computa-
tional linguistics. Association for Computational in-
guistics 1 :1-7.

Chatterjee N Misra. 2009. Word-Sense Disambigua-
tion using maximum entropy model. , InMethods
and Models in Computer Science ICM2CS 2009,
Proceeding of International Conference on. IEEE.
1-4.

501

Yarowsky D. 1994. Decision lists for lexical ambi-
guity resolution: application to accent restoration
in Spanish and French, In Proceedings of the 32nd
Annual Meeting on Association for Computational
Linguistics. Association for Computational Linguis-
tics. 88-95.

Yarowsky D. 1995. . Unsupervised word sense disam-
biguation rivaling supervised methods., In Proceed-
ings of the 33rd annual meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics. 189-196..

Parameswarappa SS Narayana. 2011. Target word
sense disambiguation system for Kannada language.
, In Advances in Recent Technologies in Communi-
cation and Computing (ARTCom 2011), 3rd Inter-
national Conference on. IET. 269-273.

Lesk M. 1986. Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In Proceedings of the
5th annual international conference on Systems doc-
umentation. ACM.24-26.

Sinha M Kumar M Pande P Kashyap L Bhat-
tacharyya. 2004. Hindi word sense disambiguation,
In International Symposium on Machine Transla-
tion, Natural Language Processing and Translation
Support Systems

Gaona Gelbukh Bandyopadhyay. 2009. Web-based
variant of the Lesk approach to word sense disam-
biguation. In Artificial Intelligence In International
Symposium on Machine Translation, Natural Lan-
guage Processing and Translation Support Systems..

Kolte S G Bhirud S G. 2009. WordNet: a knowledge
source for word sense disambiguation International
Journal of Recent Trends in Engineering.

Haroon R 2010. Malayalam word sense disambigua-
tion. In Computational Intelligence and Computing
Research (ICCIC). IEEE International Conference
on. IEEE. 1-4.

Wallach H M 2004. random fields: An introduc-
tion.Technical Reports , In CIS. 22.

Zhang J Xu J Zhang Y. 2013. Name Origin Recogni-
tion in Chinese Texts Based on Conditional Random
Fields., In 2013 I nternational Conference on In-
formation Science and ComputerApplications (ISCA
2013). Atlantis Press.

McCallum. 2002. Efficiently inducing features of con-
ditional random fields., In Proceedings of the Nine-
teenth conference on Uncertainty in Artificial Intelli-
gence. Morgan Kaufmann Publishers Inc. 403-410.

Lafferty J McCallum A Pereira F C. 2001. Condi-
tional random fields: Probabilistic models for seg-
menting and labeling sequence data.,

Crammer K Singer Y. 2003. . Ultraconservative on-
line algorithms for multiclass problems., The Jour-
nal of Machine Learning Research. 3:951-991.

502

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 503–512

Semisupervied Data Driven Word Sense Disambiguation for
Resource-poor Languages

Pratibha Rani†, Vikram Pudi†, Dipti M. Sharma§
†Data Sciences and Analytics Center, §Language Technologies Research Center

Kohli Center on Intelligent Systems
International Institute of Information Technology, Hyderabad, India

pratibha rani@research.iiit.ac.in,{vikram, dipti}@iiit.ac.in

Abstract

In this paper, we present a generic semi-
supervised Word Sense Disambiguation
(WSD) method. Currently, the existing
WSD methods extensively use domain re-
sources and linguistic knowledge. Our
proposed method extracts context based
lists from a small sense-tagged and un-
tagged training data without using do-
main knowledge. Experiments on Hindi
and Marathi Tourism and Health domains
show that it gives good performance with-
out using any language specific linguistic
information except the sense IDs present
in the sense-tagged training set and works
well even with small training data by han-
dling the data sparsity issue. Other ad-
vantages are that domain expertise is not
needed for crafting and selecting features
to build the WSD model and it can handle
the problem of non availability of match-
ing contexts in sense-tagged training set.
It also finds sense IDs of those test words
which are not present in sense-tagged
training set but their associated sense IDs
are present. This feature can help human
annotators while preparing sense-tagged
corpus for a language by suggesting them
probable senses of unknown words. These
properties make the method generic and
especially suitable for resource-poor lan-
guages and it can be used for various lan-
guages without requiring a large sense-
tagged corpus.

1 Introduction

Word Sense Disambiguation (WSD) is consid-
ered as one of the most challenging Natural Lan-
guage Processing (NLP) task and is described as
an AI-complete problem (Navigli, 2009; Mallery,

1988). This is a classification task which in-
volves determining the correct meaning of each
word in a sentence/phrase based on the neigh-
boring context words. Humans are very good at
judging meaning of words in different contexts
but when it comes to automate this task, it be-
comes very tough. Design of automated WSD
methods, both supervised and unsupervised, re-
quires the intuitive knowledge transfer from hu-
mans to WSD algorithms via knowledge structures
like WordNet (Fellbaum, 1998; Banerjee and Ped-
ersen, 2002), machine readable dictionaries (Lesk,
1986) and sense-tagged training corpus (Navigli,
2009). Creation of such knowledge structures is a
costly and time taking process which requires ex-
tensive amount of domain resources and linguis-
tic expertise. Along with this, domain expertise is
also needed to create and select hand crafted fea-
tures and rules from the training data which are
required in the automated methods. These require-
ments make it difficult to design a WSD algorithm
for (6500+) (Nakov and Ng, 2009) “resource-
poor” languages.

The existing literature on WSD methods report
that the naive Most Frequent Sense (MFS) base-
line obtained from a sense-tagged corpus is very
hard to beat (Navigli, 2009; Bhingardive et al.,
2015b). When (Preiss et al., 2009) tried to re-
fine the selection of most frequent sense by us-
ing supplementary linguistic resources like POS
tagger and Lemmatizer of the concerned language
they found that performance of such a system is
limited by the performance of used linguistic re-
sources. This observation shows that for resource-
poor languages use of other linguistic resources
is not much beneficial in WSD task, since their
performances are also dependent on the availabil-
ity of tagged/knowledge corpus. This inspires us
to explore methods for WSD which do not rely
on other linguistic resources and can take advan-
tage of contextual information about words and

503

senses present in the sense-tagged and raw un-
tagged training sets. Also, the challenges of re-
quiring domain expertise and non availability of
large sets of sense-tagged data motivated us to
develop semi-supervised methods for WSD task.
The semi-supervised methods can take advantage
of raw untagged data and would require only a
moderate or small amount of sense-tagged training
data. In semi-supervised scenario, WSD method
builds its disambiguation model from a corpus of
untagged raw sentences and a set of sense-tagged
sentences and is formally defined as:

Using (1) sense IDs set Γ =
{SID1, SID2, . . . , SIDn}, (2) sense-tagged
sentences set AD = {St1, St2, . . . StN}, where,
Sti = 〈W1/SIDi,W2/SIDj . . .Wn/SIDk,
Wi is a word and SIDi is a sense ID
from Γ and (3) raw untagged sentences
set RD = {RS1, RS2 . . . RSM}, where
RSi = 〈W1W2 . . .Wm〉, build a WSD model
Θ which outputs the best sense ID sequence
〈SID1SID2 . . . SIDl〉 for an input sequence of
words 〈W1W2 . . .Wl〉.

Here, we propose a semi-supervised WSD
method which uses the concept of context based
list (Rani et al., 2016) to build the WSD model
from a set of sense-tagged and raw untagged train-
ing corpus. Our proposed method is also influ-
enced by the one sense per collocation hypothesis
of Yarowsky (1993) which tells that the sense of
a word in a document is effectively determined by
its context (Yarowsky, 1995). Our approach takes
help of raw untagged data and expands the notions
of context and context based list (Rani et al., 2016)
to tackle the data sparsity issue. Our method does
not require any preprocessing such as, stop/non-
content word removal and feature generation and
selection from the sense-tagged training corpus.
It works without using any additional knowledge
structure like dictionary etc., other than the small
sense-tagged corpus and moderate sized raw un-
tagged data. This is easily obtainable even for
resource-poor languages.

The obtained results show that our method per-
forms well even with very small sized sense-
tagged training data for Hindi and Marathi lan-
guages and its performance is better than the Ran-
dom Baseline (Navigli, 2009) which selects a ran-
dom sense for each polysemous test word, compa-
rable to the Most Frequent Sense (MFS) baseline
that selects the most frequent sense available in the

sense-tagged training corpus for each polysemous
word and at par with the reported results on the
used datasets (Bhingardive et al., 2015a; Bhingar-
dive et al., 2013; Khapra et al., 2011a; Khapra et
al., 2011b; Khapra et al., 2008).

Rest of the paper is organized as follows: Sec-
tion 2 presents related work. Section 3 describes
our proposed approach. Section 4 presents and
discusses the results and Section 5 concludes the
paper and mentions future work directions.

2 Related Work

Generally, all the existing WSD techniques can
be categorized into one of the following ap-
proaches (Navigli, 2009; Pal and Saha, 2015): i)
Knowledge based approach, which uses knowl-
edge structures like, WordNet (Fellbaum, 1998;
Banerjee and Pedersen, 2002) or machine readable
dictionaries (Lesk, 1986), ii) Supervised approach,
which uses machine learning (Kågebäck and Sa-
lomonsson, 2016) and statistical methods (Ia-
cobacci et al., 2016) on manually created sense-
tagged training corpus. It also requires domain
expertise for creating and selecting features and
rules to be used for preprocessing and transform-
ing the training data into the form required for de-
signing the algorithm (Navigli, 2009; Iacobacci
et al., 2016), iii) Unsupervised approach, which
uses large amount of raw untagged training cor-
pus (Pedersen and Bruce, 1997; Lin, 1998) to
find word clusters which discriminates the senses
of the words in different clusters, or use multi-
lingual parallel corpora (Ide et al., 2002; Bhin-
gardive et al., 2013), a knowledge resource like
WordNet (Patwardhan et al., 2007; Chen et al.,
2009; Bhingardive et al., 2015b; Bhingardive et
al., 2015a) or multilingual dictionary (Khapra et
al., 2011a), and iv) Semi-supervised approach,
that uses both sense-tagged and untagged data in
different proportions with different methods like,
co-training with multilingual parallel corpora (Yu
et al., 2011), bootstrapping (Yarowsky, 1995;
Khapra et al., 2011b), neural network (Taghipour
and Ng, 2015; Yuan et al., 2016) and word sense
induction (Baskaya and Jurgens, 2016).

All types of WSD algorithms require knowl-
edge structures and resources like, WordNet (Fell-
baum, 1998; Banerjee and Pedersen, 2002), ma-
chine readable dictionaries (Lesk, 1986), sense-
tagged training corpus (Navigli, 2009), parallel
corpora and lage untagged raw corpus. Creation

504

of such knowledge structures and resources is a
costly and time taking process which requires ex-
tensive amount of domain resources and linguis-
tic expertise. Due to this, for resource-poor lan-
guages, special methods are needed which can
handle data sparsity issue present in sense-tagged
training data and can work with small/moderate
set of untagged corpus without requiring knowl-
edge structures and linguistic resources.

To handle the WSD task related challenges of
resource-poor languages some specific methods
have been proposed. For Chinese language, Yang
and Huang (2012) propose handling data sparsity
issue by using synonyms for expansion of context,
their first method regards synonyms as topic con-
textual feature to train Bayesian model and sec-
ond method treats context words made up of syn-
onyms as pseudo training data. Baskaya and Jur-
gens (2016) propose a Word Sense Induction and
Disambiguation (WSID) (Agirre and Soroa, 2007)
model in which they combine a small amount
of sense-tagged data with information obtained
from word sense induction (a fully unsupervised
technique that automatically learns the different
senses of a word based on how it is used). Yu
et al. (2011), Khapra et al. (2011b), Khapra et
al. (2011a) and Bhingardive et al. (2013) propose
methods to use one language to help other lan-
guage by means of multilingual parallel corpora,
multilingual dictionary, translation and bilingual
bootstrapping. Mancini et al. (2016) and Bhingar-
dive et al. (2015a) propose to use word and sense
embeddings derived from raw untagged data and
WordNet. In this method a large raw corpus is
needed to obtain word embeddings.

Bhingardive et al. (2015a), Bhingardive et al.
(2013), Khapra et al. (2011a), Khapra et al.
(2011b) and Khapra et al. (2008) have reported re-
sults on the same dataset which we have used in
our experiments. The method used in Khapra et al.
(2008) combines sense distributions and sense co-
occurrences learned from corpora with semantic
relations present in WordNet by specially select-
ing linguistic features from the sense-tagged data,
WordNet, multilingual sense dictionary and a par-
allel corpus. Khapra et al. (2011b) uses bilingual
bootstrapping in which, a model is first trained
using the seed annotated data of one language
and then it is used to annotate the untagged data
of other language and vice versa using parame-
ter projection. Then from both the languages un-

tagged instances annotated with high confidence
are added to their seed data and the above process
is repeated. Khapra et al. (2011a) uses an unsuper-
vised bilingual Expectation Maximization (EM)
based approach requiring synset-aligned bilingual
dictionary and in-domain corpora of the concerned
language pairs to estimate sense distributions of
words in one language based on the raw counts
of the words in the aligned synset in the other
language. Bhingardive et al. (2013) add use of
context in this EM method (Khapra et al., 2011a)
and approximate the co-occurrence counts using
WordNet-based similarity measures. Bhingardive
et al. (2015a) further extends this EM method by
using distributional similarity obtained from Word
Embeddings to approximate the co-occurrence
counts.

3 Proposed Semi-supervised Word Sense
Disambiguation Method

Since a context can occur in multiple places in
the text, we utilize the contextual similarity prop-
erty based on one sense per collocation hypoth-
esis of Yarowsky (1993) to develop our semi-
supervised WSD method. We build upon the con-
cept of context based list (CBL) proposed by Rani
et al. (2016) for POS-tagging. They call the list
of words occurring in a particular context as CBL
and use association rule mining (Agrawal et al.,
1993) for obtaining effective context based POS
tagging rules from the set of tagged and raw un-
tagged training data. We extend their idea by sup-
plementing CBL with the concepts of extended
context list, context based sense list and context
based word list (defined below) to handle the pe-
culiar problems of WSD due to data sparsity like:

1. Non availability of matching contexts of a
word in sense-tagged training set. Use of raw
untagged data with concept of extended con-
text list helps in dealing with this problem.

2. Non availability of words in sense-tagged
training set. Use of raw untagged data with
concept of context based lists helps in deal-
ing with this problem.

3. Large imbalance in frequencies of senses as-
sociated with a word in training set. Defined
threshold parameters and context based lists
help in handling this problem.

Our notion of context is a word pair, we use the
left and right immediate neighboring words of a

505

Algo Present(SIDListSet, MWordTaggedListSet, MWordUntaggedListSet, Wt, Wtl,Wtr)
1. If test word Wt and its context (Wtl,Wtr) is present as trigram (Wtl,Wt,Wtr) in

sense-tagged text collection Then:
2. Find the corresponding sense IDs of Wt from set SIDListSet and

Return the sense ID having highest Wt count
3. Else:
4. Find set ExpandTestConPList of contexts similar to (Wtl,Wtr) by finding

its Extended Context List using set MWordTaggedListSet
5. Find set ProbTestSIDList of all available sense IDs of Wt with

their counts from sense-tagged text collection
6. From set ExpandTestConPList find the contexts which are present in sense-tagged text

collection with Wt as trigram using set MWordTaggedListSet and from these trigrams
select those having highest ExtContextCount value in set ExpandTestConPList to
make set maxProbConSet

7. For each context (Wptl,Wptr) of set maxProbConSet :
8. Find the sense IDs associated with (Wptl,Wptr) using the set SIDListSet

and filter out those which exist in ProbTestSIDList to make set FinalTestSIDList
9. If FinalTestSIDList is not empty Then:
10. Return the sense ID from FinalTestSIDList having highest Wt count
11. Else:
12. If Context Based Word List of context (Wtl,Wtr) obtained from set

MWordUntaggedListSet contains test word Wt Then:
13. Find the sense IDs associated with (Wtl,Wtr) using set SIDListSet and

filter out those which exist in ProbTestSIDList to make set ConFinalTestSIDList
14. If ConFinalTestSIDList is not empty Then:
15. Return the sense ID from ConFinalTestSIDList having highest Wt count
16. Else:
17. Return the sense ID from ProbTestSIDList having highest Wt count
18. Else:
19. Return the sense ID from ProbTestSIDList having highest Wt count

Algo 1: Algorithm to find Sense ID of words present in sense-tagged text collection.

word/sense ID in a sentence/phrase as its context.
Formally, in a given trigram (Wi−1 Wi Wi+1) of
words, (Wi−1,Wi+1) word pair is called context
of Wi. The preceding word Wi−1 is called left
context and succeeding word Wi+1 is called right
context. Note that, in a text collection there can
be multiple contexts available for a word. We use
these terms in defining following concepts used in
our WSD method:

Single Sense Word List is a list of word in-
stances (with associated single sense ID)
which have only one sense ID associated with
them in the sense-tagged text collection.

Context Based Word List is a list of word in-
stances from a text collection sharing the
same context. For a given context, (Wl,Wr),
its context based word list is the list of all
words Wm having (Wl,Wr) as one of their

contexts in the text collection. This list al-
lows to store multiple instances of a word.

Context Based Sense List is a list of sense ID in-
stances from a sense-tagged text collection
sharing the same context. For a given con-
text, (Wl,Wr), its context based sense list is
the list of sense IDs SIDm having (Wl,Wr)
as one of their contexts in the sense-tagged
text collection. This list can store multiple
instances of a sense ID.

Extended Context List: For a given context,
(Wl,Wr) of a word Wm, let PreListSet
be the set of words obtained from those
context based word lists which have left
context Wl in their word list and let,
PostListSet be the set of words obtained
from those context based word lists which
have right context Wr in their word list.

506

Algo Absent(SIDListSet, MWordTaggedListSet, MWordUntaggedListSet, Wt, Wtl,Wtr)
1. For test word Wt find Extended Context List set ExpandTestConTagList of contexts similar to

its context (Wtl,Wtr) using set MWordTaggedListSet
2. From set ExpandTestConTagList select context (Wextl,Wextr) with

highest ExtContextCount value
3. Find Context Based Word List TrainExConListTest of (Wextl,Wextr)

from MWordTaggedListSet
4. If ListSupport(TrainExConListTest) ≥Minsizethreshold Then:
5. Using SIDListSet find set ProbTagSenset of sense IDs associated

with TrainExConListTest having
UniqueSenseSupport ≥ (ListSupport(TrainExConListTest)× Percentagethreshold)

6. From set ProbTagSenset find and Return Predsentest having
highest value of TotalSenseSupport and set Found = True

7. If Found 6= True Then:
8. Find Context Based Word List RawConListTest associated with (Wtl,Wtr)

from MWordUntaggedListSet in which Wt is present
9. Find Context Based Word List TrainConListTest of (Wtl,Wtr)

from MWordTaggedListSet
10. If ListSupport(RawConListTest) ≥Minsizethreshold and

ListSupport(TrainConListTest) ≥Minsizethreshold and
Number of matching words between RawConListTest and TrainConListTest
≥ (size of smaller list among two −1) Then:

11. Using SIDListSet find set ProbTrSenset of sense IDs associated
with TrainConListTest having
UniqueSenseSupport ≥ (ListSupport(TrainConListTest)×Percentagethreshold)

12. From set ProbTrSenset find and Return Predsentest having
highest value of TotalSenseSupport and set Found = True

13. If Found 6= True Then:
14. Find Extended Context List set ExpandTestConUntagList of contexts similar to

context (Wtl,Wtr) using set MWordUntaggedListSet
15. From set ExpandTestConUntagList select context (Wexutl,Wexutr) with

highest ExtContextCount value
16. Find Context Based Word List TrainUtExConListTest of (Wexutl,Wexutr)

from MWordTaggedListSet
17. If ListSupport(TrainUtExConListTest) ≥Minsizethreshold Then:
18. Using SIDListSet find set ProbUtSenset of sense IDs associated

with TrainUtExConListTest having (UniqueSenseSupport
≥ (ListSupport(TrainUtExConListTest)× Percentagethreshold))

19. From set ProbUtSenset find and Return Predsentest having
highest value of TotalSenseSupport and set Found = True

20. If Found 6= True Then:
21. Return NOEXISTSEN

Algo 2: Algorithm to find Sense ID of words NOT present in sense-tagged text collection.

Let, FullExtendConListSet be the set of
all contexts (Wpre,Wpost) prepared by tak-
ing word Wpre from PreListSet and word
Wpost from PostListSet. Then, extended
context list is the list of all those con-
texts from FullExtendConListSet which
have Wm in their context based word list.

This list contains contexts similar to the
given context (Wl,Wr). There is a count
value ExtContextCount associated with
each context present in extended context list
which shows how many word combinations
from PreListSet and PostListSet gener-
ated that context.

507

For a list of words L, in which multiple in-
stances of a word can be present, we define fol-
lowing parameters:

ListSupport(L) is defined as the number of
unique words present in L.

UniqueSenseSupport of a particular sense ID,
SID, is defined as the number of unique
words of L which have SID associated with
them in the sense-tagged text collection.

TotalSenseSupport of a particular sense ID,
SID, is defined as the total number of words
of L (includes repeated occurrences of a word
with a sense ID) which have SID associated
with them in the sense-tagged text collection.

Minsizethreshold parameter defines the mini-
mum number of words required to be present
in a Context Based Word List to consider
it for finding sense of words not present in
sense-tagged text collection.

Percentagethreshold parameter is used for cal-
culating percentage of words supporting a
particular sense ID in a list of words L.

Overview of our WSD method
In the training phase, using a sliding window of

size three, we collect all the context based word
lists, context based sense lists, single sense word
list, word and sense counts from the sense-tagged
and raw untagged text collection in a single itera-
tion, taking care of the sentence boundaries. Then
in testing phase, Algo 1 and Algo 2 are used to
find sense IDs of test words according to their
presence/absence in the sense-tagged training set.
Algo 1 always provides an output for test words
present in sense-tagged training set but Algo 2 re-
turns NOEXISTSEN when it is not able to find
any valid sense ID for test words not present in
sense-tagged training set.

Both the algorithms use directly available im-
mediate context information and indirectly avail-
able extended context information from the sense-
tagged and raw untagged text collection in a pri-
ority order to handle the issues of non availability
of matching contexts and imbalance in sense fre-
quencies associated with a word in sense-tagged
training set. Information obtained from sense-
tagged set is given higher priority. Algo 2 uses
raw untagged set to handle issue of non availabil-
ity of words in sense-tagged training set and takes

help of the defined support and threshold parame-
ters to make confident choice of sense ID. Due to
these properties it is able to find sense IDs of those
test words also which are not present in sense-
tagged training set but their associated sense IDs
are present. The detailed steps involved in our
WSD method are given in Section 3.1.

3.1 Word Sense Disambiguation Method

Following steps are used in our WSD method:

1. Find Single Sense Word List from the sense-
tagged text collection.

2. Find set SIDListSet of Context Based
Sense Lists of sense IDs from sense-tagged
text collection.

3. Find set MWordTaggedListSet of Con-
text Based Word Lists of words from sense-
tagged text collection.

4. Find set MWordUntaggedListSet of
Context Based Word Lists of words from raw
untagged text collection.

5. If test word, Wt, present in sense-tagged text
collection and is also present in Single Sense
Word List then output associated sense ID.
Else, find its context (Wtl,Wtr) from test
sentence and apply Algo 1.

6. If test word, Wt, is not present in sense-
tagged text collection then find its context
(Wtl,Wtr) from test sentence and apply
Algo 2.

4 Results and Discussion

We have used publicly available Health and
Tourism domain sense-tagged corpus of Hindi
and Marathi languages created by IIT Mum-
bai1 (Khapra et al., 2010) and Hindi language
raw untagged Health and Tourism domain ILCI
data (Jha, 2010). Table 2 gives the dataset de-
tails. Table 1 shows average 4-fold cross vali-
dation results obtained by our algorithm for pol-
ysemous test words which are not present in the
sense-tagged training set. Table 3 presents the av-
erage 4-fold cross validation results obtained for
polysemous test words along with Random Base-
line and MFS baseline results.

1Available at http://www.cfilt.iitb.ac.in/
wsd/annotated_corpus/

508

The results are presented in terms of Precision,
Recall and F-Score accuracy measures as defined
below (Navigli, 2009):

Precision =
No. of correctly predicted test words

Total No. of predicted test words
(1)

Here, Total No. of predicted test words =
(Total No. of test words - Test words flagged
NOEXISTSEN by algorithm).

Recall =
No. of correctly predicted test words

Total No. of test words
(2)

FScore =
2× Precision×Recall

Precision + Recall
(3)

Table 1: Average 4-fold cross validation results
obtained by our algorithm for polysemous test
words NOT present in the sense-tagged training
corpus.

Dataset Precision Recall FScore
(%) (%) (%)

Hindi Tourism 28.93 22.90 25.56
Marathi Tourism 34.50 12.0 18.0

Hindi Health 31.65 25.41 28.19
Marathi Health 32.43 8.72 13.74

The results of Table 1 shows the advantage of
our approach in terms of ability to find sense IDs
of those test words also which are not present in
the sense-tagged training set but their associated
sense IDs are present. To the best of our knowl-
edge, currently supervised and semi-supervised
WSD methods do not handle words absent in the
sense-tagged training corpus. The Random Base-
line and MFS baseline methods also can’t find
sense IDs for words which are absent in the sense-
tagged training set. This ability can be used as a
tool to help human annotators by suggesting them
probable senses of unknown words while prepar-
ing sense-tagged corpus for a language.

To study the effect of parameter values on
our approach, we experimented with parame-
ter values Minsizethreshold = 3, 5, 10 and
Percentagethreshold = 0.5, 0.8 and ob-
served that variation in obtained results is
very less (±0.5%) which shows that our ap-
proach is not very sensitive towards parame-
ter values in this range of values. Follow-
ing parameter values generated best results for

our approach presented in Tables 1, 3 and 5:
1) For Hindi Tourism, Minsizethreshold =
5 and Percentagethreshold = 0.8. 2)
For Hindi Health, Minsizethreshold = 3
and Percentagethreshold = 0.8. 3) For
Marathi Tourism, Minsizethreshold = 3
and Percentagethreshold = 0.5. 4) For
Marathi Health, Minsizethreshold = 3 and
Percentagethreshold = 0.5. Our approach uses
both the sense-tagged and raw untagged datasets
of each domain mentioned in Table 2. We have
divided the original Marathi Health and Tourism
datasets into two exclusive parts and used one part
as raw untagged set and other as tagged set.

Table 3 shows that results of our approach are
better than the Random Baseline results and very
close to the MFS baseline results. We can’t di-
rectly compare our results with the earlier reported
results (see Table 4) on these dataset by Bhin-
gardive et al. (2015a), Bhingardive et al. (2013),
Khapra et al. (2011a), Khapra et al. (2011b) and
Khapra et al. (2008) due to difference in dataset
size and content.

By observing the difference between reported
accuracies of approach used by Khapra et al.
(2008) and the MFS baseline results reported by
them we can conclude that our simple generic ap-
proach gives results close to MFS baseline with-
out using any complex feature selection process
(domain based and generic) and without requir-
ing too many linguistic and domain resources. For
Hindi Tourism, Marathi Tourism and Hindi Health
domains our results are better than the results re-
ported by Bhingardive et al. (2015a), Bhingardive
et al. (2013), Khapra et al. (2011b) and Khapra et
al. (2011a) without using huge raw untagged data
and without using any linguistic and domain re-
sources like WordNet, a large multilingual paral-
lel corpus or a multilingual dictionary which are
required by the other methods.

Table 5 presents results for experiments with
sense-tagged set size smaller than 100×103 words
and shows that for small training set sizes (less
than 50 × 103 words), Recall of our algorithm is
better than MFS and Precision and F-Scores are
in close range. Hence, it is a good choice for
resource-poor languages, especially for those lan-
guages for which resources are in development
phase. These results and our other experiments
show that as sense-tagged training data size in-
creases performance of our method also improves.

509

Table 2: Statistics of sense tagged and raw untagged datasets.

Dataset
Total Total No. of No. of Total No. of No. of unique

No. of No. of unique unique Polysemous Polysemous
Sentences Words Words Sense IDs Words Words

Hindi Tourism 15395 424836 33500 8088 243959 5015sense-tagged
Marathi Tourism 13914 305337 54780 6307 141019 6758sense-tagged

Hindi Health 8001 189677 13356 4405 108006 2321sense-tagged
Marathi Health 6344 119764 21720 3643 47451 2790sense-tagged
Hindi Tourism 24999 424128 29368 - - -raw untagged
Hindi Health 24461 447330 21811 - - -raw untagged

Marathi Tourism 2011 35208 11104 - - -raw untagged
Marathi Health 577 13468 4156 - - -raw untagged

Table 3: Average 4-fold cross validation results obtained for polysemous test words.

Dataset
Our Approach Random Baseline MFS

Precision Recall FScore Precision Recall FScore Precision Recall FScore
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Hindi Tourism 76.22 76.14 76.18 39.39 39.39 39.39 78.66 78.27 78.46
Marathi Tourism 64.80 64.03 64.41 45.61 45.61 45.61 66.0 64.80 65.39

Hindi Health 69.97 69.79 69.88 45.47 45.47 45.47 71.45 70.72 71.08
Marathi Health 60.11 59.12 59.61 48.01 48.01 48.01 60.93 59.58 60.24

Table 4: Average 4-fold cross validation F-Score (%) results obtained for polysemous test words of
various datasets by our approach and other WSD algorithms.

Algorithms Hindi Marathi Hindi Marathi
Tourism Tourism Health Health

Our Approach 76.18 64.41 69.88 59.61
Bhingardive et al. (2015a) - - 60.94 61.30
Bhingardive et al. (2013) 60.70 58.67 59.63 59.77

Khapra et al. (2011a) 53.87 55.20 54.64 58.72
Khapra et al. (2011b) 60.67 61.90 57.99 64.97
Khapra et al. (2008) 74.10 74.40 74.20 78.70

To study the effect of raw untagged data size,
for a particular size sense-tagged training set we
varied the raw untagged data size in the range of
2× 103 to maximum possible for that dataset and
observed that as raw untagged data size increases
the number of correctly predicted test words not
existing in sense-tagged training set also increases
which adds to the overall performance of our ap-
proach.

5 Conclusions and Future Work

In this paper, we proposed a generic semi-
supervised method for Word Sense Disambigua-
tion (WSD) task which uses concept of context

based lists and extended context lists. It makes
the WSD model without using domain knowledge
from a small set of sense-tagged corpus along
with raw untagged text data as training data. It
works well with small training data also and han-
dles data sparsity issue. It does not require do-
main expertise for crafting and selecting features
to be used in the algorithm and outputs senses
of those test words also which are not present
in sense-tagged training set but their associated
senses are present. It is generic enough to be used
for WSD task of various languages without requir-
ing a large sense-tagged corpus and is especially
suitable for resource-poor languages. Our exper-

510

Table 5: Results obtained for polysemous test words for various sense-tagged training set sizes (≤
100× 103 words).

Dataset
No. of Sense Our Approach MFS

Polysemous tagged Untagged Precision Recall FScore Precision Recall FScore
Test words set size set size (%) (%) (%) (%) (%) (%)

Hindi 45721
36457

424128
72.33 70.40 71.35 75.38 69.96 72.57

Tourism
38377 73.24 71.32 72.27 76.87 71.06 73.85
76436 74.31 73.50 73.90 76.87 73.81 75.31

Marathi 33316
21747

35208
62.22 47.77 54.04 62.85 47.27 53.96

Tourism
43251 62.06 53.05 57.20 62.73 52.56 57.20
85296 63.06 58.16 60.51 63.79 57.89 60.70

Hindi 21648
16936

447330
51.89 49.35 50.59 56.99 47.23 51.65

Health
31144 52.49 50.93 51.7 56.26 50.24 53.08
59035 59.93 59.11 59.52 63.45 60.18 61.78

Marathi 10340

7665

13468

77.96 57.89 64.44 78.51 57.88 66.64

Health

15678 73.21 61.94 67.12 73.43 61.52 66.95
33753 70.44 65.62 67.94 71.48 66.06 68.67
75379 64.66 63.09 63.87 65.37 63.36 64.35
94411 64.40 63.44 63.92 65.78 64.45 65.11

iments on Tourism and Health domains of Hindi
and Marathi languages show good performance
without using any language specific linguistic in-
formation.

Future work would be to test it on other lan-
guages including English. Further exploration can
be done to enhance the property of finding sense
IDs of non existing words. We can also try to in-
clude more generic features in the algorithm to en-
hance performance.

References
Eneko Agirre and Aitor Soroa. 2007. Semeval-2007

Task 02: Evaluating Word Sense Induction and Dis-
crimination Systems. In Proceedings of the 4th In-
ternational Workshop on Semantic Evaluations (Se-
mEval ’07), pages 7–12. Association for Computa-
tional Linguistics.

Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
1993. Mining Association Rules Between Sets of
Items in Large Databases. In SIGMOD’93, pages
207–216.

Satanjeev Banerjee and Ted Pedersen. 2002. An
adapted Lesk algorithm for word sense disambigua-
tion using WordNet. In International Conference on
Intelligent Text Processing and Computational Lin-
guistics, pages 136–145. Springer.

Osman Baskaya and David Jurgens. 2016. Semi-
supervised Learning with Induced Word Senses for
State of the Art Word Sense Disambiguation. J. Ar-
tif. Int. Res., 55(1):1025–1058.

Sudha Bhingardive, Samiulla Shaikh, and Pushpak
Bhattacharyya. 2013. Neighbors Help: Bilingual
Unsupervised WSD Using Context. In Proceedings

of the 51st Annual Meeting of the Association for
Computational Linguistics, ACL, volume 2: Short
Papers, pages 538–542.

Sudha Bhingardive, Dhirendra Singh, V Rudramurthy,
and Pushpak Bhattacharyya. 2015a. Using Word
Embeddings for Bilingual Unsupervised WSD. In
Proceedings of the 12th International Conference on
Natural Language Processing (ICON 2015), pages
59–64.

Sudha Bhingardive, Dhirendra Singh, Rudra Murthy
V, Hanumant Harichandra Redkar, and Pushpak
Bhattacharyya. 2015b. Unsupervised Most Fre-
quent Sense Detection using Word Embeddings. In
NAACL HLT 2015, The 2015 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1238–1243.

Ping Chen, Wei Ding, Chris Bowes, and David Brown.
2009. A Fully Unsupervised Word Sense Disam-
biguation Method Using Dependency Knowledge.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 28–36.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for Word
Sense Disambiguation: An Evaluation Study. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL, vol-
ume 1.

Nancy Ide, Tomaz Erjavec, and Dan Tufis. 2002.
Sense Discrimination with Parallel Corpora. In Pro-
ceedings of the ACL-02 Workshop on Word Sense
Disambiguation: Recent Successes and Future Di-
rections - Volume 8, pages 61–66.

511

Girish Nath Jha. 2010. The TDIL Program and the
Indian Langauge Corpora Intitiative (ILCI). In Pro-
ceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10).
European Language Resources Association.

Mikael Kågebäck and Hans Salomonsson. 2016. Word
sense disambiguation using a bidirectional LSTM.
CoRR, abs/1606.03568.

Mitesh Khapra, Pushpak Bhattacharyya, Shashank
Chauhan, Soumya Nair, and Aditya Sharma. 2008.
Domain specific iterative word sense disambigua-
tion in a multilingual setting. In Proceedings of In-
ternational Conference on NLP (ICON 2008).

Mitesh M. Khapra, Anup Kulkarni, Saurabh Sohoney,
and Pushpak Bhattacharyya. 2010. All Words Do-
main Adapted WSD: Finding a Middle Ground Be-
tween Supervision and Unsupervision. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1532–1541.
Association for Computational Linguistics.

Mitesh M Khapra, Salil Joshi, and Pushpak Bhat-
tacharyya. 2011a. It Takes Two to Tango: A Bilin-
gual Unsupervised Approach for Estimating Sense
Distributions using Expectation Maximization. In
Proceedings of 5th International Joint Conference
on Natural Language Processing, pages 695–704.
Asian Federation of Natural Language Processing.

Mitesh M. Khapra, Salil Joshi, Arindam Chatterjee,
and Pushpak Bhattacharyya. 2011b. Together We
Can: Bilingual Bootstrapping for WSD. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies - Volume 1, pages 561–569. Associa-
tion for Computational Linguistics.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: How to tell a
pine cone from an ice cream cone. In Proceedings of
the 5th annual international conference on Systems
documentation, pages 24–26. ACM.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 17th inter-
national conference on Computational linguistics-
Volume 2, pages 768–774.

John C Mallery. 1988. Thinking about foreign policy:
Finding an appropriate role for artificially intelligent
computers. In Master’s thesis, MIT Political Science
Department.

Massimiliano Mancini, José Camacho-Collados,
Ignacio Iacobacci, and Roberto Navigli. 2016.
Embedding Words and Senses Together via
Joint Knowledge-Enhanced Training. CoRR,
abs/1612.02703.

Preslav Nakov and Hwee Tou Ng. 2009. Improved
Statistical Machine Translation for Resource-poor
Languages Using Related Resource-rich Languages.
In Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing: Volume
3, pages 1358–1367. Association for Computational
Linguistics.

Roberto Navigli. 2009. Word Sense Disambiguation:
A Survey. ACM Computing Survey, 41(2):10:1–
10:69.

Alok Ranjan Pal and Diganta Saha. 2015. Word sense
disambiguation: A Survey. CoRR, abs/1508.01346.

Siddharth Patwardhan, Satanjeev Banerjee, and Ted
Pedersen. 2007. UMND1: Unsupervised Word
Sense Disambiguation Using Contextual Semantic
Relatedness. In Proceedings of the 4th International
Workshop on Semantic Evaluations, pages 390–393.

Ted Pedersen and Rebecca Bruce. 1997. Distinguish-
ing Word Senses in Untagged Text. In eprint arXiv:
cmp-lg/9706008.

Judita Preiss, Jon Dehdari, Josh King, and Dennis
Mehay. 2009. Refining the Most Frequent Sense
Baseline. In Proceedings of the Workshop on Se-
mantic Evaluations: Recent Achievements and Fu-
ture Directions, DEW ’09, pages 10–18. Association
for Computational Linguistics.

Pratibha Rani, Vikram Pudi, and Dipti Misra Sharma.
2016. A semi-supervised associative classification
method for POS tagging. International Journal of
Data Science and Analytics, 1(2):123–136.

Kaveh Taghipour and Hwee Tou Ng. 2015. Semi-
Supervised Word Sense Disambiguation Using
Word Embeddings in General and Specific Domains.
In HLT-NAACL, pages 314–323.

Zhizhuo Yang and Heyan Huang. 2012. Chinese word
sense disambiguation based on context expansion.
In COLING (Posters), pages 1401–1408.

David Yarowsky. 1993. One sense per collocation. In
Proceedings of the workshop on Human Language
Technology, pages 266–271.

David Yarowsky. 1995. Unsupervised Word Sense
Disambiguation Rivaling Supervised Methods. In
ACL, pages 189–196.

Mo Yu, Shu Wang, Conghui Zhu, and Tiejun Zhao.
2011. Semi-supervised learning for word sense
disambiguation using parallel corpora. In 2011
Eighth International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD), volume 3, pages
1490–1494. IEEE.

Dayu Yuan, Julian Richardson, Ryan Doherty, Colin
Evans, and Eric Altendorf. 2016. Semi-supervised
word sense disambiguation with neural models.
arXiv preprint arXiv:1603.07012.

512

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 513–522

Notion of Semantics in Computer Science
A Systematic Literature Review

Gollapudi VRJ Sai Prasad
Software Engineering Research Center

IIIT-Hyderabad
Gachibowli, Telangana, India
saigollapudi1@gmail.com

Venkatesh Choppella
Software Engineering Research Center

IIIT-Hyderabad
Gachibowli, Telangana, India

venkatesh.choppella@iiit.ac.in

Abstract

In this paper we report on a Systematic
Literature Review where we explored the
notion of semantics in Computer Science
(CSE) literature. Our goal was 1) to sur-
face how the idea of semantics has been
used and represented, and 2) to surface its
publication pattern in CSE. Our automated
search in 5 CSE repositories yielded 653
relevant papers, emerging from multiple
disciplines and geographies, spanning a
period from year 1967 to 2017. We short-
listed 50 representative samples to study.
This literature review was motivated by an
external Web Accessibility effort in which
we wanted to understand how to influ-
ence the various meanings that a variety
of human end-user could derive by varying
the computer rendering of a given content.
The results of the SLR indicate that 44%
of papers do have their own definition, al-
most all are formal in their presentation,
and 94% of them have a notion of seman-
tics that favors the computer as a proces-
sor. We observe the limited human ori-
ented focus on semantics in CSE, and sug-
gest such semantics focus as an area of po-
tential study.

1 Introduction

In the scenario of a human interacting with a com-
puter, meaning is getting produced and processed.
We are interested in impacting the notion of this
meaning that is getting created in the human.

Philosophers and Linguists have routinely used
the term ”Semantics” to represent the notion of
meaning. Now, this notion of semantics has
been carried over to Computer Sciences where it
has been applied in Natural Language Process-

ing, Programming Languages, Web, Software En-
gineering etc.

Motivated by impacting human meaning and
human sense-making, we are therefore transitively
interested in the notion of semantics. However,
even for a contained area like Computer Science
(CSE), this term has not been unambiguously de-
fined for similar and consistent use universally.
Many disciplines within CSE have all made use
of this notion of Semantics, but in their own way.

1.1 Goal of this Paper

The goal of this paper is to conduct a Systematic
Literature Review on the notion of semantics in
CSE. In particular we aim to study the use of this
term in the CSE, at least in such disciplines as Pro-
gramming Languages (PL), Software Engineering
(SE), Compilers, Web and NLP. The overall goal
being, 1) to surface how the term of semantics
has been used and represented in these said dis-
ciplines, and 2) to surface the publication pattern
on this topic.

1.2 Background, Context & Motivation

In human computer interaction, there is obviously
1) a human, 2) a computing system and 3) an en-
gagement or interaction between the two. The en-
gagement could either be passive (as in brows-
ing or viewing), or active, as in querying or se-
lecting something on the system. In such scenar-
ios, humans are said to be deriving meaning from
the representation presented by the computer. The
modality for representation can be text, image, au-
dio, video etc. More interactive representation(al
experiences) can be animation, video, user inter-
faces etc. In the case of interaction (as in inputting
or programming by the human), the computing
system is also processing data to derive meaning.
Apparently, both the human and the system can be
seen as two processing agents.

513

The notion of meaning and semantics can,
therefore, be applied to either of the two agents.
Our interest, however, is on the human formulat-
ing meaning. From an information delivery point-
of-view, the idea of how meaning is extracted,
constructed or possessed by the human is studied
by Psychologists, Cognitive Scientists and Infor-
mation Processing researchers. On this side, top-
ics like Sense-making (Russell et al., 1993), User
Experience, Semantic Interaction (Endert et al.,
2012) etc. emerge.

As a compliment to the human sense making
experience, on the computing side, we may also
look at how something can be constructed to de-
liver a particular meaning. Web Accessibility re-
searchers, claim that currently web content is pri-
marily designed for a majority in mind (Prasad et
al., 2014). And that it may not suffice for the in-
dividualized needs of a minority of users (Prasad,
2017).

A color blind person, for example, may not ben-
efit in the same way as a non-body disabled user.
So, in this regard, on the computing system side
of the human computer interaction, does there ex-
ist a platform that would enable the creation and
simultaneous co-existence of multiple representa-
tions for the varying needs of a diverse human end
users? Is there sufficient motivation for a system
that can renarrate and simultaneously have mul-
tiple representations of some source text (Prasad,
2017)? That is, a system equally being able to
produce colorful content for the majority of users,
high contrast and appropriately rendered visuals
for the color blind, braille for the visually im-
paired, in vernacular for the non-English speakers,
in tables, diagrams and scientific explanations for
the learned etc. These questions form the back-
ground context and motivation for our study of se-
mantics in CSE.

1.3 Semantics as ”Meaning”

Online dictionary1 describes Semantics as ”the
meaning, or an interpretation of the meaning, of a
word, sign, sentence, etc.” From a linguistic point
of view, it relates Semantics to ”the study of mean-
ing”. Webster’s dictionary2 too shares a similar
explanation, and calls semantics as ”the study of
meanings”.

From a human computer interaction point view,

1http://www.dictionary.com/browse/semantics?s=t
2https://www.merriam-webster.com/dictionary/semantics

the study of semantics can be related to the study
of meaning for either the human or the computer.
We are keen to uncover how semantics research in
CSE has defined and explored this topic.

1.4 SLR - A Research Tool

As already stated, our larger goal is to understand
how best to represent either information or data on
the system so that it may create the right meaning
to the human. To that end we wanted to conduct
an exploratory Literature Review for such a social
applicable, human oriented web application space.

SLRs have been popularized as a Evidence
Based Software Engineering (EBSE) research tool
by Kitchenham et al. in a seminal paper (Kitchen-
ham et al., 2004) presented at ICSE 2004, which
is a prominent conference for Software Engineers.
In particular SLRs have been suggested as a sys-
tematic way of exploring a problem space and thus
have been suggested as valuable first step in a PhD
research effort (Kitchenham et al., 2004).

While SLRs have been popular in the fields
of medical sciences, their use in CSE has been
limited. However, we are now beginning to find
SLRs in various areas of CSE. SLRs are now be-
ing published in Information Systems (Okoli and
Schabram, 2010), Software Engineering (Kitchen-
ham et al., 2009), Programming Languages (Ma-
jor et al., 2012), Web (Doğan et al., 2014), Model
Driven Engineering (Santiago et al., 2012) etc.

2 Research Method

This SLR follows the guidelines given in (Keele
and others, 2007) and is also informed by DARE3

criteria for SLR.

2.1 Research Questions

The research questions put forth for the documents
surfaced by our search strategy (given in section
2.2) include:
RQ1: Was there a definition for semantics in the

paper?
RQ2: Was the notion of semantics general, or did

it have some sub categories? What where
they?

RQ3: Is the notion of semantics oriented towards
the human or the computer?

RQ4: What sort of precision did it have in its def-
initions?

3Database of Abstracts of Reviews of Effects (DARE):
https://www.ncbi.nlm.nih.gov/pubmedhealth/about/DARE/

514

RQ5: Which research domain did the paper repre-
sent within CSE?

RQ6: When was the research published?

2.2 Search Strategy

For the SLR we conducted an automated search,
which included five of the most commonly used
CSE bibliography repositories. See Table 1. Each
of the databases were searched, in the stated or-
der of priority, on the following aspects: 1) the
queried records must be CSE papers, 2) they must
have the word ”semantic” in their title, and 3) they
must have the term ”definition of semantics” in
their body of text. Table 1 lists the exact string
and the restrictions that were used for our auto-
mated search.

2.3 Paper Selection

Paper selection was based on a set of inclusion,
exclusion and quality criteria. The inclusion cri-
teria required the document to fulfill the search
string, be a peer reviewed primary study, and be
an accessible document on the web. Papers with
zero citations, papers that were essentially Patents,
papers that were on non-CSE topics (like biol-
ogy/genome) were excluded. Quality criteria
consisted of only selecting papers that were con-
sidered long publications (i.e. had to be more than
4 pages), had to be peer reviewed, and had to have
some citations.

2.3.1 Selection Process
Once a paper fulfilled our inclusion, exclusion and
quality criteria, it was entered into our initial cor-
pus for individual selection. The initial corpus
was maintained as Bibtex files in Microsoft Ex-
cel worksheet. We expected our initial corpus to
be quite large, we planned on manually shortlist-
ing it into a handlable size for evaluation. This
shortlisting process was done on Excel by two out-
side judges. Our aim was to reduce the initial cor-
pus into a more practical size of 50 representa-
tive samples. These set of shortlisted records were
then to be fed into a document manager to surface
the full length documents from the web. For PDF
management we used Qiqqa tool9, and for Bibtex
management, we used JabRef tool. This set of 50
shortlisted records, complete with their full body
content were then positioned on the Qiqqa tool for
data collection.

9Desktop v.79s for Windows; source:http://www.
qiqqa.com/

The data that was used for filtering was Title,
Keywords, publication meta-data (like the pub-
lisher, journal name, issue details etc), and in some
cases Abstracts as well.

2.4 Data Extraction

The intent of this phase is to ensure that we col-
lect appropriate data from each earmarked paper
to answer our earlier stated SLR research ques-
tions. Here is the criteria that was used for each
questions:

RQ1: We used the document management
tools10 to search for various definitions found in
the papers. If there were any definitions on the
topic related to semantics then we took it as a YES
count. Else, it was counted as a NO.

RQ2: We searched the surfaced papers to un-
cover the various contexts11 in which the word se-
mantic was used. If there were any repeatedly used
sub-concepts of semantics then we recorded it. At
the end we expected to have a bag of semantics re-
lated concepts and ideas that would form the base
for where the CSE research was headed.

RQ3: One key differentiation we wanted to
make was to whom the semantics was being made
relevant to. Was it the human (as a processor of
rendered information), or was it the computer12

(as a processor of the input information)? We
scanned papers to see how the definitions of se-
mantics were oriented, and incremented the rele-
vant ”H” or ”C” count as appropriate.

RQ4: Through this question we wanted to see
if the papers presumed an earlier (elsewhere) de-
fined notion, or if they took the trouble to define
their own working definition. In some cases we
expected to also have some loosely defined ter-
minology. So, our measure was on the precision:
Was the definition formal (with logic and mathe-
matics)? Or, was it informal - as in just by English
text? Or (as in RQ1) was there no definition at all?
This was checked and recorded.

RQ5,6: For the last two questions we collected
meta data on the publications. Here we wanted to
see where the research was emerging from. We
wanted to understand which domains were active
in this research and the year of publication.

In addition to the above highlighted data, we

10which, in our case, was Qiqqa Desktop
11The word context is refers to the research narrative and

not the context of corpus within some research.
12We treated these two as mutually exclusive even though

they need not be.

515

Databases Search String Restrictions Hits
ACM Digital Library4

acmdlTitle:(+semantics) AND con-
tent.ftsec:(+”definition of semantics”)

282

IEEE Xplore5
((definition of semantics) AND ”Publication Ti-
tle”:semantics)

67

Science Direct6
TITLE(semantics) and (definition of seman-
tics) AND LIMIT-TO(topics, ”theoretical com-
puter,logic program,program,definition”).

Advanced Search/Expert Search tag; used no theoretical, no
books filters

342

SpringerLink7
”definition of semantics” ”definition of semantics” anywhere and ”semantics” in title;

used Articles, Computer Science, English filters
61

Wiley Inter Science8
definition of semantics in All Fields AND se-
mantics in Publication Titles

Advanced Search 33

total 790

Table 1: The CSE bibliographic repositories that were used in the automated search.

also collected such publication related meta data
as: Title, Keywords, Author names, Publication,
Year, and in some cases, even the Abstract. We
used Bibtex for the extraction of this information
from the online bibliographies.

Essentially, through this data collection, we
sought to surface how computer science research
viewed semantics with respect to their own work,
and to see how these ideas tallied with our idea of
influencing meaning in the minds of an end user.

3 Results

Our initial automated search extracted 790
records, of which 5 records were malformed and
irretrievable. In this initial corpus we were able
to identify 21 repeat records, 87 with no ”seman-
tics”, and 32 short papers. That is, overall 140
were eliminated from this initial corpus, resulting
in 653 retrievable pruned set of records.

In studying the initial corpus we found that
our collection was indeed quite diverse: For ex-
ample, the publication dates ranged from 1967
to 2017. The locations of publications at least
included USA, UK, Germany, Australia, South
Africa, Netherlands, Switzerland and Canada.
The covered disciplines included Theoretical CSE,
Knowledge Engineering, Formal Methods, Pro-
gramming Languages, Logic Programming, Se-
mantics, Web, Linguistics, Systems, Multimedia,
Software Engineering, Artificial Intelligence etc.
Even Biology/genome related publications were
captured.

From this diverse sample set of 653 records,
as per our selection process, we then needed to
shortlist a smaller sample size of just 50 records.
We used two external judges to help us identify
50 representative samples from the original list of
653. While the choice was somewhat arbitrary, it
was still ensured that the reduced set too was suf-

ficiently diverse and indicative of the larger set of
653. Tables 2 and 3 provide a listing of these fi-
nalized studies.

The earmarked 50 records were converted into
a shortlisted bib file by use of the JabRef tool13.
The bib file was used by our document manager,
Qiqqa, to import the full content. The files were
imported from online document repositories given
by Table 1. Finally, for subsequent steps involving
data extraction, the same Qiqqa tool was then used
to manage the 50 uploaded PDFs.

Here is a brief summary of what was uncovered
through our data collection process:

3.1 RQ1: Definition

In the first RQ1 we wanted to understand how
many, if any, actually even bothered to define the
notion of semantics in their research. Our initial
presumption was that while the idea of semantics
and usage of the term was rampant, the definition
was most likely ambiguous and perhaps not suffi-
ciently formal.

The results of our SLR contradicted our as-
sumptions. The data informed us that while 56%
(that is, 28 out of 50) papers were indeed assum-
ing a pre-existing notion and definition of seman-
tics, there were also the other 44% that indeed con-
tained definitions. That is, 22 of the 50 samples
actually had expressed their notion of semantics.

Upon investigation we found that most of them
were either having special applications or were
defining niche terms related to semantics. For ex-
ample, S514 for these references. defined the no-
tion of ”meaningfulness”, S6 had Context Free
Grammar (CFG) related semantics, S16 had defi-

13Our JabRef tool was part of our TexStudio Latex docu-
ment editor, and was supported by Qiqqa.

14See Tables 2, 3 for listing of 50 sample studies we used
in our SLR. Due to the long length, it has been divided into
two parts.

516

ID Author Formal Definition
Present

hum/comp subtypes domains

S1 (Ray et al., 1998) none comp correctness database
S2 (Haghverdi and Scott,

2005)
none comp denotational prog lang

S3 (Hans Bruun, 1991) none comp static prog lang
S4 (Alexandre Rademaker,

2005)
none comp logic software eng

S5 (Lavelli et al., 1992) yes - meaningfulness comp multilevel systems
S6 (Vykhovanets, 2008) yes - CFG related comp general prog lang
S7 (Schwarcz, 1969) yes comp general nlp
S8 (Juba and Sudan, 2008) none comp universal nlp
S9 (Winsborough, 1992) none comp graph compiler

S10 (Andrew Butterfield,
2006)

none comp general compiler

S11 (Glesner, 2005) none comp general compiler
S12 (Dan R Ghica, 2012) none comp game, denotational game
S13 (Matos et al., 2010) none hum general web services
S14 (Pittarello and

De Faveri, 2006)
none comp general web

S15 (Yong et al., 2004) none hum general urban planning
S16 (Alexey L. Lastovetsky,

2001)
yes - abstract lang comp general prog lang

S17 (Benveniste et al.,
1991)

none comp general prog lang

S18 (Perdrix, 2008) yes - for a quantum pro-
gram

comp quantum theoretical, logic

S19 (Bochman, 1998) yes- for logic programs comp stationary and stable
class

theoretical, logic

S20 (Blair, 1982) none comp general theoretical, logic
S21 (Cox and Dang, 2010) none comp general prog lang
S22 (Velbitskiy, 1977) yes - a meta lang comp prog lang
S23 (Menezes, 2008) yes - for aspect oriented comp denotational, opera-

tional, action
prog lang

S24 (Zhou and Zhang,
2017)

none comp stable model theoretical, logic

S25 (Toch et al., 2007) yes - narrow web ser-
vice semantics

comp web services

Table 2: Listing of 50 sample studies we used in our SLR. Due to the long length, it has been divided
into two parts. This represents the first part.

nitions to be used in an abstract language, S23 ap-
plied semantics to Aspect Oriented Programming
concepts etc. Again, the existence of such defini-
tions confirmed to us that work with semantics is
not as arbitrary as we had initially presumed.

3.2 RQ2: Subcategories

The intent here was to understand how generic was
the application of semantics. Our results suggest
that there are indeed many research works and dis-
ciplines that discuss semantics at a very high level,
but there are also those that sufficiently focused in
on the sub topics within semantics.

In our collection, the subtopics that were ex-
plored included: denotational semantic (S2), static
semantic (S3), logic semantics (S4), multilevel se-
mantics (S5), universal semantics (S8), graph se-
mantics (S9), game semantics (S46), quantum se-

mantic (S18), stationary semantic (S19), stable
class (S19), operational semantics (S23), action
semantics, stable model semantics (S24), trace se-
mantics (S37) etc. Other notion of semantics in-
clude: semantic correctness (S1), semantic relat-
edness (S27), semantic distance (S27), semantic
forgetting, semantic compatibility (S42,44), timed
semantics, semantic spaces, semantic models, se-
mantic similarity etc.

3.3 RQ3: Human Vs. Computer Semantics

Through this RQ3 we wanted to uncover a pre-
sumption that most of the notion of semantics in
CSE was computer oriented and not human ori-
ented. The SLR results confirmed this. We found
that 47 out of 50 papers were indeed meant for
computers as the processing agent. Only 3 out of
the 50 were designed for human as the processing

517

ID Author Formal Definition
Present

hum/comp subtypes domains

S26 (Kravicik and Gasevic,
2006)

none comp general web services

S27 (Xu et al., 2006) yes - for relatedness of
keywords

comp relatedness, distance ontology

S28 (Emmon Bach, 2008) none comp general linguistics
S29 (Bergmann and Gil,

2014)
none comp general workflows

S30 (Dasiopoulou et al.,
2010)

none comp general image analysis

S31 (Biancalana et al.,
2013)

none comp general social web

S32 (Paolini, 2009) none comp general theoretical, logic
S33 (Boute, 1988) yes -for SDL comp denotational systems
S34 (Papaspyrou, 2001) yes - for C comp denotational prog lang
S35 (Lobo et al., 1991) yes - Logic comp logic
S36 (Broy and Lengauer,

1991)
yes - Logic comp predicative, denota-

tional
theoretical, logic

S37 (Puntigam, 1997) none comp trace prog lang
S38 (Jasmin Chris-

tian Blanchette, 2008)
yes - alternatives pre-
sented

comp operational prog lang

S39 (Thomas Eiter, 2008) yes - for answer sets comp forgetting, stable model theoretical, logic
S40 (Ouksel and Sheth,

1999)
none comp general Global Info Systems

(GIS)
S41 (Millard et al., 2005) yes- for hypertext comp general hypertext, logic
S42 (Zeng et al., 2006) yes - compatibility comp compatibility prog lang
S43 (Wehrman et al., 2008) yes - for ORC comp operational, denota-

tional, timed
theoretical; logic

S44 (Zeng et al., 2005) yes - compatibility comp compatibility web services
S45 (Benthem, 2005) none comp general logic
S46 (Kessing et al., 2012) none hum general game
S47 (Baroni and Lenci,

2010)
none comp spaces, models, simi-

larity
distributed memory;
database

S48 (Abiteboul and Hull,
1987)

yes - IFO database
model

comp general database

S49 (da Silva et al., 2012) none comp general workflows; web ser-
vices

S50 (Titov and Klementiev,
2011)

yes- bayesian parsing comp general nlp

Table 3: Part two, or the remaining listing of 50 sample studies we used in our SLR.

agent.
Upon further investigation, these 3 were either

using a specialized concept of semantics or were
geared towards a social application. For example
S15 had to use human understandable terms like
Roof, Window, Gate, Shell, Wall etc to link the
graphics to urban planning. S13 used a cell com-
ponent ontology, and S46 focused on real world
physics on game word entities.

This exposed a potential bias for us. It appears
that in CSE, most of the ideas related to semantics
have indeed been largely designed for computers,
and not humans as the processing agent.

3.4 RQ4: Precision in Definition

In continuation of RQ1, we wanted to understand
the level of definition precision one could expect
out of these papers. For instance, if the papers

were formal in their content, then we could ex-
pect to see formal term definitions for semantics
as well.

Our results indicate that while 42 of the 50 were
papers had lot of logic and formalisms in them,
only 44% (or 22 papers) had definitions for (por-
tions of) semantics. 5 were informal in their def-
initions. And 3 assumed that semantics were de-
fined elsewhere. So, we could see the pattern that
most of the Logic Programming, Formal Methods
and Theoretical CSE works perhaps already had
a notion of semantics formally defined elsewhere
that they could leverage in these documents. And
that there very few documents discussing seman-
tics from scratch.

In the case of working with humans and their
sense-making of content, no such formal defini-
tions may exist. Therefore, such research would

518

Figure 1: Year-wise histogram of all 653 pub-
lished papers.

need a more formal definition of semantics – a hu-
man oriented semantics – in their publication.

3.5 RQ5: Computer Science Domains

Our goal in RQ5 was to understand which sub ar-
eas within Computer Science were actively dis-
cussing semantics. Our results indicate that se-
mantics was discussed in multiple sub-areas in-
cluding: NLP with 3 papers, Programming Lan-
guages with 13 papers, Workflows having 2,
Databases having 3, Games having 2, Web Ser-
vices having 5, Logic related papers having 11 and
theoretical being 8. Of course, these topics were
not mutually exclusive and did overlap. See Fig-
ure 2 for a distribution of topics.

The conclusion, therefore, is that notion of se-
mantics is not just restricted to one or two niche
areas – like Linguistics, or Programming Lan-
guages. There appear to be quite a few emerging
areas where semantics – and that too human se-
mantics – can be relevant. For example, mobile
web and social web applications has a lot of scope
for social and human related content.

3.6 RQ6: Publication History

In RQ6 we wanted to see how hot semantics re-
search has been in the past. We wanted to look at
the publication history to draw some context, and
from that extrapolate the future outlook for this
work.

When we look at the overall corpus of 653 pa-
pers, the publications on semantics started in 1967
and continued with just a few publications a year
till early 80s. See Figure 1. In the decade of 90s
there was a wave of publications for each year con-
tributing to about 10-20 publications each. While
2001-5 was relatively low (with just less than 10
publications a year), the year starting 2005 saw a
huge leap in publications: 2006-2011 saw 50-60
publications a year. Starting 2011 to date (2017)
we again see a decline in number of papers fo-
cused on this topic.

Figure 2: Sub-areas of CSE which published the
50 shortlisted papers.

It appears that semantics had its hayday in the
second half of 2005. From 2007 to 20011, that is
in the last decade, we could see over 222 publi-
cations in this space. However, this number has
reduced considerably. In the past five years we
could only see 45 publications in this space.

One may interpret this reduction trend to mean
that interest in semantics is now waning. However,
we take a different stand. We suggest that what is
reducing is not interest in semantics, but rather re-
duction in publications with ”definitions of seman-
tics” in them. This could mean two things for us:
1) There is considerable computer oriented, formal
definition of semantics already out there that could
be leveraged, and 2) there is an excellent opportu-
nity ahead to further define more human oriented
semantics for upcoming mobile and web applica-
tions.

3.7 Threats to Validity

We recognize that our study sample is (n=)50 and
only represents 8% of our excavated corpus of
(n=)653. This sample size does indeed effect our
results. In addition, we realize that we only fo-
cused on papers that used the word ”semantic” in
their title, or on those that had ”definition of se-
mantics” in their body. This also reduces our input
corpus.

Broadening our search to also include papers on
other related terms could enrich our corpus and
through that better inform similar research. But,
such resources would come at a cost: They would
potentially require more resources in time, effort
and reporting. While they may provide more de-

519

tails, but it may only be marginally different infor-
mation to the pattern of findings a smaller study
could feasibly uncover.

4 Discussion & Insights

From our study we gather that semantics is not
merely a study of meaning, but it is study of mean-
ing for humans as well as computers (RQ3), both
in natural language as well as in technical lan-
guages, both in context (as in usage by a hu-
man context) or in context-independent manner
(as with lexical analysis in linguistics).

In a computing situation, it appears that there
are both 1) theoretical studies that explore the for-
malism (RQ4), the logic – as in (S18-20,24,32,36
– and 2) application studies, that apply it to web
(as in Semantic Web), or to Web Services (S13,
25-26,44), or to Work Flows (S29,49). The theo-
retical studies tend to be formal and use significant
logic (RQ4). Apparently they have contributed to
design and development of robust programming
languages (S2-3,6,16-17, 21-23,34, 37-38,42) and
compilers (S9-11).

In the context of Programming Languages,
there is Denotational (S2,12,23,33-35,43), Op-
erational (S23,38,43) and Axiomatic Semantics.
Also, the Denotational work was supported with
Action Semantics (RQ2).

We also saw that there was application of game
theory principles to semantics (S12,46), and, on
the other side, application of semantics to graphs
(S), images (S30), urban planning (S15), genome
studies, databases (S47-48), ontologies (S13), se-
mantic web (S14), web services (S13,25-6,49),
Hypertext (S41) etc. Semantics seems to have
been used to study similarity (S42-44), distance
(S27), tuples, stability. It was applied to systems
(S5) as well as for forgetting (S39).

We realize that while the generic term is some-
what ambiguous, in CSE, the term is mostly re-
lated to the computer as an processing agent
model. Only when it comes to social (as in, bio-
logical or urban studies) or web applications level
(for example with Ontologies) we found a human
interpretation to this term.

From a logic and formalism point of view, se-
mantics has been receiving lot of research atten-
tion. However, going forward, there seems to be
scope to interpret semantics from the point of view
of a human processor. Cognitive Linguistics, Psy-
chology, Information Processing might be able to

address the emerging need to make processing as
a tool to help the human manage and make sense
of the information rendered for her.

5 Conclusions

We undertook the SLR study to systematically ex-
plore the notion of semantics, as it is applied in
CSE. We presumed that the term Semantic was
ambiguously or variedly defined in different sub-
areas of CSE research. What we discovered in-
stead is that the notion of semantics is not ill de-
fined. But, however, it seems to be narrowly de-
fined. Working definitions and application spe-
cific definitions seem to exist (S5-6,16,18-19,22-
23,27,33-36,38-39,41-44,48-49). Moreover, we
found that, in the human computer interaction re-
lationship, most of the focus of the semantics is
geared towards the computer being able to process
the information(S34,50), to present the informa-
tion (S41), to access the information (S1,47).

Human semantics (influenced by a computing
system) has been, in our opinion, under empha-
sized (S13,15,46). We see this as an opportunity
to develop systems, content and architectures to
focus on enhancing meaning for the human. No
doubt, semantic models and analysis is needed for
the back-end computing processor agent. How-
ever, such models and analysis should also ac-
count for and accommodate a better semantic or
easier sense-making ability for the human end user
as well. That exploration will be our future work.

References
Serge Abiteboul and Richard Hull. 1987. Ifo: A

formal semantic database model. ACM Trans.
Database Syst., 12(4):525565.

christiano Braga Alexandre Sztajnberg Alexan-
dre Rademaker. 2005. A rewriting semantics for a
software architecture description language.

Sergey S. Gaissaryan Alexey L. Lastovetsky. 2001.
An algebraic approach to semantics of programming
languages.

Jim Woodcock Andrew Butterfield. 2006. A hardware
compiler semantics for handel-c.

Marco Baroni and Alessandro Lenci. 2010. Distri-
butional memory: A general framework for corpus-
based semantics. Comput. Linguist., 36(4):673721.

Johan Benthem. 2005. Guards, bounds, and gen-
eralized semantics. J. of Logic, Lang. and Inf.,
14(3):263279.

520

Albert Benveniste, Paul Le Guernic, and Christian
Jacquemot. 1991. Synchronous programming with
events and relations: the signal language and its
semantics. Science of Computer Programming,
16(2):103 149.

Ralph Bergmann and Yolanda Gil. 2014. Similarity
assessment and efficient retrieval of semantic work-
flows. Inf. Syst., 40:115127.

Claudio Biancalana, Fabio Gasparetti, Alessandro Mi-
carelli, and Giuseppe Sansonetti. 2013. Social se-
mantic query expansion. ACM Trans. Intell. Syst.
Technol., 4(4):60:160:43.

Howard A. Blair. 1982. The recursion-theoretic com-
plexity of the semantics of predicate logic as a
programming language. Information and Control,
54(12):25 47.

Alexander Bochman. 1998. A logical foundation for
logic programming ii” semantics of general logic
programs.

Ray Boute. 1988. Systems semantics: Principles, ap-
plications, and implementation. ACM Trans. Pro-
gram. Lang. Syst., 10(1):118155.

Manfred Broy and Christian Lengauer. 1991. On de-
notational versus predicative semantics. Journal of
Computer and System Sciences, 42(1):1 29.

Philip T. Cox and Anh Dang, 2010. Semantic Compar-
ison of Structured Visual Dataflow Programs, page
11:111:9. VINCI 10. ACM.

Laryssa Machado da Silva, Regina Braga, and Fer-
nanda Campos. 2012. Composer-science: A
semantic service based framework for workflow
composition in e-science projects. Inf. Sci.,
186(1):186208.

Nikos Tzeyelekos Dan R Ghica. 2012. A system-level
game semantics.

Stamatia Dasiopoulou, Ioannis Kompatsiaris, and
Michael G. Strintzis. 2010. Investigating fuzzy dls-
based reasoning in semantic image analysis. Multi-
media Tools Appl., 49(1):167194.

Serdar Doğan, Aysu Betin-Can, and Vahid Garousi.
2014. Web application testing: A systematic lit-
erature review. Journal of Systems and Software,
91:174–201.

Barbara H. Partee Emmon Bach, 2008. Anaphora and
Semantic Structure, page 122152. Blackwell Pub-
lishing Ltd.

Alex Endert, Patrick Fiaux, and Chris North. 2012.
Semantic interaction for visual text analytics. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages 473–
482, New York, NY, USA. ACM.

Sabine Glesner. 2005. A proof calculus for natural
semantics based on greatest fixed point semantics.
Electronic Notes in Theoretical Computer Science,
132(1):73 93. Proceedings of the 3rd International
Workshop on Compiler Optimization Meets Com-
piler Verification (COCV 2004)Compiler Optimiza-
tion Meets Compiler Verification 2004.

Esfandiar Haghverdi and Philip Scott. 2005. From
geometry of interaction to denotational semantics.
Electronic Notes in Theoretical Computer Science,
122:67 87. Proceedings of the 10th Conference
on Category Theory in Computer Science (CTCS
2004)Category Theory in Computer Science 2004.

Bo Stig Hansen Flemming Damm Hans Bruun. 1991.
An approach to the static semantics of vdm-sl.

Olaf Owe Jasmin Christian Blanchette. 2008. An open
system operational semantics for an object-oriented
and component-based language.

Brendan Juba and Madhu Sudan, 2008. Universal Se-
mantic Communication I, page 123132. STOC 08.
ACM.

Staffs Keele et al. 2007. Guidelines for performing
systematic literature reviews in software engineer-
ing. In Technical report, Ver. 2.3 EBSE Technical
Report. EBSE. sn.

Jassin Kessing, Tim Tutenel, and Rafael Bidarra, 2012.
Designing Semantic Game Worlds, page 2:12:9.
PCG12. ACM.

Barbara A Kitchenham, Tore Dyba, and Magne Jor-
gensen. 2004. Evidence-based software engineer-
ing. In Proceedings of the 26th international confer-
ence on software engineering, pages 273–281. IEEE
Computer Society.

Barbara Kitchenham, O Pearl Brereton, David Budgen,
Mark Turner, John Bailey, and Stephen Linkman.
2009. Systematic literature reviews in software
engineering–a systematic literature review. Infor-
mation and software technology, 51(1):7–15.

Milos Kravicik and Dragan Gasevic, 2006. Adaptive
Hypermedia for the Semantic Web, page 310. APS
06. ACM.

Alberto Lavelli, Bernardo Magnini, and Carlo Strappa-
rava, 1992. An Approach to Multilevel Semantics for
Applied Systems, page 1724. ANLC 92. Association
for Computational Linguistics.

Jorge Lobo, Arcot Rajasekar, and Jack Minker. 1991.
Semantics of horn and disjunctive logic programs.
Theoretical Computer Science, 86(1):93 106.

Louis Major, Theocharis Kyriacou, and O Pearl Brere-
ton. 2012. Systematic literature review: teaching
novices programming using robots. IET software,
6(6):502–513.

521

Ely Edison Matos, Fernanda Campos, Regina Braga,
and Daniele Palazzi. 2010. Celows: An ontology
based framework for the provision of semantic web
services related to biological models. J. of Biomedi-
cal Informatics, 43(1):125–136, feb.

Luis Menezes. 2008. Aspect-oriented action seman-
tics descriptions.

David E. Millard, Nicholas M. Gibbins, Danius T.
Michaelides, and Mark J. Weal, 2005. Mind the Se-
mantic Gap, page 5462. HYPERTEXT 05. ACM.

Chitu Okoli and Kira Schabram. 2010. A guide to con-
ducting a systematic literature review of information
systems research.

A. M. Ouksel and A. Sheth. 1999. Semantic interop-
erability in global information systems. SIGMOD
Rec., 28(1):512.

Luca Paolini. 2009. Logical semantics for stability.

Nikolaos S. Papaspyrou. 2001. Denotational seman-
tics of ansi c. Computer Standards & Interfaces,
23(3):169 185.

Simon Perdrix. 2008. A hierarchy of quantum seman-
tics.

Fabio Pittarello and Alessandro De Faveri. 2006. Se-
mantic description of 3d environments: A proposal
based on web standards. In Proceedings of the
Eleventh International Conference on 3D Web Tech-
nology, Web3D ’06, pages 85–95, New York, NY,
USA. ACM.

Gollapudi Vrj Sai Prasad, TB Dinesh, and Venkatesh
Choppella. 2014. Overcoming the new accessibility
challenges using the sweet framework. In Proceed-
ings of the 11th Web for All Conference, page 22.
ACM.

Gollapudi VRJ Prasad. 2017. Renarrating web con-
tent to increase web accessibility. In Proceedings
of the 10th International Conference on Theory and
Practice of Electronic Governance, pages 598–601.
ACM.

Franz Puntigam. 1997. Types for active objects based
on trace semantics.

Indrakshi Ray, Paul Ammann, and Sushil Jajodia.
1998. A semantic-based transaction processing
model for multilevel transactions1. Journal of Com-
puter Security, 6(3):181–217.

Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and
Stuart K. Card. 1993. The cost structure of sense-
making. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Comput-
ing Systems, CHI ’93, pages 269–276, New York,
NY, USA. ACM.

Iván Santiago, Alvaro Jiménez, Juan Manuel Vara, Va-
leria De Castro, Verónica A Bollati, and Esperanza
Marcos. 2012. Model-driven engineering as a new
landscape for traceability management: A system-
atic literature review. Information and Software
Technology, 54(12):1340–1356.

Robert M. Schwarcz, 1969. Towards a Computational
Formalization of Natural Language Semantics, page
153. COLING 69. Association for Computational
Linguistics.

Kewen Wang Thomas Eiter. 2008. Semantic forgetting
in answer set programming.

Ivan Titov and Alexandre Klementiev. 2011. A
bayesian model for unsupervised semantic parsing.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages
1445–1455, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Eran Toch, Avigdor Gal, Iris Reinhartz-Berger, and
Dov Dori. 2007. A semantic approach to approx-
imate service retrieval. ACM Trans. Internet Tech-
nol., 8(1).

I. V. Velbitskiy. 1977. Metalanguage for formal defini-
tion of semantics of programming languages.

V. S. Vykhovanets. 2008. Description of the seman-
tics of context-free languages by the mathematical
induction method. 42(4).

Ian Wehrman, David Kitchin, William R. Cook, and
Jayadev Misra. 2008. A timed semantics of orc.
Theoretical Computer Science, 402(23):234 248.
Trustworthy Global Computing.

Will Winsborough. 1992. Multiple specialization us-
ing minimal-function graph semantics. The Journal
of Logic Programming, 13(23):259 290.

Jianbo Xu, Zhonglin Xu, and Jiaxun Chen, 2006. Se-
mantic Retrieval System Based on Ontology, page
124129. ISP06. World Scientific and Engineering
Academy and Society (WSEAS).

Liu Yong, XU Congfu, Pan Zhigeng, and Pan Yunhe.
2004. Semantic modeling project: Building vernac-
ular house of southeast china. In Proceedings of the
2004 ACM SIGGRAPH International Conference on
Virtual Reality Continuum and Its Applications in
Industry, VRCAI ’04, pages 412–418, New York,
NY, USA. ACM.

Liangzhao Zeng, Hui Lei, and Badrish Chandramouli,
2005. Semantic Tuplespace, page 366381. IC-
SOC05. Springer-Verlag.

Liangzhao Zeng, Boualem Benatallah, Guo Tong Xie,
and Hui Lei, 2006. Semantic Service Mediation,
page 490495. ICSOC06. Springer-Verlag.

Yi Zhou and Yan Zhang. 2017. A progression seman-
tics for first-order logic programs. Artificial Intelli-
gence, 250:58 79.

522

Proc. of ICON-2017, Kolkata, India. December 2017 c©2017 NLPAI, pages 523–532

Semantic Enrichment Across Language: A Case Study of Czech
Bibliographic Databases

Pavel Smrz
Brno University of Technology

Faculty of Information Technology
Bozetechova 2, 612 66 Brno, Czechia

smrz@fit.vutbr.cz

Lubomir Otrusina
Brno University of Technology

Faculty of Information Technology
Bozetechova 2, 612 66 Brno, Czechia
iotrusina@fit.vutbr.cz

Abstract

This paper deals with semantic enrichment
of textual resources by means of automat-
ically generated named entity recognizers-
linkers and advanced indexing and search-
ing mechanisms that can be integrated into
various information retrieval and informa-
tion extraction systems. It introduces a
new system transforming Wikipedia and
other available sources into task-specific
knowledge bases and employs contex-
tual information to build state-of-the-art
entity disambiguation components. Al-
though some components are language-
dependent (for example, that responsible
for the morphology analysis or the seman-
tic role identification), they can be eas-
ily replaced by existing tools providing
specific functions. As a case study, we
demonstrate an instantiation of the sys-
tem for the task of semantic annotation of
Czech bibliographic databases in the con-
text of the CPK project. We particularly
stress the role of problem-specific knowl-
edge sources that can be easily integrated
into our system and play a key role in the
success of the tool in real applications.

1 Introduction

Semantic enrichment of textual resources is a
well-studied field with applications in many dif-
ferent domains, such as news, market analysis,
environmental studies or cultural heritage. Vari-
ous general-purpose tools have appeared in recent
years (some of them are discussed in the next sec-
tion). Existing systems can often recognize basic
entities and provide a link to a knowledge base
(KB), but they usually lack additional information
on entities that is critical for specialised applica-

tions. Indeed, it is not guaranteed that a referred
KB entry contains complete and pertinent infor-
mation, such as task-relevant entity (sub-)type and
attributes.

Moreover, it is almost impossible to re-purpose
or re-target existing semantic enrichment systems
to a new domain or a new context or to adapt and
extend it for another language. Clearly, tools for
specific domains call for an integration of specific
information sources. For example, given a per-
son, a bibliographical system needs information
about publications written by him or her, or a list
of publications mentioning the person. Although
domain-specific knowledge can substantially im-
prove results of entity disambiguation, it is very
difficult to make the existing systems use such in-
formation.

The ultimate goal of the work reported in this
paper is to build a state-of-the-art semantic en-
richment system that will be more flexible than
existing tools and will need only a minimal ef-
fort to adapt to new environments and tasks. The
background KB is derived directly from Wikipedia
dumps and domain-specific knowledge sources.
Hence, it has always up-to-date information and
can benefit from recent updates (as opposed to,
e. g., DBpedia-based systems relying on the re-
source updated twice a year which is usually built
from Wikipedia versions several months old).

The rest of this paper is structured as follows.
The next section surveys existing systems for se-
mantic enrichment and points out differences in
the approach they follow. Section 3 deals with the
process of KB creation and compares results of the
developed method with alternative solutions. Sec-
tion 4 describes a case study of the semantic en-
richment of Czech texts and bibliographic meta-
data. Last section concludes our work and dis-
cusses future directions of our research.

523

2 Related Work

The need to bridge the semantic gap between
the semi-structured “web of documents” and the
structured “web of knowledge” (Buitelaar and
Cimiano, 2008) has led to the development of var-
ious semantic enrichment systems in recent years.
Named entity recognition (NER), linking (NEL)
and disambiguation (NED) present a key compo-
nent of the process of semantic enrichment.

Tools such as DBpedia Spotlight (Daiber et
al., 2013), Illinois Wikifier (Ratinov et al., 2011),
AIDA (Hoffart et al., 2011), or Babelfy (Moro et
al., 2014) enable annotating mentions of named
entities in a plain text and “anchoring” the anno-
tations in linked open data resources (most fre-
quently in DBpedia/Wikipedia).

State-of-the-art NED methods have to cope with
trade-offs among output accuracy, run-time effi-
ciency and scalability. Fast methods, like Illinois
Wikifier or DBpedia Spotlight use relatively sim-
ple contextual features. These methods perform
well on standard texts that deal with prominent
entities, but their accuracy is rather low on more
complex inputs with highly ambiguous names.
On the other hand, sophisticated systems, such
as AIDA or Babelfy, rely on rich contextual fea-
tures, such as key phrases and joint-inference algo-
rithms. Consequently, they tend to be rather slow.

DBpedia Spotlight is a system for automati-
cally annotating text documents with DBpedia1

URIs. Its disambiguation algorithm is based on
the cosine similaritiy and a modification of TF-
IDF weights. The main phrase spotting algorithm
relies on exact string matching, which uses Ling-
Pipes 2 Aho-Corasick implementation.

Illinois Wikifier combines local clues and
global coherence of the joint cross-linking assign-
ment by analysing Wikipedia link structure and es-
timating pairwise article relatedness. It aims at
linking all possible concepts to their correspond-
ing Wikipedia pages.

AIDA employs the YAGO knowledge base3 as
an entity catalogue and a source of entity types and
semantic relationships among entities. It uses co-
occurrence information obtained from large, syn-
tactically parsed corpora as a similarity measure.

1http://dbpedia.org/
2http://alias-i.com/lingpipe/
3https://www.mpi-inf.

mpg.de/departments/
databases-and-information-systems/
research/yago-naga/yago/

The AIDA system provides an integrated NED
method using popularity, similarity, and graph-
based coherence. AIDA-light (Nguyen et al.,
2014) is a lightweight version of AIDA. It is a
complete system for NED, which is orders of mag-
nitude faster than AIDA while achieving compara-
ble output quality.

Babelfy provides a unified approach to word
sense disambiguation and entity linking. It is
knowledge-based and exploits semantic relations
between word meanings and named entities from
BabelNet4 (Navigli and Ponzetto, 2012) – a multi-
lingual semantic network consisting of more than
13 million concepts and named entities in 271 lan-
guages. It is based on a loose identification of
candidate meanings (substring matching instead of
exact matching) coupled with a densest subgraph
heuristic which selects high-coherence semantic
interpretations.

Czech named entity recognition has become a
well-established field as well. In (Straková et
al., 2016), authors present a completely feature-
less, language-agnostic named entity recognition
system. The system uses only surface forms of
words, lemmata and tags as its input. Despite
that, it surpasses the precision of current state-of-
the-art Czech NER systems, which use manually
designed rule-based classification features, such
as first character capitalization, existence of spe-
cial characters in the word, or regular expressions
designed to reveal particular named entity types.
The system is based on artificial neural networks
with parametric rectified linear units, word embed-
dings and character-level embeddings, which do
not need manually designed classification features
or gazetteers.

Ni and Florian (2017) proposed a new class
of approaches that utilize Wikipedia entity type
mappings to improve multilingual NER systems.
They apply a maximum entropy classifier on En-
glish Wikipedia to construct an entity type map-
ping. To build multilingual mappings, they use
the inter-language links of Wikipedia. The sys-
tem has a fine-grained entity type set containing
51 types (such as person, organization, location,
title work, facility, event, date, time. . .). They use
both – structured information, such as title and in-
fobox, and unstructured information, such as text
in a Wikipedia page, as features. The classifier
trained with all the features identifies the correct

4http://babelnet.org/

524

category for English with overall F1 score of 90.1.
Their approach improved the baseline NER sys-
tems for English, Portuguese, Japanese, Spanish,
Dutch and German.

Various evaluation campaigns have also re-
cently appeared that compare quality of the NE
annotation on collected datasets. Initiatives such
as NIST TAC KBP5 – Knowledge Base Popula-
tion – Entity Discovery and Linking Track (Ji et
al., 2015), NEEL6 – Named Entity rEcognition
and Linking Challenge on Microposts (Rizzo et
al., 2015), or ERD7 – Entity Recognition and Dis-
ambiguation Challenge (Carmel et al., 2014) rank
participating systems based on their overall perfor-
mance on collections of specific textual fragments
(selected sentences, tweets. . .) that had been man-
ually annotated. As the manual dataset prepara-
tion is tedious, the provided training and test data
is usually limited to few thousands of entity men-
tions. Developers of NER tools can measure im-
provements in annotation quality w.r.t. a particular
available dataset or they can use specific bench-
marking frameworks such as NERD (Rizzo and
Troncy, 2011) or Gerbil (Cornolti et al., 2013),
embracing several datasets.

3 Knowledge Base Creation

As mentioned above, we aim at creating a domain-
specific knowledge-reference store with the high-
est possible coverage of entities and specific at-
tributes relevant for a task in hand. Due to its lim-
ited applicability across languages and across con-
texts, we cannot simply apply the approach fol-
lowed by the DBpedia extraction team (Lehmann
et al., 2015). Indeed, specific hand-crafted extrac-
tion patterns that are often based on Wikipedia fea-
tures rare in some languages (e.g., Infoboxes in the
case of the Czech Wikipedia) are not easily adapt-
able to our purposes. On the other hand, we do not
want to ignore the Wikipedia structure as a key
indicator of entity grouping (and types) and rely
solely on pure natural language processing (NLP)
of entity definitions. The NLP approach is gener-
ally difficult to transfer from one language to an-
other and its success hinges on the discipline au-
thors of Wikipedia articles follow when creating
the content.

5http://nlp.cs.rpi.edu/kbp/
6http://www.lancaster.ac.uk/

Microposts2015
7http://web-ngram.research.microsoft.

com/ERD2014/

As opposed to manual approaches, our method
employs a straightforward learning technique that
capitalizes on the most frequent Wikipedia fea-
tures in each individual language (most frequently,
categories and lists a Wikipedia page is assigned
to). The learning process involves two steps of the
extraction – identification of entities (more pre-
cisely, Wikipedia articles / domain-specific source
entries referring to a specific entity) and slot fill-
ing of attribute values relevant to a particular task.
The overall schema of the Knowledge Base Cre-
ation component is presented in Figure 1. Let us
focus on the initial step first.

The system enables users to specify a ba-
sic set of entity types to be recognized (general
ones, such as person, location, event, or domain-
specific, for example, visual artists related to a par-
ticular place). It then expects a set of examples of
(prototypical) representatives of each type. It is
also possible to extend the input by negative ex-
amples, e.g., entities that are known to be often
misrecognized as belonging to a given entity type.
The positive examples can be either extracted from
other sources such as existing lists of entities of
interest, or they can be identified by the user. If
the entity type exists in a knowledge source in an-
other language in which entities have been already
identified, the system can also take advantage of
inter-language links and consider all entities of a
given type linked to the language as positive ex-
amples for the automatic extraction process. Note
that inter-language links are treated as features of
the automatic technique described and evaluated
below so that one can directly see what value they
bring as examples of specific entity types.

Even if the initial set of examples is limited, our
method can find a significant portion of all entities
of the given type. This can be demonstrated by
the results in Table 1 showing the numbers of ex-
amples necessary to reach the coverage of 90 % or
higher for selected types in English Wikipedia. It
is clear that less than 20 examples usually suffice
to cover almost all entities of particular types so
that even fully manual instantiation of the system
does not present a tedious job.

If no negative examples are explicitly provided,
the system uses entities of all other types as nega-
tive examples for a current type, while considering
mutual exclusivity constraints that can be specified
by the user (all categories are considered mutually
exclusive by default). Depending on the complex-

525

Figure 1: Structure of the KB creation.

Entity type Min. number
of Examples Coverage

Beverage 10 90.0 %
Musical Work 20 90.3 %
Video Game 15 96.9 %

Table 1: The numbers of examples necessary to
reach the coverage of 90 % or higher for selected
types in English Wikipedia.

ity of the type, the filtration based on negative ex-
amples can bring significant improvements to the
automatic extraction.

When dealing with Wikipedia, the learning al-
gorithm explores six types of features:

1. a particular category is assigned to an article;

2. an entity forms a part of a list;

3. a Wikipedia page contains a specific infobox;

4. the key word / phrase of the definition (the
first sentence of an article) corresponds to a
given list;

5. the first sentence corresponds to a given pat-
tern (for example, an asterisk before a date in
parenthesis);

6. the article has an equivalent in a language
where the type corresponds to the expected
one.

The system generates hypotheses based on pro-
vided examples (for example, “all entities in cate-
gory American Merchants have type Person) and
evaluates their relative value. A simple logit model
is used to combine the features contributing the
most. To find an optimal combination of features,
standard measures of the association rule mining
are used – support, confidence, lift, and convic-
tion (Bayardo Jr and Agrawal, 1999). Support in-
dicates how frequently an individual feature or a
set of features (a feature set) appears in Wikipedia.
The confidence measures how often a feature set
truly correlates with an entity type, i.e., the pro-
portion of articles corresponding to a feature set F
which are known to correspond to type t. The lift
is defined as the ratio of the observed support to
that expected if F and t were independent. The

526

conviction can be interpreted as the frequency that
the feature set makes an incorrect prediction of the
entity type – the ratio of the expected frequency
that F occurs with entities of other types than t.

Let symbol 7→ denote the mapping of a feature
set to an entity and E be the set of all entities (or,
more precisely, all articles that can deal with an
entity). The above-mentioned measures can be
formally defined as:

supp(F) =
|{e ∈ E;F 7→ e}|

|E|

conf(F ⇒ T) =
supp(F ∪ T)

supp(F)

lift(F ⇒ T) =
supp(F ∪ T)

supp(F)× supp(T)

conv(F ⇒ T) =
1− supp(T)

1− conf(F ⇒ T)

Table 2 show examples of hypotheses generated
by the system for person identification from En-
glish Wikipedia along with their support, confi-
dence, lift, and conviction values.

The entity type presents just the initial attribute
the automatic system extracts from Wikipedia
and/or domain-specific knowledge sources. The
user can define a full set of additional attributes
corresponding to the entity type that are relevant
for a given task. The attributes can reflect the
structure of a known template for a given entity
type (for example, attributes of a Wikipedia in-
fobox or all potential relations an entity of the
type can have in DBpedia). On the other hand,
the attribute can be also specific to a given con-
text. For example, our previous work in the cul-
tural heritage domain (Smrz et al., 2013) utilised
attributes of art influences and travel experiences
of visual artists that could not be directly mapped
to a pre-identified relation in DBpedia/Wikipedia
infoboxes.

Existing extraction frameworks provide a very
limited quality in terms of the completeness of
attributes being correctly filled based on infor-
mation contained in the source. To reach a
high coverage and precision, the system applies
a learning approach again. Feature detection
does not work with the textual content directly.

It rather deals with word embeddings (a combi-
nation of Word2Vec (Mikolov et al., 2013) and
GLOVE (Pennington et al., 2014) vectors) and
generalizes the structure of textual fragments cor-
responding to attribute-filling examples provided
by the user.

The resulting knowledge base can be further
supplemented by additional information necessary
for the actual identification of entities in text,
unique identification of entities and their linking
to other authoritative knowledge sources, disam-
biguation information and entity visual represen-
tation (if available). As discussed in the follow-
ing section, entity mentions are matched in text
by means of a finite-state technology. The KB
should contain all alternative names that can re-
fer to an entity and all forms of names one can
expect in the text. For the KB generated from En-
glish Wikipedia, we collect and process all alter-
native names (redirections) and generate known
variants of the name forms (for example, short-
ened or omitted middle names). We also use inter-
language links to record language variants of en-
tity names and consider transcription to charac-
ters without diacritics (through Unicode equiva-
lent classes) and transliterations. The generation
of name forms in a morphologically rich language
(Czech) is discussed in the next section.

We store and later index entity identifiers in
their original sources and known interlinks to
other LOD (Linked Open Data) resources (for ex-
ample, Wikipedia URI in both forms with numer-
ical article IDs as well as titles, links to Freebase,
DBpedia, etc.). To be able to correctly assign the
KB link for an entity with an ambiguous name, we
store a vector characterizing words and multiword
expressions appearing with an actual meaning of
each name. The disambiguation algorithm then
reads this data and classifies the entity according
to an observed context. If a Wikipedia article re-
ferring to an entity contains an image / images, we
store this information to be able to represent the
entity in a visual way. Figure 2 demonstrates one
form of visualization based on such KB.

As already mentioned, the KB resulting from
our system covers significantly more entities (cor-
rectly assigns the type to more entities) than that
of alternative solutions. This is true not only for
specific types and less frequent languages such as
Czech (see the next section) but also for standard
entity types and attributes in English. Table 3 com-

527

hypotheses support confidence lift conviction
all entities in category ending with
births have type Person

23.22 99.51 400.08 15581

all entities whose page contains section
History don’t have type Person

10.17 99.52 132.47 5196

all entities in category ending with
deaths have type Person

10.79 99.81 401.27 40540

all entities in category starting with
People have type Person

11.10 99.34 399.40 11536

all entities whose page contains tem-
plate coord don’t have type Person

6.48 99.97 133.07 100933

Table 2: Examples of hypotheses for person identification from English Wikipedia.

Figure 2: Visualization of an entity.

pares numbers of entities of common general types
that can be found using a SPARQL query (often
rather a complicated one) in the current DBpedia
and the corresponding numbers resulting from our
system. It is obvious that if a task requires high
precision, it cannot easily rely only on the types
identified by DBpedia.

4 Semantic Enrichment of Czech
Bibliographic Databases

This section presents a case study of the semantic
enrichment system applied to Czech bibliographic
databases. It forms a part of our work in a large na-
tional project – CPK: Using Semantic Technolo-

type number of entities
in DBpedia in our KB

person 1,348,346 1,624,602
place 806,418 738,328
organization 253,215 606,712
video game 20,910 44,862

Table 3: Numbers of entities of common types that
can be found using a SPARQL query in the current
DBpedia and the corresponding numbers resulting
from our system.

gies to Access Cultural Heritage Through the Cen-
tral Portal of Czech Libraries. The primary ob-

528

jective of the project is to research and develop
methods leading to a significantly improved ac-
cess to cultural heritage available in Czech li-
braries as well as applying results of this research
to the creation of the Central portal of Czech li-
braries (CPK), using advanced semantic technolo-
gies. The portal is to be developed in the form
of a technological system combining existing and
newly developed component applications and a
specialized public database (index) of resources
integrated into the portal. CPK indexes not only
metadata records from contributing institutions,
but also full texts of documents digitized by li-
braries and other information sources.

The fulltexts Czech libraries collect and provide
to readers include historical as well as contem-
porary newspapers and other periodicals, mono-
graphs, and various other material of a cultural
value. As opposed to bibliographic records as-
sociated with monographs that generally contain
subject references, including links to authorita-
tive entity knowledge bases (discussed in detail
below), the search in the content of newspapers
cannot take advantages of the semantically anno-
tated metadata (only a simple fulltext search is
supported). That is why our work primary fo-
cuses on the available content of periodicals and
its automatic semantic enrichment. Note that it is
expected that later phases of the project will ex-
tend this towards particular categories of mono-
graphs (such as historical non-fiction and biogra-
phies) and will scale-up the techniques developed
for periodicals to a wide range of the cultural her-
itage artefacts.

Most of the modules integrated into the process-
ing pipeline for the described use case can be eas-
ily adapted and used for the same task in any lan-
guage. We specifically identify the parts that are
language-dependent and that need to be replaced
by a tool or a resource tailored to the task when the
system is to be transferred to another language.

The discussed use case also builds on task-
specific knowledge sources. The Czech libraries
work with a collection of controlled vocabularies
and thesauri, referred to as National Authorities
(or simply Authorities), that include named enti-
ties (persons, geographical entities, events, etc.).
The Authorities are uniquely identified, they pro-
vide an official- as well as alternative names,
a brief description of the entity, and a link to
the Czech Wikipedia (if available). In addition

to the information that could be extracted from
Wikipedia, the knowledge source can be also used
to identify all monographs that deal with particular
entities (either in their fulltext form or, at least, as
a metadata record listing the title, authors, other
subject references, etc.). For the entries corre-
sponding to people, the works authored by a given
person can be also identified (currently, only titles
and classifications of the work are considered in
such cases).

It is critical to recognize that the task-specific
knowledge source can bring invaluable quality to
the semantic enrichment process and can enable
extracting entities and relations not be covered by
Wikipedia and other general-purpose resources.
This can be demonstrated by the statistics summa-
rized in Table 4. It is obvious that monographs
in Czech libraries refer to many entities not ad-
dressed by the Czech Wikipedia. To be able to rec-
ognize mentions of relevant entities in Czech peri-
odicals and monograph, one cannot simply reckon
on Wikipedia only.

A back side of the integration of domain-
specific resources lies in a significant increase of
ambiguity of names. While there are only 7.1 % of
ambiguous person names in the Czech Wikipedia,
the knowledge base combining this resource with
all Authority files has the ambiguity of 13.3 %.
Fortunately, the links to metadata records and full-
texts of monographs dealing with referred Au-
thorities can provide additional learning contexts
for the entity disambiguation process. This is
also true for entities covered by both Wikipedia
and national Authorities so that the additional
data actually improves the quality of entity disam-
biguation models. Indeed, combined Wikipedia
pages, referred web links and all available Wik-
iLinks (Otrusina and Smrz, 2016) are not usually
a match for an entire book dedicated to a person,
location, event, or other type of entities.

Czech is a morphologically-rich (inflectional)
language. It is not easy to generate all poten-
tial forms in which entity names can appear in
text. For example, nouns and adjectives distin-
guish 7 cases (sometimes with 2 forms per case)
in singular and 7 cases in plural and multi-word
names of entities come in various forms with com-
plex agreement rules (e.g., genitive phrases with
prepositional groups). Moreover, not all parts of
multi-word names are capitalized (for example,
the Czech Republic would be Česká republika in

529

type number of entities covered by
in national authorities Czech Wikipedia

person 629,122 14,758 (2.35 %)
place 29,041 3,386 (11.65 %)

Table 4: Entities from Czech Authorities covered by Czech Wikipedia.

Czech) so that recognition of the boundary of an
unknown (new) name can be complicated. The
generation of various morphological forms of en-
tity names is clearly language-dependent.

The generation of the name forms was divided
into two steps. First, we identified all single-word
names and single-string parts of multi-word names
that were not covered by an existing morpholog-
ical database/analyser. We employed a statisti-
cal learning method that considers various mor-
phological features (esp. word endings and fre-
quency of similar word paradigms) and estimates
the most probable morphological paradigm ac-
cording to which the word would decline. We then
generated all potential wordforms and correspond-
ing morphological tags for single-word names and
prepared the same for filtering multi-word combi-
nations by means of group agreement rules.

The second step dealt with multi-word entity
names only. Known names served as training
examples for statistical name-structure prediction
method. It showed to be beneficial to recognize
not only the structures necessary for name-form
generation, but also to estimate precise meaning
of the name components in this phase. The algo-
rithm was trained to distinguish the most probable
given names from surnames, titles and name speci-
fiers (such as the younger), numerical components
of the names (WWI), etc. This was critical for or-
ganizing the names into hierarchies as well as for
generating variants with name initials and short-
ened forms, acronym matching, etc.

The process of semantic enrichment of the
Czech text is realized in the form of a pipeline
combining various text- and language analysing
tools and task-tailored classifiers. The input can
be provided as a plain text (for example, the con-
tent of historical periodicals obtained by means
of OCR) or in the HTML form. We employ
CLD3 8 for language identification (currently fil-
tering out all non-Czech documents) and JustText
(Pomikálek, 2013) to identify and eliminate po-
tential boilerplate in HTML Depending on the fur-

8https://github.com/google/cld3

ther planned processing, the text can be tokenized
and verticalized in this phase and task-relevant
links from the HTML can be stored to be con-
sidered later too. To enable linguistically-oriented
search in the indexed material, the text can be also
lemmatized, PoS tagged and parsed. The rele-
vant tools can be easily plugged-in as well as re-
placed if necessary. We take advantage of UD-
pipe (Straka and Straková, 2017) – a linguistic
processing pipeline providing results in various
languages.

The actual entity recognition and disambigua-
tion is realized by the SEC component developed
by our team (Dytrych and Smrz, 2016). The tool
is publicly available9 and can be easily instanti-
ated for other contexts and new languages. It takes
the knowledge base (in the form described the
previous section) and extracts all potential entity
names (a primary reference name, all alternative
names, morphological forms, and generated vari-
ants). A minimum finite-state automaton is con-
structed from all the name strings and correspond-
ing indices in the knowledge base by means of an
algorithm described in (Daciuk et al., 2000). The
SEC recognizer is thus able to associate a textual
fragment that corresponds (can correspond) to a
name with all potential KB entries it can refer to.
Using the information stored in the KB (for ex-
ample, statistics on Wikipedia article popularity)
it can also provide prior probabilities of the poten-
tial entity linking. The SEC can also plug-in other
entity disambiguation modules that take advan-
tage of additional contextual information stored in
the KB. The current version for Czech combines
a rule-based disambiguation module implement-
ing strict application-specific restrictions (for ex-
ample, preferring entities covered by national Au-
thority files) and a learning-based disambiguator
trained on all the relevant material available in the
CPK project. To enable users to easily extract se-
mantic relations and to search the resource seman-
tically, the SEC engine can also incorporate coref-
erence resolution tools, semantic role labellers and

9http://sec.fit.vutbr.cz/sec/

530

other language processing components.

5 Conclusions and Future Directions

The semantic enrichment system introduced in
this paper stresses the easiness of system cus-
tomization and transfer to other languages. We
showed that it is worth to pay attention to prepara-
tion of the knowledge base component generated
from Wikipedia and domain-specific resources.
The presented learning-based extraction system
leads to better coverage and generates data di-
rectly applicable in the entity recognition and link-
ing task. Moreover, entity types and attributes
are not “hardwired”, they are fully defined by
application needs. Results of the case study on
semantic enrichment of Czech texts collected in
the CPK project further demonstrate that existing
knowledge-reference systems bring a significant
value to the semantic enrichment process and that
a system based just on general-purpose knowledge
sources would not satisfy the need of specific ap-
plications.

There are several directions of research we will
explore in our future work and apply in the CPK
project. We are going to extend interlinks with
DBpedia, KBpedia, and other resources and take
advantages of established hierarchical structures
(ontologies) to initialize the set of prototypical
attributes in order to simplify the task of type-
specific attribute definition. We will also inte-
grate an advanced classifier of specific entity types
and attributes that are not covered by the KB.
Less known people, places, events and other en-
tities are often introduced in newspaper texts (usu-
ally the first time they appear) so that the system
could suggest extensions to the national Authority
database adding the most cited new entities. As
for the search interface, a lot needs to be done to
make the system more intuitive and accessible to
laymen.

Acknowledgments

The work reported in this paper has been
supported by the Ministry of Culture of the
Czech Republic, programme NAKI II, project
DG16P02R006 CPK: Using Semantic Technolo-
gies to Access Cultural Heritage Through the Cen-
tral Portal of Czech Libraries.

References
Roberto J Bayardo Jr and Rakesh Agrawal. 1999. Min-

ing the most interesting rules. In Proceedings of
the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 145–
154. ACM.

Paul Buitelaar and Philipp Cimiano. 2008. Ontology
learning and population: bridging the gap between
text and knowledge, volume 167. IOS Press.

David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich,
Bo-June Paul Hsu, and Kuansan Wang. 2014.
ERD’14: Entity recognition and disambiguation
challenge. In ACM SIGIR Forum, volume 48, pages
63–77. ACM.

Marco Cornolti, Paolo Ferragina, and Massimiliano
Ciaramita. 2013. A framework for benchmarking
entity-annotation systems. In Proceedings of the
22nd International Conference on World Wide Web,
WWW ’13, pages 249–260, New York, NY, USA.
ACM.

Jan Daciuk, Stoyan Mihov, Bruce W Watson, and
Richard E Watson. 2000. Incremental construction
of minimal acyclic finite-state automata. Computa-
tional linguistics, 26(1):3–16.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Pro-
ceedings of the 9th International Conference on Se-
mantic Systems (I-Semantics).

Jaroslav Dytrych and Pavel Smrz. 2016. Interaction
patterns in computer-assisted semantic annotation of
text - an empirical evaluation. In Proceedings of the
8th International Conference on Agents and Artifi-
cial Intelligence - Volume 2: ICAART,, pages 74–84.
INSTICC, SciTePress.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust Disambiguation of Named
Entities in Text. In Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2011,
Edinburgh, Scotland, pages 782–792.

Heng Ji, Joel Nothman, Ben Hachey, and Radu Florian.
2015. Overview of TAC-KBP2015 tri-lingual entity
discovery and linking.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick
Van Kleef, Sören Auer, et al. 2015. Dbpedia–a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

531

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity Linking meets Word Sense Dis-
ambiguation: a Unified Approach. Transactions
of the Association for Computational Linguistics
(TACL), 2:231–244.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence, 193:217–
250.

Dat Ba Nguyen, Johannes Hoffart, Martin Theobald,
and Gerhard Weikum. 2014. Aida-light:
High-throughput named-entity disambiguation. In
LDOW.

Jian Ni and Radu Florian. 2017. Improving multilin-
gual named entity recognition with wikipedia entity
type mapping. arXiv preprint arXiv:1707.02459.

Lubomir Otrusina and Pavel Smrz. 2016. Wtf-
lod - a new resource for large-scale ner evaluation.
In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Sara Goggi, Marko Gro-
belnik, Bente Maegaard, Joseph Mariani, Helene
Mazo, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), Paris, France, may. European
Language Resources Association (ELRA).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

J Pomikálek. 2013. justext: Heuristic based boiler-
plate removal tool. Available: Google code, online
http://code. google. com/p/justext.

Lev Ratinov, Dan Roth, Doug Downey, and Mike
Anderson. 2011. Local and global algorithms
for disambiguation to wikipedia. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 1375–1384. Associ-
ation for Computational Linguistics.

Giuseppe Rizzo and Raphaël Troncy. 2011. Nerd:
evaluating named entity recognition tools in the web
of data.

Giuseppe Rizzo, Amparo E Cano, Bianca Pereira, and
Andrea Varga. 2015. #microposts2015 named en-
tity recognition & linking challenge. In 5th Interna-
tional Workshop on Making Sense of Microposts.

Pavel Smrz, Lubomir Otrusina, Jan Kouril, and
Jaroslav Dytrych. 2013. Decipher deliverable
D4.3.1: Semantic Annotator. Technical report, Brno
University of Technology, Faculty of Information
Technology.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada,
August. Association for Computational Linguistics.

Jana Straková, Milan Straka, and Jan Hajič. 2016.
Neural networks for featureless named entity recog-
nition in czech. In International Conference on Text,
Speech, and Dialogue, pages 173–181. Springer.

532

Author Index

Agrawal, Ruchit, 13, 33
Ali, Jahfar, 33
Anand, Ashish, 273
Anantaram, C., 283
Arora, Kushagr, 338
Asthana, Sumit, 227

Bagul, Sudhir, 322
Baheti, Ashutosh, 65
Bali, Kalika, 65
Bandyopadhyay, Sivaji, 212, 290
Banerjee, Ushashi, 356
Barot, Suhail, 322
Bensch, Suna, 476
Bhattacharyya, Pushpak, 131, 141, 245
Björklund, Henrik, 476
Bojar, Ondrej, 56

Chatterjee, Lahari, 43
Chaurasia, Aanchal, 23
Chawla, Kushal, 273
Choppella, Venkatesh, 513
Choudhury, Monojit, 65, 75
Choudhury, Sanjay, 435

Danda, Prathyusha, 265
Das, Amitava, 255, 418
Das, Dipankar, 212, 290, 362, 447
Das, Kumar Gourav, 362
Dasgupta, Tirthankar, 427
Datta, Abahan, 43
Devi, Sobha Lalitha, 383, 392, 402
Dey, Kuntal, 178
Dias, Gihan, 220
Dutta, Indranil, 356
Dwivedi, Vijay Prakash, 205

Ekbal, Asif, 131, 227

Gangashetty, Suryakanth, 95
Ghosal, Tirthankar, 131

Gollapudi, Sai Prasad Vrj, 513
Gopalan, Sindhuja, 383, 402
Gorasia, Dhara, 245
Goyal, Lalit, 172
Goyal, Vishal, 172

Hingmire, Swapnil, 305

Jain, Swapnil, 112
Jayan, Jisha P, 236, 495
Jha, Saurav, 23
Jwalapuram, Prathyusha, 122, 265

K, Junaida M, 495
Kalita, Jugal, 456, 466
Kanojia, Diptesh, 141
Karmakar, Samir, 43
Kaushik, Saroj, 178
Khemani, Deepak, 188
Kocmi, Tom, 56
Kopparapu, Sunil Kumar, 283
Kulkarni, Malhar, 245
Kumar, Updendra, 255
Kumar, Wahengbam, 328
Kundu, Bibekananda, 435

L, Srinivas P Y K, 418

Mahapatra, Joy, 298
Mala, Christopher, 408
Malviya, Shrikant, 112
Mamidi, Radhika, 122
Mandal, Sourav, 146
Mishra, Pruthwik, 50
Mishra, Rohit, 112
Misra, Dipti, 373
Mondal, Anupam, 212
Mujadia, Vandan, 50

N., Rajesha, 165
Nagaraju, Ganthoti, 408

533

Nair, Asha S, 236
Narayan, Abhay, 418
Narayanan, Abhishek, 348
Naskar, Sudip Kumar, 146, 298, 312
Nayel, Hamada, 197
Nongmeikapam, Kishorjit, 328

Otrusina, Lubomir, 523

P, Deepak, 155
Palshikar, Girish, 305
Pandey, Ayushi, 95
Patil, Ajay, 103
Patil, Nita, 103
Patra, Braja Gopal, 290
Paul, Apurba, 447
Pawar, B.V., 103
Phadte, Akshata, 85
Prakhya, Sridhama, 466
Prasad, Abhishek, 348
Pratapa, Adithya, 75
Prijatelj, Derek, 456
Priyanga, Rajith, 220
Pudi, Vikram, 503
Pykl, Srinivas, 255

Rai, Vartika, 373
Ram, Vijay Sundar, 392
Rana, Vishal Kumar, 255
Ranatunga, Surangika, 220
Rani, Pratibha, 503
Rao, Pattabhi Rk, 383
Redkar, Hanumant, 245
Roul, Rajendra Kumar, 338
Roy, Somnath, 2

S, Irfan, 356
S, Lakshmi, 402
S, Shylaja S, 348
S., Rejitha K., 165
Sahu, Sunil Kumar, 273
Saikh, Tanik, 131
Sakkan, Thennarasu, 408
Schuller, Björn W., 1
Sharma, Dipti, 13
Sharma, Dipti M., 503
Sharma, Dipti Misra, 33, 50
Shashirekha, H L, 197
Shekhar, Mihir, 13

Sherly, Elizabeth, 495
Shrivastava, Apoorv, 305
Shrivastava, Manish, 205, 265
Shrivastava, Ritvik, 178
Singh, Anil Kumar, 23, 485
Singh, Mithlesh Prasad, 328
Singh, Sandhya, 245
Sinha, Manjira, 427
Sitaram, Sunayana, 65
Smrz, Pavel, 523
Solomon, R Sudhesh, 418
Somasundaram, Meenakshi, 245
Srivastava, Brij Mohan Lal, 95
Srivastava, Saurabh, 305
Subramaniam, L. Venkata, 178
Sudhakar, Akhilesh, 23, 485
Sundaram, Sowmya S, 188

Thakkar, Gaurish, 85
Thakker, Aditya, 322
Tiwari, Ajay Shankar, 312
Tiwary, Uma Shanker, 112
Tou, NG Hwee, 102

V, Govindaru, 236
Varma, Vasudeva, 417
Venkataram, Vinodini, 466
Ventura, Jonathan, 456
Venugopal, Abhijith, 348
Vijay, Sakshee, 373

Wani, Nikhil, 141
Woldemariam, Yonas, 476

	Program
	Keynote Lecture 1: NLP in Tomorrow's Profiling - Words May Fail You
	Deriving Word Prosody from Orthography in Hindi
	Three-phase training to address data sparsity in Neural Machine Translation
	Reference Scope Identification for Citances Using Convolutional Neural Networks
	A vis-à-vis evaluation of MT paradigms for linguistically distant languages
	Textual Relations and Topic-Projection: Issues in Text Categorization
	POS Tagging For Resource Poor Languages Through Feature Projection
	An Exploration of Word Embedding Initialization in Deep-Learning Tasks
	Curriculum Design for Code-switching: Experiments with Language Identification and Language Modeling with Deep Neural Networks
	Quantitative Characterization of Code Switching Patterns in Complex Multi-Party Conversations: A Case Study on Hindi Movie Scripts
	Towards Normalising Konkani-English Code-Mixed Social Media Text
	Towards developing a phonetically balanced code-mixed speech corpus for Hindi-English ASR
	Keynote Lecture 2: Grammatical Error Correction: Past, Present and Future
	Hybrid Approach for Marathi Named Entity Recognition
	Sentiment Analysis: An Empirical Comparative Study of Various Machine Learning Approaches
	Handling Multi-Sentence Queries in a Domain Independent Dialogue System
	Document Level Novelty Detection: Textual Entailment Lends a Helping Hand
	Is your Statement Purposeless? Predicting Computer Science Graduation Admission Acceptance based on Statement Of Purpose
	Natural Language Programing with Automatic Code Generation towards Solving Addition-Subtraction Word Problems
	Unsupervised Separation of Transliterable and Native Words for Malayalam
	Known Strangers: Cross Linguistic Patterns in Multilingual Multidirectional Dictionaries
	Tutorial for Deaf – Teaching Punjabi Alphabet using Synthetic Animations
	SemTagger: A Novel Approach for Semantic Similarity Based Hashtag Recommendation on Twitter
	Reasoning with Sets to Solve Simple Word Problems Automatically
	Improving NER for Clinical Texts by Ensemble Approach using Segment Representations
	Beyond Word2Vec: Embedding Words and Phrases in Same Vector Space
	Relationship Extraction based on Category of Medical Concepts from Lexical Contexts
	Sinhala Word Joiner
	Supervised Methods For Ranking Relations In Web Search
	Malayalam VerbFrames
	Hindi Shabdamitra: A Wordnet based E-Learning Tool for Language Learning and Teaching
	"A pessimist sees the difficulty in every opportunity; an optimist sees the opportunity in every difficulty" – Understanding the psycho-sociological influences to it
	End to End Dialog System for Telugu
	Investigating how well contextual features are captured by bi-directional recurrent neural network models
	Correcting General Purpose ASR Errors using Posteriors
	Retrieving Similar Lyrics for Music Recommendation System
	Unsupervised Morpheme Segmentation Through Numerical Weighting and Thresholding
	Experiments with Domain Dependent Dialogue Act Classification using Open-Domain Dialogue Corpora
	Normalization of Social Media Text using Deep Neural Networks
	Acronym Expansion: A General Approach Using Deep Learning
	Exploring an Efficient Handwritten Manipuri Meetei-Mayek Character Recognition Using Gradient Feature Extractor and Cosine Distance Based Multiclass k-Nearest Neighbor Classifier
	A Modified Cosine-Similarity based Log Kernel for Support Vector Machines in the Domain of Text Classification
	Document Embedding Generation for Cyber-Aggressive Comment Detection using Supervised Machine Learning Approach
	Coarticulatory propensity in Khalkha Mongolian
	Developing Lexicon and Classifier for Personality Identification in Texts
	Linguistic approach based Transfer Learning for Sentiment Classification in Hindi
	Scalable Bio-Molecular Event Extraction System towards Knowledge Acquisition
	Co-reference Resolution in Tamil Text
	Cross Linguistic Variations in Discourse Relations among Indian Languages
	RULE BASED APPROCH OF CLAUSE BOUNDARY IDENTI-FICATION IN TELUGU
	Keynote Lecture 3: Towards Abstractive Summarization
	"Who Mentions Whom?"- Understanding the Psycho-Sociological Aspects of Twitter Mention Network
	Study on Visual Word Recognition in Bangla across Different Reader Groups
	Demystifying Topology of Autopilot Thoughts: A Computational Analysis of Linguistic Patterns of Psychological Aspects in Mental Health
	A Deep Dive into Identification of Characters from Mahabharata
	Neural Networks for Semantic Textual Similarity
	Open Set Text Classification using Convolutional Neural Networks
	Predicting User Competence from Linguistic Data
	Neural Morphological Disambiguation Using Surface and Contextual Morphological Awareness
	Word Sense Disambiguation for Malayalam in a Conditional Random Field Framework
	Semisupervied Data Driven Word Sense Disambiguation for Resource-poor Languages
	Notion of Semantics in Computer Science - A Systematic Literature Review
	Semantic Enrichment Across Language: A Case Study of Czech Bibliographic Databases

