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Abstract Historical palm leaf manuscripts often contain dense unstruc-
tured text lines. The large diversity in sizes, scripts and appearance
makes precise text line segmentation extremely challenging. Existing line
segmentation approaches often associate diacritic elements incorrectly
to text lines and also address above mentioned challenges inadequately.
To tackle these issues, we introduce SeamFormer, a novel approach for
high precision text line segmentation in handwritten manuscripts. In
the first stage of our approach, a multi-task Transformer deep network
outputs coarse line identifiers which we term ‘scribbles’ and the bina-
rized manuscript image. In the second stage, a scribble-conditioned seam
generation procedure utilizes outputs from first stage and feature maps
derived from manuscript image to generate tight-fitting line segmenta-
tion polygons. In the process, we incorporate a novel diacritic feature
map which enables improved diacritic and text line associations. Via
experiments and evaluations on new and existing challenging palm leaf
manuscript datasets, we show that SeamFormer outperforms competing
approaches and generates precise text line segmentations.

Keywords: Text Line Segmentation · Historical Manuscripts

1 Introduction

Identifying text lines in ancient handwritten documents is an important problem
in document image understanding [53,14,8,15,17,26]. Since historical documents
usually contain text written in a highly unstructured manner with dense and
non-standard layouts, the problem is challenging. The challenge aspect is par-
ticularly apparent for palm leaf manuscripts of South-East Asia and the Indian
subcontinent. Western manuscripts predominantly use processed animal-skin
(vellum) as their base material. Though these are not immune to ravages of
time, palm leaf manuscripts are relatively more fragile. Also, palm leaves are
thin, delicate and prone to damage. Moreover, the already faintly written text
may fade over time and become indistinguishable from digitization noise. Doc-
ument analysis tasks on palm leaf manuscripts involve characteristic challenges
such as degradation, low contrast, variable inter-character and inter-line spacing
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Figure 1. An example to illustrate the importance of precise line segmentation in
palm leaf manuscripts. The ground truth upper and lower portions of the enclosing
line annotation are shown in red. The prediction is shown in blue. The green shaded
portions indicate crucial text fragments omitted by prediction causing the semantic
interpretation of text to change. For e.g., pink dashed region encloses a word ధరమ్
from the Indic language Telugu which means ‘moral duty’. The incorrect boundary
prediction causes the resulting line to contain a word ధర with a drastically different
meaning. ధర means ‘price’.

and morphological distortions in character shapes [38,44,25]. The large diversity
in spatial dimensions, languages, scripts, writing styles and presence of non-
textual elements further compound the challenge for text line segmentation.

The output of text line segmentation is often processed by a subsequent
Optical Character Recognition (OCR) module. Obtaining high precision seg-
mentation maps of text lines which could be used as masks compactly enclos-
ing the reference text is extremely crucial. Using such masks within the OCR
pipeline reduces semantic noise from adjoining line fragments generally present
in the text-line’s bounding box and potentially increases OCR performance. In-
dic and South-East Asian manuscript texts are characterized by orthographic
text fragments such as diacritics. These components typically exist at varying
distances from the parent text line. Due to the semantics associated with such
components, omission or incorrect association of diacritics to text lines during
segmentation can result in a dramatically modified linguistic interpretation of
the text (see Fig. 1). Therefore, it is essential to develop segmentation ap-
proaches for palm leaf manuscripts which are highly precise. The performance
of existing line segmentation approaches fall short in this aspect.

To tackle the challenge, we propose SeamFormer, a robust text line seg-
mentation framework for palm leaf manuscripts. SeamFormer is configured as
a two stage pipeline (Sec. 3). In the first stage, the manuscript image is pro-
cessed by a multi-task Transformer deep network to obtain the binarized image
and coarse identifiers for each text line which we term ‘scribbles’ (Sec. 3.1).
In the second stage (Sec. 3.2), the extracted scribbles, binarized image and
custom-designed feature maps are fed to a scribble-conditioned seam generation
algorithm which generates the desired tight fitting polygons enclosing the indi-
vidual text lines. Via experiments and evaluations on new and existing palm leaf
manuscript datasets, we show that SeamFormer generates significantly superior
line segmentations compared to other competing approaches (Sec. 5).

The source code, pretrained models and associated material are available at
this link: https://ihdia.iiit.ac.in/seamformer.

https://ihdia.iiit.ac.in/seamformer
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2 Related Work

Many approaches have been proposed for text line segmentation in other (i.e.
non palm leaf) historical documents. To encourage research, many historical
document datasets with line segmentation annotations have been introduced
and utilized in competitions at premier document analysis venues - refer to the
comprehensive survey paper by Nikolaidou et al. [34] for details.

Early approaches favoured the use of classical digital image processing tech-
niques followed by post processing. Alaei et al. [1] employ a painting technique
for foregrounding smearing to tackle unconstrained handwritten text line seg-
mentation for diverse languages. Grouping techniques utilizing nearest neigh-
bor [35], learning algorithms [39], and heuristic rules [28] have also been employed
for text line segmentation. Projection profiles are another popular top-down ap-
proach to isolate text lines [10,19,31,37,54]. However, profile-based approaches
cannot cope with highly curved lines and uneven layouts. Adaptive Local Con-
nectivity Map (ALCM) [45,46] is another technique for localizing and extracting
text lines directly from gray-scale images. Generally, these approaches employ
handcrafted processing elements with hyperparameters which do not general-
ize well across multiple datasets. The methods tend to require dataset specific
techniques for isolating text line elements (e.g. strokes, diacritics) and often fail
to disentangle touching components across consecutive text lines – a common
occurrence in handwritten documents.

In recent years, a number of deep learning based approaches have been em-
ployed as well [40,7,6,9,29,36,30,27]. Most of these approaches use a variant of
the popular U-Net [41] architecture. These methods have the appeal of being op-
timized end-to-end and work well on Western historical manuscripts. However,
the approaches require drastic downsampling of input image which eliminates
crucial inter-line information. Coupled with the boundary smoothing that oc-
curs when the network predictions are upsampled, this leads to imprecise and
unsatisfactory line segment boundary predictions for other types of historical
manuscripts such as ours (i.e. palm leaf).

Relatively few works have tackled line segmentation for palm leaf manuscripts.
In their survey paper, Kesiman et al. [25] consider palm-leaf manuscripts from
South-East Asia and evaluate numerous line segmentation approaches developed
for other (non-Asian) historical documents. Chamchong and Fung propose an
adaptive partial projection (APP) technique [13], an improvement over their
earlier partial projection approach [12] for line extraction in Thai manuscripts.
Valy et al. [51] propose an approach which also employs connected components
and projection profiles to determine medial positions of text lines followed by a
path finding approach to mark the text line boundaries in Khmer manuscripts.
Kesiman et al. [22] employ a similar approach for Balinese manuscripts. Apart
from the assumption of a component-based script, these approaches inherit the
shortcomings of projection-based works mentioned previously.

Works which employ deep neural networks for palm leaf manuscript text line
segmentation are even fewer. Jindal and Ghosh [21] use a Faster-RCNN model to
obtain bounding boxes for a collection of Indic palm leaf manuscripts. However,
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this approach cannot tackle the curvature of lines which is present in almost
all manuscripts. Prusty et al. [38] and Sharan et al. [44] propose approaches
which modify the Mask-RCNN [20] framework for segmenting various semantic
regions including text lines in Indic manuscripts. Despite their relatively better
performance and ability to tackle line curvature, these approaches produce overly
smoothed line boundaries and even tend to have false negatives (i.e. missed lines)
on some occasions.

Seam generation, an approach involving optimization over image-derived en-
ergy maps [5], is a popular approach for text line segmentation. Saabni and
El-Sana introduce a seam generation algorithm based on an energy map cal-
culated using Signed Distance Transform (SDT) for Arabic manuscripts [42].
However, the approach involves repeated energy map computations for each line
and significant dataset-specific post-processing to tackle overlapping components
and diacritics. Asi et al. [4] improve upon the aforementioned approach by re-
placing SDT with a geodesic distance transform energy map. This method fails
to tackle elongated letters and widely separated diacritics. Nikolaos et al. [3]
use a medial line obtained using a projection profile approach to guide seam
generation for line segmentation in multiple historical datasets. However, the
method requires dataset specific parameter tuning for various pipeline stages.
Alberti et al. [2] first employ a deep network to obtain a binarized version of the
image. Seam generation is applied on the binary image to obtain coarse region
boundaries, followed by a graph-based connected component procedure to obtain
the polygonal line boundaries. The approach is not suitable for highly skewed
and unevenly curving text found in palm leaf manuscripts.Nguyen et al. [32] also
apply seam carving approach to binarised images. For enhancing the seam gen-
eration process , along with the energy map they have introduced a global cost
function for better detection of the ascenders, descenders and diacritics. The
approach is not suitable for skewed or curved text and requires heavy dataset
specific parameter tuning for its proposed cost functions.

In existing approaches [42,4,3,2,27], seam generation is generally used to
separate text lines rather than segment them. As a result, extraneous isolated
character fragments and noisy background elements present beyond the line’s
text content are often included as part of the line. In contrast, our approach
generates polygons which compactly enclose the text lines. As a novel element,
we introduce a custom energy map in our polygon generation stage which em-
phasizes proper association of diacritics to the parent text line. Another marked
departure from existing methods is the absence of final post-processing. This
enables our approach to generalize across multiple palm leaf manuscript datasets
containing documents with varying scripts and text line densities.

3 Approach

Overview: Given the input palm leaf manuscript image, our objective is to
generate tight-fitting polygons enclosing each of the text lines. Our processing
pipeline has two stages – ‘scribble generation’ (Sec. 3.1) and ‘text line polygon
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Figure 2. An outline of our SeamFormer pipeline for manuscript line segmentation
(Sec. 3.
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Figure 3. Stage I: Scribble Generation Module - see Sec. 3.1.

generation’ (Sec. 3.2) – see Fig. 2. In the first stage, the manuscript image is
processed by a deep network which generates coarse binary medial blobs for
each individual text line and a binarized version of the image. The medial blobs
are further processed to extract coarse spatial identifiers for each line termed as
‘scribbles’. In the second stage, scribbles from first stage and custom-designed
feature maps derived from binarized image are fed to a seam generation algo-
rithm which generates the desired tight-fitting polygons enclosing the individual
text lines.

3.1 Stage I: Scribble Generation

We set up a multi-task variant of Vision Transformer (ViT) deep network archi-
tecture [16] to obtain two outputs - the binarized version of the input manuscript
image and the medial blob masks for each text line (see Fig. 3). In a conventional
ViT architecture, position-encoded patches of input image are processed within
a Transformer [52] framework employing multi-head attention to obtain output
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Figure 4. Stage II: Text Line Polygon Generation Module - see Sec. 3.2 and Algo-
rithm 1 for details.

patches. We extend the conventional setup to have two decoder branches. These
branches output two sets of patches which are separately reassembled to obtain
the binarized version of the input image and the medial blob masks binary image.

The blob mask outputs are post-processed to extract thin medial axis-like
structures which cut across the line. We broadly classify our post-processing
into local and global stages. In local post processing, we iteratively apply mor-
phological dilation and erosion on each blob mask and perform skeletonisation.
Subsequently, we apply skeleton pruning techniques to remove spurious branches
and extract a clean medial fragment for each blob within the patch. We term
these fragments as ‘scribbles’. For the global post processing, we merge these
patches to obtain a scribble map with the input image’s dimensions. Given the
fragments of scribbles, we group them based on distance thresholding technique
as a function of its horizontal level.

The scribble, by nature of its construction, provides crucial information re-
garding local curvature of the text line. As we shall see, accurate determination
of local curvature plays a key role for the next stage of processing and ultimately,
for accurate text line segmentation.

3.2 Stage II: Text Line Polygon Generation

This stage involves two sub-stages – Feature Map Generation and Scribble-
conditioned Seam Generation (see Fig. 4). For each scribble, we first generate
a corresponding pair of pseudo-scribbles which are used at later stages of the
pipeline (Sec. 3.2.1). Next, the scribbles are overlaid on binarized input image
and the resulting scribble-overlaid image is used to create custom feature maps
(Sec. 3.2.2). These feature maps are used as input to a seam generation pro-
cedure to generate the desired high-precision polygons enclosing the text lines
(Sec. 3.2.3).
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 ( b ) 

 ( c ) 

 ( d ) 

Figure 5. Diacritic Map (Sec. 3.2.2) - (a) A text line from a palm leaf manuscript, (b)
the reference text line is shown with the scribble overlaid. Pixels in green denote the
text line connected by the scribble and pixels in red inside pink bounding boxes denote
the corresponding diacritics of the parent text line (c) Diacritic Feature Map - note the
tiny strokes extending out of the scribble to connect the diacritics with the main text
line (d) final red seams enclosing the text line as a result of using the Diacritic map
during seam generation - note that the aforementioned diacritics have been brought
inside the enclosing seams.

3.2.1 Pseudo-scribble generation

As the first step, we sort the scribbles by the y-coordinate of the left-most
point to obtain the sequence of scribbles S in a top-to-bottom order. Let si ∈ S
be a scribble. Let µsi be the average of all y-coordinates of the scribble si’s
pixels. Let µsi+1

be a similar average for the neighboring scribble. The vertical
offset between the scribble pair can be defined as d(si, si+1) =

∣∣µsi − µsi+1

∣∣.
Let d(S) denote the average across all such vertical offsets within the set of
scribbles. Define θ = d(S) + δ where δ is a fixed offset. For each scribble s,
the upper pseudo-scribble (u) and lower pseudo-scribble (l), are obtained by
vertically translating s by +θ and −θ pixels respectively – see the block ‘Pseudo
scribbles’ which is part of ‘Scribble-Conditioned Seam-Generation’ (shaded blue)
in Fig. 4.

3.2.2 Feature Map Generation

Gradient Map (GM): This feature map is obtained as the gradient magnitude
map of the scribble-overlaid image. Using this map creates a high energy barrier
between edges of characters in the text line and the background area immediately
surrounding them. Employing this map in the subsequent seam generation stage
enables seams to align closely with text letter boundaries, resulting in tight-
fitting polygons around the text lines (ref. GM in Fig. 4).
Smoothing Map (SM): This feature map is obtained by applying a blur kernel on
the scribble-overlaid image. Using this map increases the energy at horizontal
inter-character text gaps and ensures that seams do not cut through the text
(ref. SM in Fig. 4).
Diacritic Map (DM): This novel feature map specifically tackles the problem of
diacritics not being enclosed within the polygons of corresponding parent text
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a b

c d

Figure 6. (a) A fragment from the top portion of a manuscript (b) Seams gener-
ated with Gradient and Smoothing Map, but without using scribble – the upper line
boundary is missing (c) Seams when scribble is also added – upper line boundary is
obtained, but diacritics are missed (d) Seams when Diacritic Map is also included –
line boundaries properly enclose text and associated diacritic components.

lines - see Fig. 5. We first isolate the region around each text line with the
help of upper and lower pseudo-scribbles as the demarcations. We overlay the
corresponding scribble on the parent text-line and perform connected compo-
nents analysis. This operation divides the components into three major groups:
components connected to parent-line, disconnected diacritics and background
noisy elements. We discard noise based on an area threshold. For each diacritic
component, we connect its centroid and parent scribble via a perpendicular line.
In effect, this line creates an energy barrier which forces the boundary generated
during seam generation to move around the diacritic instead of separating the
diacritic and its parent text line (ref. DM in Fig. 4). The utility of Diacritic
Map is illustrated in Fig. 5. The neighborhood of a text line often contains text
fragments from adjacent lines due to the uneven handwritten line orientation
and dense handwriting. Our construction of the Diacritic Map actively prevents
the neighbouring text fragments from being picked up along with the diacritics.

The weighted combination of the above feature maps forms the final global
feature map, i.e. F = α GM + β SM + γ DM. Figure 6 illustrates the
importance of using scribbles and the proposed combination of energy maps. It
is important to note that unlike some of the existing seam-based approaches [42],
we generate the feature map only once for the input image.

3.2.3 Scribble-conditioned Seam Generation

For each scribble s, the paired end-points of the scribble and its corresponding
upper pseudo-scribble u are connected to obtain an enclosed upper region U
- see the block ‘Region Masks’ which is part of ‘Scribble-Conditioned Seam-
Generation’ (shaded blue) in Fig. 4. The region’s mask is applied to global
feature map F and cropped to obtain the upper region feature map FU for the
scribble. To constrain the seams to lie within the masked portion, feature map
values outside the mask are set to a fixed ‘high energy’ value. The upper region
feature map is used during seam generation [5].
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Algorithm 1 Scribble-Conditioned Text Line Polygon Generation (Sec. 3.2.3)
1: ▷ Input binaryImage B and set of scribbles S from Stage I (Sec. 3.1)
2: ▷ Output Set of text line polygons P
3: θ ← ComputeGap(S) ▷ Obtain interline gap using inter-scribble gap statistics
4: ▷ Feature Map Generation
5: GM← GenerateGradientMap(B,S)
6: SM← GenerateSmoothingMap(B,S)
7: DM← GenerateDiacriticMap(B,S)
8: F ← GenerateGlobalFeatureMap(GM,SM,DM)
9: ▷ Scribble-conditioned Seam Generation

10: for s in S do ▷ For each scribble
11: u, l←GeneratePseudoScribbles(s, θ)
12: ▷ Generate upper seam
13: U ← GetRegion(s, u)
14: FU ← GetCroppedFeatureMap(U,F)
15: SU ← GenerateSeams(FU )
16: ▷ Generate lower seam
17: L← GetRegion(s, l)
18: FL ← GetCroppedFeatureMap(L,F)
19: SL ← GenerateSeams(FL)
20: ▷ Generate the final text line polygon
21: P ← GenerateLinePolygon(SU , SL)
22: P ← P ∪ {P}
23: end for
24: return P

For a M × N image, a horizontal seam R is a connected sequence of pixels
and can be defined as R = (xi, yi); i = 1, 2, . . . r, 1 ⩽ xi ⩽ N, 1 ⩽ yi ⩽ M
where x1 = 1, xr = N and |xi − xi−1| ⩽ 1, i = 2, 3, . . . r. The ‘energy cost’ of
the seam is defined as U(R) =

∑r
i=1 FU (xi, yi). The seam with the minimum

cost is defined as SU = arg min
R

U(R) and is found using dynamic programming.
In this context, feature map FU has been constructed such that the minimum
energy seam corresponds to tight upper boundary of the associated text line.
Additionally, to enhance the tight-fit characteristic of the seam, we induce a
bias in choosing the lowest energy path. During the seam propagation step, we
greedily pick the lowest x or y coordinate value among potential energy paths.
This choice results in energy seams circumscribing the character components
tightly. A similar procedure as above is repeated with the lower pseudo-scribble l
to obtain a tight lower boundary seam SL for the text line. These seams (SU , SL)
are connected at their paired endpoints to obtain the final high precision polygon
P enclosing the text line.

It is important to note that the scribble generated in Stage-I determines the
sub-image region in which seam generation operates. Confining seam generation
by using scribble-based masks helps produce compact enclosing boundaries (see
Figure 6). This is unlike other seam-based methods which generate seams that
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go beyond actual extent of the text line. Algorithm 1 outlines the procedure for
scribble-conditioned text line polygon generation.

4 Experiments

4.1 Datasets

We have tested the models on a selection of palm leaf manuscript datasets -
Indiscapes2 [44], the datasets provided for the Challenge B (Text Line Segmen-
tation) of the ICFHR 2018 Competition On Document Image Analysis Tasks for
Southeast Asian Palm Leaf Manuscripts [24] containing manuscripts from Bali-
nese, Khmer and Sundanese languages. In addition, a new manuscript collection
called KgathaM has also been introduced.
Indiscapes2[38]: This is the largest dataset for Indic palm leaf manuscripts
and consists of manuscripts sourced from four distinct sources. Indiscapes2
comprises of 1275 documents with a large diversity in scripts,language,semantic
regions, document dimensions, number of lines and text line density. It has 748
manuscript leaves for training and 258 leaves for the test split. The average
manuscript dimension is 750× 1900.
KgathaM: We introduce this new collection of palm leaf manuscript written
in a classical component-based script of the Indic language Malayalam. The
manuscript contains verses from a poem. A unique aspect is that the poem
is written on manuscript leaves continuously and end to end, without spaces
between words. It has a total of 392 pages with 8− 12 lines in each document.
We have considered 313 pages for train split and 79 pages in the test split. The
manuscript leaves are quite dense with an average of 9-10 text lines and contain
extremely small character components. The average size of the manuscript page
is 400× 2800.
Balinese[23]: This consists of Balinese manuscripts. It has been extracted from
the AMADI LontarSet [23], with 393 pages of palm leaf manuscripts from 23
different collections. In general, the documents have 4 text lines, most of them
double-columned with occasional illustrations. One common characteristic of
this manuscript is the variety of diacritics. The Challenge provides a total of 96
pages with 47 pages in the train split and 49 pages in the test split. In general the
pages have 4 text lines. The average size of the manuscript page is 500× 5000.
Khmer[50]: This set consists of Khmer (Cambodian) manuscripts. It has
been extracted from the SleukRith Set [50], with 657 pages of Khmer palm
leaf manuscript randomly selected from different sources. In general, the pages
have 5 text lines. The Challenge provides a total of 250 pages with 50 pages in
the train split and 200 pages in the test split. The average size of the manuscript
page is 500× 5500.
Sundanese[48]: This set consists of Sundanese manuscripts. It has been ex-
tracted from the Sunda Set [48], with 66 pages of Sundanese Lontar randomly
selected from 27 collections. The Challenge provides a total of 61 pages with
31 pages in the train split and 30 pages in the test split. On average, the pages
consist of 4 text lines. The mean size of the manuscript page is 350× 3000.
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Table 1. Comparison of SeamFormer with existing approaches on benchmark datasets
(Sec. 5).

Indiscapes2[38] KGathaM Bali[23] Sunda[48] Khmer[50]

IoU ↑
MMRCNN [38] 0.55 0.34 0.23 0.28 0.28

Palmira [44] 0.76 0.69 0.42 0.68 0.45
Doc-UFCN [9] 0.16 0.12 0.08 0.23 0.10

dhSegment [36] 0.34 0.12 0.03 0.12 0.08
LCG [2] 0.37 0.20 0.12 0.12 0.18

DocExtractor [30] 0.10 0.17 0.01 0.02 0.04
SeamFormer 0.78 0.84 0.66 0.77 0.69

HD ↓
MMRCNN [38] 447.58 855.76 2106.30 1147.30 1760.48

Palmira [44] 73.32 57.84 1699.58 130.34 1190.95
Doc-UFCN [9] 339.30 238.87 1873.00 630.79 2552.26

dhSegment [36] 295.58 216.79 2232.90 394.16 1560.45
LCG [2] 207.76 346.93 797.51 367.60 496.31

DocExtractor [30] 806.17 1423.26 3552.19 1865.25 3987.37
SeamFormer 21.91 16.05 48.86 32.18 48.37

AvgHD ↓
MMRCNN [38] 57.13 132.50 302.59 145.07 270.47

Palmira [44] 7.29 2.74 224.79 6.50 203.59
Doc-UFCN [9] 70.04 49.16 319.06 98.55 481.19

dhSegment [36] 60.33 43.60 415.24 66.77 319.57
LCG [2] 16.82 29.72 95.18 39.65 44.50

DocExtractor [30] 149.29 219.68 778.60 331.00 898.16
SeamFormer 0.65 0.25 2.53 1.01 2.39

HD95 ↓
MMRCNN [38] 355.74 702.45 1766.12 918.85 1449.68

Palmira [44] 42.47 21.49 1393.15 49.06 1019.12
Doc-UFCN [9] 304.73 214.35 1628.43 520.38 2271.27

dhSegment [36] 262.83 192.33 1967.72 329.84 1380.09
LCG [2] 99.77 197.94 390.21 231.38 191.88

DocExtractor [30] 595.61 1084.01 3255.44 1656.47 3654.05
SeamFormer 4.59 1.96 19.49 7.77 18.83

4.2 Implementation Details

Stage-I: For the ViT network, we use 256× 256 overlapping manuscript patches
with appropriate padding. Resampling is used to overcome the imbalance be-
tween text and empty (non-text) patches. For training the binarizer branch for
South-East Asian datasets, we use the binary dataset from Challenge A of the
ICFHR 2018 contest [24]. For other datasets, we use Sauvola-Niblack binari-
sation [43,33] as the ground truth. We initialize the binarization branch with
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SeamFormer
Palmira

IoU HD
0.81 32.5

0.16 531.7

Figure 7. A challenging manuscript from Indiscapes2 [44]. The figure shows insets
of regions with ground-truth (blue) and predictions from SeamFormer (green) and
Palmira [44] (red). The document level performance scores are shown in bottom right.

pre-trained weights [47]. The learning rate is initialized to 0.05 and is decayed
by Pytorch’s learning scheduler, ExponentialLR with γ = 0.8. For training both
of these branches we leverage the L2 loss. We adopt a training procedure where
every individual branch is trained separately, while the other branch’s weights
are frozen. The optimizer used is stochastic gradient descent with γ = 0.1 and
momentum of 0.9. We perform data-parallel optimization distributed across 2
GeForce RTX 2080 Ti GPUs for 40 epochs, with a fixed batch size of 4. We
use random rotation augmentation α ∈ (−30, 30) to improve performance for
non-axis oriented manuscripts. To tackle varied manuscript background tex-
tures and noise, we apply Gaussian Noise, AdvancedBlur, RandomColor, Ran-
domFog, RandomBrightness and HueSaturations augmentations [11]. For post-
processing, we apply erosion filters - a horizontal rectangular kernel 1×11 thrice,
followed by a 1×1 dilation to separate any overlapping medial blobs. These blobs
undergo a skeletonization procedure followed by pruning to remove any spurious
branches with a minimum area threshold of 100 pixels. The post-processing is
robust and does not need to be changed across datasets or approaches.

Stage-II : The offset for pseudo-scribble generation δ is set to 5. In the feature
map generation pipeline, we use the standard 3 × 3 Sobel kernel for Gradient
Map. We apply a Gaussian blur kernel of 15×11 for high spatial coverage within
the image to compute the Smoothing Map. The weights for various feature maps
are empirically set to α = 0.4 (GM), β = 0.6 (SM) and γ = 1.0 (DM). The
global feature map is normalised to [0, 1] before the seam generation process.
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Table 2. Ablation experiments using Indiscapes2. Proposed refers to design choices
in SeamFormer.

Row-id Stage I Stage II IoU ↑ HD ↓ HD95 ↓ Avg.HD ↓

1 Text Baseline Proposed 0.63 62.59 8.29 35.86
2 ARU-Net [18] Proposed 0.69 103.57 9.37 51.51
3 Proposed GM 0.76 23.83 0.78 5.15
4 Proposed GM,SM 0.77 22.40 0.71 4.71
5 Proposed Proposed 0.78 21.91 0.65 4.59

5 Results

For quantitative evaluation of text line segmentation, we compare SeamFormer
against various state-of-the-art approaches developed for palm-leaf and other
types of manuscripts. The approaches were fine-tuned for each dataset. As
performance measure, we use IoU. In their work, Trivedi et al. [49] show that
Hausdorff Distance (HD) and its variants - HD95 and Average HD reflect the
prediction performance for polygon boundary predictions better than area-based
IoU metric. Therefore, we report these measures as well. Note that smaller the
HD-based scores, better the text line polygon prediction.

The overall quantitative results can be seen in Table 1. SeamFormer clearly
outperforms the competing strong baseline approaches across all the datasets
and across the performance measures. This shows the generalizability provided
by our approach. Our consistently small HD scores are due to the high pre-
cision polygons generated by our custom scribble-conditioned seam generation
pipeline. For some existing approaches, HD-based scores are one or two orders of
magnitude higher due to low line accuracy. Most of these approaches resize the
input image to a fixed size for optimal training of the neural network. However,
due to the extremely large aspect ratio (≈ 10 : 1) and range in sizes for palm
leaf manuscripts, the resizing causes text line polygon aliasing, causing poor per-
formance. These factors are not an issue for SeamFormer since resizing is not
a part of the pipeline. The second-best network Palmira [44] is competitive in
terms of IoU for Indiscapes2 [44]. However, the performance gap is substantial
for other datasets and other performance measures as well.

5.1 Ablation Study

We perform an ablation analysis with Indiscapes2 dataset to determine the con-
tribution of various design choices within Stage-I (scribble generation) and Stage-
II (seam generation). Instead of a medial scribble through the text, we tried the
popular text underline (baseline) as an alternative. The bottom of the text line
polygon is used as the baseline. However, this led to sub par performance since
the baseline is not guaranteed to touch the text and does not prevent seams
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Khmer

Figure 8. SeamFormer predictions on South-East Asian Manuscripts [24] – Khmer
(top), Sundanese (middle) and Balinese (top).

from cutting in between text components of the lines (row 1 of Table 2). In
another experiment, we re-trained the popular ARU-Net [18] as an alternative
to our ViT architecture for obtaining scribbles. ARU-Net produces disconnected
scribbles which results in poor performance (row 2). Keeping Stage-I fixed, we
also conducted experiments to determine the impact of each feature map (rows
3-4). We observe that the full set of feature maps (last row) provides the best
performance – also see Figure 6.

5.2 Qualitative Results

A visual comparison of performance between ground-truth and predictions by
SeamFormer and the second-best model Palmira [44] can be seen in Figure 7.
The effect of resizing can be seen in Palmira’s incorrect and coarse predictions.
Despite the challenging nature of the manuscript (e.g. document tilt, dense
and unevenly spaced text lines), SeamFormer predictions are significantly more
accurate. This trend can also be seen in sample manuscripts from other datasets
- see Figures 8,9,10.

6 Conclusion

We introduce SeamFormer, a novel approach for high precision text line segmen-
tation in handwritten documents. Instead of a monolithic framework, we tackle
the challenge of text line segmentation using a divide-and-conquer two stage
approach. The first stage generates medial line ‘scribbles’ which provide crucial
information about the curvature of the text line and a binarized version of the
input image. In the second stage, these scribbles and custom-designed feature
maps derived from the binarized image are fed to a seam generation algorithm
which generates the desired tight-fitting line polygons.

Our approach is a resizing-free method. As a result, text line gaps are not
distorted or aliased, leading to significantly better results. Our novel inclusion
of Diacritic Map in the second stage ensures complete and correct inclusion
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Figure 9. SeamFormer predictions on Indiscapes2 [44] manuscripts.

Figure 10. SeamFormer predictions on manuscripts from the newly introduced
KGathaM collection.

of diacritics within the predicted polygon. Also, pseudo-scribbles are a key
innovation in our approach. The pseudo-scribbles serve as energy barriers during
seam generation and ensure the seams do not cross the text line’s spatial extents.
The pseudo-scribbles also prevent the seams from deviating too much from the
reference line unlike some existing approaches. The efficacy of our approach is
evident from its comparatively superior performance across challenging datasets
and metrics.

An additional advantage of our approach is that it enables interactive human-
in-the-loop refinement. For instance, scribbles could be manually added for any
missed lines followed by second stage processing. Another advantage is that
unlike some existing approaches, no post-processing on the polygons is required.
Our results demonstrate the utility of SeamFormer for line segmentation across
multiple challenging datasets. Overall, SeamFormer is an attractive option for
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generating precise text line polygons in handwritten manuscript collections. The
source code, pretrained models and associated material are available at this link:
https://ihdia.iiit.ac.in/seamformer.
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