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The discovery of potential therapeutic agents for life‑threatening diseases has become a significant 
problem. There is a requirement for fast and accurate methods to identify drug‑like molecules that can 
be used as potential candidates for novel targets. Existing techniques like high‑throughput screening 
and virtual screening are time‑consuming and inefficient. Traditional molecule generation pipelines 
are more efficient than virtual screening but use time‑consuming docking software. Such docking 
functions can be emulated using Machine Learning models with comparable accuracy and faster 
execution times. However, we find that when pre‑trained machine learning models are employed in 
generative pipelines as oracles, they suffer from model degradation in areas where data is scarce. In 
this study, we propose an active learning‑based model that can be added as a supplement to enhanced 
molecule generation architectures. The proposed method uses uncertainty sampling on the molecules 
created by the generator model and dynamically learns as the generator samples molecules from 
different regions of the chemical space. The proposed framework can generate molecules with high 
binding affinity with ∼ a 70% improvement in runtime compared to the baseline model by labeling only 
∼30% of molecules compared to the baseline oracle.

Data-driven approaches have found profound success across multiple computer science domains—computer 
vision, natural language processing, signal processing, speech recognition, etc. These algorithms have made 
their way into drug discovery as well. With the increasing availability of open sources, well-curated datasets like 
 ZINC1,  ChEMBL2, and more have opened up avenues for using machine learning in different tasks like molecular 
property prediction, molecular structure prediction, retrosynthesis, and de novo molecule generation.

Conventionally, in order to identify potential molecules, high throughput screening (HTS) is performed on 
large databases in which every molecule in a database undergoes automated in vitro testing to find if they were 
a potential  match3. High throughput screening is extremely expensive, inefficient, and has a low-hit  rate4. This 
led researchers to formulate in silico computational approaches that could emulate protein-ligand interactions 
leading to high throughput screening experiments using physics-based property prediction methods to make 
the process more  efficient5. Virtual screening is more cost-effective and efficient than high throughput screening. 
Further optimizations to virtual screening included clustering databases and using machine learning approaches 
to label  molecules6,7. Given the linear search time, finding a desirable molecule becomes extremely ineffective 
when virtual screening is performed on huge databases. Moreover, the lack of chemical diversity in datasets has 
made virtual screening non-universal8.

The fundamental idea behind HTS and HTVS is to exploit the molecules already known in the chemical 
space but this number is infinitesimal in comparison to the estimated size of the chemical space with about 1060 
synthesizable  molecules9. Even the most exhaustive studies have been able to computationally evaluate only 108 
 compounds10. Hence, the idea of de novo molecule generation emerged in which computational methods are 
used to generate molecules with certain properties. One way to achieve this is through genetic algorithms, which 
seek to evolve the ecosystem of pre-existing molecules into more desirable ones by introducing mutations in the 
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current  generation11,12. Unfortunately, genetic algorithms and their variants are prone to be stuck at local minima 
due to fixed initial populations and reverting mutations. To remove the initial requirement of a population set, 
deep generative models provide a vital improvement by forcing a non-linear relationship between molecular 
structures and  properties13. In order to apply deep generative modeling to molecule generation, the two common 
representations are SMILES (simplified molecular-input line-entry system) strings and molecular graphs. SMILES 
strings possess their own grammar and semantics, and hence, this opens up the avenue for the application of 
natural language processing (NLP) based approaches like recurrent neural networks and  transformers14. On the 
other hand, molecular graphs are generally heterogeneous graphs that can be used as an input to graph neural 
networks. Gupta et al.15 and Grisoni et al.16 used variants of recurrent neural networks to generate generic drug-
like molecules while Bongini et al.17 and Mercado et al.18 used graph neural networks for molecule generation. 
However, drug molecules for a novel disease must possess a particular set of properties, and hence, methods 
were required to generate molecules with specified properties. This led to the application of more sophisticated 
generative models like variational autoencoders (VAE)19 and generative adversarial networks (GAN)20 along 
with optimization techniques like Bayesian optimization and reinforcement learning.

VAEs are capable of learning a continuous space representation of molecules which can then be optimized 
to get molecules with target properties through techniques like Bayesian optimization and swarm optimization. 
These techniques are architecture agnostic and can be applied with different forms of VAE like junction tree VAE 
by Jin et al., grammar VAE by Kusner et al. and  more21–24. A VAE model was also paired with reinforcement learn-
ing for generating molecules with high binding affinity to a given target by Boitreaud et al.25 GANs are generative 
models that learn the probability distribution of the training data, and sampling from the distribution can then 
be used to generate synthetic data points. This model has also been applied to the generation of molecules with 
desirable properties in works by Cao et al., Prykhodko et al., Guimaraes et al. and Maziarka et al.26–29

However, the common theme across all the enhanced molecular generation models is an optimization algo-
rithm requiring an oracle to calculate the property the model is being optimized for. Some properties are easy 
to calculate, while others, like binding affinity, take significantly longer. Molecular docking is a non-convex 
optimization problem and can take up to ≈ 10 min for large molecules on a CPU. An alternative widely used 
is a machine learning predictor model that takes the molecule and target as an input and predicts the binding 
 affinity30,31. However, this also comes with the caveat that the predictor model heavily depends on the initial 
training data, and hence, for molecule generation pipelines, as the model dynamically moves in the chemical 
space, the type of molecules being sampled also changes dynamically. This leads to a phenomenon called model 
degradation in which the performance of machine learning models declines as time  passes32. Though faster, 
using machine learning models to predict binding affinity can become highly inaccurate as molecules start being 
sampled from regions of the chemical space unseen in the initial training set. Hence, there is a requirement for 
a predictor model that can: (1) perform the closest to that of physics-based docking software or a computation-
ally demanding free energy calculation, (2) model which can work with a small dataset by learning posterior 
distribution accurately, and, (3) to develop a framework (over the machine learning model) that learns how to 
predict the binding affinity as the generator navigates through the chemical space.

Active learning is a popular technique in machine learning for training predictor models on datasets that 
are expensive to label. Bayesian active learning using uncertainty sampling was introduced in Computer Vision 
for Object  detection33. More scalable and dynamic Active Learning approaches were introduced to improve 
training and network  accuracy34. Active learning in cheminformatics was employed to conduct high throughput 
virtual screenings in existing  databases35–37. Warmuth et al. uses support vector machines to mine data from 
an extensive collection of databases with ligands docked to a  protein38. Raschka and Kaufman et al. summarize 
AI-based research for GPCR bioactive ligand discovery focusing on Active  Learning39. Fujiwara et al.40 employ 
active learning using query by bagging to find structurally diverse hits in large databases. Gentile et al. conduct 
scalable AI-based virtual screening with deep  docking41.

In this study, we propose a generative model agnostic active learning framework that can be used to accu-
rately predict binding affinities throughout the optimization process of any generator model. The framework 
uses a Gaussian process regression model, updated at regular intervals using new training data obtained as the 
generator model is optimized to generate molecules with high binding affinity. This architecture was validated 
by integrating it with the MoleGuLAR pipeline proposed by Goel et al. It was found that using this reduced the 
training time by 70% while maintaining high  accuracy42.

Methods
This section describes the various components of the proposed dynamic predictor model, which can be used 
to replace the previously used slow docking tool and an inaccurate ML-based predictor model with an accurate 
ML-based predictor that learns new distributions with minimal data sampling. Figure 1 showcases the proposed 
predictor model using uncertainty-based active learning. Subsection Gaussian process regressor describes the for-
mulation of Gaussian process regressor (GPR), the base predictor model. Initially, k points are sampled randomly 
from a database of drug-like molecules, their binding affinities with the target are calculated, and the predictor is 
trained to predict the binding affinity of these molecules with the required target. The GPR is updated dynami-
cally using active learning, detailed in the subsection Active learning. The GPR also returns the uncertainty in its 
prediction, and the molecules used for retraining the model are picked using an uncertainty threshold which is 
also dynamic. Choosing this threshold is detailed in the subsection Dynamic uncertainty threshold.

Gaussian process regressor
Gaussian process regressor (GPR) are the predictors used for molecular property  prediction43. GPR calculates 
the probability distribution for fit over all possible functions that fit the data for a given distribution. When the 
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GPR predicts the chemical property of a new incoming molecule, the prediction is tractable, and a normal dis-
tribution is obtained with mean and covariance. Hence, not only can a GPR return a prediction, but it can also 
return the uncertainty associated with that prediction in the form of standard deviation. In GPR, we first assume 
a Gaussian process prior f(x) using a mean function m(x) and covariance kernel function k(x, x′) represented by

The prior assumes a multivariate distribution depending on the input dimensions. The mean function is usually 
a constant or the mean of the input dataset. The covariance function can be of any form of a function as long as 
it satisfies the properties of a kernel. The kernel function used for this study is the radial basis function (RBF) 
 kernel44 represented by

with hyper-parameters: signal variance ( σ 2 ) and lengthscale (l). The GPR must be pre-trained with an initial set 
of points before inducting it into the Molecule generation pipeline. The input to the GPR for training is repre-
sented using SMILES. These smiles are converted into Mol2Vec  embeddings45. These Mol2Vec embeddings are 
fed into a pre-trained GPR to predict the desired molecular property.

Active learning
Active learning is a particular case of machine learning. Active learning algorithms can interactively query a 
database, acquire new data points, append them to the existing dataset, and retrain the current model. Active 
learning is used when unlabelled data is abundant, but labeling them is expensive and time-consuming - this is 
ideal. The function with which samples are acquired is known as the acquisition function. Common acquisition 
functions include balanced exploration, variance reduction, etc.

In this study, we employ Active learning using an uncertainty sampling-based querying strategy to acquire 
molecules whose properties are not predicted confidently by the ML model. When a set of molecules are to be 
evaluated by the oracle, the GPR initially predicts its uncertainty in predictions on each of these molecules. 
Depending on the Standard Deviation threshold, a molecule is deemed to be “certain” or “uncertain” with respect 
to the GPR’s prediction. Suppose the GPR is certain about the predictions of a molecule. In that case, the GPR 
makes the prediction, and the predictions are sent forward for the generative pipeline to calculate rewards. If the 
GPR is not certain about the predictions of a molecule, the molecule is stored in a repository. The molecule is 
then forwarded to a Physics-based property prediction software, and the results are then sent to the generative 
pipeline to calculate rewards. When k points are accumulated in the repository, these points are concatenated 
with the pre-trained points, and the GPR is retrained. This is done to learn the newly explored range by the 
generative pipeline for the associated molecular property. This step is performed repeatedly, and the number of 
retraining steps depends on the number of uncertain points encountered by the GPR.

Dynamic uncertainty threshold
After every retraining step in the active learning pipeline, the model’s mean uncertainty for the regions it was 
initially trained on fluctuates. Hence, using a constant standard deviation threshold over multiple re-training 
steps can lead to inaccurate classification of a prediction as “certain” or “uncertain” concerning the ML model. 
Suppose the mean uncertainty of predictions of the pre-trained data during a retraining step is greater than the 

(1)f (x) ∼ GP(m(x), k(x, x′))

(2)k(x, x′) = σ 2
f exp(

−1

2l2
||x − x′||2)

Figure 1.  Architecture of the proposed dynamic predictor. An incoming molecule is used as input to a 
Gaussian Process Regression model which returns a prediction and uncertainty (standard deviation, STD). If 
the uncertainty is above a given threshold, the ground truth value of the property is calculated and added to a 
repository. If k points are accumulated in the repository, the model is re-trained, and the uncertainty threshold 
is updated.
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standard deviation threshold. In that case, the majority of the points are deemed uncertain and vice versa. Hence, 
it is only ideal for the standard deviation threshold to vary as the model’s mean uncertainty on the pre-trained 
data varies during every re-training step. To vary the threshold, a test set is maintained. After every retraining 
step, the uncertainties of the GPR on the new test set are recorded, and a histogram of the uncertainties is plot-
ted after dividing the uncertainties into k bins. The uncertainties of the first bin are noted. Given the established 
benchmark (uncertainties belonging to the first bin), when trained on adequate data points for a given data range, 
the GPR can predict with lower uncertainty for data points belonging to any other successive bins. Hence, the 
new uncertainty threshold is the mean of the second bin.

Dataset
The dataset used for this problem is the HTS collection by  Enamine46. The dataset comprises approximately 2 
million ligands, which were then docked to the Tau Tubulin Kinase 1 (TTBTK1), an important target for neu-
rodegenerative diseases like Alzheimer’s47. Binding affinities in this dataset range from − 12 to 0 kcal/mol. The 
ground truth has been generated by docking the molecules using Autodock-GPU48. We follow the same dock-
ing methodology as Goel et al., and the molecules have been docked by following the same procedure for the 
4BTK protein present in the S6: Docking Methodology, Supplementary Information for MoleGuLAR: Molecule 
Generation using Reinforcement Learning with Alternating  Rewards42. For this problem, k points are randomly 
sampled from this dataset. Figure 2 depicts a histogram showing the distribution of the binding affinities of the 
molecules present in the dataset. As one can observe, the data gets more scarce in the higher binding affinity 
regions (regions < -8 kcal/mol). The scarcity of data in more negative binding affinity regions during virtual 
screening can be attributed to various factors. One reason is the presence of structural constraints and synthetic 
challenges associated with molecules that exhibit extremely negative binding affinities. Additionally, when utiliz-
ing a general-purpose database containing millions of ligands screened against a specific protein, it is possible 
that the chemical space explored within this database is more biased towards other target sets, resulting in limited 
coverage of the negative binding affinity regions. Furthermore, virtual screening alone cannot adequately explore 
newer chemical regions without the validation and input of a chemist who can suggest potential modifications 
for a set of promising molecules identified through virtual screening. These modifications, however, are often 
constrained by intellectual property considerations, which restrict the accessibility of data pertaining to higher 
binding affinity regions that hold greater potential for therapeutic applications. Hence, it is expected that a model 
trained on this data would have high error and uncertainty in the higher binding affinity regions.

Results and discussion
This section reviews the results obtained by testing different parts of the proposed oracle represented in Figure 3. 
Subsection GPRs for predicting binding affinity discusses the performance of a GPR model trained to predict bind-
ing affinities to the TTBK1 protein. The following subsection compares two techniques for selectively labeling 
more data during molecule generation. Subsection Active learning integrated with MoleGuLAR explores how 
using the proposed enhanced predictor model improves the efficiency and accuracy of performing docking 
calculations and a conventional ML-based predictor model, respectively.

Figure 2.  Distribution of binding affinities 150,000 molecules randomly sampled from the dataset. The dataset 
consists of ≈ 2 million molecules obtained from the HTS collection by  Enamine46 docked with the TTBK1 
protein.
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GPRs for predicting binding affinity
The GPR is trained on an initial data pool available from the Enamine dataset. Five thousand points are randomly 
sampled, and their  Mol2Vec45 embeddings are extracted and trained using the following kernel: an additive RBF 
 kernel44 with a length scale of 5.0 and White Noise kernel with default noise level (1.0). A 10,000-point test set 
is also sampled from the Enamine dataset to examine the accuracy of the dataset. The metrics achieved on the 
test set are: Mean Absolute error: of 0.452 kcal/mol, Mean squared error: of 0.378 kcal/mol, and R2 score of 0.87. 
Other models, including graph isomorphism networks, graph attention networks, and fully connected neural 

Figure 3.  Active learning integrated with the MoleGuLAR pipeline.
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networks on Word2Vec embeddings, were tested. While fully connected neural networks performed the worst 
with an MAE of 1.2 kcal/mol, MSE of 2.56 kcal/mol, and R2 of 0.68, and GINs performed well with an MAE 
of 0.64 kcal/mol, MSE of 0.92 kcal/mol, and R2 of 0.74, Graph based models and other deep learning models 
required  70–80k points to achieve this accuracy. GPRs achieved benchmark accuracy with as low as 5000 data 
points. Our main goal in the optimization process is to explore newer chemical spaces more accurately and 
do so in less time, and labeling more points means employing the Physics-based property prediction software 
more—indicating an additional cost. Moreover, GPRs also provide us a better and more trivial estimation of 
uncertainty due to their probabilistic framework and incorporation of priors. Meanwhile, in the case of graph 
models and deep learning models, we used Monte Carlo Dropouts as approximations for deep Gaussian processes 
for estimating uncertainty σ , by extracting the variance across predictions. With sparse data inputs and lesser 
data points, along with shorter message passing in the case of small molecules meant that uncertainties fluctu-
ated during every run. It was only with GPRs that we obtained a common trend where uncertainties were high 
in lesser explored regions of the dataset (<− 8 kcal/mol), and were low in data-abundant regions (<− 3 kcal/mol 
and >− 7 kcal/mol). Figure 4 represents the ground truth versus the predicted graph for the test set. This pool is 
the initially labeled dataset for the active learning problem.

Active learning versus random sampling
As shown in the previous section, GPRs work well for predicting binding affinities to the given target, and the pre-
diction uncertainty returned by the GPR can be leveraged to perform active learning. However, it is important to 
acknowledge the contribution of uncertainty sampling during chemical space exploration. To do so, we compare 
our uncertainty-based querying strategy with random sampling. The initial pool of training data consists of 500 
data points from the enamine dataset. At every iteration, a GPR model is trained on the training data, and the 
500 points from the entire Enamine dataset for which uncertainty is maximum are appended to the training set. 
Conversely, in the case of random sampling, the 500 points inducted into the training set are chosen at random. 
Figure 5 showcases the mean absolute error on a hold-out test set and shows that active learning outperforms 
random sampling and provides a better-performing predictor model.

Active learning integrated with MoleGuLAR
Active learning versus random sampling
The enhanced predictor model was integrated into the MoleGuLAR pipeline as the oracle. In MoleGuLAR, 500 
molecules are generated to perform policy gradients and 100 more for evaluation during every iteration leading 
to 250 molecules in each iteration. The GPR makes a prediction for each of these molecules; for any molecule 
with uncertainty higher than the threshold, a docking calculation is performed, and the labeled molecule is added 
to a repository of molecules. As soon as the repository reaches a size of 300, these are inducted into the training 
set, the GPR is retrained, and the repository is reinitialized. Simultaneously, another repository is maintained 
for comparison in which randomly chosen molecules are inducted. Figure 6 compares the MAEs of the two 
GPRs with training data sampled using different strategies. The figure shows that the binding affinity increases 
as the number of points increases, which is the converse of what was seen in the previous section. This can be 
attributed to the generator model moving in previously unseen regions of the chemical space for which repre-
sentation is low in the training data. It can also be noticed that at ≈ 6750 points, the difference gets significant. 
The sudden increase in mean absolute error (MAE) can be attributed to the RL framework’s initial exploration 

Figure 4.  Correlation between ground truth and predicted binding affinities from a trained GPR model.
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of new regions. During this exploration phase, the model encounters data from these regions, combined with a 
lack of uncertainty sampling, which hinders the accurate learning of distributions in the newly discovered space. 
As the gradients within the RL framework gradually decrease, the rate of exploration of new chemical spaces 
also slows down. Still, we see that the error in the case of Active Learning with GPR increases less steeply than 
random sampling and does not see large fluctuations.

Binding affinities of generated molecules
To analyze and compare the “quality” of generated molecules based on the choice of Oracle, 500 molecules were 
generated using the generator before optimization. Following this, the generator was optimized for more nega-
tive binding affinity using a pre-trained static GPR as the oracle and the proposed dynamic predictor model as 

Figure 5.  MAE versus Number of points in the training set. 500 Molecules from the Enamine dataset with the 
most uncertain predictions are appended to the training set and the GPR is retrained and the MAE is calculated 
on the hold-out test set.

Figure 6.  AL with GPR versus random sampling—Inside the RL Pipeline. 300 new points are obtained during 
each iteration and the model is re-trained. The MAE is calculated on the holdout test set at every retraining step.
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the GPR. At the end of the optimization process, 500 molecules are generated from both, and their ground truth 
binding affinities are calculated using AutoDock-GPU. The distribution of these binding affinities is shown in 
Figure 7. It is visible that using the proposed predictor leads to the generation of molecules with high binding 
affinities compared to using a static predictor. The reason for this is that static predictor has extremely poor 
quality predictions for molecules with high binding affinities and hence, fails to predict those values. Therefore, 
the proposed dynamic predictor model leads to better performance than a static predictor.

Course correction
Analysis was also performed to check how the quality of predictions changes when the GPR model is retrained 
and whether it learns more information about the region of the chemical space being sampled. To do this, 1000 
molecules were generated using MoleGuLAR after the optimization process, and their binding affinities were 
calculated using AutoDock-GPU. Predictions are then made using two models - the model used in the pipeline 
before retraining and after retraining. The correlation between these predictions and the ground truth values 
are present in Figures 8a,b, respectively. It is visible that the predicted binding affinities in regions where binding 

Figure 7.  Distribution of binding affinities of molecules generated: using MoleGuLAR before optimization 
(red) and after optimization with pre-trained GPR (purple) and with GPR and active learning (blue).

Figure 8.  Course correction graph (a) before and (b) after re-training.
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affinity < −10 kcal/mol are not close to the ground truth binding affinities. At the same time, after retraining, 
they lie much closer to the y = x line. There is also a significant improvement in the R2 score and the MAE.

Improvement in efficiency
With evidence from the previous sections that the dynamic predictor model performs better than a static ML-
based predictor model, the next step is to see if the accuracy trade-off by using a predictor model leads to a 
significantly shorter run time. Shorter run times not only promote cost-effectiveness but also provides researchers 
to run multiple models simultaneously under different parameters. We use Autodock GPU in all our docking 
calculations since Autodock GPU provides us with an accelerated framework for docking calculations. With 
Autodock-Vina, on average, one molecule would take  20 s to dock. With Autodock GPU, we are able to acceler-
ate this process to  3–4 s per molecule. We compare the time taken by three different versions of MoleGuLAR 
under three different settings: the base model proposed by Goel et al., the pre-trained model proposed by Goel 
et al., and our active learning framework. The time taken to optimize MoleGuLAR for 100 iterations and the 
total number of docked molecules is presented in Tables 1 and 2, respectively.

It is evident that in terms of time taken the pretrained model is the most efficient but it makes bad predictions. 
On the other hand AutoDock-GPU makes accurate predictions but can take up to 2 days and hence, is extremely 
time consuming. The pre-trained model labels 20% of total molecules compared to the number of molecules 
generated by the pipeline. The active learning also labels 20% outside the pipeline—just like the pre-trained 
model, but also labels an additional 10.4% inside the pipeline. Hence, the active learning-based predictor finds 
a balance between the quality of predictions and the time taken.

Conclusion
In this study, a solution is presented to make the de novo generation of drug-like molecules more efficient. Active 
learning and uncertainty sampling are used to reduce the execution time of molecule generation pipelines. The 
approach is validated by conducting rigorous experiments which test the accuracy and the correctness of the 
Active learning pipeline and showed that Active learning acts as a trade-off between complete docking and a pre-
trained Machine learning model which explores a local non-linear function to learn about the binding pocket. 
We also show that the trade-off proves to be very important in improving the accuracy and the distribution of 
the predicted molecules in the pre-trained model. Further work can include reducing the number of labeled 
points to a greater extent and altering graph-based machine learning models to work with smaller datasets. But, 
using a simplistic base model in this problem significantly improves the execution time and reduces the number 
of docking calculations.

Data availability
The data, code, analysis, models and the generated molecules have been included at https:// github. com/ deval 
ab/ Enhan ced- MoleG uLAR.
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