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ABSTRACT: Most optimization problems require the user to
select an algorithm and, to some extent, also tune it for better
performance. Although intuition and knowledge about the
problem can speed up these selection and fine-tuning processes,
users often use trial-and-error methodologies, which can be time-
consuming and inefficient. With all of that in mind and much
more, the concept of “learned optimizers”, “learning to learn”, and
“meta-learning” has been gathering attention in recent years. In
this article, we propose MolOpt that uses multiagent reinforcement
learning (MARL) for autonomous molecular geometry optimiza-
tion (MGO). Typically MGO algorithms are hand-designed, but
MolOpt uses MARL to learn a learned optimizer (policy) that can
perform MGO without the need for other hand-designed optimizers. We cast MGO as a MARL problem, where each agent
corresponds to a single atom in the molecule. MolOpt performs MGO by minimizing the forces on each atom of the molecule. Our
experiments demonstrate the generalizing ability of MolOpt for the MGO of propane, pentane, heptane, hexane, and octane when
trained on ethane, butane, and isobutane. In terms of performance, MolOpt outperforms the MDMin optimizer and demonstrates
performance similar to that of the FIRE optimizer. However, it does not surpass the BFGS optimizer. The results demonstrate that
MolOpt has the potential to introduce innovative advancements in MGO by providing a novel approach using reinforcement
learning (RL), which may open up new research directions for MGO. Overall, this work serves as a proof-of-concept for the
potential of MARL in MGO.

1. INTRODUCTION
Neural network potentials (NNPs) learn to approximate the
potential energy surface (PES) as a high dimensional function
(HDF) f by learning from existing reference data. Once trained
NNPs can successfully circumvent the need to solve the
electronic Schrödinger equation explicitly as it has learned the
mapping f(Zi, ri) → E, where Zi are the nuclear charges and ri are
the atomic positions.1−7 Machine learning (ML) methods in
general have been successful in improving computational
chemistry algorithms leading to accelerated property prediction
and chemical space exploration.8 Recently, much emphasis has
been on developing efficient ML-based search algorithms to
explore chemical space,9−12 but the same is not the case for
conformational space. There are very few attempts to develop an
efficient ML-based search algorithm that can explore the
conformational space, i.e., probe the potential energy surface
(PES).13−17 These ML-based search algorithms have applica-
tions in 3D structure generation18,19 and molecular geometry
optimization (MGO). MGO aims to find the nearest/local
molecular conformation with minimum potential energy on

PES, starting from a given initial 3D conformation. MGO is an
essential part of computational chemistry because any studies
related to equilibrium geometries demand searches for minima
on PES. Over the past several decades, there have been a variety
of well-established optimization methods, such as conjugate
gradient (CG), steepest descent (SD), Newton−Raphson, and
quasi-Newton methods, to solve this task of MGO.20−24

These geometry optimization methods involve using the
PES’s first-order or second-order derivatives. The examples of
first-order optimization algorithms are the steepest descent
(SD)25,26 and conjugate gradient (CG).27 These first-order
optimization algorithms use gradient information to perform
optimization. The steepest descent method takes the next step
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by searching for the steepest direction tominimize the function’s
value given the current point. This is done by taking a step in the
direction of the negative gradient, and step size is calculated
using a line search. Conversely, the conjugate gradient method
involves the use of gradient information to compute n-conjugate
(A-orthogonal) directions and takes a gradient direction descent
step in these n-conjugate directions at each iteration, thereby
reaching the minima in n number of steps. One can see that
using the n-conjugate directions, the CG method avoids moving
in the zigzag fashion during optimization, i.e., CG takes a step
along these n-conjugate directions only once. SD and CG
require gradient calculations to decide the update direction and
have very slow convergence (more number of steps) as
compared to second-order optimization methods.22

Second-order optimization methods make use of Hessian of
the PES for optimization. The benefit of second-order
optimization methods is that the use of Hessian and gradient
algorithms provides a much better update step than the step
taken with only gradient information. An example of second-
order optimization algorithms is the Newton−Raphsonmethod.
At each iteration of the Newton−Raphson method, the PES is
approximated as a quadratic function locally, and the
optimization step is computed as the step toward the minima
of this local approximation. Even though these sophisticated,
second-order optimization methods converge in fewer steps,
they still need to compute the Hessian and its inverse at each
iteration, which is computationally expensive. Hence each
iteration of second-order optimization methods is computa-
tionally expensive compared to first-order optimization methods
but takes fewer steps to converge. On the other hand, quasi-
Newton methods like BFGS28−31 achieve performance similar
to the second-order optimization algorithms by circumventing
the need to calculate the Hessian and its inverse at each iteration
explicitly. These methods instead make a lower-rank approx-
imation to the Hessian using the displacement vectors and
gradients and then take a Newton-type update step based on this
approximation.

Developing these algorithms is a laborious process, one that
needs to be formulated and validated iteratively.32 Lately, the
focus has been on devising new methods to machine-learn
molecular features, resulting in robust representations. Just as
deep learning (DL) has been successful in automating feature
engineering, automating algorithm design could open new
avenues and change the way we design algorithms. Automating
algorithm design and learning a “learned optimizer” may
outperform current hand-designed optimizers.32−34

Lately, there has been some progress in developing
customized optimizers using DL to handle various optimization
problems. For instance, Egidio et al. introduced a “step-size
policy” that predicts the step size for the L-BFGS algorithm
using the local information at the current position.33

Andrychowicz et al. developed learning optimization algorithms
using a supervised learning technique using long- and short-term
memory networks (LSTMs). They showed that their learning
optimization algorithms could solve simple convex optimization
problems and were able to optimize neural networks.35 Metz et
al. have discussed the difficulties in training the learned
optimizers, and by analyzing the trained optimizer, they desire
to acquire wisdom that may transfer back to hand-designed
optimizers.34 Using RL, Li and Malik developed learned
optimizers for different classes of convex and nonconvex
objective functions and showed that the autonomous optimizers
converge in fewer steps and/or reach better optima than hand-

designed optimizers.32 Ahuja et al. have designed an RL-based
optimizer that adds a corrective term to the BFGS algorithm.36

Motivated by the aforementioned methods, we introduce
MolOpt, a novel approach for autonomous molecular geometry
optimization (MGO) that utilizes multiagent reinforcement
learning (MARL). By defining the input as an atomic
environment vector (AEV) and forces on each atom, we are
able to develop an RL-based model known as MolOpt, which
outputs displacements of each atom in the molecule. These
displacements are used to update the Cartesian coordinates of
the atoms in the molecule. MolOpt is a MARL-based model in
which each atom is treated as an agent. This formulation allows
us to use AEVs as input; this mitigates several problems, viz. 1.
Due to MARL formulation, the policy is defined for atoms;
hence, MolOpt can handle the different sizes of molecules and is
permutationally invariant. 2. As we used AEV as input, we had a
fixed-size vector incorporating rotational and translational
invariance into the model. All of these above properties enable
us to output action as displacement, which can be used to update
the molecular structure directly in the Cartesian coordinate. Our
model MolOpt is novel because it is a denovo learned optimizer
for MGO. MolOpt is independent of other optimizers as it does
not require other optimizers for training or testing. In the
methods section, we briefly introducedMARL and described the
MGO problem as MARL formulation, followed by the data set
used for training and testing and “training and implementation
details”. In the results section, we demonstrated the effect of
various input “feature vectors” or state representation st and
architectural differences on the performance of MolOpt. We
show the ability of our learned optimizer, MolOpt, to perform
MGO on different classes of alkanes, demonstrating the
transferability of our model to different molecules. We also
compare MolOpt with other optimizers such as MDMin, FIRE,
and BFGS. MolOpt is the first of its kind to apply reinforcement
learning to MGO without any dependence on other hand-
designed optimizers. Our work serves as a proof-of-concept for
the potential of MARL in this domain, opening up new research
directions for MGO. The main contributions to the paper are as
follows:

• Formulation of molecular geometry optimization as
Multiagent RL (MARL) problem. Where each atom is an
agent, thus allowing us to have the same policy across
different molecular sizes and mitigate the problem of
permutation transformation with the molecules.

• We have developed a “learned optimizer” which is in
contrast to the hand-designed optimizers available for
MGO.

• Our MolOpt model is an nonhistory based “learned
optimizer” which needs only a single previous state to
predict actions. Which is in contrast to other models
which need multiple previous states as observation to
predict next action.

• MolOpt’s learned policy incorporates the principles of
chemistry to optimize molecular geometry with a
gradient-based local optimization approach.

• Transferability. Our optimizer trained on small
molecules, i.e., ethane and butane (includes 2 isomers)
can be used to optimize larger molecules such as heptane
(includes 9 isomers) and octane (includes 18 isomers).
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2. METHOD
2.1. Preliminaries. In reinforcement learning, the agent

chooses actions at at each time step t, thus changing the state
st of the environment in a randommanner, and gets feedback
based on the outcome of the action. The feedback is commonly
provided as a reward or cost rt . The agent’s goal is to take
appropriate actions based on the observation/state st that
maximizes the cumulative reward or minimizes cumulative cost
over all time steps.

To this effect, we formulate MGO as an RL problem by
defining the potential energy surface (PES) as a gamelike
environment for repeated exploration of conformation space. An
essential aspect of solving an RL problem is by learning a policy
using a neural network that can predict appropriate actions by
observing different states and points along the surface of the
objective function, PES, in this case. Finally, we train our model
using a popular RL algorithm known as proximal policy
optimization (PPO) to learn the optimal policy. In the following
subsections, we formulate geometry optimization as an RL
problem.

2.2. Multiagent Reinforcement Learning (MARL). A
reinforcement learning problem is generally represented as a
Markov decision process (MDP).We define finite horizonMDP
with continuous state and action space as a tuple

p p( , , , , , )o , where a set of states encodes the
information or knowledge about the environment at various
moments of time; a set of actions or decisions that helps to
move from one state to another; +p :o is the probability
density over initial states, a transition probability function

× × +p: that defines the probability of moving
from one state to another on taking a particular action; and a
reward function ×: that defines the goodness or
badness of taking a particular action at some given state and γ ∈
(0, 1] is the discount factor.

By solving the RL problem, we aim to learn a stochastic policy
× +: , which is a conditional probability density

over actions given the current state, such that the expected
cumulative reward is maximized. In other words, we aim to find a
mapping from states to action, called a policy (denoted as π),
with a maximum achievable total reward. The policy π is often
parametrized using a neural network.

To formulate geometry optimization as an MDP, let us
consider an N atom molecule having Cartesian coordinates
x N3 . Here we define each atom as an agent making this
formulation a Multiagent MDP37 (MMDP). However,
MMDP’s presume all agents get the same reward. Shapley, in
1953 introduced stochastic Games (aka Markov Games), in
which he allowed a unique reward function for each agent.38

Partially-Observable Stochastic Games (“POSG”) (Lowe et
al., 2017),39 defined below, is an extension of Stochastic Games
to the situation in MDP where we have only a partially
observable state (similar to a partially observableMDP),37 and is
the model we use throughout this paper.
D e fi n i t i o n : P O S G i s a t u p l e

{ } { } { } { }, , , , , ,i i i i where

• is set of all possible states.
• is number of agents. The set of agents in [ ].
• i is the set of possible actions for agent i.
• × × [ ][ ]: 0,1i i is the (stochastic) tran-

sition function.

• i: × [ ]i i is the reward function for agent i.
• Ωi is the set of possible observations for agent i.
• × ×: ,i i i is the observations function.
2.2.1. Parameter Sharing. ”Nonstationarity” is a fundamen-

tal problem in cooperative MARL.40 Each agent’s policy evolves
during learning, while it is also part of the environment from the
perspective of other agents. This is known as the ringing effect, in
which the information oscillates between agents during learning,
significantly slowing the convergence. Increasing centralization
during learning can mitigate the problem of slow convergence
due to nonstationarity.41 One of the centralized cases of learning
is parameter sharing. The concept of parameter sharing is quite
common throughout deep learning. In MARL, parameter
sharing42,43 refers to a learning algorithm that acts on behalf of
every agent while using and making updates to a collectively
shared policy.42

2.3. Atomic Environment Vector (AEV). The atomic
environment vector (AEV) captures the atomic environment
around each atom. AEVs are constructed from “symmetry
functions”, which encode each atom’s radial and angular
environment. As described by Smith et al. in ref 44, we have
used a modified version of the original Behler and Parrinello
symmetry function (BPSF).1 AEV comprises a radial part and an
angular part that encode the radial and angular environments
around the atom, respectively. As summarized in Table 4, we
have five variants of the MolOpt model, each employing
different state representations and architectures. A detailed
discussion of these five variants can be found in the results
section. This section explicitly highlights the AEV component of
the state representation used in these variants. For variants 1 and
2, we utilized 32 evenly spaced radial shifting parameters for the
radial part and eight radial and eight angular shifting parameters
for the angular part. Given that there are two atom types (C and
H), this results in a 256-length AEV, where radial and angular
parts are 64 and 192 lengths, respectively. In contrast, for
variants 4 and 5, we employed 16 evenly spaced radial shifting
parameters for the radial part and eight radial and four angular
shifting parameters for the angular part, which results in a 128-
length AEV, where radial and angular parts are 32 and 96
lengths, respectively.

2.4. Formulation. Coming back to geometry optimization
as anMDP, let us consider an N atommolecule having Cartesian
coordinates x N3 . We define each atom as an agent making
this formulation anmultiagentMDP37 (MMDP); the number of
agents depends on the number of atoms in the molecule. As
seen in Figure 1 we compute rotationally and translationally
invariant state representation st at time step t. State
representation st encodes the 3D structure of the molecule by
the virtue of AEV, atom type and unit forces Fx, Fy, Fz. Each of
these entities of state st are for a single atom in the molecule, i.e.,
dimensions of AEV = N × 128, atom-type one-hot vector = N ×
number of atomic species (2 in our case) and unit forces = N × 3,
hence dimension of st = N × 133. It should be noted that the
state representation st is different for different variants, see Table
4.

• State, st = [AEV, atom-type (one-hot vector), Fx
t , Fy

t , Fz
t]

where Fx
t , Fy

t , Fz
t are the unit forces in x,y,z direction at time

t.
• Action, at = [Dx, Dy, Dz] (displacement of atom in x,y,z

direction).
• Reward, rt = total reward (see eq 3), where Fr is the

resultant force (eV/Å) on each atom.
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= Fteam reward mean( log( ))r (2)

= +total reward atomic reward team reward (3)

The atomic agents take in the state representations as
observations and use policy (π) to predict atomic actions (at).
The next conformation in the optimization trajectory is obtained
by using the actions (atomic displacements) and the previous
conformation as follows xt+1 = xt + at. As we can compute state
representation st from xt (Cartesian coordinates) we can write
st+1 = st + at. Now that we have a new molecular conformation in
the optimization trajectory, we check for optimization
convergence. If convergence is reached, we stop the
optimization; if convergence is not reached, we again compute
the state representation of new conformation from Cartesian
coordinates. It is passed to the agent, and this loop continues as
shown in Figure 1. We use the proximal policy optimization
(PPO) algorithm to train our policy network. PPO can be
categorized as the policy-based RLmethod that aims to learn the
optimal policy (π*). A policy is a mapping function that predicts
the appropriate action given a state that results in the maximum
possible cumulative reward.

We have designed a custom reward function (eq 3), which is a
combination of the atomic reward and team reward (molecular
reward). Now, why is this custom reward function important?
One must realize that in our multiagent RL (MARL)
formulation we predict atomwise actions, which leads to the
“nonstationarity” problem. There are various ways to mitigate

the “nonstationarity” problem; in our work, we use the reward
function as an in-direct communication method to overcome
the “nonstationarity” problem. Using the team reward function
component, we provide the agent with information about what
is happening with other agents (atoms). As shown in eq 3, the
total reward is the summation of the atomic and team rewards.
The atomic reward is given to each atom based on the resultant
force (Fr) on that particular atom (see eq 1). Atomic reward
aims to reduce the forces on an individual atom. In molecular
geometry optimization, the displacement of a single atom leads
to changes in the forces of other multiple other atoms. Hence,
we introduce team reward to prevent actions that will cause the
Fr on other atoms to increase dramatically. Team reward eq 2
aims to reduce forces on all atoms without drastically increasing
forces on other atoms. In eq 1, Fr

max is the maximum resultant
force on a particular atom in amolecule. If Fr

max, which represents
the largest resultant atomic force in the molecule, is below 0.01
eV/Å, we conclude that the optimization has converged and
terminated the episode.

2.5. Data Set. We generated a data set containing initial
conformers of alkanes known as ALINCO. ALINCO data set
contains geometries of ethane, n-butane, and isobutane. Below
are the steps followed to generate the ALINCO data set.

1. From SMILES generate “10*n atoms” structures for each
isomer using RDKit.45 Therefore, we get a total of 360
structures consisting of 80, 140, and 140 of ethane, n-
butane, and isobutane, respectively.

2. We then add random noise with mean = 0 and std = 0.1 to
the geometries generated in step 1. We repeat this step 5
times, generating 5x, giving 1800 structures.

3. Combine the initial 360 and perturbed 1800 structures to
get a total of 2160 structures.

4. Optimize these 2160 structures using the BFGS algorithm
provided in the Atomic Simulation Environment (ASE)46

package. We use ANI1ccx47 for energy and force
calculation.

5. From optimization trajectory sample 0, 1, 2, 4, 6, 8 initial
frames and also sample every ith frame from 10th till 10th
last frame at the interval of 5.

In total, ALINCO has 42,262 structures of ethane, n-butane,
and isobutane.

2.6. Training and Implementation Details. We imple-
mented MolOpt using RLLIB and PPO implemented in RLLIB
to train the policy network. The objective function in eq 4 is
optimized using PPO. In eq 4 the parametrized policy is given as
πθ(at|st) which predicts action at given the state st, and πθold(at|st)
represents the older iteration of the policy network. The clipping
parameter ε guarantees that while updating the policy, we do not
make excessively large updates, and we have set its value to 0.3.
The advantage function A(st, at) is defined as the advantage
function that determines how good, or bad, the action at is on an
average for a given state st. Other hyperparameters used during
training are listed in Table 1.
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Figure 1.Workflow of the MolOpt model. The molecule’s structure is
in Cartesian coordinates, which are used to compute rotational and
translational invariant state representation. State representation
consists of atomic environment vector (AEV), one-hot encoding of
atom type, and unit forces. The shared policy network receives atomic
state representation as an observation and predicts actions based on
those observations. These actions are modeled as displacements of each
atom of the molecule in the Cartesian coordinate system. As intended,
the actions produce displacement of each atom, resulting in a new
conformation. We then calculate the new conformation’s energy and
forces to check if optimization has reached convergence and calculate
reward to check the goodness and badness of the action. If convergence
is not achieved, we compute the invariant state representation of the
new conformation and repeat the process.
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To train our model, we sample initial conformation from the
ALINCO data set. We then compute rotationally and transla-
tionally invariant state representation (st). Agent takes (st) as an
input and predicts actions (at). We get a new conformation at
time (t + 1) in the optimization trajectory. We then calculate the
energy and forces of the new conformation using ANI1ccx.47 For
the agent to understand whether the action at taken was good or
bad, we calculate the reward as given in equation 3.

Once trained, we evaluate the model using a test set that
contains alkanes (CnH2n+2) where n = 3, 5, 6, 7, and 8. We
generate 10 structures each of 36 isomers across different
alkanes (CnH2n+2) where n = 3, 5, 6, 7, and 8 using RDKit.45 In
total, we have 360 structures in our test set.

3. RESULTS
In this section, we show the ability of our learned optimizer,
MolOpt, to perform geometry optimization on different classes
of alkanes. We compare five different variants of MolOpt based
on their state representation and architectural differences. The
performance evaluation metric for MolOpt is based on energy
and all-atom RMSD. The all-atom RMSD is calculated by
aligning the molecules to remove any translational and
rotational transformations prior to computation. All models
were trained on ALINCO data set and evaluated on a test set
containing 360 structures of alkanes; details about the number of
isomers and structures in the test set are summarized in Table 2.

The performance of these five variants has been summarized in
Table 3.We can see that variant 5, which has state representation
st = [AEV, atom-type, Fx, Fy, Fz, ΔFx, ΔFy, ΔFz] achieves the best
performance on the test set containing 360 structures with mean
ΔE = − 0.57 kcal/mol and standard deviation ΔE = 0.67 kcal/
mol. In terms of RMSD, variant 5 achieves an overall mean
RMSD of 0.107 ± 0.078 Å. We further discuss each of these
variants in the following subsections.

3.1. Flavours of MolOpt/Ablation Study. 3.1.1. Variant
1. We consider variant 1 as the baseline. As seen in Table 4, the
state representation (st) of variant 1 consists of atomic

environment vectors (AEV) of length 256, atom-type as the
one-hot vector of length 2, unit forces of length 3, and resultant
force of length 1, hence the length of st is 262.

The idea is to provide the model with the local atomic
environment of each atom using AEV. Unit forces and the
resultant force on each atom provide the model with the
gradient information. The unit forces are defined as =Fx

E
x

d
d

,

=Fy
E
y

d
d

, =Fz
E
z

d
d

and resultant force is =Fr
E
r

d
d

, where E is the

energy and r is the position. The policy network has four
multilayered perceptrons (MLP) known as MLPaev, MLPf,
MLPint, and MLPv. MLPaev and MLPf produce refined aev and
force features, respectively. We add these features and pass them
through the interaction MLP, MLPint, which predicts actions.
We use separate MLPv, which acts as a value function. The
architecture of these MLPs is shown in Table 4. We use
LeakyReLU in MLPaev and tanh for all other MLPs as the
activation function.

Performance of variant 1 is summarized in Supporting
Information (SI) Tables S1 and S2. We can see that the mean
ΔE and mean RMSD values increase with the size of the alkanes.
Variant 1 achieves the overall mean ΔE of −3.51 ± 2.12 kcal/
mol and RMSD of 0.18 ± 0.08 Å. In SI Table S2, the overall
mean RMSD before optimization is 0.25 ± 0.07 Å and after
optimization mean RMSD is 0.18 ± 0.08 Å. Considering that it
is a baseline model, these results are very encouraging.

3.1.2. Variant 2. Variant 2 is similar to variant 1, except the st
does not have resultant force Fr hence the length of st is 261. We
have excluded the resultant force, as its information is already
present in unit forces, and the resultant force in itself does not
add much to improve the accuracy of the MolOpt model.
Performance of variant 2 is summarized in SI Table S3 and S4.
Variant 2 achieves the overall mean ΔE of −1.63 ± 1.24 kcal/
mol and RMSD of 0.15 ± 0.09 Å. In SI Table S4, the overall
Mean RMSD before optimization is 0.25 ± 0.07 Å and after
optimization mean RMSD is 0.15 ± 0.09 Å.

3.1.3. Variant 3. The idea is to evaluate the performance of
the MolOpt model in the absence of local chemical environment
information; hence variant 3 receives only information about the
type of atoms and the forces on each atom; AEV is excluded
from the state representation as shown in Table 4 therefore the
length of st is 5. The architecture of the policy network is shown
in Table 4. We use tanh as the activation function for all MLPs.

Table 1. Hyperparameter Used during Training and
Evaluation of MolOpt

parameters value

entropy coefficient 0.0001
KL coefficient 1.0
KL target 0.01
gamma 1.0
clip parameter 0.3
vf clip parameter 10.0
horizon 20
lr 5 × 10-5

train batch size 2048

Table 2. Test Set That Contains 360 Structures of Alkanes
(CnH2n+2) where n = 3, 5, 6, 7, and 8

molecule name no. isomers × no. structures no. atoms

propane 1 × 10 11
pentane 3 × 10 17
hexane 5 × 10 20
heptane 9 × 10 23
octane 18 × 10 26
total 360

Table 3. Geometry Optimization Performance of Different
Flavors of MolOpt on a Test Set Containing 360 Structuresa

variant
no.

structures
mean ΔE
(kcal/mol)

STD ΔE
(kcal/mol)

mean
RMSD
(Å)

STD
RMSD
(Å)

variant 1 360 −3.51 2.12 0.18 0.08
variant 2 360 −1.64 1.25 0.15 0.09
variant 3 360 −1.34 1.14 0.14 0.07
variant 4 360 −0.99 0.94 0.13 0.08
variant 5 360 −0.57 0.67 0.11 0.08

aMean = =E E E
N i

N i i1
0 BFGS MolOpt both EBFGS

i and EMolOpt
i are

optimized energies and i runs over the structures in the test set, i.e., N
= 360. Similarly, STD ΔE represents the standard deviations within
the ΔE. We calculate the all-atom root mean squared deviation
(RMSD) between the optimized BFGS structure and the optimized
MolOpt structure. The mean RMSD = = RMSD

N i
N i1

0 where i runs
over the structures in the test set. The STD RMSD represents the
standard deviations with the RMSD.
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Performance of variant 3 is summarized in SI Tables S5 and
S6. Variant 3 achieves the overall mean ΔE of −1.33 ± 1.14 kcal/
mol and RMSD of 0.14 ± 0.07 Å. In SI Table S6, the overall
mean RMSD before optimization is 0.25 ± 0.07 Å and after
optimization mean RMSD is 0.14 ± 0.07 Å.
3.1.4. Variant 4. From variant 3, we see that there is a slight

improvement in the performance after the removal of AEV from
the state representation. This necessitates changes in the AEV;
therefore, variant 4 has an AEV of length 128, contrary to the
256 used in the previous variants. The length of st is 133 due to
reduction in length of AEV. Variant 4 is similar to variant 2,
except AEV has been changed.

Performance of variant 4 is summarized in SI Tables S7 and
S8. Variant 4 outperforms all previous variants to achieve the
overall mean ΔE of −0.98 ± 0.95 kcal/mol and RMSD of 0.13 ±
0.08 Å. In SI Table S8, the overall mean RMSD after
optimization mean RMSD is 0.13 ± 0.08 Å.
3.1.5. Variant 5. Variant 5 is our best-performing variant. In

variant 5, the state representation (st) consists of atomic
environment vectors (AEV), atom-type as one-hot vector, unit
forces, and unit delta forces as shown in Table 4, the length of st
is 136.

Here variant 5 receives not only information about the atomic
environment, type of atoms, and unit forces but also information
about changes in forces on each atom. Unit force =F E

r
d
d

and

change in force =F F
r

d
d

, where E is the energy and r is the
position.

Performance of variant 5 is summarized in SI Tables S9 and
S10. Extra added information about the change in forces in the
state representation improves the performance of variant 5.
Variant 5 achieves the overall mean ΔE of −0.57 ± 0.67 kcal/
mol and RMSD of 0.10 ± 0.08 Å. In SI Table S10, the overall
mean RMSD after optimizationmean RMSD is 0.10 ± 0.08 Å. In
Figure 2 we have shown how the RMSD values decrease after
optimization using the MolOpt model and how the RMSD
values increase as the size of the alkanes increases. The RMSD
values are calculated by using BFGS optimized structures as
reference; hence, zero in Figure 2 indicates BFGS optimized
structures.

As can be seen, RMSD values are very close to BFGS
optimized structures. In next section we benchmark variant 5
with few other optimizers, viz., FIRE and MDMin.

3.2. MolOpt (Variant 5) Benchmark. Over the past several
decades, extensive work has delivered many popular optimiza-
tion methods, such as steepest descent, conjugate gradient,
Newton−Raphson, and BFGS, to name a few. These methods
share one commonality: they are all hand-designed, i.e., human
experts carefully ideate, design, and validate these algorithms,
hence developing these algorithms is a laborious process. Taking
inspiration from DL, which was able to automate feature design,

we have tried to automate algorithm design and learn a “learned
optimizer” that may outperform current hand-designed
optimizers. This section shows how our MolOpt model, a
“learned optimizer”, compares with other optimizers. We have
compared our model MolOpt with three other optimizers, viz.,
MDMin, FIRE,20 and BFGS.28−31 All three optimizers are
provided in the ASE package.46

The MDMin is a modified version of the typical velocity-
Verlet MD method, which numerically solves Newton’s second
law. However, the dot product between the momenta and the
forces is evaluated at each time step. If the dot product is zero,
then it means that the system has just departed through a (local)
minima on the PES; the kinetic energy is large and about to
decrease again. At this juncture, the momentum is set to zero.
Contrary to MD, all atomic masses are set to one. Fast inertial
relaxation engine (FIRE)20 is based on conventional MD with
further velocity modifications and adaptive time steps. The
Broyden, Fletcher, Goldfarb, and Shanno algorithm, or BFGS
Algorithm, is a second-order optimization algorithm. BFGS is an
example of Quasi-Newton methods in which an approximate
Hessian is computed for optimization problems, where the
second derivative is very expensive to calculate and cannot be
computed for all practical purposes. The BFGS is one of the
most widely used second-order algorithms for numerical
optimization.

As seen from the SI Table S11, we perform better than the
MDMin optimizer by achieving an overall mean ΔE of 0.97 ±
1.06 kcal/mol. The positive mean indicates that MolOpt, on
average, reached energy levels that were lower than the MDMin
optimized energy by 0.97 kcal/mol. We have summarized
MolOpt comparison with FIRE and BFGS in SI Tables S12 and
S13, respectively. Our model achieves an overall mean ΔE of

Table 4. Comparison of Five Different Variants of MolOpt Based on Their State Representation and Architectural Differencesa.

variants state architecture

variant 1 [Atom-type, AEV, Fx, Fy, Fz, Fr] MLPaev = 262 × [128]3 MLPf = 4 × [128]4 MLPint = 128 × 3 MLPv = 262 × 1
variant 2 [Atom-type, AEV, Fx, Fy, Fz] MLPaev = 261 × [128]3 MLPf = 5 × [128]4 MLPint = [128]3 × 3 MLPv = 261 × [128]2 × 1
variant 3 [Atom-type, Fx, Fy, Fz] MLPf = 5 × [128]5 × 3 MLPv = 5 × [128]3 × 1
variant 4 [Atom-type, AEV, Fx, Fy, Fz] MLPaev = 133 × [128]3 MLPf = 5 × [128]4 MLPint = [128]3 × 3 MLPv = 133 × [128]2 × 1
variant 5 [Atom-type AEV, Fx, Fy, Fz, ΔFx, ΔFy, ΔFz] MLPaev = 136 × [128]4 MLPf = 8 × [128]3 MLPint = [128]3 × 3 MLPv = 136 × [128]2 × 1

aWe represent 128 × 128 × 128 as [128]3 and so forth in the architecture column. MLP stands for multi-layered perceptron. Subscripts aev stand
for the atomic environment vector, f for forces, int for interaction, and v for the value function. Fx, Fy, Fz, ΔFx, ΔFy, ΔFz are unit and delta unit
forces in the x,y,z direction respectively. Fr is the resultant force.

Figure 2.Geometry optimization of 360 structures using variant 5. The
plot shows the difference in the RMSD values of the different classes of
alkanes before and after optimization.
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−0.18 ± 0.25 kcal/mol, an RMSD of 0.04 ± 0.04 Å and ΔE of
−0.53 ± 0.64 kcal/mol, an RMSD of 0.10 ± 0.08 Å compared to
FIRE and BFGS, respectively. In Figures 3, 4, 5, and 6, we have

compared the geometry optimization trajectory of four different
structures with empirical formulas C5H12, C7H16 and C8H18 with
different optimizers. MolOpt performance is better than that of
MDMin and similar to that of FIRE.

Unlike BFGS, which iteratively approximates the Hessian
matrix using information from all previous time steps, MolOpt
receives state information only at the current time step t,
resulting in a less accurate inverse Hessian estimation. As a
result, MolOpt may struggle to predict step sizes as precisely as
BFGS, leading to more steps being required to reach the
minimum.

For the sake of completeness, we also compare the
performance of MolOpt in terms of speed or computational
time required to do 72 optimizations. Out of 360 structures in
the test set we pick every 5th structure for optimization, hence
the number 72. This was done to reduce the computational time
and cost. In SI Table S14 we show time taken by each method to
complete these 72 optimization. It is important to acknowledge

that other established methods, available as packages, have been
in existence for a long time with optimized code for enhanced
performance. In contrast, our code was primarily developed to
introduce novel algorithms and has yet to undergo optimization
for performance.

4. CONCLUSION AND DISCUSSION
We have introduced MolOpt, a robust MARL-based algorithm
for MGO. This work serves as a proof-of-concept for the
potential of MARL in MGO. The formulation of MGO as a
MARL problem where each agent corresponds to a single atom
in the molecule allows us to use the same model architecture
across differentmolecular sizes.MolOpt is a “learned optimizer”,
which is in contrast to the hand-designed optimizer available for
MGO. We were able to incorporate chemistry into the learned
optimizer. We trained our optimizer on a few alkane molecules,
i.e., ethane and butane (which include two isomers of butane).
We tested MolOpt on different and comparatively larger alkane
molecules not present in the training set, such as propane,
pentane, hexane, heptane (which consists of 5 isomers), and
octane (which consists of 9 isomers). The performance of
MolOpt on the test set, which also contains larger alkane

Figure 3. Plot shows geometry optimization trajectory of isopentane
(empirical formula C5H12) using four different optimizers, viz.,
MDMin, FIRE, BFGS, and RL.

Figure 4. Plot shows geometry optimization trajectory of neopentane
(empirical formula C5H12) using four different optimizers, viz.,
MDMin, FIRE, BFGS, and RL.

Figure 5. Plot shows geometry optimization trajectory of 2,4-dimethyl
pentane (empirical formula C7H16) using four different optimizers, viz.,
MDMin, FIRE, BFGS, and RL.

Figure 6. Plot shows geometry optimization trajectory of 3-ethyl-2-
methyl pentane (empirical formula C8H18) using four different
optimizers, viz., MDMin, FIRE, BFGS, and RL.
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molecules, such as heptane and octane, demonstrates its
transferability to other molecules.

Currently, MolOpt uses AEVs, atom type (one-hot
encoding), and forces as the state representation of each atom.
Moreover, each agent can see only its own state. In the future, we
aim to extend MolOpt to include information sharing and
communication between the agents during optimization. In
addition, we plan to explore the use of more advanced
optimization methods, such as iteratively approximating the
Hessian similar to BFGS, to improve MolOpt’s performance. It
should be noted that our focus in this paper was on
demonstrating the feasibility of using MARL for autonomous
molecular geometry optimization without any dependency on
other hand-designed optimizers. We believe there is still scope
for improvement and exploration to develop better MGO
algorithms using RL. We hope our work will inspire and
motivate further research in MGO using RL. As an afterthought,
MolOpt has shown promise in predicting atom displacement
using gradients and can potentially be used for molecular
dynamics (MD) simulations. Training MolOpt to generate an
MD simulation trajectory can offer a new perspective toward
molecular dynamics simulations.

Further enhancements in algorithm and data are necessary to
extend MolOpt’s optimization capabilities to molecules
containing elements such as C, H, N, and O. Future work in
this area is ongoing in our group.
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