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Modern machine learning for tackling inverse
problems in chemistry: molecular design to
realization†

Bhuvanesh Sridharan, Manan Goel and U. Deva Priyakumar *

The discovery of new molecules and materials helps expand the horizons of novel and innovative real-

life applications. In pursuit of finding molecules with desired properties, chemists have traditionally relied

on experimentation and recently on combinatorial methods to generate new substances often

complimented by computational methods. The sheer size of the chemical space makes it infeasible to

search through all possible molecules exhaustively. This calls for fast and efficient methods to navigate

the chemical space to find substances with desired properties. This class of problems is referred to as

inverse design problems. There are a variety of inverse problems in chemistry encompassing various

subfields like drug discovery, retrosynthesis, structure identification, etc. Recent developments in

modern machine learning (ML) methods have shown great promise in tackling problems of this kind.

This has helped in making major strides in all key phases of molecule discovery ranging from in silico

candidate generation to their synthesis with a focus on small organic molecules. Optimization

techniques like Bayesian optimization, reinforcement learning, attention-based transformers, deep

generative models like variational autoencoders and generative adversarial networks form a robust

arsenal of methods. This highlight summarizes the development of deep learning to tackle a wide variety

of inverse design problems in chemistry towards the quest for synthesizing small organic compounds

with a purpose.

1 Introduction

Historically, chemical advancements are driven by experimen-
tation and synthesis of new compounds, followed by evaluation
of their properties and characteristics. The intent is the dis-
covery of novel compounds for novel applications and uses.
Understanding of the structure–property relationships plays a
major role in this process. Traditional computational chemistry
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methods in addition to experiments have been shown to be
invaluable. Methodological improvements are imperative to
keep up with the need for novel molecules that exhibit required
properties as time progresses. For instance, the average time for
a drug to reach the market is about 13 years.1 Fortunately, the
vast improvement in the computational capacity in tandem
with advancements in artificial intelligence and algorithms has
enabled chemists to approach this problem from a different
dimension. One such way is to first look at an application with
certain desired requirements and attempt to design substances
directly while keeping the required properties and character-
istics in mind. Thus, the problem of molecule discovery has
been modelled as an inverse problem.

Machine learning (ML) advancements in the recent years
have enabled us to approach molecule discovery from such a
new dimension. ML as a problem-solving paradigm has many
important applications across various fields. This ML boom has
been fuelled by both the increase in the computational capacity
and the increase in the amount of data available to train the
frameworks. There have been various efforts in expanding the
set of available libraries of molecules and their properties.2–7

Contrary to a traditional knowledge engineering approach
where the programmer provides an explicit algorithm to process
the input, ML algorithms try to fit a function to the given data
while also generalizing the pattern. Hence, ML approaches are
an effort to enable a machine to ‘‘learn’’ the underlying science
from examples (dataset). Review articles by Strieth-Kalthoff et al.8

and Butler et al.9 give an introduction to ML from the perspective
of synthetic chemistry and also highlight how ML has advanced
the research in chemical sciences.

Inverse problems refer to a class of problems wherein the
task is to deduce or evaluate the set of causal factors that led to
a particular set of observations or measurements (Fig. 1).10,11

Inverse problems are of great interest in various fields of
science owing to the fact that they reveal a lot about the
underlying relations which are not directly observed.12–15 Many
of the inverse tasks pertaining to chemistry belong to a subclass
of non-linear inverse problems which are complex to deal
with.16,17 In such problems, the forward function y = f (x) is a
non-linear relation between the input x and the output y.

In essence, the need is to do the following tasks in order:
discover new molecules, simulate or evaluate their potential
suitability for a task, find methods to synthesize those molecules,
and characterize the molecules generated (Fig. 2). The final goal
would be to be able to do the above tasks as a seamless process
which is otherwise arduous and time-consuming. This effective
‘‘closing of the loop’’ would lead to an ideal pipeline which would
propel the discovery/validation/realization of novel molecules for
novel applications.

In this highlight, various inverse problems that are relevant
to the process of molecule design are discussed. Once the
requirement of the properties is finalized, the first task is to
identify molecules and their structures which would exhibit
desired properties, which is termed as molecule generation.
Once the structure of a target molecule is known, the next task
is to find a viable reaction pathway using a set of available
precursor molecules to synthesize the target molecule, which is
the task of retrosynthesis. Once both the target molecule and its
synthesis logic are attained, the next step to automate is the
actual synthesis of the substance using AI assisted robots. Even
though this is not exactly an inverse problem, we are discussing
it briefly in this article as it fits in the overarching task of
leading a molecule from design to realization. Once we have
realized a sample of a substance in the lab, it is important to
ensure that the synthesized substance is actually the one which
was intended, which is the task of chemical characterization.
The following section describes few of the important neural
architectures that are commonly used in studies attempting to

Fig. 1 Forward problems are those wherein we evaluate properties for a
molecule x, whereas inverse ones involve finding a molecule x given the
observed properties y.
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solve inverse problems. The next section discusses recent ML
based advancements in each of the four subtasks. Important
sets of work discussed in relation to inverse problems in the
following sections are compiled in a tabular form in the ESI.†

2 Brief overview of modern ML
methods used for inverse problems

This section gives a brief overview of some of the commonly
used modern ML methods which are essential to understand
the recent work in the domain of inverse problems of molecular
design.

2.1 Recurrent neural networks

Recurrent neural networks generalise feedforward neural
networks to be able to handle sequential data. They can
remember what was previously seen in the input and help
provide a context for elements that occur later in the sequence.
The SMILES representation of molecules is formed by strings
and is, hence, sequential in nature. A RNN generally consists of
what is known as a hidden state which can be interpreted as a
memory unit which remembers what occurred in the sequence.
Every token in the SMILES string is converted to a machine
readable vector which is combined with the hidden state to
provide a new hidden state.18 At time t, the general update rule
for a RNN is given by

ht = f (xt,ht–1) (1)

where xt is the input token and ht–1 is the hidden state after the
previous input.

RNNs are optimized using an algorithm called back propagation
through time.19 During back propagation, each gradient is
calculated with respect to the effects of the gradient in the next
step. However, this also brings a problem: if the magnitude of
the gradient at the previous step is small, then the magnitude at
the current step is even smaller which means that the effect of the
initial tokens does not reach the final calculated gradient. This is
called the vanishing gradient problem. In order to tackle these, two
specialized RNN architectures have been developed (Fig. 3).
� Long short term memory (LSTM): In the LSTM

architecture,20 another state is added along with the hidden state
called the cell state. It can be thought of as a memory unit which
contains relative information way down the sequence chain and
since it retains information from earlier steps, the information
from earlier steps is available in the later steps. The information
to be retained and forgotten is controlled using three gates which
use the hidden state, cell state and input at the current step to
calculate the hidden state and cell state for the next step.
� Gated recurrent unit (GRU): The GRU21 architecture is

similar to that of LSTM but instead of three, they use only two
gates and do not contain a cell state. Only the hidden state is
used to carry information. Due to the fewer gates, the number

Fig. 2 Pipeline of molecular design to realization.

Fig. 3 Architecture of (a) gated recurrent unit’s cell and (b) long-short-term-memory’s cell. xt, ht and ct are the input token, hidden state and cell state,
respectively, and s represents the sigmoid activation function. � and + represent elementwise product and addition respectively. The input tokens and
hidden states are passed through these cells recursively to get the final output.
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of operations is less in GRUs in comparison to LSTMs and
hence they are slightly faster but show similar accuracy.

RNNs can be used to generate text by using the hidden state
at the current step to forecast the token that is most likely to
appear at the next step and add it to the text generated so far
and repeat unless a token is generated which signifies the end
or a maximum specified length is reached. This can be applied
to generate SMILES strings but it causes a problem that the
resultant string may not represent a molecule. Several ML
architectures have been proposed to generate valid molecules
which have RNNs as the core of their generator.22–26

2.2 Graph neural networks

The graph representation of a molecule opens up the avenue for a
wide variety of algorithms that can be used directly on the graph
structure. Each atom is represented by a node in a graph and each
bond by an edge. These vertices and edges are differentiated from
each other by the presence of a feature vector corresponding to
each vertex and edge. The atom feature xv for an atom v may
consist of information like one hot encoding of atom type,
hybridization, formal charge, etc. Similarly, the bond feature euv

for a bond between atoms u and v contains information like the
bond type and stereochemistry, etc.

Most graph neural networks are different variants of a
common architecture. This architecture consists of two phases:-
�Message passing: the message passing phase is responsible for

capturing the environmental information around a node. This
phase is run for T timesteps and at the ith timestep, information
from all nodes that are i edges away reaches the respective node. It is
defined in terms of the message function Mt and the vertex update
function Ut. At every timestep t, each node has a hidden state ht

v and
h0

v = xv and is updated using a message vector mv
t+1 according to

mtþ1
v ¼

X

u2NðvÞ
Mt htv; h

t
v; euv

� �

htþ1v ¼ Ut htv;m
tþ1
v

� �
(2)

where N(v) is the set of neighbours of v.

� Readout: in this phase, a feature vector for the entire graph
is calculated using some differentiable readout function R:

ŷ = R({hT
v |v A G}) (3)

where G is the set of vertices in the graph.
A general overview of a single layer in a simple graph neural

network is given in Fig. 4.
Different graph neural networks use different functions for

message passing and readout which can be used for predicting
molecular properties or constructing the graph by adding a
node at every timestep taking into account the graph con-
structed till that timestep. Building molecules in the form of
graphs brings an advantage that, unlike intermediate states of
SMILES strings being invalid, it is much easier to make sure
that each constructed subgraph is always valid. GNNs have
proven to be a great tool to featurize the molecules and hence
the featurized vectors can be used for further downstream
prediction tasks.28,29 Such featurization of the current state of
the molecule can also help in driving feedback to other parts of
an architecture to guide the design of molecules.30,31

2.3 Variational autoencoders

Autoencoders are mainly designed to encode the input into a
meaningful and compressed representation and then decode it
back to get the initial input. In theory, an autoencoder would
extract only the information from the input which is necessary to
reconstruct the input from the smaller representation also known
as the latent space representation. Mathematically, the problem is
to find two functions f1: Rn - Rp and f2: Rp - Rn which satisfy

argminf1,f2 E [D(x, f2�f1(x))] (4)

where D is the reconstruction loss.32,33

Variational autoencoders are a variant of this architecture
which provide a probabilistic manner for describing an observa-
tion in the latent space (Fig. 5).34 Instead of giving a single value
for each latent space attribute like a conventional autoencoder,
VAEs provide a probability distribution for each attribute. A latent
space representation is then sampled from the obtained

Fig. 4 Overview of graph neural networks. A single layer of a simple GNN. A graph is the input, and each component (V,E,U) gets updated by a MLP to
produce a new graph. Each function subscript indicates a separate function for a different graph attribute at the n-th layer of a GNN model. Figure from
Sanchez-Lengeling et al.27 under Creative Commons licence.
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probability distribution for each attribute from the encoder
providing a continuous latent space representation. The probabil-
istic decoder can be assumed to be a generative model condi-
tioned on a random latent variable z with parameters y which
gives a prior distribution on latent variables py(zi). Similarly, the
encoder is equivalent to an approximate posterior distribution
over z given a datapoint x governed by parameters f. The objective
function is calculated using the marginal log-likelihood. The first
term is the Kullback–Leibler divergence of the true posterior and
the approximate prior. The second term is called the variation
lower bound on the marginal likelihood and is defined as

L(y, f; xi) = �DKL(q f(z|xi)||py(z)) + Eq f(z|xi) [log py(xi|z)] (5)

Hence, the abovementioned objective function should be
maximized for all data points with respect to y and j. A wide
variety of models have been used for the encoder and the

decoder including convolutional neural networks, graph con-
volution neural networks, RNNs and more. RNNs for SMILES
strings and graph convolution for molecular graphs are the
conventional encoders and decoders of choice in the domain of
chemistry.35–40

2.4 Generative adversarial networks

GANs (generative adversarial networks) are a set of models: a
generator and a discriminator. The two models are pitched
against each other and trained (Fig. 6). The generator attempts
to capture the distribution of a training dataset and create new
sample data points similar to the training samples. The
generator model is expected to do so without having direct
access to the training samples but with feedback from the
discriminator model. The discriminator is a classifier that is
fed input from both the original training dataset and also

Fig. 5 Overview of variational autoencoders. The input molecule (x) is encoded in a continuous latent space by estimating the parameters of a normal
distribution from which the observation is sampled e(x). The decoder then tries to reconstruct the input from e(x) such that d(e(x)) and x belong to an
identical probability distribution.

Fig. 6 Overview of generative adversarial networks. The generator generates fake data samples and some samples are picked at random from the actual
training set. These samples are then sent to the discriminator which classifies if the provided samples are real or fake. The generator and discriminator are
then trained such that the generator tries to fool the discriminator and the discriminator tries to correctly identify the fake samples.
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datapoints created by the generator. The role of the discrimi-
nator is to correctly discriminate and classify these points as
either being generated by the generator or being a true data-
point. The process of training both these models is a mini-max
problem wherein the discriminator wants to correctly distinguish
all the samples and the generator wants the samples generated
by it to be indistinguishable from the training distribution.
This back-and-forth optimisation is said to be terminated when
the models reach a saddle point which is minimum along one
axis and maximum along another. In their impactful paper on
GANs, Goodfellow et al.41 trained their GAN models on the
following objective function:

min
G

max
D

VðD;GÞ¼ Ex�pdataðxÞ½logDðxÞ�þEz�pzðzÞ½logð1�DðGðzÞÞÞ�

(6)

where pd(x) is the training data distribution and pz(z) is a
predefined normal distribution from which the generator samples
points. It is to be noted that the second term, i.e. log (1 � D(G(z))),
may tend to negative infinity when the training starts if the
discriminator is stuck in a local minimum. This is commonly
referred to as mode collapse. On the contrary, if the discriminator
function is trained too optimally, the model finds it difficult to
train the generator since this leads to a weak gradient and hence
slower training. Arjovsky et al.42 found a way to overcome this
issue by using an alternative method of training. Use of Wasser-
stein loss motivates the critic to maximise the distance of dis-
tribution of its output to real data and fake data. One of the key
points of WGAN is the use of a linear layer instead of a sigmoid
layer for the output layer of the critic model. It is observed in the
literature that WGANs provide better stability of training and
reduces problems like mode collapse or vanishing gradients.
Many of the papers discussed in the following sections like
ORGAN43 and Mol-CycleGAN44 employ WGANs in addition to
GANs for their studies and evaluation.

2.5 Reinforcement learning

Reinforcement learning is a class of machine learning algo-
rithms which has become increasingly popular. They generally
consist of two parts: an agent which performs actions and
a critic which rewards or penalizes those actions (Fig. 7).
The system is described as a variable st which the agent
parameterized by y uses as an input to predict an action at

such that it leads to the maximum possible cumulative reward
forming a Markov decision process. The trajectory of the system
is defined as (s0,a0,s1,a1. . .. . .aT�1,sT) where sT is called the
terminal state and states between s0 and sT are called inter-
mediate states. The total reward for the trajectory is calculated
as a sum of rewards from the intermediate states and the
terminal state.45

A popular idea in most reinforcement learning based algo-
rithms is the Q function. The Q function takes the state s and an
action a as the input and returns the expected reward for the
state action pair. If the strategy for choosing the actions is
optimal, then at every state (s) the best action (a) will be taken
which will lead to the best value of Q(s,a). If the system is small

with few states and few actions, we can ideally create a table
which maps state action pairs to the respective Q values and
this is called Q learning. However, as the systems become
larger, enumerating all possible state action pairs becomes
infeasible. Hence, the Deep Q-Learning algorithm was
proposed in which, instead of building a table, an artificial
neural network is used to map input states to the (action,
Q-value) pair. The best possible action is chosen with a
probability e and a random action is chosen with a probability
1 � e to make sure the obtained information is exploited and
new regions of the space are explored. This is called the
Epsilon-Greedy exploration strategy. The values in the Q table
for both cases are updated using the Bellman equation where a
and g are the learning rate and discount factor, respectively.

Qðs; aÞ ¼ ð1� aÞQðs; aÞ þ aðRt þ gmaxa0Qðs0; a0ÞÞ (7)

Another popular method for reinforcement learning is max-
imizing the rewards using policy gradients. The expected
reward can be calculated as a function of the parameters of
the machine learning model (y):

J(y) = E p [r(t)] (8)

where t is the trajectory and p is the policy. The given objective
function J(y) can be maximized using gradient ascent. The term
r(t) in the equation above is approximated using a wide variety
of algorithms like REINFORCE and Actor-Critic.

RL frameworks have proved themselves in the application of
chemistry related tasks, especially in molecule optimization.22,31,46,47

They also have shown promise in tasks like reaction and geometry
optimization.48–50

Fig. 7 Overview of general reinforcement learning methods. An RL pipe-
line consists of two parts: the environment and the agent. The agent
interacts with the environment by taking actions and these actions are
then rewarded or penalized depending on if they lead to a more promising
state. For example, in a game if the action takes the agent closer to victory,
the agent is rewarded and if the action leads to a loss, the agent is then
penalized.
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3 Inverse problems in molecule
discovery
3.1 Molecule generation

A critical step in the journey of finding novel molecules for desired
applications is the process of molecule design. Finding appro-
priate candidates having a certain set of required properties or
characteristics is an exceedingly difficult task in a chemical
discovery pipeline. This is due to the enormous nature of the
chemical space to be explored. The number of total drug-like
molecules has been estimated to be up to 1060.51 Candidate
molecule generation can be modelled as an inverse problem
wherein the intent is to find the optimum molecule and its
structure that has a specific set of properties. Traditionally, the
computational means to find molecules of interest is to generate a
large library of molecules through combinatorial methods.52–55

Then this large library of molecules is screened for desirable
properties or experimental outcomes, followed by optimization of
the structure based on the understanding of the property–
structure relationship. With advancements and progress in
modern machine learning methods, there are reliable methods
to accurately predict many properties for molecules at a rapid
pace.56 These ML methods try to capture the function that
relates molecules to properties of interest. This has led to the
development of high throughput virtual screening (VS) methods
that make it possible for us to narrow down possible candidates
from a large library of molecules at a much faster rate than that
possible with traditional methods.57,58

In spite of these advancements, a significant computational
effort is required to screen these huge libraries of molecules
which may reach sizes beyond billions in number.3,4 This calls
for methods that generate molecules in a more targeted way
and explore the chemical space more efficiently. De novo
design of molecules contrast with the earlier discussed virtual
screening method in a way that the structures of the molecules
are known a priori in virtual screening methods. Whereas, in de
novo molecular design the molecules are generated from
scratch with optimization as the goal. The intent in de novo
molecular design is to consider and evaluate a lower number of
molecules than one would in screening.

One popular method of optimization is the class of variants
of genetic algorithms.59,60 They involve the usage of rule based
heuristics and procedures to generate a new population of
samples. This new population is generated by ‘‘mutating’’ the
vectors representing each sample. The combined population is
then scored against itself using an appropriate fitness function
and the best performing set of samples from the populations
are allowed to continue to the next iteration akin to natural
selection. Such a class of algorithms has proven to perform
on par with leading machine learning approaches when the
mutation heuristics and representation vectors are chosen
appropriately.61–63

Deep generative models have been pivotal in driving novel
methods for de novo molecular design methods. They are a
class of methods that aim to capture the non-linear relationship
between molecular structures and their properties. Different

forms of data are transformed to and from each other using a
series of linear transformation layers with non-linear activation
functions between them. By capturing this information from a
large dataset, the models try to emulate or learn the characteristic
features of a molecule that lead to a certain kind of property or
behaviour. Generative models have advanced considerably in
recent times with diverse and exciting applications in the fields
of image processing,64 natural language processing,65 and audio
manipulation.66

A majority of deep generative models can be classified
into three categories or a combination of those categories:
variational auto encoders (VAEs), reinforcement learning (RL),
and generative adversarial networks (GANs). Fig. 8 gives a high-
level overview of the more recently used deep neural network
architectures in the task of molecule generation. In cases where
the motive is to optimize a given molecular property, there is a
need of a gradient estimator which can help to improve the
generator through back propagation. Neural networks require a
gradient through which their parameters are updated, in
anticipation that their performance is also improved as the
choice of loss reduces. This gradient estimator may act as a
representative of simulations, experimental observation or
classical property prediction algorithms. In a simpler approach,
the property to be optimized could be modelled via another
neural network and back-propagated to the generator model.

Gómez-Bombarelli et al.35 made an attempt using VAEs to
generate novel molecules. The model was trained on SMILES
representations of known chemical structures where it encodes
the molecules into a lower dimensional vector space, and the
decoder converts this continuous distribution of vectors back to
discrete molecules. Jin et al.40 proposed JT-VAE, in which the
model generates a molecule in a two-step process. In this
process, first a junction tree is constructed to represent the
molecular substructure composition for the molecule. Then, a
message passing neural network is used to decode the final
molecular structure of the molecule. Graph-VAE by graphvae is a
graph based generative model which learns to generate the
adjacency matrix of a molecule at once rather than step by step.
Liu et al.39 proposed a constrained graph variational autoencoder
which uses a graph structured VAE to train a sequential generative
model. Lim et al.37 proposed a model based on the conditional
variational autoencoder67 for molecule generation. They demon-
strated the utility of their method by controlling and imposing five
target properties simultaneously on the latent space. They were
also able to adjust a single property while keeping the others
constant. The grammar variational autoencoder by Kusner et al.38

represents SMILES strings as a parse tree from a context-free
grammar. Using this parse tree representation for the VAE to
encode and decode directly ensures that the generated outputs
from the VAE are always valid structures.

Another method for the generation of molecules is the use of
GANs wherein the generator is competing against another
discriminative model. The goal of the generator network is to
model new data points close to the original distribution such
that the discriminative model is not able to distinguish between
the true and synthetic data better than a random chance.
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Non-differentiability of the data and work around that limitation
is the major point of interest in such methods. druGAN by
Kadurin et al.68 was one of the initial attempts at using GANs
in the context of molecule generation. druGAN demonstrates a
proof-of-concept by using generative adversarial autoencoders
(AAEs)69 to identify molecular fingerprints which have certain
anti-cancer properties.

In addition to the generation of molecules through these
models, it is important to bias the process towards required
properties. In the case of VAEs, the presence of a continuous
latent space representation for molecules opens up the avenue
for the application of various global optimization algorithms
like Bayesian optimization and particle swarm optimization.
These can be used to find the optimal molecule in the latent
space which maximizes/minimizes the given properties.70,71

Blaschke et al.72 combined the VAE and GAN approaches for
generation to create a robust molecule generator and then used
Bayesian optimization to make sure that the generator creates
molecules with specific properties.

In a study by Bagal et al., inspired by the generative pre-
training (GPT) model that has been shown to be successful in
generating meaningful text, the authors train a transformer-

decoder on the next token prediction task using masked self-
attention for the generation of druglike molecules.23 Additionally,
they demonstrate that their model can be trained conditionally to
control multiple properties of the generated molecules. An
example of such conditional generation is shown in Fig. 9
where the generator is biased to generate molecules with
QED close to a particular value.

ReLeaSE by Popova et al.47 includes two deep neural networks:
a generator (G) and a predictor (P). Initially, both the networks are
trained independently with supervision from a separate dataset.
In a later stage, the models are trained jointly using an RL
method. The action space of the ‘‘agent’’, i.e. the generative
model, is the set of possible SMILES notation alphabets and the
state space is the set of possible strings in this alphabet. Rather
than relying on any pretrained chemical descriptors, the models
are trained on SMILES representation of molecules. The genera-
tive model consisted of a stack-augmented recurrent neural net-
work, and QSAR models were used for the predictions. Goel
et al.22 proposed MoleGuLAR, another stack augmented RNN
based deep generative model which generates molecules with
optimized binding affinity to a target. As an example, the change
in the distribution of the molecules generated after optimizing for

Fig. 8 An overview of components and advancements in deep learning for the task of molecule generation: VAEs are important frameworks that
featurize molecules into an explorable latent space from which we can sample new points. GANs are useful to generate new data points from a sampled
normal distribution. GANs are frameworks that use adversarial training to create points from a distribution similar to the training dataset. These generative
models employ a variety of neural networks like RNNs and GNNs to do so. Further, QSAR deep predictive models can be used by various RL algorithms as
a form of reward to aid the training of the generative models. These rewards can also be used as a means to train the models to optimize the properties of
interest.
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SARS-Cov-2 Mpro is shown in Fig. 10. The pipeline is further
extended for multi-objective optimization like log P, drug-
likeliness, etc. There have been other studies with a similar para-
digm that use SMILES notation for molecular generation.73–75

ORGAN by Guimaraes et al.43 extended the sequence based
generative adversarial network in SeqGAN76 to include domain-
specific objectives in addition to the discriminator reward in
order to generate valid SMILES strings. By modelling the
generator as a policy model in RL, this method bypasses the
problem of discrete nature of molecular data since the model
can be trained with gradient policy updates. The final reward of
this is a combination of rewards returned by the GAN’s dis-
criminator and the reward generated by the numerical function
of the property prediction. This framework was tested
using objective functions like solubility, synthesizability, and
druglikeness. Another method, ORGANIC,77 explores the use
case and performance of this model further by analysing how it
performs with various other property criteria. Models like

RANC and ATNC use differentiable neural computers which
have explicit memory banks for generators.78,79 The above
models mainly used either learned representation vectors or
SMILES strings of molecules as the descriptor for molecules.
MolGAN80 uses graph-structured data instead to generate mole-
cules. Like others, the model uses an RL objective that biases the
model to generate molecules with specific desired chemical
properties. Similarly, another method, Mol-CycleGAN,44 focuses
on generating molecules or compounds that have a specific
chemical scaffold while also optimizing a property. LatentGAN
by Prykhodko et al.81 combines an autoencoder with GAN for
molecular generation. The GAN directly generates vectors in the
latent space of the autoencoder and optimises the target proper-
ties. The model was tested in two scenarios: to generate general
drug-like compounds and also target-biased compounds.

Another way to approach the problem is to train a pure RL
agent to operate directly on a graph wherein the agent has to
decide the addition of a new bond or atom in each action step
amongst the predefined set of valid actions in the current state.
You et al.31 trained a general graph convolutional network
based model for molecular generation to optimize domain-
specific rewards. DeepGraphMolGen82 extended GCPN by using
graph convolutional networks to design a set of rewards to
design small molecules. These molecules were generated to
bind with dopamine transporters but not with norepinephrine.
However, this model requires pretraining on specific datasets.
Zhou et al.46 introduced MolDQN, a framework that combines
chemistry domain knowledge and RL. Instead of using any kind
of pretraining which could have reduced the search space,
MolDQN learns from scratch based on its own experience.
Moreover, unlike former methods, MolDQN also allows for
multi-objective optimization.

Molecule representation

A good representation is necessary for any ML method to
perform well since the representation dictates what kind of
information is available for the model to exploit and navigate
the chemical space efficiently (Fig. 11). Incorporating invariant
and covariant properties of the system in the representation

Fig. 9 Distribution of the molecules generated by the generator based on
the conditions imposed on QED vs. the initial distribution of the dataset
(MolGPT).

Fig. 10 Distribution of the binding affinity of molecules generated by an
unbiased generator compared with the distribution of a generator biased
for generating molecules with a larger binding affinity to SARS-Cov-2 Mpro

(MoleGuLAR). Fig. 11 Overview of commonly used molecule representations.
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itself helps the models greatly since they do not have to waste
training time on learning these concepts from scratch. A review
by David et al.83 discusses and analyses various representations
of molecules in great detail. Concisely, the majority of repre-
sentations used in generative models fall into one of the
following categories: discrete string based,22,47,73–75 continuous
vector space,81 and weighted connected graphs.31,46,82,84

3.2 Retrosynthesis

Retrosynthesis is the process of planning organic syntheses by
finding possible readily available and simple precursors which
on reacting produce the target molecule in one or more steps.
This is done through breaking of bonds and functional group
interconversion and retrosynthetic analysis has become an
integral part of organic chemistry. Retrosynthesis formulates
the organic synthesis process as an inverse problem by working
backwards from the target molecule and systematically dissecting
it to reach the simplest possible precursors as described by
Corey.85,86 An example of such a retrosynthetic planning is shown
in Fig. 12.

Conventionally, this would require a chemist to use their
knowledge of potentially thousands of reaction rules to find
which possible precursors would lead to the given target, fol-
lowed by ranking them based on their feasibility. The process
can also be done in silico with the reaction rules from the expert
being translated into a program which can detect molecular
substructures and the corresponding environmental informa-
tion like functional group compatibility, stereoselectivity, etc.
Tools like Chematica88,89 (now Synthia) use hundreds of thou-
sands of reaction rules curated by experts along with heuristics
to terminate exploration of unpromising precursors to find
reactants which are commercially available and can produce
the desired product via single- or multi-step reactions. However,
manual accumulation of reaction rules is extremely labour
intensive and dependent on the expertise of the contributors.
The rise of readily available, curated datasets has given a boost to
the use of data driven methods for retrosynthesis.90,91

3.2.1 Template based. A wide variety of reaction rules (or
templates) can be extracted from datasets like Reaxys‡,
SciFinder§ and reactions from the chemical literature like the
one created by Lowe from reactions in the US patent literature.92

Template extraction is done in two steps: atom–atom mapping
(AAM), followed by finding the reaction center. Plehiers et al.
extracted the rules from InChI and SMILES representations of
molecules by performing AAM using the Reaction Decoder Tool
and then finding the reactive center by identifying which atoms’
environments changed during the reaction.93,94 Coley et al.
defined strict SMARTS patterns to describe the reaction center,
its neighbouring atoms and the corresponding functional group
in the reactants and the product, and finally merging the two
into an overall retrosynthetic SMARTS pattern.95 Law et al. took a
different approach by first identifying the reaction center, fol-
lowed by extending it to encompass the relevant neighbouring

atoms, and these extended reaction centers are then clustered to
get a generalized template.96 These extracted templates are then
applied to the given product to obtain the precursors.

Using the extracted rules, there is a requirement for algorithms
that can effectively search the retrosynthesis tree for the most
promising paths and with an extensive amount of available data
they can be driven by machine learning. For predicting the
precursors of a single step reaction, studies by Ishida et al. and
Chen and Jung using graph convolutions have shown great
promise.97,98 However, most products can rarely be derived from
a single step and multi-step reactions should also be found for the
task. The most popular algorithm that helps achieve this is Monte
Carlo tree search (MCTS). Segler et al. used a variant of this
algorithm in which they used three neural networks to first
sample a template and apply it to the molecules such that
the search goes in the most promising directions, followed by
predicting if the proposed reactions are feasible or not and finally
estimate if the transformation is a ‘‘winning move’’, i.e. it leads to
commercially available compounds to reward or penalize the
neural networks.99 In the work by Schreck et al. the authors
proposed using a policy learned through reinforcement learning
such that the policy minimizes the expected synthesis cost
(a metric defined by the authors).100 The open source AiZynth-
Finder software by Genheden et al. for retrosynthetic planning
also uses a variant of MCTS.101 The Retro* architecture by Chem
et al. proposed a best first search algorithm using an ‘‘AND-OR’’
tree which can be used instead of MCTS.102

Template based approaches, however, come with the caveat
that any possible precursors will not be identified if the
respective reaction does not belong to the extracted rules and
it is not feasible to enumerate the exponential number of
outcomes from the retrosynthesis tree. With the advances in
machine learning, especially its widespread use in pattern
recognition, template free models have also been developed
which implicitly learn transformation rules between the
reactants and the products.

3.2.2 Template free. The SMILES string representation of
molecules has its open grammar and semantics opening up
the avenues for applying natural language processing based
practices for a wide variety of tasks with retrosynthesis being
one of them. Liu et al. modelled the retrosynthetic prediction
task as a neural machine translation problem and used the
seq2seq model to predict the reactant SMILES given the
product molecules.103,104 With the advent of transformer
models as the state of the art in translation tasks, Karpov
et al. proposed using it for single-step retrosynthesis, following
which Zheng et al. and Kim et al. added different forms of
SMILES correctors to make sure that the generated molecules
are valid.105–107 Mao et al. and Seo et al. combined information
from molecular graphs with the transformer model to create
an even more robust model.108,109 Lin et al. combined the
transformer architecture with MCTS for the multi-step
problem. They used a heuristic score at each reaction step to
see how promising it would be to explore the subtree.110 In the
work by Schwaller et al., the authors trained a forward model to
predict the products from reactants and calculate the reaction

‡ https://www.reaxys.com/
§ https://scifinder.cas.org/
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likelihood. Another transformer model was trained to predict the
possible reactants that could lead to the product which were then
ranked using the SCScore111 and the reaction likelihood, and the
process was continued till commercially available precursors were
found using the precursors as initial target molecules.112

Recently, newer approaches take advantage of the best of
both worlds, i.e. templates as well as the ability of machine
learning models to implicitly learn transformation rules called
semi-template based algorithms.

3.2.3 Semi-template based. These algorithms use a two-
step process for finding precursors:
� Using machine learning to identify the reaction center

which gives information about bonds that can break during the
reaction. These bonds are then disconnected to get structures
commonly referred to as synthons in the literature.
� The reactants are then obtained through a series of

transformations on these synthons.
One such study was reported by Shi et al. who treated the

reactants and products as graphs. They used R-GCN graph
neural networks113 to predict which bonds would break to
produce synthons and then added new nodes and edges pre-
dicted using the same architecture to each synthon to complete
their structures.114 Similarly, Somnath et al. used the MPN115

architecture for graph convolutions.116

Yan et al. proposed using edge-enhanced graph attention
networks for reaction center identification and the produced
synthons were then converted into the SMILES format which
could be invalid in some cases. These invalid SMILES strings
were then corrected using a transformer model.117

With a lot of open source platforms like AiZynthFinder,
ASKCOS¶ and IBM RXN8, the accessibility of AI/ML enabled
retrosynthetic planners has improved significantly.

3.3 AI powered robotic synthesis

Once a candidate molecule is generated and retrosynthetic
logic has provided the recipe, the next step in the pursuit of

complete automation is the automated synthesis of complex
molecules. The two major objectives of automated synthesis are
increasing the reaction throughput commonly called high
throughput experimentation (HTE) and increasing the user
autonomy so that the user input required becomes minimal.
The latter objective would help in producing systems with the
ability to synthesize molecules based on the provided retro-
synthetic steps without necessarily leading to a high-
throughput procedure.118 A recent analysis of small drug like
molecules found a lot of redundancy in the fragments present
in them in terms of heterocyclic motifs.119 In other words, the
estimated number of drug like molecules is practically infinite,
but the number of different fragments that form these
molecules is less. Most autonomous systems are built de novo
such that they provide high efficiency and flexibility but require
great investment in terms of software and hardware.

With the obtained retrosynthetic pathway for the target at
hand, the conditions in which the reaction occurs are still
missing. The use of machine learning has shown great promise
for predicting the conditions as well. Gao et al. used finger-
prints from the product and the reaction to predict the catalyst,
solvents, reagents and temperature most suitable for the
reaction.120 In the case of the existing literature for reactions,
Vaucher et al. used natural language processing to extract the
experimental procedure from patents and the scientific
literature.121 Aided with approaches like these, the pursuit for
complete automation gets a major boost.

The system developed by Li et al. showed the possibility of
generalized automated synthesis by using the same automated
workflow for 14 distinct classes of molecules.122 Steiner et al.
developed the ‘‘Chemputer’’ architecture, a generalized format
for reporting chemical synthesis procedures that could link the
procedure to physical operations. The authors also proposed a
framework called ‘‘Chempiler’’ to produce specific low-level
instructions for the Chemputer architecture. It is responsible
for finding paths between a source flask and a target flask as
well as address devices like hot-plate stirrers based on the
vessels they are connected to. This architecture was also
applied to a physical platform and tested on three different

Fig. 12 Example of retrosynthetic routes of a molecule as tree representation. The target molecule can be solved if it can be deconstructed to a set of
readily available building blocks shown with a coloured background. Figure from Hong et al.87 under Creative Commons licence.

¶ https://askcos.mit.edu/
8 https://rxn.res.ibm.com/
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drugs with extremely promising results.123,124 The AutoSyn
automated synthesis system created by Colins et al. has been
predicted to be able to synthesize 87% of FDA approved
drugs with minimal manual intervention along with analytical
monitoring during the synthesis process on a milligram to
gram scale.125 However, most automated synthesis systems
require a set of instructions from the users which can then
be followed but in order to close the loop these can be
connected to a robust retrosynthetic planner.

Coley et al. split the automation process into two modules:
synthesis planning and robotic flow. The synthesis plan from
the first module is converted to a chemical recipe file (CRF)
which specifies the fluidic path to be constructed: locations of
solutions, sequences of process modules, shutdown flow rates,
etc. However, the process is not completely automated and
requires human intervention to load reagents before the
proposed automation procedure for robotic flow.126 Another
study in which machine learning was used to aid synthesis
planning was presented by Granda et al. They used a machine
learning model to predict the reactivity of a reaction mixture
and the selected reaction was then automatically performed by
a connected robot. The obtained results were then used as a
feedback to the machine learning model making it more robust
as the number of reactions increased.127 An important aspect of
chemical synthesis is finding the appropriate conditions for a
reaction to occur including temperature, solvents and more.
Gao et al.120 used machine learning to predict the catalyst,
solvent, reagent and temperature for a given reaction. A study
by Shields et al.128 used Bayesian optimization for finding the
best conditions for the maximum yield.

The RoboRXN platform by IBM** combines recent advances
in cloud infrastructure, AI and chemistry to form an end-to-end
autonomous system. In the industry, systems developed by
companies like Chemspeed and Syrris are making robust
systems which can be employed in a wide array of reaction
classes. The software for autonomous systems is also being
developed with great rigour with platforms like ChemOS and
ESCALATE becoming exceedingly popular.129,130

We have moved very close to the goal of complete autonomy
in synthesizing molecules exploiting well-established synthesis
methodologies but currently cost forms a major roadblock with
systems costing thousands of dollars making them accessible
to very few research groups in the world.131

3.4 Characterization of molecules

Once the molecule that was designed in silico is realized in vitro,
it is important to verify if the sample attained is actually the
planned molecule. This is the problem of chemical characteriza-
tion, wherein we can measure the properties of a sample and
have to determine its unknown molecular structure. This has
been one of the persisting problems in chemistry and is often
approached using spectroscopic techniques which measure how
a molecule interacts with electromagnetic waves. Traditionally,
experts manually identify the molecular structure from different

kinds of spectra with highly domain specific knowledge which
is time-consuming, especially in a high throughput setting.
The problem of chemical characterization as presented here is
actually a kind of non-linear inverse problem. The forward
model y = f (x) here refers to the calculation of the measured
properties, i.e. different kinds of spectra y given a molecule x,
whereas the inverse problem is the task of elucidating the
structure of an unknown molecule x from its experimentally
observed spectra y.

Even today, a majority of the computer based ways to
characterize a sample using its spectra rely on matching the
unknown spectra with a database of already known
spectra.132,133 The obvious drawback of such matching
methods is that they restrict the usage to identifying only those
molecules that are already stored in the database.

Infrared (IR) spectroscopy is an analytical technique that
reveals information about the vibrational modes of movement
of a molecule. Some vibrational modes in a molecule lead to
change in the dipole moment and absorb light corresponding
to those frequencies. The IR spectra of a molecule is highly rich
in information. The functional group region beyond 1500 cm�1

can be used to identify the different functional groups
present in a compound and the fingerprint region of the
spectra o1500 cm�1 forms an intricate pattern which is used
as a fingerprint to distinguish molecules.134,135 Wang et al.136

use the traditional ML algorithm support vector machine to
do multi-class classification of compounds from the OMNIC
database based on their Fourier transform infrared spectra.
The trained support vector machine identified 16 functional
groups with a prediction accuracy of 93.3%. Fine et al.137

introduce a multi-label neural network to identify functional
groups present in a sample using a combination of FTIR and
MS spectra. The work claims that their neural network reveals
patterns typically used by chemists to identify standard func-
tional groups. The model is also validated on compound
mixtures while being trained only on single compounds.

Nuclear magnetic resonance (NMR) spectroscopy is a
spectroscopic technique that relies on the magnetic properties
of nuclei to respond to an externally applied magnetic field. The
nuclei respond through signature electromagnetic waves which
are then measured and recorded. There have been a few
endeavours to solve the inverse problem of NMR spectra
to its original molecule in recent times. Zhang et al.138 used a
tree-based search framework with a SMILES generator to pre-
dict the structure from the computationally generated 1H NMR
spectra. Their method was assisted by computationally expen-
sive DFT calculations to guide the tree and was able to predict
the structure from six out of nine given spectra. In a study by
Jonas,84 a graph neural network is trained on molecular graphs
with imitation learning. The NMR spectra are incorporated as
per-node information in the molecular graph, and the molecule
is built iteratively by adding edges based on the probabilities
returned by the neural network. Sridharan et al.139 used Monte
Carlo tree search after framing the inverse problem as a Markov
decision process. In this framework, value and prior models are
pretrained using guided-MCTS runs incorporating substructure** https://research.ibm.com/science/ibm-roborxn/
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information. The model was tested on experimentally observed
NMR spectra from nmrshiftdb2140 and was able to have the
correct target molecule among its guesses for 93.8% of the
molecules with o10 heavy-atoms. Fig. 13 shows the trend of
accuracy for the guesses made by the agent after being ranked
by a scoring function. The scoring function used in the work is
the Wasserstein distance between the target spectra and the
spectra of the current molecule.

Mass spectroscopy (MS) is another analytical technique that
is used for chemical characterization. It measures the mass-to-
charge ratio of ions present in a sample and presents it as a plot
of intensity vs. the mass-to-charge ratio. An inverse problem of
this kind can also be broken down into smaller parts wherein
we try to find an intermediate representation g such that we
learn the function f - g. Hoping that the conversion from g to x
is more convenient. Ji et al.141 present a deep learning based
approach, DeepEI. DeepEI elucidates the structure of an
unknown compound from its electron ionization mass spectrum.
DeepEI predicts molecular fingerprints from a spectrum and
searches the molecular structure database with the predicted
fingerprints. MESSAR by Liu et al.142 uses a rule-based approach
to identify and associate spectral features with substructures
taken from databases with a goal of partial structure identifi-
cation. Litsa et al.143 proposed Spec2Mol, a deep learning
architecture to be able to find the correct structure given the
mass spectrum of a molecule. Their approach is based on an
encoder–decoder architecture wherein the encoder learns the
spectral embeddings, while a pretrained decoder tries to recon-
struct SMILES sequences of the original molecule.

4 Summary and outlook

The advent of modern machine learning algorithms has provided
chemists with new tools in the pursuit of solving different inverse
problems. The first task in this subset of inverse problems is to
generate valid molecules, which was achieved by deep generative
modelling methods such as RNNs, autoencoders, graph neural
networks, and, more recently, transformers. Once this is done, the
next step is to tackle the actual problem of generating molecules

that exhibit a specific set of properties. In order to achieve this,
different algorithms like Bayesian optimization and reinforce-
ment learning must be used to make the aforementioned gen-
erator models to explore regions of the chemical space where
molecules satisfy the given constraints.

However, generating a molecule in silico is not an end to
itself since we still need a way to realize them. We need
methods to find commercially available molecules that can be
used to synthesize the molecule employing viable synthetic
methodologies. Conventionally, for a new molecule, this would
require domain knowledge to find possible reaction routes
manually. This process has a low throughput and depends
heavily on the expertise of the scientists. The use of in silico
methods to extract reaction templates essentially makes retro-
synthesis a pattern recognition problem for which machine
learning has proven to be of great use in domains like natural
language processing and computer vision. A collection of
templates can be applied to new molecules to find their
precursors, and different heuristics can be used to explore
the most promising branches of the retrosynthesis tree.

A variety of alternate tools and methods to design molecules
catering to their specific requirements are accessible. However,
one could argue that the effort in automating the molecular
design process has been disproportionately skewed towards
just molecule generation and retrosynthesis. In contrast, other
vital tasks in the pipeline like automated robotic synthesis and
chemical characterization remain less explored. Research that
uses spectroscopic data to solve the inverse problem of spectra
to the molecule is sparse, and hence the problem could be
considered an open one. The initial attempts at solving this
problem using NMR and MS spectra show great potential, and
the authors expect that this potential will be continued to be
explored by many more studies in the coming years. Most of the
work on IR spectroscopy involves using the functional group
region to classify molecules based on their functional groups.
Even though infrared spectroscopy is known to be highly
information-rich, with the fingerprint region of the spectra
often being used to characterize samples in the lab, there are
yet to be computational methods that aim to learn and exploit
those relations to determine the target structure. Thus, such an
application to relate IR spectra directly to molecular structures
would be an exciting avenue for further research. Since each of
the spectra discussed in this highlight reveals a different
kind of information about a molecule, a method combining
different kinds of spectra to evaluate the structure of a sample
would also be of great promise in the molecular design pipeline.

Unlike other subtasks in this highlight which mainly
depend on computational resources and novel architecture
for progress, the high cost of robotic equipment and the need
for hardware expertise makes research in AI-assisted robotic
synthesis inaccessible to a large section of the community.
With speculations that complex robots would only become
cheaper and more accessible, it may not be a distant dream
that this would allow more and more research groups to
conduct leading research in this area of AI-assisted robotic
synthesis.144,145

Fig. 13 Accuracy for the TopN guesses made by the agent for an unknown
NMR spectra as ranked by the scoring function used (spectraToStructure).
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The speed and throughput with which the problems
mentioned in this highlight are being solved currently did
not seem possible at the beginning of the decade. However,
the availability of new algorithms and reduction in the costs of
hardware like GPUs that work in conjunction with each other
have helped open up many possibilities in this domain. Demo-
cratization of information and ease of accessibility of leading
research to the general population have greatly helped the
scientific community develop and share their work on these
problems. Such rapid progress and development is expected to
continue as time progresses and would extensively drive the
discovery of novel molecules and their application.
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D.-A. Clevert, Chem. Sci., 2019, 10, 8016–8024.

72 T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath and H. Chen,
Mol. Inf., 2018, 37, 1700123.

73 S. R. Krishnan, N. Bung, G. Bulusu and A. Roy, J. Chem. Inf. Model.,
2021, 61, 621–630.

74 N. Bung, S. R. Krishnan, G. Bulusu and A. Roy, Future Med. Chem.,
2021, 13, 575–585.

75 T. Dash, A. Srinivasan, L. Vig and A. Roy, bioRxiv, 2021.
76 L. Yu, W. Zhang, J. Wang and Y. Yu, Proceedings of the AAAI

conference on artificial intelligence, 2017.
77 B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes and A. Aspuru-

Guzik, ChemRxiv Preprint, 2017, DOI: 10.26434/chemrxiv.5309668.v2.
78 E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-

Lengeling, A. Aspuru-Guzik and A. Zhavoronkov, J. Chem. Inf.
Model., 2018, 58, 1194–1204.

79 E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov,
A. V. Aladinskaya, A. Aliper and A. Zhavoronkov, Mol. Pharmaceu-
tics, 2018, 15, 4386–4397.

80 N. De Cao and T. Kipf, arXiv preprint arXiv:1805.11973, 2018.
81 O. Prykhodko, S. V. Johansson, P.-C. Kotsias, J. Arús-Pous,
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Mater., 2019, 31, 1806656.

119 M. Trobe and M. D. Burke, Angew. Chem., Int. Ed., 2018, 57,
4192–4214.

120 H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green and
K. F. Jensen, ACS Cent. Sci., 2018, 4, 1465–1476.

121 A. C. Vaucher, F. Zipoli, J. Geluykens, V. H. Nair, P. Schwaller and
T. Laino, Nat. Commun., 2020, 11, 1–11.

122 J. Li, S. G. Ballmer, E. P. Gillis, S. Fujii, M. J. Schmidt,
A. M. Palazzolo, J. W. Lehmann, G. F. Morehouse and
M. D. Burke, Science, 2015, 347, 1221–1226.

123 S. Steiner, J. Wolf, S. Glatzel, A. Andreou, J. M. Granda, G. Keenan,
T. Hinkley, G. Aragon-Camarasa, P. J. Kitson and D. Angelone,
et al., Science, 2019, 363, 10.

124 P. S. Gromski, J. M. Granda and L. Cronin, Trends Chem., 2020, 2, 4–12.
125 N. Collins, D. Stout, J.-P. Lim, J. P. Malerich, J. D. White,

P. B. Madrid, M. Latendresse, D. Krieger, J. Szeto and V.-A. Vu,
et al., Org. Process Res. Dev., 2020, 24, 2064–2077.

ChemComm Highlight

Pu
bl

is
he

d 
on

 1
7 

M
ar

ch
 2

02
2.

 D
ow

nl
oa

de
d 

by
 N

at
io

na
l I

ns
tit

ut
e 

of
 S

ci
en

ce
 E

du
ca

tio
n 

&
 R

es
ea

rc
h 

on
 6

/1
0/

20
22

 9
:2

0:
56

 A
M

. 
View Article Online

https://doi.org/10.1039/d1cc07035e


This journal is © The Royal Society of Chemistry 2022 Chem. Commun., 2022, 58, 5316–5331 |  5331

126 C. W. Coley, D. A. Thomas, J. A. Lummiss, J. N. Jaworski,
C. P. Breen, V. Schultz, T. Hart, J. S. Fishman, L. Rogers and
H. Gao, et al., Science, 2019, 365, 10.

127 J. M. Granda, L. Donina, V. Dragone, D.-L. Long and L. Cronin,
Nature, 2018, 559, 377–381.

128 B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani,
J. I. M. Alvarado, J. M. Janey, R. P. Adams and A. G. Doyle, Nature,
2021, 590, 89–96.
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