
Deep Reinforcement Learning for Molecular Inverse Problem of
Nuclear Magnetic Resonance Spectra to Molecular Structure
Bhuvanesh Sridharan, Sarvesh Mehta, Yashaswi Pathak, and U. Deva Priyakumar*

Cite This: J. Phys. Chem. Lett. 2022, 13, 4924−4933 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Spectroscopy is the study of how matter interacts with electromagnetic
radiation. The spectra of any molecule are highly information-rich, yet the inverse relation of
spectra to the corresponding molecular structure is still an unsolved problem. Nuclear
magnetic resonance (NMR) spectroscopy is one such critical technique in the scientists’
toolkit to characterize molecules. In this work, a novel machine learning framework is
proposed that attempts to solve this inverse problem by navigating the chemical space to find
the correct structure given an NMR spectra. The proposed framework uses a combination of
online Monte Carlo tree search (MCTS) and a set of graph convolution networks to build a
molecule iteratively. Our method can predict the structure of the molecule ∼80% of the time
in its top 3 guesses for molecules with <10 heavy atoms. We believe that the proposed
framework is a significant step in solving the inverse design problem of NMR spectra.

Spectroscopy in general has played a significant role in
diverse applications, such as drug discovery, protein

structure determination, and material discovery. Nuclear
magnetic resonance (NMR) spectroscopy is one of the most
crucial and versatile methods for chemical characterization. It
is an analytical technique based on the nuclei’s magnetic
properties that have either an odd mass number or an even
mass number with an odd atomic number. Nuclei with
nonzero spin S⃗ would always have a nonzero magnetic dipole
moment, μ⃗. NMR relies on this for the nuclei to respond to
electromagnetic waves as perturbations in the presence of an
external magnetic field. In addition to small organic molecules,
NMR spectroscopy is a critical method to obtain high-
resolution information about proteins, DNA, and RNA.1,2 It
can also be used to obtain knowledge of energy minima and
barriers by observing conformational dynamics of proteins.3

This can be pivotal in the process of drug discovery.
The 13C NMR spectra measure the properties of individual

nuclei and consist of peaks that correspond to each carbon
atom present in the molecule. The peak position (chemical
shifts) and the peak splits (spin−spin coupling) are dependent
on the local environment of that atom. Usually in laboratories,
experts manually identify the molecular structure from the
NMR spectra using highly specific domain knowledge. To
date, most computer-based methods to verify the structure of a
sample from its NMR spectra rely on matching the spectral
data with a database of already known spectra.4,5 These
methods restrict the usage to identifying only those molecules
that are stored in the database.
The problem under consideration here is a nonlinear inverse

problem. The forward model y = f(x), in this context, refers to
the task of calculating the NMR spectra y, given a molecule x.

Whereas, the inverse problem refers to drawing conclusions
about an unobserved molecule x from its experimentally
observed NMR spectra y. One of the first attempts in the
literature at recognizing and modeling this problem as an
inverse problem was done by Jonas6 (Figure 1).
The forward problem f for NMR spectra is relatively well-

studied with many methods ranging from quantum mechanical
calculations and density functional theory7 to deep learning8,9

to solve the task. Other empirical methods, such as featurizing
the neighborhood of a nuclei and then matching it against a
database of known motifs to predict its shift, are also
common.10,11

Recently, there have been many significant studies on the
use of modern deep learning and RL methods to solve
problems in chemical sciences ranging from prediction of
properties of molecules to de novo molecule generation with
optimized properties.12,13 There are various high-throughput
combinatorial methods to generate organic molecules with
desired properties that are well-known and essential in the
process of drug discovery.14−18 In such a workflow, it would be
of great help to have a framework to verify the structures of
samples generated in situ based on easily acquirable spectral
data in a high-throughput manner.
In this work, an effort has been made to determine the

structure of a molecule given its NMR spectra and molecular
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formula. There have been a few endeavors to solve this inverse
problem. Zhang et al.19 used a tree-based search framework
with a SMILES generator to predict the structure from
computationally generated 1H NMR spectra. Their method
included help from computationally expensive DFT calcu-
lations to guide the tree and was able to predict the structure
for six out of nine given spectra. In a work by Jonas,6 a graph
neural network is trained on molecular graphs with imitation
learning. The NMR spectra is incorporated as per-node

information in the molecular graph, and the molecule is built
iteratively by adding edges based on the probabilities returned
by the neural network. The work was tested on molecules with
up to 32 heavy atoms.
In this work, we use a combination of online Monte Carlo

tree search (MCTS)20 and a set of offline trained graph
convolutional networks21 to navigate through the chemical
space and find the correct molecular structure of a given target
13C NMR spectra.

Figure 1. Schematic representation of the forward and inverse problem of NMR spectra. As an example, 2-methylbutane and its NMR spectra are
given. Each carbon and its corresponding peak is indicated by the same color.

Figure 2.Monte Carlo tree search: A heuristic search algorithm where each node in the tree is a state of the environment. One of these four steps is
taken at each step to navigate the search space. 1. Selection: New bonds are added to the root based on UCT values until a leaf node is reached. 2.
Expansion: A new node is added to the leaf node after environment checks the validity of new node. 3. Rollout: Value neural network evaluates the
value of the newly added node. 4. Back-propagation: The tree then back-propagates the new information to update the UCT values of all the
nodes until the root node.

Figure 3. Training methodology. An example search tree while in the training mode on how subgraph isomorphism is used to make a data set for
the neural networks to train on. The target molecule is shown on the top left. Assuming that the current state in the environment is n-butane, we
see a possible state of the search tree. Each node in the tree is also accompanied by an illustration showing how it is a subgraph of the target
molecule. Because this can be evaluated when the training mode is on, this is used to return intermediate reward r(s, a) = 1 when the current state
is subgraph isomorphic to the target state; otherwise r(s, a) = 0.
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To reiterate, the problem is defined in the following way:
given 13C NMR spectra of a molecule consisting of each
carbon’s shift and split values and the molecular formula,
identify the structure of the molecule. The process of solving
the problem is modeled as a Markov decision process (MDP)
wherein the molecule is built iteratively from scratch by adding
atoms and bonds to the current structure at each step. In this
section, different components and details about the proposed
framework are explained. The first part contains information
about the data set used. The Letter gives details of the
reinforcement learning algorithm used followed by information
about the neural networks that aid the RL algorithm. Finally,
the last paragraph of this section introduces a novel
methodology of training prior and value networks.
We use nmrshiftdb2,22 which is a database for organic

structures and their experimentally observed 13C NMR spectra.

In this work, we consider only organic molecules that have less
than 10 non-hydrogen atoms (C, O, N, and F). Charged
molecules and radicals are also excluded. Thus, the data set
comprises a total of 2134 molecules with experimentally
obtained chemical shift and split values of 13C NMR spectra.
In this subsection, we attempt to define the state space and

action space for the MDP comprehensively. This is followed by
information about the agent which chooses the appropriate
actions at a particular state. Choosing an accurate and
appropriate measure of reward is essential for any RL
algorithm to perform well. We use a forward NMR prediction
model to formulate a reward function defined at the end of this
subsection.

• The current state in the search process is represented as
a Molecular Graph.

• Each atom in the target molecule is present in the
current state as a node. The graph of the current state
has n − s + 1 components, where n is the total number
of atoms in the target molecule and s is the number of
atoms present in molecule of the current state. Out of
these n − s + 1 components, one is a connected
component representing the molecule of the current
state, and the rest of the n − s components are individual
atoms that may join the current molecule by addition of
new bonds later on. Here, a component is a subgraph
which does not have any outgoing edges to the rest of
the graph.

• Featurization of the target NMR: Each NMR peak is
assigned to a carbon in the beginning when the state
consists only of individual nodes and no edges. The
node feature of an atom consists of the one-hot
encoding of the atomic number of the element that
the node represents and the current valency of that atom
that is available for further addition of bonds. A
Gaussian, with the peak of the assigned shift centered
at the chemical shift value and σ = 2, is discretized into
64 bins. This feature is then appended to the node
feature.

• Because this work uses 13C NMR spectra as an input, it
is certain that the target molecule contains at least one
carbon atom. Hence, without the loss of generality, we
choose to start building our molecule from a molecular

Figure 4. (a) Target state of cyclohexane and current state of 2-
methylbutane along with their splitvectors. (b) Target state of 4-
hydroxy-3-methylpentan-2-one and current state of 3-methylpentan-
1-ol along with their splitvectors.

Figure 5. An example run for the target molecule CC1CCNO1 with nmcts = 1000. πtree(ai|sj) represents the probability of taking action ai
according to the policy returned by the MCTS search with state sj as the root. In the figure, each state sj is also accompanied by the splitvector of
that state.
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state containing a single carbon atom; that is, S0 is just a
carbon atom.

In this work, we formulate a fixed-dimension action space in
which each action signifies the addition of an edge between any
two nodes in the graph. The environment ensures the validity
of these actions by checking for the following conditions:

• At least one of the end points of the newly added edge
must belong to the subgraph containing the molecule of
the current state.

• The addition of this new edge must obey the chemical
rules of valency for each atom. If the valency due to
connection with other heavy atoms is not enough to
complete its octet, it is implicitly assumed that the rest of
the valency is satisfied by hydrogens. These hydrogens
are not taken as nodes in the molecular graph.

• The edge must not lead to formation of a ring with four
or three atoms.

• The edge must not lead to a bond within an already
present ring. (Note that this restriction does not prevent
the formation of bicyclo and spiro compounds. It just
guides the formation so that the smaller ring is formed
before the larger ring. Doing so proved to be helpful in
the initial experiments because this helps prune some
redundant branches of the tree search.)

Because the problem is formulated as a Markov decision
process, we are left to decide on a planning algorithm that
would use some prior knowledge about the problem and
explore various branches of the search tree before taking action
a on a state s. A typical RL algorithm has two components: an
agent, and an environment. The task assigned to the “agent” is
to choose an action given the current state. On the other hand,
the role of the “environment” is to simulate the action which
was chosen by the agent and return the reward for the action
which was taken.23,24 One such algorithm is Monte Carlo tree
search (MCTS) (Figure 2). MCTS performs one of the four
following steps repeatedly:
(1) Select: In this stage of MCTS, the tree is traversed from

the root according to the UCT (upper confidence bound for
trees) values at each level until it reaches a leaf node. The UCT
value at any state is calculated based on the following formula:

s a Q s a c a s
N s

n s a
UCT( , ) ( , ) ( )

( ) 1
( , ) 1modelπ= + * | * +

+

where s is the current state, Q(s, a) the mean action value

estimate Q(s, a) = W s a
n s a

( , )
( , )

, W(s, a) the cumulative of all returns

R(s′, a′) until the leaf node, πmodel(a|s) the prior probability by
the policy network, N(s) the number of times state s has been

Figure 6. (a) Accuracy over 5-fold cross-validation with nmcts = 1000. (b) Effect of nmcts (number of traversal from the root to leaf in MCTS
search) on the various metrics of accuracy. (c) Histogram of time taken for the model to run on each molecule for nmcts = 1000. (d) Effect of
nmcts on the time taken by the system to predict a molecule.
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reached, n(s, a) the number of times action a was taken from
state s, and c the constant with which one can manipulate the
exploration versus exploitation ratio. The form of the UCT
value used in this work is inspired by Moerland et al.,25 which
was proved to improve the performance of cases with
asymmetric trees.
(2) Expand: Once a leaf node sL′ is reached by the tree

search, the tree is expanded by addition of a new leaf node sL.
The environment simulates this action and ensures its validity
and also returns an intermediate reward.
(3) Roll-out: In a typical MCTS, the initial value of the new

leaf node is estimated using a series of random rollouts from
the leaf node sL. Because of computational limitations, this
work uses a value neural network, Vmodel(s), to estimate the
value function.
(4) Back propagation: After estimating the value of the

newly added leaf node, R(s, a) of the whole backward trace is
updated through back-propagation which in turn updates the
UCT value of intermediate nodes belonging to this trace.

R s a r s a R s a( , ) ( , ) ( , )i i i i i i1 1γ= + + +

The above four steps are repeated for nmcts number of
times. Then, a real action at is taken by the environment based
on the policy of the tree. The tree’s policy probability is
determined by the visitation count of all the actions at the root
node s0.
While the inverse problem is defined as the task to

determine the molecular structure from the spectra, it naturally
follows that the forward problem is that of calculating the
NMR spectra given the molecule and its structure. Here, a
forward NMR prediction model8 is used for the following:
(1) For intermediate reward: Typical MCTS applications

also have an intermediate reward returned by the environment
for each action. The step reward is calculated based on how
close the current state is to the target molecule. The forward
model predicts the NMR spectra of the current state, and the
reward is defined by

Figure 7. Target molecule and Top3 guesses as returned by the agent along with the reward and their predicted spectra for cases when the Top1
guess is the correct guess.
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r s a r s s( , ) ( ) 2
1
2

WS( )i
k
jjj

y
{
zzz= ′ = − ′

s l S SWS( ) first Wasserstein distance ( , )1 T C′ = =

l u v U V( , )1 ∫= | − |
−∞

∞

where U and V are the CDFs for the distribution of some
random variables u and v,26 ST is the NMR spectra of the target
molecule, and SC is the NMR spectra of the current molecule.
The reward r(s′) is returned as explained above whenever the

current state s′ is known to be a terminal state. Otherwise, r(s′)
= 0 is returned.
(2) For the Scoring Function: Each episode performed by

the agent returns one prediction of what the target molecule is.
Because MCTS has some element of randomness, all guesses
made by the agent are not the same. In such cases, after
running the agent for a predetermined fixed number of times,
all the unique guesses are ranked against each other by the
means of the reward function discussed above. Then, the guess
which returns the highest reward is taken as the final
prediction.

Figure 8. Target molecule and Top3 guesses as returned by the agent along with the reward and their predicted spectra for cases when the Top1
guess is the incorrect guess.
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There are three modules of neural network used in this
work:
Graph Featurizer: This module uses a message passing

neural network,21,27 which provides a formulation for
supervised learning on graph structured data. Consider a
molecular graph G(V, E) with node features xv (having
information about the current state and also the target NMR
spectra) and edge features evw. The features of each node at
time step t are represented as hv

t , initialized to xv at t = 0. The
features of nodes are updated for 3 time steps using messages
mv

t 1+ in the following way:

m M h h e

h U h m

F g x h x h v V

( , , )

( , )

( , ) ,

v
t

w N v
t v

t
w
t

vw

v
t

t v
t

v
t

v v v
t

v v
t

1

( )

1 1

∑=

=

= = + ∀ ∈

+

∈

+ +

where N(v) is the set of neighboring nodes of v. Mt and Ut are
the message function and vertex update function, respectively.
The function g is simply taken to be vector addition in this
work. Fv is the final atomic feature for the node which has
information about the atomic properties, the local environ-
ment, and also the target NMR shift value that was assigned to
this node. The feature (Fv) generated here will be further used
by the policy neural network πmodel(a|s) and value network
Vmodel(s) .

Policy Head: N nodes form ( )N
2 pairs, each representing a

possible edge. For each of these pairs, let the feature vector of
the pair be the concatenation of the feature vector of the two
nodes concerned. This pair’s feature vector is then passed
through two fully connected layers to obtain a 3-tuple
representing the possibility of single, double, and triple bond
between this pair.
Value Head: All the node features received from the graph

featurizer are then sum-pooled to attain a molecule-level
feature vector which has information about both the current
molecule and the target NMR. This molecule level feature is
then passed through two fully connected layers to finally
predict the value Vmodel(s) of the current state.

While in the training mode, the environment has access to
not only the NMR spectra but also the structure of the target
molecule. This can be used to guide the tree by giving a strong
positive reinforcement in the form of r(s, a) (Figure 3). The
tree policy (derived from visitation counts of the actions) and
approximation of Q(s, a) hence obtained is used as the training
data set for the prior policy neural network πmodel(a|s) and
value network Vmodel(s). When any action a at state s leads it to
state s′, i.e., s a s→ ′, then

r s a S s s( , ): 1 iff ( , ), else 0t= ′

where S(st, s′) is Boolean function that returns True iff s′ is
subgraph isomorphic to the st. This work employs rdkit28 to
check whether the state s′ is a subgraph of the target molecule
st. With training mode on, the model was run on a system with
an Intel Xeon E5-2640 v4 processor and Nvidia GeForce GTX
1080 Ti GPU for 23 h to collect experience and train the
neural networks. Five models were trained on different cross-
validation training sets.
Each shift value in the data set is accompanied by a split

value as well. The split value is a categorical variable that
belongs to one of {S, D, T, Q}, and it is dependent on the
number of hydrogen atoms that are attached to the carbon. A
quaternary carbon (no hydrogen attached) leads to a singlet
(S) split; a tertiary carbon (one hydrogen attached) leads to a
doublet (D) split; a secondary carbon (two hydrogens
attached) leads to a triplet (T) split; and a primary carbon
(three hydrogens) leads to a quartet (Q) split. Let splitvector
be the vector that stores the information about the number of
carbons of each split kind in the current state. Because the only
action possible in the modeled MDP is that of addition of an
edge (decreases the number of implicit hydrogens), note the
following two invariant properties:

• The sum of values in the splitvector would remain
constant for states with only 1 connected component
because the total number of carbons cannot increase.

• With addition of bonds, the kind of split made by a
particular carbon can only move in the direction

S D T Q← ← ←

Figure 9. (a) Accuracy when the model is trained on molecules with <7 atoms and tested on molecules with <10 atoms. (b) Time taken for a
molecule when it is guessed correctly and incorrectly (nmcts = 1000).
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As a consequence of this, certain states can be flagged as
terminal states if it is known that they can never lead to the
target molecule based on the following criteria:

• When the number of quaternary carbons in the current
state becomes lower than the number of quartet splits in
the target spectra.

• When the number of singlet carbons in the current state
becomes more than the number of singlet splits in the
target spectra and so on.

For example, in Figure 4 a, the agent can safely terminate
search through this branch because once a duplet has formed
in the current state, that carbon can never be transformed back
to triplet or quartet and we know that the target molecule does
not have any duplet or singlet carbon. Similarly, in Figure 4b,
the agent can safely terminate because the number of quartets
in the current state has gone below the number of quartets in
the target molecule and there is no way to produce new quartet
carbon atoms. These chemistry-guided conditions greatly
prune the search tree and prevent the tree from exploring
branches that can lead to the incorrect structure.
The forward model used in this work was trained on

nmrshiftdb2 data set22 as included in the original work by
Jonas and Kuhn.8 The mean absolute error obtained for the
prediction of the shiftvalue per peak for the predictor was
1.374 ppm.
The total data set of 2134 molecules was randomly split into

5 equal groups. In each of the five experiments, one of the
groups was chosen as the hold-out test data set and the model
was trained on the remaining four groups. For each molecule,
the agent made a number of guesses depending on how many
episodes it ran. There were 20 processes initiated, with each of
them running an episode. An example of one such episode run
is illustrated in Figure 5. As shown in Figure 6a, on average, the
agents guessed the correct structure of the molecule of the
target spectra 93.8% of the time. All the guesses of the agent
are then ranked based on the scoring function discussed in the
earlier section. The Top1 ranked structure among the guesses
was the target structure 57.2% of the time. The accuracy for
Top3, Top5, and Top7 of the scored guesses can be seen in
Figure 6a. Figure 7 shows the Top3 guesses made by the
framework ranked by the criterion mentioned earlier for a
couple of examples where the Top1 ranked molecule is the
correct target structure, and Figure 8 shows examples where
the Top1 ranked molecule is not the correct target structure.
nmcts is the number of times that the search tree is traversed

from the root to leaf node to explore different branches before
making a true action in the current state. As expected, it can be
observed in Figure 6b that the net accuracy improves as nmcts
increases.
It is also seen that the trend for Top1 accuracy is not the

same as others, and it actually decreases with increase in nmcts.
This can be explained by the fact that the increasing nmcts
increases the exploration of the chemical space, and more
potential candidates are scored against the current structure.
This downward trend reveals that a better scoring function
would improve the TopN accuracy of the agent because it
would be able to rank the candidate guesses in a more accurate
way.
Figure 6 d shows the distribution of time taken for each

molecule with varying nmcts. As expected, we observe an
increase in time taken for the agent to make all its guesses for a
target NMR spectrum.

Even when the agent has the correct structure among its
guesses, sometimes the scoring function ranks it lower than
other guesses made, which reduces accuracy. Because the
scoring function is dependent on the pretrained forward
model, a more capable forward model is expected to increase
the accuracy of the framework. In the event that a better, albeit
computationally expensive scoring function is deviced, the
overall practical accuracy can still be improved while being
even more time efficient. This can be done by scoring only the
TopN guesses of the agent with the time intensive scoring
function. As can be seen in Figure 6b, the target spectra’s
correct molecular structure is present in the Top7 of the
guesses >85% of the time for all the runs with nmcts > 200. In
such a scenario, we can determine the correct structure for an
NMR spectra by scoring only 7 structures while the MCTS
search takes less than 100 s for most of the molecules.
In another experiment, molecules with <7 non-hydrogen

atoms were filtered from the data set. After running the agent
on these filtered set of molecules with training mode on, the
agent was tested on 200 randomly sampled molecules with ≥7
and <10 heavy atoms. The result of this experiment is plotted
in Figure 9a. However, the system performs well on the class of
data that it was never exposed to before, guessing the correct
structure 86.5% of the time.
The histogram of the time taken for the agent to run all the

episodes for a molecule can be seen in Figure 6c. On average, it
takes ∼330 s for the agent to make all its guesses for a target
NMR spectra. All episodes are run within 300 s for 71.8% of
the molecules and within 600 s for 88.5% of the molecules. It is
observed in Figure 9b that the mean time taken for all the
episodes for a molecule that is guessed correctly is ∼305 s,
whereas the mean time for molecules that are guessed
incorrectly is ∼780 s. This difference of distribution can be
used to have more reliable predictions and improve the
potential practical use-case of this framework. Stopping the
search at a threshold time can improve accuracy for predicted
molecules while also saving computational expense. When the
framework makes predictions for all the molecules, i.e., without
any threshold time, the correct structure is among the guesses
made for 94.8% of the molecules. Having a threshold time of
300 s leads to the framework making predictions for 72% of
the molecules and timing-out for the rest of the molecules. The
correct structure is among these guesses for 99% of the
molecules. Similarly, when the threshold is set to 1000 s, the
framework makes predictions for 94% of the molecules. The
correct structure is among the guesses 97% of the time.
This Letter provides a framework using graph convolution

networks and reinforcement learning to solve the inverse
molecular problem of NMR spectra. The work also introduces
a novel method to train the policy and value networks a priori
in guided MCTS runs (training mode on) and demonstrates
the utility of Monte Carlo tree searches in navigating the
chemical space. Unlike other prior attempts to solve this
problem like the one by Jonas6 in which the model makes a
prediction only 50% of the time (even though their work is
tested on molecules with 32 heavy atoms), or the work by
Zhang et al.19 in which the model is tested only on 9 hand-
picked target spectra, this model shows good promise by
predicting the correct structure among its Top3 guesses ∼80%
of the time. Additionally, it is observed that the proposed
framework performs better than brute-force checking in an
enumerated database of known molecular structures. On
average, it is seen that the framework calls the forward model
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for less than 7% of the molecules in QM9 which have the same
molecular formula as the target structure, while still identifying
the molecule correctly. More information on comparison of
the framework against brute-force enumeration is provided in
the Supporting Information. Still, there are various avenues for
improvement for future work. Because the RL algorithm is
dependent on the forward model for its intermediate reward, a
better scoring function would potentially improve the
prediction accuracy. 13C NMR is just one of the many
spectroscopy techniques that are widely used. For example, 1H
NMR spectroscopy has a higher signal-to-noise ratio owing to
the significantly larger abundance of spin-active isotope.
Infrared spectroscopy sheds light on the vibrational transitions
in a molecule and is considered to be complementary to NMR
spectroscopy for characterizing small organic molecules. A
promising extension of work presented in this Letter would be
to incorporate other spectral data and leverage different kinds
of information to elucidate the correct structure of an
unknown molecule. Finally, we believe that the proposed
work is a crucial step in high-throughput synthesis, where swift
and efficient verification of structures generated can make the
whole process of drug discovery more robust and reliable.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00624.

Tabular form of data points used to plot graphs in this
work and additional analysis comparing this work against
enumerated databases (PDF)
Transparent Peer Review report available (PDF)

■ AUTHOR INFORMATION
Corresponding Author
U. Deva Priyakumar − Centre for Computational Natural
Science and Bioinformatics, International Institute of
Information Technology, Hyderabad 500032, India;
orcid.org/0000-0001-7114-3955; Email: deva@iiit.ac.in

Authors
Bhuvanesh Sridharan − Centre for Computational Natural
Science and Bioinformatics, International Institute of
Information Technology, Hyderabad 500032, India

Sarvesh Mehta − Centre for Computational Natural Science
and Bioinformatics, International Institute of Information
Technology, Hyderabad 500032, India

Yashaswi Pathak − Centre for Computational Natural Science
and Bioinformatics, International Institute of Information
Technology, Hyderabad 500032, India

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpclett.2c00624

Notes
The authors declare no competing financial interest.
The source code along with instructions for the work
presented in this Letter can be found at https://github.com/
devalab/SpectraToStructure.

■ ACKNOWLEDGMENTS
The authors thank IHub-Data and KCIS, IIIT Hyderabad, and
DST-SERB (CRG/2021/008036) for financial support.

■ REFERENCES
(1) Asami, S.; Schmieder, P.; Reif, B. High Resolution 1H-Detected
Solid-State NMR Spectroscopy of Protein Aliphatic Resonances:
Access to Tertiary Structure Information. J. Am. Chem. Soc. 2010, 132,
15133−15135.
(2) Spronk, C. A.; Linge, J. P.; Hilbers, C. W.; Vuister, G. W.
Improving the quality of protein structures derived by NMR
spectroscopy**. J. Biomol. NMR 2002, 22, 281−289.
(3) Balazs, A. Y. S.; Davies, N. L.; Longmire, D.; Packer, M. J.;
Chiarparin, E. Nuclear magnetic resonance free ligand conformations
and atomic resolution dynamics. Magnetic Resonance 2021, 2, 489−
498.
(4) Koichi, S.; Arisaka, M.; Koshino, H.; Aoki, A.; Iwata, S.; Uno, T.;
Satoh, H. Chemical structure elucidation from 13C NMR chemical
shifts: Efficient data processing using bipartite matching and maximal
clique algorithms. J. Chem. Inf. Model. 2014, 54, 1027−1035.
(5) van Kuik, J.A.; Hard, K.; Vliegenthart, J. F.G. A 1H NMR
database computer program for the analysis of the primary structure
of complex carbohydrates. Carbohydr. Res. 1992, 235, 53−68.
(6) Jonas, E. Deep imitation learning for molecular inverse problems.
In Adv. Neural Inf. Process. Syst.; 2019.
(7) Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Computational
prediction of 1H and 13C chemical shifts: a useful tool for natural
product, mechanistic, and synthetic organic chemistry. Chem. Rev.
(Washington, DC, U. S.) 2012, 112, 1839−1862.
(8) Jonas, E.; Kuhn, S. Rapid prediction of NMR spectral properties
with quantified uncertainty. J. Cheminf. 2019, 11, 50.
(9) Jonas, E.; Kuhn, S.; Schlörer, N. Prediction of chemical shift in
NMR: A review. Magn. Reson. Chem. 2021. DOI: 10.1002/mrc.5234
(10) Bremser, W. Hose  a novel substructure code. Anal. Chim.
Acta 1978, 103, 355−365.
(11) Cherinka, B.; Andrews, B. H.; Sánchez-Gallego, J.; Brownstein,
J.; Argudo-Fernández, M.; Blanton, M.; Bundy, K.; Jones, A.; Masters,
K.; Law, D. R.; Rowlands, K.; Weijmans, A.-M.; Westfall, K.; Yan, R.
Marvin: A Tool Kit for Streamlined Access and Visualization of the
SDSS-IV MaNGA Data Set. Astron. J. 2019, 158, 74.
(12) Zhou, Z.; Kearnes, S.; Li, L.; Zare, R. N.; Riley, P. Optimization
of molecules via deep reinforcement learning. Sci. Rep. 2019, 9, 10752.
(13) You, J.; Liu, B.; Ying, Z.; Pande, V.; Leskovec, J. Graph
Convolutional Policy Network for Goal-Directed Molecular Graph
Generation. In Adv. Neural Inf. Process. Syst.; 2018.
(14) Liu, R.; Li, X.; Lam, K. S. Combinatorial chemistry in drug
discovery. Curr. Opin. Chem. Biol. 2017, 38, 117−126.
(15) Benz, M.; Molla, M. R.; Boser, A.; Rosenfeld, A.; Levkin, P. A.
Marrying chemistry with biology by combining on-chip solution-
based combinatorial synthesis and cellular screening. Nat. Commun.
2019, 10, 2879.
(16) Goel, M.; Raghunathan, S.; Laghuvarapu, S.; Priyakumar, U. D.
MoleGuLAR: Molecule Generation Using Reinforcement Learning
with Alternating Rewards. J. Chem. Inf. Model. 2021, 61, 5815.
(17) Bagal, V.; Aggarwal, R.; Vinod, P.; Priyakumar, U. D. MolGPT:
Molecular Generation Using a Transformer-Decoder Model. J. Chem.
Inf. Model. 2022, 62, 2064.
(18) Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement
learning for de novo drug design. Sci. Adv. 2018, 4, No. eaap7885.
(19) Zhang, J.; Terayama, K.; Sumita, M.; Yoshizoe, K.; Ito, K.;
Kikuchi, J.; Tsuda, K. NMR-TS: de novo molecule identification from
NMR spectra. Sci. Technol. Adv. Mater. 2020, 21, 552−561.
(20) Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.;
Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; Lillicrap, T.
P.; Simonyan, K.; Hassabis, D. Mastering Chess and Shogi by Self-
Play with a General Reinforcement Learning Algorithm. arXiv 2017,
1712.01815.
(21) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G.
E. Neural Message Passing for Quantum Chemistry. arXiv 2017,
1704.01212.
(22) Kuhn, S.; Schlörer, N. E. Facilitating quality control for spectra
assignments of small organic molecules: nmrshiftdb2 − a free in-

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c00624
J. Phys. Chem. Lett. 2022, 13, 4924−4933

4932

https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00624?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00624/suppl_file/jz2c00624_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00624/suppl_file/jz2c00624_si_002.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="U.+Deva+Priyakumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7114-3955
https://orcid.org/0000-0001-7114-3955
mailto:deva@iiit.ac.in
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bhuvanesh+Sridharan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sarvesh+Mehta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yashaswi+Pathak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00624?ref=pdf
https://github.com/devalab/SpectraToStructure
https://github.com/devalab/SpectraToStructure
https://doi.org/10.1021/ja106170h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja106170h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja106170h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1023/A:1014971029663
https://doi.org/10.1023/A:1014971029663
https://doi.org/10.5194/mr-2-489-2021
https://doi.org/10.5194/mr-2-489-2021
https://doi.org/10.1021/ci400601c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci400601c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci400601c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0008-6215(92)80078-F
https://doi.org/10.1016/0008-6215(92)80078-F
https://doi.org/10.1016/0008-6215(92)80078-F
https://doi.org/10.1021/cr200106v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr200106v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr200106v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-019-0374-3
https://doi.org/10.1186/s13321-019-0374-3
https://doi.org/10.1002/mrc.5234
https://doi.org/10.1002/mrc.5234
https://doi.org/10.1002/mrc.5234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0003-2670(01)83100-7
https://doi.org/10.3847/1538-3881/ab2634
https://doi.org/10.3847/1538-3881/ab2634
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1016/j.cbpa.2017.03.017
https://doi.org/10.1016/j.cbpa.2017.03.017
https://doi.org/10.1038/s41467-019-10685-0
https://doi.org/10.1038/s41467-019-10685-0
https://doi.org/10.1021/acs.jcim.1c01341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00600?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00600?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1080/14686996.2020.1793382
https://doi.org/10.1080/14686996.2020.1793382
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.48550/arXiv.1704.01212
https://doi.org/10.1002/mrc.4263
https://doi.org/10.1002/mrc.4263
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c00624?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


house NMR database with integrated LIMS for academic service
laboratories. Magn. Reson. Chem. 2015, 53, 582−589.
(23) Sridharan, B.; Goel, M.; Priyakumar, U. D. Modern Machine
Learning for Tackling Inverse Problems in Chemistry: Molecular
Design to Realization. Chem. Commun. 2022, 58, 5316.
(24) Kaelbling, L. P.; Littman, M. L.; Moore, A. W. Reinforcement
learning: A survey. J. Artif. Intell. Res. 1996, 4, 237−285.
(25) Moerland, T. M.; Broekens, J.; Plaat, A.; Jonker, C. M. Monte
Carlo Tree Search for Asymmetric Trees. arXiv 2018, 1805.09218.
(26) Ramdas, A.; Garcia, N.; Cuturi, M. On Wasserstein Two
Sample Testing and Related Families of Nonparametric Tests. arXiv
2015, 1509.02237.
(27) Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.;
Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks
on Graphs for Learning Molecular Fingerprints. Adv. Neural Inf.
Process. Syst.; 2015.
(28) Landrum, G. RDKit: Open-Source Cheminformatics Software;
2016.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c00624
J. Phys. Chem. Lett. 2022, 13, 4924−4933

4933

 Recommended by ACS

Multiresolution 3D-DenseNet for Chemical Shift
Prediction in NMR Crystallography
Shuai Liu, Teresa Head-Gordon, et al.
JULY 15, 2019
THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS READ 

Neural Message Passing for NMR Chemical Shift
Prediction
Youngchun Kwon, Seokho Kang, et al.
APRIL 06, 2020
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

Automatic Assignment of Methyl-NMR Spectra of
Supramolecular Machines Using Graph Theory
Iva Pritišanac, Andrew J. Baldwin, et al.
JULY 10, 2017
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY READ 

Cross-Modal Retrieval between 13C NMR Spectra and
Structures for Compound Identification Using Deep
Contrastive Learning
Zhuo Yang, Xiaojian Wang, et al.
NOVEMBER 29, 2021
ANALYTICAL CHEMISTRY READ 

Get More Suggestions >

https://doi.org/10.1002/mrc.4263
https://doi.org/10.1002/mrc.4263
https://doi.org/10.1039/D1CC07035E
https://doi.org/10.1039/D1CC07035E
https://doi.org/10.1039/D1CC07035E
https://doi.org/10.1613/jair.301
https://doi.org/10.1613/jair.301
https://doi.org/10.48550/arXiv.1805.09218
https://doi.org/10.48550/arXiv.1805.09218
https://doi.org/10.48550/arXiv.1509.02237
https://doi.org/10.48550/arXiv.1509.02237
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c00624?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acs.jpclett.9b01570?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.jpclett.9b01570?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.jpclett.9b01570?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.jpclett.9b01570?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.jcim.0c00195?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.jcim.0c00195?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.jcim.0c00195?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.jcim.0c00195?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/jacs.6b11358?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/jacs.6b11358?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/jacs.6b11358?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/jacs.6b11358?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.analchem.1c04307?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.analchem.1c04307?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.analchem.1c04307?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.analchem.1c04307?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
http://pubs.acs.org/doi/10.1021/acs.analchem.1c04307?utm_campaign=RRCC_jpclcd&utm_source=RRCC&utm_medium=pdf_stamp&originated=1654764617&referrer_DOI=10.1021%2Facs.jpclett.2c00624
https://preferences.acs.org/ai_alert?follow=1

