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ABSTRACT: Protein−drug interactions play important roles in
many biological processes and therapeutics. Predicting the binding
sites of a protein helps to discover such interactions. New drugs
can be designed to optimize these interactions, improving protein
function. The tertiary structure of a protein decides the binding
sites available to the drug molecule, but the determination of the
3D structure is slow and expensive. Conversely, the determination
of the amino acid sequence is swift and economical. Although
quick and accurate prediction of the binding site using just the
sequence is challenging, the application of Deep Learning, which has been hugely successful in several biochemical tasks, makes it
feasible. BiRDS is a Residual Neural Network that predicts the protein’s most active binding site using sequence information. SC-
PDB, an annotated database of druggable binding sites, is used for training the network. Multiple Sequence Alignments of the
proteins in the database are generated using DeepMSA, and features such as Position-Specific Scoring Matrix, Secondary Structure,
and Relative Solvent Accessibility are extracted. During training, a weighted binary cross-entropy loss function is used to counter the
substantial imbalance in the two classes of binding and nonbinding residues. A novel test set SC6K is introduced to compare
binding-site prediction methods. BiRDS achieves an AUROC score of 0.87, and the center of 25% of its predicted binding sites lie
within 4 Å of the center of the actual binding site.

■ INTRODUCTION
Protein−ligand complexes are functionally important in crucial
mechanisms such as DNA replication, metabolism, catalysis,
defense against viruses, and signal transduction. A ligand can
be any molecule that binds to the protein with high affinity
where the interaction site is the active binding site of the
protein. In drug design, a new drug is modeled to improve
protein function after identifying a potential active binding site,
thus aiding in these crucial mechanisms.
Ligand binding site prediction methods are broadly

categorized into geometry-based, energy-based, template-
similarity-based, traditional machine-learning-based and deep-
learning-based prediction methods.1 Geometry-based and
energy-based methods maintain that most small ligand
bindings occur in cavities on protein surfaces since large
interfaces have a high affinity to small molecules. These
methods locate the binding site by searching for spatial
geometry or energy features by placing probes in protein
structures. SITEHOUND2 uses a carbon and phosphate probe
inside a grid covering the entire protein. The grid points with
higher interaction energies are clustered to determine the
binding residues. A spatial geometric measurement method
CURPOCKET3 computes the curvature distribution of the
protein surface and identifies clusters of concave regions.
Other methods in this category include CASTp,4 LIGSITE,5

VISCANA,6 Fpocket,7 and Patch-Surfer2.0.8 While these
methods are widely used, they are invalid in certain cases

due to their dependence on various factors, such as the
resolution of the structure determination method and the
presence of both ligand groups and external molecules.
Template-similarity-based methods consider that proteins

evolved from structurally, functionally, or sequentially similar
proteins, not as independent entities. S-SITE and TM-SITE9

employ the Needleman−Wunsch algorithm to align the query
protein to sequentially similar proteins in the BioLip10

database, a curated database for biologically relevant ligand−
protein binding interactions. The frequently occurring binding
residues in the aligned proteins form the binding residues of
the query protein. Methods such as ConSurf,11 FINDSITE,12

3DLigandSite,13 FunFOLD,14 and COFACTOR15 also employ
similarity searching.
3D-structure-based and template-similarity-based methods

complement each other very well. Traditional machine-
learning-based methods build an analytical model based on
protein data to identify patterns and structural similarities.
Machine learning integrates the information on both the
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methods and applies mathematical functions to improve
prediction accuracy. P2RANK16,17 uses a random forest
algorithm to predict ligandibility scores across the entire
protein surface. Ligandibility score is the score given to a
ligand for its ability to bind to specific points on the protein.
The points with high scores are then clustered into a single
binding pocket. SCRIBER18 is a fast, sequence-based, two-
layer architecture, machine learning predictor which predicts
propensities of protein-binding, RNA-binding, DNA-binding,
and ligand-binding residues. ConCavity,19 MetaPocket,20 RF-
Score,21 NsitePred,22 NNSCORE23,24 LigandRFs,25 COACH-
D,26 and Taba27 employ different machine learning models to
predict the protein binding site.
Deep Learning is a subfield of machine learning based on

artificial neural networks with feature learning. When a deep
learning network is fed large amounts of data, it can
automatically discover the representations needed for feature
detection or classification. Deep learning has been hugely
successful in the general areas of drug design, such as binding
affinity predictions,28,29 protein contact map predictions,30,31

and protein−structure predictions.32−34 Deep learning-based
methods like DeepSite35 and Kalasanty36 model binding site
prediction address an image processing problem. The protein
3D structure is divided into small grids, called voxels, through a
process known as voxelization. Each voxel’s specific calculated
properties are used to train a deep convolutional neural
network that predicts whether a voxel belongs to a binding site.
DeepPocket37 is a structure-based method that uses 3D
Convolutional Neural Networks to generate a list of pocket
probabilities. A segmentation model then elucidates shapes for
the top-ranked pockets.
The tertiary structure of a protein can provide essential clues

about the binding sites of a protein. Even though there have
been improvements in techniques such as X-ray crystallog-
raphy, NMR spectroscopy, and cryo-electron microscopy, the
determination of the three-dimensional protein structure is
time-consuming and expensive. Modern DNA sequencing
technologies have sped up complete DNA sequencing and, in
turn, protein sequencing. The gap between the number of
known protein sequences (214,406,399 UniProt sequences as
of May 2021)38 and the number of known structures (177,910
PDBs as of May 2021)39,40 is enormous. Predicting the binding
site based on amino acid sequence alone is challenging.
However, it helps to identify potential binding residues before
the three-dimensional structure becomes available.
In this paper, a deep residual neural network (ResNet)41 is

trained to predict whether an amino acid residue in the
sequence belongs to the most active binding site or not. The
sc-PDB database identifies this site as the binding site most
suitable for docking a drug-like ligand. Features are extracted
from the MSAs generated by DeepMSA,42 whose robustness
and usefulness have been studied extensively. BiRDS is trained
on these features for all proteins in the training data set. A
weighted binary cross-entropy loss function is used for
handling the severe class imbalance. The network outputs
the final probabilities, which are converted to binary outputs.
Most sequence-based prediction methods predict the binding
site of a protein for specific ligands, while most popular 3D
structure-based methods predict the ligandable binding sites of
a protein. This paper bridges the gap between the two by
providing a reliable method for predicting a protein’s most
active binding site from sequence information alone. SC6K, a
novel test set, is used for comparing BiRDS with Kalasanty (a

3D structure-based method) and SCRIBER (a sequence-based
method).

■ METHODS
Data Set. An annotated database of druggable binding sites

from the Protein Data Bank, known as sc-PDB (v.2017),43 is
used to train and validate BiRDS. The database takes samples
from the Protein Data Bank,39,44 creates prepared protein
structures of biologically relevant protein−ligand complexes by
filtering based on Uniprot annotations and prepared ligand
templates. The most buried ligand, peptide, or cofactor is
found in the prepared structure, and the site of interaction is
considered the most ligandable binding site. Thus, each sample
in the data set contains the three-dimensional structure of one
ligand, one protein, and one site.
The sc-PDB (v.2017) database is generally used to predict

binding sites based on the available protein−ligand 3D
structures. However, this paper deals with predicting the
most active binding site using sequence information alone, for
which the complete amino acid sequence of all the protein
chains is required. The complete 3D structure is typically
unavailable because some of the protein regions in the crystal
under study are disordered and mobile. Hence the whole
sequence cannot be extracted from the structure. Fortunately,
the entire protein sequence is always available, and for this
paper, it has been downloaded from the RCSB40 Web site in
FASTA file format.a A one-to-one mapping of the amino acids
in the downloaded sequence to the amino acids in the protein’s
3D structure is required to know which amino acid is a binding
residue. This mapping is done by first extracting the protein
sequence from the 3D structure. Next, the Needleman−
Wunsch dynamic programming algorithm45 (implemented by
Zhanglab’s NW-Align program46) is utilized to align the
sequence extracted from the structure file to the downloaded
sequence. The protein structure file is reindexed on the basis of
this alignment to match the indices of the residues in the
downloaded sequence. This reindexing allows for the labeling
of binding residues in the downloaded sequence. Note that the
protein sequence is the concatenation of all its chain
sequences.
The training set consists of the downloaded sequence and

the generated binding residue labels of every protein in the sc-
PDB database, which has 17,594 PDB structures with 28,959
chain sequences, of which 9,419 are unique. For training using
k-fold cross-validation, we must ensure that no two folds have
proteins with sequence similarity greater than 25% to avoid
data leakage between the training and validation set during
network training. Hence, the pairwise sequence similarity of
the 9,419 unique chain sequences was calculated using
BLASTP (part of the BLAST+ 47 package from NCBI). The
SiLiX48 package clustered these unique sequences into families
with greater than 25% sequence similarity and over 80%
overlap, leading to the creation of 2,039 clusters of chain
sequences. Since BiRDS predicts the most active binding site
of the complete protein, the protein sequence must also be
clustered. The Union-Find algorithm49 using a disjoint-set data
structure was employed to make this clustering, where all the
chains of a protein and their corresponding cluster were put in
a single set, creating 1,744 sets. Protein sequences longer than
4,096 residues were removed. An equal sum K-partition
algorithm put these sets into ten folds for cross-validation. One
set had 2,009 proteins and was reduced to 1,642 to split the
sets into ten even folds. Finally, this gave 16,450 proteins
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belonging to the training set, with each fold containing 1,645
proteins.
A separate test set SC6K was constructed using the PDB

structures from January 2018 to February 2020. All PDBs with
at least one ligand were run through the pdbconv program
from the IChem Toolkit.50 The program used the exact
filtering mechanism and site selection method as the sc-PDB43

database. The entire test set consists of 2,274 PDB structures
with 3,434 chain sequences, of which 1,889 are unique.
However, there should be no data leakage between the test and
training sets. Hence, the pairwise sequence similarity of the
1,889 test chain sequences with the 9,419 training chain
sequences was calculated using BLASTP. Sequences with
greater than 25% similarity and over 80% overlap were
removed from the test set, giving a set of 576 chain sequences.
Proteins with all their chain sequences in this set were
considered for the reduced test set, leading to a final count of
530 protein sequences.
MSA Generation. Collections of multiple homologous

sequences (called Multiple Sequence Alignments or MSAs)
can provide critical information for modeling the structure and
function of unknown proteins. DeepMSA42 is an open-source
method for sensitive MSA construction, which has homolo-
gous sequences and alignments created from multiple sources
of databases through complementary hidden Markov model
algorithms. DeepMSA profiles provided statistically significant
improvements in residue-level contact prediction, homologous
structure identification and secondary structure prediction.
These improvements were achieved without retraining the
parameters and neural-network models.
The search for alignments is done in 2 stages. In stage 1, the

query sequence is searched against the UniClust3051 database
using HHBlits from th eHH-suite52 (v2.0.16). If the number of
effective sequences is <128, Stage 2 is performed where the
query sequence is searched against the Uniref5053 database
using JackHMMER from HMMER54 (v3.1b2). Full-length
sequences are extracted from the JackHMMER raw hits and
converted into a custom HHBlits format database. HHBlits is

applied to jump-start the search from the Stage 1 sequence
MSAs against this custom database.

Features. The MSAs were generated for the unique chain
sequences in the training (9,419) and test (1,889) sets using
the method described in MSA Generation and stored in
PSICOV.55aln format. The most commonly used features in
sequence-based predictions were used. Token embeddings,
Positional embeddings, and Segment embeddings were
extracted from the sequence, while Position Specific Scoring
Matrix, Information Content, Secondary Structure, and
Solvent Accessibility were extracted from the generated,
high-quality MSAs. The process for creating the feature map
is shown in Figure 1.

Token Embedding, Positional Embedding, and Segment
Embedding. There are 21 amino acids in the protein
vocabulary of BiRDS, with the 20 standard amino acids
labeled in alphabetical order from 1 to 20 and X, representing
all nonstandard amino acids, labeled as 0. Token embeddings
help the model differentiate between the different types of
amino acids. It is generated by an Encoding layer that uses the
vocabulary label of each amino acid in the sequence. Positional
Embeddings (PE) carry information about the absolute
position of the amino acids in the sequence. Using the
positional encoding layer of a Transformer network,56 these
embeddings were unique for each position and generalized to
long sequences without extra effort. A segment embedding was
generated by using the chain number to which an amino acid
belongs, to allow the model to differentiate between the
multiple chains of a protein.

Position-Specific Scoring Matrix and Information Con-
tent. Position-Specific Scoring Matrix (PSSM) is a commonly
used representation of patterns in biological sequences, derived
as the log-likelihood of the probability that a particular amino
acid occurs at a specific position. The PSSMs were derived
from MSAs using Easel57 and Heinikoff position-based weights
so that similar sequences collectively contributed less to PSSM
probabilities than diverse sequences. The information content

Figure 1. Process used for generating the feature map of BiRDS framework. Token, positional, and segment embeddings are generated using just
the sequence information. The features extracted from the MSAs of the individual protein chains created using DeepMSA, are concatenated to
form the protein feature map.
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(IC) of a PSSM gives an idea about how different the PSSM is
from a uniform distribution. IC was also derived using Easel.
Secondary Structure and Solvent Accessibility. The

secondary structure is defined by the pattern of hydrogen
bonds formed between the amino hydrogen and carboxyl
oxygen atoms in the peptide backbone. It gives an idea of the
three-dimensional structure of the protein. The secondary
structural elements are alpha helices, beta sheets, and turns.
PSIPRED (v4.0)58 was used to predict the probability of each
state of the three-state secondary structure (SS3) for every
amino acid in the sequence. The solvent-accessible surface area
is the surface area of a biomolecule accessible to a solvent.
SOLVPRED from MetaPSICOV 2.059 was used to predict the
every amino acid’s relative solvent accessibility (RSA). RSA
can be calculated as RSA = ASA/MaxASA, where ASA is the
solvent-accessible surface area, and MaxASA is the maximum
possible solvent accessible surface area for the amino acid
residue.
Model. BiRDS Architecture. A Convolutional Neural

Network (CNN) is a Deep Learning algorithm that can take
an image as input, assign importance (learnable weights and
biases) to various aspects/objects in the image, and differ-
entiate one from the other. When multiple CNN layers are
stacked on top of each other, Deep Neural Networks (DNNs)
are formed. DNNs are challenging to train because of the
vanishing gradient problem where the gradients become so
small that the network’s weights do not change, preventing
further training. With the introduction of skip connections
(shortcuts to jump over some layers) in CNNs, the vanishing
gradient problem is avoided. CNNs with skip connections are
known as Residual Neural Networks or ResNets.41 ResNets
use representation learning to extract the most important
features for classification. They can also model long-range
interactions and have been hugely successful in Computational
Natural Sciences.32 The architecture of the deep Residual
Neural Network used here is shown in Figure 2.
Each sample protein in the data set consists of one or more

protein sequences. Let the length of the sequences be l1, ..., ln.
Features are generated for each sequence in the protein
(ordered by chain ID in PDB), leading to multiple vectors of
shape [li, 47] for the ith sequence. These generated features are

combined through simple concatenation, giving a final feature
vector of shape [L, 47] as input to the model, where L = l1 + ...
+ ln.
The feature vector is passed through the first level,

consisting of a 1D convolutional layer with 128 filters of size
7, batch normalization layer, and ReLU (Rectified Linear Unit)
activation function. The input is padded with zeroes to ensure
that the length of the output vector remains the same. The
filters of this layer stride along the length of the protein,
considering the features of the three prior amino acids, the
current amino acid, and the three subsequent amino acids
(totalling 7). This stride allows for the extraction of the
required information on the current amino acid based on the
features of nearby amino acids.
The following five levels contain an up(down) sampling

layer and two basic blocks. A basic block consists of a 1D
convolutional layer, a batch normalization layer, a ReLU
activation function, a second 1D convolutional layer, a second
batch normalization layer, and a final ReLU activation
function. The ResNet skip connection is made after the final
ReLU activation, where the initial input to the first basic block
is added to the output of the final ReLU activation. Usually,
the input received by the first basic block will not match its
required input size. Hence, an up(down) sampling layer
ensures that the input to the first block has the required shape.
The output of size L × d from the first level runs through e
filters of size 1 × d of the up(down) sampling layer to generate
a vector of size L × e. This vector is passed to the first basic
block, which follows a similar stride policy as the first level but
with a window size of 5. The process is repeated with the
second basic block, and its output is sent back to the
up(down) sampling layer. This process is repeated five times,
with d going from 128 → 128→ 256 → 128→ 64 and e going
from 128 → 256 → 128 → 64 → 32. The multiple levels
capture the long-range dependencies of amino acids since the
filters help propagate information on one amino acid through
its neighbors.
The last two levels contain simple, linear, fully connected

artificial neural networks. The penultimate level has a
LeakyReLU activation function with dropout to prevent sparse
gradients. A sigmoid function at the end ensures that the

Figure 2. Architecture of the deep learning model, BiRDS.
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model outputs values between [0, 1], resulting in a vector of
size L (length of the protein), denoting the probabilities of a
residue being a part of the binding site.
Loss Function. There is a substantial imbalance in the two

classes of binding and nonbinding residues in this classification
problem, where the percentage of binding residues is only 6%.
Hence, a weighted binary cross-entropy loss function was used
to train the model.

α̂ = − ̂ + − ̂ −L y y y y y y( , ) ( log( ) (1 ) log(1 ))

ŷ is the vector of true labels, y is the model output probabilities,
and α is the weight assigned to the rare class.
α heavily penalizes the model if it incorrectly predicts

binding residues as nonbinding. α is calculated on the fly for
every batch of inputs using α = n

n
nbr

br
, where nnbr is the total

number of nonbinding residues in the batch and nbr is the total
number of binding residues in the batch.
Implementation. The model is implemented using PyTorch

Lightning,60 a wrapper on the popular open-source deep-
learning library, PyTorch.61 The model is trained in batches
using an Adam Optimiser with the ReduceLROnPlateau
scheduler and a learning rate warm-up where the learning
rate is gradually increased to the actual learning rate. The
implementation can be found at https://github.com/devalab/
BiRDS.

■ RESULTS AND DISCUSSION
Ten models with the architecture described in BiRDS
Architecture were trained through 10-fold cross-validation,
where one fold formed the validation set while the remaining
folds formed the training set in each iteration. The validation
results are provided in Table 1 and the sum of confusion

matrices in Figure 3a. The Receiver Operating Characteristics
(ROC) curve and the Precision-Recall (PR) curve of the
models on their validation sets is provided in Figure 4. The
description of the various metrics is provided in the Supporting
Information.
The model predictions were also mapped back to the

available 3D structures of proteins for DCC calculation. DCC
is the distance between the center of the predicted binding
pocket and the center of the actual binding pocket. It is
commonly used for evaluating 3D-structure based models. The
success rate of DCC is defined as the fraction of predictions
below a given threshold. Pockets with DCC below 4 Å are
considered to be correctly predicted. Figure 3b denotes the

success rate plot of the models’ predictions on their validation
set for various thresholds of the DCC metric. The success rate
ranges from 15% to 75% when the threshold is 4 Å. Fold 2 and
fold 3 models performed well on their validation sets since they
contained only 1−5 protein families with similar sequence
patterns. The presence of only a few families in these folds is
due to the equal sum partition algorithm used to create these
folds. It is a greedy algorithm that combines as many large
clusters as possible, thus causing large families to appear in a
single fold.
The ten trained models are run on the full and reduced test

sets for testing. The models come to a consensus if five or
more models predict a residue as belonging to the most active
binding site of the proteins in a set. The test results, both full
and reduced, are provided in Table 1 and the confusion
matrices in Figure 5a,b.
The performance of BiRDS on the novel SC6K test set was

compared against Kalasanty36 and SCRIBER.18 Kalasanty is a
3D-structure-based method that uses a U-Net architecture62

capable of protein binding site segmentation. The full test set
was run on Kalasanty using their open-source code, and the
DCC metric was calculated for the predicted pocket. The
success rate plot of DCC is shown in Figure 6. BiRDS
performs on par with Kalasanty on the full test set, which will
have a lot of sequences similar to the training data. However,
the performance on the reduced test set shows Kalasanty
outperforming BiRDS. Nevertheless, BiRDS still performs well
on the reduced test set for a sequence-based predictor,
achieving a success rate of 25% at a 4 Å cutoff for DCC. In
other words, for 25% of the test data, the model has predicted
the binding site such that the center of the predicted binding
site is within 4 Å of the center of the most ligandable binding
site. As the threshold of DCC increases, the success rate also
naturally increases. It should be noted that if the model
predicts the whole binding site correctly and misses out on a
couple of residues or predicts more residues, the center of the
predicted binding site may shift significantly.
SCRIBER is a sequence-based, two-layer architecture,

machine learning predictor that predicts propensities of
protein-binding, RNA-binding, DNA-binding, and ligand-
binding residues. The predictor was trained on individual
chain sequences of a protein, based on their Uniprot IDs. For a
fair comparison with BiRDS and to speed up prediction time
on their Web server, the 1,889 unique chain sequences of the
test set were filtered; sequences with length greater than 1,024
and sequences with sequence similarity greater than 25% and
over 80% overlap with the SCRIBER training set and SC6K
test set were removed. SCRIBER predictions of RNA-binding,
DNA-binding, and ligand-binding residue propensities on the
final 521 sequences were averaged and considered for
comparison. The Receiver Operating Characteristic (ROC)
curve and the Precision-Recall (PR) curve of BiRDS on the full
and reduced test set and of SCRIBER on the 521 sequences, is
shown in Figure 7.
A variety of more complex deep-learning models were

trained to improve predictions. As described in the paper by
Cui et al.,63 a Complementary Generative Adversarial Network
(CGAN) was implemented to mitigate the substantial
imbalance in the prediction classes. However, a simple
weighted binary cross-entropy loss function worked better
than a CGAN with focal loss. A Deep Bidirectional Encoder
Representations from Transformers (BERT),64 a state-of-the-
art model for token classification problems in NLP, was also

Table 1. Validation and Test Results

data set MCC ACC F1 IoU PPV TPR

fold 1 0.354 0.920 0.394 0.582 0.359 0.437
fold 2 0.606 0.931 0.633 0.695 0.545 0.755
fold 3 0.521 0.896 0.565 0.641 0.474 0.700
fold 4 0.270 0.898 0.323 0.544 0.296 0.355
fold 5 0.324 0.892 0.367 0.556 0.293 0.490
fold 6 0.338 0.884 0.373 0.555 0.282 0.550
fold 7 0.324 0.902 0.368 0.562 0.309 0.456
fold 8 0.340 0.924 0.380 0.578 0.355 0.407
fold 9 0.380 0.918 0.421 0.591 0.378 0.475
fold 10 0.355 0.917 0.391 0.579 0.332 0.476
test (full) 0.568 0.940 0.589 0.677 0.502 0.713
test (reduced) 0.440 0.951 0.464 0.626 0.497 0.436
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implemented. It performed on par with the current BiRDS
model but led to longer training times. The comparison of
CGAN and BERT with BiRDS on the test set is provided in

the Supporting Information. Several different features to
improve performance were also tried. Task Assessing Protein
Embeddings (TAPE)65 provided trained deep learning models

Figure 3. Results of the ten models on their corresponding validation sets.

Figure 4. ROC and PR curves of the ten models on their corresponding validation sets.

Figure 5. Confusion matrix on the test sets after consensus among models.
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that produced an embedding representation of the protein
sequence input. The trained TAPE transformer model was
added along with BiRDS architecture, but the training could
not proceed due to a large-sized feature map and insufficient
GPU memory. SPOT-1D66 is a sequence-based predictor for
predicting secondary structure, backbone angles, solvent
accessibility, and contact numbers by using predicted contact
maps. These predictions were used as inputs to BiRDS but did
not provide any improvement over the features extracted from
Deep MSAs. An ablation study to identify the importance of
the features currently used by BiRDS can be found in the
Supporting Information.
Some case studies were undertaken to show that the model’s

performance is good, but the metrics do not rate it well due to
the limitations of the data set. The aggregated predictions of
the ten models on the test set were mapped back to the three-
dimensional structure of the protein−ligand complex.

3Dmol.js,67 a modern, object-oriented Javascript library for
visualizing molecular data, was used to visualize the protein’s
surface, with colored residues representing the predicted and
actual binding residues. In the following examples, red
indicates an incorrect prediction of a nonbinding residue as
binding, blue indicates a binding residue that was not predicted
as binding, and green indicates a correct prediction.
In Figure 8, BiRDS seems to incorrectly predict all the

binding residues for 6FAD.68 However, it is predicting another

binding site of the protein. The sc-PDB43 data set was
generated through a series of filters, and the residues
surrounding the most buried ligand was selected to be the
most ligandable binding site. This selection, unfortunately, is a
flaw of the data set and the method used for predictions. There
is no right way to cover cases like these where the model needs
to be penalized less when it predicts a binding site that is not

Figure 6. Success rate plot for various DCC thresholds on the test set
after averaging the predictions of the 10 models.

Figure 7. ROC and PR curve of BiRDS and SCRIBER on the test sets.

Figure 8. 6FAD - BiRDS seems to be incorrectly predicting the actual
binding site (in blue), when in reality, it is predicting another binding
site of the protein (in red).
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the most ligandable binding site. Hence, the evaluation metrics
will generally give an abysmal score for such cases.
Figure 9 shows 6ISP,69 where BiRDS predicts individual

binding sites of two same sequence chains of the protein.

However, the model finds it challenging to predict the binding
site created due to the interaction between the two chains.
This may likely be due to the way the input features are
generated. A simple concatenation of the features of individual
chains to generate the protein sequence features is insufficient
as it does not provide any information about the interaction
among the multiple chains. These interactions scarcely occur in
the training set, making it hard for BiRDS to learn.
Figure 10 shows 6S2J,70 where BiRDS predicts the binding

site of a protein chain with high precision. It predicts most of

the binding residues surrounding the ligand and a couple of
outliers. However, the two protein chains have the same
sequence, causing BiRDS to predict similar binding sites for
both. Since sc-PDB selects only one active binding site during
its selection process, the model predictions are compared
against a single site for metrics calculation. The metrics do not
do justice to these types of predictions, penalising BiRDS with
a poor score.

■ CONCLUSION

In this study, a deep ResNet was implemented to predict a
protein’s most active binding site. A training set of ten folds
was derived from the sc-PDB (v. 2017)43 database containing
data of a protein’s most ligandable binding site. A novel test set
SC6K was constructed from protein−ligand complexes of the
PDB from January 2018 to February 2020. MSAs were
generated for all unique protein chains in both the data sets
using DeepMSA, and features such as Position-Specific Scoring
Matrix, Secondary Structure, and Solvent Accessibility were
extracted. The individual features of the chains were
concatenated to form the protein feature map, and BiRDS
was trained using 10-fold cross-validation and a weighted
binary cross-entropy loss function. BiRDS can accurately
predict the most active binding site of a protein using only
sequence information. It outperforms SCRIBER, a sequence-
based protein-binding site predictor and performs on par with
Kalasanty, a 3D-structure-based method. It becomes crucial to
determine the pocket where the drug molecule binds with the
protein in drug design. BiRDS can be used for early and quick
determination of the binding site before the availability of the
protein structure.
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Figure 9. 6ISP - BiRDS is able to predict the binding site of individual
chains (in red) but not the binding site formed due to the interaction
between chains (in blue).

Figure 10. 6S2J - BiRDS predicts the binding site correctly, but due
to the presence of same sequence protein chains, it predicts both the
binding sites (in green and red).
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■ ADDITIONAL NOTE
aSome obsolete PDBs were manually tracked on RCSB, and
the new PDBs that had supplanted the obsoleted PDBs were
used. A list of obsolete PDBs is provided in the Supporting
Information.
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Green, T.; Qin, C.; Žídek, A.; Nelson, A. W.; Bridgland, A. Improved
protein structure prediction using potentials from deep learning.
Nature 2020, 577, 706−710.
(33) Li, Y.; Zhang, C.; Bell, E. W.; Yu, D.-J.; Zhang, Y. Ensembling
multiple raw coevolutionary features with deep residual neural
networks for contact-map prediction in CASP13. Proteins: Struct.,
Funct., Bioinf. 2019, 87, 1082−1091.
(34) Tiwari, A.; Parekh, N. Network-based Machine Learning
Approach for Structural Domain Identification in Proteins. bioRxiv
2020, DOI: 10.1101/2020.02.22.960666.
(35) Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A. S.; De
Fabritiis, G. DeepSite: protein-binding site predictor using 3D-
convolutional neural networks. Bioinformatics 2017, 33, 3036−3042.
(36) Stepniewska-Dziubinska, M. M.; Zielenkiewicz, P.; Siedlecki, P.
Improving detection of protein-ligand binding sites with 3D
segmentation. Sci. Rep. 2020, 10, 5035.
(37) Aggarwal, R.; Gupta, A.; Chelur, V.; Jawahar, C.; Priyakumar,
U. D. DeepPocket: Ligand Binding Site Detection and Segmentation
using 3D Convolutional Neural Networks. J. Chem. Inf. Model. 2021,
DOI: 10.1021/acs.jcim.1c00799.
(38) UniProt Consortium. UniProt: the universal protein knowl-
edgebase in 2021. Nucleic Acids Res. 2021, 49, D480−D489.
(39) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The protein data
bank. Nucleic Acids Res. 2000, 28, 235−242.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00972
J. Chem. Inf. Model. 2022, 62, 1809−1818

1817

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00972/suppl_file/ci1c00972_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00972/suppl_file/ci1c00972_si_001.pdf
https://doi.org/10.1016/j.csbj.2020.02.008
https://doi.org/10.1016/j.csbj.2020.02.008
https://doi.org/10.1093/nar/gkp281
https://doi.org/10.1093/nar/gkp281
https://doi.org/10.1038/s41401-019-0228-6
https://doi.org/10.1038/s41401-019-0228-6
https://doi.org/10.1093/nar/gkl282
https://doi.org/10.1093/nar/gkl282
https://doi.org/10.1093/nar/gkl282
https://doi.org/10.1016/S1093-3263(98)00002-3
https://doi.org/10.1016/S1093-3263(98)00002-3
https://doi.org/10.1016/S1093-3263(98)00002-3
https://doi.org/10.1021/ci050262q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci050262q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci050262q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci050262q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/1471-2105-10-168
https://doi.org/10.1186/1471-2105-10-168
https://doi.org/10.1093/bioinformatics/btu724
https://doi.org/10.1093/bioinformatics/btu724
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1093/nar/gks966
https://doi.org/10.1093/nar/gks966
https://doi.org/10.1093/bioinformatics/19.1.163
https://doi.org/10.1093/bioinformatics/19.1.163
https://doi.org/10.1073/pnas.0707684105
https://doi.org/10.1073/pnas.0707684105
https://doi.org/10.1073/pnas.0707684105
https://doi.org/10.1093/nar/gkq406
https://doi.org/10.1093/nar/gkq406
https://doi.org/10.1186/1471-2105-12-160
https://doi.org/10.1186/1471-2105-12-160
https://doi.org/10.1186/1471-2105-12-160
https://doi.org/10.1016/j.str.2012.03.009
https://doi.org/10.1016/j.str.2012.03.009
https://doi.org/10.1186/s13321-015-0059-5
https://doi.org/10.1186/s13321-015-0059-5
https://doi.org/10.1186/s13321-015-0059-5
https://doi.org/10.1186/s13321-018-0285-8
https://doi.org/10.1186/s13321-018-0285-8
https://doi.org/10.1186/s13321-018-0285-8
https://doi.org/10.1093/bioinformatics/btz324
https://doi.org/10.1093/bioinformatics/btz324
https://doi.org/10.1093/bioinformatics/btz324
https://doi.org/10.1371/journal.pcbi.1000585
https://doi.org/10.1371/journal.pcbi.1000585
https://doi.org/10.1089/omi.2009.0045
https://doi.org/10.1089/omi.2009.0045
https://doi.org/10.1093/bioinformatics/btq112
https://doi.org/10.1093/bioinformatics/btq112
https://doi.org/10.1093/bioinformatics/btq112
https://doi.org/10.1093/bioinformatics/btr657
https://doi.org/10.1093/bioinformatics/btr657
https://doi.org/10.1093/bioinformatics/btr657
https://doi.org/10.1021/ci100244v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci100244v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci100244v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci2003889?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci2003889?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/1471-2105-15-S15-S4
https://doi.org/10.1186/1471-2105-15-S15-S4
https://doi.org/10.1186/1471-2105-15-S15-S4
https://doi.org/10.1093/nar/gky439
https://doi.org/10.1093/nar/gky439
https://doi.org/10.1093/nar/gky439
https://doi.org/10.1002/jcc.26048
https://doi.org/10.1021/acs.jcim.7b00650?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.7b00650?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.7b00650?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/bty481
https://doi.org/10.1093/bioinformatics/bty481
https://doi.org/10.1093/bioinformatics/bty481
https://doi.org/10.1093/bioinformatics/bty481
https://doi.org/10.1371/journal.pcbi.1005324
https://doi.org/10.1371/journal.pcbi.1005324
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1002/prot.25798
https://doi.org/10.1002/prot.25798
https://doi.org/10.1002/prot.25798
https://doi.org/10.1101/2020.02.22.960666
https://doi.org/10.1101/2020.02.22.960666
https://doi.org/10.1101/2020.02.22.960666?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/btx350
https://doi.org/10.1093/bioinformatics/btx350
https://doi.org/10.1038/s41598-020-61860-z
https://doi.org/10.1038/s41598-020-61860-z
https://doi.org/10.1021/acs.jcim.1c00799?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00799?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00799?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00972?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(40) Burley, S. K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.;
Crichlow, G. V.; Christie, C. H.; Dalenberg, K.; Di Costanzo, L.;
Duarte, J. M. RCSB Protein Data Bank: powerful new tools for
exploring 3D structures of biological macromolecules for basic and
applied research and education in fundamental biology, biomedicine,
biotechnology, bioengineering and energy sciences. Nucleic Acids Res.
2021, 49, D437−D451.
(41) He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for
image recognition. Proceedings of the IEEE conference on computer
vision and pattern recognition; IEEE, 2016; pp 770−778.
(42) Zhang, C.; Zheng, W.; Mortuza, S.; Li, Y.; Zhang, Y. DeepMSA:
constructing deep multiple sequence alignment to improve contact
prediction and fold-recognition for distant-homology proteins.
Bioinformatics 2020, 36, 2105−2112.
(43) Desaphy, J.; Bret, G.; Rognan, D.; Kellenberger, E. sc-PDB: a
3D-database of ligandable binding sites10 years on. Nucleic Acids
Res. 2015, 43, D399−D404.
(44) Berman, H.; Henrick, K.; Nakamura, H. Announcing the
worldwide protein data bank. Nat. Struct. Mol. Biol. 2003, 10, 980−
980.
(45) Needleman, S. B.; Wunsch, C. D. A general method applicable
to the search for similarities in the amino acid sequence of two
proteins. J. Mol. Biol. 1970, 48, 443−453.
(46) Zhang Lab. NW-Align. http://zhanglab.ccmb.med.umich.edu/
NW-align.
(47) Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.;
Papadopoulos, J.; Bealer, K.; Madden, T. L. BLAST+: architecture
and applications. BMC Bioinformatics 2009, 10, 421.
(48) Miele, V.; Penel, S.; Duret, L. Ultra-fast sequence clustering
from similarity networks with SiLiX. BMC Bioinformatics 2011, 12,
116.
(49) Kozen, D. C. The Design and Analysis of Algorithms; Springer,
1992; pp 48−51.
(50) Da Silva, F.; Desaphy, J.; Rognan, D. IChem: A Versatile
Toolkit for Detecting, Comparing, and Predicting Protein−Ligand
Interactions. ChemMedChem. 2018, 13, 507−510.
(51) Mirdita, M.; von den Driesch, L.; Galiez, C.; Martin, M. J.;
Söding, J.; Steinegger, M. Uniclust databases of clustered and deeply
annotated protein sequences and alignments. Nucleic Acids Res. 2017,
45, D170−D176.
(52) Remmert, M.; Biegert, A.; Hauser, A.; Söding, J. HHblits:
lightning-fast iterative protein sequence searching by HMM-HMM
alignment. Nat. Methods 2012, 9, 173−175.
(53) Suzek, B. E.; Wang, Y.; Huang, H.; McGarvey, P. B.; Wu, C. H.;
Consortium, U.. UniRef clusters: a comprehensive and scalable
alternative for improving sequence similarity searches. Bioinformatics
2015, 31, 926−932.
(54) Johnson, L. S.; Eddy, S. R.; Portugaly, E. Hidden Markov model
speed heuristic and iterative HMM search procedure. BMC
Bioinformatics 2010, 11, 431.
(55) Jones, D. T.; Buchan, D. W.; Cozzetto, D.; Pontil, M. PSICOV:
precise structural contact prediction using sparse inverse covariance
estimation on large multiple sequence alignments. Bioinformatics
2012, 28, 184−190.
(56) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Advances in neural information processing systems; MIT Press, 2017; pp
5998−6008.
(57) Potter, S. C.; Luciani, A.; Eddy, S. R.; Park, Y.; Lopez, R.; Finn,
R. D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46,
W200−W204.
(58) Jones, D. T. Protein secondary structure prediction based on
position-specific scoring matrices. J. Mo;. Biol. 1999, 292, 195−202.
(59) Jones, D. T.; Singh, T.; Kosciolek, T.; Tetchner, S.
MetaPSICOV: combining coevolution methods for accurate
prediction of contacts and long range hydrogen bonding in proteins.
Bioinformatics 2015, 31, 999−1006.
(60) Falcon, W. PyTorch Lightning 2019; https://github.com/
PyTorchLightning/pytorch-lightning.

(61) Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan,
G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An
imperative style, high-performance deep learning library.
arXiv:1912.01703 2019.
(62) Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional
networks for biomedical image segmentation. International Conference
on Medical image computing and computer-assisted intervention;
MICCAI Society, 2015; pp 234−241.
(63) Cui, L.; Biswal, S.; Glass, L. M.; Lever, G.; Sun, J.; Xiao, C.
Conan: Complementary pattern augmentation for rare disease
detection. Proceedings of the AAAI Conference on Artificial Intelligence;
AAAI, 2020; pp 614−621.
(64) Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-
training of deep bidirectional transformers for language under-
standing. arXiv:1810.04805 2018.
(65) Rao, R.; Bhattacharya, N.; Thomas, N.; Duan, Y.; Chen, X.;
Canny, J.; Abbeel, P.; Song, Y. S. Evaluating protein transfer learning
with TAPE. Adv. Neural Inf. Process. Syst. 2019, 32, 9689−9701.
(66) Hanson, J.; Paliwal, K.; Litfin, T.; Yang, Y.; Zhou, Y. Improving
prediction of protein secondary structure, backbone angles, solvent
accessibility and contact numbers by using predicted contact maps
and an ensemble of recurrent and residual convolutional neural
networks. Bioinformatics 2019, 35, 2403−2410.
(67) Rego, N.; Koes, D. 3Dmol. js: molecular visualization with
WebGL. Bioinformatics 2015, 31, 1322−1324.
(68) Tunnicliffe, R. B.; Hu, W. K.; Wu, M. Y.; Levy, C.; Mould, A.
P.; McKenzie, E. A.; Sandri-Goldin, R. M.; Golovanov, A. P.
Molecular mechanism of SR protein kinase 1 inhibition by the
herpes virus protein ICP27. Mbio 2019, 10, No. e02551-19.
(69) Cen, Y.; Singh, W.; Arkin, M.; Moody, T. S.; Huang, M.; Zhou,
J.; Wu, Q.; Reetz, M. T. Artificial cysteine-lipases with high activity
and altered catalytic mechanism created by laboratory evolution. Nat.
Commun. 2019, 10, 3198.
(70) Teixeira-Duarte, C. M.; Fonseca, F.; Morais-Cabral, J. H.
Activation of a nucleotide-dependent RCK domain requires binding
of a cation cofactor to a conserved site. elife 2019, 8, No. e50661.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00972
J. Chem. Inf. Model. 2022, 62, 1809−1818

1818

https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1093/bioinformatics/btz863
https://doi.org/10.1093/bioinformatics/btz863
https://doi.org/10.1093/bioinformatics/btz863
https://doi.org/10.1093/nar/gku928
https://doi.org/10.1093/nar/gku928
https://doi.org/10.1038/nsb1203-980
https://doi.org/10.1038/nsb1203-980
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
http://zhanglab.ccmb.med.umich.edu/NW-align
http://zhanglab.ccmb.med.umich.edu/NW-align
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1186/1471-2105-12-116
https://doi.org/10.1186/1471-2105-12-116
https://doi.org/10.1002/cmdc.201700505
https://doi.org/10.1002/cmdc.201700505
https://doi.org/10.1002/cmdc.201700505
https://doi.org/10.1093/nar/gkw1081
https://doi.org/10.1093/nar/gkw1081
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1186/1471-2105-11-431
https://doi.org/10.1186/1471-2105-11-431
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1093/nar/gky448
https://doi.org/10.1006/jmbi.1999.3091
https://doi.org/10.1006/jmbi.1999.3091
https://doi.org/10.1093/bioinformatics/btu791
https://doi.org/10.1093/bioinformatics/btu791
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://doi.org/10.1093/bioinformatics/bty1006
https://doi.org/10.1093/bioinformatics/bty1006
https://doi.org/10.1093/bioinformatics/bty1006
https://doi.org/10.1093/bioinformatics/bty1006
https://doi.org/10.1093/bioinformatics/bty1006
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1128/mBio.02551-19
https://doi.org/10.1128/mBio.02551-19
https://doi.org/10.1038/s41467-019-11155-3
https://doi.org/10.1038/s41467-019-11155-3
https://doi.org/10.7554/eLife.50661
https://doi.org/10.7554/eLife.50661
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00972?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

