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Abstract

There has been tremendous advancement in machine learning (ML) applications in

computational chemistry, particularly in neural network potentials (NNP). NNPs can

approximate potential energy surface (PES) as a high dimensional function by learning

from existing reference data, thereby circumventing the need to solve the electronic

Schrödinger equation explicitly. As a result, ML accelerates chemical space explora-

tion and property prediction compared to quantum mechanical methods. Novel ML

methods have the potential to provide efficient means for predicting the properties

of molecules. However, this potential has been limited by the lack of standard com-

parative evaluations. In this work, we compare four selected models, that is, ANI,

PhysNet, SchNet, and BAND-NN, developed to represent the PES of small organic

molecules. We evaluate these models for their accuracy and transferability on two

different test sets (i) Small organic molecules of up to eight-heavy atoms on which

ANI and SchNet achieve root mean square error (RMSE) of 0.55 and 0.60 kcal/mol,

respectively. (ii) On random selection of molecules from the GDB-11 database with

10-heavy atoms, ANI achieves RMSE of 1.17 kcal/mol and SchNet achieves RMSE of

1.89 kcal/mol. We examine their ability to produce smooth meaningful surface by

performing PES scans for bond stretch, angle bend, and dihedral rotations on rela-

tively large molecules to assess their possible application in molecular dynamics simu-

lations. We also evaluate their performance for yielding minimum energy structures

via geometry optimization using various minimization algorithms. All these models

were also able to accurately differentiate different isomers of the same empirical for-

mula C10H20. ANI and PhysNet achieve an RMSE of 0.29 and 0.52 kcal/mol, respec-

tively, on C10H20 isomers.
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1 | INTRODUCTION

Accurate modeling of biological and chemical processes requires pre-

cise estimation of energies and physiochemical properties of mole-

cules. Density functional theory (DFT) method, even though is very

accurate and has a central role in computational chemistry, are

computationally prohibitive in high-throughput applications. On the

other hand, machine learning (ML) algorithms, trained on known

examples, can be used to predict the properties of new molecules at

much reduced computational cost with comparable accuracy as

DFT.1,2 ML algorithms such as generative adversarial networks,3

coupled with reinforced learning,4,5 have succeeded in finding new
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molecules with the desired drug-like properties.6–8 ML models have

being successfully trained and used as predictive models for inter-

atomic potential energy surfaces (PES),9–14 molecular force field

(FF),15,16 electron densities,17 density functionals,18 protein structure

prediction,19–21 protein–protein interactions,22 material property

prediction,23–25 retrosynthesis,26 and drug discovery.6,7,27,28

Researchers use molecular modeling methods to understand bio-

logical and chemical processes. Biological and chemical molecular

modeling requires an accurate estimation of the energies and

physiochemical properties of the molecules. DFT methods are popular

quantum mechanical (QM) methods of choice for calculating accurate

molecular energies and physiochemical properties. They are computa-

tionally expensive and are impractical for larger systems,29 especially

at a large scale. Hence, to model larger systems and to perform high-

throughput exercises, classical FF are used with significantly reduced

computational cost but with reduced accuracy compared to QM. FFs

simplify the description of interatomic interactions by summing com-

ponents of the bonded, angular, dihedral, and nonbonded contribu-

tions fitted to a simple analytical form. FFs often do not account for

polarizability. Furthermore, FFs have to be parameterized for model-

ing various biological and chemical process.30–34 Hence, they lack

“out-of-the-box” transferability.
In recent years, ML methods have been used to circumvent the

problem of solving Schrödinger equation altogether. ML methods

learn the high dimensional function (HDF), f by training the computer

on large amounts of precomputed data (properties like energy, force,

etc.). The ability to learn the HDF (f) which can then be used to map

function f Zi, rið Þ! E, which returns the energy (E). Hence, to estimate

properties for unknown compounds or structures, one needs to pro-

vide only the given set of nuclear charges Zi and atomic positions ri of

the system to get the required property. The HDF is similar to PES in

the sense that when given a set of nuclear charges Zi and atomic posi-

tions ri of a molecule, it can predict the value of the energy.35

A host of supervised ML algorithms are available to train and opti-

mize HDF, f to approximate the output value for a given input. One

such class of algorithms are known as the artificial neural networks

(ANN).36,37 These techniques have been used to tackle various com-

plex problems in natural language processing38 and computer vision.39

Feed-forward neural networks are a class of ANN that have been

proven to be general function approximators,40 as they have the abil-

ity to transform the input into a new feature (latent) space, in which it

becomes correlated with the output. The transformation is done

sequentially through several layers and is typically highly nonlinear.

Hence, feed-forward NNs are suitable for learning f Zi , rið Þ! E, which

approximates PES.

Previously, NNs have been used to approximate PES for small

molecules with the idea of many-body expansion.41 While being accu-

rate, these methods scale poorly due to a large number of individual

NN involved, typically, one for each term in many-body expansion.

Various feature vectors have been developed recently, such as the

smooth overlap of atomic positions, which was introduced by Bart�ok

et al.12 Nuclear charges (Z) and a matrix of interatomic distances were

used as input to the model for prediction of the energy of the

molecule by Schütt et al.42,43 List of bonds, angles, nonbonded, and

dihedrals (BAND) is used as a feature vector in BAND-NN by

Siddhartha et al.44 Atomic environment vector (AEV) was developed

by Smith et al.,10 which is a modified version of Behler–Parrinello

symmetry function11 (BPSF).

Etot ¼
XN

i¼1

Ei: ð1Þ

As it was later realized that energy is an extensive property and

can be decomposed into atomic contributions. As shown in Equa-

tion (1), where Ei is the energy contribution of an atom i of the mole-

cule with a total number of N atoms. Hence emerged high

dimensional atomic NN (HDNN), which allowed one to use the same

size network for different size molecules.10,11,42,43 HDNN can be

broadly classified into two types, One is “descriptor-based,” and the

other is the “message-passing” variant.
In the descriptor-based variant, the environment information

about an atom is encoded in a handcrafted feature vector, for exam-

ple, BAND, AEV, and BPSF. In feature vectors such as BAND, an

atom's local environment is encoded using a list of BAND interactions.

For feature vectors such as BPSF and AEV, the local environment of

atom i is encoded as an array of values. These values are calculated

using symmetry functions, which mathematically combine distances

and/or angles between an atom of interest i and all other atoms in its

neighborhood. This kind of atom-wise feature vector formulation

makes these feature vectors invariant to translation, rotational, and

permutation of equivalent atoms. The energy of the molecules is cal-

culated as shown in Equation (1) where Ei is the energy contribution

of the atom of interest. These invariances are desired property for

feature vectors because NNs are numerical algorithms, which will pro-

duce different output values if input changes due to such transforma-

tion, which in principle does not change the molecules' conformation.

Examples of models, which use handcrafted feature vector are

BAND-NN, ANI, and TensorMol. ANI and TensorMol approaches are

the extensions of the original approach proposed by Behler and Par-

rinello11 or the deep potential molecular dynamics model.45

The second type is the “message-passing” variant, which takes

nuclear charges and Cartesian coordinates as input, and tries to learn

a meaningful representation of the chemical environment by exchang-

ing information between individual atoms using a deep neural net-

work, also called as deep learning. This approach was first introduced

by the deep tensor neural network (DTNN) and has since been refined

in other DNN architectures, for example, SchNet,43 hierarchically

interacting particle neural network (HIP-NN),46 and PhysNet.47

It is clear that novel ML methods have the potential to provide

efficient means for predicting the properties of molecules. However,

this potential has been limited by the lack of standard comparative

evaluations. Recently, Folmsbee et al. have compared the perfor-

mance of neural network potentials (NNP) for representing PES and

geometry optimization48 whereas Gastegger et al. compared the accu-

racy of NNP on trans alkanes.49 Algorithmic papers often benchmark

proposed methods on disjoint dataset collections and highlight a
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different kind of applicability, making it a challenge to gauge whether

a proposed technique does, in fact, improve performance and applica-

bility. In this study, we compare four NNP models, namely, ANI,

PhysNet, BAND-NN, and SchNet to evaluate their performance using

a common dataset across different test cases: (i) Comparison of the

goodness of fit and transferability among these NNPs. It checks how

well these models perform when trained on N atom molecules and are

tested on molecules with more than N atoms; (ii) Their performance

on structural and geometric isomers; (iii) Their ability to produce

smooth, physically meaningful surface with respect to bond, angles,

and torsional angle changes; (iv) The applicability of these models for

geometry optimization and evaluates their performance using various

optimization algorithms.

2 | METHODS

2.1 | Data selection

The ANI-1 dataset was chosen for the experiments, as they cover a

large conformational space so that the models, when trained, are not

confined to equilibrium structures only. This makes it possible to eval-

uate ML models for calculating energies of nonequilibrium structures,

and subsequently, geometry optimization. The ANI-1 dataset was

built from an exhaustive sampling of a subset of the GDB-11 database

containing molecules upto eight heavy atoms and limiting the atomic

species to C, N, O, and H, which gives 57,947 molecules. These

57,947 molecules were DFT optimized with ωB97x density functional

and 6-31G(d) basis set which gives 57,462 DFT optimized starting

structures. Smith and coworkers then generated tens of thousands of

nonequilibrium structures for each 57,462 equilibrium structure, using

normal-mode sampling. For this work, we chose a subset of the ANI-1

dataset that includes all the equilibrium structures and nonequilibrium

structures whose relative energies with respect to the corresponding

minimum energy structure is less than 30 kcal/mol.44,50 The justifica-

tion for choosing this subset is that software such as Gaussview51 and

Rdkit52 can produce initial geometries near the energy minima. In

addition, in most of the cases, the aim of drug design/bio-molecular

simulations is to model processes, which are near to energy minima.

Hence, the chosen subset of the dataset is deemed sufficient.

2.2 | Training

All four models were trained from the scratch on the subset of the

ANI-1 dataset described in the previous section. A train:test:valida-

tion data split in the ratio of 80:10:10 was used. This results in ~7

million data points in the training set and ~885 k data points each

in the test and validation sets. All the hyper-parameters were taken

as default as stated in original papers of ANI-1,10 PhysNet,47

BAND-NN,44 and SchNet.43 The training code for each of the

models is obtained from the code repositories provided by respec-

tive authors.

L¼j E�Eref j þLnh , ð2Þ

Lnh ¼ λnh
N

XN

i¼1

XNmodules

m¼2

Emi
� �2

Emi
� �2þ Em�1

i

� �2 : ð3Þ

All the models were trained on atomization energy with criteria

being minimization of the mean squared error loss function. In

PhysNet, a different loss function is used as shown in Equations (2)

and (3) where E is predicted energy, Eref is DFT reference energy, Lnh

is “nonhierarchicality penalty,” λnh is regularization hyperparameter

set to 10�2, Emi is energy contribution of atom i from module m, the

total number of modules used in the PhysNet model is Nmodules and N

is total number of atoms in a molecule.47

For ANI, SchNet, and BAND model's ADAM,53 optimizer is used

to minimize the loss function, whereas, for PhysNet, we used

ASMGrad.54 The batch size for ANI is 1024, and 32 for BAND-NN,

SchNet, and PhysNet. The learning rate of 0.01 was used for BAND,

0.0001 for SchNet, and 0.001 for ANI and PhysNet. Learning rate

decay of 0.5, 0.1, 0.1, and exponential decay of 0.96 was used in ANI,

BAND, PhysNet, and SchNet, respectively.

These four models incorporate a different type of feature vectors.

ANI uses AEVs, which are modified Behler and Parrinello symmetry

functions.11 SchNet and PhysNet take nuclear charges and positions

as input, and BAND-NN uses feature vectors inspired from classical

FF equation. While ANI and BAND-NN use simple multilayered neural

network, SchNet and PhysNet have modular architectures to allow

for the calculation of interactions between atoms and learn atomic

features in a hierarchical manner. These four descriptors demonstrate

the evolution of models from simple hand-engineered descriptor and

multilayer NN to complex message-passing models with embedding

and cfconv55 layers. These varied sophistications within these models

piqued our interest to see how well they perform when compared to

each other.

2.2.1 | ANI

The feature vectors used in ANI are called AEVs. They represent the

atomic environment around each atom. AEVs are constructed from

“symmetry functions” which probe the radial and angular environ-

ment for each atom. These are modified versions of the original

BPSF.11 These AEV's are then fed into a multilayered feed-forward

neural network, and the weights of the neural network are optimized

during the training process. The energy is calculated as the sum

of contributions Ei from each atom of a molecule, as shown in

Equation (1). The architecture of ANI-model is described in Figure 1.

2.2.2 | BAND-NN

BAND-NN is inspired from the FF equation, where the energies are

calculated as sum of the contributions from BAND as described in
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Equation (4). The feature vectors are thus created from the list of

BAND of a molecule denoting the atoms that make up these terms,

distances, angles, and dihedral angles. BAND-NN uses four different

neural networks for each of BAND. The BAND-NN architecture is

described in Figure 2.

Etotal ¼
X

Ebondsþ
X

Eanglesþ
X

Enon-bondsþ
X

Edihedrals: ð4Þ

2.2.3 | SchNet

SchNet is a variant of DTNNs.42 This allows SchNet to learn represen-

tations for molecules that are invariant to rotation, translation, and

atom indexing. SchNet uses continuous-filter convolutions with filter-

generating networks55,56 to model the atomic interactions inside the

interaction block (blue boxes). As shown in Figure 3, SchNet has a

modular architecture, atom embedding (green box), interaction refine-

ments (blue boxes), and atom-wise energy contributions Ei. At each

layer, the atomic representation is refined to better model the atomic

interaction with the surrounding environment. SchNet takes nuclear

charges (Z) and positions (R) as input during training.

2.2.4 | PhysNet

PhysNet47 is inspired from SchNet43 and HIP-NN.46 The architecture

is modular and is shown in the Figure 4. To model the atomic interac-

tions, PhysNet uses learnable distance based attention masks that

select different features based on the pairwise distance rij between

atoms inside the interaction block. In addition, to circumvent the

vanishing gradients problem arising due to vanishing of gradients in

deeper neural nets, PhysNet uses pre-activation residual blocks, which

skips one or several layers while training. In the first module, the input

is an atom-wise embedding vector. For other lower modules, the fea-

ture vector is obtained as output from the respective previousF IGURE 1 Overview of ANI architecture showing coordinates
(orange box), atomic environment vector (AEV in green box). Feed
forward neural network (FFNN) (yellow boxes) with hidden layers
specified in round brackets, Ei (gray box) is the energy contribution of
atom i and ETot (blue box) gives the total energy of the molecule
calculated as shown in Equation (1)10

F IGURE 2 Overview of the BAND-NN architecture showing four
different neural networks (trapezoids) for bonds (gray), angles (blue),
non-bonds (red), and dihrdral (green) inspired from force fields44

F IGURE 3 Overview of SchNet architecture with nuclear charge
Z and coordinates R as input to embedding (green box) and
interaction block (blue box) respectively. There are total of six
interaction blocks, represented as dotted line. Ei is the atomic energy
contribution of atom i and ETot is the total energy of a molecule with
N atoms43
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module. Feature vector gets updated as it moves down the five mod-

ules. As the feature vector passes through each module it captures

higher-order interactions. Energy from each module is added to obtain

the atomic energy Ei. These energies are further summed to calculate

the total energy ETot of a molecule with “N” atoms.

3 | RESULTS AND DISCUSSION

In this section, we present the comparative results of all four models,

namely, ANI, PhysNet, BAND-NN, and SchNet across four test cases.

The first test case evaluates the goodness of fit, transferability, and

overall performance of the models. For this, we tested the models

using 885 k molecules test-set. We also used one more test-set called

random GDB, which has 1617 molecules with ten heavy atoms. The

atom counts for random GDB test systems are ten heavy atoms, and

total atom count ranges from 15 to 32 atoms.10 In the second test

case, we show the accuracy of the models in predicting the relative

energies of DFT energy minimized C10H20 isomers with respect to the

lowest energy isomer. The third test case is to evaluate the ability of

the models to produce a smooth PES. Hence, PES scans for bond

stretch, angle bend, and two dihedral rotations on relatively large mol-

ecules are carried out using NNPs and are compared with reference

DFT results. In the fourth test case, we perform geometry optimiza-

tion on the following four molecules, namely, methamphetamine

(eight conformers), decane (eight conformers), fentanyl (eight con-

formers), and retinol (eight conformers) using various optimization

methods, 32 conformer in total and use NNPs to predict energy dur-

ing the optimization.

3.1 | Accuracy and transferability

As mentioned in the Data selection section, all the conformers that

were under 30 kcal/mol in the ANI-1 data set from the corresponding

minimum energy structure were chosen for this study. We did

80:10:10 split; this resulted in 7 million data points in the training set

and 885 k data points each in the test and validation sets. We have

summarized the performance of all four models on test-set in Table 1.

A summary of the performances of all four models on a random GDB

test set, which has 1617 molecules with 10 heavy atoms, is given in

Table 2. This shows the overall accuracy and transferability of these

models as they are tested on larger molecules as compared to mole-

cules in the training set. It is also important to know the performance

of these models from their respective papers. ANI reported a mean

absolute error (MAE) of 0.83 kcal/mol, and root means squared error

(RMSE) of 1.12 kcal/mol on GDB-10 test set with structures that are

30 kcal/mol away from the energy minima and RMSE of 1.91 kcal/

mol on all of GDB-10 test set.10 Unke and Meuwly, in 2019, proposed

PhysNet, which achieved an MAE of 0.19 kcal/mol on QM9 dataset.47

SchNet model by Schütt et al. achieved MAE of 0.31 kcal/mol on QM9

dataset.43 Both PhysNet and SchNet were trained on the QM9 dataset,

which has only ~134 k small organic molecules, which is small as com-

pared to the 7 million training set which has been used in this work.

BAND-NN reported an MAE of 1.45 kcal/mol on the test-set and MAE

of 2.1 kcal/mol on the GDB-10 dataset.

ANI, which uses a hand-crafted feature vector, achieves MAE of

0.39 kcal/mol and RMSE of 0.55 kcal/mol on test set. In contrast,

PhysNet, which learns the feature vector directly from the data,

achieves MAE of 0.40 kcal/mol and RMSE of 0.62 kcal/mol on the

test set with the same size molecules as in the training set, that is,

molecules with eight heavy atoms. So, when it concerns only accu-

racy, ANI and PhysNet have similar accuracy. But, when it concerns

accuracy and transferability to bigger molecules, ANI achieves the

best performance out of all four NNP's with MAE of 0.83 kcal/mol

and RMSE of 1.17 kcal/mol on a random GDB test set which has

larger molecules with 10 heavy atoms in contrast to the training set

which has molecules up to eight heavy atoms.

3.2 | Structural and geometric isomers

In this section, the models ability to accurately predict energies of geo-

metric isomers with the empirical formula C10H20 is evaluated. Thirteen

geometric isomers spanning diverse structural and geometric space

are chosen, including linear chains, cis-trans, and ring containing iso-

mers, namely, p-menthane, n-butylcyclohexane, t-butylcyclohexane,

F IGURE 4 Overview of the PhysNet architecture (left).
Embedding block, five module blocks (yellow boxes). The schema of
module block (right). Atom-wise energy contribution Ei and their sum
gives total energy ETot of a molecule with “N” atoms47

TABLE 1 Summary of performance of the models on test set
(kcal/mol)

Model MAE RMSE

ANI 0.39 0.55

PhysNet 0.40 0.62

BAND-NN 1.45 1.82

SchNet 0.48 0.60

Abbreviations: MAE, mean absolute error; RMSE, root mean square error.
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pentycyclopentane, trans-2-decene, trans-4-decene, trans-3-decene,

trans-5-decene, cis-4-decene, cis-5-decene, cis-2-decene, cis-3-decene,

and dec-1-ene. The structures of all 13 isomers are shown in Figure 5.

All isomers were optimized using the ωB97X/6-31G(d) level of

theory using Gaussian 09 software.57 The accuracy of these

models in predicting the energies of the DFT optimized C10H20

isomers with respect to the lowest energy isomer are compared.

Figure 5 shows that all the NNPs accurately predict the minimum

energy structure and continue to accurately order the energies across

TABLE 2 Summary of performance of the models on test set
from GDB-10 dataset (kcal/mol)

Model MAE RMSE

ANI 0.83 1.17

PhysNet 1.26 1.65

BAND-NN 2.1 2.68

SchNet 1.51 1.89

Abbreviations: MAE, mean absolute error; RMSE, root mean square error.

F IGURE 5 (A–M) Are all the structural and geometric isomers used to generate the data for the isomer case study and (n) plot of relative
energies of structures given in (A–M)
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ring containing structures, linear alkenes structures, and linear alkanes

structures. ANI achieves the best performance with an RMSE of

0.29 kcal/mol followed by PhysNet, with an RMSE of 0.52 kcal/mol.

This experiment is indicative of the ability of these models to capture -

higher-order atomic interactions and differentiate between the

isomers.

3.3 | Potential energy surface

In this section, the models' ability to generate smooth and accu-

rate PES is evaluated. From the experiments reported above, it is

clear that these models can accurately predict the atomization

energy of small organic molecules. However, it is important that

these models not only accurately predict atomization energy but

also be able to produce meaningful PES for a given molecule.

Such behavior is necessary for these models to be applicable in

energy minimization and force calculations in molecular dynamics

simulations.

To examine how well these models produce PES, we performed

PES scans of various molecules that are significantly larger than those

in the training set. We generated PES profiles for N1 C2 bond

stretch and C2 C3 C4 angle bend in methamphetamine, shown in

Figure 6, N1 C2 bond stretch and C3 C4 C5 angle bend in fenta-

nyl, shown in Figure 7, C1 C2 C3 C4 dihedral scan in decane and

4-cyclohexyl butanol, shown in Figures 8 and 9 respectively. C1 C2

bond stretch, C2 C3 C4 angle bend, and C1 C2 C3 C4 torsion

angle in pentadecane shown in Figure 10.

As evident from Figures 6A, 7A, and 10A for 3 C N, C N, and

C C bond stretch scans respectively, ANI and PhysNet produce

smoother curves and have predicted accurate bond equilibrium dis-

tances when compared to others. SchNet misses the bond equilibrium

distance by 0.04 Å in Figure 7A. For PES scan along angle bend, as

seen in Figures 6B, 7B, and 10B, all the models have good agreement

with the DFT curve, and PhysNet has the best performance in all the

three cases. For torsion angle, as shown in Figures 8A, 9A, and 10C,

ANI does better than the other models and is able to get an accurate

estimate of the dihedral rotation barrier.

F IGURE 6 Methamphetamine structure and specific atoms used for potential energy surface (PES) are shown (left). PES scan of (A) N1 C2

bond stretch and (B) C2 C3 C4 angle bend are shown

F IGURE 7 Fentanyl structure and specific atoms used for potential energy surface (PES) are shown (left). PES scan of (a) N1 C2 bond stretch
and (b) C3 C4 C5 angle bend are shown
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3.4 | Geometry optimization

Along with property prediction and accurate representation of PES, it

is also desirable for these models to be used with optimization algo-

rithms to perform geometry optimization of non-optimized structures,

circumventing the need for expensive DFT-based optimization. The

combination of NNPs with optimization algorithms will not only allow

us to accelerate the optimization process, but also give us access to

optimize larger molecules which cannot be optimized using DFT. Four

molecules, which are larger than the molecules in the training set,

were considered for optimization, namely, decane (C10H22), fentanyl

(C22H28N2O), retinol (C20H30O), and methamphetamine (C10H15N).

Eight conformers for each of the four molecules were created using

the RDKit52 package. These were then optimized to obtain their

respective DFT energy minima. Eight different conformers were gen-

erated for each molecule so as to have a different starting point for

each optimization and hence probe more of the conformational space.

We used 14 different optimization algorithms spanning across

different paradigms of gradient-free optimization techniques. To name

a few, we have used the BFGS optimizer, a quasi-Newton method

that searches for the stationary point on the optimization landscape

using first-order gradients or gradients computed approximately. The

Nelder–Mead algorithm is based on the iterative computation of

nonlinear simplices. The OnePlusOne is a subclass of evolutionary

algorithms. The covariance matrix adaptation belongs to a class of

evolutionary strategies using Gaussian sampling. Powell is a line sea-

rch method built using iterative computation of search vectors. Cobyla

works through iterative linear approximations of the objective func-

tion. For this work, the BFGS optimizer implementation in the scipy

python package was used. Other non-gradient-based methods are

implemented in the Nevergrad58 python package. The results of opti-

mization have been summarized in Tables S1–S55. Each table in Data

S1 represents data of one optimization method for a single molecule

out of four molecules.

We have 14 optimization methods and four molecules, which

make up a total of 56 tables. One such set of optimization results are

summarized in Table 3, where column number “(1)–(8)” represent

eight conformers of a single molecule, and models are present in rows.

The values in each cell represents energy ΔEopt in kcal/mol calculated

as shown in Equation (5), where EModel
opt is the model optimized energy

and EDFT
opt is DFT optimized energy (ground truth). ΔEopt indicates how

far away is the model optimized conformer from the DFT optimized

conformer. Hence smaller values of ΔEopt are better as they indicate

the ability of the models to predict optimized structures in very close

agreement to that of the DFT optimized structures (ground truth).

The last column, called “Best count”, represents the number of counts

out of eight conformers for which the model got the best ΔEopt value

(smaller is better).

Table 3 shows optimization results for decane molecules using

the CMandAS3 method. As ANI gets the best ΔEopt values (smaller is

better) for conformers 2, 4, and 6 as compared to other models, we

put “Best count” as 3 for ANI. Similarly, PhysNet gets the best values

for five conformers out of eight; hence, we give five to PhysNet in the

“Best count” column. Similarly, for all the 55 tables in Data S1

ΔEopt ¼ EModel
opt �EDFT

opt : ð5Þ

The experiments are performed on four molecules, namely, meth-

amphetamine (eight conformers), decane (eight conformers), fentanyl

(eight conformers), and retinol (eight conformers) and 14 different

optimization methods. Altogether, there are 4 � 8 � 14 = 448 differ-

ent optimization procedures. For decane, ANI achieves 55 best-

optimized conformers out of 112 as compared to all other models,

whereas PhysNet achieves 48 best-optimized conformers out of

112 (Table 4). For decane, the best-optimized structure is only

0.61 kcal/mol away from DFT energy minima (Table S9). Similarly, the

best-optimized conformer for fentanyl, retinol, and methamphetamine

are 5.37, 3.51, and 1.18 kcal/mol away from DFT energy minima. All

the Optimization results are given in Data S1. For the three molecules,

namely, decane, fentanyl, and retinol, the ANI model has the highest

number of best-optimized conformers count, whereas, for metham-

phetamine, PhysNet has a higher number of best-optimized

F IGURE 8 Decane structure and specific atoms used for potential
energy surface (PES) are shown (left). PES scan of (a) C1 C2 C3 C4
dihedral angle is shown

F IGURE 9 4-Cyclohexylbutanol structure and specific atoms used
for potential energy surface (PES) are shown (left). PES scan of
(a) C1 C2 C3 C4 dihedral angle is shown
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conformers count of 56 out of 112. ANI performs better than the

other three models as it gets the best optimization for 245 times out

of 448. PhysNet gets 137 best-optimized conformers out of 448.

Although results for all the conformers are not perfect, this could be

further improved using appropriate molecular representations. We

have also used gradient-based optimization BFGS, which gives the

best-optimized conformer for decane, fentanyl, retinol, and metham-

phetamine, which are 0.49 (ANI), 4.30(ANI), 2.93(SchNet), and 0.95

F IGURE 10 Pentadecane structure and specific atoms used for potential energy surface (PES) are shown (top left). PES scan of (a) C1 C2
bond stretch, (b) C2 C3 C4 angle bend, and (c) C1 C2 C3 C4 torsion angle are shown

TABLE 3 Optimization of eight
decane structures using CMandAS3
optimization method

Structures 1 2 3 4 5 6 7 8 Best count

ANI 0.43 0.56 0.62 0.64 0.44 0.56 0.96 0.58 3

PhysNet 0.42 0.57 0.59 0.66 0.44 0.57 0.95 0.57 5

SchNet 0.5 0.63 0.67 0.64 0.48 0.64 1.12 0.62 0

BAND-NN 0.57 0.68 0.79 0.83 0.57 0.65 1.14 0.73 0

Note: Values shown are the differences between optimized DFT and ML energies (kcal/mol). The best

value (smallest) in each column is highlighted in bold indicating which model performs best for each of

the eight structures.

Abbreviations: DFT, density functional theory; ML, machine learning.

TABLE 4 Count of the best-optimized conformers

Molecules Decane Fentanyl Retinol Methamphetamine

ANI 55 66 85 39

PhysNet 48 15 18 56

SchNet 4 19 9 5

BAND-NN 5 12 0 12

Total 112 112 112 112
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(PhysNet) kcal/mol away from DFT energy minima respectively. Over-

all, ANI performs better than other three models.

4 | CONCLUSIONS

In this work, we evaluate and compare four models, that is, ANI,

PhysNet, SchNet, and BAND-NN, on their accuracy in energy predic-

tion, transferability to larger molecules, ability to produce accurate

PES, and applicability in geometry optimization. These models were

originally trained and tested on different data sets, which makes their

applicability and comparison difficult. This work provides a standard

comparative evaluation of these models by training and testing them

on the same sets. For accuracy and transferability, we report that the

ANI model performs best with RMSE of 0.55 and 1.17 kcal/mol on

~885 k molecules and on the GDB-10 test set, which has 1617 mole-

cules with 10 heavy atoms randomly selected from the GDB-11 data-

base. We also notice that both ANI (descriptor-based) and PhysNet

(message-passing) produce smooth and meaningful surfaces and are

potentially applicable in Molecular dynamics simulations. All these

models were also able to accurately differentiate different isomers of

the same empirical formula C10H20. ANI and PhysNet achieve an

RMSE of 0.29 kcal/mol and 0.52 kcal/mol, respectively. All these

models are trained on DFT energies, but can also be extended to

higher-level ab initio QM methods and larger basis sets. These models

also show their potential for geometry optimization. ANI out-

performed all models by optimizing 245 structures more accurately

than others in 448 test structures. PhysNet stood next with 137 best-

optimized conformers.

ANI is a variant of descriptor-based HDNNs where features are

manually constructed. On the contrary, PhysNet is an end-to-end

data-driven model. It is clear that ANI outperforms all the models in

most of the experiments. The PhysNet model, which takes only dis-

tances and atom types as input without requiring any additional hand

engineering, is not far behind ANI. ANI and PhysNet show promising

results in producing smooth and accurate PES and can perform geom-

etry optimization. While deep neural network have demonstrated

great potential in achieving accurate energies, systematic

benchmarking of these are necessary for wider applicability and

transferability.
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