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ABSTRACT: Application of deep learning techniques for de novo generation of molecules, termed as inverse molecular design, has
been gaining enormous traction in drug design. The representation of molecules in SMILES notation as a string of characters enables
the usage of state of the art models in natural language processing, such as Transformers, for molecular design in general. Inspired by
generative pre-training (GPT) models that have been shown to be successful in generating meaningful text, we train a transformer-
decoder on the next token prediction task using masked self-attention for the generation of druglike molecules in this study. We
show that our model, MolGPT, performs on par with other previously proposed modern machine learning frameworks for molecular
generation in terms of generating valid, unique, and novel molecules. Furthermore, we demonstrate that the model can be trained
conditionally to control multiple properties of the generated molecules. We also show that the model can be used to generate
molecules with desired scaffolds as well as desired molecular properties by conditioning the generation on scaffold SMILES strings of
desired scaffolds and property values. Using saliency maps, we highlight the interpretability of the generative process of the model.

■ INTRODUCTION

It has been postulated that the total number of potential drug
like candidates range from 1023 to 1060 molecules,1 of which
only about 108 molecules have been synthesized.2 Since it is
difficult to screen a practically infinite chemical space, and
there is a huge disparity between synthesized and potential
molecules, generative models are used to model a distribution
of molecules for the purpose of sampling molecules that have
desirable properties. Deep generative models have made great
strides in modeling data distributions in general data domains
such as Computer Vision3,4 and Natural Language Processing
(NLP).5,6 Such methods have also been adopted to model
molecular distributions.7,8 Such models learn probability
distributions over a large set of molecules and therefore are
able to generate novel molecules by sampling from these
distributions.7,9 The rapid adoption of the deep generative
model has also led to the development of benchmark data sets
such as the Molecular Sets (MOSES)10 and GuacaMol9 data
sets.
The representation of molecules in the Simplified Molecular

Input Line Entry System (SMILES)11 notation as a string of
characters enables the usage of modern NLP deep learning
models for their computation.12 Some of the earliest deep

learning architectures for molecular generation involved the
usage of Recurrent Neural Networks (RNNs) on molecular
SMILES.13,14 Such models have also previously been trained
on a large corpus of molecules and then focused through the
usage of reinforcement learning15,16 or transfer learning13 to
generate molecules of desirable properties and activity.
Auto-Encoder variants such as the Variational Auto-Encoder

(VAE)17−21 and Adversarial Auto-Encoder (AAE)22−25 have
also been employed for molecular generation. These models
contain an encoder that encodes molecules to a latent vector
representation and a decoder that maps latent vectors back to
molecules. Molecules can then be generated by sampling from
these latent spaces. Randomization of SMILES strings26−28

have also been employed in such models as a data
augmentation strategy. Junction Tree VAE (JT-VAE),20 on
the other hand, is an alternate solution for molecular
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generation that represents molecules as graph tree structures.
JT-VAE also ensures 100% validity of generated molecules by
maintaining a vocabulary of molecular components that can be
added at each junction of the molecule tree. Conditional
Variational Auto-Encoders have also been used to generate
molecules with desired properties.29

Generative Adversarial Networks (GANs) have also gained
traction for molecular design.30−34 This is mainly because of
their ability to generate highly realistic content.4 GANs are
composed of generators and discriminators that work in
opposition of each other. While the generator tries to generate
realistic content, the discriminator tries to distinguish between
generated and real content. ORGAN31 was the first usage of
GANs for molecular generation. RANC34 introduced re-
inforcement learning alongside a GAN loss to generate
molecules of desirable properties. LatentGAN30 is a more
recent method that uses latent vectors as input and outputs.
These latent vectors are mapped to molecules by the decoder
of a pretrained autoencoder. This ensures that the model can
work with latent representations and does not have to handle
SMILES syntax. Most of these methods have been
benchmarked on either the MOSES10 or the GuacaMol9

data set for easy comparison.
Often, methods use Bayesian optimization,35,36 reinforce-

ment learning,15,34 or other optimization methods37,38 to
generate molecules exhibiting desirable properties. Mol-
CycleGAN39 is a generative model that utilizes the JT-VAE
architecture and applies the CycleGAN40 loss to generate
molecules of required properties using given molecule
templates. Only a few methods employ conditional generation
based on user defined property values. Conditional RNNs,13,41

Deep Learning Enabled Inorganic Material Generator
(DING),29 and Conditional Adversarially Regularized Autoen-
coder (CARAE)25 are three such methods that sample
molecules based on exact values. RNNs have also been
previously used to generate molecules based on given

scaffolds.42 A graph based method has been designed that
ensures the presence of desired scaffolds while generating
molecules with exact property values.43

A novel NLP architecture called the Transformer5 has
shown state-of-the-art performance in language translation
tasks. Transformers consist of encoder and decoder modules.
The encoder module gains context from all the input tokens
through self-attention mechanisms. The decoder module gains
context from both the encoder as well as previously generated
tokens by attention. Using this context, the decoder is able to
predict the next token. The decoder module has also been
previously used independently for language modeling tasks and
is known as the Generative Pre-Training Transformer model
(GPT).44 The GPT model has been shown to develop better
language embeddings44 that model longer-distance connec-
tions. Due to this, the embeddings have shown top
performance when used for multiple language modeling tasks
such as natural language inference, question answering,
sentence similarity, and classification.45

To yield the added benefits of this architecture, we train a
GPT model, named MolGPT, to predict a sequence of
SMILES tokens for molecular generation. To the best of our
knowledge, this is the first work that has used the GPT
architecture for molecular generation. For this, we use a regular
expression (later referred to as a SMILES tokenizer) that
breaks the SMILES strings into a set of relevant tokens which
are used to train the model. Since predicted tokens are a result
of attention applied to all previously generated tokens, we
believe that the model easily learns the SMILES grammar and,
therefore, can focus on higher level understanding of molecular
properties. To this end, we also train our models conditionally
to explicitly learn certain molecular properties. The model
displays performance that is on par with other methods
benchmarked on the MOSES and Guacamol data sets.
Furthermore, we show that MolGPT controls user specified
molecular properties and scaffolds with good accuracy, leading

Figure 1. Probability distributions of properties (log P, molecular weight, QED, SAS, TPSA, and SMILES length) of molecules in the MOSES and
GuacaMol data sets.
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to our conclusion that it learns a good representation of the
chemical space.

■ METHODS

In this section, we first present the data sets used for all the
experiments. We discuss the properties used for conditional
generation. This is then followed by the overview of the
proposed model. A schematic of the training and generation
pipeline is shown in this section. Finally, the details of the
experiments and the metrics used for the evaluation of different
models are provided.
Data Sets. In this work, we used two benchmark data sets,

MOSES and GuacaMol, for training and evaluation of our
model. MOSES is a data set composed of 1.9 million clean
lead-like molecules from the Zinc data set46 with molecular
weight ranging from 250 to 350 Da, number of rotatable bonds
lower than 7, and XlogP below 3.5. GuacaMol on the other
hand is a subset of the ChEMBL 2447 database that contains
1.6 million molecules. We used the RDkit toolkit48 to calculate
molecular properties and to extract Bemis−Murcko scaffolds.49

The MOSES data set was created mainly to represent lead like
molecules and therefore has a distribution of molecules with
ideal druglike properties. However, to test the models’ control
on conditional generation, we prefer the larger distribution of
property values available in the Guacamol data set as can be
seen in Figure 1. This is preferred so that we can test the
model’s ability to generate molecules having very different

property values. Therefore, we use the GuacaMol data set to
test property conditional generation. The MOSES data set also
provides a test set of scaffolds which we use to evaluate scaffold
and property conditional generation.
The models were trained to learn some properties of the

molecules for controlled generation and optimization. The
properties used are the following:
• logP: The logarithm of the partition coefficient. The

partition coefficient compares the solubilities of the solute in
two immiscible solvents at equilibrium. If one of the solvents is
water and the other is a nonpolar solvent, then logP is a
measure of hydrophobicity.
• Synthetic Accessibility score (SAS50): Measurement of

the difficulty of synthesizing a compound. It is a score between
1 (easy to make) and 10 (very difficult to make).
• Topological Polar Surface Area (TPSA): The sum of

surface area over all polar atoms. It measures the drug’s ability
to permeate cell membranes. Molecules with a TPSA greater
than 140 Å2 tend to be poor in permeating cell membranes.
Quantitative Estimate of Drug-likeness (QED51): This

quantifies drug-likeness by taking into account the main
molecular properties. It ranges from 0 (all properties
unfavorable) to 1 (all properties favorable).

Model Overview. The model schematic of MolGPT for
training and generation is given in Figure 2. For non-
conditioned training, molecular SMILES are first tokenized
using a SMILES tokenizer, and the model is then trained on

Figure 2. Pipeline for training and generation using the MolGPT model.

Figure 3. MolGPT model architecture.
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the next token prediction task. For property conditioned and
scaffold conditioned training, we extract molecular properties
and scaffolds from molecules using RDkit48 and pass them as
conditions alongside the molecular SMILES. For generation,
we feed the model a start token and the model then
sequentially predicts the next token, thus generating a
molecule. The start token is obtained via a weighted random
sampling from a list of tokens that occur first in the SMILES
strings of the training set. The weights of these tokens are
determined by their frequency of occurrence in the first
position of SMILES strings in the training set. Then, we
provide the model a set of property and scaffold conditions
along with the start token to sample a molecule.
Our model is illustrated in Figure 3. The model is essentially

a mini version of the Generative Pre-Training Transformer
(GPT) model.44 Unlike GPT1 that has around 110 M
parameters, MolGPT has only around 6 M parameters.
MolGPT comprises stacked decoder blocks, each of which is
composed of a masked self-attention layer and fully connected
neural network. Each self-attention layer returns a vector of
size 256 that is taken as input by the fully connected network.
The hidden layer of the neural network outputs a vector of size
1024 and passes it through GELU activation layer. The final
layer of the fully connected neural network returns a vector of
size 256, that is then used as input for the next decoder block.
MolGPT consists of eight such decoder blocks.
To keep track of the order of the input sequence, position

value embeddings are assigned to each token. During
conditional training, segment tokens are provided to
distinguish between the condition and the SMILES tokens.
Segment token embeddings represent whether a particular
input is a condition or a molecule SMILES token for ease of
differentiation between the two by the model. All the molecule
SMILES tokens are mapped to a 256 dimensional vector using
an embedding layer. Similarly, separate trainable embedding
layers are used to map the position tokens and segment tokens
to 256 dimensional vectors. These SMILES token embeddings,
position embeddings, and segment token embeddings are then
added, resulting in a vector of size 256 for each token of the
SMILES string, which is then passed as input to the model.
GPT architectures work on a masked self-attention

mechanism. Self-attention is calculated through “Scaled Dot
Product Attention”. This involves three sets of vectors, the
query, key, and value vectors. Query vectors are used to query
the weights of each individual value vector. They are first sent
through a dot product with key vectors. These dot products are
scaled by the dimensions of these vectors, and then a softmax
function is applied to get the corresponding weights. The value
vectors are multiplied by their respective weights and added.
The query, key, and value vectors for each token are computed
by weight matrices present in each decoder block. Attention
can be represented by the following formula:

=
i

k
jjjjjj

y

{
zzzzzzQ K V

QK
d

VAttention( , , ) softmax
T

k

where Q, K, and V are query, key, and value vectors,
respectively. dk here is the dimension of query and key vectors,
and T is transpose of the matrix.
Self-attention provides attention to all the tokens of a

sequence for prediction. However, this is not ideal when we are
training a model to predict the next token in a sequence. It is
because, during generation, unlike during training, the network

would have access only to the tokens predicted in the previous
time-steps. Therefore, masked self-attention is applied to mask
attention to all sequence tokens that occur in future time steps.
Moreover, instead of performing a single masked self-attention
operation, each block performs multiple masked self-attention
operations (multihead attention) in parallel and concatenates
the output. Multihead attention provides better representations
by attending to different representation subspaces at different
positions.
We train this model on molecules represented as SMILES

strings. For this, we use a SMILES tokenizer to break up the
string into a sequence of relevant tokens. Property conditions
are sent through a separate fully connected linear layer that
maps the conditions to a vector of 256 dimensions to provide a
representation of the properties in a higher dimension. The
resultant vector is then concatenated at the start of the
sequence of the embeddings of the SMILES tokens. For
scaffold conditions, we use the same embedding layer as
molecule SMILES to map each token of the scaffold string to a
256-dimensional vector. Similar to property conditions, the
scaffold representation is then concatenated at the start of the
sequence of the embeddings of the SMILES tokens. The
model is trained such that the predicted tokens are a result of
attention to both the previous molecule tokens as well as the
conditions.

Training Procedure and Evaluation Metrics. Each
model is trained for 10 epochs using the Adam optimizer
with a learning rate of 6 × 10−4. During generation, a start
token (that is randomly sampled from the list of first tokens of
molecules in the training set) is provided to the network along
with the conditions.
We trained and tested MolGPT on both the MOSES10 and

GuacaMol9 data sets. We also conducted experiments to check
MolGPT’s capacity to control molecular properties and core
structures. The models were trained on an NVIDIA 2080Ti
GPU. Most of the models converged and showed best
performance after 10 epochs. However, we noticed that
training them for slightly fewer epochs led to similar results in
terms of validity, novelty, and uniqueness of generated
molecules, which are the metrics used here (details below).
• Validity: the fraction of a generated molecules that are

valid. We use RDkit for validity check of molecules. Validity
measures how well the model has learned the SMILES
grammar and the valency of atoms.
• Uniqueness: the fraction of valid generated molecules that

are unique. Low uniqueness highlights repetitive molecule
generation and a low level of distribution learning by the
model.
• Novelty: the fraction of valid unique generated molecules

that are not in the training set. Low novelty is a sign of
overfitting. We do not want the model to memorize the
training data.
• Internal Diversity (IntDivp): measures the diversity of

the generated molecules, which is a metric specially designed
to check for mode collapse or whether the model keeps
generating similar structures. This uses the power (p) mean of
the Tanimoto similarity (T) between the fingerprints of all
pairs of molecules (s1, s2) in the generated set (S).

∑= −
| | ∈

S
S

T s sIntDiv ( ) 1
1

( 1, 2)p
s s S

p
2

1, 2
p
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We report IntDiv1 (p = 1) and IntDiv2 (p = 2) in this work.
• Frechet ChemNet Distance52 (FCD): calculated using

the features of the generated molecules and the features of
molecules in the data set. The features are obtained from the
penultimate layer of the ChemNet model. Low FCD values
indicate that the model has successfully captured the statistics
of the data set. Mathematically, FCD between a generated
distribution G and training data distribution D is defined as
follows.

μ μ= − + Σ + Σ

− Σ Σ

G D TrFCD( , ) (

2( ) )
G D G D

G D

2

1/2

where μG is the mean and ΣG is the covariance of the
distribution G. For the Guacamol data set, the final FCD score
is reported as

= −S exp( 0.2FCD)

So, for the Guacamol data set, a higher S value is considered to
be better.
• KL Divergence: Following Brown et al.,9 KL divergence is

calculated using numerous physicochemical descriptors of the
generated and the reference sets. Lower values indicate that the
model has learned the distribution of these properties very
well. KL divergence between two distributions P and Q for any
given property is a measure of how well Q approximates P and
is calculated as follows:

∑=D P Q P i
P i
Q i

( , ) ( ) log
( )
( )KL

i

Reported here is the aggregated final score S over all the
properties k calculated as

∑= −S
k

D
1

exp( )
i

k

iKL,

■ RESULTS AND DISCUSSION
In this section, we first present the results on nonconditioned
generation of molecules. MolGPT’s performance is then

compared with other state-of-the-art approaches, followed by
some insights on the interpretability of our model. We then
demonstrate our model’s ability of conditional generation
based on property alone and scaffold alone. This is followed
with the results on conditional generation based on property
and scaffold together. Finally, we show examples of our model
being used for optimization of QED value of a starting
molecule and optimization of SAS value maintaining the
scaffold, TPSA, and logP values.

Nonconditioned Molecular Generation. The chemical
space is practically infinite and unexplored, and so a good
generative model should try to generate a greater number of
novel, valid molecules so as to help us explore that chemical
space. High values of these metrics would ensure that the
models have learned the molecule grammar well and are not
overfitting to the training data simultaneously. Internal
diversity scores give an idea about the extent of chemical
space traversed by different models. FCD and KL divergence
measure how well the model captures the statistics and
distribution of the features of the data set, respectively. So,
MolGPT is compared with previous approaches on these
criteria. All metrics except validity are computed on the set of
valid molecules generated by the model. We compare the
performance of MolGPT on the MOSES data set to that of
CharRNN, VAE, AAE, LatentGAN, and JT-VAE. JT-VAE uses
graphs as input, while the others use SMILES. The model
performance with a temperature of 1.0 on each data set is
reported in Table 1 and Table 2.
On the MOSES benchmark, MolGPT has the best FCD

score for molecules as well as their scaffolds. This indicates that
the model has learned the data set statistics very well. It
performs on par with other models in terms of the two internal
diversity metrics. In the case of validity, as mentioned earlier,

Table 1. Comparison of the Different Metrics Corresponding to Nonconditioned Generation of Molecules Using Different
Approaches Trained on MOSES Data Set

models validity unique@10K novelty IntDiv1 IntDiv2 FCD/Test FCD/TestSF

CharRNN 0.975 0.999 0.842 0.856 0.85 0.0732 0.5204
VAE 0.977 0.998 0.695 0.856 0.85 0.099 0.567
AAE 0.937 0.997 0.793 0.856 0.85 0.555 1.057
LatentGAN 0.897 0.997 0.949 0.857 0.85 0.2968 0.8281
JT-VAE 1.0 0.999 0.914 0.855 0.849 0.395 0.938
MolGPT 0.994 1.0 0.797 0.857 0.851 0.067 0.507

Table 2. Comparison of the Different Metrics
Corresponding to Nonconditioned Generation of Molecules
Using Different Approaches Trained on GuacaMol Data Set

models validity unique novelty FCD KL divergence

SMILES LSTM 0.959 1.0 0.912 0.913 0.991
AAE 0.822 1.0 0.998 0.529 0.886
Organ 0.379 0.841 0.687 0.000 0.267
VAE 0.870 0.999 0.974 0.863 0.982
MolGPT 0.981 0.998 1.0 0.907 0.992

Figure 4. Input saliency maps for the shown generated molecule. The
dark purple underlines are the tokens under consideration for saliency
maps. The intensity of color of each token indicates the importance of
that token for generating the underlined token.
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JT-VAE always generates a valid molecule because it checks
validity at every step of generation. Barring JT-VAE, we
observe that MolGPT performs best at generating valid and
unique molecules. MolGPT has a near perfect validity score on
the MOSES data set without the use of explicit constraints,
indicating strong learning of the SMILES grammer and
modeling of long-term dependencies that can be attributed
to the attention mechanisms. MolGPT, however, has a low
novelty score on the data set, being only slightly better than the
AAE. On the GuacaMol benchmark, MolGPT demonstrates
the best results on validity, novelty, and KL divergence, while
its FCD is only 0.006 less than the RNN. So it is the preferred
method when compared to other methods tested on it. It
returns very high validity, uniqueness, and novelty scores on
generation with a sampling temperature of 1.0. We believe this
boost in novelty, as compared to MOSES, is due to a larger
diversity in molecules in the GuacaMol data set (see Figure 1).
Moreover, even though the GuacaMol data set has larger
molecules as compared to the MOSES data set, MolGPT
generates molecules with very high validity, also indicating that
this method handles long-range dependencies very well.

While it is important to develop machine learning
frameworks and pipelines for making tasks more efficient, it
is desirable to also demonstrate that these models allow for
interpretation. We use saliency maps to visualize the molecular
generation process for our model. The usage of saliency maps
has been well established in the context of transformer models
and have been used previously for synthesis prediction.53

Figure 4 shows input saliency maps for some of the generated
tokens of the shown generated molecule. Input saliency
methods assign a score to each input token that indicates the
importance of that token in generating the next token. “(“, “C”,
and “c” refer to the branching from chain, nonaromatic carbon,
and aromatic carbon, respectively. From Figure 4, we see that
when generating the “O” atom in the first saliency map, the
model attends to the previous double bond and “N” atoms.
The double bond satisfies the valency of the oxygen atom, and
the “N” atom participates in the formation of the tautomer
(Lactam and Lactim), which increases the stability of the
structure. When generating the “C” atom in the second
saliency map, the model attends to “(“ and “)” to check if they
are balanced and also attends to the atoms in the nonaromatic
ring. In the nonaromatic ring, it attends mostly to the
immediate neighbors“2” and “N” atoms. When generating
the “2” token, it attends to the immediate previous “C” token
and the tokens in the nonaromatic ring. When generating “c”
tokens in the last and second to last row of the saliency maps,
the model rightly attends to the atoms in the aromatic ring
since that ring is still incomplete. Thus, these saliency maps
provide some insight into the chemical interpretability of the
generative process.

Figure 5. Distribution of property of generated molecules conditioned on (a) logP, (b) TPSA, (c) SAS, and (d) QED. Distribution depicted using
a solid red line corresponds to the whole data set. Trained on GuacaMol data set with temperature = 1.0.

Table 3. Comparison of Different Metrics while Generating
Molecules Conditioned on Single Property Based on
Training on GuacaMol Data Set (Temperature Value of 1.0
Was Used)

condition validity unique novelty MAD SD

logP 0.971 0.998 1.0 0.23 0.31
TPSA 0.972 0.996 1.0 3.52 4.66
SAS 0.977 0.995 1.0 0.13 0.2
QED 0.975 0.998 1.0 0.056 0.075
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Generation-based on Single and Multiple Properties.
Many processes in biology and chemistry require molecules to
have certain property values in order to perform some
functions. For example, for molecules to penetrate the
blood−brain barrier (and thus act on receptors in the central
nervous system), a TPSA value less than 90 Å2 is usually
needed.54 This motivates the need for models to have accurate
conditional generation. So, the next objective is to evaluate the
ability of MolGPT to generate molecules that exhibit specific
properties (conditional generation). Since GuacaMol has a
wider range in property values, we test the model’s ability to
control molecular properties trained on it. While only logP,
SAS, TPSA, and QED are used for property control, we would
like to note that the model can be trained to learn any property
that is inferred from the molecule’s 2D structure. For each
condition, 10 000 molecules are generated to evaluate property
control.
Distributions of molecular properties of MolGPT generated

molecules while controlling a single property are depicted in
Figure 5. The mean average deviation (MAD), standard
deviation (SD), validity, uniqueness, and novelty values for
each property are reported in Table 3. As seen in Figure 5, the
distribution of properties is centered around the desired value.
This is further exemplified by the low SD and MAD scores
(relative to the range of the property values) in Table 3.

Figure 6. Distribution of property of generated molecules conditioned on (a) TPSA + logP, (b) SAS + logP, (c) SAS + TPSA, and (d) TPSA +
logP + SAS. The values that the generation is conditioned to are given in the legends of the panels.

Table 4. Multiproperty Conditional Training on GuacaMol
Data Set

MAD/SD

condition validity unique novelty TPSA logP SAS

SAS + logP 0.972 0.992 1.0 0.250/
0.340

0.140/
0.210

SAS + TPSA 0.971 0.988 1.0 3.760/
4.940

0.150/
0.220

TPSA + logP 0.965 0.994 1.0 3.710/
4.770

0.240/
0.320

TPSA + logP
+ SAS

0.973 0.969 1.0 3.790/
4.800

0.270/
0.350

0.180/
0.260

Figure 7. Boxplot of the evaluation metrics for the scaffold
conditioned results.
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While generating molecules for specific purposes, in other
words de novo design of molcules, it is necessary to optimize
more than one property. For example, one may want molecules
that have specific values for logP and TPSA. Hence, we check

the model’s capacity to control multiple properties simulta-
neously. For this, SAS, logP, and TPSA are used. We evaluate
the model’s ability to generate desired distributions using two
and three property controls at a time. Generated distribution of

Figure 8. Distribution of property of generated molecules conditioned on Scaffold + (a) logP, (c) SAS, (e) TPSA, and (g) QED. Distribution of
Tanimoto similarity of the scaffolds of the generated molecules and the scaffold used for conditioning for (b) logP, (d) SAS, (f) TPSA, and (h)
QED. Trained on MOSES data set.
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molecule properties is depicted in Figure 6. Well separated
clusters centered at the desired property values are observed.
As before, the low MAD and SD values for each property
combination, reported in Table 4 (as compared to the range of
property values), indicate the strong control that MolGPT has
over multiple properties for accurate generation.
Generation Based on Scaffold. The above section

demonstrated the ability of MolGPT to generate molecules
with desired properties. In certain exercises, for example, lead
optimization, chemists intend to generate molecules containing
a specific scaffold/skeleton and at the same time achieve
desired property values. We evaluate the ability of MolGPT to
generate structures with certain property values while
maintaining the structure of the scaffold, the results of which
are presented in this and the next sections. We conduct these
experiments on the MOSES benchmark data set as it contains
a set of test scaffolds that are non-overlapping with the set of
scaffolds that are present in the training set. We select a
random set of 100 test scaffolds, then generate 100 molecules
for each scaffold followed by calculation of validity, uniqueness,
novelty, and “similarity ratio”. “Similarity ratio” is defined as
the fraction of valid generated molecules having Tanimoto
similarity of the scaffold of the generated molecule and the
conditioned scaffold greater than 0.8. Initially, Murcko
scaffolds are obtained from the generated molecules. Tanimoto
similarity is then calculated for the fingerprints of the Murcko

scaffolds of the generated molecule and the conditional
scaffold. We use the RDkit fingerprints with default settings
for the same. The distribution of each of the metrics in terms
of box plot is shown in Figure 7. From the boxplot, it can be
seen that for all 100 scaffolds, the validity is greater than 0.8.
Around 75% of scaffolds have uniqueness and novelty greater
than 0.7. All of the scaffolds have a “similarity ratio” greater
than 0.8, which suggests that most of the generated valid
molecules have very similar scaffolds to the scaffold used for
conditioning. The fraction of generated molecules that
maintained the exact same scaffold structure as the
conditioning is found to be 0.9897. Some examples of
generated molecules for two scaffolds are given in Figure S2
of the Supporting Information. In all of the generated
molecules, the conditioned scaffold structure is maintained.

Generation Based on Scaffold and Property. We
evaluate the models’ ability to generate structures containing
desired scaffolds while also controlling multiple molecular
properties. For our experiments, five scaffolds of different sizes
were randomly chosen from the MOSES test set (Figure S1 of
the Supporting Information). In these experiments, we define
valid molecules as those molecular graphs that satisfy chemical
valencies and contain scaffolds that have a Tanimoto similarity
of at least 0.8 to the desired scaffold. The validity score of all
scaffold based experiments is calculated based on this
definition.

Figure 9. Distribution of property of generated molecules conditioned on Scaffold + (a) TPSA + logP, (b) SAS + TPSA, (c) SAS + logP, and (d)
TPSA + logP + SAS. Trained on MOSES data set.
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Generated distributions for single property control can be
seen in Figure 8. Tanimoto similarity is calculated between the
scaffold of the generated molecule and the conditional scaffold.
Distribution of these Tanimoto similarity scores is also plotted
in Figure 8. The distribution plots peak at 1 for all of the
scaffolds and properties. Since scaffold based generation is
more constraining for property control, generated distributions

are not as narrow and well separated as before. We also define
a new metric called Same Scaffold Fraction (SSF) defined as
the percentage of generated molecules that contain the same
scaffold as the condition. The quantitative results along with
SSF for single property control are reported in Table S1 in the
Supporting Information. The low MAD and SD scores still
show that MolGPT deviates only slightly from intended values

Figure 10. Distribution of Tanimoto similarity of the scaffolds of the generated molecules and the scaffold used for conditioning for (a) TPSA +
logP, (b) SAS + TPSA, (c) SAS + logP, and (d) TPSA + logP + SAS. Trained on MOSES data set.

Figure 11. Optimization of QED value conditioned on the scaffold
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despite the constraints. QED is a function that is dependent on
multiple molecular properties simultaneously. Therefore, QED
is greatly influenced by the structure of the scaffold itself,
making it very hard to control under such constraints. We
believe such competing objectives are the reason for large
overlap between distributions generated for QED control.
Figure S3 of the Supporting Information shows the molecules
conditioned on scaffold + logP and scaffold + SAS. MolGPT
adds different functional groups to the scaffold in order to get
the desired property value. Multiproperty control clusters are
plotted in Figure 9. Even when using multiple properties, we
see the Tanimoto similarity distributions peaking at 1 in Figure
10. Understandably, property-based clusters are not as well
formed as before. However, there is a good separation between
the clusters for two property control. The intended values of
molecular properties are close to the centers of these clusters.
This can further be verified by results reported for multi-
property control in Table S2 in the Supporting Information.
For three property control, one of the clusters (red) is not well
formed due to highly constraining property values. We see that
the rest of the clusters are largely well formed and separated.
Next, we show examples where conditional generation could

be used to optimize simple properties of a molecule. To
demonstrate this, three scaffolds from the test set having a
QED around 0.4 are sampled. Using these scaffolds and a QED
of 0.9 as the condition, we generate molecules using MolGPT.
Sample generated molecules are shown in Figure 11. The
scaffold structure is maintained in the generated molecules and
their QED values are around 0.9. We also show other
examples, where the TPSA, LogP, and scaffold strucuture are
maintained and the SAS is improved to more desirable values
in Figure 12. We would like to note that the model here is used

only to optimize simple molecular properties and does not
ensure its usability in complex tasks such as lead optimization.
The model design, however, points to a possible research
direction for other conditional generation tasks, such as
generating molecules with better docking scores, for which
sufficiently large data sets can be created.

■ CONCLUSION
In this work, we designed a Transformer−Decoder model
called MolGPT for molecular generation. This model utilizes
masked self-attention mechanisms that make it simpler to learn
long-range dependencies between string tokens. This is
especially useful to learn the semantics of valid SMILES
strings that satisfy valencies and ring closures. We see through
our benchmarking experiments that MolGPT shows very high
validity and uniqueness scores for the MOSES and GuacaMol
data sets. It also demonstrates good FCD and KL divergence
scores on both the MOSES and Guacamol data sets.
Furthermore, as shown, the generative process can be
interpreted using saliency maps. Thus, MolGPT is able to
show good performance on both data sets with it out-
performing all other methods benchmarked on the GuacaMol
data set in terms of validity and novelty.
We also show that the model learns higher level chemical

representations through molecular property control. MolGPT
is able to generate molecules with property values that deviate
only slightly from the exact values that are passed by the user.
It is also able to generate molecules containing user specified
scaffolds while controlling these properties. It does this with
good accuracy despite the constraining conditions of scaffold-
based drug design. Consequently, we believe that the MolGPT
model should be considered a strong architecture to be used by

Figure 12. SAS reduced, maintaining TPSA, logP, and scaffold structure.
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itself or incorporated into other molecular generation
techniques.
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