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ABSTRACT: Engineering proteins to have desired properties by
mutating amino acids at specific sites is commonplace. Such
engineered proteins must be stable to function. Experimental
methods used to determine stability at throughputs required to
scan the protein sequence space thoroughly are laborious. To this
end, many machine learning based methods have been developed to
predict thermodynamic stability changes upon mutation. These
methods have been evaluated for symmetric consistency by testing
with hypothetical reverse mutations. In this work, we propose
transitive data augmentation, evaluating transitive consistency with
our new Stransitive data set, and a new machine learning based method, the first of its kind, that incorporates both symmetric and
transitive properties into the architecture. Our method, called SCONES, is an interpretable neural network that predicts small
relative protein stability changes for missense mutations that do not significantly alter the structure. It estimates a residue’s
contributions toward protein stability (ΔG) in its local structural environment, and the difference between independently predicted
contributions of the reference and mutant residues is reported as ΔΔG. We show that this self-consistent machine learning
architecture is immune to many common biases in data sets, relies less on data than existing methods, is robust to overfitting, and
can explain a substantial portion of the variance in experimental data.

1. INTRODUCTION

Proteins are large biomolecules that naturally evolved to
perform specific biological functions.1 One of the exciting
advances in recent decades has been the ability to design and
develop new synthetic proteins with desired properties.2−5

Synthetic proteins have a myriad of applications ranging from
vaccine development6 to tackling environmental problems.5,7

Biotechnology and biomedical industries use engineered
proteins that achieve superior functions.8−12 For example,
engineered enzymes react faster and are more efficient.13,14

Protein engineering is a promising field and has vast academic
and industrial interests.
One approach to protein engineering is redesigning existing

proteins to have desired properties.15,16 Natural proteins are
not necessarily optimal;17 moreover, physiological conditions
in which proteins naturally evolved are often different from
industrial and laboratory conditions.15 Proteins are therefore
mutated to optimize their properties, and one such property is
protein stability.15,18,19 Any protein must be stable in its
environmental conditions for it to be useful.20 Proteins are
mutated to increase stability and often to compensate for
destabilization arising from other functionally important
mutations.21 However, the protein sequence space is over-

whelmingly large. Experimentally determining the stability of
many variants is laborious and expensive,13,22 and in silco
simulations required (e.g., molecular dynamics free energy
calculations) to accurately predict stability with high
throughput are computationally prohibitive.23,24 To narrow
down the search space for experimental validation, fast
computational methods have been developed to predict
protein stability changes upon mutation.25−38 These methods
either classify a mutation as stabilizing or destabilizing, or
predict a real-valued target indicating the extent of stabilization
or destabilization. Popular real-valued targets are a change in
denaturation midpoint temperature,39,40 denoted by ΔTm; a
change in thermal deactivation temperature,40 denoted by
ΔT50; and a change in free energy of folding,25,27,28,33 denoted
by ΔΔG. Tm, T50, and ΔG are state functions of proteins. ΔTm,
ΔT50, and ΔΔG are computed by taking the difference
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between their respective state values in the reference and
mutant proteins. This definition confers useful properties that
can be exploited to evaluate and improve the performance of
protein stability predictors. We present the properties for
ΔΔG, but they are also applicable to ΔTm and ΔT50.
A protein must exist in its folded form to function. The

stability of a protein refers to its ability to exist in its folded
form relative to its denatured state.41,42 The thermodynamic
stability of a protein can thus be quantified by the difference in
the Gibbs free energy between the unfolded and folded state,
denoted by ΔG:

G G Gunfolded foldedΔ = −

The change in stability upon mutation can be quantified by the
change in ΔG, denoted by ΔΔG:

G G Gmutant referenceΔΔ = Δ − Δ

One of the properties of ΔΔG is antisymmetry. The ΔΔG
for a hypothetical reverse mutation must be equal in
magnitude but opposite in sign to that of the corresponding
forward mutation in identical experimental conditions.43−46

G G G G G G( )forward 2 1 1 2 reverseΔΔ = Δ − Δ = − Δ − Δ = −ΔΔ

Another property that ΔΔG confers is transitivity: given
three proteins X, Y, and Z, the ΔΔG of a mutation that goes
from X → Z is the sum of the ΔΔG’s of X → Y and Y → Z
mutations provided the experimental conditions are kept the
same throughout.

G G G

G G G G

G G

( ) ( )
X Z Z X

Z Y Y X

Y Z X Y

ΔΔ = Δ − Δ

= Δ − Δ + Δ − Δ

= ΔΔ + ΔΔ

→

→ →

The transitive property can be repeatedly applied to form
long chains of mutations. The mutations in a chain can occur
at different sites: we can start with two point-mutation samples
and end up with a double-mutation sample. We can restrict the
mutation site to a fixed position while constructing transitive
pairs if we require the resulting combined mutation to be a
point mutation.
A variety of computational methods have been developed to

predict protein stability changes upon mutation. There are
methods based on molecular dynamics,23,24,47 physics-based
force fields,48 empirical and statistical potentials,28,49 and more
recently machine learning.25,27,36,50,51 DDGun28 and
DDGun3D28 are baseline methods that use linear regression
on a set of hand-crafted features to predict ΔΔG. ACDC-NN51

and ThermoNet27 use 3D convolutional neural networks
(CNNs) on voxelized mutation site environments to predict
ΔΔG. PremPS25 uses random forest (RF) regression on ten
evolutionary and structure-based features to predict ΔΔG. The
use of machine learning to solve problems in fundamental
sciences has surged in recent years.13,25,27,50,52−57 While
machine learning tools have powerful abilities to learn from
data, their power also makes them prone to learning noise and
spurious correlations, especially when training data is biased
and limited. The amount of data available for ΔΔG prediction
tasks in thermodynamic databases is limited. Moreover, the
available data is biased toward specific mutation types. For
example, mutations involving alanine are over-represented due
to the abundance of alanine-scanning procedures in the
literature (Figure S1 in Supporting Information). The

distribution of ΔΔG values is also skewed toward destabilizing
mutations (Figure S2 in the Supporting Information).
Methods that predict protein stability changes upon mutation
must exhibit symmetric and transitive properties to be
consistent. Existing methods have been evaluated for
symmetric consistency, and many older methods that were
biased toward predicting destabilizing mutations were shown
to lack consistency.43−46,58 Newer methods resolved sym-
metric inconsistencies mainly by augmenting the training set
with hypothetical reverse mutations.25,27,38 Few methods
incorporated symmetric consistency directly into their model
architecture.45,59 As far as we know, no machine learning based
method has used the transitive property or checked for
transitive consistency even though the transitive (cycle
closure) property is widely used in free energy calcula-
tions.60−62 We present an interpretable neural-network-based
method called self-consistent neural network protein stability
prediction (SCONES) that incorporates both symmetric and
transitive properties of ΔΔG into the architecture. The neural
network predicts the contributions of a residue toward the
protein’s ΔG. ΔG contributions are predicted for the reference
and mutant residues of a missense mutation independently,
and ΔΔG is calculated by taking the difference between the
predicted ΔG values. We assume that the mutations do not
alter the structure significantly and use the same structure for
both reference and mutant proteins. The architectural
constraints for self-consistency help regularize models at the
cost of ease of learning. We demonstrate through a holistic
evaluation scheme that this self-consistent architecture is
robust to overfitting and can explain a substantial portion of
the variance in experimental data. Besides, we use an improved
sign-insensitive metric to evaluate symmetric consistency and
reveal previously hidden biases in existing methods. Toward
the end, we highlight the benefits of interpretable models, the
importance of using balanced data sets and discuss ways to
overcome the data set limitations.

2. METHODS
Our method is a neural network that estimates a residue’s
contributions toward protein stability in its local structural
environment. For a missense mutation that does not
significantly alter the structure, the difference between the
independently predicted contributions of the reference and
mutant residues is reported as ΔΔG. Section 2.1 describes the
architecture in detail. The method is trained using data sets
derived from FireProtDB63 and evaluated on S350,31 Ssym,45

and S76826 test sets. We introduce a new data set called
Stransitive that is the transitive closure of Ssym. We use it to
evaluate methods for transitive consistency. Section 2.2
elaborates on training set construction and evaluation of data
sets. We use an ensemble of 50 models obtained from ten
rounds of 5-fold cross-validation for evaluation. Section 2.3
describes the training procedure in detail.

2.1. Architecture. Our method is a single neural network
that estimates a residue’s contributions to the protein’s ΔG in
its local structural environment. We predict ΔΔG for a
missense mutation by taking the difference between the
predicted ΔG contributions of the reference and mutant
residues. This architecture incorporates both symmetric and
transitive properties of ΔΔG. The consistency properties only
hold when both reference and mutant structures are available.
We assume that the mutations do not significantly alter the
structure and use the same structure for reference and mutant
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proteins. We believe that the architectural constraints are still
good inductive biases.
The local environment of a residue (referred to as the

central residue henceforth) is defined to consist of all
neighboring residues whose Cβ atom is within 8 Å distance
from the Cβ atom of the central residue (Figure 1). The local

environment can be thought of as a graph with residues as
nodes and interactions as edges. Our neural network operates
independently on each edge (residue−residue interaction) and
estimates its contributions toward ΔG. The sum of all
contributions of a residue’s interactions with its neighbors is
predicted as its total contribution toward protein stability
(Figure 2 and Figure 3). The node features consist of a
learnable amino-acid-embedding and solvent-accessible surface
area. We initialize the embedding layer with amino acid
properties (Table 1). The edge features consist of inter-residue
distances and inter-residue orientations57 (Figure 4). The Cβ−
Cβ distance (referred to as d henceforth) of any two residues is
the distance between the Cβ atoms of the two residues. We use
glycine’s Cα atom in place of the Cβ atom for computing d. d
values raised to various powers and exponentials of d (which
appear in theoretical formulations of pair potentials) are given
as inter-residue distance features. The inter-residue orientation
angles are defined in Figure 4. The sine and cosine of the
angles are provided as inter-residue orientation features.
Orientation features requiring glycine’s Cβ atom are set to
zero. We use the reference protein’s structure to compute the
structure-based features for both reference and mutant
proteins. This ensures that the same set of neighbors in the
local environment is considered while calculating ΔG
contributions of the central residue in the reference and
mutant proteins. We do not use any features that involve both
reference and mutant residues (such as the change in residue
volume) to maintain the architecture’s consistency properties.
The two residues’ node features and the edge features form the
network’s input features. See Figure S3 and Section 2 in the

Supporting Information for detailed information on the
architecture.
Predicting stability changes due to mutations that cause

large structural disruptions and have distal effects is beyond the
scope of this work; such mutations cause significant stability
changes that are hard to predict. Therefore, our objective is to
estimate the relative stabilities of proteins due to mutations
that do not lead to significant structural changes. Methods
must predict or use the lowest energy structures in
computations to be fully symmetric and transitively consis-
tent.67 We assume that such corrections are small for
mutations that do not cause significant structural alterations,
as hinted by the good performance of sequence-only
methods28 and the low structural sensitivity of existing
machine learning methods.68 Therefore, we use the reference
protein’s structure to represent the mutant protein.
We hypothesize that all contributions to the ΔG of a protein

can be accounted for by decomposing ΔG into a sum of inter-
residue interactions and residue−solvent interactions. The
interaction energies of residues structurally far away from the
mutation site are assumed to change negligibly; their
contributions to the overall ΔG are assumed equal in both
reference and mutant structures and would cancel out when we
calculate ΔΔG. Hence, we only consider the local environment
at the mutation site to estimate ΔG for the reference and
mutant proteins. We also assume that most of the stability
changes upon mutation can be captured by the change in
interactions between the mutation site residue and the
neighboring residues.
The self-consistency constraints on the architecture help

regularize the models. A prediction for hypothetical reverse
mutation would be equivalent to predicting and subtracting the
ΔG estimates in the reverse order. This would yield an exactly
negated prediction of ΔΔG of the forward mutation unless
different structures are used. Regression loss functions
generally are functions of the absolute difference between the
predicted and target values. Therefore, losses for forward and
corresponding reverse mutations are the same, and augmenting
the training set with hypothetical reverse mutations is the same
as duplicating the entire data set (unless different structures are
used). Our architecture also captures the transitive property,
but transitive samples can still aid in learning, unlike
hypothetical reverse mutations. Losses for ΔΔGX→Y,
ΔΔGY→Z, and ΔΔGX→Z are different and not linear
combinations of each other due to the nonlinearity of loss
functions. Therefore, new transitive samples can give
substantially different learning signals (Section 4.1 in
Supporting Information). The network learns to predict ΔG
indirectly from the ΔΔG reference data set. This makes
learning difficult: the optimization process needs to learn to
estimate the two ΔG values from the ΔΔG target and then
further estimate individual contributions to each ΔG value
(Figure 2). There are over ten neighbors in a typical sample;
that would mean the optimization process needs to separate
around 20 components of a sum from the ΔΔG target. We
show that the model can still learn to predict protein stability
changes without requiring explicit supervision at a finer level.

2.2. Data Set. FireProtDB63 is a database of point
mutations which have experimental thermostability data. We
curated a new data set from FireProtDB according to the
following criteria:

Figure 1. Residue local environment. The red-colored residue in ball
and stick representation is the central residue. The highlighted
residues with side-chain atoms shown with sticks are the neighboring
residues.
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• Samples with structures where the mutated residue or its
neighboring residues did not have N, Cα, and Cβ atom
coordinates (Cβ atom coordinates are not required for
glycine) were removed.

• Samples with known pH that lie outside 2 and 12 were
removed. The samples with unknown pH were assumed
to lie in the range under the assumption that the benefits
of having more samples outweigh the cost of having a
few outlier samples.

• Samples with |ΔΔG| greater than 8 kcal/mol were
removed since such large stability changes suggest
significant structural alterations.

• A sample is a duplicate of another if the reference and
mutant proteins involved are identical in both samples
and the absolute difference in the pH of the two samples
is less than 0.1. ΔΔG values of duplicate samples were
merged into one sample by averaging. The entire group
of duplicates was discarded if the standard deviation of
the ΔΔG values exceeded 0.5 kcal/mol.

The resulting curated data set contains 5989 samples.
The data available is scarce, and it may not be feasible to

create a single test set that is balanced on all accounts. Such a
hypothetical data set would be large and drastically decrease
the size of the training set. Hence, we used multiple test sets,
with each used to evaluate a different aspect of the method. We
evaluated our method on S350,31 Ssym,45 and S76826 data sets.
The S350 data set was generated by randomly sampling from a
data set that reflects the characteristics of thermodynamic
databases.31 The distribution of ΔΔG measurements in this

data set is heavily skewed toward destabilizing mutations
(Figure 5). Ssym is a data set consisting of samples for which
both reference and mutant structures are available. This test set
is primarily used to evaluate the symmetric consistency of
methods. The composition of S350 and Ssym test sets is not
balanced across mutation types (Figure 6); both test sets are
abundant in mutations involving hydrophobic residues like
alanine and valine (Section 5 in Supporting Information) but
lack sufficient samples in other categories. Therefore, we also
evaluate on a category-wise balanced data set created by Frenz
et al.26 which we call S768.
Two training sets of varying difficulty were created for each

test set from the curated data set by removing samples similar
to the test samples. Two samples are similar if they satisfy all of
the following conditions:

• The samples have the same mutation or the reverse
mutation of each other.

• An 11-residue amino acid sequence centered around the
mutating residue is extracted for both samples, and the
sequence identity of the extracted sequences is greater
than 50%.

The first training set was created based on the above similarity
criteria. This training set contains samples at the same
mutation site but with a different mutation as some samples
in the test sets. The effects of different mutations in the same
local environment may not be independent. There can be a
mutation site where mutations always cause minor changes in
protein stability irrespective of the mutation type. In such a
situation, the model can learn to output a near-zero stability

Figure 2. Self-consistent architecture. The neural network estimates a residue pair’s contributions toward ΔG in the local environment. These
estimates for all central-residue/neighbor-residue pairs are added to predict the central residue’s total ΔG contribution. The same procedure is
applied on both reference and mutant proteins to obtain two ΔG estimates. The difference between the two is the predicted ΔΔG.
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change for that site irrespective of the mutation type. Test data
can leak into the training set this way which would result in
overestimation of performance. Therefore, we created a more
challenging training set by filtering with the second condition
alone. We refer to the first kind of training sets as “easy”
training sets and the second kind as “hard” training sets. We
omit “easy” in future references for the first kind of training
sets, and hard training sets will have “hard” explicitly
mentioned.

Figure 3. Overview of the model. The neural network estimates the contributions of a residue pair’s interactions toward ΔG. The two residues’
node features and edge features are concatenated to form the network’s input feature vector. For a given local environment, feature vectors are
constructed for all central-residue/neighbor-residue pairs. The network predictions for all the neighbors are then summed to predict the central
residue’s ΔG contributions. The constant factor contains contributions to the protein’s ΔG that are not accounted for in our calculations. We
assume such contributions to be identical in both reference and mutant proteins. It is fixed for a given protein and local environment and cancels
out while calculating ΔΔG. SAS stands for solvent-accessible surface area.

Table 1. List of Node Features

feature description or AAindexa

formal chargeb Table S1 in Supporting
Information

normalized van der Waals volumeb FAUJ880103
hydropathy indexb KYTJ820101
steric parameterb CHAM810101
polarityb GRAR740102
residue-accessible surface area in
tripeptideb

CHOC760101

solvent-accessible surface area calculated using DSSP64,65

aAAindex66 is a database of numerical indices for physicochemical
and biochemical properties of amino acids and pairs of amino acids.
The code in the column is the AAindex database ID of the property.
bThese features are constants for a given amino acid. They are used to
initialize the amino acid embedding layer.

Figure 4. Visualization of geometric edge features between two
residues. θ and ϕ depend on the order of the residues d and ω are the
same for both residues irrespective of the residue order. The two
planar angles (ϕ12 and ϕ21), three dihedral angles (ω, θ12, and θ21),
and d fully describe the relative positions of the backbone atoms.57 All
the distance-derived features are normalized to have zero mean and
unit standard deviation. Note that these features capture the backbone
conformation but not the side-chain conformation.
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The training set for Ssym might contain transitive samples
that can be obtained from Ssym or samples that can be used to
create transitive samples which are a part of Ssym. Hence, for an
unbiased evaluation, we also evaluate the performance on the
Ssym data set after filtering the training set against the transitive
closure of Ssym (which we call Stransitive in future references).
The filtered training sets for both Ssym and Stransitive are almost
the same. The hard training sets are identical, and the easy
training sets are similar (Tables 2 and 3); this suggests that our
filtering protocol is good. We also use the transitive pairs in
Stransitive to evaluate the transitive consistency of our method.
2.3. Training. Bioinformatics-related processing was

carried out using BioPython.71 The amino acid chemical
descriptors were obtained from the AAindex database66 using
the quantiprot72 python package. The neural network was
trained using PyTorch,73 and evaluation metrics were

computed using scikit-learn.74 PyTorch and NumPy75 were
used for general array processing.
The loss function (denoted by ) consists of general

adaptive robust loss function by Barron76 for the ΔΔG
prediction (denoted by adaptive robust loss) and a symmetry loss

term (denoted by symmetry loss). The symmetry loss enforces

the requirement that the interaction energy between two
residues must be identical irrespective of the order of the
residues in the feature vector. Feature vectors for both residue
orders are generated during training, and the mean value is
returned as the ΔG contribution (Figure S4 in Supporting
Information). The symmetry loss ensures that the predictions

from both feature vectors are equal.

adaptive robust loss symmetry lossα= +

Figure 5. Distribution of ΔΔG in the test sets. We consider samples as stabilizing if ΔΔG > 0.5 kcal/mol, neutral if |ΔΔG| ≤ 0.5 kcal/mol, and
destabilizing if ΔΔG < −0.5 kcal/mol. S350 largely inherits the biases of the thermodynamic databases. The distribution is heavily skewed toward
destabilizing mutations. Out of the 350 samples, 54 are stabilizing, 105 neutral, and 191 destabilizing. Ssym consists of 342 pairs of forward and
reverse mutations; this makes the distribution symmetric about zero. S768 is well balanced across mutation types by construction; however, it is
biased toward destabilizing mutations.
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where α is a scalar hyperparameter; c is the index of the central

residue; j iterates over the indices of the neighboring residues;

Ecj and Ejc are the energies predicted for residue c and j in the

two possible orders; i iterates over the minibatch; and N is the
minibatch size.
The Adam optimizer77 was used with a weight decay of

0.004 and default parameters for the rest. The initial learning
rate was set to 0.005 and decreased by a factor of 10 every time
the learning plateaued (Section 2 in the Supporting
Information for the detailed training procedure). The model
was trained for 40 epochs with a minibatch size of 32. The
embedding layer was initialized with the features listed in
Table 1. We freeze the embedding layer weights for the first
ten epochs. We do not unfreeze the weights after ten epochs
while training with the S768 (hard) training set. The models
were trained using 5-fold cross-validation with the training set.
The model with the minimum validation loss was saved as the
final model for each training instance. The final prediction is
the ensemble average of predictions from the models generated
in ten rounds of cross-validation (50 models in total). This
process is repeated for each training set.

3. RESULTS
We evaluated the performance of our method on S350, Ssym,
and S768 test sets. The characteristics of the three test sets
have been visualized in Figure 5 and Figure 6. We created two
separate training sets of varying difficulty for each test set after
removing similar samples (Section 2.2). For each test set, the
performance metrics were computed from the average
ensemble predictions of all the models from ten rounds of
cross-validation. Table 4 reports the performance of our
method on all the test sets. Our method is able to learn and
explain a substantial portion of the variance in the experimental

Figure 6. Composition of mutations in the test sets. We used the
classification scheme proposed by Frenz et al.26 to classify the
mutations in the test sets. Mutations involving hydrophobic residues
are over-represented in S350, Ssym, and Stransitive. S768 by construction
tried to be as balanced as possible by incorporating 50 samples in each
category; however, some categories that had an insufficient number of
samples in the ProTherm69 database have fewer than 50 samples.

Table 2. List of Test Sets

data set
actual
sizea

filtered
sizeb description

S350 350 345 This test set was created by randomly sampling mutations from S2648.31,70

S87 87 86 This is a subset of S350 for which |ΔΔG| exceeds 2 kcal/mol.
Ssymc 684 683 This test set contains 342 pairs of forward and reverse mutations. All the samples have experimentally determined reference

structures.
Stransitived 1601 1596 This test set is the transitive closure of Ssym. 917 transitive pairs can be formed from the samples. All the samples have a

reference structure.
S768 768 745 This data set is a mutation category-wise balanced data set created to evaluate performance on different mutation types and

identify potential biases in methods.

aThe size of the originally published data set. bThe size of the data set after removing samples that had incomplete backbone structural information
for residues in the mutation site’s local environment. cNote that the forward and reverse mutations are different data points for our method as they
use different reference structures. dStransitive is a new test set introduced in this work. The actual size indicates the number of samples after
computing the transitive closure on Ssym. The filtered size is the number of samples that have complete backbone structural information for the
residues in the mutation site’s local environment.

Table 3. List of Training Sets

data seta size

unfiltered 5989
S350 5532
S350 (hard) 2735
Ssym 5290
Ssym (hard) 2654
Stransitive 5267
Stransitive (hard) 2654
S768 4857
S768 (hard) 1176

aThe name indicates the test set based on which the training set was
filtered. The filtering protocol is specified in parentheses for the
“hard” protocol and omitted for the “easy” protocol.
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data. It shows balanced performance for both stabilizing and
destabilizing mutations. It classifies significant mutations
(|ΔΔG| ≥ 1 kcal/mol) fairly well with nearly all the samples
in S87 classified correctly. The performance of the method
decreases as we move from the smallest test set S350 to the
largest test set S768.
Figure 7 shows the receiver operating characteristic (ROC)

curve for strongly stabilizing and destabilizing mutations
computed from ensemble predictions for the Ssym test set.
The Ssym test set consists of 342 pairs of forward and reverse
mutations. All the 684 samples have known experimental
structures. Our method is symmetrically consistent by
construction; however, the forward and reverse mutations are
different data points for our method as they use different
reference structures. The ROC curves are almost identical and
hint that that our method is capable of identifying significantly
stabilizing and destabilizing mutations equally well.
Table 5 compares the performance of our method on S350

with existing methods. Many methods that are biased toward
predicting destabilizing mutations perform well on S350 but
fare poorly on balanced test sets like Ssym (Table 6). Among
the methods compared in both Table 5 and Table 6, only
SCONES and PremPS show balanced performance on both
S350 and Ssym test sets; all other methods show poor
symmetric consistency with Ssym.

The prediction for forward mutations and their correspond-
ing reverse mutations in identical experimental conditions

Table 4. Performance on Different Test Setsa

stabilization destabilization

training set test set PCC MAEb RMSEb AUCc PCCd AUCc PCCd

S350 S87 0.65 1.82 2.21 0.95 0.22 0.95 0.20
S350 (hard) S87 0.67 1.89 2.23 0.95 0.17 0.95 0.23
S350 S350 0.55 1.13 1.53 0.80 0.63 0.73 0.43
S350 (hard) S350 0.54 1.16 1.52 0.78 0.57 0.73 0.44
Ssym Ssym 0.56 1.07 1.54 0.76 0.40 0.76 0.45
Stransitive Ssym 0.56 1.07 1.54 0.76 0.40 0.77 0.45
Ssym (hard) Ssym 0.50 1.14 1.61 0.72 0.36 0.73 0.40
S768 S768 0.43 1.28 1.94 0.70 0.36 0.68 0.38
S768 (hard) S768 0.37 1.37 2.03 0.60 0.10 0.64 0.37

aPCC stands for Pearson’s correlation coefficient; AUC stands for area under ROC curve; RMSE stands for root mean squared error; and MAE
stands for mean absolute error. bRMSE and MAE are in kcal/mol. cAUC is calculated for strongly affecting mutations only (|ΔΔG| ≥ 1 kcal/mol).
dPCC is calculated using all the samples.

Figure 7. ROC plots for classifying strongly stabilizing and destabilizing mutations in Ssym with predictions obtained from the ensemble average of
the models trained using Ssym (hard). Left: ROC plot for strongly stabilizing mutations (ΔΔG > 1 kcal/mol). Right: ROC plot for strongly
destabilizing mutations (ΔΔG < −1 kcal/mol).

Table 5. Comparison of Performance on S350a

S350 S87

method PCC RMSEb PCC RMSEb

SCONESc 0.55 1.53 0.65 2.21
SCONES (hard)d 0.54 1.52 0.67 2.23
PremPSM25 0.72 1.09 0.81 1.52
PremPSP25 0.58 1.28 0.60 1.94
mCSM36 0.73 1.08 0.82 1.48
MAESTRO34 0.70 1.13 0.76 1.67
PoPMuSiC v2.031 0.67 1.16 0.71 1.67
PoPMUSiC v1.078 0.62 1.24 0.70 1.66
SDM249 0.61 1.29 0.69 1.71
SDM35 0.52 1.80 0.63 2.11
Dmutant 0.48 1.81 0.57 2.31
AUTOMUTE79 0.46 1.43 0.45 1.99
CUPSAT80 0.37 1.91 0.50 2.14

aOur method only accepted 345 samples out of 350. Performance
data were taken from refs 25, 31, 34, 36, and 49. The training sets of
all methods did not have samples from S350. PremPSP did not have
homologous proteins in the training set. bRMSE is in kcal/mol.
cTrained using the S350 (easy) training set. dTrained using the S350
(hard) training set.
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must be strongly negatively correlated. The Ssym data set
consists of mutations for which both reference and mutant
structures are available and is used to evaluate the symmetric
consistency in methods. The symmetric consistency has been
traditionally measured using a correlation coefficient RFR and
mean prediction bias ⟨δ⟩.46 RFR is the correlation coefficient
between the predictions for forward mutations and their
corresponding reverse mutations. The δ for a sample is defined
as ΔΔGforward + ΔΔGreverse, and the average δ over all samples
(denoted by ⟨δ⟩) is used as a measure of overall consistency of
the method. However, this sign-sensitive metric is prone to
hiding symmetric biases in both directions: negative errors can
cancel out positive errors.27 It effectively measures the
asymmetry in the bias but does not accurately inform about
the presence of any bias. Therefore, we computed the root

mean squared error of the prediction biases ( 2δ⟨ ⟩ , denoted
by ΔS). A method with perfect symmetric consistency will have
an RFR value of the negative one, ⟨δ⟩ value of zero, and ΔS
value of zero. Table 6 compares the performance of our
method on Ssym with existing methods. Figure 8 plots our
predictions for forward and reverse mutations and the
distribution of the prediction bias. Table 6 and Figure 8
show that our method has has a near-perfect RFR value and a
low ΔS value. We computed the ΔS values for many existing
methods and report them in Table 6. This new metric reveals a
previously hidden bias in existing methods that had a near-
perfect ⟨δ⟩.
Table 7 presents transitive consistency metrics computed

using Stransitive. Stransitive was created by computing the transitive
closure of Ssym. All the samples in Stransitive have experimentally

Table 6. Comparison of Performance on Ssyma

forward reverse

method PCC RMSEb PCC RMSEb RFR ⟨δ⟩b ΔS
b

SCONESc 0.51 1.53 0.49 1.55 −0.97 0.04 0.24
SCONES (Stransitive)d 0.51 1.53 0.48 1.55 −0.98 0.04 0.23
SCONES (hard)e 0.45 1.61 0.43 1.61 −0.99 0.01 0.17
PremPSM25 0.64 1.21 0.56 1.30 −0.91 0.03 0.34
PremPSP25 0.56 1.32 0.50 1.37 −0.89 0.04 0.33
ThermoNet*27 0.58 1.38 0.59 1.38 −0.95 −0.05 -
ThermoNet27 0.47 1.56 0.47 1.55 −0.96 −0.01 0.23
PoPMuSiCsym45 0.48 1.58 0.48 1.62 −0.77 0.03 -
PremPS25 0.81 0.96 0.74 1.12 −0.93 0.03 0.38
DDGun3D28 0.56 1.42 0.53 1.46 −0.99 −0.02 0.14
INPS32 0.51 1.42 0.50 1.44 −0.99 −0.04 -
DDGun28 0.48 1.47 0.48 1.50 −0.99 −0.01 0.04
INPS3D33 0.59 1.29 0.44 1.64 −0.86 −0.55 0.70
Rosetta81 0.69 2.31 0.43 2.61 −0.41 −0.69 -
FoldX30 0.63 1.56 0.39 2.13 −0.38 −0.47 -
MAESTRO34 0.52 1.36 0.32 2.09 −0.34 −0.58 1.44
SDM35 0.51 1.74 0.32 2.28 −0.75 −0.32 -
PoPMuSiC v2.129 0.63 1.21 0.25 2.18 −0.29 −0.71 -
mCSM36 0.61 1.23 0.14 2.43 −0.26 −0.91 2.08
DUET37 0.63 1.20 0.13 2.38 −0.21 −0.84 1.91
MUPRO82 0.79 0.94 0.07 2.51 −0.02 −0.97 -

aSCONES, PremPSM and PremPSP, ThermoNet, ThermoNet*, and PoPMuSiCsym did not have overlapping samples in their training set.
ThermoNet and PremPSP also removed homologous proteins from their training set. All other methods were evaluated directly on the test set.
Performance data were taken from Chen et al., Li et al., and Pucci et al.25,27,45 bRMSE, ⟨δ⟩, and Δ are in kcal/mol. cTrained using the Ssym (easy)
training set. dTrained using the Stransitive (easy) training set. eTrained using the Ssym (hard) training set.

Figure 8.Mean predictions of an ensemble consisting of all the models from all the rounds of cross-validation trained using the Ssym (hard) training
set are used. Left: plot of predicted values of ΔΔG for forward and reverse mutations. Right: distribution of prediction bias (ΔΔGforward +
ΔΔGreverse).
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determined structures. There are 917 transitive pairs among
the 1601 samples in Stransitive. We introduce two new metrics to
evaluate transitive consistency: correlation coefficient RT and
norm ΔT. RT is the correlation between ΔΔGX→Y + ΔΔGY→Z
and ΔΔGX→Z, and ΔT is the root mean squared error of
ΔΔGX→Y + ΔΔGY→Z − ΔΔGX→Z. A method with perfect
transitive consistency must have an RT of one and ΔT of zero.
Table 7 and Table 6 suggest that methods that have good
symmetric consistency also tend to be transitively consistent.
However, the converse is not true. Our method shows
transitive consistency that is comparable to or better than
the current state of the art methods. Figure 9 plots our
predictions for the transitive tuples in Stransitive and the
distribution of the prediction bias. Table 7 and Figure 9
show that our method has very high transitive consistency with
a near-perfect value of RT and a low ΔT.
Figure 10 shows the variation in performance of the trained

models in our ensembles. We note that there is significant
variance. The average performance on a test set, however, does
not vary significantly across different training sets (Table 4).
The nature of computations in our method is hierarchical.

At the lowest level of the hierarchy, our neural network
predicts ΔG contributions of individual residue−residue
interactions. These predictions can provide valuable insights
into causes of stabilization or destabilization. An interaction
map can summarize these intermediate predictions. Such
interaction maps have been previously used to chemically
interpret solvation free energies of druglike molecules in

organic solvents.52,83 Here, the interaction map consists of two
columns representing the reference and mutant residues and
several rows representing neighboring residues. Each cell
contains the ΔG contributions predicted for the interactions
between the central residue (column) and the neighboring
residue (row). We used the ensemble average of the
intermediate predictions to plot the interaction map in Figure
11.

4. DISCUSSION

The data in thermodynamic databases for this task are biased
and limited. The distribution of ΔΔG experimental values is
skewed toward destabilizing mutations (Figure S1 in
Supporting Information). The available data are not balanced
across all mutation categories (Figure S2 in Supporting
Information). Some mutations do not have any data at all
(Figure S3 in Supporting Information). These biases pose a
severe problem for machine learning based methods. Many
methods until recently were trained on training sets directly
derived from thermodynamic databases without accounting for
the biases. These methods were shown to lack symmetric
consistency by subsequent studies.43−46,58,67 Recent methods
augment data sets with hypothetical reverse mutations25,27,38

or incorporate the symmetry into their architecture.45,59 Few
newer methods still show significant variance in performance
across different training sets (Table 6) which may indicate
overfitting. We proposed utilizing the transitive property to
evaluate methods and improve performance by constraining
methods to be transitively consistent. With that goal, we
designed a method that incorporates both symmetric and
transitive properties into the architecture.
Our method consists of a single neural network that

estimates inter-residue interaction energies. We calculate a
residue’s contribution toward protein stability by summing up
all the interaction energies with its neighbors. ΔΔG is
predicted by taking the difference between the predicted
energies of the reference and mutant residues. The network
sees features for one residue−residue interaction at a time
during training. We do not use any features that span more
than two residues or involve both reference and mutant
proteins. This, along with the independence in calculations of
each ΔG contribution, makes it very robust toward overfitting.
Moreover, nearly all of the 400 possible residue−residue pairs
have hundreds of samples in the training set (Figure S9 in the
Supporting Information). The network has seen all possible

Table 7. Evaluating Transitive Consistency on Stransitive

method RT ΔT
a

SCONES (Ssym) 0.99 0.16
SCONES (Stransitive) 0.99 0.17
SCONES (Ssym hard) 0.99 0.13
DDGun3D28 0.99 0.13
ACDCNN51 (with ref 3D structure) 0.94 0.23
ACDCNN51 (sequence only) 0.93 0.24
MAESTRO34 0.90 0.58
INPS3D33 0.89 0.39
DUET37 0.82 0.89
mCSM36 0.81 1.02
SDM249 0.78 0.86
PremPS25 0.77 0.54
DynaMut238 0.73 1.05

aΔT is in kcal/mol.

Figure 9. Mean predictions of an ensemble consisting of all the models from all the rounds of cross-validation trained with the Ssym (hard) training
set is used. Left: plot of ΔΔGX→Y + ΔΔGY→Z vs ΔΔGX→Z. Right: distribution of prediction bias (ΔΔGX→Y + ΔΔGY→Z − ΔΔGX→Z).
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inter-residue interactions during training and therefore will not
be befuddled by completely new samples at test time. It may
generalize to mutations that do not occur or have very few
samples in the training set.
Despite the tight constraints on the architecture, we showed

that our method could capture a substantial portion of the
variance in experimental data (Table 4). Our method provides
balanced performance for both stabilizing and destabilizing
mutations across all test sets (Table 4 and Figure 7). The
variation in performance across test sets can be attributed to
their vastly different compositions and sizes. In S350, one-third
of the mutations involve alanine, and about half of the
mutations involve alanine or valine. Ssym and S768 also suffer
from similar biases but to a lesser extent (Section 5 in

Supporting Information). Furthermore, the larger test sets lead
to smaller filtered training sets as more samples overlap. The
overall performance numbers in Table 4 correlate with the test
data set size. Our method performs poorly while training with
S768 (hard) if we do not freeze the embedding layer (Section
8 in Supporting Information). Freezing the weights of the
embedding layer reduces the size of the hypothesis space of the
network. The improved performance with the smaller
hypothesis space case suggests that the training data set is
small enough that additional flexibility offered by an
embedding layer leads to worse performance.
To more accurately determine the predictive power of

methods, we performed a holistic evaluation using multiple test
sets to estimate a model’s performance reliably. We checked

Figure 10. Variance in model performance. Pearson correlation coefficient (PCC) was computed for each of the 50 models from ten rounds of
cross-validation.

Figure 11. Interaction map for serine to isoleucine mutation in bacteriophage T4 lysozyme (pdb id: 2lzm). Isoleucine provides new beneficial
hydrophobic interactions that lead to improved protein stability. The ensemble average of the intermediate predictions from the models trained
using the S768 (hard) data set was used to plot the interaction map.
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for symmetric consistency, transitive consistency, and perform-
ance across different mutation categories. Many older methods
show poor symmetric consistency.43−46,58,67 The poor
performance is largely due to the methods inheriting the
biases of unbalanced training sets that contained far more
destabilizing mutations than stabilizing mutations. Our method
shows excellent symmetric and transitive consistency that is
comparable to the state of the art methods (Table 6 and Table
7). We investigated the performance of our method on S768 in
different mutation categories (Section 6 in Supporting
Information). Our method performs poorly on surface
mutations and mutations involving proline. We believe that
the mutations involving proline tend to unusually alter the
structure and break our assumptions. Existing literature has
noted that predicting stability changes on surface mutations is
generally more difficult than buried mutations.25,29 The
performance of surface mutations may also be due to our
method not explicitly modeling residue−solvent interactions.
Our method also performs badly on small-to-large mutations.
Small-to-large mutations often cause steric clashes that lead to
structural rearrangements.84 Existing methods have dealt with
this issue by modeling the mutant structures.25,27,30,81 We did
not perform any such procedure.
The poor performance of models trained on the S768 (hard)

training set with learnable embeddings demonstrates the
importance of using a balanced validation set. We conducted
an experiment where we evaluated the performance of the
models saved after every epoch on the S768 test set. We
observed that the model achieves near peak performance just
before epoch 11 and crashes soon after the embedding layer
weights are unfreezed. In principle, a good validation set
should save a model from the first ten epochs as the best
model. Our validation sets generated by a random split from
the training set choose a model that performed nearly 25%
worse on the test set. This shows that validation sets that are
not balanced across mutation categories fail to choose a good
model.
The models trained with the hard training set show better

consistency properties but lower prediction performance than
those trained with the easy training set. This may indicate a
potential trade-off between consistency and prediction
performance. The easy unbalanced training sets may lead to
overfitting, resulting in high prediction performance but poor
consistency properties. Conversely, a method that always
outputs a constant zero will have perfect consistency properties
but would not give helpful predictions. Therefore, it is essential
to conduct a holistic evaluation using many test sets and
evaluation metrics.
Figure 10 indicates a fair amount of variance in the

performance of the predictors in the ensemble. Our highly
constrained architecture is challenging to train directly from
limited data. It is also sensitive to weight initialization. We
believe that improved sampling procedures for training sets,
transfer learning, and auxiliary losses85−87 can reduce the intra-
ensemble variance. Our architecture is hierarchical and similar
to force field computations. This allows easy integration of
auxiliary losses from force fields or statistical potentials to
guide the optimization at a finer level. The variance of the
ensemble performance across different training data sets is low
(Table 4) (Section 9 in Supporting Information). This shows
that our method as a whole is relatively robust to overfitting.
The architecture of our method provides the ability to peak

into the intermediate computations that lead to the final

prediction. Explainable machine learning methods can provide
valuable insights into the underlying mechanisms behind the
predictive power of an otherwise black-box model. It also
allows the method to be verified by human chemical intuition.
For example, the interaction map in Figure 11 suggests that the
mutation leads to better interactions with hydrophobic
residues, which result in extra stabilization. This agrees with
our intuition that hydrophobic residues like to be with other
hydrophobic residues. We believe that such verification is vital
given that the training data are limited and biased, and models
have been shown to overfit easily.

5. CONCLUSION
Protein engineering is a rapidly growing field with vast
potential for biotechnological and biomedical applications.
Protein stability is an important property that has to be tuned
in protein engineering. Additionally, optimization of other
properties of proteins should be done such that the proteins
are still stable. Many computational methods have been
developed to identify potential stability-altering mutations. The
amount of data available to train protein stability predictors
upon mutation is small. Incorporating domain knowledge
directly into the method can help overcome data set
limitations. Commonly used regression targets confer many
properties which have not been fully exploited; the transitive
property has been feebly used in existing methods. Here, we
have proposed improving performance by incorporating the
transitive property into model architectures and augmenting
training sets with transitive samples. We have presented a
method that incorporates both symmetric and transitive
properties of ΔΔG into the architecture. It consists of a
neural network that predicts a residue’s contributions toward
the protein’s ΔG. The difference in the independently
predicted ΔG contributions for the reference and mutant
residues in a missense mutation is returned as ΔΔG. This
method relies less on the data to learn self-consistency
properties and is immune to many common problems arising
from unbalanced and undersampled data sets. Our method is
simple but belongs to a class of methods that has not been
explored thoroughly. The method can be extended to use more
complex architectures such as graph neural networks and
incorporate more domain knowledge using the method’s
hierarchical architecture. We hope that further exploration in
this direction and the use of ideas presented in this work will
help improve protein stability predictors.
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