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4 ABSTRACT: The design of new inhibitors for novel targets is a very
5 important problem especially in the current scenario with the world being
6 plagued by COVID-19. Conventional approaches such as high-
7 throughput virtual screening require extensive combing through existing
8 data sets in the hope of finding possible matches. In this study, we
9 propose a computational strategy for de novo generation of molecules
10 with high binding affinities to the specified target and other desirable
11 properties for druglike molecules using reinforcement learning. A deep
12 generative model built using a stack-augmented recurrent neural network initially trained to generate druglike molecules is optimized
13 using reinforcement learning to start generating molecules with desirable properties like LogP, quantitative estimate of drug
14 likeliness, topological polar surface area, and hydration free energy along with the binding affinity. For multiobjective optimization,
15 we have devised a novel strategy in which the property being used to calculate the reward is changed periodically. In comparison to
16 the conventional approach of taking a weighted sum of all rewards, this strategy shows an enhanced ability to generate a significantly
17 higher number of molecules with desirable properties.

1. INTRODUCTION
18 The advent of data-driven techniques across multiple domains
19 of computer science, such as robotics, natural language
20 processing, and computer vision, has found immense success,
21 and this has led to their application in natural sciences.1,2 The
22 curation of large data sets3−5 has increased the relevance of
23 machine-learning-based approaches in problems like molecular
24 property prediction, conceiving retrosynthetic pathways, protein
25 structure prediction, and drug discovery.6−9

26 Drug discovery is a long, expensive, and arduous process
27 which combines a wide range of disciplines including chemistry,
28 biology, and pharmacology. For a novel target, the conventional
29 approach is to perform high-throughput screening on chemical
30 libraries to identify small molecules that bind well to the target.
31 The identified hits are then optimized to get higher binding
32 affinity, reduce toxicity, and improve oral bioavailibity.10,11 The
33 time and expense involved in this process give rise to alternate in
34 silico approaches like virtual screening wherein small molecules
35 from existing drug libraries are computationally evaluated by
36 generating protein ligand complexes using docking calculations
37 and ranking them using a scoring function.12,13 However, these
38 also come with the caveat that finding the most stable
39 conformation of the complex is a nonconvex optimization
40 problem, and it can take a very large amount of time (≈10 min
41 per molecule) to find the most optimal conformation. These can
42 be made faster using machine-learning-based approaches like
43 the works of Aggarwal et al.14 for detecting the ligand-binding
44 site, Chelur and Priyakumar15 for binding residue detection, and
45 Mehta et al.16 for enhanced molecular sampling.14−16 However,
46 even the most exhaustive studies17 have been able to find

47binding affinities of ≈108 molecules on a single target which is
48minuscule in comparison to the vast magnitude of the chemical
49space with about 1060 synthesizable molecules.18 This posits the
50argument for the de novo generation of molecules with high
51binding affinities to the required target instead of searching in
52existing libraries.
53Machine-learning-based approaches like recurrent neural
54networks, generative adversarial networks (GANs), and varia-
55tional autoencoders have recently been adopted for molecule
56generation. Gupta et al.19 used long short-term memory
57recurrent neural networks, generally used for natural language
58processing tasks, to generate molecules in the form of SMILES
59(simplified molecular-input line-entry system), which is a string
60representation of molecules and has it is own grammar and
61semantics.20 GANs are generative models that learn the
62probability distribution of the training data, and sampling
63from the distribution can then be used to generate synthetic data
64points. This model has also been applied to the generation of
65molecules with desirable properties in works by De Cao and
66Kipf,21 Prykhodko et al.,22 and Maziarka et al.23 Jin et al.24 used
67the graph representation of molecules to train a variational
68autoencoder that could then generate graphs of new
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69 molecules.24 Kusneret al.,25 Griffiths and Hernańdez-Lobato,26

70 and Lim et al.27 used SMILES representations for generating
71 molecules through the variational autoencoder architec-
72 ture.25−27 In fact, applications of deep learning models for
73 molecule generation have proven to be very successful in recent
74 years.19,28−30

75 The next challenge is to generate molecules with desirable
76 properties for which the two major approaches being adopted
77 are reinforcement learning and latent space optimization.
78 Variational autoencoders are capable of learning a continuous
79 space representation of molecules31−34 which can then be
80 optimized to generate molecules with target properties through
81 techniques like Bayesian optimization and swarm optimiza-
82 tion.35,36 Gao et al.37 used an autoencoder architecture and a
83 generator model in combination to incrementally update the
84 latent space representation of the given molecule to reach a
85 molecule with the desired properties.37 Reinforcement learning
86 can be used to generate desirable molecules by decomposing the
87 process as a sequence of states and actions to maximize a reward
88 which in this case is the desirable property. Popova and co-
89 workers used stack-augmented gated recurrent units (GRUs) to
90 generate molecules followed by reinforcement learning guided
91 optimization on properties like LogP, quantitative estimate of
92 drug likeliness (QED), and synthetic accessibility.38 Guimaraes
93 et al.39 combined the GAN and reinforcement learning
94 frameworks for the task while You et al.40 and Khemchandani
95 et al.41 used a graph-based policy network to generate molecular
96 graphs.39−41 Boitreaud et al.42 and Born et al.43 combined a
97 variational autoencoder model with reinforcement learning to
98 generate molecules with high binding affinities to the specified
99 target and antiviral candidates, respectively.42−44 Bung et al.45

100 used reinforcement learning with a SMILES generator to
101 generate molecules with high binding affinities to JAK2 and
102 SARS-CoV-2 3CL proteins, respectively.45,46

103 In this work we propose a molecule generation pipeline,
104 MoleGuLAR (molecule generation using reinforcement learn-

f1 105 ing with alternating rewards, Figure 1), which uses a stack
106 augmented recurrent neural network (RNN) initially trained to
107 generate valid druglike molecules which is then optimized to
108 generate molecules with a high binding affinity to the specified
109 target. For the binding affinity calculation, we tried two
110 methodologies: (1) performing docking calculation to find the

111most stable complex and the corresponding binding affinity and
112(2) using a machine-learning model trained to predict binding
113affinities. In the case of multiobjective optimization, we found
114that using a weighted sum of the rewards from different
115properties may not be effective in some cases because it is
116possible that one or more properties dominate others leading to
117poor results. Hence, we also propose a novel optimization
118strategy in which the reward is alternated so that the model
119changes the region from which it samples in the chemical space.
120When the reward is changed, the generator starts from a better
121position with respect to one property when optimization for
122another property is started. We also showcase its application on
123two proteins: Mpro of SARS-CoV-2 and TTBK1 with a wide set
124of target properties. The robustness of this strategy is further
125showcased by using it to optimize the model for conflicting
126properties along with the binding affinity.

2. THEORY AND METHODS

127This section describes the various components of the proposed
128framework (Figure 1). The formulation of the stack-augmented
129RNN as the generator model is detailed in Section 2.1 followed
130by methods for binding affinity calculation and hydration free
131energy calculation in Sections 2.2 and 2.3, respectively. The
132formulation of the molecule generation as a Markov decision
133process, use of reinforcement learning to maximize a given
134reward function using policy gradient, and the two optimization
135strategies used in this study are described in Section 2.4.
1362.1. Generator. The generator module makes use of a stack-
137augmented GRU which outputs molecules as SMILES strings as
138presented by Popova et al.38,47 A valid SMILES string must have
139correct valency for all atoms, and all ring openings and closures
140must be counted; hence, conventional RNNs do not work well
141on this task because of their inability to count. Therefore, the
142addition of a memory unit along with the RNN forms an
143appropriate model which is explained further in Section S1.1 of
144the Supporting Information.
145The stack RNN is initially trained on ≈1.5 million druglike
146molecules from the ChEMBL21 database5 to learn the rules and
147grammar of SMILES strings.
1482.2. Binding Affinity Calculation. 2.2.1. Docking Calcu-
149lations. The generator model once trained is then used to
150produce ligands which are then docked to the specified target to
151find the most stable conformation of the complex and to find the
152corresponding binding affinity further referred to as BA in the
153article. The 3D structure of the molecule from the SMILES
154string is obtained using the RDKit toolkit.48 The target proteins
155TTBK1 (PDB ID: 4BTK) and SARS-CoV-2 Mpro complexed
156with N3 inhibitor (PDB ID: 6LU7) are obtained from the
157Research Collaboratory for Structural Bioinformatics PDB.49

158The ligand and protein structure is then converted to a format
159suitable for the input to the docking software using
160AutoDockTools4. The molecule docking grid is generated in
161the next step using the AutoGrid4 utility, and finally the docking
162calculation is done using AutoDock-GPU while keeping the
163protein active site rigid.50,51 This tool is referred as AutoDock in
164the rest of the article. Detailed information about the docking
165methodology is provided in the Supporting Information.
1662.2.2. Machine-Learning Models. We also tested the use of
167machine-learning models as a placeholder for AutoDock to
168predict the binding affinities of the generated ligands instead of
169performing docking calculations to reduce the computation
170time. In order to do this, we obtained a data set of ≈2 million

Figure 1. Pipeline used by MoleGuLAR for generating molecules with
high binding affinity to a specified drug target.
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171 molecules obtained from the HTS collection by Enamine52

172 docked with the TTBK1 protein.
f2 173 Figure 2a shows that a significant number of molecules lie in a

174 small range of binding affinities, and hence, using that for the
175 predictor model tends to overfit (Figure S2 of the Supporting
176 Information). In order to tackle this issue, we split the entire data
177 set into smaller bins of 1 kcal/mol and sampled 25K molecules
178 from each bin and all the molecules if the number of molecules is
179 less than 25K. Figure 2b shows the distribution of the obtained
180 subset consisting of ≈200 K molecules. This is then split into
181 training, testing, and validation sets in the ratio 80:10:10.
182 We further tested various machine-learning models for this
183 regression task. Jaeger et al.53 proposed theMol2vec53 model for
184 learning vector representations of SMILES strings that can then
185 be used as input for further downstream tasks like binding
186 affinity prediction as done by Mehta et al.16 along with
187 predicting other properties. Using these embeddings, a random
188 forest model with 250 decision trees was trained for predicting
189 the BA. The aforementioned model with input features from the
190 embeddings obtained from graph isomorphism networks (GIN)
191 proposed by Xu et al.54 and Hu et al.55 were also used for the
192 task. The drawback of these approaches is that the embeddings
193 being used remain constant during training and that leads to
194 poor performance (Figure S3 of the Supporting Information).
195 Fine tuning these representations during the training process
196 helps to improve the accuracy for which three linear layers were
197 added with the GIN embeddings, and the model is then trained
198 end-to-end.
199 2.3. Hydration Free Energy Prediction. The hydration
200 free energy (ΔGHyd) of a molecule measures its interaction with
201 water and forms an important part of the drug delivery system.
202 The state of the art methods for predicting it include message-
203 passing neural networks (MPNN)9 as shown by Wu et al.3 in
204 MoleculeNet3 and chemically interpretable graph interaction
205 networks (CIGIN)56 by Pathak et al.56 To predict ΔGHyd,
206 presently we took out 10% molecules out of 643 molecules as a
207 hold out test set and performed fivefold cross-validation on the
208 remaining data set with 10% going in the validation set and 80%
209 in the training set.
210 2.4. Reinforcement Learning. A reinforcement-learning
211 pipeline generally consists of two modules: the actor and the
212 critic. The actor takes the current state (st) of the system and
213 performs an action (at) that should maximize the reward. The
214 critic sees at, st, and the state obtained by performing the action
215 (st+1) and penalizes or rewards the actor.
216 Generation of a SMILES string can be modeled as a Markov
217 decision process where st denotes the SMILES string

218constructed so far, and at denotes the addition of a token to st.
219We also define a terminal state sT which signifies the end of the
220molecule and initial state s0. The whole generation process is
221 f3depicted in Figure 3.

222The generator model parametrized by Θ estimates the
223probability, p(at|st, Θ), samples at from the probability
224distribution, and updates the state until sT is reached. Rewards
225of all intermediate states stwith t < T are 0 since it is possible that
226the intermediate SMILES strings may not represent a valid
227molecule. sT is then sent to the critic which returns the reward
228r(sT). Hence, the task here is to find Θ such that the expected
229reward given by eq 1 is maximized. This is done using the
230REINFORCE algorithm57 which is detailed further in the
231Supporting Information.

∑Θ = [ | Θ] =
ϵ

ΘR r s s p s r s( ) ( ) , ( ) ( )T
s S

T T0

T 232(1)

233For the multiobjective setup, the reward function r(sT) is
234composed of multiple components from the different properties
235for which the model is being optimized. The two reward
236strategies that we propose are
237•Weighted Sum Rewards: The total reward r(sT) is expressed
238as a weighted sum of all other components:
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239whereD fetches the reward for BA, L for LogP,Q for QED,T for
240topological polar surface area, and H for ΔGHyd. Weights are
241kept as hyperparameters and remain constant throughout the

Figure 2. Distribution of binding affinities. (a) Two million molecules with TTBK1 and (b) selected molecules from buckets.

Figure 3. Illustration of SMILES string generation as aMarkov decision
process. At each state st, the agent performs an action at to give the
updated state st+1 and provide a reward according to the state.
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242 optimization process. The functional forms of the reward for
243 each property are given in Table S2 of the Supporting
244 Information.
245 •Alternating Rewards: The aforementioned approach does
246 not work especially in cases where properties are conflicting like
247 high TPSA, and more negative hydration free energy would be
248 contradictory in nature. In such cases we have devised a strategy
249 wherein all the weights are changed to 0 except one. This takes
250 the generator model into the space where one property is
251 optimal providing a better starting point when optimization for
252 the other property is started. The current strategy works
253 extremely well across most of the tasks and removes the
254 requirement for acute hyperparameter tuning to find the most
255 optimal weights for each reward function. Further details are
256 given in the Results and Discussion section.

3. RESULTS AND DISCUSSION
257 This section describes the performance of machine-learning
258 models for predicting binding affinity and ΔGHyd as well as
259 application of the proposed pipeline on the targets:

260 • SARS-CoV-2 Mpro (PDB ID: 6LU7): With the world in
261 the midst of a global pandemic caused by COVID-19, the
262 main protease (Mpro) has been identified as an important
263 target due its vital role in viral transcription and
264 replication.58

265 • TTBK1 (PDB ID: 4BTK): Neurodegenerative diseases
266 have become extremely common over the past few years,
267 and the tau-tubulin kinase 1 has proved to be an attractive
268 target to combat a wide variety of neurodegenerative
269 diseases.59

270 All of the presented experiments were performed using an
271 Intel Xeon E5-2640 v4 processor and a Nvidia GeForce RTX
272 2080Ti GPU. The implementation details of all the machine-
273 learning models are described in Section S1.3 of the Supporting
274 Information.

2753.1. Machine-Learning Predictor Models. 3.1.1. Binding
276Affinity. The performance of the random forest model with
277different embeddings and the performance of GIN discussed in
278Section 2.2.2 for BA prediction on the test set are reported in
279 t1Table 1.
280The use of constant embeddings for the random forest models
281leads to a higher mean absolute error (MAE) in comparison to
282the GIN model because in the latter, the model learns to
283automatically extract more relevant information from the
284molecular graph. The former also showed comparatively poorer
285performance in the desirable region, i.e., where the BA is high
286due to the lesser number of samples in that range in the data set.
287The correlation between the predicted values and ground truth
288 f4values is shown in Figure 4a.
2893.1.2. Hydration Free Energy. Figure 4b shows the
290correlation of predicted and ground truth ΔGHyd in the test
291set obtained from the FreeSolv data set. The MPNN model
292succeeds in achieving a high degree of accuracy with a root mean
293squared error (RMSE) of 1.35 kcal/mol and close correlation
294characterized by the R2 score of 0.87. However, the use of
295machine-learning models for predicting properties of a molecule
296comes with the caveat that in the case in which any substructures
297in the molecule are not present in the training set, the prediction
298may be inaccurate. This is especially true in regions where the
299existing data is very sparse like cases when the binding affinity is
300extremely high. As shown in the subsequent sections, perform-
301ing docking calculations on the generated molecules addresses
302this issue.
3033.2. Single Objective Optimization. The initial tests were
304performed to analyze the ability of the generator model based
305only on SMILES to learn to generate molecules with structure
306complementary to the binding pocket. In sections 3.2.1 and
3073.2.2, we evaluate two different approaches to obtaining the
308binding affinity, namely docking calculations and using a GIN
309predictor model, respectively. To further validate the perform-
310ance, the optimization was done from scratch across three runs
311with different random seeds, and the distribution of the
312properties of the generated molecules is given in the Supporting
313Information. Refer to Section S4 of the Supporting Information
314for the statistics and generated molecules from each of the trials
315in Section 3.2.
3163.2.1. Docking Calculations. For both TTBK1 and SARS-
317CoV-2 Mpro, the generator model was optimized for 175
318iterations with 15 policy gradient steps in each and a batch of 10
319molecules. At the end of every iteration, 100 molecules were

Table 1. Performance of PredictorModels for BA in Terms of
Performance Metrics MAE (kcal/mol) and Coefficient of
Determination (R2)

model MAE (kcal/mol) R2

graph embeddings + random forest 0.87 0.55
Mol2vec + random forest 0.47 0.91
graph isomorphism network (GIN) 0.45 0.93

Figure 4. Correlation plots between predicted values from the machine-learning models and ground truth values from the respective data sets.
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Figure 5.Distribution of BA of generated molecules. BA of generated molecules before and after optimizing the generator for reward from BAwith (a)
SARS-CoV-2 Mpro, (b) TTBK1, and (c) TTBK1 calculated using GIN.

Figure 6. Joint distribution of LogP andQED of generated molecules before and after optimizing the model for reward from BAwith (a) SARS-CoV-2
Mpro, (b) TTBK1, and (c) TTBK1 calculated using GIN.
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320 generated, and their docking scores were calculated. After the
321 completion of 175 iterations, 500 molecules were generated
322 from the initial model and the optimized model. The

f5 323 distribution of the binding affinities given in Figures 5a and 5b
324 shows a significant shift toward more desirable regions.
325 The above approach shows great performance in optimization
326 for BA, but typical druglike molecules have constraints on other
327 properties as well. Ideally, LogP should be between 0 and 5 for
328 oral drugs, QED60 close to 1, and TPSA < 90 Å2, which are

f6 329 violated during single objective optimization (Figures 6a and

3306b). Hence, there is a need for multiobjective optimization in
331order to keep the other properties in check as well.
3323.2.2. Using GIN. The use of a GIN for BA prediction leads to
333an approximately 10-fold speed-up in optimization taking only
334about 5 h while still keeping the high performance. To further
335validate the generator, 500 molecules were generated and
336docked to TTBK1. The shifts in distribution of BA, LogP, and
337QED are shown in Figures 5c and 6c. However, the undesirable
338LogP andQED persist, and hence multiobjective optimization is
339used.
3403.3. Multiobjective Optimization. In order to address the
341shortcomings of single objective optimization, the rewards from
342different properties were also integrated into the policy gradient
343calculation, and the performance was tested for the two proteins
344using different target values and both optimization strategies.
345 f7These are listed in Figure 7, and the results have been discussed
346in the subsequent sections. Section 3.3.1 describes the
347conventional method for multiobjective optimization by taking
348a weighted sum of rewards from different properties, and Section
3493.3.2 shows the performance of MoleGuLAR in generating
350molecules with specified properties. To further validate the
351performance, the optimization was done from scratch across
352three runs with different random seeds, and the distribution of
353the properties of the generated molecules is discussed in the
354Supporting Information. Refer to Section S5 of the Supporting
355Information for the statistics and generated molecules from each
356of the tests in Section 3.3.
3573.3.1. Weighted Sum Reward. Tests were done keeping the
358weights for each reward function equal to 1 in order to optimize
359the BA calculated using AutoDock along with target LogP = 2.5.

Figure 7. Tests performed for multiobjective optimization: protein
PDB ID, tools used for BA calculation, different target values of
respective properties, and optimization strategies.ΔGHyd and TPSA are
in kcal/mol and Å2, respectively.

Figure 8.Distribution of BA of generated molecules before and after optimizing the generator for sum of rewards from target LogP = 2.5 and high BA
calculated with (a) SARS-CoV-2 Mpro, (b) TTBK1, and (c) TTBK1 calculated using GIN.
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360 While there was improvement in the distribution of LogP in
361 comparison to single objective optimization and BA in

f8 362 comparison to the initial model (Figure 8), the target was not
f9 363 achieved yet (Figure 9). A similar observation was seen when

364 GIN was used for BA calculation instead of AutoDock in the
365 same setting (Figures 8c and 9c). Further testing was done using
366 the GIN BA predictor (Figure S16 of the Supporting
367 Information), in which the generator was optimized to generate
368 molecules with various simultaneous targets, i.e., LogP = 2.5,
369 maximum QED, TPSA = 100 Å2, and ΔGHyd = −10 kcal/mol,
370 and the weighted sum of all rewards was taken. This worked well
371 for BA, TPSA, and ΔGHyd but failed to achieve the target LogP
372 and showed a very low QED. This is in agreement with the
373 OptiMol pipeline by Boitreaud et al.42 who showed that

374optimizing for BA led to a reduction in QED.42 In order to tackle
375this, we propose the following alternating rewards strategy for
376optimization.
3773.3.2. Alternating Rewards. The pipeline’s exceptional
378performance on single objective tasks helped formulate the
379strategy that only one objective be optimized at a time and the
380objective be changed at regular intervals. Taking the example of
381LogP and BA, initially the model moves to generating molecules
382with better BA, but after a few iterations, the reward is switched
383to optimize for LogP. Figure S19 of the Supporting Information
384shows the variation of BAwith SARS-CoV-2Mpro and LogP with
385the iterations. The generator is rewarded for BA during the
386iterations marked red and for LogP during the iterations marked
387blue, and it can be seen that when the reward switches the model

Figure 9. Joint distribution of LogP and QED of generated molecules before and after optimizing the generator for sum of rewards from target LogP =
2.5 and high BA with (a) SARS-CoV-2 Mpro, (b) TTBK1, and (c) TTBK1 calculated using GIN.

Figure 10. (a) Distribution of BA and (b) joint distribution of LogP and QED before and after optimizing the model for LogP = 2.5 and high BA with
SARS-CoV-2 Mpro calculated using AutoDock by alternating rewards.
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388 is already sampling from the space with high BA and moves
f10 389 toward the region close to the target LogP and vice versa. Figures
f10f11 390 10 and 11 show the application of this strategy to SARS-CoV-2

391 Mpro and TTBK1, respectively, using AutoDock. We can see a
392 better distribution for BA as well as a significant overlap in the

393
most desirable and optimized regions of LogP and QED.

394 f12
Furthermore, Figure 12 shows the ability of the current strategy

395
to consistently generate a higher percentage of hit molecules in

396comparison to the weighted sum approach.

Figure 11. (a) Distribution of BA and (b) joint distribution of LogP and QED before and after optimizing the model for LogP = 2.5 and high BA with
TTBK1 calculated using AutoDock by alternating rewards.

Figure 12. Fraction ofmolecules with BA and LogP in and out of desirable regions from those generated by themodel optimized for (a) sum of rewards
from BA with SARS-CoV-2 Mpro and LogP, (b) sum of rewards from BA with TTBK1 and LogP, (c) alternating rewards from BA with SARS-CoV-2
Mpro and LogP, and (d) alternating rewards fromBAwith TTBK1 and LogP. For legends of the outermost part of the pie chart, see (c), as they repeat in
the rest of the pie charts.
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397 The GIN model was used for further testing. Different targets
398 were kept for different properties to evaluate the model’s

f13 399 capability of achieving all targets simultaneously. In Figure 13
t2 400 and Table 2, it can be seen that the model is capable of

401 generating molecules with high BA along with maximizing QED
402 subject to the LogP being constrained to 2.5 and 6. Furthermore,
403 in Figure 13c, there is a clear separation of the distributions in
404 three dimensions showing the model’s ability to navigate

405different regions of the chemical space where molecules possess
406the desired properties.
407A similar test was repeated with TPSA and ΔGHyd along with
408BA to see how the optimization strategy handles conflicting
409targets since higher the TPSA, the more negative the ΔGHyd.
410 t3The target pairs are shown in Table 3, and the obtained results
411are discussed in Section S5.2.5 of the Supporting Information.
412The best hits from 500 molecules generated from each of the
413aforementioned tests using alternating rewards are shown in
414 f14Figure 14.

4. CONCLUSION
415In this study, we propose MoleGuLAR, a pipeline for de novo
416generation of druglike molecules with high BA to novel targets
417along with other desirable properties using alternating rewards.
418Reinforcement learning is used to optimize the generator model
419weights to maximize the rewards obtained from calculated
420properties. A novel optimization strategy is also proposed for the
421multiobjective setup in which the reward function is switched to
422optimize for a different property at regular intervals instead of
423the conventional approach in which the sum of rewards from all
424properties is taken. We also show the performance of two ways
425of calculating BA, i.e., using AutoDock and using a predictor
426model, while also weighing the merits and demerits of both
427approaches as a part of the pipeline. Further work can include
428training the BA predictor models on the fly using techniques like
429active learning to make the pipeline more robust and efficient.
430The use of this architecture significantly reduces the number of

Figure 13. (a) Distribution of BA, (b) joint distribution of LogP and QED, and (c) 3D representation of properties of generated molecules before and
after optimizing the generator for high BA with TTBK1 calculated using GIN.

Table 2. LogP and QED Targets along with Obtained Mean
Values of BA, LogP, and QED of the Corresponding
Generated Data as Well as the Best BA

target
LogP

target
QED

mean BA
(kcal/mol)

best BA
(kcal/mol)

mean
LogP

mean
QED

2.5 1 −6.76 −8.18 2.9 0.42
6 1 −7.64 −8.41 5.87 0.19

Table 3. TPSA andΔGHyd Targets along with Mean Values of
BA, TPSA, and ΔGHyd of the Corresponding Generated Data
as Well as the Best BA

target
TPSA
(Å2)

target
ΔGHyd

(kcal/mol)

mean
TPSA
(Å2)

mean
ΔGHyd

(kcal/mol)
mean BA
(kcal/mol)

best BA
(kcal/mol)

70 −11 88.77 −10.13 −6.11 −8.36
120 −11 117.25 −10.75 −6.65 −8.32
70 −7 71.64 −7.42 −7.4 −8.90
120 −7 99.16 −8.42 −6.85 −8.64
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431
docking calculations required to identify potential drugs for a

432
novel target removing a major bottleneck in the drug discovery

433
process and can potentially be used to generate targeted drug

434
libraries. We show that the alternating reward strategy is

435
extremely robust in finding potential hits for the target across a

436 wide set of target properties.

437■ ASSOCIATED CONTENT
438*sı Supporting Information
439The Supporting Information is available free of charge at
440https://pubs.acs.org/doi/10.1021/acs.jcim.1c01341.

441Performance of different machine-learning models for
442predicting BA, reward functions for each property, tables
443of mean values of respective properties of molecules

Figure 14. Top hits from 500 molecules generated after each test done using alternating rewards.
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444 generated for each test along with structures of the top
445 hits, protein−ligand interactions, and supplementary
446 discussions and methods (PDF)
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