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Abstract. Research in molecular sciences witnessed the rise and fall of Artificial Intelligence (AI)/

Machine Learning (ML) methods, especially artificial neural networks, few decades ago. However, we see a

major resurgence in the use of modern ML methods in scientific research during the last few years. These

methods have had phenomenal success in the areas of computer vision, speech recognition, natural language

processing (NLP), etc. This has inspired chemists and biologists to apply these algorithms to problems in

natural sciences. Availability of high performance Graphics Processing Unit (GPU) accelerators, large

datasets, new algorithms, and libraries has enabled this surge. ML algorithms have successfully been applied

to various domains in molecular sciences by providing much faster and sometimes more accurate solutions

compared to traditional methods like Quantum Mechanical (QM) calculations, Density Functional Theory

(DFT) or Molecular Mechanics (MM) based methods, etc. Some of the areas where the potential of ML

methods are shown to be effective are in drug design, prediction of high–level quantum mechanical energies,

molecular design, molecular dynamics materials, and retrosynthesis of organic compounds, etc. This article

intends to conceptually introduce various modern ML methods and their relevance and applications in

computational natural sciences.

Keywords. Deep learning; machine learning; computational chemistry; drug design; molecular design;

computational materials; neural networks.

1. Introduction

The application of ML methods to problems in natural

sciences started fewdecades ago. Thefirst publication in

this area was byHiller et al. in 1973, which used a three-
layer perceptron network for the classification of sub-

stituted 1,3-dioxanes as pharmacologically active and

inactive.1 From the 1990s, the use of artificial neural

networks (ANNs) was prevalent in computer aided drug

design, especially in quantitative structure-activity

relationship (QSAR) studies.2 However, application of

ML methods to other areas of scientific research

remained a niche domain without much attention until

recently.3 Experiment, theory and computation are

recognized as the three cornerstones on which scientific

advances are made. The advent of new deep learning

(DL) algorithms, along with new datasets, libraries, and

better computing infrastructure, has fueled data–driven

methods as the fourth paradigm. Figure 1 shows the

number of publications with ‘‘machine learning’’ in the

abstract according to American Chemical Society

(ACS) Journals through the years. It shows ML has

grown at a remarkable rate in the past four years as one

of the most popular research directions.

An extreme view on AI/ML is that it ‘‘has made huge

progress in perception’’. The immense hype around it

has attracted the attention of people from all walks of

science and technology. Below is a recent example of

how modern ML methods have made a high impact on

one of the holy grails of biological research - protein

structure modeling from its primary sequence.

Critical assessment of protein structure prediction

(CASP) is a competition that is conducted once in two

years since 1994, where research teams from around

the world attempt to predict three-dimensional struc-

tures of proteins from just the amino acid sequences.

Proteins, whose structures are almost solved, or whose

structures have been recently solved but are withheld

from the public, are taken up in these competitions.

The most recent and the 14th edition of this occurred

in November 2020.4 By comparing the computational

predictions with the lab results, each CASP14*For correspondence
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competitor received a global distance test (GDT)

score. GDT is a structure similarity measure for

comparing protein folds. One of the competitors - a

company called DeepMind, outperformed others by a

huge margin. DeepMind’s AlphaFold 2 produced

models for about two-thirds of the CASP14 target

proteins with GDT scores above 90, indicating that the

models are considered roughly equivalent to experi-

mental methods. AlphaFold 2 is so highly accurate that

many have hailed it as the solution to the long-stand-

ing protein structure prediction problem.4–6 Such a

huge difference between the performances of Deep-

mind and others was primarily due to the engineering

aspects of the ML algorithms used.7 This is one of the

many successes of the modern ML methods and is just

one example of how these algorithms along with

physics based methods may impact the nature of sci-

entific computing in the years to come.

The rest of the article is structured in the following

manner. Initially, a short overview of different types of

molecular representations and datasets is presented.

Then, selected ML methods are discussed at the con-

ceptual level. This is followed by brief discussions of a

few popular areas of molecular sciences where ML has

found success. Finally, the challenges faced by ML in

molecular sciences are analyzed and there is also a

discussion on how this area may evolve in general.

2. The role of ML in AI

The definitions of AI, ML, and DL have changed over

the years, and their correlations have also evolved.

Conventionally, AI is a general area which can loosely

be termed as a class of techniques that enable

computers to mimic human intelligence. Recently, AI

systems have performed as well as, or even better than

humans in several tasks.8 AI, and its most common

subfield of ML, study the methods of enabling

machines to skillfully perform intelligent tasks without

explicitly being programmed for those tasks. Today, in

its various forms, AI is successfully applied across

various domains ranging from robotics and image

analysis to its application in molecular sciences.

Most researchers today agree that one of the pri-

mary requirements for intelligent behavior is learning.

This makes ML one of the most rapidly developing

subfields of AI. Nowadays, it is being argued that ML

has outgrown its parent. DL and Reinforcement

Learning (RL) are subcategories of ML that have

recently developed in the field. Figure 2 shows the

schematic of the conventional relationship between the

categories.

2.1 Machine learning

Within AI, ML has emerged as the method of choice

for developing practical software for machine trans-

lation, speech recognition, computer vision, recom-

mendation systems and other applications.9,10 ML,

which includes DL, relies on statistical methods to

learn from data. Using these techniques, we can

extract complex and often hidden patterns from given

data sets and can express them as mathematical

Figure 1. The rise of machine learning over the years
evident from the number of publications American Chem-
ical Society journals with ‘‘machine learning’’ anywhere in
the article.

Figure 2. Schematic of the conventional relationship
between artificial intelligence (AI), machine learning, deep
learning and reinforcement learning.
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objects. Many of the AI system developers now agree

that, for many tasks, it can be far simpler to train a

system by showing it examples of desired input-output

behavior than to program it manually.

2.2 Deep learning

Traditional ML is limited to the size of its input data.

For example, thousands of pixels will be sent to the

system for analyzing images of conventional size. This

means that reception and grouping of information to

select those which are essential to the task will be

necessary. DL is capable of handling such problems. It

uses multi-layered neural networks, extremely large

amounts of data and computing time to make accurate

predictions. Unlike ML, it is not necessary to hand-

engineer features (discussed later) from the raw data in

DL. Function specification (defining what to learn

from the given data) and optimization (how to weigh

the data appropriately) are taken care of by the algo-

rithm itself that has made DL extremely popular in

many fields such as speech recognition,11 computer

vision,12 NLP,13 and recently in molecular sciences.

3. Chemical representations and descriptors

3.1 Chemical representations

Traditionally, molecules are depicted as structure

diagrams with bonds and atoms. However, other rep-

resentations are required for the computational pro-

cessing of chemical structures. Chemical

representation of a molecule may contain its spatial or

topological information in a computer-inter-

pretable format.14,25 Current representations can be

broadly classified into three types: discrete (e.g., text),

continuous (e.g., vectors and tensors) and weighted

graphs. Atomic coordinates, graph representations,

simplified molecular-input line-entry system

(SMILES) and international chemical identifier

(InChl) are some of the popular representation

methods.

A molecular graph representation essentially maps

the atoms and bonds in a molecule to sets of nodes and

edges respectively. It’s formally a 2D matrix that can

be used to represent 3D information like atomic

coordinates and bond angles. A simple example is

representing molecules in the form of an adjacency

matrix A, where aij = 1 means there exists a bond

between nodes vi and vj in the molecular graph, and aij
= 0 means otherwise. However, the matrices by which

molecules are described are not compact as they scale

as the square of the number of atoms. This is not a

problem with linear notations like SMILES and InChI.

SMILES is used to translate a chemical’s 3D

structure into a string of symbols based on a set of

rules. It’s like a connection table (Ctab) which iden-

tifies the nodes and edges of a molecular graph.

Another form of line notation, InChI, is a hierarchical

layered notation where each new layer describes more

complex chemical characteristics. The first few layers

include information within the connection table, and

the additional layers (if needed) deal with complexities

like isomers and isotopic distributions. The InChI

provides a unique identifier, while SMILES is com-

monly used for storage and interchange of chemical

structures.

3.2 Molecular descriptors and fingerprints

Using algorithms, the physical and chemical infor-

mation encoded within the symbolic representations of

molecules are transformed into useful mathematical

representations, known as molecular descriptors or

feature vectors.15,16 Efforts have been made to define

the criteria for developing efficient descriptors: they

need to be interpretable, invariant to the symmetries of

the underlying physics, direct and concise to avoid

redundancy and the curse of dimensionality. Molecu-

lar descriptors can be experimental values like density,

logP, dipolemoment and so on. They are used for

various tasks like finding quantitative structure-prop-

erty relationships (QSPRs) and QSARs, virtual

screening (VS), and similarity searching. This is

because molecules with similar properties tend to have

similar descriptors.15,17,18

Molecular descriptors can have a significant impact

on the performance of ML models based on how they

capture the relevant features for the specific task. In

2013, Hansen et al.19 improved their method of pre-

dicting atomization energies of organic molecules

largely by modifying the representation used. By using

variations of the Coulomb matrix (the representation

used for the previous state-of-the-art model), they

were the first to highlight the importance of good data

representation in QM tasks.

Molecular descriptors are commonly categorized as

0D (0-Dimensional), 1D, 2D, 3D and 4D descriptors

(Figure 3).17 The 0D descriptors contain no information

about the molecular structure, like atom and bond

counts. 1D descriptors contain information obtained

from themolecular formula, likemolecular fingerprints.

Molecular fingerprints encode the structural features of

molecules in a binary bit string format. Circular
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fingerprints, based on the Morgan algorithm,20 encode

which substructures are present in a molecule.21,22 One

of the most common circular molecular fingerprints,

extended-connectivity fingerprints (ECFPs),23 are often

used in QSAR models for lead optimization. A new

molecular fingerprint called MinHashed atom-pair fin-

gerprint, up to a diameter of four bonds (MAP4), is

suitable for small to large molecules and can be adopted

as a universal fingerprint.24

2D descriptors contain information concerning the

size, configuration, and/or electronic distribution of

molecules. These include variants of molecular graph

representation25 and CM. CM is a square matrix (atom

by atom) that encodes the atomic nuclear charges (Z)

and cartesian coordinates (R) of the atoms:

CMi;i ¼ 0:5Z2:4
i ð1Þ

CMi;j ¼
ðZiZjÞ

jRi � Rjj
; i 6¼ j ð2Þ

where Zi is the nuclear charge, and Ri is the nuclear

radius of atomi. Equation (1) corresponds to the

approximate electronic potential energies of a free

atom and Eqn. (2) corresponds to the coulomb nuclear

repulsion terms. 3D descriptors usually depend on the

3D conformation of the molecule, like van der Waals

volume and WHIM descriptors.26 4D descriptors are

usually obtained through reference grids and molecu-

lar dynamics (MD) simulations.

Other examples of molecular featurization include

Bag of Bonds (BoB)27 and BAND28 descriptor. BoB27

can be seen as a histogram vector where each unit,

called a ‘‘bag’’ counts the number of times a particular

bond (such as C-O, C-H, etc.) appears. Like CM, a bag

contains internuclear Coulomb repulsion between the

atoms involved. In 2019, Laghuvarapu, Pathak, and

Priyakumar28 proposed BAND neural network for

predicting atomization energies based on a chemically

intuitive representation that captures the essence of

molecular mechanics (MM) force fields. The BAND

descriptor is computed as the sum of energy contri-

butions from bonds (B), angles (A), nonbonds (N), and

dihedrals (D).

4. Molecular datasets

The performance of ML models heavily depends on

the increasing availability and quality of data. One of

the challenges of using ML is getting the right data in

the appropriate format. Getting the right data involves

gathering information, which contains signals that

correlate with the outcomes of the task. For example,

information on NMR spectrum of molecules won’t

help in solvation energy prediction. High-quality

datasets are usually difficult and expensive to create,

and supervised learning (discussed later) also requires

a significant amount of time to label the data.

The first ML algorithms for molecular modeling in

2010–2012 relied on small datasets having quantum

mechanical (QM) properties for 102–103 molecular

systems.29–31 The chemical compound space (CCS) is

estimated to consist an order of 1060-10100 molecular

systems.32,33 In the last decade, increasingly larger

chemical spaces were built and explored. Large scale

QM and MD methods, along with advances in high

throughput experiments, are generating data at an

incredible rate. Today, DL models are capable of

predicting chemical properties with reasonable accu-

racy by analyzing under just 5% of large molecular

datasets. Such data efficiency and quality are crucial

for in-silico chemical discovery.

Most studies applying ML for predicting QM prop-

erties, like atomization energy, use either

QM7(b) dataset or its larger version QM9.34,35 Both are

subsets of the combinatorially generated molecular

library GDB, which include over 109 stable organic

compounds and up to 17 heavy atoms,36 which essen-

tially covers all small drug-like molecules. Other data-

sets are used in variousML problems such as predicting

drug-target affinity (like Kiba37 and Davis38), solvation

energy (like FreeSolv39 and MNSol40), spectrum pre-

diction (like NMRShiftDB41), molecule generation

(like MOSES42) and for many other tasks in molecular

sciences. Datasets such as ZINC and ChEMBL include

over 108 drug-likemolecules for studying problems like

ligand discovery. PubChem, a database of over 108

chemical substances and their activities,43,44 is used in

the fields of, among others, VS, drug repurposing, drug

side effect prediction, chemical toxicity prediction and

metabolite identification.

Figure 3. The common classification method of molecular
descriptors.
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5. ML approaches in molecular sciences

ML algorithms have successfully been applied to

various domains in molecular sciences to obtain faster

and more accurate solutions when compared to tradi-

tional methods (like QM calculations, DFT or MM-

based methods, etc.). The relationship between a

molecular structure and its properties is largely

deterministic.45 ML models take advantage of this

through their flexibility (e.g. universal approximation

theorem for ANNs) and learn the underlying QSPRs of

a problem, even from simple chemical

representations.46

ML approaches can be classified based on various

standards. One method of classification is based on

whether the ML system needs human supervision.

Based on this, ML approaches are broadly categorized

into three types: supervised, unsupervised, and rein-

forcement learning (Figure 4). This section presents a

brief account of selected popular ML methods that

have been used to tackle molecular science problems.

5.1 Supervised learning

The most widely used ML methods are supervised.47

Molecular property predictions usually fall into this

category. Supervised learning is the process of learn-

ing a function that maps an input to an output based on

input–output pairs labelled by humans. The algorithms

aim to minimize the errors pointed out during the

learning process. It can extract complex nonlinear

patterns and is superior to manually programmed tra-

ditional models. The most basic algorithm is linear

regression, which is expressed as

ŷ ¼ hhðxÞ ¼ hT :x ð3Þ

where x is the feature vector, hh is the hypothesis

function (mathematical formula to model a problem),

and hT is the model’s parameter vector with a bias

term. The following sections briefly present examples

of supervised algorithms applied to various molecular

science tasks.

Figure 4. Examples of various machine learning approaches and algorithms.
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5.1a Traditional ML methods: Traditional ML

methods can loosely be said to encompass funda-

mental algorithms that are often the foundation for

more cutting–edge ML. Traditional algorithms are of

several types: kernel based methods (like SVMs),

decision tree methods (like Random Forests and

XGBoost), Bayesian methods, etc. These algorithms

can be used to solve classification and regression

problems. For example, molecular property prediction

is a regression problem where algorithms such as

Kernel Ridge Regression (KRR),27,48,49 Random

Forests,50,51 and Elastic Net52 have been employed.

Although they have been successfully applied in

various fields, traditional models rely on hand-engi-

neered molecular descriptors from the symbolic rep-

resentation of molecules, which requires domain

expertise. Some ML approaches utilize experimental

measurements such as physico-chemical properties as

descriptors, but the cost of obtaining such optimized

descriptors is the bottleneck. Deep neural networks

(DNNs) are capable of automatic feature extraction

and greatly outperforms traditional methods when it

come to dealing with large datasets of complex

problems.

However, traditional ML methods are still preferred

over DNNs if the dataset size is small, as DNNs tend

to overfit. The performance of these methods with

respect to dataset size is shown in Figure 5. Often,

traditional models are conceptually simpler. Most

DNNs work like a ‘‘black-box’’, which is a big limi-

tation in fundamental science where uncertainty

measures and interpretability are desired.

5.1b Artificial Neural Networks (ANNs): ANNs

(also known as perceptrons), which are similar to the

biological neural networks,53,54 are one of the most

widely applied models in computational studies. ANN

can be thought of as transforming the input x into a

new feature space, in which it becomes correlated with

the output y. When ANNs transform features sequen-

tially through several layers, it is referred to as DNNs.

They are excellent tools for identifying patterns and

correlations which are far too complex or numerous

for a human to extract and manually program.

Each layer consists of one or more artificial neurons

(Figure 6). These neurons calculate the weighted sum

of the outputs from their preceding neurons and add a

bias. Before passing their output to the succeeding

neurons, an activation function is used to decide if the

value should be ‘‘activated’’ or not. Since the value

can range from �1 to þ1, the type of activation

function required is chosen depending on the task. For

example, Rectified Linear Unit (ReLU) is an activa-

tion function that gives an output x if x is positive and
0 otherwise, and it can be employed in large neural

networks for sparsity.

When a neuron contributes to predicting the correct

results, the connections associated with it are

strengthened, i.e., updated weight values are higher.

During feed-forward training, the output of each

neuron till the last layer is calculated. After the pro-

cess, the differences between the predicted and the

target outputs are compared to find each neuron’s

contribution to the errors. A numerical optimization

technique called gradient descent is used to update the

weight values by backpropagating the errors to the

input layer. The learning algorithm is typically repre-

sented as:

wnþ1
i;j ¼ wn

i;j þ gðyj � ŷjÞxi ð4Þ

where xi is the ith input, yj is the target value of the jth
output, ŷj is the predicted value, wi;j is the weight

between ith input and jth output, n is the nth step, and g
is the learning rate. The learning rate is chosen such

that the model training can converge in a reasonable

time.

Figure 5. The performance of traditional ML methods and
neural networks with respect to dataset size. Figure 6. The structure of an Artificial Neuron.
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DNNs learn high-level features from data incre-

mentally, with each additional hidden layer capturing

higher level features than the previous layer. This

eliminates the need for domain expertise and manual

feature extraction. Thus, DNNs can automatically

learn to extract useful molecular descriptors best sui-

ted for the given data. However, since features have to

be learned from scratch for every new dataset, these

methods can lead to overfitting with limited data.

The most basic type of ANN is a feedforward neural

network, in which information travels in only one

direction from input to output. There are a variety of

others like recurrent neural networks (RNNs), CNNs,

etc.

5.1c Recurrent neural networks (RNNs): While train-

ing vanilla ANNs, each iteration doesn’t remember

what it processed in the previous iteration. This is a

disadvantage when it comes to identifying patterns and

correlations in sequential data, for example, amino

acid sequence of proteins. RNNs are ANN architec-

tures capable of remembering data and modelling

short-term dependencies due to its recurrent memory

cells and are popularly used in sequence modeling and

generation. The RNN cell retains the knowledge of

what the model saw in the previous time-step when

processing the current time-step’s information, which

may affect the interpretation of the current one. Fig-

ure 7 shows a basic pipeline of an RNN sequentially

generating molecules via SMILES. The output of each

RNN cell is fed as input to the next RNN cell. The

cells also pass their shared weights that capture the

past information in the sequence. Concatenating all the

outputs create the completed SMILES for a newly

generated molecule.

When training basic RNNs to predict long-term

dependencies, the gradient shrinks or explodes as it

backpropagates through time - the vanishing and

exploding gradient problems.55,56 This prevents RNNs

from learning these features from long sequences. A

type of RNN unit, the long short term memory

(LSTM) unit or its variant called the gated recurrent

unit (GRU), contains ‘‘gates’’ which lessen these gra-

dient problems. These gates decide how much to

remember from its past, what to include in its current

state, and what to pass on as output to the next gate.

The gradients can now be preserved for longer

sequences. LSTMs and GRUs are popularly used for

inverse molecular design as molecular representations

such as SMILES have long-term dependencies like

closing parenthesis and rings. For generating mole-

cules using SMILES, the output layer usually gives

probabilities for every possible SMILES string token

and not the character itself because of these strict long-

term dependencies. Typically in generative mode, the

method is to sample this distribution, while in training

mode, the token with the highest probability is chosen.

5.2 Unsupervised

Unlike supervised learning, unsupervised learning is

the process of learning without labelled data. Instead

of picking out specific types of data that are predefined

as desired, it simply looks for data that can be grouped

based on their similarities. This is why it is also called

clustering or grouping. The system is trained using

large data and it learns by itself. The following section

presents a few examples of unsupervised learning for

different tasks.

5.2a Autoencoders (AEs): Studies have aimed to derive

molecular descriptors in an unsupervised and data-

driven way. In 2016, Gomez-Bombarelli et al.57 cre-

ated the first ML–based generative model for mole-

cules called CharacterVAE. The model also delivered

a data-driven method for molecular descriptors. They

developed a variational autoencoder (VAE) to convert

the discrete SMILES representation of a molecule to

and from a continuous multidimensional

representation.

An AE is an ANN architecture for unsupervised

feature extraction. It consists of an encoder, a decoder,

and a distance function. The encoder compresses the

input into a lower-dimensional fixed vector (latent

representation), then the decoder reconstructs the

vector back into the input. A distance function deter-

mines the difference between the original input and the

reconstructed output. The objective of the training is to

minimize the information loss of the reconstruction. If

the input is the chemical representation of a molecule,

the bottleneck vector between the networks forces the

essential information of the molecule to get com-

pressed, so that the decoder makes as few errors as

Figure 7. Recurrent Neural Network for sequentially
generating molecules via SMILES.
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possible in the reconstruction. If the compressed vec-

tor captures all the necessary information of the given

molecule to accurately reconstruct the original chem-

ical representation, it may also capture more general

chemical information about the molecule. This idea

could be used to acquire molecular descriptors for

property prediction ML models.

Vanilla AEs are however not employed for de novo

drug design as it is not capable of learning a gener-

alized representation of the molecules. The valid

molecules lie on a continuous manifold of function-

ality, but due to the large number of NN parameters

and the relatively small number of training data, it is

possible that the AE learns some explicit (non-con-

tinuous) mapping of the training set. Thus, the latent

space learnt may contain large ‘‘dead areas’’, and the

decoder will not be able to decode valid SMILES in

the continuous space. VAEs generalise AEs and are

capable of forming continuous latent spaces. The

model is restricted to learning a latent variable from its

input distribution, usually the mean and variance

(Figure 8). The restriction encourages all areas of the

latent space to correspond to the decoding of valid

molecules. When VAEs are trained to reproduce

molecules and properties together, the latent space

reorganizes in a way that molecules with similar

properties are nearby each other.58,59

5.2b Generative adversarial networks (GANs):
GANs60 are a rapidly evolving research area. They are

a clever way of training a generative model that con-

sists of two sub-models: the generator model Gh and

the discriminator model D/. These two models are

ANNs typically trained together with stochastic gra-

dient descent (SGD). The key idea is that the dis-

criminator’s job is to differentiate whether the sample

it is looking at was generated by the generator or came

from the training dataset. In the de novo molecular

design, the sample generated is a molecule, and the

training data is a library of valid molecules (Figure 9).

The Gh learns the training data distribution to fool D/.

The distribution is compressed into a latent space,

from which the generator draws inputs for creating

new molecules.

Gh and D/ have different objectives, and they can

be seen as two players in a minimax game:

minh max/ VðD/;GhÞ ¼ Ex2pdðxÞ½logD/ðxÞ�
þEz2pzðzÞ½log ð1� D/ðGhðzÞÞÞ�

ð5Þ

where pdðxÞ is the data distribution. GANs are implicit

generative models, i.e., there’s inference of model

parameters without the specification of a likelihood.

The two models are trained until D is fooled about half

the time, meaning G is generating valid molecules

from the distribution of the training data. Figure 9

shows the general GAN architecture used for molec-

ular design.

5.2c Reinforcement learning (RL) RL is an autono-

mous, self-teaching algorithm that learns through trial

and error dynamically. Like a pet trained using treats

and punishments, these algorithms are rewarded when

they make the right decisions and penalized when they

make the wrong ones. It performs actions with the aim

of maximizing rewards. RL has been used in domains

like robotics, self-driving cars, and board games.

In RL, the information given to the system is

intermediate between supervised and unsupervised

learning.61 The samples for RL don’t contain the

desired input-output pairs. Instead, they give indica-

tions on whether an action is correct or incorrect.

Figure 8. (a) An AE encodes the molecules into a feature
space and decodes them back (b) A VAE encodes the
molecules into the latent space, which is a continuous
numerical representation. Figure 9. GAN architecture for molecular design.
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Given a state s 2 S, an RL agent has to choose which

action a 2 A has to take, where S and A are the set of

possible states and actions, respectively. For this, the

agent learns a policy pðajsÞ for an unknown dynamic

environment, which defines its behavior. Essentially,

the policy maps the perceived states to the actions

taken therein, with the objective of maximizing its

expected reward over time. The reward indicates how

good it was to take an action at a certain state.

RL problems are generally framed as Markov

decision processes (MDPs). This means there is a fully

observable environment with deterministic dynamics

where the current state would contain all information

necessary to choose an action. Awareness of the past

states doesn’t add more knowledge. However, this is

only an approximation for many real problems. In

partially observable Markov decision process (a gen-

eralization of MDP), the agent can interact with an

incomplete representation of the environment. This

has been useful in instances like SMILES generation,

as the drug likeliness makes sense to completed

SMILES string.

There is a renewed interest in RL,62 especially when

it is combined with DNNs. This is known as deep RL.

This can create something fantastic like Deepmind’s

AlphaGo, an algorithm that beat the world champions

of the Go board game. The game has a theoretical

complexity of more than 10140 possible solutions.63

An analogy can be seen with the complexity of CCS

exploration, showing the potential of the algorithm.

RL has been successfully applied in de novo drug

design. One of the popular RL approaches involves the

agent building new molecules in step–wise fash-

ion.64,65 Simm et al.64 designed molecules by

sequentially drawing atoms from a given bag and

placing them onto a 3D canvas. Intuitively, the agent

is rewarded for placing atoms so that the energy of the

resulting molecules is low. Figure 10 shows a general

pipeline of a deep RL approach for generating mole-

cules with desired properties via SMILES. Here, the

agent generates molecules and is rewarded if the

molecular properties predicted through the QSAR are

desirable. Deep RL can also be employed for opti-

mization of molecules with desired properties.66,67

6. Goals and advances

Application of ML methods to problems in chemistry,

biology, materials, etc., has taken a giant leap during

the last few years.68 This section presents selected

popular fields that have witnessed immense progress

through ML.

6.1 Molecular property prediction

Since the emergence of atomistic theory, chemists

have strived to predict the properties of molecular

systems without actually synthesizing them. Molecular

property prediction has applications in many fields like

quantum mechanics, physical chemistry, biophysics,

and physiology.10,69,70 The molecular properties range

from solubility (angstroms) to protein-ligand binding

(nanometers) to in vivo toxicity (meters). Recently, it

has attracted much attention since it accelerates the

discovery of substances with desired characteristics,

such as drug design with a specific target.71–75

Molecular properties like the total energy of a sys-

tem are most accurately calculated by QM or Density

Functional Theory (DFT) methods, but the process is

computationally expensive for an exhaustive explo-

ration of the CCS.76 The Schrödinger equation (SE)

helps us find the electron density for simple systems of

small size, but solving it for complex many-body

systems is almost impossible. DFT, the computational

modelling methods derived or approximated from the

SE, are impractical for large systems because the

complexity is OðN4Þ, where N is the number of atoms.

For modelling such systems, methods like those

involving MM force fields are adopted. Essentially,

force fields provide the potential energy of a molecule

as a function of nuclear positions.77 However, these

methods improve speed by compromising accuracy.

ML methods are replacing traditional calculations at

an increasing rate since they can predict properties that

are of DFT accuracy and are comparable to MM in

Figure 10. A Reinforcement Learning method where the
desired molecular properties are used as a reward for
generating desired structures.
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terms of speed. These ML methods aim to learn a

function that maps a molecule to the property of

choice. Just last year, there have been a notable num-

ber of scientific papers on ML applications in the

prediction of molecular properties.78–82 There are 3

main steps in learning QSPRs: generating a training

set with measured properties, preparing suit-

able molecular descriptors or inputs, and building an

ML architecture to predict the measured properties

from the inputs.

Early studies applying ML to QSPR tasks employed

linear regression models, which were quickly sur-

passed by Bayesian neural networks and other

approaches.83,84 In 2012, von Lilienfeld proposed an

ML method based on non-linear statistical regression

to predict the atomization energies of organic mole-

cules. The supervised learning method used a subset of

7000 stable organic compounds from GDB. Their

cartesian coordinates and nuclear charges were enco-

ded into a CM as inputs, without any explicit feature

engineering. With a training set of only 1000 com-

pounds, the model achieved a mean absolute error

(MAE) of 14.9 kcal/mol. This extraordinary result

showed that an ML method could predict QM prop-

erties with reasonable accuracy without having to

solve the SE explicitly. Over the years, various tradi-

tional ML methods have been employed.85 These

methods generally rely on rule-based feature engi-

neering. ANNs are popular among recent state-of-the-

art publications.86

DL models are capable of automatic feature learn-

ing and are widely employed for prediction.57,87,88

Laghuvarapu et al.28 developed BAND neural net-

work, a DL framework for atomization energy pre-

diction and geometry optimization of small organic

molecules. The model was remarkably accurate and

robust over the conformational, configurational, and

reaction space. It also performed reasonably well on

larger molecules than the ones in their training set.

Most studies are on organic molecules. Inorganic

molecules, especially clusters, need to be studied

more. Modee et al.89 introduced the Deep Learning

Enabled Topological (DART) model, which uses

Topological Atomic Descriptor (TAD) as a feature

vector for energy prediction of metal clusters.

Although DL has been successful in property pre-

diction, it is still in its infancy.69,90,91 In 2017, Goh

et al. proposed ChemNet for prediction by using 2D

RGB images of molecular diagrams as inputs.88 Grid-

like transformations like these usually cause loss of

molecular information lying in non-euclidean space,

where the molecule’s internal spatial and distance

information are not complete.92 Geometric DL

encompasses the emerging techniques that aim to

generalize DNNs to non-Euclidean domains, such as

graphs and manifolds.92 Graph neural networks

(GNNs) achieved superior performance in various

domains and have shown great potential for molecular

property prediction, as they can directly handle non-

euclidean data.78,82,91,93–96 Variants of G71NNs like

Message Passing Neural Networks (MPNNs)93, Sch-

net94 and Multiscale Graph Convolutional Networks

(MGCNs)71 use graph representation of molecules for

prediction. They have several neural layers to project

each node of the graph into latent space with a low

dimensional embedding. The node embeddings (in-

teraction messages) are propagated and updated using

the embeddings of their neighborhood iteratively. This

is called message passing. The node embeddings are

then pooled for property prediction. Pathak and

others95,96 developed a GNN-based solution that

accurately predicts solvation free energies and is

interpretable. The first phase of the model utilized

MPNN to compute inter-atomic interaction within

both solute and solvent molecules expressed as

molecular graphs.

Though GNNs are successful, they are generally

data-hungry. Labeled molecules usually span a small

portion of the CCS since they can only be generated by

expensive and time-consuming techniques. Other

unlabelled valid molecules may also have structural

benefits. Methods like unsupervised, semi-supervised,

and self-supervised learning provide effective solu-

tions to incorporate these unlabelled molecules.79–81

Property prediction ML models have achieved high

scalability and high prediction quality across both

chemical and conformational space. Due to this, they

are also employed in various MD simulation tasks like

analyzing MD trajectories, and to enhance

sampling.97,99,100

As explained above, ML has shown extraordinary

potential in accurate predictions of quantum mechan-

ical properties such as the electronic energies. These

efforts have been accomplished by using supervised

learning based on a large amount of pre–computed

data. Availability of such data has allowed for cir-

cumventing the explicit need to solving the Schrö-

dinger equation. While analytical solution is elusive

for multi–electron systems, accurate numerical solu-

tions using configuration interaction and coupled–

cluster methods are computationally prohibitive. In

practice, a trade–off between computational efficiency

(expense) and accuracy is made in making a choice of

an appropriate wavefunction approximation.

ANNs are universal approximate functions and few

studies have explored their application for obtaining
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an ab initio solution for many–electron Schrödinger

equations. Carleo and Troyer proposed the neural

networks to represent the wavefunction that are trained

in an unsupervised manner using the variational prin-

ciple.101 They showed high accuracy in describing the

ground and excited states of interacting spin models in

up to two dimensions demonstrating the possibility of

applying ANNs for solving quantum many–body sys-

tems. Han et al. used deep NNs as trial wavefunctions

and used variational Monte Carlo method for obtain-

ing the optimal wavefunction (DeepWF).102 Pfau et al.
introduced Fermionic neural network (FermiNet) that

obeys Fermi-Dirac statistics. They showed quantita-

tive accuracy in calculating the dissociation curves of

nitrogen molecule and H10.
103 More recently, in a

seminal paper, Hermann et al. reported a deep NN

representaiton of electronic wavefucntion named

PauliNet. They demonstrated that this method out-

performs traditional variational methods on systems

up to 30 electrons.104 Using these approaches, the

curse of limited basis sets, a major source of inaccu-

racies in computational quantum mechanical methods

is overcome. Applying ANNs for solving many body

quantum systems have just begun and research in this

direction opens up exciting opportunities in modeling

chemical systems efficiently and accurately.

6.2 Molecular dynamics simulations

With the advance in algorithms and power of com-

puting resources, MD simulations have become an

integral tool for analyzing molecular systems.10,105 It

has helped us analyze thermodynamic and dynamic

properties of molecules, create 4D molecular

descriptors, probe complex processes such as protein

folding and facilitated many other purposes.106,107 MD

is a computer simulation approach for analyzing the

time evolution of an interacting molecular sys-

tem.108,109 The motion of the system (atomic trajec-

tories) is generated by solving the classical Newtonian

dynamic equations for a specific interatomic potential

defined by the initial and boundary conditions.110,111

The predictive power of the simulations depends on

the underlying potential energy surface (PES).112,113

Hence, they require a precise PES U(x), which is a

function of atomic coordinates x. Molecular modeling

techniques are mostly based on either QM methods

(e.g., DFT), or on force fields (e.g., Stillinger-Weber

potentials). Both techniques stand at the opposite sides

of the cost-accuracy trade-off. The approximations to

U(x) lack transferability. Studies have shown that ML

methods are capable of creating interatomic potentials

that surpass conventional methods both in terms of

accuracy and versatility. As mentioned earlier, they

are much faster than QM methods and have compa-

rable accuracy.

In 2007, Behler & Parrinello73 proposed an ANN

solution to extract PES. They achieved transferability

through parameter sharing and the summation princi-

ple, meaning the network could adjust to molecules of

any size. Since then, other ML PES models have

emerged, like Deep Potential net and ANI networks.

Most ML PES models are based on nonlinear kernel

learning or ANNs, each having its own advantages.99

For elemental solids, Gaussian approximation poten-

tials (GAP)114,115 are nowadays used in MD simula-

tions. It provides insights into various domains, for

example, amorphous states of matter.116 Pattnaik

et al.117 used the data obtained using DFT on small

systems and simulated large systems by taking liquid

argon as a test case. ML models have been shown to

have the potential to mimic MD trajectories produced

through simulations.118–120 Tsai et al.120 used LSTMs

to learn the evolution of MD trajectories that were

mapped into a sequence of characters in some

languages.

In addition to force fields, ML has designed

molecular models at resolutions coarser than atomistic

models, as atomistic models are computationally

expensive to simulate. For example, CGnets can be

used to coarse grain away all the solvent molecules in

a protein and map the atoms of each residue to the

corresponding Ca atom.

ML has made a variety of contributions to the

analysis and simulation of MD trajectories.98,99 For

instance, it has enabled the estimation of free energy

surfaces. Along with enhanced sampling methods, it

has also attempted to learn the free energy surface

on the fly. Studies have also employed ML in

building Markov state models and dynamic graphical

models of molecular kinetics. For example,

VAMPnets was developed as a substitution to the

complex and error-prone technique of constructing

Markov state models. Other contributions of ML in

this domain include ML-driven definition of optimal

reaction coordinates, enhancement of sampling

through learning bias potentials and selection of

starting configurations through active learning.

In the field of molecular design, ML can quickly

explore vast spaces of CCS for generating molecules

of desired properties, avoiding MD simulations alto-

gether. The next section presents this idea.
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6.3 Inverse molecular design

Molecular design algorithms aim to virtually create

and analyze molecules with relevant optimized prop-

erties like synthetic accessibility, ADMET (absorp-

tion, distribution, metabolism, elimination, and

toxicity) profile etc.121,122 Finding new chemical

compounds for drug discovery can be portrayed using

the metaphor ‘‘finding a needle in a haystack’’. (Sch-

neider et al., 2019) In this case, the haystack is the

universe of synthetically feasible molecules in the

CCS, wherein a single molecule with various desired

properties is searched for. A clever navigation is

required to explore vast chemical spaces efficiently.

Forward strategies for molecular design lead from

CCS to the properties using experiments, simulations,

gradient-based algorithms, Monte Carlo or genetic

algorithms, or combinations thereof. This means that

the input is the molecular structure, and the output is

the properties of molecules. These direct methods have

been successful in their application domains; however,

they are unable to quickly cover relevant large

chemical spaces.123

Inverse molecular design has emerged as an

attractive approach to take on these challenges.58,124

As its name suggests, it inverts the direct approach

by taking the desired properties as input and iden-

tifying an optimized molecular structure as output.

The approach need not necessarily identify one

unique structure but a distribution of probable

structures. Valid molecules with similar functionali-

ties lie nearby on a continuous curve or manifold.

Inverse design uses optimization, sampling, and

search methods to navigate the functionality mani-

fold of CCS.125

One of the earliest attempts in inverse design was

high-throughput virtual screening (HTVS). HTVS is

performed to ascertain an initial set of candidate

molecules, called ‘‘hits’’. In HTVS, molecules from

large small-molecule drug libraries are evaluated for

properties such as the binding affinity, against a target

receptor. More recent techniques involving optimiza-

tion can be roughly divided into two types: evolu-

tionary techniques and ML algorithms.58 Recently,

Mehta et al.126 proposed an ML framework

‘‘MEMES’’ based on Bayesian optimization for effi-

cient sampling of chemical space. The architecture

identifies 90% of the top-1000 molecules from a

dataset of about 100 million molecules, while calcu-

lating the docking score only for about 6% of the

dataset.

Recent ML-driven methods have accelerated the

search for new molecules with desired properties.

Generative models such as VAEs,57,127 RNNs,128,129

GANs130 and Generative Pre-Training (GPT)131 can

model complex SPRs and use them to create molecular

designs. Pathak et al.59 proposed a deep learning based
inorganic material generator (DING) framework that

employs conditional variational autoencoders (CVAE)

as a generator and DNNs as a predictor of enthalpy of

formation, volume per atom and energy per atom.

Bagal et al.131 trained a GPT model, named MolGPT,

to predict a sequence of SMILES tokens for molecular

generation. The model can be trained conditionally to

optimize multiple properties of the generated mole-

cules, including scaffold conditioning.

However, these models require large training data

for learning valid molecular distributions. In RL, an

agent builds new molecules in a step-wise fash-

ion.64–66 Training an RL agent only requires samples

from a reward function. So, the need for a training data

is reduced.

The generative process must be restricted or biased

towards desirable qualities as mentioned earlier

in‘‘AEs’’section. In VAEs, the latent space allows

direct gradient-based optimization of desired proper-

ties, as it’s continuous. Nevertheless, the functionality

manifold has local minimas. Bayesian optimization or

constrained optimization, with Gaussian processes, is

applied to explore a smoothed version of the

manifold.58

In the case of GANs and RNNs dealing with non-

continuous data, a gradient estimator is required to

backpropagate the generator. RL has been employed

as an approach to bias the generation process by

rewarding the generator’s behaviors. Some examples

are methods involving Q-learning and policy gradients

(SeqGANs and BGANs). Several studies have adopted

RL for the generation of drug-like molecules. Popova

et al. proposed Reinforcement Learning for Structural

Evolution (ReLeaSE), a de novo molecular design

method.132 Molecular applications have adopted

models that are a combination of generative algo-

rithms to utilize the advantages from each. For

example, druGAN133 adopts an adversarial autoen-

coder network, RANC134 adopts both RL and adver-

sarial network.

Few promising research directions in this domain

include structured architectures such as multilevel

VAE and inverse RL. Developments in inverse RL

may allow for the discovery of reward functions

associated with different molecular design tasks.58
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6.4 Materials discovery and design

New materials can contribute to the immense progress

in tools and technology.135,136 Materials discovery and

design aim to find candidate materials with desired

properties that are synthesizable.137 This would allow

experimental researchers to perform targeted

explorations.

Materials screening via traditional experiments or

computational simulations involve element replace-

ment and structure transformation.135 The chemical

compositional and structural search space tends to be

constrained in these methods.135,138

ML is employed for finding solutions to various

problems in materials science as it has led to a

decrease in materials development time and

cost.135,136,139–143 There are now many examples, such

as thermoelectrics and photovoltaic materials,144 metal

organic frameworks (MOFs),145 metallic glass,146

polymers,147 and DNA nanostructures,148 in which

ML has been applied to move away from the tradi-

tional methods. ML has performed well in areas such

as materials property prediction,149–151 novel materials

discovery,59,152–155 process optimization,156,157 find-

ing density functionals,158 and other materials-related

studies.135,159,160

Finding new chemical components and their crystal

structures that likely match the composition and

properties of desired materials, is an essential step in

novel materials discovery.136 ML is used to learn and

screen for potential combinations of chemical com-

ponents and structures from a large dataset containing

real and synthesized materials. Then, the most-proba-

ble crystal structures need to be identified and tested

for stability. The number of candidate compounds is

still huge because of the extremely large combination

space of compositions and structures.137 Therefore,

these candidate new compounds still need to be tested

by first-principles calculation (e.g. DFT). Hautier

et al.161 demonstrated how the search for novel

materials can be accelerated using a combination of

ML techniques and high-throughput ab initio
computations.

Methods involving VAEs have recently been

applied to solid-state materials154 and porous materi-

als.162 GANs are finding their position in materials

design too. A recent application is ZeoGAN155 –

employed in the generation of an energy grid of guest

molecules and zeolite structures. RL has been effec-

tive for exploring chemical space for different appli-

cations, such as MOFs for gas adsorption, and

synthesis planning. Dieb et al.163 used RL to design

depth-graded multilayer structures, known as

supermirrors, for X-ray optics applications. Active

learning approaches are also gaining attention in the

field. It allows the exploration of new regions of space

that were not in the initial dataset.142,164 This is done

by adding new data points to the training set on the fly

based on model uncertainty.

6.5 Other domains

ML has played roles in several other problems, such

as protein–protein interactions, viable retrosynthetic

pathways, stability of solids, etc. ML-based scoring

functions have been shown to perform significantly

better than software like AutoDock Vina for pre-

dicting both binding poses and affinities.165 Finding

functionally relevant binding sites on the 3D struc-

ture of a protein is crucial for drug design. Aggar-

wal et al.166 proposed a method that is a

combination of geometry–based software and DL,

called DeepPocket, that utilises 3D CNNs for mak-

ing this process accurate.

Results from ML methods in molecular sciences

have been applied for many practical purposes. For

example, many results of generative models have been

used in pharmaceutics.167 They aid in drug design by

generating molecular systems and optimizing relevant

medicinal properties such as solubility in water,

ADMET profile and synthesizability. Healthcare sys-

tems also employ ML to analyse various health-related

issues and accelerate decision-making processes effi-

ciently.168,169 To illustrate, the COVID-19 pandemic

has witnessed numerous ML methods such as those by

Alle et al.170 and Karthikeyan et al.,171 who have

provided risk stratification and mortality prediction

models for patients with COVID-19.

Another area of rapid development is imaging and -

omics technologies, which will further blur the barrier

between cheminformatics and bioinformatics.172,173

Thus, molecular biology, transcriptomics, proteomics

etc. are getting more relevant for ML researchers in

molecular sciences.166,174

7. Challenges and outlook

Apart from successfully performing desired tasks, ML

methods also provide novel insights and transforma-

tional ideas. For instance, analysing the weights of

trained ML prediction models can potentially lead to

automatic discovery of scientific laws and principles,

which can cause a revolutionary development in

science.143 Another impressive example is from ML

for molecular discovery, where the corresponding
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statistical view and analysis of the discovered chemi-

cal space leads to fresh insights, discoveries of mole-

cules with unexpected properties, hints for new

chemical reaction mechanisms, and more. However,

current successful applications of ML in molecular

sciences have only scratched the surface of

possibilities.100

One of the challenges is encoding the essential

characteristics of a molecule into its numerical repre-

sentation. This is one of the most effective ways to

infuse physics in ML and generalise better. Attempts

have beenmade to define criteria for the development of

molecular descriptors, but adhering to all the criteria is

difficult. From the perspective of atomic interactions,

current molecular representations describe local chem-

ical interactions well, but completely miss long-range

interactions like polarization and van der Waals dis-

persion. Moreover, capturing highly complex QM

interactions like distracted attraction and exchange

repulsion, especially in the large molecules (Kollman

1985), has been difficult. An important direction for

future progress in studying large complex molecular

systems would be incorporating intermolecular inter-

action theory, such as Hamiltonians for electronic

interactions based on SFT, molecular orbital tech-

niques, or the many- body dispersion method, into ML.

Further research into the criteria and creation methods

of molecular descriptors will be necessary.46

Another challenge is the limited amount of labeled

molecular data available compared to other domains.

This poses the inherent danger of ML models over-

fitting to benchmarks. Thus, progress needs to be made

in reducing the cost of data generation. Due to the

combinatorial scaling in CCS, it’s also crucial to

infuse physics and invariance information in ML and

achieve robustness and accuracy using smaller data-

sets. A few of the promising methods in this context

include employing smart sampling methods, identify-

ing valuable data points for training, and employing

recent techniques such as transfer learning, meta-

learning, or active learning.175,176 Recently, a bayesian

framework performed as well as humans on one-shot

learning problems with limited data.143

Applying ML in molecular sciences is a young

domain. Hence, much of the infrastructure is still in its

early stages or waiting to be developed. Drug discovery

operates as a feedback loop, where the large number of

molecules designed by generative models must be

synthesized and validated experimentally to provide

feedback for further decision making.122 These experi-

ments are slow and expensive. Although prediction

models can be coupled with generative models to

streamline this process, the synthetic tractability of

these molecules remain a challenge.177 Efforts taken in

future towards closing the loop need to consider incor-

poratingAI/ML, intelligent systems, embedded systems

and robotics into one framework.58 This can lead to

automated laboratories.178

This rapidly growing field in computational science,

supported by increasing computing power, data shar-

ing and open-source tools, has the potential to solve

many theoretical and practical challenges. Beyond

these numerous unsolved challenges lies the‘‘chemical

discovery revolution!’’.116
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Hernàndez-Lobato J M, Sànchez-Lengeling B, She-
berla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R
P and Aspuru-Guzik A 2018 Automatic chemical
design using a data-driven continuous representation
of molecules ACS Central Sci. 4 268

58. Sanchez-Lengeling B and Aspuru-Guzik A 2018
Inverse molecular design using machine learning:
Generative models for matter engineering Science
361 360

59. Pathak Y, Juneja K S, Varma G, Ehara M and
Priyakumar U D 2020 Deep learning enabled inorganic
material generator Phys. Chem. Chem. Phys. 22 26935

60. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B,
Warde-Farley D, Ozair S, Courville A and Bengio Y
2020 Generative adversarial networks Commun. ACM
63 139

61. Sutton R S and Barto A G 2018 Reinforcement
Learning: An Introduction (MIT Press)

62. Krakovsky M 2016 Reinforcement Renaissance Com-
mun. ACM 59 12

63. van den Herik H J, Uiterwijk J W H M and van
Rijswijck J 2002 Games solved: Now and in the future
Artif. Intell. 134 277

64. Simm G, Pinsler R and Hernàndez-Lobato J M 2020
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