
BAND NN: A Deep Learning Framework for Energy
Prediction and Geometry Optimization of Organic Small
Molecules
Siddhartha Laghuvarapu†, Yashaswi Pathak†, and U. Deva Priyakumar *

Recent advances in artificial intelligence along with the develop-
ment of large data sets of energies calculated using quantum
mechanical (QM)/density functional theory (DFT) methods have
enabled prediction of accuratemolecular energies at reasonably low
computational cost. However, machine learning models that have
been reported so far require the atomic positions obtained from
geometry optimizations using high-level QM/DFT methods as input
in order to predict the energies and do not allow for geometry opti-
mization. In this study, a transferable andmolecule size-independent
machine learning model bonds (B), angles (A), nonbonded
(N) interactions, and dihedrals (D) neural network (BAND NN) based
on a chemically intuitive representation inspired by molecular
mechanics force fields is presented. The model predicts the

atomization energies of equilibrium and nonequilibrium structures
as sum of energy contributions from bonds (B), angles (A), nonbonds
(N), and dihedrals (D) at remarkable accuracy. The robustness of the
proposed model is further validated by calculations that span over
the conformational, configurational, and reaction space. The trans-
ferability of this model on systems larger than the ones in the data
set is demonstrated by performing calculations on selected large
molecules. Importantly, employing the BAND NN model, it is possi-
ble to perform geometry optimizations starting fromnonequilibrium
structures alongwith predicting their energies. © 2019Wiley Periodi-
cals, Inc.

DOI: 10.1002/jcc.26128

Introduction

Accurate estimation of molecular energies is important for reli-
able modeling of various chemical and biological phenomena
in general. Quantum mechanical (QM) and density functional
theory (DFT) methods are the methods of choices for the calcu-
lation of accurate molecular energies and physicochemical
properties. However, application of these methods to molecular
systems is computationally expensive and is impractical for
large systems. For modeling such systems, one resorts to the
use of molecular mechanics (MM) force fields methods which
are computationally tractable.[1–3] Force fields provide the
potential energy of a molecule as a function of nuclear posi-
tions and have empirical parameters that are derived based on
their ability to reproduce certain experimental and QM data via
a detailed optimization procedure.[4–6] Though the force field
methods in general are widely used to model biological macro-
molecules to study their dynamics, structural, and thermody-
namic properties, they are considered less accurate compared
to ab initio or DFT methods.

In an attempt to develop new methods for predicting energies
that are of DFT quality but are comparable to MM in terms of the
computational cost, energy predictions have become an important
application of supervised machine learning algorithms.[7–10] These
algorithms have been shown to efficiently recognize patterns on
training data, which can be applied on unseen data. Traditionally,
various regression techniques using kernel-based methods[11] were
used that convert three-dimensional coordinates of a molecule into
fixed-length feature coordinates.[12–14] Recently, deep learning has
become the sought after method for various supervised learning

tasks due to their superior performance in several fields, primarily
computer cision and natural language processing.[15–17] Various
computational chemistry tasks[18] including QM property
prediction,[19–22] protein structure prediction,[23–25] protein–protein
interactions,[26] material property prediction,[7,27,28] retro-
synthesis,[29] and drug discovery[30–33] have been the targets of the
machine learning methods and more recently deep learning
applications.[8]

In order to provide a molecule as an input to a supervised learn-
ing algorithm, accurate description of a molecule as a vector is
required.[22,34] In other words, it is helpful to have a vector represen-
tation that captures as much chemical information as possible. The
descriptor should precisely capture the atomic environment of each
atom and should be sensitive to small changes in relative atomic
positions. As hypothesized by Behler,[35] molecular descriptors
should follow the properties such as rotational and translational
invariance, invariance with respect to the permutation of atoms,
and provide a unique description of the atomic positions. Molecular
descriptors in general suffer from inconsistency in terms of the size
of molecules since most supervised learning algorithms require a
fixed-length representation of the input. Various approaches were
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proposed to tackle this problem. These approaches[12–14] extend
the descriptor of every molecule in the set to the largest length
descriptor by appending zeros at the end. These methods are not
readily applicable to molecules larger than the ones trained with.
Recent approaches have expressed total energy in terms of contri-
butions from individual atoms[20,21,36] or have total energy broken
down into contribution from individual bonds,[37] where the indi-
vidual feature vectors have fixed sizes.

The recent machine learning (ML)-based methods generate
DFT-level accurate potential energy surfaces, but their feature
vectors are derived by transforming the nuclear coordinates of
the constituent atoms, rather than explicit chemically intuitive
terms. Smith et al.[36] used modification of symmetry functions
originally developed by Behler and Parinello[38] to represent the
local environment of each atom which are further used as
inputs for the neural networks (NNs). Bartók et al. used smooth
overlap of atomic positions to generate feature vectors.[39]

Schütt et al. in their works[20,21] used nuclear charges (Z) and a
matrix of interatomic distances as input to their model to find
the energy of the molecule.

Although methods have been proposed that explicitly build fea-
ture vectors based on the bond topology of a molecule,[13,14] to the
best of our knowledge they have not been demonstrated to gener-
ate potential energy surfaces or work on molecules larger than the
ones present in the data set. In this study, we propose a novel
molecular descriptor inspired by classical force fields terms[1]

—bonds (B), angles (A), nonbonded (N) interactions, and dihedrals
(D), which is named as BAND in this manuscript. A molecule is bro-
ken down into these terms, and energy contribution from each of
these terms is measured through several feed-forward NNs. The
sum of energies from each of the terms gives the total energy of
the molecule. Through a series of studies that span over the confor-
mational and configurational space, we show that our model can
predict energies and potential energy surfaces accurate to DFT
level. The applicability can be extended to molecules larger than
the ones trained in the data set. We also demonstrate the ability of
our model to perform geometry optimization of molecules to mini-
mum energy when provided with an approximate structure over a
defined bond topology. This is possible due to the nature of our
molecular descriptor which is built taking into consideration the
explicit bond topology of themolecule.

Theory

Deep learning[40] has been shown to learn complex nonlinear
functions through artificial NNs. BAND NN proposed here uses
feed-forward fully connected deep NNs. These consist of multi-
ple layers of nodes—an input layer, one or more hidden layers,
and an output layer. Each node is activated through weighted
inputs from the previous layer and a nonlinear activation func-
tion. The “weights” are the optimizable parameters which can
be trained through back propagation of derivatives of an objec-
tive function with respect to each of them. The objective or
cost function is a measure of deviation of the predicted output
from the ground truth. As mentioned earlier, NNs need a fixed-
length input feature vector. This creates a fundamental problem
of obtaining accurate feature vectors starting from typical

molecular representations such as internal and Cartesian coor-
dinates whose dimensions change with respect to the number
of atoms. Such a fixed-length representation can further be
used to train the NNs to predict molecular properties. The fol-
lowing sections describe the feature vector/molecular represen-
tation, their relationship with classical force fields, and the ML
model used here.

BAND molecular descriptor

A molecular descriptor that captures the essence of typical MM
force field equations is used here. Each molecule is broken
down into bonded pairs (atoms that are adjacent) and non-
bonded pairs (atom pairs that are not adjacent). From this, lists
of angles identified as two consecutive bonds forming an angle
and lists of dihedrals identified as three consecutive bonds for-
ming a dihedral angle were created. Each atom is represented
by an eight-dimensional feature vector: first four dimensions
representing the atom name (the data set used here involves
only four atoms C, N, O, and H) and the second four dimensions
representing the atom type in terms of how many of the C,
N, O, and H atoms are connected to it (Fig. 1) essentially captur-
ing the atom type as referred to in force fields.[1–3] Each bond is
represented by a 17-dimensional vector which is the concate-
nation of the vectors representing the two atoms (eight dimen-
sions each) that form the bond followed the bond length. For
the angle, it is the combination of the three atomic representa-
tions (24) followed by the bond angle and two bond lengths
making it a 27-dimensional vector. Similarly for the dihedral
angle, it is a 38-dimensional vector made by four atomic repre-
sentations followed by the dihedral angle, two angles and three
bond lengths as given in Figure 1. The nonbond pair represen-
tation is similar to bonds where the bond length is replaced by
the internuclear distance.

Resemblance to classical force field equations

A typical force field[1] equation is represented as the sum of
energy contributions from the bonded (Ebonded) and non-
bonded terms (Enonbonded). The Ebonded term usually involves
energy as a function of bond lengths, bond angles, and dihe-
drals angles in addition to other terms like Urey–Bradley and
improproper dihedral terms depending on the force field, and
the Enonbonded term is typically a combination of an electrostatic
and Lennard-Jones terms.

Etotal = Ebonded + Enonbonded, ð1Þ
Ebonded = Ebonds + Eangles + Edihedrals: ð2Þ

The molecular representation proposed here is inspired by
the force field equations where the total energy is expressed as
sum of individual contributions from the bonded (bonds,
angles, and dihedrals) and nonbonded terms. In the force fields,
the individual terms of the equation are expressed as a function
of the nuclear coordinates in terms of bond lengths, angles,
internuclear distances, and so on, along with their characteristic
constants. For example, Ebonds is given as
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Ebonds =
X

bonds

kb b−b0ð Þ2: ð3Þ

Here the constant kb is the force constant that is character-
istic of bond formed by the two participating atom types, b is
the bond length, and b0 is the equilibrium bond length. The
atom type typically captures the nature of the atom, which
comprises the atomic number and its connectivity. The molec-
ular representation used here captures this by the eight-
dimensional vector for each atom. One modification is the
implicit consideration of coupling between stretching and
bending, and stretching, bending, and rotation about single
bonds akin to the class II force fields[41] (see Fig. 1).

The model

In this model, the atomization energy (difference between the
molecular energy and that of the constituent atoms calculated
at the DFT level) is expressed as the sum of the contributions
from bonds, angles (coupled with bonds), dihedrals (coupled
with bonds and angles), and nonbonds. More specifically, the
contribution from each of these is estimated using a feed-
forward fully connected NN. Four different models were trained
for measuring contributions from bonds, angles, dihedrals, and
nonbonded terms (see Fig. 2). Each of these bonds, angles,
dihedrals, and nonbonded terms share the same weights, and
different types of these are differentiated by their feature vec-
tors. This allows the model to be scalable with the number of
atoms (or other bonded/nonbonded terms) as the final energy
is only expressed as sum of the individual contribution from
each term as given below:

E =
X

bonds

EB +
X

angles

EA +
X

nonbonds

EN +
X

dihedrals

ED: ð4Þ

Methodology

Data selection

A subset of ANI-1 data set,[42] which is a large data set of non-
equilibrium DFT total energy calculations for organic molecule
with about 22 million molecular structures for 57,462 minimum
energy structures, was used for developing the ML model.
These molecules were picked from the GDB-11 data set[43,44]

that has up to eight heavy atoms containing only H, C, N, and
O. In addition to the equilibrium geometries obtained by per-
forming geometry optimizations on �57,000 molecules at the
ωB97X/6-31G(d), Smith et al. have used normal-mode sampling
to generate hundreds of nonequilibrium structures for each of
the equilibrium structures resulting in �22 million data points.
Single-point energies of these configurations were calculated
using the same method.[45] Although most methods use the
QM-9 data set,[46] the conformation space is limited to equilib-
rium structures only and hence does not allow for calculating
energies of nonequilibrium structures and hence geometry
optimizations. All the equilibrium configurations along with
each of their nonequilibrium structures whose relative energies
with respect to the corresponding minimum energy structure
are less than 30 kcal/mol were used for this study. The rationale
are that (a) most of the structure generation software (such as
Gaussview[47]) are able to give initial geometries that are not
too far away from the minimum and (b) most of the drug

Figure 1. a) Four dimensional feature vector
for the atom name. b) Eight dimensional
feature vector for atom name and type.
The atomic representation of two select
atoms in formaldehyde is shown. c)
Schematic representation of the feature
vectors of bonds, angles, nonbonds and
dihedrals. [Color figure can be viewed at
wileyonlinelibrary.com]
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design/biomolecular simulations do not aim to model bond
breaking/forming. Hence, optimization of structures generated
using standard visualization software programs and for the pur-
poses of such molecular modeling exercises, the chosen subset
of the data set is deemed adequate.

Data preprocessing

Initial task is to make a list of all bonds, angles, nonbonds, and dihe-
dral angles for each of the configurations in the data set for repre-
sentation along the feature vectors proposed here. For a given
molecule, the equilibrium structure was chosen to derive the
molecular representation of its own and all its nonequilibrium struc-
tures. The list of bonds were generated using RDKit[48] based on the
atomic coordinates of equilibrium structure which are extended to
corresponding nonequilibrium configurations. Once the list of
bonds were derived, the lists of angles were generated by taking all
possible 1,3 neighbors that are connected to 2, and similarly all 1,4
neighbors where 2 and 3 are connected were taken as dihedrals.
For the nonbonded lists, all pairs except 1,2 whose distances are
less than 6 Å in the equilibrium structure were considered.

Training

Keras deep learning framework[49] with TensorFlow[50] backend
was used for all training and validation purposes. Fully connected
networks were used for bonds, angles, nonbonds, and dihedrals.
Each network has an input layer, three hidden layers for each type,
and an output layer that measures the energy contribution from
that term. Table 1 gives the dimensions of bond, angle, nonbond,
and dihedral networks used for BAND NN model. The output layer
is a one-dimensional vector that predicts the energy contribution

from that particular network. The total energy contribution is the
sum of energy predictions from all the networks. A train–test–
validation randomly split in the ratio of 80–10–10 was used in this
work. This resulted in �6.1 million data points in the training set
and �760,000 data points each in the test and validation sets.
Adam optimizer was used for updating weights with β1 = 0.9 and
β2 = 0.999 as suggested by Kingma and Ba.[51] Learning rate was
set at 0.01 initially which was then gradually decreased to 10−5 by
a factor of 10. All the intermediate layers were activated using the
rectified linear unit (ReLU) activation function.[52] The objective
minimization function is the mean squared error between the
predicted and actual atomization energies. The training data were
iterated for 20 epochs until no notable increase in validation accu-
racy was observed.

Geometry optimization

As mentioned earlier, the ANI-1 data set includes nonequilibrium
structures that span over conformational and configurational
space. This enables accurate prediction of energies at regions not
limited to only minima on the potential energy surface but also
higher energy structures. Geometry optimization involves finding

Figure 2. Schematic representation
of the NN architecture used for
BAND NN. As an example, the list of
bonds, angles, nonbonds, and
dihedrals for formaldehyde along
with the number of NNs used to
predict the energies of each of these
are shown. [Color figure can be
viewed at wileyonlinelibrary.com]

Table 1. Dimensions of the input and hidden layers of the network
architecture of BAND NN.

Type of network Input dimensions Hidden layer dimensions

Bonds 17 128–256–128
Angles 27 128–350–128
Nonbonds 17 128–256–128
Dihedrals 38 128–512–128

Output dimension for each of the network is 1.
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the least energy structure of a molecule (minimum on its potential
energy surface) given an approximate structure over a defined
bond topology. In this study, the suitability of the proposed BAND
NN model to be used for geometry optimization is demonstrated.
The optimization technique used is the Nelder–Mead’s method,[53]

which is a popularly used direct search method for nonlinear opti-
mization. The method is initialized by construction of a simplex by
randomly sampling points on the target surface. Themethod prop-
agates through generation of a sequence of simplices by repeat-
edly replacing the worst point on the simplex with better ones. The
algorithm terminates either when the working simplex is suffi-
ciently small or when the differences in function values on the ver-
tices of the simplex is less than a threshold. The implementation of
Nelder–Mead’s optimizer method in the Scikit-learn library with
the default parameters[54] was used for the results reported in the
study. Algorithm 1 (see below) describes the procedure followed
for optimization of a molecule starting from its Cartesian coordi-
nates and a defined bond topology.

The scripts along with example files for generation of molec-
ular feature, training the model, and prediction of energies are
provided at https://github.com/devalab/BAND-NN

Algorithm: Procedure for Geometry Optimization
Input: atomic coordinates, bond connectivity list
Initialise x to a z-matrix computed from atomic coordinates
Initialise T 3. This is a hyperparameter
Initialise history [(∞, x), (∞, x), …T times], terminate False
f is the function that takes z-matrix as the input and returns

energy computed from BAND NN
while terminate = False do
energy, x = History[0]
Set x to a different representation of z-matrix randomly
Minimize f(x) using Nelder–Mead’s optimization procedure.
This step returns energy

0
, x
0
at minima of f

Append (energy
0
, x
0
) to history and sort history

Set worst_performer to the last element of history
if worst_performer = energy

0
, x
0
then

Set terminate = True
else

Delete last element from history
end

end.

Results and Discussion

In this section, the accuracy of the model to predict atomization
energies of molecules in the data set and slightly larger mole-
cules are presented. Following this, the ability of the BAND NN
model to effectively learn the configurational and conforma-
tional space is demonstrated by predicting relative energies of
isomers C11H22 and by performing potential energy scans on
large drug molecules. This is followed by discussions on the
predictive ability of the model for reaction energies of common
organic reactions. Finally the importance of including the
3,4-body terms for accurate predictions and the capability of
BAND NN model for utilization in geometry optimizations are
presented.

Accuracy of the BAND NN model

As mentioned in the section above, all the conformers that were
under 30 kcal/mol in the ANI-1 data set from the corresponding
minimum energy structure were chosen for this study. This data
set had about 7.6 million conformers, and a 80–10–10 split for
training, testing, and validation was done on the data set. A mean
absolute error of 1.45 kcal/mol on the test set was obtained, which
is expected to be significantly better than the small molecule force
fields in general. The distribution of the absolute errors calculated
for the test set comprising about 700,000 structures is given in
Figure 3a. Predicted atomization energies of about 75% of struc-
tures in the test data set are within 2 kcal/mol. To test the transfer-
ability of the BAND NN model to molecules with number of atoms
more than that present in the training data set, energies of mole-
cules and their high energy structures with 10 heavy atoms were
calculated (calculations on much larger systems are discussed
later). Smith et al. performed normal-mode sampling on 134 ran-
domly chosen molecules with 10 heavy atoms from GDB-11 data
set.[43,44] From these, we picked all structures whose relative ener-
gies are under 30 kcal/mol with respect to their corresponding
minimum. This resulted in 1500 structures, and the mean absolute
error of the atomization energies predicted using BANDNN for this
set was found to be 2.1 kcal/mol, which demonstrate the transfer-
ability of themodel to molecules larger than the ones trained with.
The distribution of the absolute errors for this set of structures is
given in Figure 3b.

BAND NN is based on a feature vector inspired from classical
force field terms; direct comparisons is more appropriate with
models based on comparable feature vectors. The Bag of Bonds
approach reports a mean absolute error of 1.5 kcal/mol on 7000
molecules from GDB-7 and 2.0 kcal/mol on 30% of QM9.[13] Bonds-
in-molecules NN reports a mean absolute error of 0.94 kcal/mol on
the QM9 datA set.[37] Other recent approaches such as SchNet
report a mean absolute error of 0.31 on QM9.[20] Recently, PhysNet
model was proposed by Unke and Meuwly, which reports a mean
absolute error of 0.19 kcal/mol.[55] It is to be noted that all of these
methods have only been validated on data sets containing equilib-
rium structures. The ANAKIN-ME approach reports a root mean
squared error of 1.3 kcal/mol when trained on the entire ANI-1 data

Figure 3. The histograms and the cumulative distributions of the absolute
errors (in kcal/mol) calculated on a) test set and b) GDB-10 test set. [Color
figure can be viewed at wileyonlinelibrary.com]
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set.[42] On the molecules from GDB-10 benchmark data set pre-
pared by Smith et al., ANAKIN-ME reports mean absolute error of
0.83 kcal/mol for molecules with relative energies under 30 kcal/
mol from their respective ground-state conformer.[36]

Structural and geometric isomers

The accuracy of the proposed model in satisfactorily predicting
the relative energies of structural and geometric isomers is
examined here. Several isomers of C11H22 spanning diverse
structural and geometric space, namely, linear chains, cis–trans
isomers, varying ring sizes (three to six), and so on, were cho-
sen. The energies of the optimized geometries of these isomers
were calculated using the ωB97X/6-31G(d) level of theory using
the Gaussian 09 program.[56] Despite the diverse set of mole-
cules considered for this evaluation, quantitative agreement
between the DFT and BAND NN methods is observed (Fig. 4). It
is also found that the NN model significantly outperforms the
semiempirical QM AM1 method.[57] This further indicates that
machine learning-based methods developed with molecular

size invariant featurizations are capable of accurate modeling of
molecular systems at the fraction of the computational expense
that DFT or ab initio calculations would require.

Potential energy surfaces

From the above discussions, it is apparent that the BAND NN
model is capable of prediction atomization energies of small
organic molecules very well. However, it is also important that
models such as the one proposed in this study are able to rep-
resent the potential energy surface of molecular systems and
not just the energies for select points on the potential energy
surface. Such a proper behavior of the model is necessary for it
to be useful for performing energy minimizations, conforma-
tional analysis, and force calculations in molecular dynamics
simulations. Potential energy scans with respect to bonds and
angles were performed on molecules that are significantly
larger than those in the training set. Figure 5 gives the potential
energy surfaces corresponding to C─C and C─N bond lengths
calculated using the ωB97X/6-31G(d) level and BAND NN. For
both the bonds, the positions of the minima are predicted
accurately, and the curves maintain a smooth curvature. Simi-
larly, the potential energy scan for a C─C─C angle indicates
very good agreement between the DFT results and the BAND
NN data. To further show the chemical accuracy of the model,
we performed conformational analysis for the central C─C bond
of decane molecule and found very good agreement. The posi-
tions of the minima and maxima are predicted reasonably well
along with the energies of different conformers and transition
state with a mean absolute error of only 0.6 kcal/mol (Fig. 6).

Reaction energies

In this section, the ability of the BANDNNmodel to predict reaction
energies of simple organic reactions is examined. Some of the
most simple and common reactions in organic chemistry (confor-
mational differences stabilized by intramolecular hydrogen bonds,
hydrogenation, Diels–Alder reaction, aldol condensation,

Figure 4. The relative energies (in kcal/mol) of select isomers of C11H22
relative to the least energy isomer calculated using the ωB97X/6-31G
(d) level of theory, AM1 semiempirical method and using BAND NN. [Color
figure can be viewed at wileyonlinelibrary.com]

Figure 5. Potential energy surface
(in kcal/mol) corresponding to C─C
and C─N bond stretching and
C─C─C angle bending of
methamphetamine calculated using
the ωB97X/6-31G(d) level of theory
and BAND NN. The structure of the
molecule along with the labels of
atoms that were used for calculating
the potential energies are given
above the plots. [Color figure can be
viewed at wileyonlinelibrary.com]
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esterification, and electrocyclic ring closing reaction) were chosen
for this analysis. The reaction energies calculated for these using
the ωB97X/6-31G(d) level, AM1 method, and BAND NN model
along with the schematic diagrams of the reactions are given in
Figures 7. All the reaction energies obtained using the BAND NN
model are comparable to the DFT results. Among the six reactions,
largest difference between the DFT and the BAND NN model was
observed for the hydrogenation reaction. Notably, no data per-
taining to the H2 systemwere present in the training data set. Simi-
lar to the prediction of relative energies of C11H22, the reaction

energies computed using the BAND NN model outperfom the
AM1 level of theory.

Importance of 3,4-body terms

Most of the machine learning models for QM/DFT energy predic-
tions have been done by including only 2-body terms.[13,37] In this
study, the energy is given as the sum of the energy contributions
from all the bonds, angles, dihedral angles, and nonbonded pairs.
Two other models, one excluding the dihedrals (referred to as BAN
NN model) and another excluding the angles and dihedrals
(referred to as BN NN model) were trained using the same proce-
dure as the BAND NN model to investigate the importance of
including the 3,4-body terms. The distributions of the absolute
error obtained from these models are given in Figure 8. The atomi-
zation energies are predicted within 2 kcal/mol for only about
50 and 60% of the molecules in the data set in the BN NN and BAN
NN models, respectively. The mean absolute errors are 2.7 and
2.4 kcal/mol (1.45 kcal/mol for the BAND NN model). The perfor-
mances of these models are inferior compared to the BAND NN
model. Previous studies that utilized “bag of bonds” feature
involved the prediction of energies of molecules that are in their
minimum energy states.[13] In other words, all the angles and dihe-
drals in these molecules are in their equilibrium values, and hence
the variances of the angles and dihedrals in the data set are not
large. In this study, we consider high energy configurations for
each of the minimum energy structures for which the angles and
dihedral angles are away from the minimum on the potential
energy surface and hence sample a larger configurational/confor-
mational space. This requires that the energy of the molecules is
expressed as a function of angles and dihedral angles as well.

Figure 6. Potential energy surface (in kcal/mol) corresponding to the
rotation about the central C─C single bond of n-decane calculated at the
ωB97X/6-31G(d) level of theory and using BAND NN. [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 7. a) Select organic reactions chosen for the calculation of reaction energies. b) Reaction energies (kcal/mol) calculated using the ωB97X/6-31G(d) and
AM1 levels of theory, and those predicted using BAND NN. [Color figure can be viewed at wileyonlinelibrary.com]
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Hence, the BANDmolecular representation proposed in this manu-
script is well suited for handling nonequilibrium structures com-
pared to those that include only 2-body terms.

Geometry optimization

Though there have been quite a few ML models to predict
atomization energies of small organic molecules have been
published in the last 2 years, there are few shortfalls. Some of
these models cannot be applied to molecules larger than the
ones in the training set, most of them cannot be applied to
structures that are not in their minima on the potential energy
surface and they have not been used for geometry optimiza-
tions. The condition that the geometry optimized using the DFT
level has to be provided for the ML model to predict the energy
is not desirable, because the geometry optimization involves
calculation of the DFT energy. The next useful step in applying
machine learning for molecular systems is to be able to
develop models that allow for geometry optimization such that
one could start from a structure away from the minimum and
use the model along with an optimization method to reach the
minimum. BAND NN model has been trained on high energy
structures with explicit topology of the molecule as defined by
the featurization used here. Nelder–Mead’s optimization
method has been used for updating the geometric parameters
starting from a nonequilibrium structure. Starting from a rea-
sonable guess structure of ocatane and 2-methylprop-2-enol,
geometry optimization was performed. Figure 9 gives the
energy of these molecules with respect to the optimization step
number. The energies of the two molecules gradually decrease
with respect to the optimization step and reaches convergence.
For another test, few structures were generated using the
GaussView program[47] (as an acceptable way of generating ini-
tial geometries in electronic structure theory calculations), and
optimizations were performed using the Nelder–Mead’s optimi-
zation employing the BAND NN. The single-point energies of
the initial and optimized geometries obtained using the
ωB97X/6-31G(d) level are given in Table 2. In all the cases, the
optimizer converged the molecules to structures whose ener-
gies are significantly lower than those of the initial structure.
Though the results are not perfect for all the systems, it is clear

Figure 8. The histograms and the cumulative distributions of the absolute
errors (in kcal/mol) calculated using the a) BAN NN and b) BN NN models.
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 9. BAND NN atomization energies (kcal/mol) of 2-methylprop-2-enol
and octane with respect to the optimization step number. [Color figure can
be viewed at wileyonlinelibrary.com]

Table 2. Input structure: difference (kcal/mol) between the single point
energies on the initial structure and the DFT-optimized structure
obtained at the ωB97X/6-31G(d) level; BAND optimized: difference (kcal/
mol) between the single-point energies on the BAND NN-optimized
structure and the DFT-optimized structure obtained at the ωB97X/6-31G
(d) level.

Molecule name Input structure BAND optimized

1 5.5 1.7
2 10.7 3.1
3 4.9 1.5
4 9.1 3.4
5 17.5 7.6

The structures of the molecules are given in Figure 10.

Figure 10. Molecules that were optimized starting from initial geometries
generated using the GaussView program. Energies are presented in Table 2.
[Color figure can be viewed at wileyonlinelibrary.com]
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that it is possible to use an appropriate molecular representa-
tion that will allow for geometry optimizations and that optimal
structures can be obtained from this method. Implementation
of gradient-based methods may further improve the efficiency
of the geometry optimization process.

Conclusions

A chemically intuitive molecular descriptor inspired from classi-
cal force field equation has been developed for the prediction
of atomization energy of small organic molecules. BAND NN
model was trained on a subset of ANI-1 data set by choosing
molecules that were at most 30 kcal/mol higher than the
corresponding minimum. It was shown to accurately predict
atomization energies with a mean absolute error of 1.45 kcal/
mol on the test set. It accurately predicted the atomization
energies of molecules randomly sampled from GDB-10, which
are larger than the molecules in the data set. The model was
demonstrated to be sensitive to structural and geometric iso-
mers, generate accurate potential energy surfaces, and predict
reaction energies to DFT-level accuracy on larger molecules.
These experiments demonstrate that the model is transferable
to larger molecules. In recent years, several methods have been
proposed to predict atomization energy for ground-state mole-
cules, but for a model to be practically useful it should also be
able to predict potential energy surfaces accurately. BAND NN
model proposed in this work not only predicts the atomization
energy for equilibrium and off-equilibrium structures but also
can be used to perform geometry optimization. Further work in
this area to develop robust transferable models using deep
learning methods aimed at predicting accurate potential energy
surfaces of molecular systems is expected to be more fruitful
for state of the art problems in computational chemistry.
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