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Abstract—Autism Spectrum Disorder (ASD) is a neurode-
velopmental condition characterized by varied social cognitive
challenges and repetitive behavioral patterns. Identifying reliable
brain imaging-based biomarkers for ASD has been a persis-
tent challenge due to the spectrum’s diverse symptomatology.
Existing baselines in the field have made significant strides
in this direction, yet there remains room for improvement in
both performance and interpretability. We propose HyperGALE,
which builds upon the hypergraph by incorporating learned
hyperedges and gated attention mechanisms. This approach has
led to substantial improvements in the model’s ability to interpret
complex brain graph data, offering deeper insights into ASD
biomarker characterization. Evaluated on the extensive ABIDE
II dataset, HyperGALE not only improves interpretability but
also demonstrates statistically significant enhancements in key
performance metrics compared to both previous baselines and the
foundational hypergraph model. The advancement HyperGALE
brings to ASD research highlights the potential of sophisti-
cated graph-based techniques in neurodevelopmental studies. The
source code and implementation instructions are available at
Github.

Index Terms—ASD Classification, Hypergraphs, Graph Neural
Networks, ABIDE II.

I. INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex neurode-
velopmental condition characterized by challenges in social
cognition and repetitive behaviors. Affecting a significant
portion of the population, with a prevalence of approximately
1 in 36 children [1], ASD’s diagnosis is complicated by its
heterogeneous nature and the limitations of existing diagnostic
criteria. Emerging research suggests that the atypical behav-
iors observed in ASD may be linked to distinct patterns in
functional connectivity (FC) within the brain [2] [3].

Functional connectivity represents dynamic interactions and
synchronizations between various brain regions. These in-
teractions form intricate networks that are foundational for
cognitive processes and behaviors, exemplified by networks
such as the Default Mode Network (DMN) and Dorsal Atten-
tion Network (DAN) [4]. The importance of these networks
in ASD is increasingly recognized in contemporary research
[5], underscoring the need for analytical models capable of
discerning complex FC patterns associated with ASD.

Several models have been applied to understand ASD,
ranging from traditional methods like SVM and Random
Forest [6] to neural networks, CNNs and Transformers [7]–
[11]. Graph-based methods have also been explored, retaining

complex brain information for ASD classification. However,
these methods often overlook higher-order relationships in
the brain’s network, focusing on dyadic interactions. This
limitation is significant in the context of ASD, where the
implicated brain regions can be highly variable and diverse
[12].

Addressing the intricate challenges in ASD diagnosis, our
research introduces HyperGALE, at the confluence of com-
putational neuroscience and graph theory. Unlike traditional
graph-based methods that primarily focus on pairwise inter-
actions, HyperGALE utilizes hypergraph convolutions. This
approach allows the model to capture high-order relationships
within the brain’s network, crucial for understanding the com-
plex and heterogeneous nature of ASD. Coupled with gated
attention, HyperGALE not only discerns intricate patterns in
functional connectivity but also provides a complex under-
standing of brain region interactions associated with ASD. Our
key contributions are as follows:

1) We developed HyperGALE, a novel ASD classifica-
tion approach utilizing modified hypergraph convolution
and gated attention to identify critical brain regions
implicated in ASD. Additionally, we re-implemented
and compared several holistic baseline models on the
ABIDE-II dataset. These comparisons are based on
accuracy, AUC, sensitivity, and specificity, highlighting
HyperGALE’s superior performance.

2) Our investigation into the model’s hyperparameters, such
as the number of Regions of Interest (ROIs) in hyper-
edges and the hypergraph layer count, provided insights
into their impact on HyperGALE’s performance. We
also assessed the robustness of all models, including
HyperGALE, through multiple runs with different initial-
izations and dataset distributions, noting HyperGALE’s
consistently low standard deviation in outcomes. The
model’s generalization capabilities were further evi-
denced by employing a leave-one-site-out strategy.

3) The advancements in HyperGALE go beyond per-
formance metrics, offering interpretative insights into
ASD’s qualitative aspects through learnt hyperedges and
gated attention. This bridges the gap between compu-
tational analysis and neuroscience, providing a deeper
understanding of neurodevelopmental disorders such as
ASD.
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Figure 1. ASD Processing Pipeline and the Proposed HyperGale Architecuture. (a) fMRI data is preprocessed with Schaefer’s parcellation and later
converted into a functional connectivity (FC) matrix. (b) The FC matrix is then converted into a hypergraph with learnable hyperedge weights. Subsequently,
the hypergraph features are sent to a series of hypergraph convolution layers and gated attention is applied in order to capture the importance of relevant
information. Finally, the information extracted after attention layers is aggregated using the readout function. Finally, from these lower dimensional features
of readout, a sigmoid activation leads to binary classification of ASD vs Typically Developing (TD).

II. RELATED WORKS

In this section, we begin by briefly reviewing traditional
machine-learning, deep-learning architectures that do not in-
corporate graph structures. We then transition to discussing
the evolution and significance of graph-based and hypergraph-
based methods in the context of ASD classification.

A. Overview of Non-Graph Methods

Traditional machine learning methods, such as Support Vec-
tor Machines (SVM), Random Forests, and Gradient Boosting
Classifiers (GBC) [6], have been applied to ASD classification.
These methods, however, often face challenges in handling the
high variance inherent in ASD data, attributed to site-specific
variations and the heterogeneous nature of the disorder.

In the realm of deep learning, architectures like CNNs
and Transformers have shown promise. Eslami et al. [8]
implemented an autoencoder with data augmentation, while
Kawahara et al. [9] utilized a CNN, treating the adjacency
matrix as an image rather than exploiting its inherent graph
structure. Kan et al. [11] innovatively employed a transformer-
based approach for node embeddings with self-supervised
clustering for readout.

B. Graph-based Methods

A myriad of graph-based models was proposed on top of
the standard GNNs [13], [14], [15]. For example, Cao et al.

[16] constructed a deep ASD diagnostic framework based
on 16-layer GCN with ResNet units and DropEdge strategy
to avoid certain problems such as vanishing gradient, and
over-smoothing. Kazi et al. [17] proposes ‘inception modules’
which are capable of capturing intra- and inter-graph structural
heterogeneity during convolutions. Yao et al. [18] introduce a
multi-scale triplet graph convolutional network that employs
multi-scale templates and a triplet GCN (TGCN) model to
learn multi-scale graph representations of brain FC. A recent
significant study by Chen et al. [7] put forth a competitive
model that used both the resting state fMRI (brain function)
and T1 weighted MRI (brain structure) to generate separate
node and edge embeddings using a Transformer block.

Since the FC matrix is symmetric, traditional models tend
to use the upper/lower triangular matrix features of FC,
thereby lacking message passing. Therefore, these methods
struggle to aggregate local and global information, resulting
in poor performance. The CNNs benefit from translational
equivariance and the Transformer’s key feature is the self-
attention mechanism. Although, these methods have good
properties, due to a lack of message passing they fail to
capture aggregated neighbourhood information. Graph-based
approaches on FC matrices are applied to understand interac-
tions among regions of interest, but current methods can not
take advantage of higher-order proximity information due to
reliance on static dyadic edges. To address these limitations
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Figure 2. Modified hypergraph convolution proposed in HyperGALE pipeline. Starting with ROI features derived from the fully connected matrix, these
initial inputs undergo node-to-hyperedge propagation to form hyperedge features (step (b)). These features are scaled using learned weights, as in step (c),
the activation happens in different hyperedges with different values. Finally, the scaled hyperedge features are propagated to new node features (step (d)).

and accommodate the heterogeneity in individuals with ASD,
exploring hypergraph models is considered to be a promising
step.

C. Hypergraph-based Methods

Recent ASD classification studies have explored hypergraph
frameworks, such as Hypergraph U-Net [19] and multi-view
HGNN [20], utilizing limited multi-modal data. Frameworks
like those of Shao et al. [21] for Alzheimer’s classification
incorporate feature selection and group-sparsity regularization
in their hypergraph approach. Similarly, Liu et al. [22] use a
view-aligned regularizer for multimodal coherence in hyper-
graph creation. Another notable work, [23], employs dynamic
hypergraph neural networks, utilizing KNN and KMeans for
iterative hypergraph generation in ASD classification.

Different from these methods, HyperGALE utilizes the
brain’s inherent hypergraph structure with a specialized hy-
pergraph convolution technique and learnable hyperedges.
This approach enhances the interpretation of complex brain
networks for more effective ASD classification.

III. METHODOLOGY

In this section, we initially discuss each component of our
method step-by-step and eventually detail the entire pipeline.

A. Dataset and Preprocessing

To systematically benchmark various graph learning tech-
niques for fMRI-based disease classification, we used large-
scale openly-accessible fMRI dataset from ABIDE-II consor-
tium1. This work included 812 subjects, out of which ASD:
384 and TD: 428, respectively, accumulated across 16 sites
as shown on the left of Figure 4. The resting-state fMRI
dataset was pre-processed using the default processing pipeline
considering global signal regression and bandpass filtering
implemented with C-PAC pipeline [24].

Briefly, the pre-processing pipeline included: removing the
skull regions and segmentation of each anatomical image
into three tissues, followed by normalization to the MNI152
template using Advanced Normalization Tools (ANTs) [25].
fMRI pre-processing included slice timing correction, motion

1http://fcon 1000.projects.nitrc.org/indi/abide/abide II.html

correction, global mean intensity normalization as well as
nuisance signal regression. In nuisance signal regression, the
number of parameters used were 24 parameters for head
motion, CompCor [26] with five principal components signals
from Cerebrospinal fluid and white matter, linear and quadratic
trends for low-frequency drifts. fMRI images were then co-
registered with subject-specific corresponding anatomical im-
ages and finally normalized to the MNI152 space using ANTs.

After pre-processing, timeseries signals were extracted for
each node where each node belongs to 7 networks 400
parcellations from Schaefer atlas [27]. On each node time
series, functional connectivity estimation using the Ledoit-
Wolf regularized shrinkage estimator [28] and full correlation
was implemented with Nilearn package [29].

B. Hypergraph Modeling

As introduced earlier, we construct a graph based on the
FC correlation matrix. Also, the fundamental notations and
the formulations are adopted from Feng et al. [30]. Basic
Notations: Suppose G = (V, E) be our graph with V as
vertices and E edges respectively. Where, V ∈ {v1, v2, · · · vN}
and E ⊆ V × V . The Adjacency matrix A ∈ RN×N informs
us of the pairwise interactions between each and every node.

Similarly, to construct a hypergraph Ghyper = (V, Eh) with
N nodes and K hyperedges. Similar to the adjacency matrix
in the graph, in hypergraph we have Incidence matrix H ∈
RN×K . Here, the hyperedges ej ∈ Eh (j = 1, 2, · · ·K) are
dumped in a diagonal weight matrix W ∈ RK×K . The entries
in the aforementioned incidence matrix can be represented as

Hij =

{
1 if vi ∈ ej

0 Else.

The vertex degree and the hyperedge degree of the hy-
pergraph are defined as Dii =

∑K
j=1 WjjHij and Bjj =∑N

i=1Hij respectively.
Hypergraph Convolutions: Now, the incidence matrix H

is passed to a successive series of convolution layers. In order
for the convolution operation to proceed the propagation is
done among the shared hyperedges and higher confidence
is assigned to the larger weights. Based on the hypergraph

http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html


Table I
THE TABLE ILLUSTRATES THE PERFORMANCE OF OUR PROPOSED METHOD HYPERGALE AS COMPARED TO THE EXISTING STATE-OF-THE-ART
APPROACHES. THE TRAIN AND TEST PROPORTIONS CONSIDERED FOR THE STUDY ARE 90% AND 10%, RESPECTIVELY. THE EXPERIMENTS ARE

CONDUCTED FOR 5 DIFFERENT NON-OVERLAPPING PROPORTIONS OF DATA AND THE MEAN AND STANDARD DEVIATIONS ARE REPORTED.

Modality Methods Performance Metrics
Accuracy AUC Sensitivity Specificity

Traditional
Methods

SVM [31] 68.83± 2.44 68.07± 2.49 78.82± 2.65 57.31± 3.01
Random Forest [32] 60.00± 5.55 58.80±6.11 70.81± 4.11 48.90±7.24
Gradient Boosting 62.01± 2.99 61.45± 2.92 68.86± 4.54 54.05± 5.23

Non-graph
Methods

ASD-Diagnet [8] 70.8 ±1.49 71.12 ±2.06 68.36 ±8.13 72.2 ±10.56
BrainNetCNN [9] 67.32± 4.24 69.07± 3.05 68.89± 8.62 65.40± 11.56

Graph based
Methods

GCN [13] 72.68±3.49 75.65± 3.57 79.56± 8.42 64.33± 9.65
GAT [14] 68.53± 3.40 71.70± 4.11 65.78± 9.76 71.89± 9.75
GraphSAGE [15] 71.22±2.55 74.64±4.60 75.43±17.88 66.61±2.56

Transformer
Based Methods

Transformer [10] 67.80± 0.98 69.14± 1.87 62.99± 6.55 72.50± 4.07
BrainNetTransformer [11] 71.22± 0.97 73.60± 2.38 67.70± 8.27 74.29± 5.54

HyperGraphs
(Ours)

HyperGraphGCN 73.41±1.18 76.66±1.02 74.67±5.76 71.89±5.91
HyperGALE (Ours) 75.34± 0.47 77.03± 1.85 76.39± 4.84 73.91± 5.58

structure and the associated weights, we define the hypergraph
convolution operation as,

x
(d+1)
t = σ

 N∑
i=1

K∑
j=1

HtjHijWjjx
(d)
t Θ

 (1)

Here x
(d)
t is the embedding of the tth vertex in the dth

layer. The Θ is the weight matrix between two successive
layers. Now we can eventually formulate the equation (1) into
a matrix form as

X(d+1) = σ
(
HWHTX(d)Θ

)
(2)

From the above equation the X(d) ∈ RN×F (d)

is the input
of the dth layer and the Θ ∈ RF (d)×F (d+1)

. The equation
(2) refers to a basic formulation that might lead to numerical
instabilities with deepening layers causing gradients to vanish.
Thus, to tackle this, one can adopt normalization approaches,
such as symmetric normalization or row-normalization. In our
line of research, we adopt the row-normalization approach as
it provides directional propagation as in the below equation

X(d+1) = σ
(
D−1HWB−1HTX(d)Θ

)
(3)

Learnable Hyperedges and Gated Attention In the equa-
tion (3) the weight matrix is not learnable. In such cases, the
hypergraph will not be updated with respect to the samples. So
our method even tries to learn the hyperedge weights matrix
W and we represent it as W̃ (refer to fig. 2). Successively,
this information is passed through a gated attention network
as formulated below,

A = σ(MLP(X(d+1)));

B = Tanh(MLP(X(d+1))); (4)
α = MLP(A⊙B);

Z = α⊙X(d+1)

Where, ⊙ determines the element-wise product and Tanh(·),
σ(·) are the nonlinear activation’s respectively. In the equation
(4), Z obliges our model to allocate necessary attention that are

Dot

Tanh

Sigmoid

Figure 3. Illustration of the Gated Attention Module. GA module which
learns α iteratively (or numerically) from eq. (4), this α vector is multiplied
to get the final node features which is fed to the readout layer. [33].

crucial to interpreting the exact incidence of ASD [33]. This
guides the hyperedge weight matrix to direct the importance
to the essential nodes. Thus, it eventually tracks essential
regions of the brain that are actually connected and injects
the importance accordingly (refer to Fig. 3).

Readout Mechanisms The Readout methods produce an
aggregation of node-level features to form graph-level rep-
resentations. The standard readouts such as, MAX(·) and
MEAN(·) underfit while learning on brain hypergraphs. So we
experimented with adaptive readouts like SETTRANSFORMER
and JANOSSY (permutation invariant) and MLP (permuta-
tion non-invariant). Thus, we deploy Neural Readouts where
the hypothesis space of the aggregated representations is
not permutation invariant. Also similar to Buterez et al.
[34] we applied three variants of adaptive neural readouts,
SETTRANSFORMER, JANOSSY and MLP readouts. We exper-
imented with both permutation variant and invariant that are
adaptive and embedded with permutation invariant learning
with and without attention mechanisms [34]. After a detailed
experiments we have seen MLP readouts outperform many
adaptive and non-adaptive readouts. The ablations are detailed
briefly in the results section. Our chosen readout is,

X (Readout) = RELU(MLP(Z)) (5)



Finally, the total pipeline of our HyperGALE is described in
the below Algorithm.1

Algorithm 1: HYPERGALE
Input: DATA
Output: ŷ
FC ← SCHAEFERPARCELLATION(DATA)
for i ← 1 to epochs do

Hypergraph Creation: Ghyper(V,H)
X(d+1) ← σ

(
D−1HW̃B−1HTX(d)Θ

)
Z ← α⊙X(d+1)

X (Readout) ← RELU(MLP(Z))
ŷ ← σ(X (Readout))

return ŷ

IV. RESULTS AND DISCUSSION

In this section, we compare our proposed method with
methods that are employed to provide significant performance
for ASD classification. Later we determine the qualitative
performance of HyperGALE in determining ASD.

A. Methods for Comparison

All the baseline experiments have been conducted on the
dataset we have identified from ABIDE II and where necessary
we have re-implemented the algorithms for reporting the
comparative results in Table I. First, to observe the significance
of statistical approaches the traditional machine learning meth-
ods such as Support Vector Machines, Random Forests, and
Gradient Boosting Classifier (GBC) have been implemented.
These models have been poorly performed due to the high
variance nature of the data (refer Table I). Nevertheless, com-
paring among traditional methods, SVM gave better prediction
performance.

Next, moving to the architectures using deep learning with-
out transformer, the works [8], [9] have decent and better
performance compared to traditional methods. Although, these
methods have succeeded to provide jump in performance
compared to that of traditonal methods these models have
high standard deviation and needs to be better in capturing
the patterns that corresponds to ASD.

Next, we move to latest transformer architectures [10],
[11] have achieved promising performance with less standard
deviation in AUC and accuracy metrics. Although, having self-
attention layers and OCReadout mechansims, these methods
do not provide significant performance.

Now, we benchmark the graph-based models [13]–[15]. As
explained earlier, graph-based have actually performed well
for ASD dataset [16] [17] [18]. Graph-based approaches on FC
matrices are applied to understand interactions among regions
of interest, but current methods struggle with higher-order
proximity due to reliance on static dyadic edges.

Recent studies using Hypergraphs for ASD classification
include Hypergraph U-Net [19] and multi-view HGNN [20]
which use multiple modalities and thus we can’t employ these

Table II
THE TABLE ILLUSTRATES THE PERFORMANCE HYPERGRAPH MODELS IN

THE COMBINATIONS OF WITH AND WITHOUT GA AND LEARNED HE.

Methods Performance Metrics
Learned HEs GA Accuracy AUC Sensitivity Specificity
W/o W/o 73.41±1.18 76.66±1.02 74.67±5.76 71.89±5.91
W/o With 74.39±1.21 77.90±0.90 67.78±1.11 82.43±1.35
With W/o 73.74±1.39 77.15±3.80 68.10±7.20 81.15±6.56
With With 75.34±0.47 77.03±1.85 76.56±5.41 73.86±5.41

methods for our study. Finally, we employed the hypergraph
convolution methods named HyperGraphGCN [30] to compare
with the hypergraph baseline. Although these methods have
the added advantage of acquiring higher-order proximity,
HyperGALE performs extensively on top of every model. In
the next subsection, we explain all the experiments in detail
and justify HyperGALE with extensive ablation studies.

B. Performance Discussion

Table I showcases that HyperGALE achieves notable per-
formance, effectively justifying its design principles. The
robustness of HyperGALE is confirmed in both accuracy and
AUC metrics. A two-sample t-test comparing HyperGALE
with HyperGraphGCN (a hypergraph-based baseline) reveals
a significant difference in accuracy (t-Statistic: 3.40, p-Value:
0.0094), highlighting HyperGALE’s superior performance in
this regard. When compared with BrainNetTransformer, Hy-
perGALE exhibits a highly significant improvement in ac-
curacy (t-Statistic: 8.55, p-Value: 0.000027). Additionally, a
significant enhancement is also observed in AUC (t-Statistic:
2.54, p-Value: 0.0345). These results highlight the efficacy of
HyperGALE in handling functional connectivity (FC) patterns,
particularly in Autism Spectrum Disorder (ASD) pattern iden-
tification.

While GCN demonstrates promising sensitivity, it suffers
from fluctuating performance characterized by a high standard
deviation. In terms of specificity, BrainNetTransformer excels,
yet HyperGALE achieves comparable results. The superior
performance of HyperGALE, especially in processing FC
patterns, emphasizes its capability in delineating nuanced ASD
patterns. Unlike transformer-based models that struggle with
the utilization of FC as tokens and the physical understanding
of attention mechanisms, HyperGALE adeptly processes these
FC patterns, thereby capturing functional associations crucial
in ASD diagnostics. This approach not only bolsters the
model’s accuracy and AUC but also enriches the understanding
of ASD through cutting-edge machine learning techniques.

C. Generalizability

Our study employed a leave-one-site-out analysis across
16 different sites (refer Fig. 4) in the ABIDE-II dataset
to evaluate the HyperGALE model’s generalizability. This
approach rigorously tested the model’s performance in diverse
settings, revealing insights into its applicability across various
clinical environments. The analysis in Fig. 4 demonstrates
varied performance metrics - across sites.



Figure 4. Prediction performance across sites using a leave-one-site-out
strategy. The count of ASD and TD subjects from various sites are shown
on (left) and various performance metrics are shown for each site on (right).
Chance level performance is at 50%. Despite the challenges with site-specific
variations in the number of samples, our model is still able to demonstrate
creditable between-site generalization performance, comparable to the results
in Table I.

The results underscore the challenge of generalizing models
in multi-site studies, highlighting the influence of site-specific
factors such as data acquisition protocols and demographic
variations. Performance discrepancies across sites suggest the
need for further model enhancements, potentially through site-
adaptive methodologies.

D. Gated Attention and Hyperedge Discussion

Table II demonstrates the impact of incorporating Learned
Hyperedges (HE) and the Gated Attention (GA) module in
hypergraph models, assessed under various configurations with
and without these modules. One can observe that, with GA, the
model is performing well in AUC and specificity metrics even
in the absence of learnable HE. But, learnable HE and GA
together actually obliges the model to have higher accuracy
score and sensitivity. The sensitivity is helpful to predict the
presence the ASD. Hence, both of these act as tandem and piv-
otal in identifying key ROI embeddings, thereby focusing on
the most significant regions for predicting ASD. Furthermore,
as GA highlights significant ROIs, and learned HE assign
varying weights to different networks in brain parcellation,
learning in this way helps the model to focus on distinct ROIs
to provide significant performance.

The significance of learned HE and the GA module extends
beyond performance; they are also crucial for enhancing the
model’s interpretability in identifying biomarkers, a topic we
will explore in detail in Section V.

E. Ablation Study

a) Number of ROIs in each Hyperedge: In our hy-
pergraph convolution approach, hyperedges are formed by
grouping ROIs based on connectivity, with the k-NN algo-
rithm determining the number of ROIs in each hyperedge.
The choice of the hyperparameter k, which dictates the ROI
count per hyperedge, is crucial as it influences the overlap of

Table III
THE TABLE ILLUSTRATES THE PERFORMANCE OF VARIOUS READOUT

MECHANISMS ON OUR PROPOSED HYPERGALE MODEL.

Methods Performance Metrics
Accuracy AUC Sensitivity Specificity

MLP 75.34 77.03 68.10 81.15
Set Transformer 67.36 65.95 41.03 77.14
Janossy 62.96 58.08 63.16 62.79
Max 51.12 54.14 23.00 97.30
Mean 48.17 50.36 10.00 94.59

hyperedges, impacting the identification of active brain regions
in ASD and TD subjects [35]. A lower k value might exclude
vital information by limiting the ROIs per hyperedge, whereas
a higher k risks adding non-significant connections and noise.
Our empirical analysis as seen in Fig. 5, determined 40 to be
the optimal ROI count in a hyperedge, balancing comprehen-
sive coverage and minimal noise, crucial for accurate brain
region representation in ASD and TD subjects.

b) Number of Layers: Our analysis shows that a single-
layer hypergraph convolution is optimal for brain connectome
analysis, as evidenced in Fig. 6. An increase in the number
of layers led to a decline in performance, a phenomenon
consistent with over-smoothing issues in graph convolutional
networks (GCNs). This issue, as discussed in [36], [37],
involves feature homogenization across layers, reducing the
model’s ability to distinguish unique patterns.

The brain connectome’s structure, mainly consisting of
ROIs one hop away from each other, supports our use of
a single-layer approach. This structure allows for effective
aggregation of essential information in the initial layer, making
additional layers redundant. While various strategies have been
proposed to address over-smoothing in deeper GNNs [38],
[39], the architectural specifics of our dataset make these
approaches less relevant, as our single-layer model adequately
captures the necessary connectivity information.

c) Readout Mechanisms: Table III demonstrates that
standard readouts like MAX(·) and MEAN(·) are less effective
for brain hypergraphs. Supporting this, Buterez et al. [34] note
that not all readouts suit every graph structure, especially in
fully connected graphs like brain hypergraphs where permu-
tation non-invariant readouts can be more effective.

The SETTRANSFORMER readout, used without positional
encoding to preserve permutation invariance, contrasts with the
permutation-invariant JANOSSY readout suggested by Murphy
et al. [40]. However, in our study, MLP readouts provided
superior embeddings for brain hypergraphs, aligning with find-
ings by Alon et al. [41] that demonstrate their effectiveness in
similar contexts. Hence, our framework utilized MLP readouts
for optimal representation.

V. INTERPRETABILITY DISCUSSION

Our analysis of brain connectome interactions unveils dis-
tinct neural patterns between ASD and TD subjects. Utilizing
the Gated Attention module and learned hyperedge weights,



Figure 5. Changes in prediction accuracy with respect to change in
number of ROIs in a hyperedge denoted by k. The optimal number of
ROIs was found at k = 40.

Figure 6. Changes in prediction accuracy with respect to change in
the number of hypergraph convolution layers. A single-layer hypergraph
convolution is found to be optimal.

we identified pivotal ROIs and observed how their interactions
differ between ASD and TD individuals.

While Figs 7 (A) and (B) reveal a significant overlap in the
top ROIs across both ASD and TD groups, it is the distinct
connections among regions of these two groups that provide
deeper insights and distinguish the two groups. In other words,
despite sharing common ROIs, the way these regions interact
within the neural network varies considerably between ASD
and TD, reflecting the unique neural connectivity characteris-
tics of ASD.

We identified the top 50 ROIs and categorized them into
broader functional networks, each reflecting distinct aspects
of the ASD classification. In the following we highlight
the differences observed in the functional networks between
ASD and TD. These include, Visual Processing Networks,
which highlight atypical visual processing patterns in ASD
[42]. The Limbic System indicates altered emotional and
social processing through higher connectivity with the Default
Mode Network (DMN) [43]. Executive Function and Attention
Networks reveal disparities related to executive functioning
and attention regulation challenges in ASD; and the Default
Mode Network, where atypical connectivity patterns impact
areas like theory of mind and self-awareness [43].

While Figs. 7 (A) and (B) indicate a substantial overlap
in the top ROIs across both ASD and TD groups, it is their
distinctive connectivity patterns that yield profound insights.
This is particularly evident in the Limbic System, comprising
of regions like Limbic TempPole and Limbic OFC. In ASD,
we observe higher connectivity of these limbic regions with
the DMN, as opposed to the balanced connections seen in
TD. This higher linkage in ASD, as highlighted in Fig 7 (C)
versus (D), is indicative of altered connectivity patterns in
areas crucial for emotional processing and social interaction
[43]. Similarly, in visual regions (RH Vis, LH Vis), we observe

Autism Typically Developing
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Figure 7. The interpretation of important ROIs and their connectivity
obtained from GA module and learned hyperedge weights, respectively.
(A) and (B) highlight the top 20 most important ROIs that emerged in ASD
and TD subjects. (C) and (D) depict the discriminative hyperedge connectivity
pattern of a common ROI in ASD and TD using dominant hyperedge based
on W̃ .

increased connectivity to DMN regions in ASD subjects
[42], while TD had connections primarily within visual and
attention networks.

These observations improve our understanding of ASD’s
neural dynamics. The Limbic System’s enhanced DMN con-
nectivity in ASD might underlie social and emotional pro-
cessing challenges, while the varied connectivity in visual
networks points to broader sensory and cognitive implications.
Overall, our study extends beyond identifying shared ROIs,
and discovering complex variations in neural interactions.

VI. CONCLUSION

In this paper, we introduced HyperGALE, a novel hyper-
graph convolutional network enhanced with gated attention,
specifically designed for ASD classification. Our comprehen-
sive evaluation on the ABIDE-II dataset highlights Hyper-
GALE’s outstanding performance, surpassing ML and graph-
based approaches. HyperGALE’s capability to effectively cap-
ture complex higher-order graph intricacies and utilize learn-
able hyperedge weights has led to a better understanding
of brain network dynamics. HyperGALE identifies critical
ROIs for ASD and delineates how their connectivity patterns
differ from those in TD subjects. This, not only promises
improvements in clinical detection but also opens new avenues
for research in neuroimaging and the development of targeted
intervention strategies.
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