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Generative artificial intelligence for small molecule drug 
design
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In recent years, the rapid advancement of generative artificial 
intelligence (GenAI) has revolutionized the landscape of drug 
design, offering innovative solutions to potentially expedite the 
discovery of novel therapeutics. GenAI encompasses algorithms 
and models that autonomously create new data, including text, 
images, and molecules, often mirroring characteristics of existing 
datasets. This comprehensive review delves into the realm of GenAI 
for drug design, emphasizing recent advancements and 
methodologies that have propelled the field forward. Specifically, 
we focus on three prominent paradigms: transformers, diffusion 
models, and reinforcement learning algorithms, which have been 
exceptionally impactful in the last few years. By synthesizing 
insights from a myriad of studies and developments, we elucidate 
the potential of these approaches in accelerating the drug discovery 
process. Through a detailed analysis, we explore the current state 
and future directions of GenAI in the context of drug design, 
highlighting its transformative impact on pharmaceutical research 
and development.

Address
Centre for Computational Natural Sciences and Bioinformatics, 
International Institute of Information Technology, Hyderabad 500032, 
Telangana, India  

Corresponding author: U. Deva Priyakumar (deva@iiit.ac.in)
* These authors contributed equally.

Current Opinion in Biotechnology 2024, 89:103175

This review comes from a themed issue on Pharmaceutical 
Biotechnology

Edited by Michael Krogh Jensen

Available online xxxx

https://doi.org/10.1016/j.copbio.2024.103175

0958–1669/© 2024 Published by Elsevier Ltd.

Introduction
Brief overview
Machine learning is a subset of artificial intelligence (AI) 
focused on creating algorithms to learn from data for pre-
dictions or decisions without explicit programming of pre-
defined sets of rules. AI encompasses a broader range of 
technologies for tasks requiring human-like intelligence, 

like understanding language or recognizing patterns. The 
first AI age (1960–1990) emphasized search algorithms, op-
timization, and ‘Good-Old Fashioned AI’ (GOFAI), driven 
by mathematical principles and rule-based systems, with 
risks primarily in software quality [1–3]. The second age 
(1980–2000) transitioned to machine learning, relying on 
domain knowledge and testing, but faced challenges of in-
complete data and biases [3]. In addition to the new dataset 
generation, the ongoing third age marked an advancement 
in algorithms with deep learning and generative AI (GenAI). 
It benefits from vast data and computational power but in-
troduces new risks from uncurated big data, intellectual 
property issues, and misuse concerns, emphasizing the need 
to understand and mitigate these risks [3].

What is generative artificial intelligence?
GenAI, a short form of generative artificial intelligence, is a 
subset of AI that creates new data resembling a given da-
taset instead of merely recognizing patterns or making 
predictions. Furthermore, it diverges from traditional AI by 
also creating entirely new data instances resembling the 
training data. These models learn the data’s underlying 
structure to produce novel, synthetic examples rather than 
direct copies, accelerating innovation across various domains. 
Techniques like generative adversarial networks (GANs) 
[4], variational autoencoders (VAEs) [5], transformers, and 
reinforcement learning (RL) have diverse applications, in-
cluding drug discovery. GenAI revolutionizes drug discovery 
by leveraging machine learning to generate novel molecular 
structures. Primarily, we identify potential data sources in 
1D, 2D, or 3D representations to create a curated dataset. 
Thereafter, we train any generative model, such as gen-
erative pretrained transformers (GPTs), recurrent neural 
networks (RNNs), VAEs, graph neural networks (GNNs), 
GANs, deep belief networks, equivariant GNNs, Markov 
Chain Monte-Carlo models, probabilistic graphical models, 
and so on, for molecule generation, preferably with a way to 
condition them on desired properties. Figure 1 summarizes 
the typical approach for molecule generation tasks using 
GenAI methods.

Generative artificial intelligence in drug 
design
Representations of molecules
Advances in deep learning architectures from other domains 
can be used for generating drug molecules and predicting 
their properties by using various representations of mole-
cules. Text-based representations allow for the domain of 
drug molecules to benefit from advances in natural language 
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processing. Graph-based representations of drug molecules 
facilitate the use of GNNs, inspired by advances in social 
and citation networks as well as scene graphs. Tools like 
RDKit aid in converting molecular data between different 
representations. While early works utilized molecular fin-
gerprints, recent literature predominantly favors more com-
prehensive representations that contain more information 
about the molecules. The subsequent sections detail these 
representations and their respective chemical information 
content.

Simplified Molecular-Input Line-Entry System and Self- 
Referencing Embedded Strings (1D/string)
Simplified Molecular-Input Line-Entry System 
(SMILES) [6] represents a molecule’s structure as a 
string while encapsulating atoms, bonds, and stereo-
chemistry. Although each molecule can have multiple 
SMILES strings, canonicalization algorithms yield a 
single representative canonical SMILES string. How-
ever, not all SMILES are valid due to syntax dis-
crepancies. SELFIES [7], on the other hand, ensures 
every string in the correct syntax corresponds to a valid 
molecule, offering a robust alternative.

2D molecular graphs (2D)
A 2D molecular graph comprises nodes N representing 
atoms and edges E representing bonds. It typically in-
volves three matrices: an adjacency matrix indicating 
vertex adjacency; a node matrix storing node attributes 
like atomic number, valency, and formal charge; and an 
edge matrix containing bond properties like bond type.

3D molecular graphs (3D)
In addition to depicting atom connectivity and topology, 3D 
graphs also incorporate spatial positions of atoms. This 
spatial data can be represented explicitly with atom co-
ordinates in the node matrix or through relative 3D 

information like bond angles and lengths, and dihedral an-
gles. While obtaining 3D geometric information requires 
expensive computations and experiments, it proves valuable 
in molecular analysis tasks due to its inclusion of ground- 
state geometries with lowest energies.

Databases
There exist multiple databases containing molecules 
meeting specific criteria (e.g. all molecules that have < 10 
heavy atoms) or serving various functionalities. 
Understanding the choice of training database is crucial for 
GenAI models, which learn from underlying data distribu-
tions to generate new samples. While pharmaceutical com-
panies possess proprietary data, publicly available databases 
offer options for (pre)training these models to generate po-
tential new drug molecules. The GDB-17 database enu-
merates 166 billion organic small molecules of up to 17 
atoms (C, N, O, S, halogens) [8], while QM-9 is a subset 
with about 140 000 molecules up to 9 atoms (C, N, O, F) [9]. 
These databases encompass molecules within their defined 
chemical space and may include quantum chemical prop-
erties. Large databases like GDB-17 aid in pre-training 
GenAI models to grasp underlying molecular patterns, 
which can be fine-tuned for property-specific molecule 
generation. The ZINC database [10] and its variants offer 
multi-billion-scale collections of commercially available 
drug-like molecules and include vendor information for 
obtaining the molecules. MOSES database [11] comprises 
around 2 million potential hit compounds suitable for fur-
ther Chemical absorption, distribution, metabolism, excre-
tion, and toxicity optimization, while ChEMBL [12] is a 
curated repository of bioactive molecules, with about 2.4 
million entries and experimental bioactivity data. Pub-
Chem’s Compound database [13] boasts over 111 million 
unique chemical structures alongside bioactivity data from 
assays. DrugBank [14] houses over 10 000 approved and 
investigational drugs and 1.4 million drug–drug interactions. 

Figure 1  
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In addition to databases containing drug-related information, 
the CrossDocked database [15] offers 22.5 million ligand 
poses docked into Protein Data Bank [16] binding pockets, 
useful for generating molecules targeting specific pockets. 
While commercial collections like Enamine REAL Space 
[17], CAS [18], and Beilstein archives [19] are not detailed 
due to limited accessibility, Table 1 summarizes widely 
used open databases for training generative models in mo-
lecule design.

Generative methods for drug design
Generative models play a vital role in drug design, particu-
larly in de novo drug design. Early approaches using RNNs 
effectively generated 1D sequences like SMILES but 
struggled with larger molecules. Therefore, long short-term 
memory models and other variants of RNNs became a 
popular choice of sequence-based models due to their 
capabilities for modeling longer sequences. VAEs [5] offer 
an alternative approach by mapping molecular structures to 
a low-dimensional latent space, facilitating the generation of 
novel molecules by sampling the diverse latent space. Var-
ious VAE variants have been proposed to overcome lim-
itations and improve molecule generation. GVAEs [20]
proved to be a significant step in improving the validity of 
the molecules by incorporating a parse-tree representation 
for molecules. Constrained graph VAEs (CGVAEs) take a 
step forward by combining VAEs and graph generation 
using Gated Graph Neural Nets [21] for novel molecular 
graph generation. Similarly, junction tree VAEs innovate 
molecular VAEs by using a junction tree (a tree-structured 
scaffold) representation of a molecule followed by a mes-
sage-passing network for molecule generation. Deep 
learning-based inorganic material generator [22] extends this 
by using CGVAEs for conditional inorganic molecule gen-
eration.

GANs [4], popular for image generation, consist of a gen-
erator network and a discriminator network. The generator 
creates new data, while the discriminator identifies real data 
from the fake ones. This adversarial training aims to fool the 
discriminator. Early applications in molecule generation in-
volved using an adversarial autoencoder to generate mole-
cular fingerprints [23], which were used to screen 

compounds from PubChem. Because of inherent similarities 
between GANs and actor–critic architectures, researchers 
have explored combining them, giving rise to innovations 
such as optimizing GANs using RL. ORGAN [24] is one of 
the earliest methods to do this, which employed a GAN for 
generation and RL for biasing the molecular generation 
towards desired metrics like solubility, drug likeliness, and 
synthesizability. This success has led to numerous GAN 
variants showcasing their potential in drug design. MolGAN 
[25] is another example that uses a GAN for molecule graph 
generation within an RL setting for the same properties 
optimization. LatentGAN [26] combines an autoencoder 
with a GAN for SMILES generation for specific targets such 
as Epidermal Growth Factor Receptor (EGFR), 5-hydro-
xytryptamine (serotonin) receptor 1A, and Sphingosine-1- 
phosphate receptor 1. Mol-CycleGAN [27], for instance, can 
generate highly similar molecules with desired properties 
given a target molecule. One of the main challenges with 
training GANs is the phenomenon of mode collapse when 
the generator keeps generating a small subset of molecules 
and continues tricking the discriminator and getting stuck in 
local minima. These issues can be addressed by using 
concepts from genetic algorithms and adaptive training 
data [28].

Flow-based models are a relatively recent development in 
molecule generation. In a way, they are similar to VAEs in 
learning the representation; however, the main difference is 
that these models leverage normalizing flows [29] to learn a 
bijective mapping between data and a simple distribution. 
Flow-based models construct a series of invertible transfor-
mations that map a simple distribution to the data dis-
tribution. Flow-based models were successful in the image 
domain. To extend these to molecules, Madhawa et al. 
proposed GraphNVP [30], using an adjacency matrix and 
node feature matrix as the data to be generated using in-
vertible neural networks, which can be decoded to mole-
cular graphs. Several pieces of the literature suggest that 
flow-based methods have been successfully used for mole-
cular design for different modalities, such as graphs and 
sequences. MoFlows [31] uses a flow-based model to gen-
erate bonds, then atoms, and post hoc chemical validity 
checks for guaranteed valid molecular graph generation. 

Table 1 

Summary of various databases available for training and testing generative models for small (drug) molecules. 

Name of Database Number of Relevant Entries Comments

GDB-17 [9] 166 B Organic small molecules of up to 17 atoms; can be used for pre-training
ZINC [10] 37 B Commercially available compounds; Contains database search tools
PubChem [13] 111 M Contains bioactivity measurements; Has database search tools
CrossDocked [15] 22.5 M Contains poses of ligands bound to binding targets
ChEMBL [12] 2.4 M Drug-like bioactive molecules; Contains bioactivity measurements
MOSES [11] 2 M Potential hit compounds; Opportunities for further ADMET optimizations
QM-9 [9] 140 K Molecules of up to 9 atoms; also contains quantum chemical properties
DrugBank [14] 10 K Approved and investigational drugs; Also contains 1.4 M drug-drug interactions

ADMET, Chemical absorption, distribution, metabolism, excretion, and toxicity.
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FastFlows [32] extends these normalizing flows to sequence 
generation by using SELFIES, making it extremely effi-
cient for generating molecules in bulk. MolGrow [33] in-
novates by using a hierarchical approach to molecular graph 
generation recursively using normalizing flows by splitting a 
node in each iteration, maintaining chemical validity and 
structural diversity.

Recent advances in molecule generation go beyond the 
methods mentioned earlier. GPTs, diffusion models, 
and RL are now showing promise. The subsequent 
sections will delve into a comprehensive discussion of 
these methodologies in the context of molecular gen-
eration.

Transformers for drug design
Transformers [34] emerged as a powerful solution to over-
come the limitations with RNN-based models with their 
strength in capturing long-range dependencies in sequences.

Transformers feature an encoder–decoder architecture, 
the latter, as shown in the Figure 2a, used for sequence 
generation. A typical approach to molecule generation 
using transformers includes (1) Encoding the molecules 
and property information followed by positional encod-
ings, (2) Input to the transformer decoder with several 
multihead attention modules followed by a feed-forward 
neural network for next token classification. Multiple 
self-attention ‘heads’ allow for learning distinct molecule 

aspects, enhancing information extraction. This archi-
tecture offers versatility, with the encoder used for re-
presentation learning and downstream tasks like 
property predictions [35], while the decoder is employed 
for tasks such as molecule generation [36].

Transformers have been used widely for conditional mole-
cule generation and unconditional molecule generation. 

• Unconditional molecule generation aims to create 
diverse molecules without specific properties, max-
imizing validity, novelty, and exploration of chemical 
space. It serves as a valuable pre-training step for 
conditional molecule generation.

• Conditional molecule generation tailors generative 
models to prioritize molecules with desired properties by 
incorporating property information [36]. Simple methods 
embed properties as starting tokens, as illustrated in 
Figure 2a. This can be achieved by embedding proper-
ties as starting tokens or improved by encoding graph- 
based representations (GraphGPT) [37] into the se-
quence model. Further innovations include methods like 
cMolGPT [38], which injects conditional information 
directly into the decoder’s attention layer and approaches 
like CMGN [39], which employ large-scale pretraining 
and fine-tuning for target-specific molecule generation. 
Various methods for incorporating conditional informa-
tion define the range of generative tasks addressed by 
molecular GPTs.

Figure 2  
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Diffusion models for drug design
Diffusion models [40], parameterized Markov chains trained 
via variational inference, excel at generating novel data 
points within a specific domain. During training, a forward 
diffusion process progressively injects Gaussian noise into 
real data, ultimately transforming it into an isotropic Gaus-
sian distribution. The subsequent reverse process trains the 
model to iteratively remove this added noise, essentially 
performing denoising at each step. This learned denoising 
ability allows the model to take random noise as input and, 
through a series of denoising steps, generate new data points 
that statistically resemble the training data.

Diffusion models, originally successful in computer vision, 
have been swiftly adapted to 3D molecule generation. E(3) 
equivariant diffusion models pioneered this adaptation [41], 
achieving state-of-the-art (SOTA) 3D conditional molecule 
generation on QM9 dataset. Figure 2b showcases a general 
application of diffusion methods to the molecular domain. 
As shown in the figure, the diffusion model is trained to 
denoise a molecule periodically from a noised variant with 
noisy coordinates and atom types, perturbing the atom co-
ordinates and types until it becomes a valid molecule, 
thereby translating the concept of noising and denoising 
image pixels to atomic coordinates and types. This success 
has sparked further advancements, with newer models like 
latent diffusion models (LDMs) [42] being used for mole-
cule generation as shown by geometric LDM [43], which 
use point structured latent space and autoencoders oper-
ating there to resolve large molecules, and geometry com-
plete diffusion models [43] incorporating VAEs and SE(3)- 
Equivariant structures to enhance conditioning capabilities. 
Molecular diffusion models (MDMs) were further in-
troduced to address challenges faced by diffusion models in 
handling large molecules and diversity [44]. MDMs utilize 
equivariant encoders to encode interatomic relations and 
incorporate a latent variable for controlling representations 
in each diffusion/reverse step, ensuring the exploration of 
diverse 3D molecule geometries. Their approach achieved 
SOTA performance on QM9 and Geom-Drugs datasets. 
Diffusion models have further expanded into target-specific 
molecule generation in 3D. DiffSBDD and TargetDiff are 
SE(3)-Equivariant models for generating ligands condi-
tioned on protein pockets [45,46], while DiffDOCK frames 
docking as a generative modeling problem focusing on li-
gand poses [47]. Additionally, torsional diffusion for con-
formation generation [48] and steering diffusion model 
training with physical and statistical information [49] were 
further introduced. With their versatility and potential, dif-
fusion models are poised to play a pivotal role in future 
molecule discovery and design.

Reinforcement learning for drug design
RL is a learning paradigm where an agent (also referred to as 
an actor or decision maker) learns policies to maximize cumu-
lative rewards from the environment (also referred as critic) 
for a specific task. As shown in Figure 2c, the agent selects 

actions based on its policy, and the environment provides 
rewards and new states accordingly. The agent updates its 
policy using intermediate and final rewards. The environ-
ment’s design includes state representation, action defini-
tions, transition dynamics, and reward function, while the 
agent’s design involves choosing the policy network archi-
tecture for action selection. In molecule generation, RL 
often uses molecular graphs or string-based representations, 
where actions include adding or removing edges in graphs or 
concatenating tokens in strings. RL is advantageous for se-
quential decision problems in molecular design, as each 
decision moves partial molecules closer to desired proper-
ties. Chemistry-aware RL environments can incorporate 
constraints on nondifferentiable properties (molecular 
structure and valency) in the reward function. Unlike other 
methods, RL allows exploration beyond training data, pro-
vided the problem formulation and reward function support 
it. ReLeaSE [50] is one of the earliest works in RL for a 
molecular design where the agent generates SMILES 
strings, and a predictive model in the environment predicts 
a property value that serves as a reward for the agent to 
generate compounds with the desired properties. Other 
early works like Graph Convolutional Policy Network [51]
employed graph convolutional networks to generate mole-
cular graphs with specific properties like logP and drug- 
likeness. With the reward functions becoming more realistic 
and computationally heavy, recent works introduce an RL- 
based active learning system for hit molecule generation 
[52,53] to reduce the evaluations needed in the generation 
process. MoleGuLAR [54] adopts a multiobjective approach 
by periodically changing reward properties. DeepSPInN 
[55] uses Monte Carlo Tree Search (MCTS) for candidate 
molecule generation from spectral data. FREED and 
FREED++ combine molecular fragments to generate high- 
affinity molecules [56,57]. MolDQN and iterative RL utilize 
Q-learning for molecule generation and optimization [58,59]. 
Apart from generating molecules, RL has also been used for 
other tasks, such as predicting structures of metal clusters 
[60] and for molecular geometry optimization [61].

With transformers receiving a lot of attention in recent years, 
we also highlight works that use RL along with transfor-
mers. ChemRLformer [62] uses RL to train a transformer to 
generate string representations of ligands that have high 
binding affinities to multiple docking targets. Molecular 
design using Reinforcement Learning with Multiple GPT 
agents [63] uses multiple generative pre-trained transformer 
agents to generate molecules optimized for particular prop-
erties.

Conclusion
The integration of GenAI into drug discovery promises ac-
celerated innovation in pharmaceutical research, leveraging 
diverse molecule representations like SMILES, SELFIES, 
and graphs. Comprehensive databases fuel GenAI by pro-
viding vast training data, enhancing the reliability of 
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generated compounds. Generative methods, including 
transformers, diffusion, and RL, revolutionize lead identifi-
cation. Despite progress, challenges persist, requiring ad-
dressing reliability, interpretability, data security, and ethical 
considerations for responsible GenAI application in drug 
discovery. Nonetheless, the potential for GenAI to expedite 
medication development remains compelling, heralding a 
future of faster, more precise drug discovery.
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