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ABSTRACT
We introduce an innovative approach to automated sleep

stage classification using electrooculogram (EOG) signals,
addressing the discomfort and impracticality associated with
electroencephalogram (EEG) data acquisition. In addition,
this approach is untapped in the field, highlighting its poten-
tial for novel insights and contributions. Our proposed SE-
Resnet-Transformer model effectively classifies five distinct
sleep stages from raw EOG signals. Extensive validation on
publicly available databases (SleepEDF-20, SleepEDF-78,
and SHHS) reveals performance, with macro-F1 scores of
74.72, 70.63, and 69.26, respectively. The model excels in
identifying Rapid Eye Movement (REM) sleep, a crucial as-
pect of sleep disorder investigations. We also provide insight
into the internal mechanisms of the model using techniques
such as GradCAM and t-SNE plots. Our method improves
the accessibility of sleep stage classification while decreasing
the need for EEG modalities. This development will have
promising implications for healthcare and the incorporation
of wearable technology into sleep studies, thereby advanc-
ing the field’s potential for enhanced diagnostics and patient
comfort.

Index Terms— Automatic Sleep Staging, Deep Learning,
Electrooculogram (EOG), Polysomnography (PSG), Rapid
Eye Movement (REM)

1. INTRODUCTION

Monitoring of sleep stages is crucial for maintaining optimal
health. Sleep is classified into five stages by the American
Academy of Sleep Medicine (AASM) [1]. The conven-
tional approach has entailed the utilization of labor-intensive
polysomnography (PSG) which incorporates the measure-
ment of electroencephalography (EEG), electrooculography
(EOG), and electromyography (EMG) etc. The utilization of
machine learning and deep learning holds significant poten-
tial in the automation of sleep-stage classification, whereby
EEG is frequently employed as a prevalent modality. Never-
theless, the process of EEG acquisition has the potential to
disturb normal sleep patterns. Therefore, the identification of
less invasive yet precise methods is crucial for enhancing the
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classification of sleep stages. So, the decision has been made
to focus our efforts on EOG signals as a viable alternative.

EOG recordings are utilized to measure eye activity,
which serves as an indicator for differentiating between
non-rapid eye movement (NREM) and rapid eye movement
(REM) sleep stages. EOG signals possess notable advantages
owing to their capacity for little sleep disruption and compar-
atively uncomplicated electrode positioning. Furthermore, it
has been observed that EOG signals often display contam-
ination originating from EEG signals, implying a potential
association between these two types of signals [2, 3].

Only a limited number of studies have delved into the
realm of EOG-based sleep stage classification, with [4] fo-
cusing exclusively on single-channel EOG data. On the other
hand, previous research [5, 6, 7, 8, 9] has mostly focused on
the analysis of EEG signals. The objective of our research
is to develop a model that performs well in classifying sleep
stages using single-channel EOG alone. The utility of EOG
extends beyond the classification of sleep stages, as it shows
potential for detecting REM sleep. This is a crucial aspect in
the diagnosis of disorders such as REM Sleep Behaviour Dis-
order (RBD) [10, 11], Narcolepsy [12], Nightmares, Night
Terrors, and Sleep-Related Eating Disorder (SRED), as well
as other parasomnias. Moreover, such proof-of-concept can
pave the way for future wearable solutions for sleep quality
assessment.
Our contributions can be summarized as follows:

• We introduce an advanced context-aware architecture1

that leverages attention [13, 14], designed to enhance
the classification of sleep stages using single-channel
EOG signals, and tested on multiple publicly available
datasets [15, 16]. The proposed model consistently out-
performs the existing ones.

• Our model demonstrates significant performance in the
identification of the REM stage, crucial for assessing
sleep disorders. Transparency is improved through the
utilization of 1D version of GradCAM [17] and t-SNE
plots, which effectively highlight the mechanisms em-
ployed by our method in classifying REM stages.

1https://github.com/suvadeepmaiti/SSC-EOG
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Fig. 1: Proposed Model Architecture Fig. 2: SE-Block

2. METHODOLOGY

2.1. Contextual Input

Previous research classified sleep stages using a 30-second
period of EEG signal (considered as 1 epoch). According
to standard practices, sleep stage classification relies on the
present epoch as well as the surrounding ones too. In the
proposed method that uses EOG alone, we create contextual
input from the present and nearby epochs as well. So we used
contiguous EOG epochs which we designate as a window.

2.2. SE-Resnet

The proposed architecture is shown in Fig-1, comprising SE-
Resnet that incorporates a Squeeze-and-Excitation (SE) block
(in Fig-2) in each residual block. The SE block enhances
the network’s capability by dynamically recalibrating feature
maps. Each residual block normally has two or three convolu-
tional layers, followed by a SE block and shortcut connection.
This block handles two crucial operations: “squeeze” and
“excitation.” The “squeeze” stage gathers global data from all
channels to create a channel descriptor vector. The vector is
used to selectively reweight channels during the ”excitation”
process. This approach prioritizes essential channels and sup-
presses less important ones, enhancing the network’s feature
representation.

The reason for doing feature extraction is the existence
of unwanted noise or extraneous components within the raw
EOG data, which may hinder the accurate classification pro-
cess. In sleep stage classification, feature extraction is crucial
for accurate predictions, features extracted from unprocessed
EOG data attempts to simplify and condense significant infor-
mation. This phase includes carefully selecting characteris-
tics that accurately portray sleep stage-specific patterns while
minimizing noise.

2.3. Transformer

The Transformer is a neural network model architecture that
has had a significant impact on the field of natural language
processing. The underlying principle of transformer is rooted

in a mechanism referred to as ”self-attention,” which is rec-
ognized for its ability to parallelize computations and effec-
tively process sequential input. Transformers have gained sig-
nificant prominence in various applications such as machine
translation, text synthesis, and other related activities. They
typically comprise an encoder-decoder architecture, or a stan-
dalone encoder for specific purposes such as text classifica-
tion. In our approach, we are using just the encoder part of
the transformer.

EOG signals possess an inherent sequential nature and
display intricate temporal interdependencies. Transformers
demonstrate exceptional proficiency in modeling sequential
data due to their utilization of self-attention mechanisms,
which effectively record intricate correlations among distinct
time steps within the data. This skill is essential for distin-
guishing patterns in EOG signals that correlate to particular
sleep stages.

2.4. Classifier

The architectural design of the model concludes in a linear
layer that receives input from the transformer module. This
final layer has softmax activation that gives probability distri-
bution over the number of classes.

3. EXPERIMENTS

3.1. Data and Preprocessing

In our study, we evaluated our model using raw EOG data ob-
tained from three publicly available datasets: SleepEDF-20,
SleepEDF-78, and SHHS (Sleep Heart Health Study). These
datasets are widely recognized in the field of sleep research
and provide valuable resources for understanding sleep pat-
terns and stages. The SleepEDF-20 dataset consists of 39
PSG records from 20 healthy individuals aged 25-34. Man-
ual sleep stage classification based on the Rechtschaffen and
Kales (R&K) standard criteria is available, allowing us to as-
sess sleep stages such as Wake (W), N1, N2, N3 (combin-
ing N3 and N4), REM, and others. We excluded the Move-
ment (M) and UNKNOWN categories for our analysis. The
SleepEDF-78 dataset is an expanded version of SleepEDF-20,
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Table 1: Classification performance of our model on the SleepEDF-20, SleepEDF-78 and SHHS datasets with single channel
raw-EOG input

Dataset Overall Metrics Per class F1-score
ACC MF1 k W N1 N2 N3 REM

SleepEDF-20 79.26 74.72 0.72 81.57 45.98 86.36 81.57 78.13
SlepEDF-78 73.56 70.63 0.68 82.80 31.81 81.49 79.75 77.29

SHHS 79.04 69.26 0.71 83.44 24.1 82.81 74.95 80.97

Fig. 3: Normalized Confusion matrices of Fold-0 on SleepEDF-20, SleepEDF-78 and SHHS dataset

offering PSG recordings from 78 participants. SHHS dataset
comprises 6,441 subjects, each with a single full-night PSG
recording. Sleep scoring was performed using AASM crite-
ria, with N3 and N4 stages merged into N3. We selected 329
participants with regular sleep patterns for our analysis.

3.2. Experimental setup

We utilized the Adam optimizer with a fixed learning rate of
0.001 during the optimization process. This adaptive algo-
rithm combines momentum and squared gradients to update
model parameters effectively. To improve sleep data classi-
fication and optimize performance during training, we em-
ployed the negative log-likelihood loss. To make efficient
use of computational resources, we chose a batch size of 128.
For a fair comparison, we conducted 20-fold cross-validation
for SleepEDF-20, 10-fold for SleepEDF-78, and 5-fold for
the SHHS dataset, ensuring robust evaluation across diverse
datasets.

3.3. Experimental results

In Table 1, we have provided an overview of our model’s
classification performance across three different datasets. In
Fig.3, we present normalized confusion matrices for the pro-
posed model, specifically using a window size of 9 and a
stride of 1, applied to the EOG channel data from SleepEDF-
20, SleepEDF-78, and the SHHS dataset. Our evaluation pri-
marily focuses on Macro-averaged F1 scores (MF1), Accu-
racy (ACC), Cohen’s kappa score κ, and F1 scores for indi-
vidual sleep stages, including W, N1, N2, N3, and REM. The

F1 score is a widely accepted metric for assessing model per-
formance in the context of imbalanced datasets, as it has been
commonly used in prior research on sleep staging. Each col-
umn within the confusion matrices represents the predicted
sleep stages, while each row corresponds to the sleep stage
annotations provided by expert human annotators. The darker
shades along the diagonal of these matrices indicate better
classification performance for the respective sleep stage cat-
egories. Based on the information presented in Table 1, it
becomes evident that the metrics associated with the N1 sleep
stage exhibit lower values compared to the other four stages,
namely W, N2, N3, and REM phases. This difference in per-
formance may be attributed to the relatively limited represen-
tation of the N1 stage within our dataset when compared to
the other sleep stages.

Table 2 presents a summary of the comparison results
obtained from the SleepEDF-20 dataset. It is evident that
models trained using EEG data consistently outperform those
trained using EOG data, aligning with previous studies. This
underscores the significance of EEG components in accu-
rately identifying sleep stages. Our proposed method outper-
formed all other EOG-trained models, achieving the highest
ACC (79.26%), F1 score (74.72), and k (0.72) for single-
channel EOG. For single-channel EEG, it yielded impressive
results with an ACC of 82.42%, an F1-score of 76.54, and a
k of 0.75. The model’s performance on EOG channel is on
par with models trained using EEG. This suggests that EOG
has the potential to be a valuable modality for sleep staging.
The achieved accuracy of 79.26% meets the requirements
for various applications, including community health care,
home-based sleep monitoring, and even clinical settings.
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Table 2: Result comparison with different methods on
SleepEDF-20 dataset. Our model’s performance on the EOG
signal is shown in bold.

Methods Input Overall results
ACC F1 κ

DeepSleepNet[5] EEG 82.0 76.9 0.76
EOG 73.5 68.2 0.66

EOGNet[4] EEG 79.6 73.2 0.71
EOG 76.3 69.3 0.67

Our method EEG 82.4 76.5 0.75
EOG 79.3 74.7 0.72

3.4. Ablation studies

Systematic ablation studies were conducted on the SleepEDF-
20 dataset using 20 different folds. The study involved a thor-
ough examination of how various components and features
affected our model’s performance. We experimented with dif-
ferent window widths and strides to optimize the model’s F1
score, discovering that a window size of 9 and a stride of 1
yielded the best results. This larger window size captured a
broader temporal context, potentially extracting more valu-
able information from EOG signals. The model was trained
with a window size of 9 and a stride of 4, and subsequently
evaluated using the same window size but with a stride of
1, effectively utilizing only 25% of the dataset for training.
This training strategy demonstrated comparable performance
to training with the entire dataset but exhibited a remarkable
eightfold improvement in training speed.

4. MODEL INTERPRETABILITY

4.1. t-SNE

In this study, we illustrated the complex features that were
extracted from the final convolutional layer of the SE-Resnet
feature extraction module using the t-Distributed Stochastic
Neighbour Embedding (t-SNE) technique. The t-SNE visu-
alization (in Fig 4) revealed a clustering pattern that corre-
sponded closely with the existence of five distinct classes.
This result demonstrates the model’s ability to extract essen-
tial features from raw EOG data. It is interesting that, apart
from the N1 class, all other classes demonstrated clearly de-
fined and distinct boundaries. A considerable level of overlap
was seen for N1 class with W, N2 and REM classes. The
implies that the model encounters difficulties in reliably dif-
ferentiating instances within the N1 category.

4.2. GradCAM

Fig 5, displays a one-dimensional GradCAM visualization
that represents a rapid eye movement (REM) sleep epoch.
The visualization employs a range of red hues to emphasize

Fig. 4: t-SNE plot of extracted features from the SE-Resnet’s
last convolutional layer.

Fig. 5: 1D-GradCAM visualization of raw EOG epochs and
boxes in blue indicating rapid eye movement during REM cy-
cle.

particular segments of the input signal that have a major influ-
ence on the model’s final categorization decision. The picture
also includes blue boxes that serve to identify the presence of
rapid eye movement artifacts, as identified by a sleep expert.
Our model exhibits notable effectiveness in accurately identi-
fying REM sleep in the raw EOG signal. This shows that the
model can prioritize the same segments of signal that experts
use to classify sleep epochs accurately. Further, visualizations
of various sleep stages reveal that our model pays attention to
artifacts such as eye blinks and transient eye closures that fa-
cilitate distinguishing REM vs non-REM sleep stages.

5. DISCUSSION

In summary, our study presents a novel SE-Resnet-Transformer
model that has been developed for the effective classification
of sleep stages using a single-channel EOG signal. It provides
a viable alternative to conventional EEG-based approaches.
Although our model frequently demonstrates superior perfor-
mance compared to existing approaches, it excels in recogniz-
ing the REM sleep stage. However, we recognize the neces-
sity for further enhancements in the detection of the N1 stage,
as its representation in our datasets is quite restricted. In the
future, our objective is to modify the model to facilitate signal
gathering using wearable devices that are convenient, such
as eye masks and spectacles. This adaptation will enhance
the applicability of the model in long-term sleep monitoring
scenarios. Furthermore, our research aims to investigate the
incorporation of cardiorespiratory and movement signals with
EOG signals, capitalizing on their potential for improving the
precision and practicality of our approach in the classification
of sleep stages.
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