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ABSTRACT

Unsupervised pre-training has emerged as a transformative
paradigm, displaying remarkable advancements in various
domains. However, the susceptibility to domain shift, where
pre-training data distribution differs from fine-tuning, poses
a significant obstacle. To address this, we augment the Swin
Transformer to learn from different medical imaging modali-
ties, enhancing downstream performance. Our model, dubbed
SwinFUSE (Swin Multi-Modal Fusion for UnSupervised En-
hancement), offers three key advantages: (i) it learns from
both Computed Tomography (CT) and Magnetic Resonance
Images (MRI) during pre-training, resulting in complemen-
tary feature representations; (ii) a domain-invariance mod-
ule (DIM) that effectively highlights salient input regions,
enhancing adaptability; (iii) exhibits remarkable general-
izability, surpassing the confines of tasks it was initially
pre-trained on. Our experiments on two publicly available
3D segmentation datasets show a modest 1-2% performance
trade-off compared to single-modality models, yet significant
out-performance of up to 27% on out-of-distribution modal-
ity. This substantial improvement underscores our proposed
approach’s practical relevance and real-world applicability.
Code is available at: https://github.com/devalab/SwinFUSE

Index Terms— self-supervision, multi-modal, domain
adaptation, 3D image segmentation

1. INTRODUCTION

Supervised deep learning excels at medical image segmenta-
tion using lots of labeled data [1} 2, 13]. The shortage of pro-
fessional radiologists and their limited time and annotation
efficiency makes it difficult to get huge medical picture col-
lections with exact annotations. Thus, routine clinical usage
of supervised-learning-based segmentation techniques is lim-
ited. Recent research has focused on self-supervised learning
(SSL), which uses many unlabeled images to learn the gen-
eral aspects of medical images. Fully supervised model fine-
tuning uses a minimal quantity of labeled data [4]. Effective
self-supervised medical image segmentation depends on pre-
training quality.
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Fig. 1. Visual interpretation of SwinFUSE’s attention weights
(darker shades indicate higher relevance) for a BraTS21 MRI
and the model’s segmentation output.

Contrastive learning is a self-supervised pre-training
method that minimizes the latent space distance of pairs
of similar images (typically produced from the same original
image using different data augmentation processes) and max-
imizes the distance of pairs of dissimilar ones [3]]. Contrastive
learning methods address domain shift, enhancing model ap-
plicability in downstream segmentation networks through
consistent data augmentation strategies ensuring similar in-
put distributions. Existing self-supervised learning has two
limitations [6]].

* Domain Shift: Upstream pre-training uses modified im-
ages, affecting downstream segmentation network input
distributions. General features from pre-trained models
may not apply to segmentation networks.

e Multi-modality: Current techniques often rely on single-
modal data, missing the benefits of multiple modalities.
Multi-modal images offer diverse perspectives and aug-
ment network segmentation information.

Vision Transformers (ViTs) transformed medical image
analysis and computer vision. Transformers thrive in pre-
text tasks, large-scale training, and layer-based global and
local knowledge learning. ViTs simulate long-range global
information using self-attention blocks and encode visual
representations from patches, unlike Convolutional Neural
Networks (CNNs) with small receptive fields. A hierarchi-
cal ViT with Shifted Windows (Swin) for local self-attention
computing with non-overlapping windows was developed
by Liu et al. [7]. Linear architecture has been found to
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Fig. 2. Outline of our proposed pre-training pipeline. Sub-volumes are randomly created from input images and augmented with
random inner cutouts and rotations (z;, z;). Each augmentation passes through the patch partition layer to generate embeddings,
which are fed to the DIM. The output from the DIM is extracted as kernel densities and forwarded to the Swin Transformer.

be more efficient than ViT’s quadratic self-attention layers.
Swin UNETR [8] merges feature maps at various sizes using
transformer-encoded spatial representations in convolution-
based decoders and achieves state-of-the-art (SOTA) per-
formance in BTCV multi-organ segmentation and Medical
Segmentation Decathlon (MSD) challenges [9]. The training
paradigm uses proxy activities to learn human anatomical
patterns. We extend this intuition to allow complementary
feature learning from multiple imaging modalities.

This paper presents SwinFUSE, a modality-invariant self-
supervised pre-training approach for medical image analysis.
We utilize Swin UNETR’s contrastive learning, masked vol-
ume pinpointing, and 3D rotation prediction as proxy tasks
for pre-training. Additionally, we introduce a DIM for con-
current feature learning from CT and MRI data. The DIM
implicitly identifies relevant input areas and directs them to
the Swin Transformer encoder using attention maps (Fig. [I).
We train the network on the SynthRad dataset [10] and retain
the DIM and encoder for later fine-tuning. Our 3D image seg-
mentation experiments involve the BraTS21 [[11] and MSD
datasets. We fine-tune the entire network to demonstrate gen-
eralization across domains, validating its efficacy for each
task, including organ segmentation in the MSD dataset.

2. METHOD

2.1. Datasets

SynthRAD comprises registered brain and pelvis CT im-
ages with cone-beam CT and MRI images, serving the pur-
pose of synthetic CT generation for radiotherapy planning

[LO]. We focus on a subset of 180 patients, utilizing T1-
weighted gradient-echo MRIs, with some using contrast.

BraTS21 consists of multi-modal MRI scans of glioma,
with a total of 1254 patients [11]. The sequences acquired
include T1, T2, TICE, and FLAIR. Segmentation classes in-
clude peritumoral edematous/invaded tissue, tumor core, and
necrotic tumor core.

MSD contains 2,633 3D images collected from various
anatomical regions, modalities, and medical image sources
for segmentation purposes [9]. It covers data on body organs
or parts like the Brain, Heart, Liver, Lung, Pancreas, Prostate,
Hepatic Vessel, Hippocampus, Spleen, and Colon.

2.2. Pre-training

We augment the Swin UNETR architecture using a novel
Domain Invariance Module, trained to learn which features
to highlight, conditioned on the input type. The training
dataset consists of CTs and MRIs; volumes are sampled
randomly. During each iteration, 3D patches measuring
x, € RI6%96X96 yoxels undergo augmentation with random
inner cutout and rotation. These patches are then projected
into a C-dimensional space (C' = 48) using an embedding
layer leading to the DIM as shown in Fig. ] The two em-
beddings from respective augmentation are each fed into
a 4-layer deep Multi-Head Attention Block (MHA) with
3,6,12,24 heads respectively like Co-Attention [12]. The
@, K,V embedding dimensions increase by an exponent of
2 with the base layer having dimensions = € R*®. The query
vector from the first embedding is fed as query input to the



second MHA block and vice versa. Each block in the DIM
is initialized with an embedding dimension of 2304. The
attention weights are scaled with the original embeddings,
and the resulting average embedding is sent as input to the
Swin Transformer Encoder. The DIM is constructed as given
below, where P denotes the patch partitions being fed into
each MHA block ().

DIM : Py -V1(Q2, K1, V1) 4+ Py - W (Q1, K2, V2) (1)

We train the model on the SynthRad dataset using the
AdamW optimizer and a warm-up cosine scheduler with 500
iterations on two RTX 3090’s. We set the initial learning rate
for the pre-training experiments to 4e~* and a decay of le™.
We implement our model using PyTorch and MONAI

2.3. Loss Function

We aim to minimize the loss of Swin UNETR’s encoder
using multiple pre-training objectives, including masked vol-
ume inpainting, 3D image rotation, and contrastive coding.
Additionally, we maximize an extra loss term that, akin to
the approach in [13], employs non-parametric density esti-
mation through kernel density estimation (KDE) and den-
sity matching via Jenson-Shannon divergence (JSD). This
density-matching loss is a regularizer, ensuring that the
feature distribution overlap between the source and target
datasets is minimized. The KDE, denoted as pest(X), is
formulated as follows:

N
1 [X — Xall2
est(X) = — K|——— 2
pes(X) = 7 2 ( ~ @
where X7, X9, X3, -+, Xy is the number of sampled

points from the encoded feature space, the output from the
MHA block in our model, and K is a Gaussian kernel. The
bandwidth parameter (o) is estimated to be the mean of the
distance between the nearest neighbors in the feature space.
Our loss term for density matching, Ljsp, given density of
each MHA block outputs as p; and po, is given as follows:

1
JSDp, p, = §{KL[p1,M}+KL[p27M}} 3)

where KL is the KL divergence between the two distri-
butions and M is the average of both density estimates. The
final loss:

‘Ctotal = ['inpaint + Econlrasl + »Crot - ‘CJSD (4)

2.4. Fine-tuning

In the downstream task, such as 3D image segmentation, we
fine-tune the complete Swin UNETR model by removing the
projection heads while retaining the DIM. During training,
sub-volumes are randomly cropped from the volumetric data.

Uhttps://monai.io/
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Fig. 3. Qualitative visualizations of Swin UNETR and our
proposed method. Colored regions correspond to necrotic tu-
mor core (red), peritumoral edematous tissue (pink), and en-
hancing tumor (blue). Dice scores are also given.

Then, stochastic data augmentations, including random rota-
tion and cutout, are applied twice to each sub-volume within a
mini-batch, resulting in two different views of each data. All
other augmentation parameters align with those used in Swin
UNETR.

For SwinFUSE, we utilize pre-trained weights for both
the CT and MRI tasks, following the official methods out-
lined in nnUnet [14] and Swin UNETR [8]]. To ensure robust-
ness, we employ a five-fold cross-validation strategy to train
models for BraTS21 and MSD experiments. In each fold, we
select the best model and ensemble their outputs to generate
the final segmentation predictions.

3. RESULTS

Quantitative Average dice scores across five folds for each
task in MSD are detailed in Table. [I] for nnUnet, Swin UN-
ETR, and our model (with and without pre-trained weights).
The proposed method outperforms the current SOTA while
segmenting the Brain, Heart, Liver, and Hepatic Vessels but,
on average, is 1-2% worse than Swin UNETR. This might be
because we reuse the same pre-trained weights to fine-tune



Table 1. Average Dice Score across five folds on MSD for two variants of SwinFUSE: with and without pre-training denoted

by the presence and absence of (P) respectively.

Organ Brain Heart Hippocampus Liver Lung Pancreas Prostate Colon I_ifei ztellc Spleen
nnUNET [[14] 64.50 94.82 89.76 86.67 72.78 68.31 84.14 5943  70.14 96.34
Swin UNETR [8] 66.31 94.32 88.39 8742  76.40 72.91 81.51 60.35  70.75 95.79
SwinFUSE 65.17 94.67 86.76 88.31 74.39 70.95 80.63 60.42  69.78 94.54
SwinFUSE (P) 66.34 94.91 87.91 8943 7535 69.25 81.62 5931 71.61 96.24

Table 2. Performance on MRI tasks after pre-training on
CT organ regions. Dice scores of Swin UNETR (1) and our
model (2) are reported in the format 1/2 in each cell

Fine- Tested on
tuned ' Hippo-
on Brain Heart Prostate

campus
Liver 0.22/0.47 0.31/0.52 0.19/0.32 0.18/0.33
Pancreas 0.21/0.29 0.27/0.34 0.20/0.40 0.16/0.26
Lung 0.15/0.32 0.30/0.46 0.22/0.34 0.23/0.30
Spleen 0.25/0.32 0.21/0.39 0.26/0.44 0.25/0.48
Colon 0.19/0.39 0.24/0.53 0.29/0.49 0.27/0.38
Hepatic 171035 0220047 029043 0.250.41
Vessel

SwinFUSE for both CT and MRI tasks, differing from Swin
UNETR, which uses pre-trained weights for only CT tasks.

Qualitative We visualize images from the MSD (heart, hip-
pocampus, prostate, brain) and BraTS21 datasets in Fig.
Segmentation outputs from SwinFUSE are more concise and
perform well in the global context. Moderate improvements
are seen for smaller organs like the hippocampus (second
row). In contrast, for organs like the brain (last row), we
notice that the attention mechanism helps locate the uncon-
nected region in the right hemisphere, which Swim UNETR
completely fails to detect. In Fig. [T we generate the learned
attention weights from which we can see that the DIM learns
similarities between CTs and MRIs and uses those to anchor
itself. It further uses differentiating aspects between the both
to effectively highlight regions before sending the input to the
Swin transformer.

Out-of-distribution When we fine-tune SwinFUSE and
Swin UNETR on CT organ regions in MSD like Liver, Lung,
and Pancreas, and later test on MRI regions, we notice a
significant drop in performance for the latter. For example,
when fine-tuned on the Liver and tested on the Brain, Swin
UNETR’s average dice score is 0.22, whereas SwinFUSE’s
is 0.47. In another instance, fine-tuning on the Pancreas and
testing on the Prostate resulted in Swin UNETR achieving
a score of 0.16 compared to 0.26 for ours. Multiple other
experiments like these are shown in Table. 2] where we show-

case a minimum improvement of 7% and a maximum of
27% in dice scores. In conclusion, due to the pre-training of
our model on a varied collection of human body composi-
tions and its ability to acquire a versatile representation from
data obtained from various institutions, we assert that our
model is more suitable for clinical applications than existing
single-modality models.

4. DISCUSSION AND CONCLUSION

In our research, we have shown noteworthy improvements
in the field of medical imaging by using unsupervised pre-
training. However, we acknowledge a challenge known as do-
main shift, where the data used for pre-training differs from
the data used for fine-tuning. To address this, we extended
the Swin Transformer framework to pre-train SwinFUSE on
two distinct medical imaging modalities, CT and MRI. This
extension offers three key advantages:

* Complementary Feature Representations: By training on
both CT and MRI data, SwinFUSE learns diverse feature
representations, making it more adaptable and robust.

* Domain-Invariance Module: Our DIM helps SwinFUSE
adapt to domain shifts by emphasizing important regions.

* Remarkable Generalizability: SwinFUSE can perform
well on tasks it wasn’t initially trained for, making it
highly relevant in real-world applications.

Our experiments show that our approach performs slightly
worse than single-modality models on in-distribution tasks
but significantly outperforms them on out-of-distribution
modalities, highlighting its practical applicability. Quan-
titatively, our method surpassed state-of-the-art models in
segmenting the Brain, Heart, Liver, and Hepatic Vessels in
the MSD dataset. We emphasize that our diverse pre-training
data and versatile representations make SwinFUSE more
suitable for clinical use than single-modality models.

We’ve demonstrated the advantages of pre-training Swin-
FUSE using our domain-invariance module and its superior
performance on various tasks. We’ve also highlighted the
potential for future research in addressing domain gaps and
applying our framework to other medical imaging modalities
like PET and X-rays. This work represents a significant ad-
vancement in the efficiency and accuracy of medical image
analysis, with promising prospects for future research.
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