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Abstract—With Cardiovascular Diseases on the rise around
the world, Electrocardiograms (ECGs) play a crucial role in
their diagnosis owing to their non-invasive nature and simplicity.
Medical professionals typically use 12-lead ECGs for medical
analysis but gathering 12-lead ECG data is an arduous task
outside clinical setting. Modern wearables can collect an ECG
with fewer leads than the standard 12 leads. However, medical
professionals and conventional ECG analysis software find this
reduced lead set data challenging to interpret. By using the
reduced lead set data to create standard 12-lead ECG data,
ECG reconstruction can solve this issue. This paper proposes
a novel single-lead to multi-lead ECG reconstruction solution
using a modified Attention U-net framework. Using only the
lead II of ECG, our model is able to reproduce the other 11
leads of conventional 12-lead ECG with a Pearson correlation,
Mean square error and R-squared value of 0.805, 0.0122 and
0.639, respectively. Further, a single combined model is used to
reconstruct all 11 leads simultaneously, improving performance
and simultaneously reducing the computational resources needed
for training compared to current literature in the field. In
comparison to previous works, which only reconstruct small ECG
segments, our model is trained to reconstruct longer 10-second
ECG signals. We demonstrate our model’s ability for real-life
utilisation using a cardiovascular disease classification task. A
deep learning model was trained for multi-disease classification
on actual 12-lead ECG data and was tested on both original and
reconstructed 12-lead ECG signals. The classification accuracies
for the original and reconstructed signals were comparable,
portraying that our reconstruction model can preserve diagnos-
tically relevant artefacts in its reconstructed signals. This work
provides a new promising solution in the field of single-lead ECG
reconstruction, taking us a step closer to bridging the divide
between reduced lead set data and existing 12-lead ECG end
users like clinicians and automatic ECG classifiers.

I. INTRODUCTION

An Electrocardiogram (ECG) is a non-invasive medical
procedure used for heart activity monitoring. This proce-
dure is widely used owing to its speed and effectiveness
in detecting heart-related problems [1], [2]. An ECG can
record the electrical activity generated by the heart by using
electrodes placed on the patient’s skin in various locations,
giving us information about the heart rhythm and health. These
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electrodes are conductive and are able to record the voltage
present on the skin, which is then processed before being
presented to the clinician for further diagnosis.

ECGs have multiple variations depending on the number of
leads used, but the 12-lead ECG is by far the most commonly
used in health centres worldwide [3]. Even though it is called
a 12-lead ECG, it only involves ten electrodes comprising
four limb electrodes (placed on all four limbs of the patient)
and six pre-cordial electrodes. An apparent problem with this
type of ECG is the precision needed in placing the electrodes
at suitable locations [4]. As clinicians are dependent on the
collected signals to make a diagnosis, a small error in their
placement can result in the production of unwanted artefacts in
the signals, leading to a possibility of an erroneous diagnosis.
Knight et al. [5] showed that 38% of 500 electrophysiologists
who participated in their study misdiagnosed an artefact as
ventricular tachycardia. Even though other variations of ECGs
that need lesser leads do exist, they are relatively inaccurate
compared to the 12-lead variant. This becomes a major hassle
for patients who need continuous monitoring, where they are
forced to sacrifice the accuracy of a 12-lead ECG for the
portability and ease of use of lesser lead variants.

Although the 12-lead ECG only requires 10 electrodes, the
12 leads in the name stands for the processed signals obtained
from these electrodes. The 12 generated leads can be divided
into frontal plane limb leads (I, II, III, aVF, aVL and aVR)
and chest leads (V1, V2, V3, V4, V5 and V6). The lead I
is calculated by computing the electrical differences between
the left and right arm electrodes. The lead II is calculated by
computing the electrical difference between the left leg and
right arm electrodes. The lead III is calculated by computing
the electrical differences between the left leg and left arm
electrodes. The remaining three frontal plane limbs are called
the augmented vector (aV) leads, where the F, L and R in
their names represent the Foot, Left arm and Right Arm,
respectively. These leads are mathematically derived from
the first three limb leads. Using Kirchoff’s law on electrical
current, which states the sum of all currents in a closed circuit
is zero [6], we can mathematically generate all frontal plane



limb leads using any two of the frontal plane limb lead values.
The chest leads are not interrelated like the frontal plane
limb leads and hence have to be recorded individually using
separate electrodes (V1 to V6). The electrode on the right leg
is not used to generate any lead; instead, it is used as ground
to prevent artefacts in the other leads. [7]

Due to various intricacies involved, the usage of the 12-lead
ECG is restricted in pre-hospital, ambulatory and home-care
settings. With cardiac-related issues becoming more prominent
around the world [8], accurate but easy-to-use ECG devices
are needed more than ever. Even though devices like the Holter
monitor [9] exist, which measure the standard 12-lead ECG,
their utility is limited by the movement constraints they put
on their user. With recent technological advances, we have
witnessed much growth in the wearable technology field, from
smartwatches used by the masses to more sophisticated straps
used by athletes. The major drawback with such devices is
that they almost always only collect a subset of the twelve
leads. Even though this information is helpful, a clinician is
usually trained to interpret a 12-lead ECG, thus handicapping
the utility of such devices. ECG reconstruction can help bridge
this gap by converting reduced lead set ECG to standard,
more interpretable 12-lead ECG. It is important to note that
ECG reconstruction does not add new information to reduced
lead set data. Instead, it just converts all the information
captured in the reduced lead data into a 12-lead version. As
the human heart-torso electrical system is theoretically linear
and quasi-stationary, the initial reconstruction efforts using
Machine Learning (ML) techniques were limited to the use
of Linear Regressors [10], [11]. However, as computational
capabilities have improved in recent times, researchers found
eminent success in synthesising more accurate signals using
neural networks.

Several studies [12]–[15] have achieved good reconstruction
results from a reduced lead set. Kapfo et al. [14] presented
a patient-specific approach for reconstructing the standard
12-lead ECG. They also use a discrete wavelet transform
(DWT) combined with Long Short-Term Memory (LSTM)
to predict the standard 12 leads using just three input leads.
They achieved an average correlation constant of 0.98, and
a root mean squared error of 78. Jangjay et al. [15] were
able to achieve an average correlation coefficient of 0.95 for
their reconstructed signals using LSTMs. However, all the
mentioned studies were dependent on three different leads (two
frontal limb leads and one pre-cordial lead). This hinders their
practical use, as they would still require multiple electrodes
to be placed on the chest and multiple limbs to collect
the required information. To fast-track the adoption of such
reconstruction techniques by the wearable device industry, we
need to reduce the amount of data they need to collect.

Gundlapalle et al. [16] proposed a novel single-lead to 12-
lead ECG reconstruction method using convolutional neural
networks (CNNs), long short-term memory units (LSTMs) and
multi-layer perceptrons (MLPs). Using only lead II as input,
they generate all other 11 leads. They were able to achieve
an average correlation coefficient of 0.973 and a regression

coefficient of 0.959. Yoon et al. [17] presented a generative
adversarial network (GAN) for generating all 12 leads of an
ECG using a single lead (lead I). As part of their GAN, a
U-net is used as their generator and a patch discriminator as
their discriminator. They were able to reconstruct signals with
a mean frechet distance (FD) score of 11.321 and a mean
square error (MSE) of 0.038.

To the best of our knowledge, these were the only studies
performing ECG lead reconstruction using a single lead. Both
these works suffer from some critical drawbacks. Both works
segment their signals to shorter lengths (1 second and 2.5
seconds) while generating the other leads for relatively easier
reconstruction. However, as traditionally, ECG is recorded for
10 seconds [18], to use the proposed approaches in real life,
one would need to develop algorithms to connect the recon-
structed segments together, which might reduce the effective-
ness of the overall reconstruction. Both works use a complex
set of deep-learning algorithms. Yoon et al. [17] used a GAN,
which is hampered by unstable learning and takes a very long
time to train [19]. Gunlapelle et al. used a combination of
CNNs, LSTMs and MLPs, making the overall pipeline very
complex. Gunlapelle et al. also segmented the ECG signals
into 1-second segments, which were then randomly divided
into train and test sets. This could have caused 1-second ECG
segments belonging to the same ECG signal to be present in
the train and the test set. This leakage of data might have
inflated the reported results. Although both studies produced
good signal reconstruction, they did not establish whether the
reconstructed signals can be used in real-life applications.

In this study, we present a novel Modified Attention U-Net
based framework for Single-Lead to Multi-Lead Electrocar-
diogram Reconstruction. We used the lead II to reconstruct
the remaining 11 leads with a mean Pearson Correlation
coefficient of 0.805. Since only lead II is used as an input, the
desired data can easily be calculated using just two electrodes
placed on the left leg and right arm. We improve on the
drawbacks of previous works and also demonstrate that the
reconstructed ECG signal can be used by a classification
model trained on a standard 12-lead ECG data to detect
cardiovascular diseases efficiently. Our contributions are:

• Instead of using shorter ECG segments for reconstruction,
we reconstruct the complete 10-second ECG signal at
once.

• We propose a model architecture which only employs
convolutions, making them easily malleable to work with
any size input segments while training is faster.

• We propose a modified variant of Attention U-Net per-
forming better than the standard U-Net and Attention U-
Net.

• Unlike the past studies, which use a separate model for
each lead reconstruction leading to a total of 11 models,
we use a single model for all 11 lead reconstructions. By
using a single model, not only were we able to reduce
the number of trainable parameters but also were able to
improve upon the performance.

• We test our reconstructed signals on an existing 12-



lead disease classification model to accurately measure
how well our method can preserve anomalies in the
input signal that the classification model uses for disease
detection.

II. METHODS

A. Dataset and preprocessing

For the study, we used the large publicly available PTBXL
dataset [20]. The dataset has 21837, 10-second length, 12-lead
ECG data from 18885 patients collected over a period of seven
years. The ECG signals are provided with sampling rates of
100Hz and 500Hz. For this study, we employed ECG signals
sampled at 500Hz. The dataset includes a large portion of
healthy records as well as a wide range of diagnostic classes
like myocardial infarction, hypertrophy, etc. As part of the data
preprocessing, we first used a Butterworth [21], [22] highpass
filter set at 0.5Hz to remove the low-frequency noise and
artefacts. This was followed by a Butterworth lowpass filter set
at 200Hz to remove the high-frequency noise. Finally, all the
ECG signals were smoothed using Savitzky-Golay Filter [23].
The dataset was then divided into train and test sets using an
80%-20% train-test split. The train set comprised 17469 ECG
recordings, and the test set included 4368 ECG recordings.

B. Model Architecture

Fig. 1 represents the proposed Deep Learning architecture
we use for lead reconstruction. We propose a single model
which takes the lead II of the original ECG as input to
reconstruct the remaining 11 leads. Since both input and
output data are time series signals, we use 1D convolutions
to design the network. The input is a single channel 5000-
length signal representing a 10-second recording of the lead
II sampled at 500Hz. The output comprises 11 channels of
5000 in length, where each channel represents the different
leads of the reconstructed ECG signal.

The model architecture used in the study is a modified
version of the Attention U-Net proposed by Oktay et al.
[24]. A U-Net architecture first downscales the input and then
upscales the downscaled input back to generate the output.
The skip connections are employed to tackle any data loss.
In the proposed model architecture, we downscale the input
lead II signal thrice, which is then upscaled thrice to get the
reconstructed leads. Standard attention U-Net employs max-
pooling for downscaling the signals while upsampling layer
is used for upscaling. The convolution layer provides a kernel
with learnable parameters, which the max-pooling layer lacks;
hence we replace the max-pooling in the original attention
U-Net with a 1D convolution of kernel size 3 and stride 2.
Similarly, the upsampling layer is replaced by a 1D Transpose
Convolution [25] of kernel size 3 and stride 2. The standard
attention U-Net applies attention to the skip connection to get
the attention-gated skip connection. This attention-gated skip
connection is then used for concatenation with the upscaled
signal from the 1D Transpose Convolution. For the proposed
model, we concatenate the raw skip connection in addition to
the attention-gated skip connection with the upscaled signal.

C. Model Training and Testing

The proposed model is trained on the training set for 50
Epochs. The ADAM optimiser is used for optimisation [26]
and Mean Squared Error is used as the target loss function. The
Batch Size was set at 32 for training. The learning rate was
initially set at 0.0001, which was reduced on plateauing of the
loss using a scheduler. The trained model was then tested on
the hold-out test set, and different evaluation metrics were used
to evaluate the quality of signal reconstruction. The model was
trained and evaluated using NVIDIA GeForce GTX 3090Ti
with 24 GB memory. Pytorch version ‘1.12.1’ [27] was used
for the realisation of the model. Similar training and testing
regimes were followed for all the other models mentioned in
the Results and Experiments Section.

D. Evaluation Metrics

To evaluate the quality of ECG reconstruction, we used the
three metrics.

• The Pearson Correlation coefficient(ρ) represents the sim-
ilarity between the reconstructed and the original signal.
ρ ranges from -1 to 1, where 1 represents that the two
signals are exactly the same, while -1 represents that the
two signals are exactly opposite.

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(1)

• The Mean squared error (MSE) measures the average
error between the generated and the original signal. Thus
the lower the MSE, the better the signal reconstruction,
and an MSE of 0 will represent that the reconstructed
signal is exactly identical to the original signal.

MSE =
1

n

n∑
i=1

(xi − yi)
2 (2)

• The level of association between the original and gener-
ated signals has been assessed using R2 statistics. The R2

value of a perfectly reconstructed signal will be 1.

R2 = 1−
∑n

i=1(xi − yi)
2∑n

i=1(xi − x̄)2
(3)

Here xi is the ith data point of the original signal and yi
is the ith datapoint of the reconstructed signal. x̄ and ȳ
are the sample means of the original and reconstructed
signal respectively, and n is the number of data points in
the signal.

III. EXPERIMENTS AND RESULTS

A. Performance Analysis and Comparison

The proposed model was able to reconstruct the 11 leads
from lead II with a mean Pearson Correlation coefficient
(ρ) of 0.805, MSE of 0.0122, R2 of 0.639. We compare
the results of the proposed model with other models using



50
00

 X
 1

50
00

 X
 8

50
00

 X
 1

6

62
4 

X
20

48

62
4 

X
10

24

62
4 

X
51

2

24
99

 X
 3

2

24
99

 X
 6

4

24
99

 X
 1

28
12

49
 X

25
6

12
49

 X
51

2

12
49

 X
10

24

12
49

 X
51

2 

12
49

 X
10

24
 

Input

12
49

 X
25

6

12
49

 X
10

24

12
49

 X
10

24

24
99

 X
 2

56
 

24
99

 X
 1

28

24
99

 X
 1

28

Output

24
99

 X
 1

28
 

24
99

 X
 2

56
 

50
00

 X
 6

4

50
00

 X
 1

1

50
00

 X
 1

6

50
00

 X
 6

4

50
00

 X
 1

6

Attention Gate 

Wx: 1
x

Wg: 1g
ReLU Sigmoid

1D Convolution
(Kernel Size 3, Stride 2),  

ReLU, BatchNormalisation

1D Transpose Convolution
  (Kernel Size 3, Stride 2, 

Output Padding),  
ReLU, BatchNormalisation

a 
X 

b

For all the blocks : The first
dimension (a), represents

Signal Length and second
dimension (b), represents

Number of Channels.

Concatenation

Attention Gate 

Skip Connection 

Gating Signal 

1D Convolution  
(Kernel Size 3, Stride 1),  

ReLU

Fig. 1. Model Architecture of the proposed model

Table I. A standard U-Net with 3 downscaling and upscaling
layers similar to the proposed model gave a mean Pearson
Correlation Coefficient of 0.750. Given that 1D Convolutions
have learnable parameters, we replaced the Max-Pool layer in
the standard U-Net with a 1D Convolution with Kernel size
3 and stride 2. Similarly, the Upsampling layer was replaced
with a 1D Transpose Convolution of kernel size 3 and stride
2. We can refer to this model as a modified U-Net. This
modified U-Net improved upon the conventional U-Net with
a mean Pearson correlation coefficient score of 0.784. The
improvement of results validates the use of 1D Convolutions
and 1D Transpose Convolutions over max-pooling and up-
sampling. Attention can further help in better localization and
can help the model understand which part of the input needs
to be focused upon [28]. Thus adding attention to the skip
connection could help the network to localise to the area of
importance in the skip connection. An attention block inspired
by Oktay et al. [24] was added to the skip connection of
the modified U-Net where the max-pooling layer was already
changed with the 1D Convolution layer, and the upsampling
layer was changed with the 1D Transpose Convolution. We

can refer to this model as Modified U-Net with Attention.
This model further improved the results to a mean Pearson
Correlation coefficient of 0.790. Thus attention helped the
model better understand the lead reconstruction task. This
modified U-Net with attention just like the standard attention
U-Net used the attention to the skip connection. Then the
attention-gated skip connections are concatenated with the
upscaled signal coming from the 1D Transpose Convolution.
For the proposed model, we experimented by concatenating
the raw skip connection in addition to the attention-gated skip
connection with the upscaled signal. The proposed model gave
the best metrics with a mean Pearson Correlation coefficient
of 0.805. We also tested the GAN architecture similar to the
one proposed by Yoon et al. [17] but modified to work with
the 10-second length ECG signal. Although the GAN took
significantly longer to train, the results produced were not able
to beat the proposed model. We can inspect the quality of ECG
reconstruction for the frontal plane limb leads using Fig. 2, and
Fig. 3 can be used to examine the reconstruction of the chest
leads.
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Fig. 2. The original and the reconstructed signals for the frontal plane limb leads I, III, aVF, aVL and aVR using the proposed model.

TABLE I
PERFORMANCE ANALYSIS OF THE PROPOSED MODEL FOR LEAD II TO
12-LEAD RECONSTRUCTION TASK. ALL MODEL IMPROVEMENTS WERE

STATISTICALLY SIGNIFICANT WITH P-VALUES ≪ 0.05.

Model ρ MSE R2

U-Net 0.750 0.0159 0.528
Modified U-Net 0.784 0.0138 0.591

Modified U-Net with Attention 0.790 0.0132 0.610
Proposed Model 0.805 0.0122 0.639

B. Comparison between Single-to-Multi lead model & Single-
to-Single lead Model

Yoon et al. [17], and Gundlapalle et al. [16] both used 11
deep learning models, each responsible for converting the orig-
inal lead to a single lead. We compared the results between the
single-to-multi lead model, where a single model is responsible
for converting the lead II to the 11 other leads to that of single-
to-single lead models, where each model is responsible for
converting the lead II to one of the 11 other leads. We used
the same model architecture proposed in the Methods section
for the single-to-multi lead model. For the single-to-single lead

model, we changed the last layer of the proposed model so
that instead of outputting 11 channels; the model has a single-
channel output. Both the models were trained and tested using
the regime explained in the Methods section. Table II provides
the results for each lead conversion for the single-to-single
lead and single-to-multi lead models. We can observe that
the single-to-multi lead model performed better for the signal
reconstruction for all 11 leads compared to the single-to-single
lead models with respect to all three evaluation metrics. The
single-to-multi lead model might be performing better owing
to its ability to employ the backpropagating gradients from
all 11 leads and combine them to get a better latent space
representation of the lead II. The single-to-single lead model
only has information concerning a single lead it is trying to
reconstruct; thus, the latent space representation for the model
might be inferior to that of the single-to-multi lead model.

C. Cardiovascular Disease Classification

In our previous experiments, our concern has always been
how well the model performs for the chosen evaluation met-
rics. However, we realized that the main aim of performing
lead reconstruction should be making sure that the final gen-



Original Signal

V1

V2

V3

V4

V5

V6

Reconstructed Signal

V1

V2

V3

V4

V5

V6

Fig. 3. The original and the reconstructed signals for the chest leads V1, V2, V3, V4, V5, V6 using the proposed model.

TABLE II
PERFORMANCE COMPARISON OF THE SINGLE-TO-SINGLE LEAD MODELS

WITH THE SINGLE-TO-MULTI LEAD MODEL FOR LEAD II TO 12-LEAD ECG
RECONSTRUCTION TASK. FOR ALL THE LEADS EXCEPT AVR THE P-VALUE
WAS ≪0.05, SUGGESTING STATISTICAL SIGNIFICANCE OF THE RESULTS.

THE P-VALUE FOR AVR LEAD WAS 0.191.

2*Lead Single-to-Single lead Single-to-Multi lead
ρ MSE R2 ρ MSE R2

I 0.841 0.0053 0.610 0.847 0.0049 0.633
III 0.657 0.0055 0.611 0.663 0.0047 0.658

aVL 0.616 0.0052 0.491 0.659 0.0047 0.536
aVR 0.934 0.0015 0.850 0.935 0.0015 0.853
aVF 0.883 0.0015 0.855 0.892 0.0013 0.873
V1 0.811 0.0135 0.539 0.818 0.0113 0.611
V2 0.767 0.0349 0.507 0.778 0.0317 0.552
V3 0.722 0.0360 0.428 0.728 0.0333 0.470
V4 0.772 0.0234 0.473 0.785 0.0222 0.499
V5 0.857 0.0120 0.640 0.859 0.0120 0.641
V6 0.884 0.0076 0.678 0.888 0.0071 0.698

erated signals are usable in real-world scenarios by clinicians,
classification models, etc. That is, these generated signals
should be able to act as a replacement for standard 12-lead
ECG without any other intervention. From this perspective,
even though evaluation metrics can tell us how well the
signals as a whole have been reconstructed, they cannot tell
us if essential artefacts in the signals used by clinicians for
diagnosis and machine learning pipelines for classification
have been conserved. There are chances where the signal
has been reconstructed well, as all the rhythmic heartbeats
have been preserved. However, the signal might still lack
the artefacts needed by a clinician to diagnose the patient,
rendering such a reconstruction useless. All previous works in
the field have only focused on evaluating the signal quality
quantitatively, making it unclear if the generated signals from
these works can be used as 12-lead ECG replacements. We
employed this experiment to verify if our model can generate



signals conserving critical artefacts needed for diagnosis.
Ribeiro et al. [29] used an ensemble of neural networks with

a Residual Network based architecture for 12-lead ECG multi-
classification. They use a superset of the PTB-XL dataset,
containing six databases from four different countries (United
States, Russia, Germany and China) to build an end-to-end
pipeline capable of classifying 12-lead ECGs according to 27
different classes. Using this work as our baseline, we utilized a
single model from their ensemble as the classification model
for our experiment. This classification model is a combina-
tion of a one-dimensional Residual Network containing five
residual blocks and a final fully connected layer. The model
was trained on all default parameters set by the authors in
the original papers for 70 epochs. To ensure that our results
are robust, we trained this classification model on the same
training data used for training the ECG reconstruction model.
We also test the model on the same test data on which the
reconstruction models were evaluated. This ensures that no
signals used to train the reconstruction model are used to
assess the performance of the classification model. Thus, the
test set is completely blind for both the reconstruction and
classification models, mimicking a real-world use case. This
classification model is now trained on the training set of the
preprocessed PTB-XL data discussed in the Methods section,
and the trained model is used for further evaluation. We test
this trained model with two different approaches. First, the
model was evaluated on the test set, where all 12 leads were
the original leads provided in the dataset. The results can thus
be used as a baseline for the following approach. We will refer
to this approach as the Original Signals approach in the coming
parts of the paper. In the second approach, instead of testing
the classification model on the original signals, we tested it
on reconstructed signals. We trained the lead reconstruction
model on the training set to convert lead II to the 11 other
leads. This reconstruction model was then used to reconstruct
the 12-lead ECG from the lead II signals of the test set. This set
of original lead II and reconstructed 11 leads were then given
as input to the classification model. We must note that for
both approaches, the classification model was trained on the
training set where all 12 leads were the original signals, just
that the testing regimes were different. Thus, the classification
model was never trained on a reconstructed ECG signal. We
will refer to the second approach as the Reconstructed Signals
approach. We can observe the results of the two approaches
using Table III.

TABLE III
PERFORMANCE COMPARISON OF CARDIOVASCULAR DISEASE DETECTION

FOR THE ORIGINAL AND RECONSTRUCTED SIGNALS.

Model AUROC Accuracy
Original signals 0.810 0.456

Reconstructed Signals 0.752 0.426

We obtained an accuracy of 45.6% and an Area Under the
Receiver Operating Characteristic curve (AUC) of 0.810 for
the original signals approach, and we obtained an accuracy

of 42.6% and an AUC of 0.752 on the reconstructed data.
We need to notice that this being a multi-class classification
task with 27 classes, the chance accuracy would be close to
zero. The drop in performance for the reconstructed signals
approach was expected as the data of 11 leads has been elim-
inated entirely. However, the performance of the classification
model using the reconstructed signal approach is comparable
to the original signals approach. We can thus infer that our
reconstruction model is able to preserve the necessary artefacts
needed for classification from the original lead and reproduce
it in all the reconstructed leads. This experiment shows that
our reconstruction model is able to use data from a single lead
and present it in such a way that a classification model trained
to classify only based on 12-lead ECG is still able to work
comparably.

IV. DISCUSSIONS AND CONCLUSIONS

ECGs play a major role in cardiovascular diagnostic deci-
sions. With the rise in technology and increased awareness
of health metric tracking, we are witnessing significant in-
novations in the wearable device sector using ECG signals.
A considerable hurdle such device-makers face is that the
wearables collect a reduced lead set of the ECG. Existing solu-
tions in the automatic ECG classification space are built using
the standard 12-Lead ECG as inputs, thus rendering the ECG
unusable when only a subset of leads are collected. Likewise,
in medical settings too, clinicians trained to diagnose based on
a 12-lead ECG may find it challenging to interpret a reduced
lead set data. ECG reconstruction primarily tries to bridge this
gap between the influx of reduced lead set data from modern
wearable devices and the consumption of standardised 12-
Lead ECG data by clinicians and ECG analysis models. It
is important to note that ECG reconstruction cannot add new
information to reduced lead set data to create new 12-lead data.
Instead, it rather converts all the information captured in the
reduced lead data into a more interpretable 12-lead version.

In this work, we present a novel end-to-end Single-Lead
to Multi-Lead Electrocardiogram Reconstruction pipeline. We
use a modified attention-based U-Net model on the publicly
available PTB-XL dataset to develop a method capable of
using a single lead II to generate all other 11 leads of a
standard 12-Lead ECG. We achieved a Pearson Correlation,
Mean Square Error and R-squared value of 0.805, 0.0122 and
0.639, respectively. A significant drawback with the current
ECG reconstruction studies is that they use three leads to
reconstruct the 12-lead ECG signal. However, the current
work overcomes significant limitations of earlier studies. Both
previous studies divide the standard 10-second ECG signal
into smaller segments for reconstruction. Generally, ECGs
are recorded for 10 seconds; thus, one will be forced to use
various algorithms to join the reconstructed segments, leaving
their final performance questionable. Keeping this in mind,
we developed our method to take a complete 10 seconds
signal from lead II as input and reconstruct them into a 12-
lead ECG of 10 seconds. Compared to past studies, we also
use a relatively simple model comprising only convolutional



layers making the whole network much easier to train; also,
the same network can be employed to process other lengths of
ECGs as input. Instead of using multiple models for generating
all leads separately like in previous works, we use a single
combined model to generate all 11 leads together, reducing
the total parameters needed for models to work and resulting
in faster training times. Using a combined model also helped
us improve performance, as observed in the above section.
Looking through current works in ECG reconstruction, a very
noticeable flaw in how the models are evaluated seems to exist.
The metrics only seem to be representative of how well the
reconstruction is but do not try to identify if the reconstructed
signal can actually be used in real-life applications. Thus,
we must ensure that a reconstructive model can capture the
necessary artefacts from the input signal, which are essential
for diagnostic uses. Therefore, we devised an experiment
to see if the reconstructed signals can actually be used by
existing models that use standard 12-lead ECG data to detect
cardiovascular diseases. In the experiment, we train a multi-
disease classifier based on existing literature on actual 12-lead
ECG data and see the drop in performance when tested on
reconstructed 12-lead data. We observe that the classification
model’s performance while using the reconstructed signals was
comparable to its performance using the original signals. This
shows that our reconstruction model is capable of preserving
artefacts from the original data, which might prove vital for
uses like diagnosis by clinicians and predictive models.
The unavailability of ECG and healthcare data, in general,
plays a vital role in inhibiting the growth in the adoption
of Artificial Intelligence in Healthcare. Data-intensive models
like transformers tend to perform poorly with the current
volume of available ECG data. We believe the rapid digiti-
sation of the healthcare industry will lead to a high influx of
data in the coming future, making the utilisation of models
like transformers feasible. Healthcare data tend to contain
cohort-specific features, which might render a model trained
on one cohort useless if tested on another. A study for ECG
reconstruction employing a dataset collected across multiple
cohorts for training and evaluating the models might help
better establish a model’s generalizability which is currently
lacking in the proposed study.
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