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Abstract—X-rays diagnose numerous thoracic diseases; how-
ever, accurate pathology detection requires trained radiologists.
The number of available experts may impede population-level
patient care, delaying medical action. State-of-the-art (SOTA)
machine learning methods categorize chest X-rays across numer-
ous diseases well but do not always account for explainability.
Interpretability assessments rarely focus on the conciseness and
anatomical correctness of Class Activation Mapping outcomes.
These models are not accurate or dependable when tested on
different datasets of the same modality. They are not used
because their predicted performance is not explainable. This
work introduces a self-supervised and weakly supervised pre-
training pipeline with an auxiliary loss and supervised fine-tuning
that retains performance across datasets. We use the Chest X-
ray14 (NIH CXR) dataset for pre-training and CheXpert for fine-
tuning. Our model is evaluated on chest X-ray classification tasks
but is relevant to other imaging modalities and workloads. Our
model outperforms supervised SOTA models on the downstream
dataset in categorizing chest X-rays across 14 findings, improving
Intersection over Union by 31% on the NIH CXR dataset.
Our trained model offers compact, accurate, and interpretable
pretrained representations to highlight anatomical sites with
limited bounding box annotations.

I. INTRODUCTION

Various pulmonary diseases are commonplace, so early
diagnosis is essential for timely medical care and a better
prognosis. However, this is a challenge for healthcare sys-
tems due to the lack of population-scale medical resources
[1]. Chest X-rays (CXRs) play a pivotal role in diagnosing
pulmonary conditions, and analyzing them can reveal crucial
information about the location and severity of the pathology.
Machine Learning (ML) has shown promise in accelerating
the decision-making process for healthcare professionals [2]–
[5]. Multiple studies have used ML methods to classify CXRs
based on their conditions. Although many of these studies
report the good performance of their models, they do not
sufficiently address their explainability. Using the parameters
of a model, we can visualize the decision boundaries of
traditional ML models such as logistic regression and decision
trees [6]–[8].

Deep Learning (DL) models must be employed for more
complex tasks involving data from higher dimensions and
achieving higher accuracy. One of the major drawbacks of DL
models is that they behave like black boxes, as the neurons’
weights cannot be directly understood as knowledge. DL

models such as Convolutional Neural Networks (CNNs) com-
bined with large-scale datasets have resulted in state-of-the-art
(SOTA) systems in many medical imaging tasks. These models
are trained in a supervised method, which requires substantial
training data. Bounding box annotations for localization tasks
are harder to obtain than their counterparts in classification
tasks, which only require image-level labels. This issue is
exacerbated for medical datasets, requiring trained radiologists
for annotations. They must comply with regulatory policies
like the Health Insurance Portability and Accountability Act
(HIPAA) and the Institutional Review Board (IRB).

Pre-training approaches have been used to tackle the data
scarcity problem in tasks by utilizing knowledge from one
area to boost performance in another domain. Concurrently,
unsupervised and semi-supervised learning methods have also
emerged to model data distributions with limited annotations.
Unsupervised pre-training has been shown to serve as a regu-
larization method and give rise to better generalization. Recent
studies have also revealed the ability of self-supervision and
weak supervision to learn high-quality feature representations
[9]–[11].

Early work in generative self-supervised learning (SSL) for
the medical domain takes inspiration from a context encoder
[12] to propose a pre-training task called context restoration
[13]. The authors iteratively select two isolated patches, swap
them to generate a corrupted version of the original input
image, and train a generative model to restore them to their
original version. By learning features from unlabeled natural
photos and then unlabeled medical images, Azizi et al. [9] have
investigated the efficacy of SSL as a pre-training method for
medical image classification tasks. Multi-Instance Contrastive
Learning (MICLe) is a minor modification of SimCLR [14]
that takes advantage of multiple views of a pathology to per-
form contrastive learning. Their models outperform supervised
baselines pretrained on ImageNet using only a limited number
of labeled medical images while being robust to distribution
shift.

SSL approaches can also be augmented by weak labels,
potentially improving representation learning and performing
better on downstream tasks. Hu et al. [15] draw inspiration
from Chen et al. [13] and use a context encoder with DICOM
metadata tags in a weakly-supervised manner to learn ultra-



Fig. 1. Pictorial overview of our pipeline. We perform self-supervised pre-
training with our auxiliary loss using unlabeled Chest X-rays and bounding
box annotations from the NIH CXR dataset. The BYOL encoder is then used
for downstream fine-tuning.

sound image representations and outperform approaches not
using metadata across various downstream tasks. Rozenberg
et al. [16] propose a technique that learns to localize objects
using a small fraction of the dataset for which annotations
are available, and the remaining images have only image-level
labels. Utilizing a unique loss function and architecture incor-
porating shift-invariance and patch dependence, they achieve
SOTA localization performance on the NIH CXR dataset.

Our work takes inspiration from Hu et al. [15] and Rozen-
berg et al. [16] and improves the SOTA using the model
proposed in Bootstrap Your Own Latent (BYOL). BYOL is an
SSL approach for image representation learning without using
negative pairs [17]. We develop a self-supervised and weakly
supervised pre-training pipeline with an auxiliary loss followed
by supervised fine-tuning to enable superior representation
learning. In the pre-training phase, we train our model on
the NIH CXR [11] dataset in a self-supervised manner with
an auxiliary loss, which is calculated using the probability
distributions of the Gradient-weighted Class Activation Map-
ping (Grad-CAM) heat-map and its corresponding bounding
box annotation(s) (if available) [18]. Finally, in a supervised
fashion, we fine-tune this model on the CheXpert dataset
[19] and output multi-label classification probabilities. The
model pipeline is briefly visualized in Fig. 1 and is explained
further in the Methods section. Through experiments, we aim
to provide evidence that our proposed model:

1) generates more localized and accurate interpretability
outputs than SOTA models

2) achieves classification performance comparable to or
better than SOTA-supervised models

3) outperforms existing explainability outputs using only a
limited number of annotations (< 1% of the dataset)

4) is generalizable and retains performance across datasets

II. METHODOLOGY

A. Explainability

Any explainability technique in healthcare would roughly
come under one of two groups: visual or textual. In this study,
we focus on visual explainability. Class Activation Mapping

(CAM) is one of several methods to visualize which parts
of an image a CNN is looking at to make a decision. CAM
generates heat maps by leveraging global average pooling
layers to activate class-specific semantic regions in images
[20]. Some popular variations of CAM are listed below:

• Grad-CAM takes into account the weights and gradients
going into the final convolution layer to emphasize the
regions that contribute more to the final prediction [18]

• Grad-CAM++ is an expansion of Grad-CAM, with en-
hanced localization of multiple instances of a class [21]

• Score-CAM is a gradient-free method and uses a linear
mix of activation maps and weights [22]

Grad-CAM generates an approximate localization map of
the activated regions in the prediction images using the class-
specific gradients flowing into the final convolutional layer.
To obtain the activation maps, we calculate the gradient of yc

(score for class c) w.r.t feature maps of the convolutional layer.
The gradients from backpropagation are globally average-
pooled to obtain the importance weights αc

k of feature map
k. As indicated in (2), the final heat map is created by taking
the weighted sum of the feature maps, Ak, with weights αc

k,
followed by a ReLU.
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Our model compares the CAM output of an input image to
its corresponding bounding box mask and calculates what we
refer to as CAM loss.

B. Pre-training Techniques

Supervised pre-training techniques are useful in tasks with
limited data and annotations. One popular pre-training tech-
nique is transfer learning, where a model is fine-tuned from
pre-trained weights rather than trained from random initializa-
tion. Although pre-training techniques have boosted the growth
of DL applications, this technique is not always effective when
the downstream task and dataset differ considerably from the
original training data.

TorchXRayVision (XRV) is an open-source library designed
to interact with CXR datasets, their pre-trained models, and
other pre-processing tools [23]. The models are trained on
some of the most extensive public CXR datasets such as
CheXpert, Chest X-ray14 (NIH CXR), and MIMIC CXR [11],
[19], [24]. We use the pre-trained models available in the XRV
library to act as supervised SOTA.



C. Self-Supervised and Weakly-Supervised Learning
SSL is a training method that allows learning robust features

without human annotations. This makes it a good choice for
situations where data is scarce, like in healthcare. Unlabeled
domain-specific images are used in SSL approaches during
pre-training by generating labels from the data to learn more
relevant representations. For example, during the pre-training
phase, BERT, a revolutionary NLP model, learns from text
samples with some missing words. The model is then trained
to extract supervisory signals from the input data to predict
missing words [25].

Weakly supervised learning is a blanket term that covers
three types of weak supervision: inaccurate supervision, where
the labels are erroneous; inexact supervision, where the data
has weak or coarse labels; and incomplete supervision, where
labels exist only for a subset of training data [26]. This work
uses the bounding box annotations available in NIH CXR to
provide weak supervision during self-supervised pre-training.

1) Bootstrap Your Own Latent: BYOL is a new method
for learning self-supervised image representations. It employs
online and target neural networks that learn from one another.
The online network is trained using an augmented view of an
input image to predict the representation of another enhanced
version of the same image in the target network. We use
BYOL because it nearly equals the best-supervised baseline in
terms of top-1 accuracy on ImageNet and surpasses other self-
supervised baselines such as SimCLR while requiring 30%
fewer parameters [17].

The online network has weights θ and consists of three
stages: an encoder fθ, a projector, gθ and a predictor qθ, as
shown in Fig. 2. The target and online networks have the same
architecture, but the former has different weights, δ. The target
network weights are an exponential moving average of the
online parameters, θ. Given an input image, x, BYOL produces
two augmented views, v and v′, by applying augmentations t
and t′, respectively. From their respective augmented views,
the online network outputs a representation yθ and a projection
zθ, whereas the target network outputs y′δ and a projection
z′δ . The output of the final pooling layer is given by the
representation y, which is projected to a smaller space using
a multi-layer perceptron gθ.

BYOL minimizes the mean squared error Lθ,δ between the
normalized prediction outputs from the online network, qθ(zθ),
and the target projections, sg(z′δ), where sg means stop-
gradient. It is symmetrized by alternatively feeding v′ and v to
the online and target networks, respectively, to compute L̃θ,δ .
After each training step, the optimization step is performed to
minimize LBYOL

θ,δ = Lθ,δ+ L̃θ,δ w.r.t θ only, and given a target
decay rate τ ∈ [0, 1], δ is updated as given in (5). At the
end of the training, only the encoder fθ is retained for further
fine-tuning.

Lθ,δ = ∥qθ(zθ)− z′δ∥
2
2 = 2− 2 · ⟨qθ(zθ), z′δ⟩

∥qθ(zθ)∥2 · ∥z′δ∥2
(3)

θ ← optimizer(θ,∇θLBYOL
θ,δ , η) (4)

TABLE I
DATASET CHARACTERISTICS

Task Dataset # of images
Train Validation Test

Pre-training NIH CXR 86,524 - 25,596
Fine-tuning CheXpert 178,731 44,683 234

δ ← τδ + (1− τ )θ (5)

2) BYOL with CAM loss: If an input image x has an
associated bounding box annotation in NIH CXR, we calculate
a weighted sum of the feature maps yθ as given in (1)-(2) to
obtain the Grad-CAM heat-map LGC(yθ). All annotations of
an input image are merged into one binary mask (BB Mask),
and the Binary Cross Entropy loss, LCAM , is calculated using
the Grad-CAM heat-map, LGC. In (6)-(7), y refers to the binary
mask, σ denotes the Sigmoid function, l1,c is the loss of the
first sample in a batch of size N , and c is the class of sample
numbered n.

LCAM (LGC, y) = mean({l1,c, · · ·, lN,c}⊤) (6)

ln,c = −yn,c · log σ(Ln,c
GC )− (1− yn,c) · log(1−σ(Ln,c

GC )) (7)

Finally, LBYOL
θ,δ is updated with our loss as shown in (8). λ

controls how much we penalize incorrect Grad-CAM outputs.

LBYOL
θ,δ = Lθ,δ + L̃θ,δ + λ · LCAM (8)

III. EXPERIMENTS

A. Datasets

The NIH CXR dataset comprises of 112,120 CXR images
from 30,805 individual patients, while CheXpert has 224,316
CXR images from 65,240 unique patients. The former is
used for the pre-training task, while the latter is used for the
downstream classification task. The labels for both datasets
were extracted using Natural Language Processing from the
corresponding radiological reports. Each report was labeled for
the occurrence of 14 pathologies as either positive or negative,
and CheXpert contains an extra uncertain label. We regard the
unreliable labels in CheXpert to be negative. Table I provides
a summary of the dataset.

The datasets were divided by patient ID to prevent data
leakage, and we followed the standard training and testing
splits. The NIH CXR dataset contains 984 manually annotated
bounding box annotations, divided 80/20 between training and
test splits. CheXpert offers an official validation split that we
use for testing, and we divide the training dataset into training
(80%) and validation (20%). The 234 images in the CheXpert
test set were annotated by three board-certified radiologists
separately after examining the images. In their annotations,
all present/uncertain likely cases are treated as positive, and
all absent/uncertain/unlikely cases are treated as negative. The
final label is generated using a majority vote.



Fig. 2. BYOL with CAM loss. θ are trained weights, δ are an exponential moving average of θ, and sg is stop-gradient. CAM loss is calculated only if an
input image has a corresponding bounding box (BB) annotation. Model minimizes similarity and CAM loss between qθ(zθ), LCAM and sg(z′δ). Encoder
fθ is retained for downstream fine-tuning

B. Evaluation Metrics

Intersection over Union (IoU) is a metric used to quantify
the amount of intersection between two bounding boxes. We
generate bounding boxes from the Grad-CAM outputs to com-
pare them quantitatively with bounding box annotations from
NIH CXR. For this, we first threshold pixels having a value
less than 127 in the Grad-CAM output, find corresponding
contours, and then draw an approximate rectangle around the
region of interest. In an ideal situation, models would achieve
IoU scores close to 1.0, which signifies perfect overlap. We
report the area under the receiver operating characteristic
(AUROC) and precision-recall (AUPRC) curves to measure
classification performance. We also report the model’s output
values as confidence scores for the ground truth label.

C. Architecture configurations

We use BYOL during the pre-training phase and reuse
the encoder backbone for downstream fine-tuning. We train
the model using three popular CAM variations - Grad-CAM,
Grad-CAM++, and Score-CAM to choose the optimal CAM
algorithm for this task.

We also train the model using ResNets of varying depths
(18/34/50) to confirm that this task’s encoder is not over-
parameterized. The ResNet encoders are not pre-trained and
are modified to accept single-channel (grayscale) input images.
For BYOL, we use a projection size of 256 and a hidden
projection size of 512. While fine-tuning, we replace the
encoder’s fully-connected layer with another having an input
dimension of 2048 for ResNet-50, 512 for ResNet-34/ResNet-
18, and an output dimension of 14 corresponding to the
number of classes in CheXpert.

D. Training

a) Pre-training: The PyTorch framework was used for
all training, validation, and testing purposes. Before training,
all images were resized to 256 × 256 pixels and normalized
with the dataset mean and standard deviation. Data augmenta-
tion was performed using transformations like gaussian blur,
random resized crop, and random affine. The target network’s
augmentations have a higher probability of occurrence and are
slightly stronger to enable better representation learning. We
update BYOL’s weights using Adam optimizer, minimizing
LBYOL
θ,δ in (8), with hyper-parameters set to batch size = 128,

λ = 2, learning rate = 0.0001, β1 = 0.9, and β2 = 0.999. The
exponential moving average parameter τ for the target network
is set to 0.99. Increasing the value of λ has a negative effect
on the model performance. The models were trained for 500
epochs over 4 Nvidia 3080 Ti cards.

b) Fine-tuning: We augment the data using only random
affine transformations with values similar to those of the target
network and p = 0.5. We fine-tune the pre-trained BYOL
encoder using Adam optimizer with all other hyper-parameters
similar to those during pre-training. As our loss function, we
use Binary Cross Entropy ((6)-(7)) with a weight for positive
examples (different for training and validation splits). After
four consecutive epochs with no improvement in training loss,
we implement a learning rate scheduler that decreases the
learning rate by a factor of 0.1 up to a minimum value of
0.000001. The maximum number of epochs the model was
trained for was 200, and the model with the greatest validation
AUROC was retained.

E. Comparative Study

We choose the best-performing configuration to carry out
ablation and comparative studies. We compare our model



Fig. 3. Comparison of various CAM outputs. Chest X-rays in the first row
are from NIH CXR, and others are from CheXpert. The bounding boxes in
red show the ground truth annotation. The bright regions correspond to the
highest level of activation.

with current supervised models trained using image-level
labels on visual explainability and multi-label classification
performance. The different configurations that we train are:

• Baseline: A ResNet-50 model trained from scratch on
either of the datasets mentioned in Table I in a supervised
manner to establish baseline performance

• XRV (SOTA): A DenseNet-121 pre-trained model from
the XRV library trained on multiple large CXR datasets

• XRV + CAM Loss: The same model as XRV but fine-
tuned on NIH CXR with our proposed CAM Loss

• SSL + FT (Ablation): A ResNet backbone pre-trained on
NIH CXR and fine-tuned on CheXpert

• SSL + CAM Loss + FT (Proposed): A ResNet backbone
pre-trained on NIH CXR with our proposed CAM loss
and then fine-tuned on CheXpert

IV. RESULTS

A. Architecture Configurations

To choose the optimal CAM algorithm for the visual ex-
plainability of our model, we compare the outputs of Grad-
CAM, Grad-CAM++, and Score-CAM, with ground truth as
seen in Fig. 3. We choose Grad-CAM as it produces precise
activation maps resulting in better localization performance.

Supplementary Fig. 1 shows the corresponding Grad-CAM
outputs in which the localization ability degrades as smaller
ResNets are used, indicating that they cannot capture the
complex features of CXRs. Hence, we choose ResNet-50 as
the backbone encoder for our model.

B. Visual Explainability

To assess the visual explainability of our models, we gener-
ate heat maps using Grad-CAM for samples containing various
pathologies from the NIH CXR dataset, as shown in Fig. 4.
The heat maps follow the Magma color map in OpenCV, with
the bright regions corresponding to the highest activation level
while classifying CXRs. The red bounding boxes show the
ground truth annotation in the NIH CXR dataset. Grad-CAM
outputs from the XRV + CAM Loss model don’t improve over
the standard XRV outputs and hence are not included.

Our SSL + CAM Loss + FT model performs the best when
compared with baselines and XRV’s models. Further, there is a
noticeable improvement over the SSL + FT model, which was
not trained with our CAM Loss. This advantage is apparent in
the lateral view image in the third row of Fig. 4, which is pos-
itive for Effusion. The SSL + FT model activates incorrectly,
while the CAM loss variant shows much better localization.
Our model performs reliably across all pathologies, imaging
views, and datasets, demonstrating knowledge retention even
after downstream fine-tuning. For example, the scan in the
second row is positive for the Infiltrate class, which is not
present in CheXpert. It correctly activates inside the bounding
box annotations and performs better than other models.

Another example is shown in the fourth row with ground
truth labels Atelectasis and Mass. CheXpert doesn’t have a
Mass class (confidence scores are only for Atelectasis), but
NIH CXR does. Our model activates for the corresponding
region well, which means that it was able to retain anatomical
information from the pre-training phase. Our model performs
inadequately with certain hard-to-differentiate pathologies like
Atelectasis, which refers to the lung’s partial collapse or
incomplete inflation. It fails to identify the presence of Atelec-
tasis in the scan in the second last row. But in certain cases,
provided the pathology region-of-interest is large and discrim-
inative enough, the model successfully predicts Atelectasis,
as shown in the first row. All models show good activation
around the enlarged heart for the scan in the last row, with
the CAM loss variant being the most confident and concise.
Cardiomegaly refers to an enlarged heart and is one of the
easiest pathologies to differentiate due to its being visually
distinctive. Our model outputs are attributed with high IoU
and confidence scores compared to other models. For the NIH
CXR test set, the XRV model achieves an average IoU of
0.61 compared to our SSL + CAM Loss + FT model’s score
of 0.92, signifying an improvement of 31%.

Although CheXpert does not offer bounding box annota-
tions, we generate the CAM outputs for its samples to assess
our model’s robustness. Supplementary Fig. 2 presents the
Grad-CAM outputs for samples containing various pathologies
from the CheXpert dataset. We observe that the predictions
from our SSL + CAM Loss + FT model are more localized.
For some visually discriminative classes like Support Devices
and instances of No Finding in the last two rows, respectively,
our model correctly activates for the former class and does
not activate as expected for No Finding. For the last row, even
though the CXR does not contain any pathology, all models
except ours incorrectly activate regions in the sample.

C. Multi-label Classification

Even if a CXR classification model can look at the right
place, it is paramount to accurately classify the pathologies
present in the CXRs. In this part, we compare the classifica-
tion performance of all models included in the comparative
analysis. As our model was fine-tuned using CheXpert for the
downstream classification task, we first present the evaluation
scores calculated on CheXpert’s official validation set (our



Fig. 4. Grad-CAM outputs of NIH CXR test set. The first column contains ground truth; the others are outputs from various models. IoU and model’s
confidence (C) measures are detailed in Evaluation Metrics. The bounding boxes in red show ground truth annotation and the ones in green are obtained from
Grad-CAM outputs.

test set) in Table II. Our proposed SSL + CAM Loss +
FT model achieves the highest AUROC scores for 8 out of
13 classes and comparable AUROC scores for the rest. Our
model outperforms the other baseline and SOTA models. The
XRV models weren’t trained on the labels for No Finding and
Pleural Other, and the CheXpert validation set doesn’t have
any samples for Fracture, which is why the corresponding
cells are empty in Table II.

Figure 5’s precision-recall curves illustrate the trade-off be-
tween precision and recall for various thresholds. We obtain a
high area under the curve when recall and precision values are
high. A high recall correlates with a low rate of false negatives,
while a high precision correlates with a low percentage of
false positives. For each model, we give the Average precision
(AP), which summarises the above plot as a weighted mean

of precisions acquired at each threshold, where the weight
is determined as the increase in recall from the preceding
threshold. We also exhibit iso-f1 curves that include all points
in the precision/recall space with identical F1 scores. The SSL
+ CAM Loss + FT model achieves the greatest AP score
(0.68), which is the best model.

We also evaluate and compare the classification performance
on the NIH CXR dataset’s official test set to verify robustness.
We calculate the AUROC scores for the subset of pathologies
NIH CXR has in common with CheXpert (Table III) and
observe that performance on NIH CXR is similar to that on
CheXpert. Our model achieves the highest AUROC scores for
2 out of 7 classes present and comparable AUROC scores for
the rest.



TABLE II
MULTI-LABEL CLASSIFICATION AUROC ON CHEXPERT TEST SET (VALUES IN PARENTHESIS REPRESENT THE NUMBER OF SAMPLES POSITIVE FOR THE

CLASS)

Classes Baseline XRV
(SOTA)

XRV
+ CAM Loss

SSL
+ FT

SSL + CAM Loss
+ FT (ours)

No Finding (38) 0.72 - - 0.82 0.84
Enlarged Cardiomediastinum (109) 0.54 0.67 0.64 0.62 0.69
Cardiomegaly (68) 0.75 0.87 0.84 0.83 0.85
Lung Opacity (126) 0.75 0.84 0.80 0.86 0.87
Lung Lesion (1) 0.67 0.88 0.68 0.81 0.84
Edema (45) 0.81 0.92 0.91 0.90 0.92
Consolidation (33) 0.85 0.87 0.88 0.83 0.89
Pneumonia (8) 0.66 0.74 0.69 0.60 0.65
Atelectasis (80) 0.72 0.85 0.85 0.85 0.87
Pneumothorax (8) 0.58 0.73 0.69 0.69 0.70
Pleural Effusion (67) 0.70 0.86 0.82 0.80 0.83
Pleural Other (1) 0.81 - - 0.95 0.97
Fracture (0) - - - - -
Support Devices (107) 0.64 0.84 0.80 0.80 0.85
Average AUROC 0.71 0.82 0.78 0.79 0.83

TABLE III
MULTI-LABEL CLASSIFICATION AUROC ON NIH CXR TEST SET. ONLY CLASSES COMMON WITH CHEXPERT WERE TESTED (VALUES IN PARENTHESIS

REPRESENT THE NUMBER OF SAMPLES POSITIVE FOR THE CLASS)

Classes Baseline XRV
(SOTA)

XRV
+ CAM Loss

SSL
+ FT

SSL + CAM Loss
+ FT (ours)

Atelectasis (3279) 0.75 0.85 0.86 0.84 0.87
Cardiomegaly (1069) 0.80 0.89 0.86 0.85 0.86
Consolidation (1815) 0.78 0.90 0.88 0.83 0.85
Edema (925) 0.82 0.91 0.89 0.90 0.92
Pneumonia (555) 0.65 0.87 0.83 0.86 0.86
Effusion (4658) 0.76 0.90 0.85 0.81 0.87
Pneumothorax (2665) 0.69 0.79 0.74 0.83 0.82
Average AUROC 0.75 0.87 0.84 0.84 0.86

V. CONCLUSION

Chest X-rays are an important tool for identifying a va-
riety of thoracic disorders. However, healthcare institutions
face pressure to find enough qualified radiologists to provide
prompt and appropriate patient care. Machine learning models
can help with this, but they need to be interpretable and
trustworthy to be used in the real world. Clinical applications
of explainable DL algorithms will likely be a human-in-
the-loop hybrid in which medical experts, like radiologists,
control the decision-making process [27]. Current state-of-the-
art models for chest X-ray classification do not always validate
the accuracy of their outputs and can lose performance when
applied to other datasets. This paper suggests a new approach
to addressing these issues in settings with limited resources.

We propose a self-supervised method that uses bounding
boxes as weak labels to improve the interpretability of med-
ical image classification algorithms. We create a pre-training
pipeline that uses a modified BYOL network, and the NIH
CXR dataset’s constrained bounding boxes, followed by fine-
tuning on the CheXpert dataset. Using annotations from a
small fraction of a large unlabeled dataset during the pre-
training phase significantly increases localization and certainty
metrics while maintaining performance across datasets. We
also evaluate various model configurations and choose ResNet-
50 as the backbone encoder and Grad-CAM as the optimal

CAM algorithm.
The experiments show that the proposed model generates

more localized and accurate Grad-CAM outputs than cur-
rent state-of-the-art models, achieves superior classification
performance and is more generalizable and transferable to
other datasets. The use of annotations during the pre-training
phase provides feedback to the model on where to look during
the representation learning phase. This improves performance
compared to current state-of-the-art techniques that only use
image-level labeling.

Overall, this research shows that a self-supervised approach
using bounding boxes as weak labels can improve the inter-
pretability and generalizability of medical image classification
algorithms, and has the potential to be applied to other medical
imaging modalities. We believe that further research could be
done with more annotated data and higher input resolution to
further improve performance.
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