
Heliyon 9 (2023) e13646

Available online 11 February 2023
2405-8440/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

PREHOST: Host prediction of coronaviridae family using 
machine learning 

Anusha Chaturvedi, Kushal Borkar, U Deva Priyakumar, P.K. Vinod * 

International Institute of Information Technology, Hyderabad, Telangana, 500032, India   

A R T I C L E  I N F O   

Keywords: 
Zoonosis 
Coronaviridae 
Host specificity 
Feature identification 
Random forest 
Biological sequences 
SARS-CoV-2 

A B S T R A C T   

Coronavirus, a zoonotic virus capable of transmitting infections from animals to humans, 
emerged as a pandemic recently. In such circumstances, it is essential to understand the virus’s 
origin. In this study, we present a novel machine-learning pipeline PreHost for host prediction of 
the family, Coronaviridae. We leverage the complete viral genome and sequences at the protein 
level (spike protein, membrane protein, and nucleocapsid protein). Compared with the current 
state-of-the-art approaches, the random forest model attained high accuracy and recall scores of 
99.91% and 0.98, respectively, for genome sequences. In addition to the spike protein sequences, 
our study shows membrane and nucleocapsid protein sequences can be utilized to predict the host 
of viruses. We also identified important sites in the viral sequences that help distinguish between 
different host classes. The host prediction pipeline PreHost will cater as a valuable tool to take 
effective measures to govern the transmission of future viruses.   

1. Introduction 

Emerging Infectious Disease (EID) [1] has been affecting individuals worldwide. The World Health Organization reported in 1970 
that EIDs were increasing at a rate never determined before. Over the past 40 years, scientists discovered 40 infectious diseases, 
including the Ebola virus, MERS, SARS, Zika virus, and swine flu. One EID that recently resulted in a pandemic is Severe Acute 
Respiratory Syndrome Coronavirus - 2 (SARS CoV-2) [2]. SARS-CoV-2, a zoonotic virus [3], capable of interspecies transmission [4] 
belongs to the Coronaviridae: a family of enveloped, positive, single-stranded RNA viruses 26–32 kb long. The family is organized into 
two subfamilies: Coronavirinae or Orthocoronavirinae and Letovirinae. Coronavirinae is further classified into 4 genera namely: 
Alphacoronavirus, Betacoronavirus, Deltacoronavirus and Gammacoronavirus. Alphacoronavirus and Betacoronavirus affect mam-
mals. On the other hand, Deltacoronavirus and Gammacoronavirus are known to infect both mammals and birds. Alphacoronavirus 
and Betacoronavirus that infect the human population include HCoV 229E, HCoV - NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, 
MERS-CoV and SARS-CoV-2. 

Over the past two decades, the evolution of various coronaviruses from animals to human populations raises one of the most 
pressing research questions: Who was the original carrier of the coronavirus? [5]. Although major research efforts are being made to 
predict viral escape, the effect of mutations on the RNA structure, forecasting the next outbreak, mortality prediction of patients, the 
questions of when, where, and how viruses appear are still subject to considerable uncertainty [6],[7],[8]. 

The family of RNA viruses, namely the Coronaviridae, engenders diverse symptoms that lead to a range of respiratory infections. 
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The coronavirus evolved into a pandemic that threatened public health and infected 675 million people worldwide, resulting in 6.76 
million deaths (as reported in February 2023). With so many lives at risk, identifying the original host of the virus in advance can 
prevent the further spread of the virus. With this knowledge, we can take effective measures to control the outbreak of the virus. It can 
help segregate the host of the coronavirus from the human population, for example, by preventing these recognized hosts from 
entering human-populated areas. 

The coronavirus encodes 4 major structural proteins: spike protein (S) [9], membrane protein (M) [10], nucleocapsid protein (N) 
[11], envelope protein(E) [12], and 16 non-structural proteins. The spike (S) protein of SARS-CoV-2 plays an important role in receptor 
binding. The total length of SARS-CoV-2 S protein is 1273 aa and consists of a signal peptide (amino acids 1–13) located at the 
N-terminus, the S1 subunit (14–685 residues), and the S2 subunit (686–1273 residues). The S1 subunit contains a receptor-binding 
domain (RBD) that recognizes and binds to the host receptor angiotensin-converting enzyme 2 (ACE2), while the S2 subunit medi-
ates viral cell membrane fusion by forming a six-helical bundle via the two-heptad repeat (HR) domain [13]. The S1 subunit consists of 
an N-terminal domain (14–305 residues) and a receptor-binding domain (RBD, 319–541 residues). The S2 subunit consists of a fusion 
peptide (FP) (788–806 residues), heptapeptide repeat 1 (HR1, 912–984 residues), heptapeptide repeat 2 (HR2, 1163–1213 residues), 
TM domain (1213–1237 residues), and cytoplasmic domain (1237–1273 residues) [13]. The spike protein binds to the ACE2 receptor 
[14] to enter the host cells and plays an important role in interspecies transmission. For this reason, previous studies mainly focused on 
predicting the host of the virus by analyzing the spike protein sequences of the coronavirus [15][16] [17]. 

The structural proteins of the coronavirus family include the membrane glycoprotein (M), which is capable of binding to all other 
structural proteins. In the human coronavirus NL63, the M protein acts as the binding site for the host cell and not the S protein. In 
addition, the binding of Nprotein to Mprotein helps to stabilize Nprotein [18]. Because the M protein co-operates with the spike 
protein, mutations in this region are able to affect host cell attachment and viral entry. This property encouraged us to predict the 
virus’ host from membrane protein sequences. The total length of the membrane protein ranges from 218 to 263 aa. It consists of three 
domains: N-terminal ectodomain (1–19 residues), triple-spanning transmembrane (TM) domain (TMI-(20–40 residues), TMII-(51–71 
residues), TMIII-(80–100 residues)) and C terminal endodomain (101–222 residues) [18]. The length of the nucleocapsid protein 
ranges from 419 to 422 aa. The nucleocapsid protein consists of three domains. The central domain acts as an RNA binding site while 
the remaining two domains, which are acidic in nature, are believed to play a key role in protein-protein interactions [19]. 

Tang et al. [15] proposed the current state-of-the-art approach to identify hosts of the Coronaviridae family. 730 spike gene se-
quences associated with 6 host classes were considered. Mock et al. [16] presented a deep-learning approach to identify the host using 
RNA sequences as input to the model. Their study is limited to Rotavirus, Rabies lyssavirus, and Influenza A virus. The recent work by 
Kuzmin et al. [17] focused on the spike protein sequences of SARS-CoV-2 for three classification tasks: [i] the human-related CoVs (463 
entries) vs. other CoVs (775 entries); [ii] the CoVs whose hosts are avians (300 entries) vs. the CoVs whose hosts are swine (367 
entries); [iii] the CoVs whose hosts are mammals (938 entries) vs. the CoVs with all other hosts, which are all avians (300 entries). 
Although they identified important sites in the viral sequences, their study was confined to a binary classification task on a relatively 
smaller dataset. 

All the studies mentioned above are limited to spike protein or RNA sequences. In this study, we considered four sequence types: 
genome sequences, spike protein, membrane protein, and nucleocapsid protein sequences to identify hosts associated with six host 
classes using a larger dataset. Our study further focused on identifying the important regions in the viral sequences that help 
distinguish between different host classes. For evaluation, we reported precision, recall, and F1 score along with accuracy to address 
the class imbalance. The machine learning pipeline PreHost proposed in our study shows better performance in the virus-host pre-
diction task compared with the existing approaches. 

2. Results 

To assess how different regions of viral sequences can be used to identify the hosts, we applied the PreHost pipeline to four different 
viral sequences of the Coronaviridae family, namely: genomic sequences, spike protein (S), membrane protein (M), and nucleocapsid 
protein (N) sequences (see Methods). We used four machine learning algorithms to predict the host of the viral sequences. We trained 
the machine learning algorithms on 80% of the dataset for all four datasets. 

2.1. Genome sequences 

The genome sequence dataset consists of 50,700 viral sequences ranging in length from 26 kb to 32 kb belonging to the family, 
Coronaviridae. Random Forest, KNN, and Decision Tree yielded prediction accuracy greater than 99% for 4-grams (Table 1). We 
trained our model with different n-grams, where n ranges from 1 to 4. The highest accuracy is obtained when n is set to 4. This suggests 

Table 1 
Comparison of performance of different models using genome sequences.  

Algorithm Accuracy F1-Score Precision Recall 

Naive Bayes 92.21 0.61 0.57 0.75 
Random Forest 99.91 0.99 0.99 0.98 
KNN 99.60 0.91 0.88 0.98 
Decision Tree 99.74 0.95 0.95 0.94  
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that the performance is not merely owing to the classifier used but is also influenced by the 4-gram input preparation technique. 
Unigram and bigram lack context information. On the other hand, trigram and 4-gram give better results because they take contextual 
information into account. In addition, as n increases, higher-order n-grams may have a data sparsity problem that makes them less 
informative, making it difficult to capture the real data distribution without more data. 

Since the dataset was highly skewed, we used various evaluation metrics: accuracy, F1 score, precision, and recall. Random Forest 
achieves the highest prediction accuracy with a mean recall of 0.98. Random Forest was further used to identify important features in 
the sequence that contribute most to the classification of the host (Fig. 1). The top 4 features that have led to a reduction in mean Gini 
impurity are ATAA, TGAA, GGGC and AATA. Table 2 shows the cross-validation results on the genomic sequences with Random Forest 
giving a mean accuracy of 99.81% using 10-fold cross-validation. 

2.2. Spike protein sequences 

The spike protein sequence dataset consists of 9596 viral sequences belonging to the Coronaviridae family. KNN, Naive Bayes, 
Random Forest, and Decision tree achieve a high accuracy of greater than 99% and a recall above 0.92 on a test set (Tables 3 and 4). We 
also used Random Forest algorithm to identify the features that contribute most to the classification of a different host (Fig. 2(A)). The 
top 4 features that resulted in decreasing the mean Gini Impurity are TLTN, QLNC, TYVK, and IPQN. We further mapped these features 
to the spike protein sequence (Fig. 2(B)). The feature TYVK corresponds to Feline Coronavirus and is found at sites 1403–1406. The S 
protein sequence of the Feline coronavirus is of length 1452, which is longer than the SARS-CoV-2 S protein sequence. Fig. 2(B) shows 
that the feature TLTN maps to the S1 subunit in the NTD region. The epitope of one of the mAbs called 4A8 is NTD of the spike protein 
and a promising target for therapeutics against COVID-19(13). The other features fall within the S2 subunit, with the IPQN feature in 
the HR1 region responsible for viral fusion. The various fusion inhibitors targeting the HR1 region are being developed (HR1P, EK1, 
and EK14C) [13]. 

2.3. Membrane-M protein sequences 

The M protein sequence dataset consists of 846 viral sequences belonging to the Coronaviridae family. Random Forest achieves the 
highest prediction accuracy of 98.22% with a mean recall of 0.94, whereas Decision Tree achieves a mean recall of 0.88 on a test set 
(Tables 3 and 4). The important features that contribute the most to the classification of the different hosts are CEGQ, VGKQ, SNMT, 
and GDSG (Fig. 3(A)). We map these features to the membrane protein sequence (Fig. 3(B)). Feature CEGQ found in Chicken maps to C- 
terminal endo-domain 153-156, VGKQ present in Cat, is at site 221–224 (C-terminal endo-domain). SNMT, found mainly in Camel, is 
located at two sites: 214–216 (C-terminal endodomain) and 2–5 (N-terminal ectodomain). GDSG, a feature present in Humans and 
occasionally in bats, is located at site 189–192 (C- terminal endo-domain). Previous studies suggested that the membrane protein 
might be responsible for virus interaction with cellular HSPG (heparan sulfate proteoglycans) [18]. The HSPG binding site is located in 
the C-terminal domain from 153 to 266 aa, which is predicted to be exposed on the virion surface. 

2.4. Nucleocapsid protein sequences 

The N protein sequence dataset consists of 4021 viral sequences. Random Forest and KNN attain the highest prediction accuracy on 
a test set compared to the other machine learning algorithms Naive Bayes and Decision Tree (Table 3). KNN and Random Forest 
achieve an accuracy of 99% (Table 3) with a mean recall of 0.91 and 0.82, respectively (Table 4). The important features identified are, 
SSPD, IIWV, KDAL, and LEQI (Fig. 4(A)). From Fig. 4(B), we can observe that the trait SSPD present in human falls within the C- 
terminal endodomain (site 78–81), IIWV found in humans, bats, and cats are located at sites 130–133, 119–122, 124–127, 143–146 
and numerous other sites in the NTD region. KDAL, found mainly in swine, is located at two sites: 278–281 (C-terminal domain) and 
227–230. LEQI, a feature found in Cat, is at position 318–321 (C-terminal domain). The earlier findings indicate that N-NTD is 
responsible for RNA binding and N-CTD is responsible for both dimerization and RNA binding. Blocking the RNA binding sites of N- 
NTD has been proven to be a good approach for antiviral drug development [19]. PJ34, a compound that targets the ribonucleotide 

Fig. 1. Important features of genome sequences relevant for host classification.  
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Table 2 
Classification results with stratified 10-fold cross- 
validation using Random Forest.  

Fold Accuracy 

Fold 1 99.90 
Fold 2 99.80 
Fold 3 99.80 
Fold 4 99.90 
Fold 5 99.40 
Fold 6 99.90 
Fold 7 99.60 
Fold 8 99.90 
Fold 9 99.98 
Fold 10 99.90 
Mean Result 99.81 
Result on Test Data 99.81  

Table 3 
Comparison of Accuracy results for spike protein (S), membrane protein(M), and nucleocapsid protein(N) se-
quences using different machine learning algorithms.  

Algorithm S M N 

Naive Bayes 98.54 92.89 96.63 
Random Forest 99.12 98.22 99.12 
KNN 99.60 96.64 99.37 
Decision Tree 99.21 97.04 98.50  

Table 4 
Comparison of Recall results for spike protein (S), membrane protein(M), and nucleocapsid protein(N) se-
quences using different machine learning algorithms.  

Algorithm S M N 

Naive Bayes 0.93 0.87 0.83 
Random Forest 0.93 0.94 0.82 
KNN 0.94 0.91 0.91 
Decision Tree 0.92 0.88 0.77  

Fig. 2. Feature identification in spike Protein. (A) Important features in spike protein sequences relevant to host classification. (B) Spike protein 
sequence of SARS-CoV-2 with the important features mapped to their region of occurrence. 
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binding site in N-NTD, can inhibit the RNA binding activity of HCoV-OC43 and its replication [20]. 

3. Discussion 

In this study, we proposed a pipeline PreHost to predict the host of viral sequences belonging to the Coronaviridae family. We 
presented a simple but effective host prediction pipeline that consists of data pre-processing, input preparation, the oversampling 
technique to tackle class imbalance, and machine learning classifiers. The machine learning algorithms were implemented to identify 
the potential host by leveraging four different viral sequences - nucleotide sequences, spike protein, M protein, and N protein se-
quences. The machine learning classifiers using 4-gram fragments as input to the host prediction task showed superior performances. 

Fig. 3. Feature identification in membrane protein. (A) Important features in membrane protein sequences relevant to host classification. (B) 
Membrane protein sequence of SARS-CoV-2 with the important features mapped to their region of occurrence. 

Fig. 4. Feature identification in nucleocapsid protein. (A) Important features in nucleocapsid protein sequences relevant to host classification. (B) 
Nucleocapsid protein sequence of SARS-CoV-2 with the important features mapped to their region of occurrence. 
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The biological interpretation of the 4-gram needs further exploration. Compared with the existing approaches, we dealt with a large 
number of viral sequences and took into account various proteins of coronaviruses. The high prediction accuracy across all four 
datasets indicates that machine learning models can be employed to predict a host of viral sequences. In addition, we have shown that 
M and N proteins can also be used to identify the host of the viral sequence. This suggests that both M and N proteins also have features 
specific to the host. However, the highest accuracy was obtained when genome sequence or spike protein was used, suggesting that 
these sequences can be used reliably for host prediction. Furthermore, we identified the most relevant features contributing to different 
host classes and mapped them to their respective domains. This may further aid in the understanding of host-virus interaction. 

4. Methods 

4.1. General workflow 

We propose a machine-learning pipeline for host prediction using viral genomic and protein sequences. The proposed pipeline 
includes [i] pre-processing of the viral sequences, [ii] dealing with class imbalance using the oversampling technique SMOTE, [iii] host 
prediction using machine learning (ML) algorithms, and [iv] feature importance to identify the most relevant features for host pre-
diction (Fig. 5). 

4.2. Data collection and pre-processing 

In this study, we obtained viral sequences (genome sequences, spike protein, membrane protein, and nucleocapsid protein se-
quences) as data points and the six hosts as classes. We have 50,700 nucleotide sequences, 9596 spike protein sequences, 846 M protein 
sequences, and 4021 N protein sequences associated with 6 hosts namely: human, bat, pig, chicken, camel, and cat (Table 5 and 
Table 6) from the viral Pathogen Database downloaded March 1, 2021 [21],[22]. We filtered these sequences to remove the 
incomplete genome sequences and the duplicate sequences. We split the dataset in an 80:20 ratio for training and testing sets with a 
balanced number of data points for each class using SMOTE (see below). We also generated an embedding for the biological sequences 
to be fed as input to the classification model. 

4.3. Input preparation 

To convert sequences to numerical values we used Tf-idf Vectorizer with N-grams since it splits the viral sequences into n-grams. 
We used different values of n for the N-gram. Tf-idf Vectorizer converts these N-grams to produce a sparse representation of the 
normalized counts of each gram. These features are given as input to the machine learning models. 

Fig. 5. The PreHost Prediction Pipeline. (A) Collection of viral sequences and pre-processing, (B) Generating a count matrix of 4-gram, (C) SMOTE 
analysis, (D) leveraging ML classifiers to predict host, and (E) analysis of predicted host and the key features. 
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4.4. SMOTE 

The dataset considered in this study is highly imbalanced. Hence, we used the over-sampling technique SMOTE [23] to address the 
problem of class imbalance to generate synthetic data points for the minority classes. The minority class is over-sampled by taking each 
minority class sample and introducing synthetic samples along the line segments joining any/all of the k nearest neighbors of the 
minority class. 

4.5. Classification 

We predicted six host classes (Human, Bat, Camel, Cat, Swine, and Chicken) based on genome and protein sequences. To perform 
this task, we considered four well-known classifiers: Naive Bayes [24], KNN [25], Random Forest [26], and Decision Tree [27]. We 
used Python’s Scikit learn [28] toolbox for the classification tasks. The parameters were set to default values in the sci-kit learn. The 
parameters used when training the Random Forest are n_estimators = 100, which is the number of trees built before the mean pre-
diction was made, and max_features, which is the sqrt of the total number of features for the best split. To measure the quality of the 
split, we used Gini Impurity as our criterion. The nodes were expanded until all the leaves were pure. The metrics used for evaluation 
are Accuracy, F1-score, Recall, and Precision. 

Accuracy is the classification metric well suited for multi-class classification. It is defined as the ratio of true predictions and the 
total number of samples (Eq [1]). 

Accuracy=(TP+ TN) / (TP+FP+FN + TN) (1) 

Precision is the classification metric used when we need to be certain about a prediction. It is defined as the ratio of correctly 
predicted positive samples and the total predicted positive samples (Eq [2]). 

Precision=(TP) / (TP+FP) (2) 

Recall is the evaluation metric used to identify the total number of actual positives predicted. It is useful when we want to capture 
maximum positives (Eq [3]). 

Recall=(TP) / (TP+FN) (3) 

F1-Score is the metric used to have a model with both good precision and recall. It is defined as the harmonic mean of precision and 
recall (Eq [4]). 

F1= 2 ∗ (Precision ∗ Recall) / (Precision+Recall) (4)  

4.6. Feature importance 

In the host prediction task, it is also essential to locate the significant sites in distinguishing one host class from another. Since 
Random Forest has built-in feature importance, we used Random Forest to identify the relevant sites contributing to the different host 
classes. We used the Gini impurity for feature identification, considering the 4 grams as the features into which the viral sequences 
were split. The features that contribute most to reducing mean Gini impurity are deemed the most relevant. 

Training a decision tree requires iteratively splitting the current data into two branches. For instance, if we have 10 data points, the 
perfect split would be two branches with 5 data points each. Gini impurity is a metric used to evaluate how good a split is quantitatively. 
It gives us the probability of misclassifying a data point. Mathematically, Gini impurity can be expressed as 

Table 5 
Host distribution for nucleotide/genome sequences.  

Host Number of Samples 

Human 48,972 
Bat 179 
Swine 721 
Chicken 381 
Camel 355 
Cat 92  

Table 6 
Host distribution for spike protein (S), membrane protein(M), and nucleocapsid protein(N) sequences.  

Protein Human Bat Camel Chicken Cat Swine 

S 8826 66 93 283 16 318 
M 512 54 20 170 8 86 
N 3503 70 41 237 14 169  
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G=
∑C

i=1
p(i) ∗ (1 − p(i)) (5)  

where C is the total number of classes and p(i) is the probability of selecting a data point of class i, for i in range (1, 6) and belongs to a 
class: Human, Cat, Camel, Bat, Chicken, Swine. The optimal split is calculated by subtracting the weighted impurities of the branches 
from the original impurities, also known as Gini Gain. The goal is to maximize Gini Gain. 
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