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Abstract

The molecular pathogenesis of Hepatocellular Carcinoma (HCC) is a complex process pro-

gressing from premalignant stages to cancer in a stepwise manner. Mostly, HCC is detected

at advanced stages, leading to high mortality rates. Hence, characterising the molecular

underpinnings of HCC from normal to cancer state through precancerous state may help in

early detection and improve its prognosis and treatment. In this work, we analysed the tran-

scriptomic profile of tumour and premalignant samples from HCC or chronic liver disease

patients, who had undergone either total or partial hepatectomy. The normal samples from

patients with metastatic cancer/polycystic liver disease/ cholangiocarcinoma were also

included. A gene co-expression network approach was applied to identify hierarchical

changes: modules, pathways, and genes related to different trajectories of HCC and patient

survival. Our analysis shows that the progression from premalignant conditions to tumour is

accompanied by differences in the downregulation of genes associated with HNF4A activity

and the immune system and upregulation of cell cycle genes, bringing about variability in

patient outcomes. However, an increase in immune and cell cycle activity is observed in pre-

malignant samples. Interestingly, co-expression modules and genes from premalignant

stages are associated with survival. THBD, a classical marker for dendritic cells, is a predic-

tor of survival at the premalignant stage. Further, genes linked to microtubules, kineto-

chores, and centromere are altered in both premalignant and tumour conditions and are

associated with survival. Our analysis revealed a three-way molecular axis of liver function,

immune pathways, and cell cycle driving HCC pathogenesis.

Introduction

HCC is the common form of primary liver tumour and the third-most leading cause of can-

cer-related deaths globally [1, 2]. Major risk factors leading to HCC include viral infections

(Hepatitis B—HBV and Hepatitis C—HCV), excessive alcohol and tobacco consumption,

exposure to fungal toxins, and Steatotic liver disease (SLD), with 90% of cases arising from the

underlying chronic liver disease [3]. While HBV-driven HCC is prevalent in East Asia and

Africa, HCV infections are most common in the US and Europe. SLD is emerging as the lead-

ing risk factor of HCC, especially in the West, owing to the rise in obesity and diabetes [4].
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Despite continuous advances and management strategies designed to mitigate the incidence of

HCC, its mortality rates have been rising over the last two decades. The major caveat in reduc-

ing the incidence of HCC is the detection at an early stage since more than 50% of HCC cases

are diagnosed at advanced stages [5]. Therefore, a better understanding of HCC pathogenesis

and its molecular underpinnings will help reduce the rising cases.

Most HCC cases develop in the background of unresolved chronic inflammation [6] that

triggers a persistent healing response [7]. The unbalanced healing response disturbs the archi-

tecture of the liver, leading to fibrosis, followed by cirrhosis. The regenerating nodules pro-

duced during cirrhosis fuel the transformation of hepatocytes to premalignant lesions called

dysplastic nodules. These premalignant lesions develop into early HCC (eHCC) and progres-

sive HCC (pHCC). Although this stepwise progression from chronic liver disease to tumour

state is widely prevalent in HCC, about 20% of cases arise from a non-cirrhotic background

[8]. While most non-cirrhotic HCCs develop from metabolic syndrome [9], HBV or HCV

infection can also lead to HCC from accelerated fibrosis without cirrhosis [8, 10]. Hence, it is

crucial to consider the existence of multiple trajectories to HCC when developing diagnostic

markers.

Due to the inherently complex nature of HCC development, managing patients is also quite

challenging. Surgical resection is the primary treatment for HCC patients with preserved liver

function but is prone to recurrence in about 70% of the cases within a few years [5]. Liver

transplantation is another option for patients not eligible for resection but is limited by the

availability of donors [11]. Under the circumstances where resection or liver transplantation is

not amenable, liver-directed medication fails, or recurrence is seen post-resection, systemic

therapy is chosen [5]. Systemic therapy in the form of tyrosine kinase inhibitors and immuno-

therapy targeting immune checkpoints have been developed for treating advanced-stage HCC

[12]. Further, treatment strategies must also consider underlying liver disease along with

tumour stage [13, 14], which may account for differences in the risk of HCC recurrence

among patients [15].

The advancement in the high throughput techniques (next-generation sequencing) is help-

ing to map the molecular changes of HCC at genomic, transcriptomic, and epigenetic levels

[6, 16]. This information provides insights into the various signalling pathways involved in

hepatocarcinogenesis. These include differentiation and development pathways (Wnt/β-cate-

nin, Notch Hedgehog signalling), genomic stability and cell cycle (TP53, RB1), telomerase

(TERT), growth and cell proliferation (PI3K/AKT/mTOR, RAS/MAPK, EGF/EGFR), angio-

genesis (VEGF/VEGFR, PDGF/PDFGR) and chromatin remodelling (ARID1A/ARID1B/

ARID2 and MLL signalling) [6, 17]. However, the current understanding of the interplay of

various signalling pathways in HCC is far from complete.

Molecular profiling distinguishes diverse subgroups of HCC that are otherwise indistin-

guishable by conventional histological methods [18]. Gene expression changes in tumour sam-

ples are used to predict recurrence and stratify patients into high and low-risk groups [19]. In

liver cancer, genes that show a fold change in expression between the normal and tumour sam-

ples are a better predictor of survival than considering candidates based on tumour samples

alone [20]. Gene expression profile of tumour-adjacent normal tissue is also reported to pre-

dict HCC recurrence [21]. Prediction models proposed in these studies are based on differen-

tially expressed genes in tumours or pre-defined gene signatures.

A recent study on a comprehensive analysis of tumour samples, tumour-adjacent normal

samples, and normal healthy samples showed that tumour-adjacent normal samples represent

an intermediate transcriptomic state between the other two [22]. Therefore, there is a need to

explore the multi-step progression of HCC through different trajectories to gain further

insights into the molecular mechanisms and develop predictive models. Network-based
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approaches provide a suitable platform to extract meaningful information from omics data,

hypothesis generation, stratification of disease classes, and discovery of biomarkers [23]. In the

present work, we aim to understand the molecular pathogenesis of HCC sequentially from

normal to tumour through different premalignant stages. A network-level analysis of the tran-

scriptomic profile of tumour samples and tumour-adjacent normal samples in different liver

damage conditions was performed to obtain insights into the transition from normal to pre-

cancerous to cancer state. The hierarchical changes: modules, pathways, and genes related to

HCC progression and survival prediction were identified.

Methods

Dataset description

Bulk RNA-seq transcriptomics data of HCC progression was obtained from GEO with acces-

sion number GSE148355. The dataset consists of tumour and non-tumour samples from HCC

patients or patients with the chronic liver disease treated with either total hepatectomy (TH)

or partial hepatectomy (PH) at Seoul National University Hospital. Clinical information is

available for 54 tumour samples (35 are from TH patients and 19 from PH patients). The

dataset also comprises 47 premalignant and 15 normal samples. The normal samples were

from patients with metastatic cancer/polycystic liver disease/or cholangiocarcinoma. All non-

tumour liver tissues have no evidence of hepatic fibrosis or viral hepatitis. Out of these 47 pre-

malignant samples, 24 are tumour-adjacent normal samples. The premalignant stages include

Fibrosis Low (FL)– 10 samples, Fibrosis High (FH) -10 samples, Cirrhosis (CS)– 10, Dysplastic

nodule low grade (DL)– 10 samples, and Dysplastic nodule high grade (DH)– 7 samples. All

samples were collected after receiving written informed consent from the patients, and the

original study was approved by the Institutional Review Board of Seoul National University

Hospital. This dataset is referred to as the Korean cohort. The plot summarising clinicopatho-

logical features of tumour samples is given in Fig 1.

In addition, we used HCC datasets from TCGA (TCGA-LIHC) and GEO (GSE14520) with

available clinical information. TCGA gene expression data and clinical data were obtained

from UCSC Xena (https://xena.ucsc.edu/). TCGA-LIHC comprises 316 tumour samples with

clinical information, and 39 of them have paired normal samples. GSE14520 is a microarray

based (GPL3921 platform) gene expression profiling from HCC patients treated with surgical

resection. The dataset includes gene expression data of 210 tumour and 210 adjacent normal

samples with associated clinical information and is referred to as the Chinese cohort.

Network-based approach

A systems-level analysis was designed to study the pathogenesis of HCC at multiple levels:

modules, pathways, and genes (Fig 2). The analysis pipeline was applied to three groups of

Fig 1. Clinicopathological features of tumour samples in the Korean cohort. This includes the surgery type (TH/PH), disease recurrence, whether the

tumour sample has an adjacent normal sample, the premalignant stage of the tumour-adjacent normal, and the risk factor (HBV, HCV, Alcoholic, None, SLD).

https://doi.org/10.1371/journal.pone.0296454.g001
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samples: (a) only tumour samples, (b) adjacent normal and tumour samples, and (c) all normal

and premalignant samples. To identify modules, the co-expression network was constructed

from gene expression data of the Korean cohort using weighted gene co-expression network

analysis (WGCNA) in R [24, 25]. FPKM values were transformed to log2(FPKM + 1), and the

top varying genes were selected using the rowVars function to construct the correlation (Pear-

son) matrix sij for WGCNA. A signed network was built by transforming the correlation

matrix to an adjacency matrix (aij) using the power adjacency function and soft thresholding

(aij = sβ
ij). Scale-free topology criteria was used to choose the power β. Subsequently, a Topo-

logical Overlap Matrix (TOM) was computed from the adjacency matrix, followed by dendro-

gram construction using 1 –TOM. Modules were identified from the dendrogram using the

dynamic cut tree algorithm, and module eigengene expression (ME) for each module was cal-

culated using singular value decomposition (SVD).

Modules significantly correlating with disease-free survival (DFS) and other clinical traits

were identified. Categorical traits such as surgery/treatment (TH and PH) and premalignant

state were converted into continuous numerical values to compute correlation with different

modules. For surgery, PH and TH were binarized as 1 and 2, respectively. The premalignant

states were converted to numerical with 1, 2, 3, 4, 5, and 6 indicating normal, FL, FH, CS, DL,

and DH, respectively. Hub genes from modules were extracted based on module membership

(MM> 0.8) and intramodular connectivity.

Candidate genes were selected for univariate survival analysis based on the modules that

correlated with DFS under each condition. Samples were dichotomised into two groups based

Fig 2. The workflow to study the progression from normal to precancerous to cancer state in HCC.

https://doi.org/10.1371/journal.pone.0296454.g002
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on the median gene expression profile of candidate genes, and survival analysis was performed

using the survival R package [26]. Further, module preservation analysis [27] was carried out

using TCGA data as the test set to access the biological relevance of modules identified from

the Korean cohort. The Zsummary statistics was used to evaluate whether the module is pre-

served between the reference set (Korean cohort) and test set (TCGA) with the following cut-

off:

module preservationðZsummaryÞ ¼
moderate; 2 < Zsummary < 10

strong; Zsummary � 10

(

Pathway enrichment analysis

The enrichment analysis of module genes was performed using Enrichr [28] to identify dysre-

gulated pathways. The ClueGO Cyctoscape plugin was used with default settings to visualise

the interrelations of the GO biological terms associated with modules [29].

Results

Co-expressed modules of tumour samples

The co-expression pattern of genes within tumour samples (Korean cohort) was studied using

top-varying genes. We found five modules (T1, T2, T3, T8, and T9) that significantly corre-

lated with DFS (Fig 3A). Coincidentally, T1 and T9 modules are significantly correlated with

the surgery/treatment (i.e., PH or TH) as well. An increase in DFS is associated with TH as the

treatment. This is in agreement with the original study [30], which shows TH group has better

DFS compared to patients undergoing PH treatment, although there were no differences in

grade/stage of tumour in these two groups.

KEGG pathway enrichment of the T9 module showed that cell cycle-related pathways play

an important role in governing the survival of a patient post-treatment (Fig 3B). The eigen-

gene expression pattern of this module shows that DFS decreases with an increase in cell cycle

activity. The T1 module includes cancer-related genes and pathways relevant for DFS predic-

tion post-treatment. The T2 module that is positively correlated with DFS is enriched for

amino acid metabolism, fatty acid degradation, and xenobiotic metabolism, indicating the

capability of the liver to carry out its basic functions post-treatment, thus improving survival.

It is also associated with complement and coagulation cascades. The T3 module is negatively

correlated with DFS and is associated with ribosomes. T4 and T5 modules are associated with

the treatment and are related to ECM and regulation of the Wnt signalling pathway,

respectively.

Since some modules showed a significant correlation with DFS, we checked if their respec-

tive eigengene expression could be used to identify differences in survival probability (Fig 3C).

We observed that the corresponding eigengene expression of DFS modules (median) also per-

forms well in predicting the survival probability. Further, the hub genes of these modules also

predicted the differences in survival probability and helped us to identify biomarkers. S1 Data-

set shows the list of hub genes in each module and their association with the DFS of patients.

The low expression of the macrophage scavenger receptor gene MARCO is associated with

poor DFS in HCC patients. The evaluation of MACRO protein expression by immunostaining

in HCC shows that its level decreases as the disease condition worsens [31]. CELC1B is a plate-

let-related gene, and its expression is related to immune cell infiltration [32]. CFP regulates the

complement pathway, and its expression correlates with the infiltration of immune cells [33].
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Fig 3. Co-expressed modules of HCC. (A) Module-trait correlations of tumour samples. DFS representing disease-free survival is a

continuous variable. Surgery (treatment) is a binary variable with partial hepatectomy (PH) represented as 1 and total hepatectomy (TH) as

2. *** indicates p-value< 0.001, ** indicates 0.001� p-value< 0.01, * indicates 0.01� p-value< 0.05. (B) KEGG pathway enrichment of

tumour modules. For each module, 15 most significant pathways sorted according to adjusted p-value are displayed (bottom to top within

each module). *** indicates adjusted p-value< 0.001, ** indicates 0.001� adjusted p-value< 0.01, * indicates 0.01� adjusted p-

value< 0.05. The number of overlapping genes and the total number of pathway genes are shown to the right of each bar. (C) Survival

analysis based on eigengene expression of tumour modules. Samples are classified into high and low-expression groups based on the median

of eigengene expression of each module. ‘p’ indicates the p-value of survival analysis.

https://doi.org/10.1371/journal.pone.0296454.g003
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Genes related to the lectin pathway of complement activation (COLEC10, FCN2, FCN3) are

also DFS hub genes of the T1 module. The expression of CRHBP, which mediates the reaction

between the corticotropin-releasing hormone and its receptor, is also a predictor of DFS in

HCC. The hub genes of the T2 module are related to metabolic processes, including TAT, a

tumour suppressor gene. MTHDF1, involved in the interconversion of 1-carbon derivatives of

THF, is also a DFS hub gene. Hub genes associated with microtubules and chromosomes from

the T9 module are also good predictors of DFS in HCC. The modules identified from tumour

samples of the Korean cohort are also preserved in tumour samples of TCGA (Figure S1 in

S1 Text). Further, the genes from the above modules also show significant survival differences

in TCGA tumour samples (Table S1 in S1 Text).

Progression from precancerous to cancerous state

Module-trait correlation with tumour samples revealed that modules significantly correlated

with DFS also captured the differences in surgery a patient has undergone. Based on these

observations, we hypothesised that there could be differences in the mechanism of precancer-

ous to cancerous progression between two groups of patients undergoing either TH or PH.

Therefore, we investigated the differences in the progression by identifying co-expression

modules in each group from both tumour and tumour-adjacent normal samples and correlat-

ing them with disease conditions.

The progression from precancerous to cancerous state in both groups shows that liver func-

tion is affected in tumour samples. Tumour samples show a decrease in liver function (TH1

module in TH group, PH5 module in PH group) and compromised immune-related pathways

(TH4 module in TH group, PH4 module in PH group) (Fig 4). The transcription factor enrich-

ment of TH1 and PH5 modules based on ENCODE data shows HNF4A as an associated tran-

scription factor. Modules capturing cell cycle changes in both groups (TH3 module in TH, PH2

module in PH) show a positive correlation in tumour samples. We observed significant correla-

tions to these biological processes in PH compared to TH (Fig 4A and 4B). PH4 module shows

a higher negative correlation compared to the TH4 module with respect to tumour samples,

suggesting that immune response genes are significantly downregulated in PH compared to

TH. Another feature difference in precancerous to cancer progression is that the cell cycle mod-

ule shows a very high positive correlation in PH samples (PH2 module) compared to TH sam-

ples (TH3 module). A comparison of these modules in both groups shows some overlap, but

the majority of genes are unique to a particular module in a group (Figure S2A in S1 Text).

These sets of unique genes may account for the difference in the precancerous to cancer pro-

gression. This analysis gives a global picture of precancerous to cancer progression in both TH

and PH groups fuelled by deviations in liver function, cell cycle, and immune response (Fig 4).

In addition to these observations, DEGs comparing tumour versus adjacent normal in both the

groups also supports this stark difference in cell cycle and immune response genes between the

two groups (Figures S2B and S3 in S1 Text). Further, we also observed that oxidative phosphory-

lation genes are downregulated in the TH group, while genes of choline metabolism in cancer and

arginine biosynthesis are upregulated in PH. Genes of Th1 and Th2 cell differentiation, Th17 dif-

ferentiation, and complement and coagulation cascades are downregulated in the PH group. We

also performed module preservation analysis using TCGA samples (Figure S4 in S1 Text). The

modules from the PH and TH groups show medium to high preservation in TCGA samples.

Co-expressed modules of normal and premalignant samples

The premalignant condition (47 samples) in the dataset ranges from fibrosis (low and high

grade) to cirrhosis and dysplastic nodule (low and high). We also included 15 normal samples
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to capture the changes from normal to premalignant lesions sequentially based on co-expres-

sion analysis. We found seven modules significantly correlating with premalignant stages

(Fig 5A). The N5 module showed a significantly high correlation to premalignant stages with

Fig 4. Progression from precancerous to cancer state. Module-trait correlations in (A) TH and (B) PH treatment groups. Tissue type is a

binary variable with the precancerous state as 1 and cancer state as 2. *** indicates p-value< 0.001, ** indicates 0.001� p-value< 0.01, *
indicates 0.01� p-value< 0.05. (C) KEGG pathway enrichment of precancerous to cancer modules. For each module, the 15 most significant

pathways sorted according to adjusted p-value are displayed (bottom to top within each module). *** indicates adjusted p-value< 0.001, **
indicates 0.001� adjusted p-value< 0.01, * indicates 0.01� adjusted p-value< 0.05. The number of overlapping genes and the total number of

pathway genes are shown to the right of each bar.

https://doi.org/10.1371/journal.pone.0296454.g004
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low expression in normal and FL stages and high expression in FH, CS, DL, and DH stages

(Fig 5B). This module is associated with cellular response to type 1 interferon, cytokine-medi-

ated signalling, and defense response to the virus (Table S2 in S1 Text). The N7 module is

related to neutrophil-mediated immunity and inflammatory response. The N10 module is also

positively correlated to premalignant stages, capturing the changes in gene expression that

occurred early in the FL stage. These early changes are associated with the complement

Fig 5. Co-expression modules of normal and premalignant conditions. (A) Module-trait correlations of premalignant samples. The stage represents

different premalignant conditions. (B) Eigengene plots for individual premalignant modules showing correlation with premalignant stage. *** indicates p-

value< 0.001, ** indicates 0.001� p-value< 0.01, * indicates 0.01� p-value< 0.05.

https://doi.org/10.1371/journal.pone.0296454.g005
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coagulation cascade, ribosome machinery, and lipid metabolic process. The N11 module

showed a gene expression pattern similar to the N10 module and is associated with mitochon-

drial oxidative phosphorylation.

The N2 module is negatively correlated with the premalignant stage and is enriched for

metabolic pathways linked to liver function and HNF4 transcriptional activity. The eigengene

expression shows that liver function is compromised in the late premalignant stages (Fig 5B).

Intriguingly, the N4 module that is positively correlated with premalignant stages is associated

with cell cycle pathways, showing the onset of the tumourigenesis process.

A previous study on HCC showed that hepatic injury and regeneration (HIR) signature

(233 genes) is a good predictor of DFS using premalignant samples from the Chinese cohort

[34]. We verified the overlap of the HIR signature with premalignant modules identified

through our analysis. We observed that only the N3 module, which is not associated with pre-

malignant states, showed a significant overlap of 61 genes with the HIR signature (Figure S5

in S1 Text). The N3 module is associated with immune pathways and cellular senescence.

We also tested the ability of individual modules to predict the DFS. For this purpose, the

Chinese cohort was chosen due to the large sample size with clinical information compared to

the Korean cohort. For each module (N1 –N11) identified in the Korean cohort, we calculated

the corresponding eigengene from paired normal samples of the Chinese cohort, followed by

survival analysis based on eigengene expression. The eigengene expression of the N3 module

predicts DFS (p-value = 0.004) with a high expression value associated with poor survival

(Fig 6). It was observed that 29 out of the 61 intersecting genes between the N3 module and

the HIR signature performed well in predicting the DFS in univariate Cox regression analysis

(S1 Dataset). These include genes, PLK2, ODC1, WWC1, MYC, DDX21, SOCS3. The high

expression of these genes is associated with poor survival. 13 genes out of 96 non-intersecting

genes also showed good predictability of DFS (S1 Dataset). Interestingly, we also observed

that eigengene expression of modules associated with premalignant stages (N10, N7 and N5)

predicted DFS based on normal/premalignant samples (Fig 6). The N5 module yielded the

best p-value of 0.0022 in the DFS analysis. THBD (p-value = 0.00035) and BCL2L1 (p-

value = 0.0007) are top candidate DFS genes from the N7 module (Table S3 in S1 Text).

THBD is a classical marker for dendritic cells (DCs). Increased DCs are associated with early

relapse of HCC [35]. BCL2L1 promotes invasion and inhibits apoptosis of liver cancer cells

[36]. High expression of FOS (p-value = 0.005) and JUN (p-value = 0.0015) in the N5 module

are also associated with poor DFS (Table S3 in S1 Text). Thus, by extracting modules of co-

expressed genes from premalignant samples, we identified biomarkers for DFS prediction.

Cell cycle-related pathways change in progression from normal to

precancer to HCC

It was observed that cell cycle-related pathways were enriched in premalignant samples (N4

module). Similarly, TH3 and PH2 modules from the precancerous to the cancer stage of TH

and PH samples were also associated with the cell cycle. The overlap of these module genes

with the cell cycle-related genes obtained from the GO term (S1 Dataset) showed that 55

genes are common and found in precancerous stages (Fig 7A). We observed an increase in cell

cycle-related genes with progression from precancer to cancer in TH3 and PH2 modules, hav-

ing 222 and 365 genes, respectively. There are 169 cell cycle genes unique to the PH2 module.

To gain further insights into the cell cycle processes, genes of the individual modules (N4,

TH3, PH2) overlapping with cell cycle genes (56, 222, 365 genes, respectively) were visualised

using GO biological processes with ClueGO Cytoscape plugin. The 55 common genes map to

biological processes related to the kinetochore, microtubule and chromosome (Fig 7B). GO
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terms unique to TH3 and PH2 modules suggest the progression differences from precancerous

to cancer state between TH and PH conditions. Checkpoint signalling, negative regulation of

the cell cycle process, DNA repair process, and regulation of exit from mitosis are observed in

the TH3 module but not in the PH2 module (Figs 7C and 8). On the other hand, the PH2

module shows positive regulation of cell cycle, proliferation, cell division, and cytokinesis,

along with positive regulation of protein metabolic processes. There is an increase in the num-

ber of genes related to microtubule spindle organization compared to N4 and TH3 modules.

Further, DFS cell cycle genes related to microtubules, kinetochores, and centromere also over-

lap with genes of the N4 module, suggesting some of these changes are associated with prema-

lignant stages.

Fig 6. Eigengene-based survival analysis using tumour-adjacent normal samples in the Chinese cohort. The eigengene expression

of each premalignant module (obtained from the Korean cohort) was calculated using the tumour-adjacent normal samples in the

Chinese cohort. Samples are classified into high and low-expression groups based on the median of eigengene expression of each

module. ‘p’ indicates the p-value of survival analysis.

https://doi.org/10.1371/journal.pone.0296454.g006
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Discussion

Understanding the molecular mechanisms involved in the progression of HCC through multi-

ple trajectories is crucial for improved diagnosis, prognosis, and treatment. In this direction,

we investigated publicly available transcriptomics data of HCC patients undergoing liver

Fig 7. Cell cycle alterations from normal to HCC transition. (A) Venn diagram showing the overlap of cell cycle genes with

modules significantly enriched for cell cycle-related pathways in premalignant and malignant samples (PH and TH groups). (B)

Network of GO biological processes of cell cycle genes in premalignant module N4. (C) Network of GO biological processes of cell

cycle genes in precancerous-cancer module TH3.

https://doi.org/10.1371/journal.pone.0296454.g007
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transplantation or resection treatment. Gene co-expression network-based framework was

employed to get molecular insights from the transcriptomics data of tumour samples, tumour-

adjacent normal samples in different premalignant states, and normal samples. This approach

identified modules of co-expressed genes, pathways, and genes that characterize different tra-

jectories and predict DFS based on premalignant and tumour samples.

Modules and genes related to the cell cycle, immune system, ribosome, and liver metabolic

pathways were good predictors for DFS using tumour samples (Fig 3 and Table S1 in S1

Text). An increase in the ribosome and cell cycle activity and a decrease in the expression of

immune (complement system) and liver metabolic genes are associated with poor DFS. Liver

function and proliferation are shown to be mutually exclusive, and the transition to prolifera-

tion occurs with the inhibition of liver function [37]. HCC occurrence and progression are

related to the interaction between viruses and ribosomes [38]. A decrease in the complement

system also indicates a change in the immune infiltration patterns. DFS modules were also

associated with the treatment (surgery) given to patients: PH and TH (Fig 3A). In addition, we

also found a tumour module (T4) linked to ECM to be associated with treatment.

Fig 8. Network of GO biological processes of cell cycle genes in precancerous-cancer module PH2.

https://doi.org/10.1371/journal.pone.0296454.g008
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The network analysis of patients who have undergone PH and TH was performed indepen-

dently, including the tumour and corresponding tumour-adjacent normal samples, to under-

stand the differences in progression. We observed that the same biological processes are

affected to a different extent in TH and PH groups. Both groups show a decrease in liver func-

tion and immune system and an increase in cell cycle activity. However, the tumour samples in

the PH group show a very high correlation to these biological processes (Fig 4). This indicates

that the extent of immune suppression and decrease in liver function is related to cell cycle

activity in tumour samples, bringing about the variability in the outcomes. This view contrasts

with our observations from modules identified from normal and premalignant samples. We

observed an increase in immune activity and cell cycle gene expression and a decrease in liver

function. An increase in immune activity may be associated with the antiviral mechanism

(most patients have HBV infection) by interferon signalling. Genes of immune modules (N5,

N7, N10) show some overlap with downregulated immune modules (TH4 and PH4) specific to

tumour samples. FOS and JUN are part of the upregulated module in premalignant samples

and downregulated modules in tumour samples. This suggests a shift in immune activity from a

premalignant state to tumour state. Pro-inflammatory M1 marker CCL2 decreases in tumour

modules TH4 and PH4 but increases in the premalignant state. The expression of fibrotic genes

EGR1, JUND, KLF2 and TAGLN also decreases in tumour samples (PH4 module).

On the other hand, genes related to liver function decrease in premalignant and tumour sam-

ples. HNF4A, which controls liver function, is known to be inhibited by increased inflammation

(immune activity) in liver fibrosis [39, 40]. The expression of HNF4A leads to the restoration of

metabolic function and reversing (attenuation) of liver fibrosis and cirrhosis via controlling mac-

rophages and hepatic stellate cells [41]. HNF4 drives the transition of macrophages to the M2 phe-

notype. We hypothesise that the mutual antagonism between HNF4A and immune activity plays

a role in HCC progression. An increase in inflammation may result in the inhibition of HNF4A

with an increase in cell cycle activity. A progressive loss of HNF4A activity is observed in liver dis-

eases (SLD) compared to HCC [42]. We observed that the transition from normal to premalig-

nant to tumour state is also characterised by an increase in cell cycle activity. Genes related to

mitotic spindle organisation are present in the premalignant state, and some of them are also DFS

genes in tumour samples. An increase in the expression of genes involved in the maintenance of

genomic integrity is associated with chromosomal instability (CIN), which is a prognostic factor

in multiple cancers [43, 44]. There is also an emerging link between CIN and tumour immunity.

We observed that multiple (N3, N7, N5, N10) modules from premalignant samples are good

predictors of DFS (Fig 6). The N3 module showed some overlap with the HIR signature, which

was earlier proposed for DFS prediction. However, we identified three more modules that can be

used for the prognostic task. These modules are associated with the immune system. We obtained

the best performance (p value = 0.0022) with the eigengene expression of the N5 module (Fig

6D). These modules are associated with premalignant conditions (fibrosis, cirrhosis), and an

increase in the eigengene expression is associated with poor survival. This suggests that early

relapse can also be predicted based on tumour-adjacent normal immune environment. Most

studies on HCC relapse are based on immune cell recruitment in tumour samples. Early-relapse

HCC cases have increased recruitment of dendritic cells (DC) and CD8+ T cells compared with

primary tumours [30, 35]. However, our study showed that the gene expression of tumour-adja-

cent normal samples of HCC patients contains multiple signatures relevant to predicting DFS.

Limitations

This study on HCC progression was performed solely based on the transcriptomics data. A

comprehensive view of progression should also account for alterations at the whole genome
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(somatic mutations, copy number variations) or epigenome (histone modifications, methyla-

tion) level that may drive transcriptional changes. Further, proteomic profiling during the

stepwise progression of HCC is required to confirm the changes at the transcriptomic level.

The current analysis is performed on the HCC cohort, which is mostly driven by HBV infec-

tion. Given the increasing incidence of SLD-driven HCC, it would be relevant to study the

SLD cohort using a similar strategy. Further validation of the work is required to study the

transition from different premalignant conditions using larger-size cohorts.

Conclusion

Overall, the network-level analysis of gene expression of HCC in different scenarios, including

only tumour samples, tumour and tumour-adjacent normal samples, and normal and prema-

lignant samples, showed that pathways relating to liver function, cell cycle, and immune sys-

tem are at the interplay of the molecular pathogenesis of HCC. The analysis of precancerous to

cancer transition revealed that similar pathways are affected to different extents in PH and TH

treatment groups. The characterisation of cell cycle changes showed that the TH group is asso-

ciated with the negative regulation of cell cycle in contrast to positive regulation of the cell

cycle in the PH group. Further, we showed that the gene expression profile of premalignant

conditions serves as early biomarkers of HCC and its recurrence. We conclude that this may

be due to dynamic changes in gene expression of the biological processes during the stepwise

progression of HCC.
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