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Abstract—Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder that predominantly occurs in children. Previous
brain research in ASD has mainly studied biomarkers based on
the functional connectivity characterized by the correlation of
static temporal signals. However, brain connectivity is dynamic
and varies extensively among brain states. The main aim of
the paper is to understand the fundamental group differences
between ASD patients and typically developing (TD) subjects
using dynamic functional connectivity (dFNC) analysis. In this
study, we investigated the dFNC between 53 independent com-
ponents among 188 ASD and 195 TD subjects. We estimated
dFNC using sliding window-based approaches and identified
four distinct dynamic states through hard-clustering analysis.
Hyper-connectivity within the cognitive control domain, between
cognitive control and default mode network, has been identified
among ASD subjects. Hyper-connectivity within the default mode
network has been found among TD individuals. Further, we
estimated the dynamic temporal properties such as fractional
time spent, and mean dwell time per state and observed signif-
icant differences between ASD and TD groups. ASD subjects
are found to have significantly longer dwell time in state 4
when compared to TD individuals. We also found a significantly
increased occurrence of state 4 in ASD subjects and states 1
and 3 in TD subjects. While there is broad consensus in the
brain network profiles between static functional connectivity
(sFNC) and dFNC, the temporal profile of brain state dynamics
is additionally available with dFNC analysis and may potentially
contribute to disease biomarkers.

Index Terms—Dynamic functional connectivity, Autism Spec-
trum Disorders, Autism Biomarkers

I. INTRODUCTION & RELATED WORK

Autism Spectrum Disorder (ASD) is a lifelong heteroge-
neous developmental disorder that is characterized by ab-
normal development of the brain. Deficits in social skills,
incapability to articulate language, abnormal sensory-motor
movements and stereotyped behaviors is mainly observed in
children with ASD. It has been demonstrated that the non-
invasive method, resting-state functional magnetic resonance
imaging (rs-fMRI), which represents intrinsic brain activity,
is useful for examining the neural mechanisms underlying
neurological diseases [1]. Most previous studies associated
ASD with atypical functional connectivity (FC) between dif-
ferent pairs of regions using traditional static methods based
on rs-fMRI. Most of these studies assume brain connectivity
is static. However, previous studies have hypothesized that
the brain is inherently dynamic, frequently switching between
discrete FC patterns during acquisition [2].

In contrast to static functional connectivity (sFNC) analysis,
the dynamic properties of FC offer a novel perspective on
the temporal features of activations across brain networks [3].
Presently dynamic functional network connectivity (dFNC)
analysis has shown to be a successful procedure for exam-
ining the neurological underpinnings of several psychiatric
disorders, including ASD. The blood-oxygen-level-dependent
(BOLD) signals in the rs-fMRI time series were used to
generate a functional correlation matrix for each overlapping
interval. Over time, the alterations of FC between brain regions
may be seen continuously [4], [5].

Fu et al. [6] investigated the dFNC between 51 intrinsic
connectivity networks in 170 ASD subjects and 195 age-
matched typically developing (TD) individuals. Hard cluster-
ing analysis on the dFNC windows has yielded five dynamic
brain states that identified hyper-connectivity between sub-
cortical (hypothalamus/subthalamus) and sensory-motor net-
works (lingual gyrus, paracentral lobule, and right postcentral
gyrus), predominantly in certain states. Similarly, Ma et al.
[7] identified several brain regions with dFNC analysis that
showed higher inter-network functional connectivity between
the central executive network (CEN), the ventral visual net-
work (VVN) and attention network (AN) in ASD patients
while comparing dFNC patterns among 88 ASD and 87
TD subjects. Interestingly, the same study by Ma et al. [7]
did not observe any significant group differences with sFNC
analysis which indicates the benefit of dFNC in revealing more
sensitive brain regions in ASD subjects due to its temporal
characteristics when compared to sFNC. Harlalka et al. [8]
explored the dynamic alterations in the connection strength
and dynamic properties like temporal modularity to character-
ize the differences between 100 ASD and 75 TD subjects. [8]
found high correlation of symptom severity scores with these
dFNC network-level temporal properties in ASD compared
to TD subjects. Another study by Li et al. [9] compared
variability in the temporal metrics on dFNC and clustering
analysis to reveal the high variability of temporal metrics
between the middle temporal pole and the posterior cingulate
gyrus in ASD and its correlation to symptom severity.

Using the sliding window, hard clustering-based approaches,
many studies investigated altered dFNC patterns in other dis-
orders such as Parkinson’s disease (PD), Subjective Cognitive
Decline (SCD) and healthy controls (HCs). Chen et al. [10]
investigated the dFNC and static parameters obtained from
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Fig. 1. Discrete Functional Connectivity (FC) Patterns (optimal number of brain states 4). These are the cluster centroids obtained through hard clustering
analysis on the FC patterns from all subjects, both ASD and TD. The Connectograms depict the connectivity among the regions that comprise seven resting
state networks indicated in different colors. The strengths of the inter-regional connectivity is depicted using a color map varying from -0.6 to 0.6.

graph theory among 33 HCs and 32 SCD subjects. [10] found
4 optimal dynamic brain states through hard clustering analysis
on dFNC windows and identified hyperconnectivity within and
between auditory domain, visual domain, and, somatomotor
networks among SCD subjects. Fiorenzato et al. [11] analyzed
the dFNC between 118 patients suffering with PD and 35
HCs. Two dynamic brain states have been found through
the sliding window approach and hard clustering analysis.
[11] hypothesized that the underlying cognitive deficits in PD
subjects are characterized by strong connectivity in default
mode and cognitive executive networks.

Contrasting with most extant studies, we compared dynamic
brain states to sFNC. Specifically, the dynamic characteristics
of the brain states were estimated while applying clustering
analysis on the time series segments extracted from 7 brain
networks consisting of 53 regions of interest on a large
subset of 188 ASD and 195 TD subjects from the ABIDE-
I consortium. This study aimed to (a) compare connectograms
of ASD and TD subjects estimated with dFNC and sFNC (i.e.,
can dFNC delineate any other meaningful information in terms
of brain network differences in addition to information that
can be evident from sFNC?) (b) understand the dFNC based
network group differences in each state and reveal the dFNC
patterns that showed increased or decreased connectivity in
ASD subjects, (c) explore the temporal properties such as
fractional windows in each state, the mean dwell time of
each state, and the number of transitions between each pair
of dynamic states using statistical two-sample T-test.

II. METHODS

A. Extraction of Independent Component Networks

We used the ICA NeuroMark template [12] to extract
53 Independent Components (ICs) belonging to 7 resting
state networks. The ICA NeuroMark Template is a functional
parcellation atlas developed using independent component
analysis (ICA) applied to rs-fMRI data. The atlas is based
on data from a large sample of healthy individuals, and its
regions of interest (ROIs) are defined by functional networks
rather than anatomical boundaries. This approach allows for a

more precise mapping of functional connectivity networks in
the brain and has the potential to reveal new insights into brain
organization and function. The atlas is based on a standardized
template space, which allows for easy comparison and integra-
tion with other neuroimaging datasets. The ICA NeuroMark
Template has shown promise in diagnosing neurological dis-
orders, such as Alzheimer’s disease, Parkinson’s disease, and
multiple sclerosis. These networks were categorized into the
following seven domains: Subcortical Domain (SC; ICs: 1−5),
Auditory Domain (AUD; ICs: 6, 7), Visual Domain (VIS; ICs:
8− 16), Somatomotor Domain (SM; ICs: 17− 25), Cognitive
Control domain (CC; ICs: 26 − 42), Default-Mode Domain
(DM; ICs: 43−49), and Cerebellar Domain (CB; ICs: 50−53).
ICA Neuromark template can be downloaded here 1 and its
corresponding labels 2. Time courses (TCs) are extracted from
these ICNs followed by temporal pre-processing strategies that
includes: detrending linear, quadratic, and cubic trends, de-
spiking detected outliers, and low-pass filtering with cut-off
frequency of 0.15 Hz.

B. Static Functional Connectivity estimation

sFNC is determined by computing the pair-wise pearson
correlation coefficient (PCC) between every pair of ICNs. The
PCC, ρxy for two signals, x and y each of length T and mean
x̂ and ŷ respectively, can be computed using the following
equation.

ρxy =

∑T
t=1(xt − x̂)(yt − ŷ)√∑T

t=1(xt − x̂)2
√∑T

t=1(yt − ŷ)2
(1)

Here, C represents the number of ICNs. sFNC obtained is
a symmetric matrix of size C × C, where each (i, j)

th entry
represents the PCC between ith and jth regions.

C. Dynamic Functional Connectivity estimation

A sliding window-based method was used to estimate
dynamic Functional Network connectivity (dFNC) for each

1NeuroMark Template
2NeuroMark Labels
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Fig. 2. Connectograms of ASD vs TD and dFNC states vs sFNC. Activations within and between CC and DM networks that are statistically significant
in both groups ASD and TD. The first row represents the significantly stronger activations among ASD subjects and the second row represents significantly
stronger activations among TD subjects in all four dynamic brain states. The last column represents the significantly stronger activations found in both groups
found using sFNC analysis. The names of each IC and its corresponding brain networks are part of Neuromark template release.

TABLE I
DYNAMIC FUNCTIONAL CONNECTIVITY PARAMETERS

Parameters Values
Number of components (C) 53
Timepoints per subject (T ) 175
Window size (w) 20
Stride (s) 1
Windows extraction per subjects (N ) 155
Windows extracted from all subjects (W ) 59365

individual. We only chose the first T time points of each
subject’s component TCs for the dFNC estimation because
the subject’s data from different sites could have varying scan
lengths. This was done to minimize the effects of different scan
lengths. To localize the dataset at each time point, we created
a tapered window by convolving a rectangle with a Gaussian
(σ = 3). We chose a window size w TRs corresponding to t
seconds. We slid the window in s TR increments, producing a
total of N windows per subject. We estimated the regularised
precision matrix using the graphical LASSO approach (with
the L1 norm to encourage sparsity) and then deduced the
covariance matrix from the precision matrix [13]. Let the total
number of windows extracted from all the subjects be W . All
the dFNC parameters can be seen in table I

D. Hard Clustering Analysis

The fundamental presumption behind the hard clustering
state analysis is that functional brain networks will enter
different states with unique dFNC patterns. All the windows
extracted from all the subjects (W ) are divided into distinct
states (discrete FC patterns) utilizing the K-Means clustering
technique and the L1 norm as the distance function. To reduce
the redundancy between windows and computational demands,

we utilized the subset of windows (consisting of local maxima
in functional connectivity variance) as subject exemplars. As
K-means algorithm is sensitive to initialization, it was repeated
for 100 times (with random initialization of centroid position)
with a maximum of 250 iterations to obtain the group cluster
centroids. To find the optimal number of states, we used
the elbow criterion which is defined as the ratio of within
clustering distance to between clusters distance. The optimal
number of dynamic states was determined as K = 4. The
optimal dynamic states can be seen in figure 1.

E. Group differences in static and dynamic-connectivity
strength

Two-sample T-test analysis has been done to compare static
and dynamic connectivity strength between ASD and TD
groups. For dFNC, we repeated the below steps (A, B, C)
for all four dynamic brain states. A) Consider those subjects
in which at least a window belongs to that particular state.
B) In all those subjects, compute the median of windows per
state. C) There exist 1378 distinct connectivities for every pair
of ICNs. For every distinct connectivity, performed the two-
sample T-test between groups ASD and TD per state to find
significantly different connectivities (p < 0.05, false discovery
rate (FDR) correction). In case of sFNC, we can conduct the
two-sample T-test directly on connectivity between pairs of
ICNs to compare the groups.

F. Temporal properties

We also investigated the temporal properties of four dy-
namic brain states by computing the fractional windows (the
number of total windows belonging to a given state), mean
dwell time (the number of consecutive windows belonging to
a given state) per state, and the number of transitions between
each pair of states. Statistical two-sample T-test are used to
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identify the differences between groups per state (p < 0.05,
FDR correction).

TABLE II
DISTRIBUTION OF NUMBER OF SUBJECTS AND WINDOWS PER STATE FOR

EACH GROUP: ASD AND TD. THE ’SUBJECTS’ REPRESENTS THE NUMBER
OF SUBJECTS OCCURRED IN EACH STATE, AND THE ’WINDOWS’

REPRESENTS THE NUMBER OF WINDOWS ASSIGNED TO EACH STATE
WITHIN ASD AND TD.

State ASD TD
Subjects Windows Subjects Windows

State1 59 2241 79 3653
State2 145 5333 165 6575
State3 131 4849 158 6583
State4 185 16717 187 13414

III. DATASET & PREPROCESSING

The present work used the pre-processed dataset from
the Autism Brain Imaging Data Exchange (ABIDE-1) ini-
tiative [14]. The dataset comprises 1, 112 rs-fMRI scans
acquired from 17 different sites. There exist 505 ASD and
530 Typical controls. For the analysis, we chose 383 subjects
(188 ASD and 195 TD). The criteria to include subjects are
as follows: 1) subjects with DSM-IV diagnosis, 2) subjects
with mean frame-wise displacement (mFD) corresponding to
two standard deviations above the sample mean, i.e., smaller
than 0.4432, 3) subjects with atleast 175, volumes in fMRI
acquisition 4) subjects with repetition time (TR) = 2 sec
while scanning 5) subjects with Full IQ score 6) subject mask
with a spatial correlation greater than 0.8 with the group
mask computed using the subjects qualified for the above five
conditions. Group mask computation is as follows: Firstly, we
determined the individual mask for each subject by setting
the value of voxels larger than 70 percent of the entire brain
mean value to 1. Next, we set the voxels present in more than
70% of the individual masks to 1 to compute a group mask.
We used publicly available preprocessed four-dimensional rs-
fMRI scans using Connectome Computation System (CCS)
[15]. Dataset can be downloaded from here 3 by setting the
pipeline as ‘ccs’ and strategy as ‘nofilt noglobal’.

IV. IMPLEMENTATION

ICNs extraction using ICA neuromark template, dFNC
clustering analysis followed by hard clustering analysis and
two sample T-test analysis has been done using Group ICA
of fMRI Toolbox (GIFT) [16]. The toolbox scripts were
implemented in matlab and can be downloaded from here 4.
All the subject IDs of the ABIDE-I samples used in this paper,
and parameters required to extract ICNs, estimate dFNC, and
perform the clustering analysis will be made publicly available
upon publication for reproducibility.

3Dataset
4GIFT toolbox

V. RESULTS

A. Characteristics of Different Brain States

Four optimal dynamic states have been found using K-
Means clustering on all windows (W ) extracted from all
subjects in both ASD and TD. As shown in Table II, we
can observe that 10% of the total windows were assigned to
state 1 and characterized by strong positive intra-connectivity
within VIS and SM networks and sparse connectivity within
DM and CC networks. 20% of the windows were assigned to
state 2 and characterized by strong positive intra-connectivity
within VIS, DM networks and inter-connectivity between CC-
DM networks. 19% of the windows were assigned to state 3
and characterized by strong positive intra-connectivity within
VIS, SM, and inter-connectivity between CC-DM networks
and negative inter-connectivity between AUD, SM, and CC
networks. 51% of the windows were assigned to state 4 and
characterized by positive intra-connectivity within SM, VIS,
DM, and inter-connectivity between CC and DM. All the state
characteristics mentioned above can be observed in figure
1. The group and state-specific distribution of windows and
subjects can be seen in Table II. It is to be noted that not all
the states occurred in all the subjects. From Table II, states 1
and 3 occurred less frequently among ASD subjects than in
TD (state 1: ASD - 3.77%, TD - 6.15%; state 3: ASD - 8.16%,
TD - 11.08%). State 4 occurred more frequently among ASD
subjects (ASD - 28.15%, TD - 22.59%).

B. Dynamic Functional Connectivity Differences with two-
sample T-test

For each state, Table III, shows the number of stronger
connections in ASD and TD groups among pairs of within
or between IC networks that are statistically significant (p <
0.05, FDR correction). Overall, for state 1, we observed 56
stronger within- and between-network connections in ASD
compared to TD subjects. Similarly, for other states, 2, 3
and &4, the number of connections emerged to be higher in
ASD compared to TD. Looking at the number of stronger
connections among pairs of IC networks, we observed that
within the CC network and between CC-DM networks, most
of them were stronger in ASD subjects, whereas, within DM
network, connections were stronger among TD individuals in
all four states. Figure 2 highlights the qualitative visualization
of regional differences in the CC-DM network. Interestingly,
the patterns were quite similarly observed for static functional
connectivity in ASD and TD groups, as evident from figure 2
focusing on the CC-DM network. However, the statistical com-
parisons on the temporal characterization of dynamic states
(clusters) between ASD and TD brought additional regional
differences between IC networks that may be evident in static
functional connectivity or vice-versa. Overall, we observe
329 stronger intra- and inter-connectivity differences in ASD
while using dynamic functional connectivity compared to 111
significant connections in ASD while using static functional
connectivity.
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TABLE III
DISTRIBUTION OF STRENGTH IN CONNECTIONS CHARACTERIZED FROM PAIRS OF IC NETWORKS FOR BOTH DYNAMIC AND STATIC FUNCTIONAL

CONNECTIVITY. FOR EACH STATE, THE NUMBER INDICATES THE DOMINANT CONNECTIONS THAT ARE ESTIMATED FROM STATISTICAL DIFFERENCES
WHILE COMPARING BOTH ASD AND TD GROUPS. FOR COMPARISON, WE ALSO SHOW STRENGTH IN CONNECTIONS EMERGED FROM STATIC

FUNCTIONAL CONNECTIVITY.

State Total CC-CC CC-DM DM-DM SM-CC VIS-DM VIS-CC SC-CC
ASD TD ASD TD ASD TD ASD TD ASD TD ASD TD ASD TD ASD TD

State1 56 40 8 2 8 5 0 4 10 2 1 0 8 7 4 7
State2 100 87 17 9 20 10 0 10 4 7 6 3 6 7 9 4
State3 103 94 21 13 21 14 0 13 1 5 17 2 6 18 2 6
State4 70 68 14 7 12 6 0 8 3 6 10 4 6 14 3 5
sFNC 111 114 19 16 24 18 0 12 4 6 9 5 7 9 2 11

Fig. 3. Fractional Time spent and Mean dwell time of ASD and TD groups per state. The left plot represents the fractional time spent in each state and
the right plot represents the mean dwell time of each state specific to the group. * indicate that the distributions are significantly different (p < 0.05, FDR
correction)

C. Temporal Properties Differences

From figure 3, it can be observed that fractional time spent
among ASD subjects is significantly greater than TD subjects
in state 4 (p = 0.0005) and significantly lower in state 1
(p = 0.04) and state 3 (p = 0.019). Significant differences
were found in mean dwell time of state 4. ASD subjects
exhibited significantly longer mean dwell time in state 4
compared to TD subjects (p = 0.00023), while there was
a trend for longer mean dwell time in state 3 among the
TD subjects (p = 0.071). No significant differences between
groups have been found based on the number of transitions
between states (ASD: 6.27±3.68;TD : 6.90±3.17; p = 0.071,
FDR correction). However, increasing trend can be observed
among TD individuals.

VI. DISCUSSION

We studied dFNC patterns for ASD and TD on a large num-
ber of subjects sampled from the ABIDE-I consortium. We
extracted dFNC patterns and applied hard clustering analysis
on those patterns to find the optimal brain states or discrete
FC patterns, which helps us to understand the network-level
differences in the fundamental brain organization of ASD
with respect to TD subjects. We performed a two-sample T-
test and found many activations between ICNs within and
between networks that are significantly different among the

groups ASD and TD per state (p < 0.05, FDR correction).
We observed hyper-connectivity among ASD subjects within
CC network and between CC-DM networks in all four states.
Among TD subjects, hyper-connectivity has been found within
DM network in all four states. The stability and occurrence
of state 4 is significantly greater among ASD subjects when
compared to TD individuals. The variability of the states
revealed an increasing trend among TD individuals.

Regions that contribute to the hyper-connectivity in the
CC network among ASD subjects in most of the dynamic
states are found to be the Hippocampus, Middle cingulate
cortex, Left inferior parietal lobule, Inferior frontal gyrus,
and hypo-connectivity in the DM network are Precuneus,
Posterior cingulate cortex, and Anterior cingulate cortex. The
region hippocampus controls memory encoding, learning, and
memory consolidation [17], the inferior frontal gyrus controls
language comprehension and production [18], and the middle
cingulate cortex is in charge of cognitive processing, particu-
larly decision-making [19]. There are numerous neurological
processes that the inferior parietal lobe (IPL) is assumed to
be engaged in, such as spatial attention, multimodal sensory
integration, and oculomotor control [20]. The precuneus is a
part of the default mode network that performs a wide range
of complicated tasks, such as information integration related
to the perception of the environment, cue response, mental
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imagery techniques, and retrieval of episodic memory [21].
The anterior and posterior cingulate cortex are responsible for
social cognition [22], [23]. All of these functions are found to
be effected in patients with ASD [24], [25].

Earlier research [26], [27] has investigated the role of
altered FC of DM sub-networks among high-functioning ASD
subjects based on rs-fMRI scans. These studies hypothesized
that the FC between the precuneus and the medial prefrontal
cortex/anterior cingulate cortex, and DM core areas were
weaker in ASD patients. The findings are consistent with the
concept that the fundamental deficiencies in ASD are a result
of the under-connectivity of DM sub-networks [28]. Harlalka
et al. [8] observed that patients with ASD demonstrated higher
dFNC between the attentiveness network (AN) and default
mode network (DM) than TD individuals.

The shortcoming of this study includes considering only
male participants. This is to avoid gender-biased conclusions
arising from our sample selection criteria. As future work, we
extend this selection criterion to both males and females as
gender influences in ASD subjects are proven to be different in
terms of functional organization [29]. From a machine learning
perspective, the connectivity strengths that are shown to be
statistically significant (could act as a prior feature selection
criteria) to classify ASD and TD. This may reveal the useful-
ness of dFNC over sFNC while considering the information
from multiple brain states to averaged representation of sFNC.
Within this space, another possible extension could be to
correlate these hyper-connectivity findings in brain networks
to clinical scores for a better understanding of sub-types such
as Autistic, Asperger’s, and Pervasive developmental disorder.

VII. CONCLUSION

In this paper, we studied the dFNC patterns from seven
different brain networks between ASD and TD for Autism
biomarkers. Our systematic comparisons across four optimal
brain states revealed the hyper-connectivity within intra- and
inter-level brain networks in ASD and TD. Examining the
temporal properties revealed the stability and variability of
states among ASD and TD. Though, the emerged dFNC
networks are consistent with sFNC networks, our study ideates
toward the detailed investigation of unique and overlapping
brain network level differences arising from various inputs like
timeseries with and without estimating functional connectivity
can give more insights into disease biomarkers.
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