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Abstract—Autism spectrum disorder (ASD) is a neurodevel-
opmental disorder predominantly found in children. The cur-
rent behavior-based diagnosis of ASD is arduous and requires
expertise. Therefore, it is appealing to develop an accurate
computer-aided tool for diagnosing ASD. Although resting-state
functional magnetic resonance imaging (rsfMRI) has proven to
be successful in capturing the neural organization of the brain,
automated detection of ASD using rsfMRI scans is a challenging
task due to heterogeneity in the dataset and limited sample
size. This paper proposes a Multilayer Perceptron (MLP) based
classification model with autoencoder pretraining for classify-
ing ASD from Typically Developing (TD) using rsfMRI scans
obtained from the ABIDE-1 dataset. Our model achieves new
state-of-the-art performance on the ABIDE-1 dataset with a 10-
fold cross-validation accuracy of 74.82%. Further, we use the
Integrated Gradients (IG) and DeepLIFT techniques to identify
the correlations between brain regions that contribute most to the
classification task. Our analysis identifies the following regions,
Left Lingual Gyrus, Right Insula Lobe, Right Cuneus, Right
Middle Frontal Gyrus, Left Superior Temporal Gyrus to be
associated with ASD. Interestingly, these regions in the brain are
primarily responsible for social cognition, language, attention,
decision making and visual processing, which are known to be
altered in ASD.

Index Terms—Autism Classification, Neural Network, Autoen-
coder, Pretraining, rsfMRI, ABIDE, ASD Brain Biomarkers

I. INTRODUCTION & RELATED WORK

Autism Spectrum Disorder (ASD) is a neurodevelopmental
disorder that occurs in children. It is caused due to early devia-
tions in brain development, and neural rearrangement [1]. The
children with this disorder suffer from social communication
deficits, monotonous and abnormal sensory-motor behaviors.
ASD, as the very name suggests, is a spectrum disorder with
a broad range of types, severities, and symptoms [2]. Centers
for disease control and prevention reported that 1 out of
54 children in the United States and 1 out of 160 children
worldwide are diagnosed with ASD. All socioeconomic and
ethnic groups have been affected by ASD. The prevalence
of ASD has been increasing worldwide, and the underlying
cause is unclear. Diagnosis of ASD is typically made by

*The first two authors contributed equally to this work

observing behavioral patterns and cognitive developmental
delays because there are no well-grounded biomarkers [1].

Autism Diagnostic Observation Schedule (ADOS) and
Autism Diagnostic Interview-Revised (ADI-R) are the “gold
standard” assessment measures for the evaluation of ASD.
However, diagnosis using these procedures suffers from sub-
jectivity, lack of accuracy and also requires experts, which
often results in a significant economic burden on the families
of ASD patients [3]. Early detection of ASD is crucial, and it
can significantly improve the quality of life of individuals with
ASD, their careers, and families, as mentioned in the clinical
study by Elder et al. [4]. Therefore, developing a computer-
aided tool for the accurate diagnosis of ASD will make the
diagnosis objective, swift, and economical.

Brain disorders are nothing but abnormalities in one or more
brain regions or atypical connectivity between different brain
regions [5]. Atypical Functional Connectivity (FC) between
different brain regions is widely used for the study of various
neurodegenerative and psychiatric disorders like ASD, Mild
cognitive impairment, Bipolar disorder, Attention deficit hy-
peractivity disorders, and Schizophrenia [6]. FC is estimated
from the temporal correlation of spontaneous BOLD signal
among two or more anatomically distinct brain regions. If the
signals from two or more brain regions show synchronized
fluctuations, then the regions are said to be functionally
correlated (connected). FC in the resting human brain was
first identified by Biswal et al. [7].

With the increasing popularity of deep learning methods,
many studies have combined FC and deep neural network
architectures to classify children with ASD from the typically
developing (TD). Heinsfeld et al. [8] used stacked denoising
autoencoders (SDA) at the pretraining stage and then used a
multilayer perceptron (MLP) as the classifier. They reported
an overall 10-fold cross-validation accuracy of 70% on the
ABIDE-1 dataset. Parisot et al. [9] have used a graph-based
approach to build a population graph and then trained a
Graph Convolution Network to classify the nodes as autistic
or typical control. They achieved a classification accuracy of
70.4% on the ABIDE-1 dataset. Eslami et al. [10] proposed
a joint learning procedure using an autoencoder and a single
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Fig. 1. Classification Pipeline. 1. Pre-processing the rsfMRI scan. 2. Extracting the time-series data using pre-defined anatomical or functional brain
parcellations. 3. Extracting the static functional connectivity matrix. 4. Flattening the Upper triangular part of functional connectivity matrix and passing
as input to the auto-encoder. 5. Training the auto-encoder. 6. Fine-tuning the classifier with pre-trained auto encoder weights.

layer perceptron for the ASD classification task, called ASD-
Diagnet. Their model achieved 70.3% classification accuracy
on the ABIDE-1 dataset. Sherkatghanad et al. [11] used a
Convolutional Neural Network (CNN) based classification
model and reported an accuracy of 70.22% on the ABIDE-
1 dataset. Wang et al. [12] proposed a multi-atlas deep feature
representation and ensemble learning method based on SDA
and MLP for the ASD identification task. They reported an
accuracy of 74.52% on the ABIDE-1 dataset.

The above mentioned approaches lack model interpretability
i.e. identifying the brain regions that contribute most to the
ASD classification task. This study proposes a two hidden
layer neural network with autoencoder pre-trained weights
and model interpretation using Integrated Gradients (IG) [13]
and DeepLIFT [14]. Our model achieves new state-of-the-
art performance with a 10-fold cross-validation accuracy of
74.82% on the ABIDE-1 dataset in 10x less training time
as compared to the previous best method [12]. The main
contributions of this paper are:

1) Proposed a two hidden layer feed-forward neural net-
work with autoencoder pretraining.

2) Applied IG and DeepLIFT, prominent feature attribution
methods, to interpret brain biomarkers in ASD subjects.

3) Revealed the impact of heterogeneity in the dataset and
compared the effect of different preprocessing pipelines,
brain parcellation schemes on the classification perfor-
mance.

II. METHODS

A. Feature Extraction

Static Functional Connectivity (sFC) is measured by cal-
culating the pair-wise correlations between every pair of
brain regions. Mostly these correlations are linear, which are
captured using the Pearson Correlation Coefficient (PCC). The
PCC, ρxy for two signals, x and y each of length T and mean
x̂ and ŷ respectively, can be computed using the following
equation.

ρxy =

∑T
t=1(xt − x̂)(yt − ŷ)√∑T

t=1(xt − x̂)2
√∑T

t=1(yt − ŷ)2
(1)

Given n brain regions, we obtain an n× n, sFC symmetric
matrix where each (i, j)

th entry represents the PCC between
ith and jth regions. We extract the upper triangular values of
the sFC matrix and use them as an input to our model.

B. Autoencoder and Classification Method

An Autoencoder [15] is a type of neural network trained
in an unsupervised way to estimate the latent representation
of the original input. It consists of two parts – an encoder,
which encodes the input vector x into a latent vector z, and
a decoder which then reconstructs the original input vector x̂
from the latent vector z. Both the encoder and decoder are
neural networks that are trained end-to-end by minimizing the
reconstruction loss between the original input vector x, and the
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TABLE I
SITE-WISE PHENOTYPIC INFORMATION OF THE ABIDE-1 DATASET. ASD AND TD COUNT REPRESENT THE NUMBER OF AUTISM AND TYPICALLY
DEVELOPING SAMPLES IN EACH SITE, RESPECTIVELY. AVERAGE MEAN FRAME-WISE DISPLACEMENT (MFD) REPRESENTS THE AVERAGE MEAN

FRAME-WISE DISPLACEMENT OF ALL SCANS IN THE SAME SITE MEASURED IN MILLIMETERS (MM). TIMESERIES REPRESENT THE NUMBER OF FRAMES
IN EACH SCAN ALONG THE TEMPORAL DIMENSION. DURATION REPRESENTS THE TIME TAKEN FOR EACH SCAN IN SECONDS(S). REPETITION TIME (TR)

REPRESENTS THE AMOUNT OF TIME BETWEEN SUCCESSIVE PULSE SEQUENCES APPLIED TO THE SAME SLICE IN SECONDS (S)

.

SITE ASD count TD count Average Age (years) Male count Female count Average MFD (mm) Time-series Duration (s) TR (s)
CALTECH 14 18 27.36 25 7 0.0701 146 292.0 2

CMU 13 13 26.69 20 6 0.2957 236/316 632.0 2
KKI 18 28 10.02 34 12 0.14 152 380 2.5

LEUVEN 20 34 17.81 46 8 0.0924 246 410 1.6
MAX MUN 17 28 25.42 42 3 0.1441 116/196 588 3

NYU 60 100 15.51 125 35 0.07 176 352 2
OHSU 9 14 10.87 23 0 0.09 78 195 2.5
OLIN 18 15 16.67 29 4 0.1901 206 309 1.5
PITT 24 27 18.89 45 6 0.1564 196 294 1.5
SBL 12 15 32.85 27 0 0.1528 196 431 2.2

SDSU 9 22 14.32 24 7 0.0954 176 352 2
STANFORD 17 20 9.89 30 7 0.1063 176 352 2

TRINITY 19 25 16.90 44 0 0.1104 146 292 2
UCLA 46 44 12.90 79 11 0.1915 116 348 3

UM 58 74 14.09 106 26 0.1608 296 592 2
USM 42 25 22.74 67 0 0.1496 236 472 2
YALE 23 28 12.79 37 14 0.1137 196 392 2

decoder output x̂, to make the reconstruction as close to the
original input vector as possible. Usually, the reconstruction
loss is computed using the Mean Squared Error (MSE).

Loss(x, x̂) =
n∑

i=1

(xi − x̂i)
2 (2)

In this study, we use the autoencoder in the pretraining stage.
The encoder architecture consists of two hidden layers of size
2048 and 512 respectively, as shown in Fig.1. We use tanh
as the nonlinear activation function for both the layers. The
decoder architecture mirrors that of the encoder, with two
hidden layers of size 512 and 2048, respectively.

For each fold, first, we train the autoencoder and then re-
move the decoder part and add the classifier, which has a single
output layer as shown in Fig.1. The model comprising the
encoder and classifier, are then fine-tuned for the classification
task by minimizing the binary cross-entropy loss H between
the original class label, yi and the model prediction, ŷi for all
the N subjects.

H =
−1

N

N∑
i=1

(yi ∗ log ŷi + (1− yi) ∗ log(1− ŷi)) (3)

C. Model Interpretation

Many studies have developed classification pipelines to
detect ASD from TD with high accuracy. However, identifying
the brain bio-markers in ASD subjects is less explored. In
this study, we have attempted to find out the regions asso-
ciated with ASD using Integrated Gradients (IG) [13] and
DeepLIFT [14]. IG and DeepLIFT are considered to best
attribution methods so far as it satisfies the two fundamen-
tal axioms, Sensitivity, and Implementation Invariance, that

all attribution methods must satisfy [13]. Therefore, IG and
DeepLIFT were used to determine which input features to
blame or credit for predicting the corresponding classification
label.

IG and DeepLIFT assign a weight to a feature relative to the
baseline (where that feature is absent). Passing the input with
null feature values reveals how the model performs when no
information is provided and is neutral to the model’s prediction
as recommended in [16]. Therefore, initializing the baseline as
input of zeros would be appropriate in this study.

IG aggregates the gradients along the inputs that fall on the
straight line between the baseline and the input. The integrated
gradient along the ith dimension for an input x and baseline
x′ is defined as follows. Here, ∂F (x)/∂xi is the gradient of
F (x) along the ith dimension.

IGi(x) = (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi
dα (4)

DeepLIFT method computes feature importance based on
explicating the difference in output from some ‘reference’
output in terms of the difference of the input from some
‘reference’ input. Though the gradient is zero, information can
be propagated using this approach based on differences from
the reference values [14].

III. DATASET & PREPROCESSING

This paper utilized the dataset from the preprocessed Autism
Brain Imaging Data Exchange (ABIDE-1) initiative [17]. The
dataset consists of 1, 112 rsfMRI scans collected from 17
different sites. There exist 505 ASD and 530 Typical controls
(henceforth, referred to as typically developing (TD) cohort),
out of which 86 ASD scans have been discarded due to
their missing time series [12]. There is significant noise due

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on October 26,2023 at 10:15:22 UTC from IEEE Xplore.  Restrictions apply. 



to patient-specific difficulties such as repetitive head motion,
body trembling, keeping eyes open/closed during the scan,
and heterogeneity due to high variation in demographics, scan
parameters, and age groups of participants collected from
different sites as shown in table I.

The dataset was experimented with four different pipelines
such as Connectome Computation System (CCS) [18], Config-
urable Pipeline for the Analysis of Connectomes (C-PAC) [19],
Data Processing Assistant for Resting-State fMRI (DPARSF)
[20], Neuro Imaging Analysis Kit (NIAK) [21], are publicly
available. Basic preprocessing steps include dropping first n
columns, slice timing correction, motion realignment, intensity
normalization, nuisance signal removal, bandpass filtering
(0.01 - 0.1 Hz), and global signal regression. The above-
mentioned preprocessing pipelines include all the basic pre-
processing steps, but their software implementations, specific
algorithms, and parameters for various steps are different.

It is essential to parcellate the brain into structurally and
functionally well-defined regions and obtain the time-series
data to understand the correlation between regions in the
brain [22]. Timeseries data obtained using different brain
parcellation schemes like Havard-Oxford (HO), Automated
Anatomical Labeling (AAL) [23], Dosenbach 160 [24], Crad-
dock 200 (CC200) [25] on preprocessed rsfMRI scans are
publicly available and have been used directly in our work.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

This study evaluates the proposed method using 10-fold
cross-validation [26] on the ABIDE-1 dataset with 949 sam-
ples. In each fold, 20% of the training set is used as a
validation set for hyper-parameter tuning. The upper triangular
part of the sFC matrix is flattened and passed as input to
train the autoencoder part (pretraining stage) for 50 epochs
and the classifier part for 50 epochs using Adam optimizer
with a learning rate of 10−4 and weight decay of 0.1. The
encoder part of the classifier is initialized with pretrained auto-
encoder weights and the whole classifier has been trained.
All the hyper-parameters were tuned using cross-validation
The code is implemented in pytorch [27] and made available
here1. Computations are performed on a computing system
with 16GB RAM and NVidia K80 GPUs for the entire training
stage.

B. Classification

We report the accuracy, sensitivity, and specificity of our
model. Our model achieves a new state-of-the-art performance
with an accuracy of 74.82%, sensitivity of 67.33%, specificity
of 80.75% on the ABIDE-1 dataset. Table II reports the
performance of the proposed method in comparison with
previous studies for the ASD classification task.

1https://github.com/pindi-krishna/Classification-and-Interpretation-of-
ASD.git

C. Impact of different Preprocessing Pipelines
In this section, we discuss the impact of using different

preprocessing pipelines on the performance of our proposed
method. We train our model on data obtained using four
preprocessing pipelines, CPAC, NIAK, DPARSF, and CCS.
Table III shows the classification results using these pipelines.
We get the best accuracy of 74.82% for the CPAC pipeline
followed by 71.21% for DPARSF, 71.04% for CCS, and
64.55% for NIAK. As we can see, there is a 13% difference
in the accuracy when using the CPAC pipeline compared
to the NIAK pipeline, which suggests that choosing the
correct preprocessing pipeline for the classification task plays
a significant role in the overall results.

TABLE II
OUR METHOD OUTPERFORMS ALL THE PREVIOUS METHODS IN OVERALL

ACCURACY.

Method Accuracy(%) Sensitivity(%) Specificity(%)
Heinsfeld [8] 70.0 74.0 63.0
Parisot [9] 70.4 - -
ASD-Diagnet [10] 70.3 68.3 72.20
CNN [11] 70.22 77.46 61.82
AIMAFE [12] 74.52 80.69 66.71
Proposed Method 74.82 67.33 80.75

TABLE III
RESULTS USING DIFFERENT PREPROCESSING PIPELINES ON ABIDE-1
DATASET USING CC200 BRAIN PARCELLATION. CPAC PIPELINE HAS

YIELDED THE BEST PERFORMANCE

Pipeline Accuracy(%) Sensitivity(%) Specificity(%)
CPAC 74.82 67.33 80.75
NIAK 64.55 46.78 78.6
DPARSF 71.21 64.46 76.57
CCS 71.04 66.02 75.02

TABLE IV
RESULTS USING DIFFERENT ATLASES ON ABIDE-1 DATASET

PREPROCESSED USING CPAC PIPELINE

Atlas Accuracy(%) Sensitivity(%) Specificity(%)
CC200 74.82 67.33 80.75
HO 72.29 66.06 77.21
Dosenbach 70.92 64.69 75.85
AAL 69.95 60.90 77.09

D. Impact of different parcellation schemes
This section presents the results of a comparative study

using four different brain parcellations – CC200, Dosenbach,
AAL, and HO – which parcellate the brain into 200, 160,
116, and 111 regions, respectively. As the number of regions
of interest (ROIs) is different for each atlas, the input vector
size also changes accordingly, affecting the model’s overall
performance. Table IV shows the classification results using
the above mentioned atlases. We get the best accuracy of
74.82% using the CC200 atlas.
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TABLE V
LEAVE-ONE-SITE-OUT RESULTS ON ABIDE-1 DATASET PREPROCESSED

USING CPAC PIPELINE AND CC200 BRAIN PARCELLATION SCHEME

Site Accuracy(%) Sensitivity(%) Specificity(%)
CALTECH 71.25 64.29 76.67
CMU 71.54 58.46 84.62
KKI 73.91 65.56 79.28
LEUVEN 74.07 33.0 98.24
MAXMUN 57.34 48.24 62.86
NYU 78.75 72.33 82.60
OHSU 60 44.44 70
OLIN 74.9 66.67 82.22
PITT 73.73 63.33 82.96
SBL 54.82 18.34 84.0
SDSU 76.13 40.0 90.91
STANFORD 58.38 78.82 41.0
TRINITY 65.0 65.26 64.8
UCLA 76.0 71.31 80.91
UM 75.76 75.86 75.67
USM 85.08 84.29 86.4
YALE 84.31 89.56 80.0
Mean 71.23 61.16 77.83

E. Leave-One-Site-Out Results

One major challenge in the ASD classification task using
the ABIDE-1 dataset is the inter-site variability as it contains
rsfMRI scans from 17 different sites. To evaluate the perfor-
mance of our proposed method on new sites, we train our
model using the leave-one-site-out approach. In this approach,
we keep the data from each site separately for testing, and we
train our model on the data from the remaining sites. This
approach allows us to estimate the model’s generalizability to
new, unseen sites. Table V shows the leave-one-site-out results.
Our model achieves the best accuracy of 85.08% on scans
collected from the University of Southern Mississippi (USM)
site, followed by 84.31% for Yale and 78.75% for NYU.

F. Interpretation

Attribution methods have been applied on the model trained
using the data obtained from CPAC pre-processing pipeline
and CC200 brain parcellation scheme as this combination
yielded the best result. The steps for finding the associated
regions using IG and DeepLIFT are as follows: A) Group
all the correctly predicted autism samples from the test set.
B) Apply attribution method on these autism samples to find
the attributions for each feature passed as input to the model
with a zero embedded vector as the baseline. C) Replace the
attributions in the top one percentile with 1 and remaining
values with 0. D) Construct a 2D matrix of size 200×200 with
attribution vector contributing to the upper triangular matrix.
E) Calculate the row-wise sum and pick those ROIs with the
maximum value. F) Repeat steps A-E on each fold and find
out the most repeated, common ROIs in all the folds.

As we are interested in regions that led to the prediction of
autism, we have considered only correctly predicted autism
samples for applying attribution methods. The results are
qualitatively similar when the attributions in top k percentile
(k = 0.5, 2, and 3) replaced with 1. These attribution methods
have been implemented using Captum, a model interpretability

library for PyTorch [28]. IG and DeepLIFT analysis identify
the following regions: Left Lingual Gyrus (LLG), Right In-
sula Lobe (RIL), Right Cuneus (RC), Right Middle Frontal
Gyrus (RMFG), Left Superior Temporal Gyrus (LSTG) to
be associated with ASD classification (see Fig.2). Primary
function and co-ordinates of these regions based on CC200
parcellation are shown in Table VI. We conclude that feature
attribution methods such as IG and DeepLIFT enable accurate
identification of brain regions whose activation seems to be
altered in ASD as compared to TD.

TABLE VI
ROIS THAT CONTRIBUTED MOST TO THE ASD CLASSIFICATION TASK

BASED ON CC200 BRAIN PARCELLATION

ROI name ROI number Center of mass Primary Function
LLG 177 (-14.3;-74.2;-10.1) Face/Object Recognition
RIL 59 (36.7;17.2;3.6) Decision making
RC 142 (17.8;-89.5;22.7) Visual Processing
RMFG 106 (28.6;34.6;42.0) Attention
LSTG 200 (-41.9;-31.5;15.2) Language Comprehension

Fig. 2. Visualization of regions associated with ASD in 3 different views using
Brain Net Viewer [29]. A. Sagittal view B. Axial View C. Coronal View. LLG
: Left Lingual Gyrus, RIL : Right Insula Lobe, RC : Right Cuneus, RMFG :
Right Middle Frontal Gyrus, LSTG : Left Superior Temporal Gyrus

V. DISCUSSION AND CONCLUSION

This work shows that the proposed method demonstrates
effective results on the ASD classification task. Among all
the studies reported in Table II, our method achieved the best
classification accuracy of 74.82%. The entire training time of
our model is less than an hour which is approximately 10x
faster than the previous state-of-the-art method. This suggests
that the autoencoder pretraining weights acted as an excellent
initialization point for training the classifier, which helped in
faster convergence of the model.

As the scans are collected from various sites, and each
site uses a different set of scan parameters and protocols,
the data have significant heterogeneity. The variations in the
leave-one-site-out results as shown in Table V highlight the
impact of the heterogeneity on the classification task. Although
there is no consensus and conceptual clarity on how different
preprocessing pipelines and brain parcellations affect the ASD
classification results, we observe a significant variation in
the results as shown in Table III and IV, respectively. These
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variations may occur due to the implementation of different
algorithms and parameters used in preprocessing pipelines
and different ROIs extracted from each parcellation scheme.
The empirical results obtained in this study reveal that the
combination of CPAC preprocessing pipeline and CC200
parcellation yield the best accuracy for the ASD classification
task. Going forward, these results might be useful in defining a
common benchmark dataset and specifications to enable a fair
and viable comparison of methods being proposed for ASD
classification.

This study identifies LLG, RIL, RC, RMFG, LSTG as-
sociated with ASD. A lingual gyrus plays a crucial role in
vision processing, primarily related to letters. Chandran et al.
[30] found a significant association between the left lingual
gyrus cortical thickness and the right lateral occipital cortex
surface area among autism subjects. The greater volume and
gyrification of the lingual gyrus and lateral occipital cortex
may cause abnormal visual processing in individuals with
higher autistic symptoms. Yamada et al. study [31] on 36 ASD
subjects and 38 TD subjects found a significant change in the
anterior sector of the left insula and the middle ventral sub-
region of the right insula in the ASD brain. They noticed a
notable volumetric increase in the ASD brain compared with
the TD brain in the middle ventral sub-region, in the right
insula. The right cuneus is responsible for visual processing.
Stock et al. study [32] on 66 adults with high-functioning
autism and 66 TD investigated gray matter abnormalities in
the two groups. They found increased gray-matter volume in
frontal brain regions, including the medial prefrontal cortex,
superior and inferior frontal gyri, and middle temporal gyrus,
and reduced gray-matter volume in posterior brain regions,
including the posterior hippocampus, cuneus, in individuals
with ASD in relative to TD. Middle Frontal Gyrus and Face
processing seem quite relevant as ASD patients have difficulty
with face processing and facial emotion identification. In
ASD subjects, significantly reduced activity in the middle
frontal gyrus when involving face processing tasks and middle
temporal gyrus during nonface social tasks is found when
compared to TD subjects [33]. The superior temporal gyrus
(STG) is responsible for language comprehension. Bigler et
al. study [34] on 30 autistic children and 39 controls of sim-
ilar age, education, and head circumference, investigated the
link between autism and intellectual-language-based abilities.
Clinical Evaluation of Language Fundamentals–Third Edition
(CELF–3) [35], divided into three index scores: expressive,
receptive, and total, has been used to measure language ability.
This study observed a positive correlation between receptive
language scores and STG volume in control subjects and zero
correlation in autistic subjects.

Although the BOLD time series signal is a time varying
signal over the duration of the rsfMRI scan, in the proposed
approach we calculated the grand mean FC value over the
entire time series, thus yielding static functional connectivity
(sFC). Features from the sFC matrix were used in the proposed
approach to obtain the best results. Thus, there is still scope
for improvement using various measures to capture the brain

dynamics using the dynamic functional connectivity (dFC)
information in place of sFC. In future, efforts can focus on
integrating phenotypic and demographic information with dy-
namic functional connectivity to attempt superior classification
performance and possible biomarkers for the diagnosis of
ASD.
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