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Ayu-Characterization of healthy
aging from neuroimaging data
with deep learning and rsfMRI
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Raju Surampudi Bapi*

iHub-Data, International Institute of Information Technology, Hyderabad, India

Estimating brain age and establishing functional biomarkers that are prescient

of cognitive declines resulting from aging and di�erent neurological diseases

are still open research problems. Functional measures such as functional

connectivity are gaining interest as potentially more subtle markers of

neurodegeneration. However, brain functions are also a�ected by “normal”

brain aging. More information is needed on how functional connectivity

relates to aging, particularly in the absence of neurodegenerative disorders.

Resting-state fMRI enables us to investigate functional brain networks and

can potentially help us understand the processes of development as well

as aging in terms of how functional connectivity (FC) matures during the

early years and declines during the late years. We propose models for

estimation of the chronological age of a healthy person from the resting

state brain activation (rsfMRI). In this work, we utilized a dataset (N = 638,

age-range 20–88) comprising rsfMRI images from the Cambridge Centre for

Aging and Neuroscience (Cam-CAN) repository of a healthy population. We

propose an age prediction pipeline Ayu which consists of data preprocessing,

feature selection, and an attention-basedmodel for deep learning architecture

for brain age assessment. We extracted features from the static functional

connectivity (sFC) to predict the subject’s age and classified them into

di�erent age groups (young, middle, middle, and old ages). To the best of

our knowledge, a classification accuracy of 72.619 % and a mean absolute

error of 6.797, and an r2 of 0.754 reported by our Ayu pipeline establish

competitive benchmark results as compared to the state-of-the-art-approach.

Furthermore, it is vital to identify how di�erent functional regions of the brain

are correlated. We also analyzed how functional regions contribute di�erently

across ages by applying attention-based networks and integrated gradients.

We obtained well-known resting-state networks using the attention model,

which maps to within the default mode network, visual network, ventral

attention network, limbic network, frontoparietal network, and somatosensory

network connected to aging. Our analysis of fMRI data in healthy elderly

Age groups revealed that dynamic FC tends to slow down and becomes less

complex and more random with increasing age.

KEYWORDS

rs-fMRI, attention, static functional connectivity matrix, age estimation,

interpretability, classification, regression
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1. Introduction

The process of aging is gradual andmulti-factorial leading to

the loss of biological and physical function. It can be influenced

by several factors including environmental and biochemical

mechanisms. The human brain structure and function are

continuously evolving with aging. Estimating brain age may

help to study the deviation from the trajectory of healthy

aging. Neuroimaging data can help in brain age estimation

and extracting relevant biomarkers of healthy aging and

brain disorders.

Functional brain connectivity (FC) allows us to investigate

how functionally distinct regions of the brain interact with one

another. Resting-state functional magnetic resonance imaging

(rs-fMRI) has become one of the most important modalities

to examine the human brain’s functional connectivity (Greicius

et al., 2003; Fox et al., 2009; Biswal et al., 2010; Smith

et al., 2011). rs-fMRI analysis has helped to understand

the difference in functional connectivity between healthy

and disease conditions (Dosenbach et al., 2010; Erus et al.,

2015). Such data also captures the functional changes of the

aging process. The information contained in such data is

complex, requiring the adoption of approaches such as machine

learning and deep learning to develop predictive models of

brain disorders.

Past studies have utilized various neuroimaging modalities

such as EEG (Al Zoubi et al., 2018), diffusion tensor

imaging (Mwangi et al., 2013), unprocessed T1-weighted (T1w)

structural MRI (Cole et al., 2015, 2017; Jiang et al., 2020),

and rs-fMRI (Li et al., 2018; Monti et al., 2020) for brain age

estimation. The models proposed in these studies for estimation

of brain age are mainly statistical models built on a healthy

aging population. These models vary in complexity as well as in

the class of neuroimaging data employed (Cole et al., 2015). In

recent years, sophisticated machine learning and deep learning

methods have been used for brain age estimation and brain

age classification (Cole et al., 2017; Lancaster et al., 2018).

The study of Cole et al. (2017) and Jiang et al. (2020) utilize

structural magnetic resonance imaging (MRI) for brain age

prediction results using deep learning approaches such as CNN-

based studies. The CNN-based results showed age prediction is

fundamentally consistent with the changing pattern of the gray

matter volume with age.

Brain age prediction has been demonstrated by applying

CNNs in brain networks in neurodevelopment (Kawahara

et al., 2017; Li et al., 2018). There is a need to work on

adequately diverse datasets so that every possible age group is

considered while modeling the aging phenomenon. However,

the past studies have generally centered around resting-state

information for a particular age group. The contrast between

different age groups in resting-state information is significant

in the investigation of aging as age-related cognitive and neural

differences (Davis et al., 2014). Furthermore, aging studies

concentrate on younger and older adults, leaving out the

moderate age group which represents a significant amount of the

adult lifespan.

Significantly, the static functional connectivity network

(sFC) of the brain changes with aging and there might be

individual variations in these patterns from subject to subject.

However, we highlight here the broad consensus patterns of

change that are emphasized in the literature. Differential impact

of aging on specific brain networks has been investigated

previously (Ferreira and Busatto, 2013; Dennis and Thompson,

2014; Sala-Llonch et al., 2015). Most of the studies have targeted

the default-mode network (DMN), showing lower functional

connectivity between its different regions of interest (ROIs)

with aging (Damoiseaux et al., 2008), other studies also focus

on age effects in other brain ROIs networks, e.g., salience and

sensorimotor networks (Meier et al., 2012; He et al., 2014;

Geerligs et al., 2015; La Corte et al., 2016).

Critically, previous studies on functional connectivity in

normal aging were led with relatively small samples or included

wide age ranges instead of middle age and older age groups.

In particular, we need to understand the aging influences

relations between functional network properties and consider

all the age groups for the generalizability of the findings.

Restricting analyses to an individual resting-state network,

like the DMN, might be inadequate in acquiring a more

comprehensive understanding of the functional connectivity

of the aging brain. Finally, previous studies characterized

networks dependent on anatomical parcellations that do not

necessarily conform to the true functional architecture of

the human brain (Wang et al., 2010). The purpose of this

study is to identify the functional connections that distinguish

older adult brains from younger adult brains including the

middle-aged group.

In this study, we propose an age prediction pipeline

Ayu - “age” and “longevity” in Sanskrit which consists of data

preprocessing, feature selection, and an attention-based residual

network for deep learning architecture for brain age assessment

from rs-fMRI. Based on the age prediction pipeline Ayu

implemented on aging rs-fMRI data, we present our results to

predict the subject age and classify them into different age groups

(young, middle, middle-old, and old ages). Our model performs

well in the hold-out test set from the same population. We

demonstrate how the correlation between different functional

regions changes with age by extracting features from the

static functional connectivity (sFC) by applying attention-

based networks and activation maps. The contributions of the

brain regions that underwent significant age-related changes

for the classifier to discriminate between the four age groups

can be accurately assessed and identified by observing the

integrated gradient maps for each class obtained from the

network. To understand the changes in resting static functional
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networks, we analyze large-scale networks in the entire brain

and allow for both decreases and increases in connectivity

obtained from the integrated gradient results. We hypothesized

that in the middle-aged group from the general population,

networks showing an increase in functional connectivity would

most likely be those previously implicated in aging. We aim

to distinguish the relevant FC with significant developmental

trends that could facilitate our understanding of functional

brain development.

2. Materials and methodology

In this section, we discuss our framework Ayu, which

includes the various steps: (i) data curation and preparation, (ii)

data pre-processing, and (iii) experimental setup used for brain

age estimation using the resting-state fMRI modality. Moreover,

we applied an attention-based mechanism to interpret the

estimated brain age.

2.1. Data curation and preparation

We worked with the data of healthy participants obtained

from the Cambridge Centre for Aging and Neuroscience

(Cam-CAN) repository for brain age assessment from rs-fMRI

(Taylor et al., 2017).

Participants were co-registered to that participant’s T1-

weighted image via a rigid-body (6-df) linear transformation,

and normalization parameters from the DARTEL procedure

were applied in the normalization stages of the other streams.

This establishes the six motion parameters for motion correction

and removes residual motion artifacts using wavelet de-spiking

(Patel et al., 2014), regression of WM/CSF signals, and higher-

order expansions of the movement parameters (Geerligs et al.,

2015). This procedure ensures a voxel-to-voxel correspondence

for all metrics derived from the BOLD time series (which is used

in rsfMRI).

rsfMRI Data used in CamCAN were unwarped (using

field-map images) to compensate for the magnetic field

inhomogeneities, realigned for motion, and slice-time corrected.

After the EPI data were co-registered to the T1 image,

the normalization parameters from the VBM stream were

then applied to warp functional images into MNI space

(Taylor et al., 2017).

The rs-fMRI scans were obtained while participants were

resting with their eyes closed in a 3T Siemens TIM Trio scanner

and a total of 261 whole-brain volumes were acquired (please

see Taylor et al., 2017). For more details on the acquisition

parameters) with a 32-channel head coil with the acquisition

parameters: TR/TE = 1,970/30 ms, 32 pivotal cuts, flip point

=78◦; FOV =192 mm × 192 mm; voxel-size = 3 mm × 3 mm×

4.44 mm, acquisition time = 8 min 40 s, number of volumes: 261

with their eyes closed (Taylor et al., 2017).

2.2. Data processing

The rsfMRI data was pre-processed using an optimized

procedure, including min-max scaling and the regression after

the processing done by Taylor et al. (2017). rs-fMRI images were

collected from 638 healthy participants with the participants’ age

ranging from 20 to 88 years (average of 54.94 ± 18.02; 315 men

and 323 women). They were divided into 4 age groups: young

(172 subjects from 20 to 40 yrs), adult (152 subjects from 41

to 55 yrs), middle-old (154 subjects from 56 to 69 yrs), and old

(160 subjects from 70 to 88 yrs), thus giving us a near-uniform

distribution of the number of participants across different age

groups. We exclude subject below 20 years and above 88 years.

2.2.1. Functional connectivity

To calculate an ROI-based whole-brain functional

connectivity, we used two brain atlases for parcellation of

the subject’s brain scan, (i) Schaefer Atlas which consists of

a 100-region of 17-network Schaefer parcellation, and (ii)

BASC Multiscale Atlas which consists of 64-region BASC

Multiscale parcellation, to obtain functionally meaningful

averaged BOLD signals for each measurement. We used

nilearn to extract the static functional connectivity (Pedregosa

et al., 2011) from the rsfMRI scans. For static Functional

Connectivity networks (sFC), pairwise Pearson correlation

coefficient was calculated between the different brain regions

for the time series signals obtained from each brain scan.

To obtain a symmetrical correlation matrix, we calculated

full connectivity matrices leading to 100 × 100 for Schaefer

Atlas (Schaefer et al., 2018) and 64 × 64 for BASC Multiscale

Atlas (Bellec et al., 2010) connectivity features and the

average signal for each region was used to obtain functional

connectivity (FC) matrix.

2.3. Experimental setup

We created training and test sets of participants for model

training and evaluation. We performed stratified split-based

brain scans with an 80:20 ratio for training and testing sets,

respectively, ensuring the uniform distribution of age, gender,

and brain scans in the training and test sets.

We initialized our model with Kaiming initialization (He

et al., 2015), which provided us with stable gradients throughout

the network. This helped us initialize weight with a normal

distribution with a mean of 0 and variance std and the

ideal distribution of weight after ReLU should have slightly

incremented mean layer by layer and variance close to 1. It is a
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common practice to use Kaiming initialization as it shows better

stability than random initialization.

2.4. Ayu-Pipeline

In this section, we propose Ayu Pipeline employed in

the classification and the brain age estimation task. We

first standardize the training data and the testing data by

transforming the mean and SD as 0 and 1, respectively. This

helped us to transform all the sFC matrices into the same scale.

For machine learning algorithms, the matrices obtained

from two atlases were converted to vectors by linearizing the

lower triangular matrix without the diagonal. We used two

machine learning algorithms to classify the subject in one of

the 4 age groups namely young, middle, middle-old, and old:

Support Vector Classifier and Linear Discriminant Analysis

from python sci-kit learn toolbox (Pedregosa et al., 2011). Both

these algorithms are parameter-free algorithms.

We used the correlation-based static Functional

Connectivity (sFC) as an input to the three deep learning

algorithms namely AlexNet, VGGNet5, and ResNet (Krizhevsky

et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016).

We used only 5 layers hence the name, VGG5 and ResNet. For

VGG, we use the general CNN architecture similar to the VGG

classification architecture (Simonyan and Zisserman, 2014)

which consists of interleaved convolutional blocks followed by

max-pooling layers. For convolutional layers, we considered a

convolutional kernel size of 3×3, a batch size of 16, rectified

linear unit (ReLU) as the activation functions. We flatten the

output from the last convolutional layer and feed it into a

fully-connected (FC) layer with softmax as the activation. For

ResNet, the deep learning model contains one convolution

layer, followed by 4 residual blocks, 1 fully connected layer,

and an output layer. The same configuration was followed

by convolutional layers with a convolutional kernel size of

3×3, a batch size of 16, rectified linear unit (ReLU) as the

activation function.

For Regression, we used three machine learning algorithms

to estimate the brain age: Regularized linear regression

(ElasticNet), Support Vector Regression, and Bayes Ridge

Regression. We used python’s sci-kit learn toolbox (Pedregosa

et al., 2011) to get the results. The same algorithms were

used for deep learning architecture but we implemented linear

operation for our activation function instead of a softmax in the

classification task (Figure 1).

2.4.1. Attention mechanism

The attention model was inspired by Jetley et al. (2018) and

Zhang et al. (2019), where authors introduced an attention-

based mechanism for the classification of the computer-vision

based task.

Here, the approach we followed is based on covariance

between the predicted region of interest with respect to every

region in the functional connectivity matrix, (where each region

is a random variable). The attended target region is a weighted

summation of all the correlation values of the functional

connectivity matrix.

The matrix features f li extracted at a given layer, l ∈

{1, 2, . . . , L} represents the pixel-wise feature vectors. The global

feature vector g extracted before the final layer of the classifier

and regressor encodes the global, discriminative, relevant ROIs

from the sFC. The compatibility score cli is defined as follows:

cli =
〈

λ
l, f li + g

〉

(1)

Here, the weight vector λ can be interpreted as learning the

set of features to get the relevant features in the sFC. λ shows

how the network adjusts its focus according to the context. The

attention takes a sequence of vectors as an input for each FC

matrix and returns an “attention" vector for the relevant ROIs

in the FC matrix.

We apply the proposed attention mechanism to layers 3

and 4 prior to pooling, for both the VGG and the ResNet

architectures. Once the attention map is obtained, the weighted

average over the spatial axes is computed for each channel in the

feature map. The proposed attentionmechanism is incorporated

in theAyu Pipeline to better exploit local information present in

the input sFC matrix which helps in getting the distinct features.

Let the output of the attention blocks 1 and 2 be,M(x) andN(x),

respectively.M(x) and N(x) can be represented as:

M(x) = Wm(x), N(x) = Wn(x) (2)

where Wm,Wn ∈ R(c×ratio×c) are the attention block

parameters, c is the number of channels for input from attention

blocks 1 and 2 and ratio is a proportional coefficient, which can

be assigned as 1/2, 1/4 progressively for subsequent attention

layers. We performed a transpose operation on M(x) and N(x)

to meet the requirement of the matrix multiplication operation.

The attention weight vector λ is obtained through the Softmax

layer as shown in Equation (3):

λ
l =

exp (f li + g)
∑C

i=0 exp (f
l
i + g)

where, f li = M(xi)N(xj)
T

(3)

3. Results

Our study is based on the hypothesis that brain age shows

subtle changes within a smaller age range as compared to a larger

age range. Taking this hypothesis into consideration, we perform

a 4-class classification which is further followed by a brain age

prediction task.

Frontiers inComputationalNeuroscience 04 frontiersin.org



Borkar et al. 10.3389/fncom.2022.940922

FIGURE 1

Ayu pipeline which includes ResNet with attention.

3.1. Experimental result

3.1.1. Classification

Table 1 shows the brain age classification results for Schaefer

Atlas and BASC Multiscale atlas using both the machine

learning and the deep learning models.These outcomes showed

that the prediction models based on the whole-brain FC

measures outperformed those built upon the coarse-grained

FC measures between brain regions or intrinsic connectivity

networks (ICNs) (Li et al., 2018). This shows that the FC

measures of the entire brain are more informative for the brain

age prediction task. Among the proposed deep learning models,

the outcomes were improved after applying the attention

mechanism. The attention network interprets the important

regions in the connectivity matrix. This demonstrates that

the hierarchical features learned by the deep learning model

better characterize brain developmental information. The best

performing model ResNet successfully discriminated 4 classes

namely young, adult, middle-old, and old giving an accuracy

of 72.619%.

To check whether we are dealing with the problem of over-

fitting, we also present our results with stratified 5-fold cross-

validation (each set contains approximately the same percentage

of samples of each target class as the complete set) on the same

dataset in Table 2.

TABLE 1 Classification results based on Schaefer and BASC multiscale

Atlas among 4 di�erent classes.

Accuracy using Accuracy using

Algorithm used Scheafer BASCmulti-scale

Atlas Atlas

Support vector classifier 42.578% 40.578%

Linear discriminant analysis 43.359% 41.359%

AlexNet 50.612% 49.612%

VGGNet5 63.750% 59.750%

ResNet5 66.806% 63.806%

VGGNet5 with attention 68.571% 65.571%

ResNet5 with attention 72.619% 69.619%

The bold values represent the results obtained using the Ayu pipeline.

We also compared the quantitative evaluation results with

the state of the methods in Table 3.

3.1.2. Regression

A total of 638 participants were considered with the

minimum age being 20 years. The chronological age was used
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TABLE 2 Classification results with stratified 5-fold cross-validation

using ResNet5 with attention based on Schaefer and BASC multiscale

Atlas among 4 di�erent classes.

ResNet5 with Accuracy using Accuracy using

Attention Scheafer BASCmulti-scale

Atlas Atlas

Fold 1 73.001% 69.721%

Fold 2 72.291% 69.551%

Fold 3 72.599% 69.599%

Fold 4 72.621% 69.629%

Fold 5 72.649% 69.612%

Mean result 72.632% 69.622%

Results on test data 72.619% 69.619%

The bold values represent the results obtained using the Ayu pipeline.

as a training criterion for evaluating our results. Table 4 shows

the R2, MAE, and RMSE values between the chronological age

and the predicted age in the testing dataset. The best performing

model ResNet with Attention effectively provided higher r2,

MAE, and RMSE of 0.754, 6.797, and 8.002, respectively. Table 5

shows our results with stratified 5-fold cross-validation using

ResNet with Attention architecture.

We also compared our model performance with other

methods for age prediction in Table 6. Ayu yielded the

MAE, RMSE, and r2 of 6.7, 8.0, and 0.754, respectively,

which are better when compared with the deep learning

CNN model proposed for age prediction using rs-fMRI (7.9,

10.01, and 0.661, respectively) (Li et al., 2018) and linear

latent variable model (12.3, 14.01, and 0.587, respectively)

(Monti et al., 2020).

In Figure 2, we show the relationship between the estimated

age and chronological age for both the atlases.

3.2. Interpretability

To identify brain regions that undergo significant age-

related changes in functional connectivity, the contribution of

each region to the overall ability of the classifier to accurately

discriminate between age groups can be assessed by observing

the integrated gradient map for each class obtained from the

functional connectivity matrices.

3.2.1. Integrated gradient

Integrated Gradient is a technique for attributing a

model prediction to its input features. It is a model

interpretability technique: one can use it to visualize

the relationship between input features and the model

TABLE 3 Comparison of di�erent state-of-the-art approaches with

Ayu for the brain age classification task.

Methods Features used Accuracy

Meier et al. (2012) Seed based regions 43.012%

Tian et al. (2016) Linked independent components 53.910%

Li et al. (2018) Whole brain FC 69.086%

Monti et al. (2020) Linear latent variable model 57.482%

Our result Whole brain FC using scheafer atlas 72.619%

The bold values represent the results obtained using the Ayu pipeline.

predictions (Nain, 2020). It requires no modification in the

original network, is easy to implement, and is applicable

to a variety of deep models (both sparse and dense).

The method works by taking derivatives of the value

for the predicted class with respect to the input features

(Sundararajan et al., 2017).

For the integrated gradient, we start with the baseline

connectivity matrix with all the values as zero and

generate a linear interpolation between the baseline

and the original connectivity matrix. We calculate

gradients to measure the relationship between changes

to a feature and changes in the model’s predictions. The

gradient informs which ROI in the connectivity matrix

has the strongest effect on the model’s predicted class

probabilities. Table 7 lists the features and their relative

weights or contributions obtained after implementing

the integrated gradient from our method using the

Schaefer Atlas.

In practice, computing a definite integral is not always

numerically possible and can be computationally costly,

so the following numerical approximation is computed

(Sundararajan et al., 2017):

IntegratedGradient
approx
i (x) ≈

(

xi − x
′

i

)

×

m
∑

k=1

∂F(x
′
+ k

m × (xi − x
′

i))

∂xi

(4)

where i denotes the individual ROI feature; x denotes the input

tensor; x
′
baseline tensor; k denotes scaled feature perturbation

constant; and m denotes the number of steps in the sum

approximation of the integral.

To observe the pattern which can characterize the 4 age

groups, we generate the Node Strength for their respective

age groups using the results which were obtained from the

integrated gradient. The results for the four age groups are

shown in Figure 3. The red color bar corresponds to the positive

inferred node strength whereas the blue color bar corresponds

to the negative inferred node strength obtained from the
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TABLE 4 R2,MAE, and RMSE values using di�erent state-of-the-art methods.

Algorithm used Scheafer atlas BASCmultiscale atlas

r
2

MAE RMSE r
2

MAE RMSE

Elastic regression 0.613 11.923 13.856 0.592 13.856 17.589

Support vector regressor 0.615 10.199 11.923 0.617 9.963 11.923

Bayes ridge regression 0.607 9.457 11.706 0.619 9.457 11.706

AlexNet 0.618 9.725 11.342 0.617 10.515 12.375

VGGNet5 0.671 8.439 10.016 0.624 10.018 12.048

ResNet5 0.724 7.869 9.002 0.662 9.272 11.863

VGGNet5 with Attention 0.721 7.310 9.316 0.674 9.048 11.121

ResNet5 with attention 0.754 6.797 8.002 0.712 8.272 10.986

The bold values represent the results obtained using the Ayu pipeline.

TABLE 5 R2,MAE, and RMSE values with stratified 5-fold cross-validation using ResNet5 with Attention.

ResNet5 withAttention Scheafer atlas BASCmultiscale atlas

r
2

MAE RMSE r
2

MAE RMSE

Fold 1 0.7511 6.7971 7.9841 0.7179 8.2717 10.9717

Fold 2 0.7601 6.7984 7.9792 0.7084 8.2790 11.0002

Fold 3 0.7544 6.7898 8.0580 0.7258 8.2725 10.8800

Fold 4 0.7539 6.8039 7.9644 0.7209 8.2730 10.9272

Fold 5 0.7521 6.7964 8.0190 0.7294 8.2699 10.9269

Mean result 0.7543 6.7972 8.0008 0.7204 8.2734 10.9412

Results on test data 0.754 6.797 8.002 0.712 8.272 10.986

The bold values represent the results obtained using the Ayu pipeline.

TABLE 6 R2,MAE, and RMSE values using Algorithms used for both Schaefer Atlas and BASC Multiscale Atlas.

Methods Features used Results

r
2

MAE RMSE

Meier et al. (2012) Seed based regions 0.551 12.857 13.906

Tian et al. (2016) Linked independent components 0.564 12.925 14.042

Li et al. (2018) Whole Brain FC 0.661 7.910 10.016

Monti et al. (2020) Linear latent variable model 0.587 11.397 13.012

Our results Whole brain FC using scheafer atlas 0.754 6.797 8.002

The bold values represent the results obtained using the Ayu pipeline.

mean functional connectivity matrix from each age group. Our

analysis of the inferred node strength shows that the node

strength for the positive edges is the highest in the middle-old

class and the lowest in the young age group (refer to Figure 3).

This further shows that the positive inferred nodes increase as

we go from the young to the middle-old age group.

To detect the change within brain networks, we analyzed

the node weights obtained by the individual networks of

the brain region on the entire cohort from the integrated

gradient. This helps us understand the change across the node

strength of the individual’s functional region in the static

functional connectivity with aging. Table 8 shows the node
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FIGURE 2

Estimated Age vs. Chronological age using ResNet with Attention for (A) Schaefer Atlas and (B) BASC Multiscale Atlas lifespan.

strength of individual functional brain regions along with the

corresponding ROIs using the Schaefer Atlas.

Table 8 indicates the node strength of the respective

decreasing and increasing connections within different age

groups. The ROIs which reflected changes with aging are

from the Default Mode (DMN), Primary Somatosensory, and

Prefrontal cortex (PFC) networks in the left hemisphere and

the early Visual cortex and Ventral Attention Networks in

the right hemisphere of the brain. Furthermore, age-dependent

connections were from the Limbic Network in both the left and

the right hemispheres.

Furthermore, by considering the node strength of the

individual ROI from the Schaefer Atlas, it was possible to plot

kernel density graphs to visualize the relationship between a

brain region and age. These kernel density plots also show the

direction of the age effect on the connectivity values. Figure 5

illustrates the age associated functional connectivity using kernel

density plots, within and between all pairs of networks. They

show how the network is correlated (as depicted by the inverted

parabolic line). In addition, the heat map in Figure 5 shows

the associations of age with functional connectivity within and

between all pairs of networks.

From Figure 3, we can observe that the brain connectivity in

the general population increase from the younger to the middle-

aged group and shows a decrease in the old age group. We more

specifically hypothesized that in adult and middle-aged persons

from the general population, the brain ROIs show increase in

functional connectivity.

It can be observed that the regions of the inverted-U

functional connectivity network develop relatively slowly during

the young age group this can be properly seen Ventral Attention

Network in Figure 5 but presents accelerated age-related

degeneration at an old age in the kernel density plots. The

inverted-U functional connectivity network can also be observed

in other brain ROIs but the curve varies with the regions as we

can see in the visual network, limbic network, default mode,

somatosensory, and pre-frontal cortex network. Figure 5 and

Tables 7, 8 illustrate the age associated changes in the functional

connectivity using kernel density plots, including intra- and

inter-connectivity patterns for all pairs of networks. The kernel

density plots show whether the brain network is positively or

negatively associated with age (as depicted by the line). It can

be observed from Figures 5A,B, that the functional connectivity

of the pre-frontal cortex and somatosensory network is higher

in the young age group compared to the old age group. On

the contrary, (in Figure 5D) the visual network and (Figure 5F),

limbic network sub-region intra-connected network showed a

significant positive association with middle age and older age.

With respect to network connectivity, we found both age-related

increases and decreases in functional connectivity.

We can identify a decreasing trajectory (both rapid and

linear) with aging in the PFC, primary somatosensory cortex,

and DMN regions of the left hemisphere of the brain and an

inverted U-shaped trajectory in the early Visual cortex and

Ventral Attention regions of the right hemisphere of the brain.

4. Discussion

In this study, we proposed a deep learning framework

based on the attention mechanism for the brain age prediction

and age group classification leveraging static FC. The study
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TABLE 7 Strength* of the relative positively correlated ROI 1 connected with ROI 2 obtained from Integrated Gradient in Schaefer Atlas.

ROI 1 with ROI 2 Young Adult Middle-Old Old

LH Default PFC 1 LH SomMot 2 0.61 0.56 0.57 0.49

LH Default PFC 3 LH Default Par 1 0.39 0.47 0.45 0.40

LH Default Par 1 RH Default Par 2 0.47 0.54 0.57 0.52

LH Default PFC 2 RH Default PFCv 1 0.60 0.57 0.57 0.51

LH Default PFC 1 RH Vis 1 0.38 0.43 0.42 0.41

LH Default PFC 3 LH SomMot 4 0.50 0.51 0.54 0.52

LH SomMot 5 RH SalVentAttn ParOper 1 0.41 0.46 0.47 0.39

LH Default PFC 5 RH SalVentAttn ParOper 1 0.43 0.45 0.48 0.44

LH SalVentAttn PFCl 1 LH Default Par 2 0.33 0.38 0.41 0.37

LH Limbic OFC 1 RH Vis 2 0.52 0.56 0.57 0.49

RH Limbic TempPole 1 RH SalVentAttn Med 1 0.42 0.46 0.45 0.39

LH Limbic TempPole 2 RH Vis 5 0.65 0.56 0.57 0.49

LH Limbic OFC 1 RH Limbic TempPole 1 0.65 0.56 0.57 0.49

LH SomMot 2 LH Default PFC 4 0.54 0.58 0.55 0.50

LH SomMot 4 RH Default PFCv 2 0.57 0.53 0.53 0.49

RH SomMot 3 RH SalVentAttn ParOper 2 0.42 0.45 0.47 0.41

RH SomMot 1 LH Default PFC 4 0.49 0.49 0.46 0.42

LH SomMot 6 RH SomMot 3 0.46 0.45 0.42 0.40

LH Default Par 1 RH Default PFC 2 0.54 0.56 0.53 0.49

LH Default Par 2 RH SomMot 3 0.56 0.57 0.57 0.51

LH Default Par 2 LH Default pCunPCC 2 0.55 0.58 0.55 0.52

RH Vis 3 RH Vis 4 0.65 0.56 0.57 0.49

RH Vis 2 LH SomMot 2 0.65 0.56 0.57 0.49

RH Vis 3 LH Default PFC 2 0.41 0.44 0.48 0.45

RH Vis 4 LH Default PFC 3 0.39 0.42 0.46 0.43

RH Vis 5 RH Default Par 2 0.35 0.38 0.42 0.40

RH Vis 4 LH Default PFC 1 0.36 0.41 0.45 0.43

LH, Left Hemisphere; RH, Right Hemisphere. *Omitted values with a weight less than 0.2.

reveals that attention-based CNN predicts the brain age more

precisely when compared with the current state-of-the-art

results (Li et al., 2018; Monti et al., 2020). The results reported

shows that using convolutional neural architectures based on

attention mechanisms yielded better performance for brain age

estimation. We extended our study to a more meaningful 4-

way classification (Young, Adult, Middle-Old, and Old age).

We extracted aging-specific ROIs using integrated gradients

and discussed the developmental and aging changes in the

brain regions.

In this study, we have focused on using rsfMRI data to

understand the functional changes with aging. The study from

Cole et al. (2017) obtained age prediction accuracies with MAE

as 4.16, r2 as 0.96, and RMSE as 5.31. (Jiang et al., 2020)

exhibited the optimal age prediction accuracies with mean

absolute errors (MAEs) of 5.55 years, 5.77 years, and 6.07

years from CNN based networks from FPN, DAN, and DMN

regions. However, the work mainly focuses on structural MRI

quantifying geometric structural properties such as the size and

volume of a given structure or the thickness of a cortical area

(e.g., gray matter). In the proposed study, we are interested in

the functional connectivity across the whole brain providing

information on how brain areas interact with one another. These

changes may emerge as a consequence of structural changes with

aging. We hypothesize that an integrated analysis of structural

and functional neuroimaging data might help understand this

relationship in future studies.

We explored whether the extracted ROIs from the integrated

gradient were meaningful and how the correlation changes

with aging. The ROIs which reflected changes with aging

were from the Default Mode (DMN), Primary Somatosensory,

and Prefrontal cortex (PFC) networks in the left hemisphere

and the early Visual cortex and ventral Attention Networks

in the right hemisphere of the brain. We found two

relevant age-associated developmental trends: (i) a decreasing

trajectory (both rapid and linear decrease) with aging in

the PFC, primary Somatosensory and DMN regions of the

left hemisphere of the brain, and (ii) an inverted U-shaped
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FIGURE 3

Inferred Node Strength from Ayu Pipeline over the sFC from Schaefer Atlas after applying Integrated Gradient for (A) Young, (B) Adult, (C)

Middle-Old Class, and (D) Old Class recovered.

trajectory in the early Visual cortex and Ventral Attention

regions of the right hemisphere of the brain. These ROIs are

presented in Figure 4; which shows the resting-state region

we studied.

The middle-aged and old group is associated with

the increased magnitude of correlation values in Visual,

Limbic, DMN, and Temporal Networks in between the

network. Furthermore, older age was related to the decreased

magnitude of correlation values between the Pre-frontal Cortex,

Somatosensory network. The middle-aged group functional

connectivity increased in Ventral Attention Network. We

observed age-related increases and decreases in functional

connectivity and positive and negative correlations between

networks for between-network connectivity. Curiously, the

old age group has reported increased functional connectivity

between networks (Chan et al., 2014; Geerligs et al., 2015). It is

theorized that these changes together within the brain networks

reflect decreasing segregation. With aging, the brain changes

its functional specialization (Chan et al., 2014; Geerligs et al.,

2015). Our study adds to this by showing that this segregation is

still subject to change in middle and old age.

These results arising from the analysis of the function

are in line with the observation that these regions (Prefrontal

Cortex; Somatosensory Network; Ventral Attention Network;

Visual Network; Default Mode Network; Limbic Network)

develop relatively late and slowly during adolescence and young

adulthood, but show accelerated age-related degeneration in old

age based on the brain structure analysis (Douaud et al., 2014).

The DMN contributes to the mental exploration of social and

emotional content and may contribute to adaptive behaviors,

which tend to decrease as we age. Similarly, the PFC is an

important site for working memory function and it also tends

to reduce with age. Our results are consistent with the previous

studies on aging (Chan et al., 2014).

In this study, we considered patterns of functional brain

connectivity at the network level for individual ROIs in

an aging population using resting-state fMRI. Our findings

with older adults suggest that the strength of functional

connectivity networks increases with older age affecting brain

aging and suggesting that these extensive patterns of functional

connectivity involving the default mode network, visual

network, and limbic network, are relatively stable until the

70s or early 80s. Younger adults showed stronger connectivity

within the prefrontal cortex, somatosensory network. The dorsal

attention network and temporal network showed minimal

changes across all the age groups which results in a weak age-

association with functional connectivity on a network-level. The

past studies that used the CamCan dataset to understand the

changes in different regions of the brain with aging also suggest

increased prefrontal cortex activity in the older age group in
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TABLE 8 Contribution of all the features and their corresponding Brain Region Obtained from Integrated Gradient in Schaefer Atlas.

Brain ROI in Young Adult Middle-Old Old

region Scheafer Atlas

LH Default PFC 1 0.632 0.551 0.556 0.512

LH Default PFC 2 0.648 0.602 0.591 0.523

Pre-Frontal LH Default PFC 3 0.524 0.541 0.517 0.489

Cortex Network LH Default PFC 4 0.557 0.523 0.462 0.408

LH Default PFC 5 0.462 0.481 0.436 0.369

RH Default PFC 1 0.347 0.312 0.274 0.241

RH Default PFC 2 0.326 0.302 0.281 0.267

LH SomMot 2 0.353 0.391 0.406 0.381

LH SomMot 4 0.332 0.361 0.326 0.291

Somatosensory LH SomMot 5 0.375 0.364 0.363 0.345

Network LH SomMot 6 0.392 0.381 0.358 0.331

RH SomMot 1 0.292 0.326 0.319 0.262

RH SomMot 3 0.306 0.341 0.325 0.297

LH SalVentAttn PFCl 1 0.326 0.384 0.363 0.311

RH SalVentAttn Med 1 0.342 0.391 0.387 0.361

Ventral Attention RH SalVentAttn ParOper 1 0.352 0.387 0.373 0.336

Network RH SalVentAttn ParOper 2 0.332 0.380 0.388 0.378

RH SalVentAttn TempOccPar 1 0.285 0.324 0.340 0.336

RH SalVentAttn FrOperIns 1 0.263 0.304 0.316 0.306

LH Vis 3 0.269 0.281 0.313 0.291

RH Vis 1 0.324 0.341 0.370 0.364

RH Vis 2 0.298 0.345 0.363 0.350

Visual Network RH Vis 3 0.342 0.346 0.395 0.367

RH Vis 4 0.359 0.382 0.393 0.377

RH Vis 5 0.368 0.378 0.389 0.373

RH Vis 7 0.327 0.375 0.399 0.370

LH Default Par 1 0.329 0.365 0.388 0.355

Default Mode LH Default Par 2 0.298 0.325 0.359 0.326

Network LH Default pCunPCC 1 0.287 0.312 0.349 0.327

RH Default Par 2 0.346 0.356 0.373 0.366

RH Default pCunPCC 2 0.231 0.271 0.307 0.315

LH Limbic OFC 1 0.273 0.306 0.315 0.298

Limbic LH Limbic TempPole 2 0.284 0.313 0.325 0.304

Network RH Limbic TempPole 1 0.294 0.299 0.324 0.316

RH Limbic OFC 1 0.286 0.297 0.317 0.306

LH, Left Hemisphere; RH, Right Hemisphere.

contrast to a decline being observed in their memory and other

cognitive functions (Morcom and Henson, 2018), corroborating

our results which are observed in the prefrontal cortex. This

study reveals that this elevation is associated with non-specific

neural responses instead of compensation i.e., it helps in

maintaining cognitive function. On the other hand, increased

activity in the prefrontal cortex might become less specific with

aging. Another functional neuroimaging study suggests that

there was reduced connectivity of the somatosensory network

with aging (Wolpe et al., 2016). Our findings offer evidence

in support of this statement (Figure 5 and Table 8). While

the current study assumes that the participants were alert
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FIGURE 4

Resting-State Networks of Somatosensory Network; pre-Frontal Cortex Network; Ventral Attention Network; Visual Network; Default Mode

Network; and Limbic Network; The color of the region represents the position of the region in the brain.

FIGURE 5

Age associations with correlation values of functional connectivity within networks. Kernel density plots visualize the distribution of the data (red

= dense) and the direction of the age e�ect on the connectivity values; (A) pre-Frontal Cortex Network; (B) Somatosensory Network; (C) Ventral

Attention Network; (D) Visual Network; (E) Default Mode Network; (F) Limbic Network.

while resting with their eyes closed, there is a possibility of

them falling asleep during the data acquisition period. This

might influence the functional connectivity patterns. Future

studies could take note of this possibility and address the

issue appropriately.

Furthermore, our research study replicates previous

demonstrations of an age difference in functional connectivity

involving nodes of the DMN and shows that other networks

are also important factors in brain aging (Meier et al.,

2012; Li et al., 2018; Monti et al., 2020). Current results
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need to be seen in conjunction with the results of previous

studies pointing out a decline in cognitive performance

with age, possibly due to multiple incipient degenerative

processes. Thus, functional connectivity may serve as a

potential biomarker to study cognitive decline. However,

neuropsychological tests are required in the future to

corroborate the association between functional connectivity and

cognitive decline.

In conclusion, the pipeline “Ayu” proposed in this study

could be a basis for future studies focusing on functional

connectivity and healthy aging, adding to our understanding of

changes in the functional connectivity with respect to the aging

brain in different age groups.
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