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ABSTRACT This paper presents a bio-inspired intelligent controller to enhance the performance of a
nonlinear system. The controller is designed by capturing the emotional intelligence of mammalian brain
mediated by the limbic system in which certain parts are responsible for generating emotions and these
can be combined together as brain affective system inspired control architecture (BASIC). This controller
has been used to cope with nonlinearities present in control applications. In this paper brain inspired
control architecture is proposed while incorporating the sensory cortex explicitly in the architecture and
the computational equations of various modules are suitably developed. The performance of the proposed
controller is analyzed on a typical nonlinear system, namely, Permanent magnet synchronous motor for
speed control, harmonics in stator phase currents and ripples produced in electromagnetic torque at different
operating conditions. Its performance is compared with the existing control techniques in offline simulations
as well as in real-time Hardware-in-loop environment. The results establish the computational efficiency,
accuracy and robustness of the proposed controller.

INDEX TERMS Amygdala, affective controller, limbic system, speed, torque, current.

I. INTRODUCTION
Recent developments in control theory concepts for dynam-
ical systems namely modeling, design of controllers and
their analysis emerged as potential research topics of
interest [1]–[5]. Presently, there are significant advantages
in control theory to develop modern controllers to obtain
high performance. Biological models provide inspiration to
introduce new intelligent control techniques to solve non-
linear problems and also to perform better compared to
the existing controllers [6]–[8]. The cognitive model con-
trollers mimic certain parts of the mammalian brain which
are responsible for taking fast decisions [5], [6], [9]. The
emotion signals are generated in the mammalian brain to
reach the targeted goal very fast and accurately. Artificial
emotion signals can be generated by mimicking character-
istic parts involved in the limbic system and the resulting
solution is referred as brain affective system inspired control
(BASIC) architecture [3], [10], [11]. BASIC is developed
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to analyze nonlinear dynamical systems and as a test case,
permanent magnet synchronous machine (PMSM) drive is
chosen with vector control scheme to analyze its dynamic
performance [12], [13]. Classical vector control operation is
modified to control PMSM drive with constant torque angle
(δ =9 00) control, which makes flux producing component
(Id) and torque producing component (Iq) equal to the supply
current. Although, in precise control applications an accurate
speed controller is required to overcome the air gap flux
linkage effects on electromagnetic torque that cause speed
variations. Proper selection of speed controller can reduce the
nonlinear effects of PMSM. Classical controllers such as pro-
portional (P), proportional-integral (PI) and proportional-
integral-derivative (PID) based speed controllers due to their
simple construction and easy functionality are used to solve
the nonlinearities of PMSM drive [14]–[16]. But, the perfor-
mance of controllers falls short of target (command) response
due to parameter variations, change in speed and sudden load
variations of PMSM drive. Intelligent controllers can over-
come the limitations of classical controllers to improve the
performance of PMSM drive. Fuzzy logic controller, neural
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networks and their hybrid structures with classical controllers
are used to solve the nonlinearities [17]–[20]. Design of such
control structures requires complete behavioral information
about the system and large set of training data for updating
the weight parameters, thereby increase the computational
complexity [21]–[24]. Evolutionary algorithms are applied
on PMSM drive to solve the nonlinearities. These algorithms,
on iteration, give a new solution for the problem, which may
converge to suboptimal local minima or maxima [25], [26].
In view of the above, BASIC architecture is a good candidate
to overcome the problems associated with existing control
schemes and their limitations in implementation. The BASIC
structure is modeled with limbic system of mammalian brain.
For a particular emotional event, the amygdala in the limbic
system being highly sensitive, is likely to give very fast action
and the orbitofrontal cortex (OFC) may give more accurate
action although slowly. For example, if a rope line is found
on road side, the first decision of a mammal could to mistake
it as a snake and after careful observation a conclusion may
be arrived as it being a rope. The first decision comes from the
amygdala which can be treated as feed forward model and the
latter response arises from the OFC which can be treated as
feedback model [27]–[29]. This dual responsive architecture
can be extended to form into a controller to solve real-world
applications and to apply in control engineering applications.

This paper is organized as follows: Section 2 presents
related literature pertaining to this research domain. Fur-
ther we briefly discuss the emotions and how to build
emotion-inspired controller for engineering applications.
BELBIC, an important emotional controller is also described
here. Next, Section 3 we explain our approach to developing
affective controller and architecture. In Section 4, the current
framework and application to PMSM drive are presented.
Section 5 describes the implementation of BASIC architec-
ture in order to test it. In Section 6, the experiments conducted
and the test cases considered to validate the proposed BASIC
architecture in high performance applications are included.
Finally, Section 7 includes conclusions.

II. RELATED WORK
A. MOTIVATION FOR AN ALTERNATIVE CONTROL MODEL
Various traditional controllers such as the proportional
(P), proportional-integral (PI) and proportional-integral-
derivative (PID) based control schemes are classical and have
been effectively utilized in many applications [14]–[16]. The
design of these conventional controllers are primarily imple-
mented using error signal that is estimated by comparing
the target and the current states of the system and subse-
quently reducing the error to reach the expected goal. As such,
the design of these controllers remains error-prone because
of their inability to cope with dynamic changes in the plant
and the external conditions of the environment. The design of
artificial intelligent controllers include more number of input
values as well as monitoring errors and their rate of change
to accomplish operation even with environmental perturba-
tions. These intelligent schemes further motivate us to design

FIGURE 1. Mammalian brain and connections of amygdala.

affective controllers using inspiration from the mammalian
brain. The design of affective controller requires two to three
inputs and contains affective learning mechanism to arrive at
accurate decisions for the problems encountered.

B. THE AFFECTIVE SYSTEM OF THE BRAIN
The mammalian brain with limbic system and its associated
parts is shown in Fig. 1. The amygdala, an almond-shaped
organ shown in Fig. 1, plays a vital role in decision mak-
ing process by virtue of its connections with other sensory
parts of the brain. The Orbitofrontal Cortex (OFC) is located
in the lower portion of the frontal lobe of the mammalian
brain. OFC, in association with amygdala, plays a key role in
decision making process mediated by the limbic system. The
combination of amygdala and OFC enhances learning and
the emotional capability of the mammalian brain to respond
quickly. In the current framework, the Sensory Cortex (SC)
is conceptualized as a generic module that processes various
kind of sensory information and that it has internal con-
nections with amygdala and OFC to respond quickly. The
proposed SC module is distributed over several cortical and
sub-cortical regions of the mammalian brain and participates
in sensing and transmitting of primary sensory information.
In the proposed architecture, the functionality of the parts
of the limbic system is modeled into a controller. Thus by
modeling parts of the limbic system with mathematical func-
tions, fast decisions could be generated in control engineering
applications when compared to conventional controllers.

C. HOW EMOTIONAL SYSTEM CAN BE VIEWED AS A
CONTROLLER?
The brain anatomy reveals that emotions play a major role
to take early action in the problems experienced. The Limbic
system of mammalian brain is responsible to generate emo-
tions to finish or attend to the task in all complex situations.
The mammalian brain is not a simple organ of body but
have complex structure that acts as a responsible gateway for
all actions of organs due to their interconnections with the
brain [7], [3], [5], [6], [11], [4]. This interaction is made pos-
sible by virtue of emotions, thoughts and all the experiences
of the organism. The mammalian brain is adapted to learn
with experience based on conditioning. The limbic system
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parts seem to act together as amulti-agent system. These parts
depend on each other to learn emotions and give appropriate
signals to the organism whenever a quick decision is to be
taken. The decision making capability of the limbic system
inspired researchers to mimic as a computational model for
real world applications.

Previously, imitative learning process is taken into con-
sideration to develop computational models of biological
systems. In imitation learning, knowledge is transferred
from one agent to other agent through the mechanism of
mentor-mentee model [3], [5], [6], [10], [11]. Some of the
limitations of imitation learning process are that the learning
is limited to accomplishing similar results as the mentor
and the absence of adaptability. However, the mimicking
algorithms can be implemented in biological brains seem
to have the capability of learning, adaptability as well as
generalization beyond the training examples. The main aim
in this work is to develop a parameter-learning adaptability
to achieve improved performance for control of nonlinear
system. Emotional intelligence is modeled by mimicking the
limbic system of the mammalian brain, combining the struc-
ture of amygdala and orbitofrontal cortex (OFC) systems.
The neural structure of amygdala and OFC are responsible
for taking fast decisions on the basis of emotional learning.
Moren and Balkenius [30], after several attempts, developed
a computational network model of the limbic system. These
network models comprise amygdala and orbitofrontal cortex
as learning modules, while thalamus and sensory cortex are
associated with input functions.

D. BRAIN EMOTIONAL LEARNING BASED INTELLIGENT
CONTROLLER (BELBIC)
Lucas et al. [31] had extended the computational model of
Moren and Balkenius and named it as brain emotional learn-
ing based intelligent controller (BELBIC) and utilized for
several control applications. Rahman et al. [32] used BELBIC
to control 1 hp Interior PMSM (IPMSM) drive and imple-
mented in real time. Sharbafi et al. [33] used the BELBIC
technique for motion control of an omni-directional robot.
The results obtained in simulation are compared with real
time implementation to show the effectiveness of BELBIC.
Roshanaei et al. [34] have implemented BELBIC for adaptive
antenna applications to estimate the arrival direction of the
incoming signals and performing adaptive beam-forming.
Markadeh et al. [35] adapted BELBIC to control speed and
flux of an Induction motor. Further Soreshjani et al. [36]
applied this control solution to power system applications
for FACTS device Thyristor controlled series capacitance
(TCSC) for active power flow control of transmission line.

E. DESIGN OF BELBIC [32]
For concreteness, we give the technical description of
BELBIC below [32]:

The sensory input (Si) is expressed as:

Si = A.Up + B.Up (1)

where Up is the plant output i.e., actual speed of motor (ωr ),
A and B are the gains of sensory signal.

The emotional cue (EC) is expressed as:

EC = k1.
∫
edt + k2.Uc (2)

where, e is error in speed with respect to a reference value,
i.e., e = ωref − ωr , Uc is controller output and k1, k2 are the
gains of emotional cue functions.

The amygdala learning model is expressed as:

Ai = ViSi (3)

where Vi is the gain connection of amygdala and expressed
as

1Vi = α.Si.max(0, [EC −
∑

i
Aj] (4)

The OFC output may be written as:

Oi = WiSi (5)

where theWi is the gain connection of OFC and expressed as

1Wi = β(E t−1 − EC)Si (6)

where E t−1 = Ai(t − 1)− Oi(t − 1)
The output of controller is given by

E =
∑

i
Ai −

∑
i
Oi (7)

The amygdala output in Eqn. (3) shows that it has connec-
tion with sensory signal and emotional cue function. The out-
put of amygdala is the primary emotional signal response but
it contains disturbances in the generated emotional response.
Consequently, the output of amygdala is subtracted from that
of the OFC given by Eqn. (5) to arrive at the final emotional
response signal, E as shown in Eqn. (7). In the following
section, we outline how this scheme has been modified to
propose our approach called, BASIC.

III. OUR APPRAOCH
The control structure of BELBIC contains sensory signal,
emotional cue, amygdala and orbitofrontal cortex (OFC) as
main elements [32]. In the existing design of BELBIC, sen-
sory cortex and its connections are not considered and they
are incorporated in a superficial way by supplying the sensory
signal information to the limbic system directly. In this paper,
we modify the control structure of BELBIC by including
the sensory cortex and named the resulting scheme as brain
affective system inspired control (BASIC) architecture. In this
architecture we refer to sensory cortex as being responsible
for five major senses namely smell, sound, taste, vision and
touch as well as the proprioceptive sensory information [37].
It is to be noted that in the mammalian brain there are distinct
and specializedmodules for each of the senses and thesemod-
ules are spatially distributed over the cortical and sub-cortical
regions of the brain. For the sake of simplicity we lumped all
these senses into a module called Sensory cortex (SC) in the
BASIC architecture. The sensory information is integrated
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FIGURE 2. Affective system mechanism of mammalian brain.

with components of the limbic system i.e., amygdala and
OFC, to generate necessary action/response in a given task.
The inclusion of SC modifies the learning rate of amygdala
and OFC and enables processing of information very rapidly
and with accuracy.

In this paper, an application of the BASIC architecture
is demonstrated in a real-world problem such as control-
ling of the surface mounted PMSM (SPMSM) drive to
overcome limitations of the BELBIC system proposed ear-
lier [41]. Figure 2 shows the action mechanism of the system
with the inclusion of a module called the Sensory cortex.
In goal-oriented action scenario, processing of sensory sig-
nal can be modeled with both feed forward and feedback
mechanisms mediated by amygdala and OFC, respectively.
The output of these models is normalized in the motor cor-
tex to generate the final control response. In contrast to
previous model of BELBIC [31]–[34], sensory signal was
directly processed to estimate control response. In the pro-
posed BASIC architecture, signal from the sensory cortex
is explicitly included that is expected to strengthen the feed
forward and feedback mechanisms and in turn improve the
performance of the system compared to existing BELBIC
control schemes. It can be observed from Fig. 2 that the
forward model contains the weights V1, V2,. . . . Vn whereas
the feedback model containsW1,W2,. . . . Wn as weights, both
weights are adjusted based on the goal to be attained.

IV. PROPOSED FRAME WORK: DESIGN OF BASIC
ARCHITECTURE
In the BELBIC the learning gains of amygdala and OFC are
modeled with sensory input signals. The integration of SC for
learning mechanism of amygdala and OFC could increase the

FIGURE 3. Modified BEC structure with brain parts.

signal conditioning to take swift and accurate decision. The
detailed structure of BASIC along with brain areas associated
with various computations is as shown in Fig. 3. The emo-
tional signal generation is initiated with selection of sensory
input signal and processed in SC. The SC is integrated with
amygdala and OFC to give early emotional output signal.
The emotional cue function gives necessary reward to the
amygdala and OFC. The technical design details of BASIC
are given below:

The sensory input (Si) is expressed as:

Si = G1.e+ G2.Up + G3

∫
Ucdt (8)

where e is the speed error, Up is plant output and Uc is
controller output. G1, G2 and G3 are gains of the sensory
signal.
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FIGURE 4. A) BELBIC architecture with plant [32] B) Proposed BASIC architecture with plant model.

The functionality of the sensory cortex (SC) is expressed
as:

SC i = eSi (9)

The emotional cue (EC) is expressed as:

EC = a.e+ b. |e.Uc| + c.Up (10)

where e is the speed error, Up is plant output and
Uc is the controller output. a, b and c are tunable gains of
EC.

The amygdala and OFC learning models are modified as:

Ai = ViSi (11)

where Vi is the gain connection of amygdala and expressed
as:

1Vi = α.SC i.max(0, [EC −
∑

i
Aj−1] (12)

The OFC output may be written as:

Oi = WiSi (13)

where theWi is the gain connection of OFC and expressed as:

1Wi = β(E t−1 − EC)SC i (14)

where, E t−1 = Ai(t − 1)− Oi(t − 1)
The output of the controller E that stands for emotional

signal can be expressed as:

E =
∑

i
Ai −

∑
i
Oi (15)

The inclusion of SC signal modifies the amygdala and
OFC gain connections whereas in BELBIC structure (See
section II.E), the gain connections of amygdala and OFC
contain sensory input signal. Inclusion of SC in amygdala and
OFC learning models speeds up the signal conditioning to
generate swift emotional response. The emotional response
(E) is obtained from the outputs of amygdala and OFC.
In particular, the output of amygdala Ai is always positive
and if Oi is positive, it acts as inhibitor and if it is negative
it acts as reinforcer. In other words, while learning sets up

permanent connections between sensory cortex and amyg-
dala; the connections from sensory cortex to OFC enable
flexibility.

A. COMPARISON OF BELBIC AND BASIC
BELBIC is shown in Fig.4 (A) and the BASIC architecture
proposed in this paper is shown in Fig.4 (B). Sensory cortex
is stacked above emotional cue function to compute sensory
input function. In addition, the computational equations for
sensory input function and emotional cue functions are also
modified [26]–[28].

In the BELBIC architecture SC is absent, the sensory and
emotional cue functions act as input signals in the design
of the amygdala and OFC learning mechanisms. However,
sensory input signal is function of plant output (Up) and
emotional cue is function of error (e) and controller output
(Uc). Whereas in BASIC architecture the sensory input is
modified with three input values error (e), plant output (Up)
and controller output (Uc). The amygdala and OFC learning
mechanisms are modified based on the SC signal. In compar-
ison to BELBIC, in the BASIC architecture the control signal
is made more compact with addition of input values. This
resulted in the error becoming smaller within less time and
with an increase in performance of the system as described
below.

A head-to-head comparison of the performance of
BELBIC and BASIC schemes is shown in Fig. 5. As can be
seen from the figures, for similar output from both controllers
the sensory input value required is very high (60 amps) for
BELBIC. On the other hand, the sensory input required is
significantly smaller (8 amps) for BASIC. Amygdala and
OFC outputs are very high in the case of BELBIC. The SC
output for the applied input is observed to be 0.98 amps which
lower the outputs of amygdala and OFC. The results clearly
indicate that sensory signal values are lowered in the case of
BASIC and made the size of controller compact. This shows
that proper selection of sensory signal, emotional cue and
Sensory cortex signal will lower the output of amygdala and
OFC to achieve the desired output. Stability analysis of the
control scheme of BASIC is given in Appendix-I.
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FIGURE 5. Characteristics of BEC and modified BEC.

FIGURE 6. Block diagram of PMSM machine with BASIC.

B. APPLICATION OF BASIC ARCHITECTURE TO PMSM
DRIVE
Fig. 6 shows the block diagram of vector control of PMSM
drive with respective transformation blocks and a precise
speed controller block i.e., the brain affective controller. It is
to be noted that the drive is modeled in rotor reference
frame [29], [4].

The design of speed controller is based on the speed error
signal received from reference speed and actual speed of
machine. The speed controller generates Iq value that is fur-
ther transformed for estimating the final value. Id value is
estimatedwith the assumption of an initial Id= 0. The inverter
switches are tuned using Space vector pulse widthmodulation
(SVPWM) technique with the help of motor phase currents.
Clarke and Park transformation are used to generate required
PWM signals.

1) MATHEMATICAL MODELING OF PMSM MACHINE
The mathematical modeling of PMSM drive contains electri-
cal and mechanical parameters with d-q axes synchronously
rotating reference frame. Modeling of PMSM machine is
made with assumptions that the induced EMF is sinusoidal,
damper windings are absent on rotor and that saturation and
core losses are negligible [12]–[15].[

VqVd
]
=
[
Rq + LqpωrLd−ωrLqRd + Ldp

] [
IqId

]
+
[
pωrψf 0

]
(16)

Te =
3P
2

[
ψf Iq +

(
Ld − Lq

)
Id Iq

]
(17)

Te = TL + Jmpωr + Bmωr (18)

where Vd , Vq are stator voltages, Id , Iq are stator currents, ωr
is rotor speed, Rd , Rq are stator resistance per phase. Ld , Lq
are inductance of d-q axes, P number of pole pairs of motor,
9f is rotor magnetic flux linking the stator; TL is load Torque;
Te is electromagnetic Torque; Bm is friction coefficient of
motor; and Jm is moment of inertia of the motor. The motor
parameters considered in the design of machine are listed
in Table 2 of Appendix II.

In the PMSM drive, the developed toque contains rip-
ples that lead to disturbance in the performance of vector
control of PMSM drive. The motor is modeled in d-q axes
synchronously rotating frame as shown in Eq. (17). The
developed torque can be made linear with consideration of
direct axis current Id = 0. This control technique is called
as constant torque angle control (δ = 900), i.e., torque
angle is maintained constant. Fig.7 shows the phasor diagram
for constant torque angle control. It can be seen from the
figure that the d-axis flux linkage depends on rotor magnets
only and torque is maintained constant. In Eq. (18). Elec-
tromagnetic torque (Te) epends on load, speed, friction and
inertia constants in which speed and load are variables. The
electromagnetic torque changes with the variations of speed
and load disturbances. It is required to design a precise speed
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FIGURE 7. Phasor diagram for constant torque angle control.

controller that controls torque ripples. The maximum speed
of rotor in this control is obtained for a given stator current (Is)
as shown in Eq. (23).

Te =
3P
2

[
ψf Iq

]
(19)

Te = TL + Jmpωr + Bmωr (20)

Vd = −pωrLq (21)

pIq =
1
Lq

[
Vq − RsIs − pωrψf

]
(22)

ωr (max) =
Vs (max)√
1+

(
LqIq

)2 (23)

V. REALTIME IMPLEMENTATION OF THE BASIC
ARCHITECTURE
The affective controller-fed PMSM drive is implemented
in offline mode using MATLAB simulation as well as
in real-time through Hardware-in-loop (HIL) with target
computer configuration for performing parallel computa-
tions [38]. In this method, a complex system is divided into
subsystems and all are operated at the same time. These
subsystems are divided in CPU nodes which are equal to the
number of subsystems. This enables to accomplish parallel
distributed real time computations. In the real time implemen-
tation, driver circuit simulation includes controller, converter
circuit and PMSM machine. The set-up model for real time
digital simulations is shown in Fig 8.

The control techniques are modeled with simulink blocks
inMATLAB and fed to simulator that converts the model into
C language and generates control signal i.e., switching signals
for inverter to control the drive. The time step is fixed to
have a system response time of 15µs where for every interval
of time step the control signal is generated. These signals
can be checked with oscilloscope and also in the PC that is
connected to the target. The inverter circuit is designed with
space vector pulse width modulation (SVPWM) technique
to generate switching signals to inverter that is based on
insulated gate biploar transistor (IGBT) power devices.

These switching signals are generated based on the control
signal that is generated based on speed error, controller output
and plant outputs. The proposed BASIC architecture as well
as BELBIC and PI controllers are implemented for PMSM
drive. Different tests have been conducted to analyze their
relative performance on the same nonlinear control problem.

VI. RESULTS AND DISCUSSIONS
To investigate the performance of the proposed BASIC archi-
tecture and to establish its effectiveness in comparison to
other control schemes, all have been implemented on PMSM
drive. Tests were conducted at different operating conditions,
i.e., constant speed, change in reference speed and change
in load conditions. The BASIC results are validated by com-
paring with BELBIC and classical PI controller. The control
schemes are firstly tested in Offline simulation and then
implemented in real time HIL environment.

A. OFFLINE SIMULATIONS
Offline simulation tests are conducted in MATLAB Simulink
environment. Fig. 9 shows the simulation results of PMSM
drive at constant speed of 300 rad/s with constant load
of 5 N-m. In Fig. 9 (a) the speed tracking of PMSM
drive with BASIC settles to commanded speed of 300 rad/s
very smoothly and swiftly without any oscillations but with
BELBIC (Fig. 9 middle column), the motor speed attains
commanded speed with transient oscillations, peak overshoot
is observed and time taken to reach the speed is high. Similar
observations can be seen with PI based controller as shown
in Fig. 9 (last column). Here, the speed takes more time
to reach the reference commanded compared to BASIC and
BELBIC controllers.

The speed response of all the three controllers is shown
in Fig.10. It clearly shows that the speed response time of
BASIC-fed PMSM drive is 0.0025s whereas with BELBIC is
0.0055s and 0.015s for PI controller with peak overshoot and
transient oscillations. Fig. 9 (b) gives the waveform of stator
phase currents of PMSM machine.

From the figures it can be observed that BASIC-based
PMSM drive gives less harmonic distortion with 7.86%
against 12.95% with BELBIC and 13.33% with PI control
scheme. Fig. 9(c) shows that electromagnetic torque rip-
ple variations are observed with a magnitude of 7.69% for
BASIC as against 8.80% and 9.45% for BELBIC and PI
control techniques, respectively. The effectiveness of the con-
trollers is tested by conducting speed tracking test for PMSM
drive. Fig. 11 shows speed tracking performance with speed
command signals of 200-300-(-200)-(-300) rad/s at the time
intervals of 0-0.4-1-1.5s. Based on speed response depicted
in Fig. 11 (a), it can be seen that there are no transients
and peaks can be seen that there are no transients and peaks
observed in speed response of BASIC. In contrast, speed
oscillations are observed at starting andwhen change of speed
is applied in the case of existing control techniques. The stator
winding draws more current for existing control techniques
whereas the same is reduced in the case of affective control
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FIGURE 8. Real-time set up model.

FIGURE 9. Simulation results of PMSM drive at constant speed.

FIGURE 10. Comparison of speed response PMSM drive with BEC and MBEC.

technique as shown in Fig. 11 (b). The torque variations are
high in BELBIC and PI control techniques as compared to
BASIC (See Fig.11 c).

The dynamic loading capability of PMSM drive is tested
by sudden application of load disturbance of 5N-m at 0.5s

as shown in Fig.12. When a sudden load is applied on the
motor, change in speed response is observed in the shape of a
small dip. The time taken to recover from load change is high
for BELBIC and PI control architectures. The corresponding
effect on stator winding draws more currents with respect
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FIGURE 11. Simulation results of PMSM drive at variable speed.

FIGURE 12. Simulation results of PMSM drive at variable load.

to load change. The generation of electromagnetic torque
attained for a new value of applied load from 2N-m to 5N-m
for which more torque ripples are found with BELBIC and PI
control architectures.

B. REAL-TIME EXPERIMENTATION RESULTS
The performance of the proposed method in offline simu-
lations is validated experimentally by conducting real time
experiments using OP 5600 HILbox. Fig.13 shows constant
speed tracking performance of PMSM drive for the reference
speed of 300 rad/s. BASIC gives faster response with fewer

variations as seen in Fig. 13 (a), with settling time of 0.008s
against 0.015s and 0.02s of settling time for BELBIC and PI
controllers, respectively.

The speed response of the three controllers is shown
in Fig. 14. The stator phase variations are shown in Fig. 13(b)
and the total harmonic distortion (THD) observed to be 9.49%
as against 15.38% for BELBIC and 16.44% for PI controller-
based PMSMdrive. The torque production is shown in Fig. 13
(c) with the torque ripples of 18.57% and with BELBIC and
PI controller the torque ripples are observed to be 22.35%
and 27.04%, respectively. The PMSM drive is operated in
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FIGURE 13. Real-time results of PMSM drive at constant speed.

FIGURE 14. Comparison of speed response PMSM drive with BASIC and BELBIC.

FIGURE 15. Real-time results of PMSM drive at variable speed.
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FIGURE 16. Real-time results of PMSM drive at variable load.

TABLE 1. Comparison of speed response characteristics.

different operating speeds of 200-300-(-200)-(-300) rad/s as
tested in simulations. Although, BELBIC and PI controllers
took more time to reach the command speed as shown in Fig.
15. The speed variations are impacted on the stator phase
currents and electromagnetic torque produced.

The variations are shown in the figures. Overall, it is
observed that BASIC-based PMSM drive gives efficient and
effective results. The test results related to dynamic loading
capability of controllers is shown in Fig.16 with sudden
load variation of 2N-m to 10N-m. While all the three con-
trollers are capable of handling load variations, in the case of
BELBIC and PI control techniques the speed variations are
more. The stator currents and torque ripples variations is
shown in Fig. 16 (b)–16 (c). The variations in stator cur-
rents and in torque ripples are more for existing controllers
compared to BASIC. The speed, current THD and torque
ripple of electromagnetic torque observations of BASIC
are compared with BELBIC and PI controllers’ response,
low steady state error and sensitivity to disturbance in load
conditions.

Table 1 summarizes the comparisons for offline and real
time observations. The summary highlights the effective per-
formance and capability of BASIC architecture in all the test
conditions. It is seen that BASIC exhibits faster response,

low steady state error and sensitivity to disturbance in load
conditions.

VII. CONCLUSION
In this paper a new structure called, brain affective system
inspired controller (BASIC) is presented where the sensory
cortex is explicitly incorporated and computational equations
are modified. The performance of PMSM drive using BASIC
is compared with BELBIC architectures and PI controllers
in simulation and in real-time environment with different test
conditions. The BASIC gives superior performance in terms
of less settling time for speed with reduced overshoots, reduc-
tions in the harmonics o9f stator phase currents and reduction
in ripples of electromagnetic torque produced. The BASIC
contains different set of gain values which give freedom to
set in to achieve required output. This inherent feature makes
BASIC transient free and robust to obtain high performance.
Various other application domains such as in Power sys-
tem control could be explored in future. Currently internal
parameters such as sensory signal, emotion cue function, etc.,
have been estimated by trial and error for best performance,
adaptive tuning schemes for the same could be explored in
the future.

APPENDIX-I
STABILITY ANALYSIS OF BRAIN AFFECTIVE SYSTEM
INSPIRED CONTROL ARCHITECTURE (BASIC)
The Brain affective system inspired Control architecture
(BASIC) is designed with various modules such as sensory
signal, sensory cortex, thalamus, emotional cue, amygdala
and orbitofrontal cortex. The input signals given to these
modules interact among each other and interestingly become
nonlinear when transformed by multiple variable functions.
The sensory signal and emotional cue functions play a key
role in emotional signal generation mechanism, so it is
required to design themwith effective functions. The stability
of BASIC is obtained with sensory input and emotional cue
functions because they act as input signals to amygdala and
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OFC learning models. If the sensory input and emotional
cue functions are stable then the BASIC is said to be sta-
ble [39], [40].

The sensory input and emotional cue functions (Eq.A.1 &
Eq.A.2) are recalled to find stability

Si = f (e,UP,Uc)

Si = G1.e+ G2.Up + G3

∫
Ucdt. (A.1)

EC = h(e,UP,Uc)

EC = a.e+ b. |e.Uc| + c.Up. (A.2)

In order to find stability of BASIC, the equilibrium point
for Eq. (A.1) and Eq. (A.2) need to be found and it must be
locally stable.
The sensory input and emotional cue functions are

expressed with e, Up and Uc as variables and formed into a
nonlinear model. The three variables of nonlinear model can
be represented in the form as:

e (t + 1) = f (e (t) ,UP (t) ,Uc (t))

UP (t + 1) = f (e (t) ,UP (t) ,Uc (t))

Uc (t + 1) = f (e (t) ,UP (t) ,Uc (t)) . (A.3)

where f is an arbitrary function with variables e, Up and Uc
To find the stability of nonlinear system, firstly we find

the equilibrium and prove it to be locally stable. Consider,
the sensory input with function f containing three variables
which are unchanging at equilibrium, which can be written
as e (t + 1) = e (t) = ê, Uc (t + 1) = Uc (t) = Ûc and
U (t + 1) = UP (t) = ÛP.
Let us consider that there are small deviations ε1, ε1 and

ε3 for ê, Ûp and Ûc respectively. The deviations can be rep-
resented ε1 = e (t) − ê, ε2 = Uc (t) − Ûc and ε3 =
Up (t) − Ûp. If the equilibrium point (ê, Ûc, Ûp) is locally
stable, the deviations ε1, ε2 and ε3 must decay to zero as
time passes (which means that e(t) → ê, Uc(t) → Ûc &
Up(t) → Ûp as time passes). In order to determine whether
the equilibrium is stable or not, the dynamics of ε1, ε2 and ε3
are required, which can be obtained as:

ε1 (t) = e (t + 1)− ê

= f
(
e (t) ,Up (t) ,Uc (t)

)
− ê

= f
(
ê+ ε1 (t) , Ûp + ε2 (t) , Ûc (t)+ ε3 (t)

)
− ê.

(A.4)

ε2 (t) = Up (t + 1)− Ûp
= f

(
e (t) ,Up (t) ,Uc (t)

)
− Ûp

= f
(
ê+ ε1 (t) , Ûp + ε2 (t) , Ûc (t)+ ε3 (t)

)
− Ûp.

(A.5)

ε3 (t) = Uc (t + 1)− Ûc
= f

(
e (t) ,Up (t) ,Uc (t)

)
− Ûc

= f
(
ê+ ε1 (t) , Ûp + ε2 (t) , Ûc (t)+ ε3 (t)

)
− Ûc.

(A.6)

Taylor series expansion is considered to describe the func-
tionality of multiple variables and to find the equilibrium
point (ê, Ûc, Ûp). The Taylor series expansion of Eqn. (A.4)
to Eqn. (A.6) with respect to deviations ε1, ε2 and ε3 near
(0,0,0) may be obtained as

ε1 (t + 1) =
(
f
(
ê, Ûp, ŷc

)
+
∂f
∂e
|
e=ê,Up=Ûp,Uc=Ûc

ε1 (t)

+
∂f
∂Up
|

e=ê,Up=Ûp,Uc=Ûc

ε2 (t)

+
∂f
∂Uc
|

e=ê,Up=Ûp,Uc=Ûc
ε3 (t)

+high order terms)− ê (A.7a)

=
∂f
∂e
|
e=ê,Up=Ûp,Uc=Ûc

ε1 (t)

+
∂f
∂Up
|

e=ê,Up=Ûp,Uc=Ûc

ε2 (t)

+
∂f
∂Uc
|

e=ê,Up=Ûp,Uc=Ûc
ε3 (t)

++ high order terms (A.7b)

The expression (A.7b) follows from (A.7a) with the fact
that f

(
ê, Ûc, Ûp

)
= ê at equilibrium. Higher-order terms

in the expression are involved for higher powers of ε1 and
derivatives are evaluated at equilibrium. ε1 is very small at
equilibrium and becomes still smaller and high powers of
these deviations are extremely small so that they can be
ignored. The final expression can be obtained as:

ε1 (t + 1) =
∂f
∂e
|e=ê,Up=Ûp,Uc=Ûc

ε1 (t)

+
∂f
∂Up
|

e=ê,Up=Ûp,Uc=Ûc

ε2 (t)

+
∂f
∂Uc
|

e=ê,Up=Ûp,Uc=Ûc
ε3 (t) (A.7c)

Similarly, the calculations are repeated for ε2 and ε3 devi-
ations and the expressions are found to be:

ε2 (t + 1) =
∂f
∂e
|e=ê,Up=Ûp,Uc=Ûc

ε1 (t)

+
∂f
∂Up
|

e=ê,Up=Ûp,Uc=Ûc

ε2 (t)

+
∂f
∂Uc
|

e=ê,Up=Ûp,Uc=Ûc
ε3 (t) . (A.8)

ε3 (t + 1) =
∂f
∂e
|e=ê,Up=Ûp,Uc=Ûc

ε1 (t)

+
∂f
∂Up
|

e=ê,Up=Ûp,Uc=Ûc

ε2 (t)

+
∂f
∂Uc
|

e=ê,Up=Ûp,Uc=Ûc
ε3 (t) . (A.9)
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TABLE 2. Motor parameters.

The above expressions Eqn. (A.7) –Eqn.(A.9) can be rep-
resented in matrix form as:

 ε1 (t + 1)
ε2 (t + 1)
ε3 (t + 1)

 =


∂f
∂e

∂f
∂Up

∂f
∂Uc

∂f
∂e

∂f
∂Up

∂f
∂Uc

∂f
∂e

∂f
∂Up

∂f
∂Uc


 ε1 (t)ε2 (t)
ε3 (t)

 .(A.10)

The matrix is a Jacobian matrix and is also referred to as
the stability matrix. The system of equations is linear with
three deviations ε1, ε2 and ε3. Thus, (A.10) describes the non-
linear dynamics in terms of linear equations near equilibrium
of interest. If the deviations ε1,ε2 and ε3 decay to zero over
time, then the equilibrium is locally stable. Conversely, if the
deviations ε1,ε2 and ε3 grow over time, then the equilibrium is
unstable. Specifically, the equilibrium is stable if the absolute
value of every Eigenvalue of the Jacobian is less than one,
i.e., (|λ1| < 1, |λ2| < 1 and |λ3| <1). For the implemented
system, the estimates of the Eigenvalues are found to be
|λ1| = 0.7714, |λ2| = 0.1070 and |λ3| = -0.0484, when
the appropriate values are substituted and eigen analysis is
performed on the Jacobian matrix in Eq (A.10).

Similarly, to find the stability of the EC function the above
method is repeated to find the stability matrix to find the
Eigenvalues and they are found to be |λ1| = 0.11, |λ2| =
0 and |λ3| = 0. Since the Eigenvalues are within the limits,
it can be concluded that the equilibrium is stable for pertur-
bations in Si and EC. Hence, the BASIC scheme is a stable
one with the chosen values of Sensory signal and emotional
cue functions.

APPENDIX-II
See Table 2.

APPENDIX-III
The sensory signal and emotional cue gain parameters for
are tuned using trial and error method and found to be 0.08,
0.05 and 0.7 for sensory input and 0.04, 0.06 and 0.01 for
emotional cue respectively. The amygdala and OFC learning
rates are found to be 0.08 and 0.03 respectively.

APPENDIX -IV
Stability analysis of PMSM drive can be proved using
Eq. (16) and Eq. (18) can be rewritten a

dId
dt
=

(Vd − RId + ωLqIq
Ld

dIq
dt
=

(Vq − RIq − ωLd Id + ωψf )
Lq

dω
dt
=

pψf Iq + p
(
Ld − Lq

)
Id Iq − TL − Bω

J
(B.1)

After applying affine transformation and time scaling
transformation

dId
dt
= −

Lq
Ld
Id + ωIq + V d

dIq
dt
= −Iq − ωĪd + K1ω + V d

dω
dt
= K2

(
Iq − ω

)
+ K3Id Iq − T L (B.2)

where K1 =
Pψ2

f
RB ; K2 =

LqB
RJ ; V q =

PLqψf Vq
R2B

; V d =
PLqψf Vd
R2B

;

K3 =
LqB2(Ld−Lq)

Ld JPψ2
f

; T L =
L2qTL
R2J

Stability analysis of PMSM
The inherent characteristics of PMSM drive with smooth

air-gap can be expressed aswith assumptions since the chosen
PMSM drive surface mounted type.

Ld = Lq;V d = 0;V q = 0; and T L = 0

dId
dt
= −Id + ωIq

dIq
dt
= −Iq − ωĪd + K1ω

dω
dt
= K2

(
Iq − ω

)
(B.3)

In order to study the dynamic characteristics of PMSM
drive the parameters K1 & K2 are assumed to be independent.
The actual dynamic behavior of drive can be obtained by
substituting the actual parameters.

The equilibrium points (ido, iqo,ωo) is analyzed by (B.4),
as shown at the bottom of the next page.
(1) If K1 >1, the system have the equilibrium points

including (0,0,0),

(K1 − 1,
√
K1 − 1,

√
K1 − 1) and

(K1 − 1,−
√
K1 − 1,−

√
K1 − 1).

(2) If K1 ≤ 1, the system would only have one equilibrium
point (0,0,0).

The local stability of the equilibrium point is determined by
the roots of the characteristic equation and the equilibrium
point is stable if all the roots of the characteristics equation
have negative real parts. The characteristic equation can be
expressed as de (λI − J) = 0, where λ, I and J represent the
eigen value, identity matrix and Jacobian matrix respectively.
In fact, the stability of the equilibrium point is usually judged
using R-H stability criterion.
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As solving the characteristic equation is very difficult for
high dimensional dynamical system.

The jacobian matrix at the equilibrium point of system

J =

 −1 ω0 Iqo
−ω0 −1 −Ido + K1
0 K2 −K2

 (B.5)

Substituting the jacobian matrix and equilibrium point
(ω2

0, ω0, ω0) into the characteristic equation det(λI-J) = 0,

λ3 + (K2 + 2) λ2 +
(
1+ K2ω

2
0 − K2K1 + 2K2

)
λ

+3K2ω
2
0 − K2K1 + K2 = 0 (B.6)

According to R-H stability criterion the sufficient condi-
tion on the local stability of the equilibrium point is

K2 > −2; 3K2ω
2
0 − K2K1 + K2

> 0 (K2 + 2)
(
1+ K2ω

2
0 − K2K1 + ω

2
0 + 2K2

)
−(3ω2

0 + K1 − 1)K2 > 0 (B.7)

Equilibrium points can be found stability using bifurcation
theory. The equilibrium points may lose stability when the
parameters pass through the ley values and the bifurcation
behavior occurs. In order to obtain the conditions of the
Hopf bifurcation, setting λ = nj (n 6= 0) and substituting into
characteristics equation we obtain.

−n3j− (K2 + 2) n2 +
(
1+ K2ω̄

2
0 − K2K1 + ω̄

2
o + 2K2

)
nj

+3K2ω̄
2
o − K1K2 + K2 = 0 (B.8)

By equating real and imaginary parts

n2 = 1+ K2ω̄
2
o − K2K1 + ω̄

2
o + 2K2

n2 =
(3K2ω̄

2
o − K2K1 + K2)
K2 + 2

(B.9)

According to the Hopf bifurcation the equilibrium point
must satisfy the following conditions.

K2 + 2 > 0,

1+ K2ω̄
2
o − K1K2 + ω̄

2
o + 2K2 > 0,(

−K 2
2 − 2

)
ω̄2
o + (K1 − 2)K 2

2 + (K1 − 4)K2 − 2 = 0.

(B.10)

In addition, if K1 > 1, system (3) would have two stable
equilibrium points and one unstable equilibrium point and if
K1 < 1, system (3) would only have one stable equilibrium
point and the pitchfork bifurcation occurs at K1 = 1.
B. When considering the external load, namely, Ld =

Lq,V d = 0,V q = 0, and T L 6= 0, this is a special case
that the control inputs of the system are removed after the
motor runs for a period of operation. Let V = T L , and the
system (2) becomes

dId
dt
= −Id + ωIq,

dIq
dt
= −Iq − ωId + K1ω,

dω
dt
= K2

(
Iq − ω

)
− u. (B.11)

By analyzing the equilibrium points,
(
Id0 , Iq0 , ω0

)
of sys-

tem (11) we obtain (B.12), as shown at the bottom of the page.
According to the relationship between Ido,Iqo, andω0

the equilibrium point of (B.11) can be written as(
ω2
0 + u

ω0
K2
, ω0 +

u
K2
, ω0

)
. The Jacobian matrix at equilib-

rium point is

J =

 −1 ω0 Iqo
−ω0 −1 −Ido + K1
0 K2 −K2

 (B.13)

λ3 + a1λ2 + a2λ+ a3 = 0, (B.14)

where

a1 = K2 + 2

a2 = (1+ K2) ω
2
0 + uω0 + (2− K1)K2 + 1

a3 = 3K2ω
2
0 + uω0 + (u− K1 + 1)K2. (B.15)

According to R-H criteria, the local stability condition of
the equilibrium can be written as

K2 + 2 > 0

3K2ω
2
0 + uω0 + (u− K1 + 1)K2 > 0

K2

(
2+ 2K2 + (K2 + 2) ω2

0 + uω0 − K1 (K2 + 1)
)
+2 > 0.

(B.16)


−Ido + ωoIqo = 0
−Iqo − ωoIdo + K1ω0 = 0

H⇒

K2(Iqo − ω0) = 0


Īdo = ω̄2

0
Īqo = ω̄0
ω̄0
(
ω̄0

2
− K1 + 1

)
= 0

(B.4)


−Ido + ω0ido = 0
−Iqo − ω0Ido + K1ω0 = 0

H⇒

K2(Iqo − ωo) = 0


Īdo = ω̄2

0 +
uω̄0
K2

Īqo = ω̄0 +
u
K2

ω̄0
3
+

u
K2
ω0

2
+ (1− K1) ω̄0 −

u
K2
= 0.

(B.12)
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If Fold bifurcation occurs at the equilibrium point of
(B.11), the following conditions must be satisfied

ω3
0 +

u
K2
ω2
0 + (1− K1) ω0 +

u
K2
= 0

3K2ω
2
0 + uω0 + (u− K1 + 1)K2 = 0. (B.17)

In Hopf bifurcation occurs at the equilibrium point of
(B.11), the following conditions must be satisfied.

K2 + 2 > 0

(1+ K2) ω
2
0 + uω0 + (2− K1)K2 + 1 > 0

ω3
0 +

u
K2
ω2
0 + (1− K1) ω0 +

u
K2
= 0

K2(2+ 2K2 + (K2 + 2) ω2
0 + uω0 − K1 (K2 + 1)+ 2 = 0.

(B.18)
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