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Abstract

The search and retrieval of relevant images and videos from large repositories of mul-
timedia, is acknowledged as one of the hard challenges of computer science. With exist-
ing pattern recognition solutions, one cannot obtain detailed, semantic description for a
given multimedia document. Several limitations exist in feature extraction, classification
schemes, along with the incompatibility of representations across domains. The situation
will most likely remain so, for several years to come.

Towards addressing this challenge, we observe that several multimedia collections con-
tain similar parallel information that are: i) semantic in nature, ii) weakly aligned with
the multimedia and iii) available freely. For example, the content of a news broadcast is
also available in the form of newspaper articles. If a correspondence could be obtained
between the videos and such parallel information, one could access one medium using
the other, which opens up immense possibilities for information extraction and retrieval.
However, it is challenging to find the mapping between the two sources of data due to the
unknown semantic hierarchy within each medium and the difficulty to match information
across the different modalities. In this thesis, we propose novel algorithms that address
these challenges.

Different < Multimedia, Parallel Information > pairs, require different alignment
techniques, depending on the granularity at which entities could be matched across them.
We choose four pairs of multimedia, along with parallel information obtained in the text
domain, such that the data is both challenging and available on a large scale. Specifically,
our multimedia consists of movies, broadcast sports videos and document images, with the
parallel text coming from scripts, commentaries and language resources. As we proceed
from one pair to the next, we discover an increasing complexity of the problem, due to a
relaxation of the temporal binding between the parallel information and the multimedia.
By addressing this challenge, we build solutions that perform increasingly fine-grained
alignment between multimedia and text data.
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The framework that we propose begins with an assumption that we could segment the
multimedia and the text into meaningful entities that could correspond to each other. The
problem then, is to identify features and learn to match a text-entity to a multimedia-
segment (and vice versa). Such a matching scheme could be refined using additional
constraints, such as temporal ordering and occurrence statistics. We build algorithms that
could align across i) movies and scripts, where sentences from the script are aligned to
their respective video-shots and ii) document images with lexicon, where the words of the
dictionary are mapped to clusters of word-images extracted from the scanned books.

Further, we relax the constraint in the above assumption, such that the segmentation
of the multimedia is not available apriori. The problem now, is to perform a joint in-
ference of segmentation and annotation. We address this problem by building an over-
complete representation of the multimedia. A large number of putative segmentations are
matched against the information extracted from the parallel text, with the joint inference
achieved through dynamic programming. This approach was successfully demonstrated
on i) Cricket videos, which were segmented and annotated with information from online
commentaries and ii) word-images, where sub-words called Character N-Grams, are accu-
rately segmented and labeled using the text-equivalent of the word.

As a consequence of the approaches proposed in this thesis, we were able to demon-
strate text-based retrieval systems over large multimedia collections. The semantic level
at which we can retrieve information was made possible by the annotation with parallel
text information. Our work also results in a large set of labeled multimedia, which could
be used by sophisticated machine learning algorithms for learning new concepts.
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Chapter 1

Introduction

The success of search engines on the Web, such as Google [3], has tremendously trans-

formed the way we access and use information every day. However, similar ability to search

the content, seems to elude the massive multimedia collections available online. With the

advent of economical digital cameras, camcorders and more recently, smartphones, all

of us are creating vast amounts of image and video content, especially for others’ con-

sumption. However, the reach of the massive multimedia databases, including about 250

billion photos on Facebook [17] and 100 hours of video uploaded on YouTube [32] every

minute, is limited mostly to close friends and family. The ability to search and retrieve from

these collections would unlock their true information potential. In this thesis, we address

this very problem and propose approaches, techniques and solutions to design retrieval

schemes over a variety of real-world multimedia collections.

1.1 Motivation

Personal Use: We build our personal image and video content primarily to document

our experiences. It should be convenient to find the relevant photos and videos when one

wants to relive particular events, for example the video of one’s child acting in a play.
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Knowledge: Several multimedia collections store large amounts of valuable informa-

tion, such as through photo-journalism, documentary film making, etc. Videos are being

increasingly used as an effective medium to teach and to inform [25]. A retrieval system

over such multimedia repositories would help in obtaining factual data as well as valuable

knowledge.

Entertainment: Needless to say, movies, TV shows, live sports coverage, music videos,

etc. form an important part of everyone’s life. The volume of such content is much larger

than what one could consume in a lifetime. Hence, a mechanism to find or recommend

content based on user preference is necessary.

Security: Surveillance cameras have become an indispensable security tool. Much of

the video feed is directly archived and accessed only in the case of an incident. It is

necessary to build systems which can retrieve relevant video clips for a person or event of

interest.

However, much of the semantic information criteria that is of interest in these domains,

is extremely hard to define as well as understand using existing techniques.

1.2 Challenges with Multimedia Retrieval

Multimedia is a synchronized co-existence of several types of data such as visual, audio,

text, etc. While processing and making sense of each modality individually is a challenge

in itself, the joint inference is much harder. Further, such challenges have to be isolated

from the user, who should be provided with the same kind of convenience expected from

web search engines.

Challenges with Visual Data: Computer vision, the study towards the understanding

of visual content, is acknowledged as one of the hardest recognition tasks. The challenge

arises from the richness in the visual world and consequently the immense variety in the

visual data. There have been some recent successes with respect to classifying the object
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category for a given image (or window) [85], but semantic recognition and description

still remains a challenge. In case of video, action recognition is further difficult, as it

depends on unreliable human pose estimation at each frame. One of the core issues with

building visual recognition systems is the limitation of existing classifiers: i) they need

large amounts of training data, which is expensive to generate; ii) they are computationally

expensive to train and evaluate and iii) they are not reliable across large number of visual

categories.

Challenges with Auditory Data: Speech recognition has become mature enough to

enable a voice-based assistant on a smartphone [31]. Despite this success, generic speech

recognition is still an unsolved problem. Multiple speakers, background noise, varied ac-

cents, etc. pose serious challenges towards building a universal speech recognizer. Lan-

guages such as those from India, China, Africa, etc. do not yet have robust recognition

engines, and might require much effort dedicated towards this. Apart from speech, it is

also difficult to identify and recognize other kinds of sounds such as music, whistling,

humming [100], etc.

Challenges in Information Retrieval: There is a “semantic gap” between how an

information need is expressed and how multimedia is represented [207]. This problem

appears to a lesser extent in text/web search engines [3], mostly because the users typically

learn to pose better queries in text. It is rarely possible to search for a particular image

with just a few keywords, while that is fairly easy in text search engines. With multimedia,

the labels generated from recognizers or tags provided by humans are never thorough or

enough to describe the content. In case of videos, the temporal annotation of long videos

is quite complex also.

One of the key challenges with enabling retrieval is the lack of apriori understanding of

the user’s information need. In current retrieval solutions, one can only ask such questions

that can be answered with the existing recognition technology. In contrast, if a user can
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express the information need in a manner that could be modeled easily with visual data,

retrieval would only be a matter of matching the information need with the data collection.

In this context, the motivation for our work is the key observation that there exist several

sources of similar or parallel textual information that is “consumable” by the users and that

meet their immediate semantic expectations. If we could align this parallel information

with visual data, the user’s information need can be posed and processed in the easy-to-

handle text domain.

1.3 Problem Setting

In this work, we address the challenges of multimedia retrieval by leveraging additional

information available for several classes of visual data. Particularly, we are interested in

relevant textual information that contains semantic descriptions of the multimedia con-

tent. We then apply state-of-the-art techniques for the respective multimedia modalities

resulting in intermediary inferences, which are then fused to make a decision on the over-

all labeling problem. Specifically, we focus on four classes of multimedia-text pairs: i)

movies & scripts, ii) sports videos & commentaries, iii) digitized books & dictionary of the

language and iv) word-images & text labels.

Our approach is motivated from the ground-up by the need to create text-based retrieval

systems, where the information need is expressed as a small set of keywords. Not only is

the convenience of text-retrieval appreciated by the users, but several advances in text-IR

community could be extended to multimedia data, if such the visual to text transformation

were made feasible.

We limit the scope of the thesis to building prototype retrieval systems on multiple

classes of large-scale real-world datasets. We do not aim to build commercial systems as

part of the thesis, that might require better UIs, real-time data processing and significant

resources for delivery of content and maintaining services.
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1.4 Contributions

The major contributions of this thesis are:

1. Annotation through Alignment: Our first contribution is towards addressing the

challenge of obtaining an alignment across visual data and parallel textual informa-

tion. We present several novel intermediate representations of image/video and text,

in order to match them across the modalities. We propose a dynamic programming

based algorithm, that enforces temporal/sequential constraints to refine the match-

ing. The proposed alignment scheme could also infer the segmentation of the visual

data, when it has not been explicitly provided. We apply the proposed approach to-

wards annotation of movies with scripts, Cricket videos with text-commentary and

document images with a lexicon.

2. Scalable Annotation: Our second contribution is towards scalable annotation of

multimedia. We propose an indexing based annotation approach, that re-uses classi-

fier scores for similar data. Our work is significant because, we reduce the complexity

of the test data, rather than that of the classification. As a consequence, an anno-

tation scheme that would usually be of order O(N ·M), (where N,M are test and

training data sizes respectively), would only require O(logN · logM) operations. This

translates to a speedup of 500×, from 150 years to about 100 days while annotating

36 Million images. The presented approach is fairly agnostic to the underlying clas-

sification scheme, making it easily applicable to multiple recognition tasks. Further,

our work enables scalable retrieval over large multimedia datasets, as the underlying

representation that is indexed is in the text form. This allows us to build multimedia

retrieval systems by using popular text search engines [12,22].

3. Significant Applications: Our work has immediate practical applications towards

building retrieval systems on Indian-language document image collections. Such
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images cannot be made accessible with existing character recognition technology

(OCR) due to challenges with Indic scripts. We address the problem by alleviating the

challenge of character segmentation by focusing on higher-level primitives such as

the word, and Character NGrams, which are sequences of character segments from a

given word image. We demonstrate our approach over 1000 Telugu books, consisting

of 120K images, the largest non-English document image collection that is searchable

at the content level. As a result of our work, we were able to build document image

retrieval systems that i) can be queried by text keywords, ii) can search from an

unlimited vocabulary and iii) can retrieve at the sub-word level.

4. Labeled Datasets: The alignment schemes that we propose, are applicable to

several situations where weak-supervision is available for multimedia datasets. We

present a class of approaches that could turn weak-annotation into strong-annotation,

at multiple semantic granularities. This allows for significant speed-up in annota-

tion, requiring little human intervention for fine-grained labeling. The labeled data

obtained in this fashion would be valuable towards learning features and classifiers

for several new visual categories.

1.5 Thesis Outline

We begin with presenting a review of the literature in Chapter 2. Several previous

approaches towards building multimedia retrieval solutions are described and their limi-

tations and shortcomings are analyzed. The approaches proposed in this thesis are sum-

marized in Figure 1.1, which provides details of the multimedia collections and the textual

information used in the annotation process. The outcome of the work in each Chapter and

the increasing scope of the solution across the Chapters should be evident.
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Multimedia Parallel Text Alignment

Movies Scripts
C
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3 Shots vs. Sen-

tences

Result: Video clips can be retrieved based on people, location, actions and dialogues

Limitation: Limited by availability of scripts & to video material trained for

Cricket Videos Commentary

C
ha

pt
er

4 Scenes vs. Para-
graphs

Result: Video clips can be retrieved based on players, outcome and descriptions

Limitation: Limited to Cricket videos

Digitized Books Born-digital Content

C
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pt
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5

Segmented
Words vs.
Dictionary

Result: Relevant books & pages can be retrieved for Telugu word queries

Limitation: Limited to chosen vocabulary set of 100K

Segmented Words Word Labels

C
ha

pt
er

6 Sub-Words
vs. Character
N-Grams

Result: Words retrieved irrespective of prefix, suffix & sandhi/samaas

Limitation: Applicable to most document images

Figure 1.1 An overview of the different multimedia documents that we build retrieval
systems for, with the approach of alignment between visual and textual content. The
temporal binding between the multimedia and the text varies from rigidly tight to almost
unrestricted depending on the granularity at which the text describes the visual content.
The challenges, methods and results from each row of the figure are presented in a corre-
sponding Chapter in the thesis.
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We begin describing our work in Chapter 3 towards annotating movies and TV shows,

with parallel information obtained from fan-generated transcripts. These scripts contain

information about the characters that are present in the video, their actions, expressions,

and what they are speaking. A movie of a few hours length, is typically described by a

few pages of text. The video-script alignment problem is one of assigning a piece of text

to the corresponding piece of video. In order to align the text to the video, we segment

the video into shots and the text into sentences. The alignment is then posed as a multiple

assignment problem that assigns multiple sentences of the script to a shot of the video. An

intelligent assignment of sentences to shots requires a matching scheme between the two.

This matching is based on three cues extracted from the sentences and shots: <Location,

Face, Speech>. These properties are extracted from the shot using state-of-the-art methods

for each cue. The alignment is obtained by optimizing a cost function defined using this

matching scheme. The technique was applied on episodes from the sitcom Seinfeld, and

also tested on Indian films and Charlie Chaplin’s silent movies. The resulting alignment

allows the user to retrieve all shots where for eg., Charlie Chaplin is picking something

up, Elaine is answering the phone or Kramer enters Jerrys Apartment in his characteristic

style. Through the method we propose here, we take the first step in aligning multimedia

with text when the basic entities of both the video (i.e. shot) and text (i.e. sentence) are

known beforehand.

In Chapter 4, we address the next class of videos that come from sports broadcasts

of Cricket. The parallel information for these videos is obtained from online commen-

taries, written by journalists. Contrasting with movies, the meaningful segmentation of

the Cricket videos is a sequence of related shots that form a scene. Also, the text consists

of multiple sentences (a paragraph) that should always be assigned to the same scene.

While the segmentation in the text space is straightforward, the challenge is in segment-

ing the video into meaningful scenes, and then labeling each scene with the appropriate
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paragraph of text. This presents a chicken-and-egg problem, if the video is segmented it

could be matched against descriptions, and vice-versa. We solve this problem by propos-

ing a text-driven temporal segmentation of video in the case of broadcast Cricket videos.

This is made feasible by learning models for scene-categories using a set of visual-temporal

features. The commentary is used to build a hypothetical video using these scene models.

This model is then matched and aligned with the visual-temporal features observed from

the broadcast video, which in turn provides us the segmentation. Following this, the scene

segments were annotated with descriptions from the commentary. Such an annotation

allows for search and retrieval, personalized highlight generation, etc. For example, users

could search for all instances where the batsman used a square-cut, or the bowler bowled

a full-toss. These are examples of queries which are quite difficult to answer without using

parallel-text. With this aspect of our work, we have performed a joint segmentation and

annotation of videos, when the basic entities of the video are not provided apriori.

In Chapter 5, we turn our attention to visual data present in images, specifically those

images that consist exclusively of text data. We are aware only of the language of the

textual data present in the images, but not the actual content itself. The goal is to extract

the textual content present in the form of pixels in the image. The parallel information

for these document images, comes in the form of the language’s lexicon. The semantic

segment of both the visual and textual data is well-defined, which is the “word”. The

word-segments from the document images are compared with exemplars obtained for the

dictionary words. However, unlike video data, there is no temporal information that could

help with the alignment. Instead of performing explicit matching between all word-images

and exemplars (which is inefficient), we propose an indexing scheme, where clusters of

word-images are aligned with clusters of exemplars. The clustering itself is made efficient

by using Hierarchical K-Means and KD-Trees. By this approach we were able to annotate

a large collection of 1000 books of Telugu language, with a 500× speedup over traditional
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word-recognition. The resulting search system searches from about 36 Million words in

less than a second, without the use of an Optical Character Recognizer (OCR). Thus, in

the case of document images, the image data and the text data are aligned across common

entities that are completely distributed across the collection with no temporal ordering.

One of the limitations of the work in Chapter 5, is the restricted vocabulary that can

be answered by the retrieval system; out-of-vocabulary (OOV) queries are simply rejected.

In Chapter 6, we overcome this limitation by exploring the possibility of annotation at

the sub-word level. We begin with a set of word-images that are provided along with

their equivalent text label. We propose a novel segmentation of the word image into

sequences of putative characters, called Character N-Gram Images (CNG-Img). Similarly,

the text label is also segmented into text n-grams at character level (t-CNG). Due to over-

segmentation of the word-image, there would typically be more CNG-Img than t-CNG.

Each t-CNG would map to only one CNG-Img. The alignment problem is posed as a

weakly-supervised segmentation, where models for t-CNG are “located” among the CNG-

Img set, which results in an exact segmentation of the word into characters and t-CNGs.

However, it is difficult to learn the models for the entire t-CNG, as that would require

large amount of training data. We solve this issue by building models for the t-CNG by

concatenating the individual character models. Following this process, we obtain CNG-

level labeling of the word image in the given collection. With such a labeling, we were

able to build a retrieval system that could retrieve similar words, irrespective of modifiers

such as prefix-suffixes, and for Indian languages, across sandhi-samaas conjuncts. The

labeled exemplars were then used to build a recognition system, that is robust to heavy

degradations in document images. Through the CNG-Img work, we were able to apply

an alignment between a bag-of-visual entities to a bag-of-text entities, where each bag

contains objects at multiple granularities ranging from characters to words (and all the

representations in-between).
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While we deal with a variety of multimedia collections, the underlying solutions follow

a common theme: i) an exploitation of domain-specific cues that are tailored for the given

multimedia collection, ii) a fusion of information between the visual and textual modali-

ties, that yields a solution that is otherwise not possible and, iii) use of spatial/temporal

constraints that are enforced by the order of events in the two modalities or in the distri-

bution of data in a high-dimensional space.

We conclude our work in Chapter 7 and present future directions of research that could

be explored given the work carried out in this thesis.
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Chapter 2

Background

In this Chapter, we present the precursors to our work. We set the background for

the work presented in the rest of this thesis. Literature review that is relevant to specific

multimedia collections shall be covered in the respective Chapters addressing them.

2.1 Content Based Image/Video Retrieval

2.1.1 CBIR

The Content Based Image Retrieval (CBIR) approaches address the question: “given the

image Q, find me similar images in the dataset W ”. This question can be asked of videos

(CBVR) and multimedia (CBMR) as well. The CBxR approach has been actively pursued

for several decades [36,77,139,207]. Some of the key research works that have made the

most impact in CBxR research have been pictured in Figure 2.1. These works have raised

fundamental issues in content based access to image, video and document collections.

During the “early” years of CBIR, the focus has mostly been around the low-level feature

extraction and matching. Several features such as color, texture and shape were proposed

and evaluated along with various distance measures such as Euclidean, Earth-Movers, etc.

The progress from this exploration resulted in early CBIR systems such as the QBIC [37,94]

(see Figure 2.2), Virage [41], WebSeer [98], etc.
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Figure 2.1 Some of the papers over the years that summarized and shaped the state-of-
the-art of image and video retrieval. In order, the works presented are Rui et al. [193],
Smeulders et al. [207], Rath & Manmatha [183] and Sivic & Zisserman [205].

One of the major limitation of early CBIR systems has been the difficulty to map user

needs to low-level features. There are two aspects to this challenge [207]: i) sensory gap

and ii) semantic gap. The loss of information of objects and scenes in the real world, when

captured as an image, and consequently as features extracted from it, is called the “sensory

gap”. The “semantic gap”, on the other hand, is the difficulty to extract information from

visual data that is similar to the description of the user’s need.

The features themselves had limited matching capability, for example, color features

could identify the sky as being blue or grass as green, but would easily confuse an apple

with a rose (an issue persistent in major search engines until very recently). The ability of

low-level features to reliably represent content works well only for a narrow domain [207]

of the images, where additional domain information could help identify or augment the

features [82]. As a result, several CBIR systems are engineered to answer for a specific

type of concept.
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(a) (b) (c)

Figure 2.2 Image retrieval systems have come a long way from (a) depending on weak fea-
tures such as color and texture [94,145] to (b) practical large-scale systems using contex-
tual text information [1] and (c) evolving into the more recent smartphone apps [19,21]
that provide on-the-go use of images as an entry point to information sources.

The second major drawback of CBIR systems is the enormous computation required to

match the query with the database. This is typically O(N ·d), N is the number of images in

the database, d is the size of feature vector. The online computation of the query’s nearest

neighbors (NN) in the database, requires several minutes for a few thousand images. As

the dataset size grows, CBIR systems take prohibitive amounts of time to answer each

query. The computational complexity of exhaustive NN matching was overcome using

efficient matching techniques such as B-Trees [48] (and other tree structures), Locality

Sensitive Hashing [35], Hierarchical K-Means [163], KD-Tree [157] etc. The underlying

principle in tree structured indexes is that, the feature or image space can be split into

small groups of closely related points, in a hierarchical fashion. A function is generally

evaluated at each hierarchy to identify the path to be taken for each data point. The

height of these tree structures is typically O(logN), which also gives the estimate for time

in identifying the cluster for each point. By identifying the paths in the tree corresponding

to the query, one could retrieve the relevant images quickly.

2.1.2 CBVR

A video can be treated as a sequence of images, allowing the use of any CBIR approach

to build a retrieval system. However, it would be more efficient to identify keyframes,
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and apply CBIR on this subset only. Thus, early work on CBVR revolved around temporal

segmentation of the video into logical units such as shots and scenes [59, 108, 139]. A

shot-cut is detected, whenever the camera shifts, or the scene being captured changes

significantly. Shot-cut detection was performed using color histograms, motion vectors,

etc. [127,137]. A better temporal segmentation involved identifying clusters of shots that

were semantically related, called the scene. Scene segments were obtained by clustering

adjacent shots using visual features [216,237] or dynamism [70,181].

2.1.3 The Visual Words World

The global features used in classical CBIR did not work well in the presence of multiple

objects or concepts within an image, and in presence of occlusions. Features extracted from

regions obtained from image segmentation [221] or pixel-clustering [187, 202] were not

reliable, as the segments did not directly correspond to semantic entities such as objects.

To address this issue, several researchers have proposed the use of local features, where a

feature is generated at several “interest points” in the image. The interest points are typi-

cally obtained by using a corner detector [198], maximally stable extremal regions [149], a

difference of Gaussians [143], etc. Each point is described using features such as the patch

of image around it, SIFT [143], histogram of oriented gradients [76, 143], and improve-

ments thereof such as GLOH [151], SURF [47], DAISY [217], etc. With local features,

each image typically generates several hundreds of features, resulting in an explosion in

the number of features from a small image collection or from videos.

Towards efficiently matching large number of local features, the quantization of the

feature space was proposed in [205]. Specifically, a large number of SIFT features are

clustered using the K-means algorithm, each cluster centroid forming what is termed the

visual word. Any given SIFT feature vector is assigned to its nearest cluster and given

the name or number of this cluster. An image is then represented as a “bag-of-visual-
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Query Retrieved Results

Figure 2.3 Example retrieval results from the Video Google system presented by Sivic &
Zisserman [205], available at [15]. The query is given as an image region shown on the
left. The SIFT features from this region are matched against those from the rest of the
frames in the video to retrieve the best matches. This matching is tremendously sped-up
using vector quantization of the features followed by a text-like indexing of the images.

words” (BoW), which is essentially a histogram of the visual word occurrences in the

image. Such a representation enables an easy indexing of the visual data using popular

text search engines, such as Lucene [12], Greenstone [22], etc. Given a query region in

an image, the features in this region are identified and quantized to obtain the query-

visual-words. Each query-visual-word is looked up in the index to identify the images that

contain similar features. The image lists across the visual words are merged and ranked

using the TF/IDF measure. Early results on the object retrieval task, as seen in Figure 2.3

showed tremendous promise over a challenging dataset of movie frames [203].

One of the shortcomings of the BoW approach is the loss of spatial information. Sivic

& Zisserman [203] proposed the use of geometric verification, as a post-processing step

to re-rank matches obtained from the visual word indexing. The spatial matching was

further extended using a hierarchy of spatial segmentation of the retrieved regions [134].

Several improvements over the basic BoW approach have been proposed [168] to improve

quantization quality [167,169], speed [119], reducing memory load [99], re-ranking, etc.

An alternative method of quantization, using a pyramid match kernel was proposed by

Grauman [103], which was later extended to use a hashing based speedup. The bag-

of-words approach has since, been a popular representation for object category recogni-

tion [165,239].
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2.1.4 CBxR: Summary

Inspite of major advances in CBxR approaches, the underlying mechanism assumes that

query Q is of the same media as the collection W . This would imply the user needs to

have atleast one instance of the target concept, which is often not the case; having the

single instance might actually address the information need. More importantly, the user

should be allowed flexibility to express the query, irrespective of the type of multimedia

being indexed. For example, the user could ask “find me the music video for this audio

clip”, or “what is the news article corresponding to this picture”, etc. With the advent

of popular text search engines such as Google [3] and Bing [4], users are accustomed to

posing queries in the form of short text.

Toward addressing textual queries for multimedia collections, the challenge is to gener-

ate a textual description for the multimedia. There are two broad categories of approaches

that have been proposed to generate textual information for multimedia: i) Recognition-

based and ii) Annotation-based.

2.2 Recognition Based Retrieval

A recognition-based solution can be understood as answering this question: “given a set

of labels, which of these labels are active for the given visual data”. A classical recognition

problem is that of identifying the names of people in an image [241]. Given the wide

applicability of face-recognition in security applications, this problem has received much

attention, and reasonable progress has been made resulting in country-scale systems.

Szummer and Picard [213] and Serrano et al. [201] were among the early works to-

ward classifying images into indoor/outdoor categories. Fleck et al. [93] and Wang et

al. [226] have built systems to classify Web images as being objectionable or not, which

were later extended in [95, 227] to other object categories. Features and classifiers have
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Figure 2.4 Benchmark datasets such as the (left) Caltech-256 [104] and (right) the PAS-
CAL VOC [85] have been instrumental in concerted effort towards solving the visual recog-
nition problem. The Caltech-256 dataset consisted mostly of images that contain only one
kind of object from among 256 different classes, allowing for whole-image classification.
The VOC dataset consisted of unconstrained images that contain multiple objects, requiring
sliding-window like approaches. Though rapid progress has been made in the last decade,
the results are far from user-acceptable accuracy or human-understandable semantics.

been studied extensively for scene recognition [164]. The BoW-like representation with

strong discriminative classifiers such as Support Vector Machines (SVM) have been quite

successful towards object detection and recognition [85, 171] over benchmark datasets

such as those shown in Figure 2.4. The most successful object detection solution thus far,

has been the use of deformable template models learnt with a latent-SVM [89].

More recently, Deep Belief Networks (DBN) [111], have shown promise by automati-

cally learning the appearance of a concept using a stack of neural networks that progres-

sively “compress” the visual data. The applicability and improved performance of DBNs on

a variety of problems is yet to be evaluated.

2.2.1 Video Recognition

Recognition in videos could be treated as an application of image-level recognition over

keyframes extracted from the video. This is the popular approach to labeling large video

datasets such as the TRECVID challenge [206], example results are shown in Figure 2.5.

However, treating videos as a stack of images, does not utilize additional sources of infor-

mation present in the video such as, i) temporal and ii) auditory.
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Figure 2.5 Video shot classification results over the TRECVID dataset [206], for the con-
cepts (above) crowd and (below) mountain. Video classification involves classifying the
keyframes for each video shot, in this case using a random forest classifier on an ensemble
of features as reported in [170]. The TRECVID challenge is important as it i) raises the
semantic level from objects to scenes and ii) the scale of video data is significantly larger
than previous benchmark datasets.

The temporal information is typically used to recognize the actions and activities of

people [34, 69], with a focus on security applications. One of the core issues in video

recognition is to track people [96] and objects across the frames in the video. Some of

the popular approaches to tracking include optical-flow estimation [44, 52, 234], Kalman

filtering, successive detection [178,179], kinematic models [57,58], etc.

Activity recognition is typically built on top of spatio-temporal segments from videos [114],

mostly by learning a Hidden Markov Model (HMMs) [91,231]. Sign language recognition

is an interesting subset of activity recognition, which was addressed using HMMs in [211]

and modeled on Markov chains of discriminative visual features in [55].

Auditory information present in videos was used for scene segmentation and highlight

generation [70, 79, 192]. Speech recognition has been used to annotate videos with text

in the form of closed-captions [32]. Speech recognition, however, is not a solved problem

especially in the presence of multiple or unknown speakers and background noise.
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Another interesting generative approach for videos is based on the authoring paradigm.

Snoek [209] proposed a framework, where multimedia documents are considered the

result of a set of specific (mostly unknown) authoring steps. The authoring process is

reversed by analyzing the multimedia and combining with common style conventions in

film making. With this process, multimedia could be indexed at a semantic level. However,

this is restricted to production quality videos and is thus not directly applicable to user

generated content.

2.2.2 Recognition: Summary

Though tremendous progress has been made in image/video recognition, detailed se-

mantic labeling is still a distant dream for automated solutions. Recognition systems are

expensive to train as they require large amounts of training data and expensive to de-

ploy due to the computational cost of complex classifier solutions. This makes recognition

systems scale very slowly with new concepts and new datasets.

2.3 Image/Video Annotation

An alternative to recognition is the process of annotation, which can be loosely defined

as: “Given the visual data V , what pieces of (textual) information is relevant for it?”. The

difference between recognition and annotation is: i) the set of labels is not fixed or known

beforehand in annotation, and are generated on-the-fly, depending on the visual data, ii)

the structure of the labeling is unrestricted in annotation, while recognition results in a

binary or real-valued score for each label. Annotation is not expected to be thorough, in

the sense, when visual data is not annotated with a label, it does not mean that it is absent.
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Figure 2.6 An aggregation of 80 Million images crawled against 75K keywords [218] from
the WordNet hierarchy using popular search engines such as Google, Flickr, etc. Example
images are shown for the category Golconda, a popular tourist site in Hyderabad, India.
The results from a web search engine typically consist of images that have either high sim-
ilarity with the query or are almost irrelevant. A few specific keywords exhibit a strong
structure among the relevant images, so much so that the average image is actually recog-
nizable.

2.3.1 Manual Annotation

A classical annotation system, that continues to be used today is that of manual anno-

tation of stock photographs such as Getty Images [20], by a set of trained personnel. The

labels are placed in a hierarchy, which allows for easy browsing and searching, but labels

can be added and deleted without loss of performance or applicability. Manual annotation

is the foundation of search in photography communities such as Flickr [18], 500px [11],

etc., where the labels are quite uncontrolled, sometimes descriptive, and depend heavily

on the personal context of the photographer. Large video datasets such as movies and TV

shows on Netflix [28], Hulu [23], etc. are also labeled manually. YouTube [32] search

depends on titles and tags assigned to videos by the uploader.
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Another interesting annotation scheme is the use of image search engines such as

Google [3] to collect images for a given keyword. Using this method, 80 million im-

ages [218] were gathered pre-annotated against 75K keywords from the WordNet [153]

hierarchy. Sample images collected this way for an example category are shown in Fig-

ure 2.6. Image search engines inevitably result in images that are not particularly relevant

for the query. Filtering schemes have been proposed using a mixture of textual and image

features [49,199,225] to yield better datasets from such noisy retrieval results.

There is a more recent trend to label images and videos by crowdworkers [210, 224,

230], yielding some of the commonly used benchmark datasets such as LabelMe [195],

PASCAL VOC [85], ImageNet [78], etc. The difficulty of using crowds for large scale an-

notation is due to the unreliability of crowdworker performance, the subjectivity of indi-

viduals and the high cost of labeling. Consequently, automated solutions are still preferred

over manual annotation.

2.3.2 Syntactic Annotation

One of the popular annotation schemes for images and videos is to identify the text

present in the data. Overlaid text recognition has been successfully used for scene detec-

tion and annotation of news videos [197], sports videos [40], etc. Scene text recognition

in images is an active research area, with several recent works attempting to address this

problem [154,228,229].

Annotation of videos based on the people in the video has also been quite popular.

For example, Sivic et al. [204] index video shots from a feature film, using the facial

appearance of the characters in the scene. The same group has annotated sitcom episodes

by the names of the characters, using the script and subtitles of the series [83] (without any

facial matching). Similarly, faces in news photographs were labeled using a named entity
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recognizer over associated captions [50]. Yang and Hauptmann [236] have presented an

annotation scheme for news stories based on the locations of events.

2.3.3 Annotation Propagation

Several works fall under the category of annotation propagation: “given a set of images

with labels, find the suitable labels for new images”. This approach is different from the

“recognition” paradigm, as the labels are not explicitly mapped to the concept in the visual

data. The annotation of the image is typically modeled as learning the “co-occurrence”

between the keywords and images or the keywords and image regions. Barnard and

Forsyth [46] present a word-image mapping using a hierarchical structure to cluster fea-

tures and keywords at various semantic levels.

The region-word co-occurrence model was first presented in Duygulu et al. [81], where

the annotation problem is posed as one of translation between discrete features and the

keywords. The translational model learnt from the data is used to estimate the probability

of a keyword given the observed image feature, thereby annotating each image region.

A more complex generative model conditions the co-occurrence of features and keywords

is conditioned on a set of hidden parameters. The model parameters for each class are

learnt from the data, using the EM algorithm. New images are annotated by estimating the

maximum likelihood of the class parameters that would have generated the image features.

Blei and Jordan [53] proposed a generative method for word and image features using the

latent Dirichlet allocation model. Similar latent space models were also used by Monay and

Gatica-Perez [156]. Other generative models such as cross media relevance model [120],

continuous relevance model [132], multiple Bernoulli relevance model [90], etc., have

been used to model the joint probability distributions of image features and keywords.

Jeon et al. [121] have addressed annotation in the presence of noisy image descriptions.

This work is also notable for having annotated more than 25K news images with over 4000
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Figure 2.7 (Above) Example results from an annotation propagation framework presented
in [219]. Results over multiple datasets such as Corel, ESP and TC-12 are shown, the
labels for the images are fairly accurate. The blue colored labels are the ones present
in the groundtruth, while the red colored labels are additional relevant keywords for the
images. Most annotation propagation approaches still work at the keyword level rather
than at semantic sentence level. (Below) Example images that match a given sentence
in the “meaning” space of keywords [87]. Sentences were aligned with the images by
identifying the keywords from both and matching them.

keywords. The annotations performance in generative modeling approaches is affected by

the quality of training data and the modeling assumptions.

Recently, discriminative models have been proposed towards image annotation. Nearest

Neighbor (NN) techniques [105, 146, 219] have surprisingly good performance in label

propagation, perhaps because of the availability and computability of large amounts of

labeled data. The nearest neighbor (NN) classifier with a learnt distance metric, was used

to propagate tags in [105]. Another method that used NN classifiers involves a two step

classification method that matches images to keywords in one step, and then images with
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other similar images, called 2PKNN in [219]. Support Vector Machines (SVMs) have shown

improved performance, especially over confusing labels [220].

Further, the advantages of discriminative and generative classifiers could be combined

with hybrid approaches such as Li et al. [140] and Carneiro et al. [64]. Li et al. [140] an-

notates images using the two techniques separately in a two stage process, while Carneiro

et al. [64] propose a supervised multi-class labeling formulation that combines the advan-

tages of discriminative and generative techniques. Most annotation approaches, however,

require large amount of training data to satisfactorily learn the keyword models. Another

limitation of annotation propagation approaches is that the labeling granularity is still at

the keyword level.

2.3.4 Annotation by Alignment

The category of Annotation Alignment addresses the goal of “given visual data and cor-

responding text, identify the appropriate mapping between the two”. This is similar to

works like Berg et al. [50] that labels people in the photographs with names identified

from textual captions. Another interesting annotation alignment was proposed to label

images with sentences [87]. Given a set of sentences, the meaning of the sentences is

identified by a triplet of keywords. Similar keywords are generated from the images too.

For each image, the sentences with the closest meaning could be identified and vice versa.

Example images mapped to their sentences are shown in Figure 2.7.

Annotation of videos by alignment of closed-captions with movie scripts was first shown

in [83], and later applied to a larger collection by [130]. The resulting annotations are

themselves useful for retrieval [131], the labels from which were then used to train a

face/activity recognizer. As an extension, solutions have been proposed around aligning

closed captions with sign language in news broadcasts [60, 61, 86], such as the example

shown in Figure 2.8. Further, the causal relationships across individual actions were learnt
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Figure 2.8 (Above) Closed captions were used as a source of weak supervision to learn the
sign language vocabulary [60,61]. In this case, the British sign language symbol for “trees”
is shown. (Below) Annotation of a baseball video by learning an action model as well as a
storyline model, from a training data of videos with captions [106]. The video is analyzed
to generate the graph shown on the right based on activity recognition algorithms. The
descriptive text is then generated using this graph.

to generate a storyline for baseball videos [106, 107], such as the description shown in

Figure 2.8.

2.3.5 Annotation: Summary

Image and video annotation have expanded the boundaries of labeling multimedia doc-

uments from a restricted set of classes (as in recognition) to a more generic label-set. Se-

mantic information is preserved and propagated across labeled and unlabeled datasets,

through an effective use of co-occurrence statistics across visual and textual domains.

However, there is much scope to improve i) the granularity of the visual data at which
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Figure 2.9 Prototype retrieval systems developed for specific datasets. (Left) The News
retrieval system built by Yang & Hauptmann [236], the different panes of the interface are
marked as: A) Story pane, B) Map interface for different news stories, C) Timeline and D)
Frequent person viewer. (Right) The Goalgle system for soccer video retrieval developed
by Snoek [209].

annotation is performed and ii) the semantic depth of labels and descriptions. Further,

annotation approaches too require sufficient amount of labeled training data.

2.4 Multimedia Retrieval Systems

Unlike several domains where solutions are typically limited to laboratory settings, mul-

timedia retrieval systems need to satisfy varied demands from end-users. There is consid-

erable focus on easy-to-use interfaces, an interesting example being the 3WNews system

from CMU, shown in Figure 2.9, which allows news video browsing based on geographical

locations [235]. This system was built by performing named-entity recognition over the

speech transcripts to identify locations (and people) discussed in a story, such as the one

shown in Figure 2.9. Similarly, the retrieval system built by [209] (see Figure 2.9) over

soccer videos allows the user to search for events such as goals, cards, substitutions, etc.

The mode of querying the retrieval systems is an important design aspect. Typically,

queries are posed as short text that includes a few keywords, similar to text search en-

gines. An example retrieval system over handwritten letters by George Washington [184]

(shown in Figure 2.10), can retrieve lines containing the given query keyword. More-
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Figure 2.10 Line retrieval demo [185] over images of handwritten letters by George Wash-
ington. The underlying retrieval system is based on the concept of Word Spotting [147],
where matching occurs in the image space. Text retrieval is enabled by manual labeling
over clusters instead of individual word-images. This retrieval system was the first avail-
able solution to search across unconstrained offline handwritten images.

over, interesting applications could be built if different modalities could be handled for a

given document collection. In case of image databases, novel queries such as by sketching

have been proposed [200]. Another interesting query-modality is the use of the stickman

model [56] of a person to query for human pose [118].

A challenging query modality is a stream of images from a webcam, such as the doc-

ument retrieval system shown in Figure 2.11. As each image in the stream is considered

a query, the retrieval systems needs to be optimized to process the query and match it

across the database in real-time. This is achieved using a technique called locally likely ar-

rangement hashing (LLAH), over the locations of the words in the document. Applications

of such a retrieval system include seamless access of digital documents through printed

documents [124,141,142], tracking user reading behavior [129], etc.

Similar query-by-example systems have found their way into smartphone applications,

such as Google Goggles [21], Amazon Flow [19], etc. The Google Goggles system is shown
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Figure 2.11 Document retrieval at page-level [159], where an image from a webcam is
used as a query to find the relevant document from the database, in real time. Document
images are matched robustly against geometric distortions based on the arrangement of
words in the page. The matching is sped-up using an approach called locally likely ar-
rangement hashing. The method has been recently [215] scaled up to retrieve from a
large 10 Million page dataset.

in Figure 2.2 (c) , where the smartphone camera is used to capture a picture of a limited

set of objects such as a landmark, a painting, etc. The image is analyzed on the device and

queried against a cloud-based index of annotated images. The matching image is used to

extract additional information regarding the object of interest.

Towards addressing semantic-queries, query expansion [72] is an interesting way to

generate multiple relevant queries that could cover the semantic meaning of the query,

and obtain multiple retrieval results from the document collection. Another mechanism to

disambiguate the query semantics is through relevance feedback [194, 196]. Personaliza-

tion has also become an important aspect of multimedia systems. Zhang et al. [240], for

example, have applied relevance feedback mechanisms to video retrieval systems to refine

search results in annotated sports videos.

Another challenge with IR systems is a standard procedure to evaluate various retrieval

approaches. Towards this end, controlled datasets, queries and query modalities have
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been put forth with competitions such as TREC and its video counterpart, TRECVID [206].

The evaluations rely on manual groundtruth, which is feasible for these relatively small

datasets.

2.4.1 Systems: Summary

Several multimedia retrieval prototypes demonstrate the progress of the field towards

“usable” systems that could address real-world needs. However, these systems tend to be

restricted in the domain of the multimedia and in the scale of the data that is indexed.

Unlike text search engines (e.g. Lucene [12]), there are few instances where MR systems

are open-sourced to the community, towards building customized retrieval systems over

novel multimedia collections. A single retrieval system that seamlessly integrates across

several multimedia domains, remains a distant goal.
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Chapter 3

ScriptAlign: Alignment of Movies with Scripts

3.1 Introduction

Movies and Television shows constitute a major portion of entertainment for the masses.

Statistics show that in a 65-year life span, as much as 9 years are spent watching Movies

or TV. However, each person can only watch a small fraction of the entire video material

available. More video material is being generated by TV channels and Movie studios, than

can be consumed by people. This calls for an intelligent browsing, search and retrieval

mechanism for movies, such that users can watch only the video material (and parts of)

which are interesting to them. This can be addressed to certain extent by using metadata

information such as genre, plot keywords, theme, actors, director etc. Online databases

such as IMDB [24], provide detailed metadata for movies and TV shows. However, meta-

data alone is not sufficient for all user preferences, such as to retrieve specific actions,

expressions, favorite scenes, memorable action sequences, etc.

The major technical challenge in enabling such retrieval, is the labeling of videos with

semantic information. Given a video, it is hard for computers to automatically infer mean-

ing from the data. This would involve comprehensively solving the computer vision prob-

lems. In such a situation, we need to look for clever alternatives to bootstrap the recogni-
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tion process. Consequently, we infer that the problem can be sufficiently addressed if we

could obtain certain level of meaningful annotations of the video.

The ideal scenario is the availability of manual annotations for the multimedia. While

manual annotation is a costly procedure, there are many domains for which manual an-

notations are readily available. For example, movies are described by their scripts, news

videos are associated with online news articles and sports broadcasts are accompanied by

webcast commentaries. This parallel information is in the textual form, and at a seman-

tic level similar to user queries or requirements. Scripts are written with sufficient detail

regarding the location, setting, mood, actions, etc. Such information is valuable in annota-

tion of videos for retrieval. In this Chapter, we concentrate on labeling movie videos with

detailed textual information obtained at no additional cost. Scripts for a large number of

movies and TV shows are available at IMSDb [26], Script-o-Rama [27], TwizTV [29], etc.

The two sources of information, namely the video and the text of the script, are depicted

in Figure 3.1. Given the corresponding script for a movie, the problem is to infer a synchro-

nization between the text of the script and the visuals of the movie. The typical method of

aligning a script (or transcript) with TV or movie videos is dynamic time warping with the

subtitles/closed-captions, as introduced by Everingham et al. [83]. Scripts aligned with

videos offer a number of possibilities: they can provide supervisory information for identi-

fying characters [83] or learning actions [130]; they enable a scene level organization of

the video material [73]; and they enable text-based retrieval and search [173].

Previous work such as [83, 130] that exploits closed-captions and subtitles are limited

to videos which have such information available. Hence they are not applicable to videos

with little or no spoken dialogue, and to situations where subtitles are unavailable, which

is common in many non-European language films (especially Indian movies/TV) or silent

films. We address this problem in this Chapter, where our objective is the visual alignment

between TV/movie videos and their scripts, without using subtitles. Achieving such an
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Figure 3.1 In this Chapter, we propose to annotate videos using the information from its
script. In this example, we see a few scenes from the episode The Pitch of the TV show
Seinfeld, with the relevant script [30] alongside. The multimedia annotation problem is
now posed as finding the correspondences between the sentences of the script to the shot
of the video. As a result, we could annotate videos with semantic information from the
script, without explicitly recognizing these concepts from visual data alone.
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alignment increases the scope and applicability of script-based approaches. Therefore,

it considerably increases the extent of video material that is available for training visual

classifiers, and is suitable for text based search.

The challenge, however, is the comparison and matching of visual and audio informa-

tion with the script descriptions of the video. The description may be quite generic (a

street, an office) or quite specific (Jerry’s apartment), and may involve objects and actions

for which visual recognition is not yet mature. Our approach is to combine several cues,

both visual and audio, which by themselves are not quite reliable, but when combined

provide sufficiently strong constraints for a full alignment.

We pose the problem as one of multi-state labeling of a sequence of shots, where the

states for each shot correspond to the sentences of the script. In other words, we would

like to find the appropriate assignment of each sentence of the script to its corresponding

shot in the video. This would result in sentence-level alignment between the script and

the video. The assumption here is that the sentences are atomic, i.e., they belong entirely

to one shot and not spread across multiple shots. This assumption mostly holds true as a

sentence of the dialogue is generally spoken within one shot. The descriptions of actors’

action/expression are typically localised to a shot as well.

In order to reduce the ambiguity we explore segmenting the video into scenes associated

with locations.

3.2 Data and Performance Measure

We use episodes from the popular TV situation comedy Seinfeld, to evaluate our pro-

posed approach. Our dataset consists of episodes from Season 4 of Seinfeld: The Pitch

and The Ticket (training data), The Contest and The Pick (test data). We also apply simi-

lar techniques on a smaller collection of Charlie Chaplin and Indian movies. The Charlie

Chaplin videos are excerpts from The Gold Rush and City Lights, and the Indian movie in
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Figure 3.2 An excerpt from a script for an example Seinfeld episode. The various types of
information present in the script, that would enable better understanding of the events in
the video are highlighted.

consideration is the Bengali film Agantuk. The videos are divided into shots by computing

the difference between colour histograms of consecutive frames. Whenever this difference

is greater than a certain threshold, a shot-cut is detected. A typical 20 minute episode of

Seinfeld has around 310 shots.

Scripts for the Charlie Chaplin movies were obtained from [13], for Agantuk from [186]

and for the Seinfeld shows from [30]. A portion of the script from the Seinfeld episode The

Contest is shown in Figure 3.2, along with the various aspects of information available in it

that could be exploited in the annotation process. A typical script specifies the location of

the scene (given as “Setting”), along with a brief description of the scene. The rest of the

script has two distinct elements. The first is the detail about who is speaking and what,

the other is a description of one or more of action and expressions of the characters.

Performance measure: The problem of alignment is now defined as, given a video and

the script for the events occurring in the video, assign each segment of text to the appropriate

segment of the video. The segment of the text is chosen to be a sentence, and that of the
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Figure 3.3 Example of a naive alignment scheme, shown over the first 40 sentences from
the episode The Contest. Ss corresponds to sentences and Tt to shots. The blue lines corre-
spond to the groundtruth alignment. The green and red lines indicate the correct/incorrect
correspondences from naive alignment. It can be seen that errors at the beginning drasti-
cally affect the rest of the alignment.

video to be a shot. We shall call the spoken sentences Ss, s ∈ [1, NS], and localised descrip-

tions asDd, d ∈ [1, ND], whereNS, ND are respectively the number of such sentences. Thus,

for each sentence in Ss ∪ Dd, the alignment tries to identify the right shot Tt, t ∈ [1, NT ].

The performance of the alignment is evaluated against manually ground truthed sentence-

shot correspondences (Figure 3.3), the accuracy given as the number of sentences from S

∪ D assigned to the right shot. We shall denote by St, Dt, the sentences aligned with the

shot t. The groundtruth is represented as StG, D
t
G. The performance measure is defined as

ρ =

∑
t |St ∩ StG|+

∑
t |Dt ∩Dt

G|
NS +ND

(3.1)

If every sentence is aligned correctly, the intersection between the alignment and the

groundtruth, summed over all shots yields a numerator equal to the total number of sen-

tences. The value of ρ in this case would be one. Whenever the sentences are assigned

to the wrong shot, the numerator decreases, and so does the ρ. We also define ρk, as the

performance measure that allows errors in assignment upto k shots per sentence.
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Figure 3.4 Example shots from the location categories of Jerry’s Apartment (above) and
Monk’s Cafe (below). The shot on the left is called a “stock shot”, which is a leading shot
to the scene at a given location. The same location could have multiple distinct “views”
which makes it harder to build a location recognizer.

3.3 Recognizing Visual-Audio Aspects

For a correct alignment, each sentence should compete for the right shot to fall into.

The voting of a shot should depend on common features that can be extracted from both

the sentence and the shot. For example, let us suppose that we know from the script

that a sentence was spoken by Kramer while at the Monk’s Cafe. Such a sentence would

more likely occur at a shot known to belong to that location, in which Kramer can be

visually recognised. Additional clues from the speech domain,would provide further ev-

idence in support of such an assignment. Towards this end, we extract three clues from

each shot/sentence: < Location, Face, Speech >. We apply state-of-the-art techniques for

each of these modules, and the results on their performance are reported in the following

Section.
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3.3.1 Location Recognition

Television series are characterised by repetitive locations and recurring characters. In

the case of Seinfeld, “Jerry’s Apartment” and “Monk’s Cafe” are the locations for a large

number of the scenes. The setting of these locations remains relatively similar throughout

the series, making them good candidates for scene recognition. In the case of sitcoms, each

scene in the video is preceded by a stock-shot of the location from an exterior view. Example

stock shots are shown in Figure 3.4. The recognition of this stock-shot reliably identifies

the starting shot for that location. The stock-shot varies in viewpoint, illumination and

scale, across different occurrences. SIFT [143] features have been proven to handle these

variations robustly. We approach this problem as a near-duplicate image matching, given a

set of stock-shot exemplars. Exemplars for stock-shot are identified from the training data.

The SIFT features are vector quantized to K clusters [205], and each feature point is

represented by its closest cluster center. A shot is then represented as a histogram of the

clusters corresponding to each feature point in it. Since the spatial layout of the ROIs is

ignored, the representation is said to be a “bag” of visual words (BoW). The BoW for each

shot is compared by the L1-Norm with the BoW representation of the exemplars for the

stock-shots. If the closest exemplar is less than a small threshold, the shot is classified to the

particular scene category. By this method, we are able to reliably identify the beginning

of scenes whose location is either Jerry’s apartment or Monk’s Cafe. As depicted in the

second row of Figure 3.5, the stock shots have been correctly identified for the episode The

Contest.

Given the beginning of these scenes, the next step is to determine their extent. The

goal here is to classify the subsequent shots as belonging to that location or not. This is

a multi-class problem: the shot can belong to Jerry’s apartment or Monk’s cafe or ‘other’

(which covers all other locations). The classification proceeds in two steps: first individual
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Figure 3.5 Location recognition pipeline. Stock shots (row 2) are recognised to identify
the beginning of Jerry’s Apartment and Monk’s Cafe. Shots are then classified using an
SVM (row 3) into one of Jerry’s Apartment (blue), Monk’s Cafe (red) and Other (green).
Temporal scene segmentation is performed by combining the stock-shot and classifier in-
formation with temporal smoothing resulting in the labeling shown in the bottom row. By
comparison with the groundtruth shown above, one can notice the high accuracy of the
location recognition method.

shots are classified as belonging to one of the location classes; then a sliding window (on

shots) is used to determine the scene boundary.

In detail, I-frames are extracted from each shot, over which Hessian-Affine [152] and

SIFT [143] interest regions and are obtained. These interest regions are represented using

the SIFT [143] feature vector. Two classifiers are learnt for location recognition using

these features. The first classifier is based on exemplar-matching. A set of exemplars are

provided for each location from the training data. The exemplars are chosen to represent

different viewpoints of the given location. A given shot is classified by matching its i-frames

with the given exemplars. The similarity score is computed as the number of matching

keypoints between the two frames, according to one of the following matching techniques:

1. M1: Nearest-Neighbour(NN) keypoint match, refined with a threshold on the nearest-

neighbor’s distance.
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Figure 3.6 Precision-Recall curve of location recognition of (left) Jerry’s Apartment and
right) Monk’s Cafe across various vocabulary sizes.

2. M2: Thresholded NN dist + Second NN test [143]. The second NN test rejects

a keypoint if the ratio of second NN distance over first NN distance is less than a

certain threshold. This would mean the first NN match is not a sufficiently strong

match.

3. M3: Thresholded NN dist + Second NN test + Spatial consistency.

The “Second NN” test uses the ratio of distance between the first-NN and the second-

NN. Spurious NN matches typically have a small Second-NN ratio, which can be filtered

with a suitable threshold. Following this, spatial consistency [205] evaluates the similarity

in the surrounding region of the matched feature points. Assuming affine transformations,

the features present within a small neighbourhood will remain neighbours in the target

image. The spatial consistency is measured by computing the overlap in the NN-sets of

the matching feature points in the two images. Matching features that do not have the

“support” of the neighbourhood are discarded.

Further, we consider a second classifier, which is an SVM learnt over Bag-of-Words fea-

tures. A Kernel-SVM classifier is trained for each class, with the χ2 kernel distance between
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(a) (b) (c)

Figure 3.7 A depiction of masking the information about the people present in the video,
in order to extract features from the location alone. (a) Original image, (b) Image with
upperbody masked and (c) Image with the entire person masked. The location of a person
is obtained using the Upper-Body detector of Ferrari et al. [92]. ROIs from the image are
filtered using these masks to obtain the feature representation for location recognition.

two shots p, q given as

K(p, q) = e−αχ
2(p,q) where, χ2(p, q) =

N∑
i=1

(pi − qi)2

pi + qi
(3.2)

Here, the parameter α is set to be the average χ2 distance between training shots. The

SVM-light package was used for building the classifier.

It was observed that many of the regions-of-interest (ROI) fall on people present in

the frame. Since we are interested in learning the location (background), we would like

to remove features over people (foreground). A HoG feature based upperbody human

detector, provided by Ferrari et al. [92], was used to detect humans in the videos. Based

on these detections an upperbody mask was placed on the image, as shown in Figure 3.7

(b), and all ROIs falling within the mask were filtered out. This feature set is referred to

as UbRem. A full-body mask is constructed by extending the upperbody mask down to the

height of the image (Figure 3.7 (c) ), assuming people are always shown upright. Features

falling within this fullbody mask were filtered, giving a set of features referred to as FbRem.

The full set of features is referred to as FullFeat.
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Method FullFeat UbRem FbRem

M1 47% 48% 48%
M2 53% 55% 54%
M3 58% 54% 49%

Vocab. Size FullFeat UbRem FbRem

100 59% 47% 47%
300 62% 54% 54%
500 66% 56% 55%
800 67% 50% 49%
1000 52% 53% 49%
3000 55% 53% 51%
5000 49% 51% 48%

Table 3.1 Location recognition performance of (above) NN-classifier across methods and
(below) Kernel-SVM classifier, across various vocabulary sizes and feature sets.

In both cases of classifiers, the class with the greater score is assigned to the shot,

provided the score is greater than a reasonable value (chosen empirically). The evaluation

of the visual vocabulary sizes is shown in Figure 3.6. The classification results are provided

in Table 3.1. The best performance for the two classes was about 67% using the Kernel-

SVM over BoW. The shot classification results for an example video are shown in the third

row of Figure 3.5. The lack of success of excising features on people, is possibly due to

the camera focusing on the people, thereby defocusing the background. Also, removing

features over people results in the loss of some features from the background.

Temporal recognition refinement. The location recognition accuracy is improved by

using the property that the location does not change with every shot, but only across

scenes. Errors in shot classifiers can be corrected with temporal filtering. The beginning

of Jerry’s Apartment and Monk’s Cafe are obtained from the stock-shot recognition. We

now need to identify where such scenes end and the ones from Other category begin. To

identify the scene-boundaries between location Ll and Ll+1, a sliding window of W shots is
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moved across the video. At each shot s, an objective function is computed as

Es = α ·
{ s∑
i=s−W/2

(1− P (Ll|i)) +
s+W/2∑
i=s

(1− P (Ll+1|i))
}
+ (1− α) · {Dist(s, s+ 1)} (3.3)

The first term in Es evaluates the cost of assigning the shots [s −W/2, s] to the loca-

tion L1, and those from [s,W ] to L2. P (Ll|i) is the score obtained from the shot classifier.

The second term penalizes scene-boundaries at similar looking adjacent shots, thereby en-

forcing a piece-wise smoothness constraint on scene segmentation. The Dist(s, s + 1) is

obtained as the inverse of the L1-Norm difference between the shot’s BoWs. The scene-

boundary Bl is obtained as the shot-boundary at which the objective function is minimum.

From the training data, we infer the best performing α1 and α2 to be 0.3 and 0.7 respec-

tively, using a window size of eight shots.

The scene boundary between adjacent scenes, both belonging to Other is estimated from

the number of sentences spoken in the given location. It is assumed that the scene dura-

tion is proportional to the length of the speech. This estimate is refined by assigning the

scene-boundary to the closest shot with no faces or speech detected (see Sections 3.3.2

and 3.3.3). Such a shot would typically represent a change in the scene. The final lo-

cation recognition accuracy is measured as the number of shots assigned to the correct

location. The accuracy for the training and test data is 96%. An example result for scene

segmentation is shown in Figure 3.5.

3.3.2 Face Recognition

Seinfeld consists of four main characters, namely Jerry, George, Elaine and Kramer.

By recognizing these characters, a large percentage of faces can be labeled in the video.

We use the face detection/tracking/recognition pipeline of Everingham et al. [83], which

is depicted in Figure 3.8. Faces are first detected in each frame using the Viola-Jones

detector [222]. While this detector works robustly, it does output a large number of false
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Figure 3.8 The face recognition pipeline. SIFT-like features are extracted from the corners
of the eyes, lips and nose. These features are matched against those from an exemplar set
for each character. The matching scores are accumulated over the tracked faces, and each
track is classified as a whole. Sample recognition result is shown on the right.

Figure 3.9 Examples of errors in the face detection module. TV logos, plants, clothing
and other textures are typically wrongly called faces by the Viola-Jones detector. A large
percentage of these false detections are removed by performing skin-detection.

positives, especially on clothing and similar textured regions, some examples are shown

in Figure 3.9. To remove such false detections, we add a step of skin pixel detection

by learning the color distribution for the faces that are typically found in the considered

video material. The threshold for skin/non-skin classification is chosen such that 75%

of the false detections are removed, while retaining about 95% of true detections. This

removes typical false detections that occur over windows, TV channel logos, clothing etc.

Skin-filtered faces are tracked through a shot based on spatial location and scale. These

tracked faces form a face-track.

Next in the pipeline, facial feature points are extracted from the corners of the eyes,

nose and mouth using the code provided by [83]. SIFT-like features are computed for each

of 13 points, which are concatenated to form a single vector for each face image. Faces

are classified against a set of hand picked exemplars for each character. As in location

recognition, we use a K-NN classifier and Kernel-SVM for face recognition. For both sets of

46



Neigbourhood
Size (K-NN)

Accuracy

10 53%

15 58%

20 51%

25 49%

Kernel Kernel Definition Accuracy

Linear KL(x, y) = (xTy + c) 43%
Polynomial KP (x, y) = (xTy + c)d 45%

RBF KRBF (x, y) = exp(− ||x−y||
2
2

2σ2 ) 52%

Min-Min
KMinMin(x, y) = 80%
maxpi∈x,pj∈yKRBF (pi, pj)

Table 3.2 Face recognition accuracy for the four main characters in Seinfeld. The table on
the left gives results from a K-NN classifier, the one on right for a Kernel-SVM classifier.

classifiers, the label with the maximum score wins, only if it the margin of victory is atleast

K/3. This technique refuses to label close to 78% of the other characters on the show,

while retaining a similar percentage of main characters. Classification accuracy across

various classifier settings are given in Table 3.2.

The best face recognition results were obtained using a Kernel-SVM with what is called

the min-min kernel [84]. Here, the kernel is defined as the min-min distance, or the

maximum similarity (as given by a Kernel), between a given face track and exemplar face

tracks:

KMinMin(Fi, Fj) = max
pi∈Fi,pj∈Fj

s(pi, pj) (3.4)

where s(pi, pj) is computed as a RBF Kernel on the distance between the facial feature

vectors of pi and pj.

The goal is to obtain high precision at acceptable recall rate. We use a refuse-to-predict

scheme of [83] where labels are given to face tracks only if we are confident about such an

assignment. The precision-recall curve for the classifier is given in Figure 3.10. Precision is

the fraction of correctly labeled face tracks, and recall is fraction of the tracks whose label

is predicted. Our classifier achieves a precision of 80% at 65% recall.
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Figure 3.10 Precision-Recall curve of face recognition. We pick the operating point where
the precision is 0.8.

3.3.3 Speech Recognition

The audio track provides useful clues for aligning the spoken sentences. We explore

the use of speech recognition for our alignment procedure. With ideal speech recognition,

we would easily avoid the need for subtitles, since the speech would be sufficient to align

sentences to shots. However, as we shall see, this turns out to not be the case for our data.

The audio from each shot is isolated and provided as input to standard speech recogni-

tion packages, namely CMU-Sphinx [14] and Dragon Naturally Speaking (DNS) [16]. We

do not perform either speaker or sentence segmentation of the audio speech. The in-built

speech/speaker models were directly used, since training the speech models would require

substantial training data for each speaker.

The recognition output for an example shot is given in Figure 3.11. From this audio,

the word psychiatrist was correctly recognised once in both systems, even though it occurs

twice in the conversation. Other recognised words were see a, going (DNS), now (Sphinx).

Matches over stopwords such as {a, the, and, I, it, ...} are not considered. The recognition

performance of speech recognition was understandably poor [71, 113], owing to the fact
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Actual speech:

No, ma, I’m not gonna see a psychiatrist. N- I don’t care if you do pay for

it! No! Discussion over. Yeah, alright, I’ll see you later. Yes, of course

I’m gonna come by. Alright. My mother wants me to see a psychiatrist now.

Recognised speech with CMU Sphinx:

ooohh contest you psychiatrist now how difficult re horrible now shuttle

door s elaine guess what sound that and i a hair and the walls visiting

just now

Recognised speech with Dragon Naturally Speaking:

home is an interest rate for no destruction of the IIRC it would -- of

course I’m going to combine for a little as we see a psychiatrist

Figure 3.11 Speech recognition output over the audio of an example shot (no. 66) , from
The Contest episode of Seinfeld. The speech of the 18 second clip, is given in the top row.
The recognition output from two speech recognition engines, namely CMU Sphinx [14]
and Dragon Naturally Speaking [16], is shown in the other two rows. One can notice
the difficulty faced by modern speech recognition engines to recognize the unconstrained
speech from TV show videos.

that we provide the software with “wild” data: the audio files contain multiple speakers

in a single shot, laughter of the audience, varying speed of speech delivery, background

music etc., which are not trained for in generic speech recognition systems. We get a word

level recognition accuracy of 10%. The number of sentences in the training episodes with

at least one word recognised correctly by DNS was 21%. The same for the test episodes

was 23%.

3.4 Aligning Videos with Scripts

As was seen in the previous Section, the visual-audio recognition modules are not accu-

rate enough to align independently. However, additional characteristics of the problem can
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be exploited for aligning the script to the video. We formulate the problem as one of multi-

state labeling of the shots, with the states of each shot corresponding to the sentences

of the script. We will illustrate the formulation using the spoken sentences S, though a

similar development can be given for the descriptions D. Let Si ⇔ Tj indicate that the ith

sentence is assigned to the jth shot. We shall denote by d(i, j), the local cost of the assign-

ment Si ⇔ Tj, and D(i, j) the global cost of assignment. We have the following constraints

in our formulation:

• Uniqueness constraint: Each sentence can be assigned to only one shot.

• Ordering constraint: The sentences and shots are ordered lists, hence implying a

sequence constraint to the sentences and shots. Therefore, if Si ⇔ Tj, then ∀i′ < i

and Si′ ⇔ Tj′ ⇒ j′ ≤ j.

• Null-assignment: It is possible that certain shots do not have any sentences asso-

ciated with them. This could be because no character is speaking in the shot, or if

it is a stock-shot. Hence, the predecessor of Si ⇔ Tj in the alignment could be s.t.

Si−1 ⇔ Tj−k, k ∈ [1, j − 1]. A penalty term is associated with each jump over a shot.

There are no null-assignments over sentences, i.e. every sentence is always assigned

to a shot.

• Multiple assignment: Multiple (contiguous) sentences can be assigned to a single

shot. However, their combined word count should fit during the shot duration. The

local cost function is modified as d′(i, j) = d(i, j) + γ · distLength(i, i− 1, . . . , i− k, j).

We estimate the average number of words that could be spoken in a shot, based on

its length. The distLength is the difference between the estimated word count and the

number of words in the sentences [i− k, i] assigned to the shot j.

Speech recognition costs. Speech recognition results are filtered by word length, only

words longer than four characters are considered. The similarity score is based upon
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the number of words overlapping between the speech recognition output and the given

sentence. The maximum overlap was observed to be two. The speech based distance

measure CostSpeech is set to be 0 for two matching words, 0.5 for one match and 1 for no

matches.

Face recognition costs. Three statistics over the training data are used in constructing

the face recognition costs: (i) the probability of the speaker being visible in the shot is 0.94;

(ii) the probability that a non-speaker is present in the shot is 0.36; and (iii) the probability

that the speaker is visible, but not detected in the shot is 0.07. Accordingly, the CostFace

is defined as (1− 0.94) · (1− classifier score), if the speaker of a sentence is visible in the

given shot. In case the speaker is not visible, CostFace = (1−0.07) ·avgC(classifier score),

C is the character in consideration. For each non-speaker recognised in the shot, the face

cost is incremented by 0.36 times the average classifier scores for those face tracks.

Location recognition costs. The location cost depends on the location for the sentence.

Since the accuracy of scene segmentation of Jerry’s Apartment or Monk’s Cafe is 96%, the

cost of a sentence being assigned to a shot recognised to be in these locations is set to be

0.04, and 0.96 otherwise.

Occlusion Cost. The cost of occluding a shot could depend on the shot being occluded.

A longer shot is less likely to have no sentences associated with it, than a shorter shot.

Further, a shot with multiple faces detected, and speech words recognized is less likely to

have no sentence associated with it. Thus, the penalty term is defined as:

OcCost(j) = 0.2 · shot length+ 0.4 ·Nfaces detected + 0.4 ·Nwords recognized (3.5)

The sentence occlusion cost, where multiple sentences are assigned to the same shot

depends on the sentence-shot lengths. Multiple sentences can be assigned to a shot, only

if all these sentences could have been spoken during the shot duration. We estimate the

average number of words that could be spoken for each shot, basing on the length of the

shot. The distLength is the difference between the estimated word count and the number
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of words in the given sentence. This value is normalized by max distLength for the given

video.

The local cost d(i, j) is computed from a weighted combination of the location, faces

and speech distances:

d(i, j) = α1 ·CostLocation(i, j)+α2 ·CostFace(i, j)+α3 ·CostSpeech(i, j), α1+α2+α3 = 1 (3.6)

The recursive definition of D(i, j) is given as

D(i, j) =


(j − 1) ·OcCost+ d(i, j) i = 1
inf i > 1, j = 1

min

{
mink∈[1,j−1](D(i− 1, k) + (j − k + 1) ·OcCost+ d(i, j))

D(i− 1, j) + d′(i, j)
elsewhere

(3.7)

This formulation lends itself to be solved using dynamic programming. Apart from the

global cost array D , an indicator array I is maintained, where I(i, j) points to the table

entry corresponding to the optimum subproblem solution of D(i, j). By backtracking I, we

recover the alignment between the sentences and shots. The complexity of our algorithm

is of the order O((NS + ND) · NT ). The value of the optimisation function along with

the inferred alignment between the shots and sentences is shown in Figure 3.12. It can

be observed that the sentence-shot correspondences obtained by our approach are very

close to the groundtruth. We shall now quantitatively evaluate the performance of our

algorithm.

3.5 Results

Baseline alignment. A blind alignment scheme would uniformly spread the sentences

across the shots. Given NS + ND sentences and NT shots, such a scheme would allot

b(NS + ND)/NT c sentences to each shot, sequentially. This alignment performs poorly,
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Figure 3.12 (Left) The pairwise matching costs between sentences on the y-axis and the
shots on the x-axis. The blocks in the pairwise matching correspond to scenes occurring at
a particular location. (Right) The optimization function that is minimized by the Dynamic
Programming. The backtracked path is shown overlaid in red, and the groundtruth is
shown in blue. It can be seen that the inferred alignment is quite close to the actual
groundtruth. The performance of the alignment is particularly significant because the
alignment is obtained using the audio-visual information rather than by using the timing
information in subtitles.

since errors once committed are hard to recover from, and such errors drastically effect

the subsequent alignment. The performance of this method, ρ, is only about 4%. From

the groundtruth sentence-shot correspondences (shown as blue lines), it can be seen that

the uniform speech assumption is invalid. A stronger hypothesis is required to assign a

particular sentence to a given shot.

Subtitle alignment. Subtitle based alignment uses the timing information in subtitles

to assign the sentences to shots. However, the subtitles are designed such that they cover

multiple sentences, displayed over multiple shots. There are many instances where a single

shot would mark the end of a subtitle and the begin of the next. Such sentences are spread

across multiple shots using the naive alignment scheme. The ρ of this scheme was 91%.
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Figure 3.13 Example shots from the sitcom Seinfeld which are correctly annotated by
their descriptions. The first two shots are from the episode The Contest, the other two from
The Pick. The annotations from scripts of Seinfeld episodes are aligned with the video,
without using the timing information from subtitles, but by using clues from recognition
alone.

Global alignment. Aligning the script with video can be performed using different

combinations of the modalities. In the first instance of using speech alone, the sparse

sentence-shot correspondences obtained from speech are used to drive the dynamic pro-

gramming. With ideal speech recognition, this method would replicate subtitle-based

alignment. However, given the insufficient speech matches for a bulk of shots in some

of the scenes, the ρ of this modality is about 47% on the training data. On the other hand,

using the face recognition results alone gives a ρ of 33%. Since we only recognise the faces

(we do not perform speaker detection), the sentences are matched across shots where the

character is present but is not speaking. Further, the errors in face recognition deteriorate

the alignment when the speaking character is not correctly recognised in the shot. These

errors confuse the alignment by providing false matches between sentence and shots.

The weights α for each modality are learnt using the training data. The accuracy of

alignment for different modalities, and the top five combinations overall are given in Ta-

ble 3.3. The weights for each modality guide the alignment in cases where the clues do not

agree with each other. If for example, the location and speech clues conflict, the respective

α determines which modality takes precedence. Thus, with a higher weight for speech,

errors due to location could be overcome and vice-versa. The best performing parameters
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Combination Weight Set Accuracy Combination Weight Set Accuracy

Location alone {1, 0, 0} 30% Loc + Face {0.2, 0.2, 0.6 } 67%
Face alone {0, 1, 0} 34% Speech {0.2, 0.1, 0.7} 63%
Speech alone {0, 0, 1} 46% {0.3, 0.2, 0.5} 59%
Loc + Face {0.5, 0.5, 0} 42% {0.2, 0.5, 0.3} 54%
Loc + Speech {0.5, 0, 0.5} 56% {0.2, 0.7, 0.1} 49%
Face + Speech {0, 0.5, 0.5} 51%

Table 3.3 Alignment performance using different combinations of clues/features and their
weights.

were found to be {0.2, 0.2, 0.6} for location, face and speech respectively. At this setting,

the ρ over training data was 71%, and over the test episodes was 67%.

Scene level alignment. Using the location recognition of Section 3.3.1, we restrict

assigning the sentences within a scene to the shots of a location video segment. The align-

ment within scenes is carried out using the face and speech information. This procedure

essentially anchors the sentences and shots known to belong together, and identifies an

alignment between such anchors. With this procedure, we are able to improve results and

we obtain a ρ of 74%. Figure 3.13 shows example shots that were correctly annotated

through the alignment process with this setting.

We have analysed the errors in the episode The Contest, some of the errors are shown

in Figure 3.14. The two main reasons for the alignment errors are mistakes in the scene

segmentation, and the lack of sufficient clues from speech to correct the location based

errors. Of the 15 scenes in the episode, 5 scenes have poor temporal segmentation and

sparse speech-based matches. These scenes account for about 71 erroneous sentence as-

signments. The remaining 68 errors are distributed across the other 10 scenes.

In most error cases, the sentence is assigned within a few shots of the actual correspon-

dence. Over our test data, the maximum distance of an erroneous assignment was of five

shots, hence ρ5 = 100%. This can be seen from the graph in Figure 3.15. In a video re-
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Shot Annotation Shot Error Reason for Error

(Jerry and Elaine look
at each other - enjoying
the story) My mother had
a Glamour magazine, I
started leafing through it.

-1 Sentence spread
across two shots

(Snapping) Is that impor-
tant, really? What is this,
a police investigation?

+2

Dialogues spoken
faster than usual;
insufficient clues
from speech

(Jerry looks back at Kramer
in envy) It’s hot in there. -2

Four shots at the end
of the scene have no
dialogues, upsetting
the alignment

Figure 3.14 Examples of erroneous alignment over Seinfeld. Much of the other errors
occur due to insufficient/erroneous clues obtained from visual-audio recognition.

trieval scenario, for a given textual query, we could provide a video segment consisting of

multiple shots. By returning video segments consisting of about 11 shots, the precision of

retrieval would be 1, even though the precise alignment might be less accurate. Example

retrieval results from Seinfeld for an example query is shown in Figure 3.18.

3.6 Aligning Scripts of Silent Movies and Indian Films

We apply the various cues discussed above, to align the silent movies of Charlie Chaplin

with their scripts obtained from [13]. We apply our techniques to two scenes, one from
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Figure 3.15 Performance metric ρk across various values of k, as evaluated over the test
episodes; the weights for the {location, face, speech} costs are specified in the legend.

The Gold Rush and the other from City Lights. In Seinfeld videos, we have used the stock-

shot information for scene segmentation. In the case of Chaplin movies, scene changes

are observed as a visual fading to a blank screen. By detecting the blank screen, which

can be reliably performed, we find the scene boundaries. The scene segment of the text

is identified from the mention of Curtain. For example, the scene changes whenever the

script indicates similar to “Curtain lowered to denote lapse of time”

For the video clip from Gold Rush, the script only describes scenes occurring in the

setting of The Cabin. To detect this scene, we use a Kernel-SVM classifier over BoW repre-

sentation, similar to the one used in location recognition of Seinfeld. Shots are classified

as belonging to the Cabin, the scene with the most non-cabin shots was classified as the

un-scripted scene. Following this, the scenes in the text are correctly aligned with the

corresponding video segment. Within a scene segment, the alignment of descriptions is

carried out using face recognition, with the method of Section 3.3.2 to label the characters

Lonly, Old Timer, Black Larsen. Sample annotations after alignment of the script with the

video, are shown in Figure 3.16 (left). The clip from City Lights has Intertitles, where the

dialogue is written on the video frame itself, as shown in Figure 3.16. These intertitles
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Lonly, is seen at
stove stirring boil-
ing pot. Old Timer
is leaning over ta-
ble groaning.

Tramp stands up
and accepts a glass
from Millionaire

Lonly pokes fork in
pot as if testing
tenderness of what
he is cooking

*Here’s to our
friendship —

Old Timer gri-
maces as he bites
into piece of upper.

He pours glasses
full. They both
hold glasses above
heads in toast fash-
ion.

Figure 3.16 Examples of annotated scenes from (left) Gold Rush, (right) City Lights. The
second shot in the City Lights example is the Intertitle; the OCR output for this is shown
alongside.

were detected and fed to a commercial OCR [33]. The recognised text provides us with

additional constraints for the alignment. Resulting annotations are shown in Figure 3.16

(right).

We further test the applicability of our approach in aligning scripts of films with no

subtitles, a common situation for Indian films. For this example, we choose a segment

from the movie Agantuk, the script for which was available in published form [186]. We

use the face and speech modalities for the matching sentences and shots. Though much

of the dialogue is in the language of Bengali, it is interspersed with English words. By

applying speech recognition using the DNS engine, we could obtain about nine strong

matches between the recognised speech and the script. Using the speech and face clues,

we achieved satisfactory alignment results for this data. Sample annotations are shown in
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He springs
up, snapping
his fingers,
and breaks
into song.

Prithwish loses his patience. He ex-
presses his irritation freely, sweeping out
his pack of cigarettes and matchbox from
his pocket, and banking them down on the
table

The domestic help comes in
and clears the table, taking
away the tea tray.

Figure 3.17 Examples of annotated scenes from the Bengali movie Agantuk. The movie
DVD does not provide subtitles, in spite of which we were able to align the video with the
dialogues and descriptions provided in the script.

Figure 3.17. Retrieval results from both Charlie Chaplin movies and Agantuk are shown in

Figure 3.18.

We were able to demonstrate the possibility of using scripts to annotate movies which

have no dialogue, and those for which the subtitles are not available. The audio-visual

clues that we propose can be easily applied to new video material, allowing the alignment

framework to be applied broadly. However, though our results look promising, we are

limited by the availability of scripts for much of this video material. One could make

further progress in this direction, if the paper-based scripts available in reputed libraries

are made available for all, over the web.

3.7 Summary

In this Chapter, we presented an approach to annotate segments of a multimedia doc-

ument with segment of a parallel text, given such segmentation of the two domains is

straightforward. We propose the use of pattern recognition tools to identify clues towards

matching between the visual and textual information. Temporal constraints are used to

refine the matching to providing a high accuracy annotation system. The resulting anno-

tation is at a higher semantic level that what can be achieved using current state-of-the-art
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Figure 3.18 Example retrieval results for the query of the action Stand. Due to the presence
of aligned text, these actions are easy to retrieve, rather than through recognition. While
the precision of retrieval results is quite high, the recall is limited by the detail in the
descriptive text, the script in our case.

recognition technology. The annotated data could be used in future work to train newer

classifiers, which in turn could help in improving the alignment/annotation scheme.

The solutions presented in this Chapter vary across the video material as we exploit the

domain specific cues in each set of videos to build a stronger solution. The limitation of

this, is the solutions are not generalizable across a larger variety of movies and TV shows.

A truly generalizable solution is still far from the reach of current visual and learning

solutions.

Further, Natural Language Processing (NLP) techniques could be used to obtain seman-

tics from the script, which could provide better cues for alignment. However, the limitation

is the lack of robust visual features and recognition modules that can detect “semantics”

of the visual data rather than merely the “syntactic” objects/locations. We hope that with

newer machine learning tools, these limitations could be overcome in the future.
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In the next Chapter, we shall explore the possibility of performing annotation of videos

where the segmentation of the multimedia is not given apriori.
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Chapter 4

Automatic Temporal Segmentation and
Annotation of Cricket Videos

4.1 Introduction

In the previous Chapter, the alignment between script and video involved well defined

text and video segments. Shots of video are easy to obtain, rendering the segmentation

of the video into logical segment was straightforward. In this Chapter, we shall address

the problem of jointly inferring the temporal segmentation and alignment of text to video.

The particular case in consideration is that of broadcast Cricket videos. In Cricket, the

meaningful entity of the video is a scene called the ball. Each ball consists of multiple

shots. The segmentation of the video into scenes is unknown, which needs to be inferred

along with the alignment with the parallel text. Based on the results from such a process,

we have built a text-based search and retrieval system for Cricket videos. The problem

setting of this Chapter is depicted in Figure 4.1.

Our approach results in the following key achievements:

1. A mechanism to utilize parallel textual information for segmenting large videos in to

semantically meaningful entities.
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2. A modeling approach that can match multi-modal information in an intermediary

visual-temporal space.

3. Annotation of events Cricket matches are annotated with thorough semantic textual

descriptions.

4. The Cricket video collection is searchable with textual queries; accurate results could

be retrieved in less than a second. Users can build personalized summaries of videos.

To build a successful retrieval system using unaligned parallel text, three major aspects

need to be addressed:

Temporal Segmentation: Textual descriptions correspond to discrete entities com-

monly referred to as scenes. Unlike shots, which are low level visual entities, we are

interested in scenes, which are a sequence of multiple shots that form a meaningful entity.

Temporal segmentation is the process of identifying video clips pertaining to individual

scenes.

Automatic Annotation: To be able to annotate videos with unaligned text, it is nec-

essary to identify the correspondence across different media of information, i.e. between

the scenes and their descriptions. Given scene segments from a video, annotation would

identify the right description for the scene.

Search, Retrieval and Personalization: Annotated multimedia should be indexed to

efficiently answer user queries. The search system should accept semantic queries and

retrieve a ranked list of relevant scenes from the database. Search and summarization

should be personalized, by letting the user control the content to suit his/her taste.

The parallel text regarding the match videos was obtained from commentaries available

at Cricinfo.com [5]. Cricinfo is a webcast that provides textual commentaries of the action

on the field. As it is designed to suit users that cannot view the match live, it is very detailed
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Figure 4.1 In this Chapter, we address the challenge of aligning broadcast Cricket videos
with the corresponding online commentary. We build a solution towards matching para-
graphs of the text to scenes of the video. Further, the segmentation of these scenes is
obtained jointly by building a model for the video using information in the parallel text.

and descriptive. Such webcasts were recently used to detect events in soccer videos, and

index them for efficient retrieval [233,240].

In general, sports video processing papers tend to heavily use domain knowledge re-

garding the sport. Hence, the techniques used for one sport are not applicable to another.

While there is ample work on soccer videos, there are few works concerning the sport of

cricket. Chambers et al. [66] have used gesture recognition to annotate scenes in cricket

videos. Kolekar and Sengupta [125] have used HMM based techniques to classify cricket

video scenes. However, there is no work that provides a comprehensive retrieval system

over cricket videos.
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Figure 4.2 Depiction of a generic cricket video. Each over has 6 (or more) balls, each scene
consisting of the ball being delivered, played, fielded and returned. In a broadcast, replays
and graphics are shown between the scenes and advertisements between the overs.

4.2 Data and Problem Setting

Cricket is the second most popular sport in the world, with an estimated 3.3 Billion

viewers. However, while an average match lasts about 7 hours, much of the interesting

action occurs in only about a third of this time. It thus provides ample scope to build

intelligent match browsing and summarization tools. Cricket is categorized under the

so-called “action-stop” sports. Though the match lasts for several hours, the real action

constitutes only a small fraction of the entire length. These action sequences, or balls in

cricket, occur periodically at semi-regular intervals of time. When the ball is being played

there is intense/interesting activity, while there is hardly any action happening between

the balls. This provides a clear definition of the scene in the video.

Cricket is very similar in form to baseball. A schematic of a Cricket match is shown in

Figure 4.2. The primary action involves a player from Team A called the bowler throwing

the ball, (called bowling, similar to pitching in baseball) and a player from team B called

the batsman, hitting the ball. After hitting the ball, the batsman runs across the playing

area called the pitch to score a run. The batsman can score as many runs as possible

before the ball is stopped by the bowler’s team mates and returned to the bowler. If the

ball crosses the field without being stopped, the batsman scores four or six runs without

having to run across the pitch. The batsman could get out in many ways, for eg., if the
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Figure 4.3 Anatomy of the commentary obtained from Cricinfo.com. Each event is de-
scribed by: i) the scene number, which is not an explicit timestamp, ii) the names of the
key players in the event, who are difficult to recognize, iii) the description of the happen-
ings in the event which is difficult to automatically analyze. The information that we find
most useful is the outcome of the event, which shows a possibility to model with visual
analysis.

hit ball was caught before it touched the ground. The entire sequence of action including

the ball being thrown, played, stopped and returned is called one ball. The same bowler

bowls six consecutive balls, called an over. Each team is given one innings of 20 or 50

overs to score their runs. The team with more runs at the end of their innings is declared

the winner.

In the broadcast video, the lull between the scenes is sometimes replaced by replays,

graphical slides, etc. The short break between consecutive overs is typically filled with

advertisements. For our purposes, the “scene” starts with the bowler running to deliver the

ball, and ends at the beginning of either i) the next ball or ii) an advertisement. Example

scenes are shown as a sequence of keyframes in Figure 4.4.

Commentaries for cricket matches are obtained from Cricinfo.com [5]. The text is well

structured with each ball being described in fair detail, including the bowler-batsman in-

volved, outcome and a brief description of the action. Unlike webcasts of soccer, there are

no timestamps in the text for direct synchronization with the video. An example piece of

commentary from Cricinfo is shown in Figure 4.3.
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Figure 4.4 Examples of scene segments with different scene categories. Each row is an
example for the scene category mentioned on extreme left. The keyframes in each column
are extracted at approximately the same relative position from the first keyframe of the
scene. In the first two frames, the ball is bowled and played. The next three frames show
the action after the ball was hit. The next frame shows player or umpire reaction. The last
two frames depict either replays or random visuals used to fill the gap between the action.

4.3 Our Approach

Let us begin with the assumption that we are given segmented scenes from a video

(we later relax this assumption in the next Section). Classifying these scenes would now

correspond to assigning the right label to each scene. The label-set for the scenes are

defined by the domain of the videos. For our case of cricket videos, we first need to

identify the suitable labels to classify scenes against. We observe that the outcome of each

ball is a suitable scene category.

Consider the example scene for the outcome FOUR in Figure 4.4 (second row). The

scene begins with the bowler running toward the pitch, to bowl the ball. In the first

keyframe, we see the pitch just before he throws the ball. The thrown ball is then hit by

the batsman in the second frame. The ball then travels across the ground in the next two

frames, and crosses the boundary in the fifth frame. The umpire then signals “four” in

frame 6. Soon after, a replay of this action is shown, as shown in the last two frames of the

example. This sequence of visuals are typical for the outcome FOUR. On the other hand,

the sequence of events is considerably different from that of other scene categories, as can
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be seen from the 3rd, 4th and 5th keyframes of those categories in Figure 4.4. Further,

the average duration of the different outcomes is not the same, which is also an important

clue in distinguishing between scene categories.

These properties allows us to categorize the scenes based on the outcome of the ball.

Our scene labels is the set of all outcomes: {no-run, one-run, two-runs, three-runs, four, six,

out}. Following the above observations, each scene category needs to be modeled based

on visual change across the scene. Though FSMs and HMMs [125] are popular candidates

to model such changes, they do not provide control over the actual duration of scenes.

Instead, we build a simple scene model, as an ordered sequence of the constituent frames’

representation, as we shall describe below.

4.3.1 Visual Representation of Frames

The basic visuals in a frame of Cricket videos belong to one of C = {pitch, ground, team

A player close-up, team B player close-up, sky, replay, advertisement}. More than one of

these categories could be present in a single frame. Each of these categories was modeled

using color histograms in the RGB space. The players are modeled using the color of

their team’s clothing. Representative features were learned from a training set of marked

regions corresponding to the ground, pitch, sky and player jerseys. Once the histograms

are learned for each category, each pixel in a new frame is matched against each class-

histogram. The class with the most match with the given pixel color is assigned to the

pixel. The frame is then represented as the percentage of pixels in the frame belonging to

the each visual category. A few results from this classification are shown in Figure 4.5. The

ground, pitch and sky are colored with magenta, cyan and yellow respectively. It can be

observed that the pixels are accurately classified, making this a strong representation for

the frames.
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On the other hand, advertisements and replays cannot be easily modeled using visual

features, since there is no control on the visual content in this category. It was noted

that in case of these two categories, the scorecard at the bottom of the frame is removed

by the broadcast production (as can be seen in Figure 4.5). By modeling the scoreline’s

color distribution we could detect the scoreline, to distinguish between match play and

ad/replays. In Figure 4.5, at the third row is a frame from a replay. As can be seen, the

scorecard is missing at the bottom of the frame, hence there is no scorecard detected for

this frame.

4.4 Scene Model Learning & Matching

Each scene would consist of a set of frames whose visual content changes in a partic-

ular manner. A set of suitable features are extracted from each frame, and the scene is

modeled using these frame descriptors across the scene. From a set of training examples,

the scene model is learnt by averaging the scene models extracted from each example. It

is sometimes useful to have a set of categories for the frames, as well. This enables one to

model the scene descriptor, as a set of probabilities for each frame in the scene, to belong

to each of the frame categories.

Algorithm 4.1 Train Scene Model(k′, Vk′1, Vk′2, ..., Vk′N)
1: Find average length L of the training videos Vk′1, Vk′2, ..., Vk′N
2: for i = 1 to N training videos do
3: Obtain the scene representation Pi for Vk′i, as the probabilities of each frame to

belong to the frame classes
4: Normalize Pi to length L by linear interpolation
5: end for
6: Obtain scene model Mk′ =

∑
i=1,2,...,N Pi

N
7: Return Mk′

Given the above representation, we would now like to learn scene models for the scene

categories. Scene models are learned from a set of training data, as given in Algorithm 4.1.

The algorithm takes an input of training scenes for the category k′. These scenes are
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Frame Ground Pitch Scorecard

Frame Sky Frame Player

Figure 4.5 (Above) Examples of pixel-wise classification for frame representation. For the
original frame shown in the left most column, the pixels classified as ground, pitch and
scorecard are colored with magenta, cyan and red respectively. Notice the absence of the
scorecard in row 3, since the frame is from a replay shot. (Below) Frames and the pixels
classified into the sky and player categories. Note that we learn different color models
for players from different countries. It can be seen that the pixels are classified fairly
accurately using our approach.
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Figure 4.6 The models learnt for some of the scene categories. On the x-axis is the frame
number, and the y-axis the score for each of the frame categories. The canonical length
of the model varies across the different scenes. We can easily observe that different scene
categories exhibit markedly different behaviour, even with a simple color based pixel clas-
sification scheme. This difference in models will help distinguish one scene category from
another in the real video.

represented as the concatenation of the constituent frames, normalized to the average

scene length. The learned model is given as Mk′. Example scene models for four categories

are shown in Figure 4.6, where we can observe the marked differences across the outcomes

using the features we represent them by.

Given learned scene models, the scenes are classified using a nearest neighbor classifier

between the query scene and the models. Since the query and model descriptors would be

unequal in length, the length of the query feature is normalized to that of the scene model.

The two features are then compared using the L1-Norm to obtain the overlap between

visual appearance of the scene and the model. The scene descriptor that we obtain from

this procedure is the set of probabilities for a given frame to belong to each of the frame
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classes, across the scene. The procedure is formally described in Algorithm 4.2. Let the

given video be denoted as Pq, and the learned scene models be Mk′ , k
′ = 1, 2, ..., K ′.

4.5 Modeling Text

We have so far presented methods to model scenes and predict their category. This

schemes assumes that the video-segment belonging to the scene is provided apriori. In our

case, we do not have such a segmentation. We pose the temporal segmentation problem

as “given a set of scene models, find the temporal locations in the video, where there is a

scene change”. This is an ill-posed problem, since the categories of the scenes before and

after the scene change are unknown. Moreover, the scene category can not be identified

without proper scene segmentation. Simultaneous optimization of both the scene category

and the scene segmentation would be difficult. The challenge can be alleviated by the use

of additional information, available to us in the form of text commentaries of the events

in the video. This information is very reliable in describing the content of the video, and

constitutes a layer of top-down information above the scene models. If the scene categories

could be identified from the textual description, the corresponding scene models could be

used for segmentation.

Algorithm 4.2 Annotate Video(Pq)
1: for k’ = 1 to K ′ scene categories do
2: Normalize Pq to the length(Mk′), by linear interpolation
3: dk′ = 0
4: for i = 1 to length(Mk′) do
5: for k = 1 to K frame categories do
6: dk′ = dk′ + Pq(i, k).Mk′(i, k)
7: end for
8: end for
9: end for

10: Find category = mink′ dk′

11: Return label corresponding to category

73



However, the text and video are not exactly synchronized. It is unknown as to which

segment of text corresponds to that in video. There are two options to align text and video:

1) convert the video to text and align in text space 2) convert the text to a video, and align

in visual space. Option 1 is the conventional approach and aligning in text domain is

easy and efficient. However, robust activity recognition and scene analysis techniques are

required to convert the video to text. A semantic description of the scenes (and video)

would require the entire video understanding problem to be solved. Option 2 is equally

difficult, since generating a real video from a scene description would require the complete

computer graphics problem to be solved.

This is addressed by matching the text and video in an intermediary feature space. The

video could be converted to such a space by extracting the features from the video. If

we could convert text to this feature space, we could align, match and process the text

and video on a common platform. This is the motivation for our generative video model.

The generative video model uses the observations that a) it is known that the complete

text, corresponds to the entire video, b) the video and text are constrained by temporal

consistency across the visuals and descriptions. This allows us to build a hypothetical video

from the textual descriptions.

The feature space chosen to model the video and text is the feature space of the frame

descriptors. The scene categories have been modeled using these features for this precise

purpose. The text provides the scene category of each scene in the video. At each slot of

the scene, the corresponding scene model could be plugged-in. By concatenating the scene

models according to the order of scenes given by text, we obtain the hypothetical video,

H. The visual data is converted to this domain by classifying the frames in the video to

obtain a feature representation of the real video, D.
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4.6 Scene Segmentation by Visual Alignment

In a general model fitting problem, there are two unknowns: i) the model parameters

and ii) the mapping of the the observed data, D to the assumed model for the data H. In

case neither is known apriori, the unknowns are simultaneously estimated using an Expec-

tation Maximization procedure. If the model parameters are known, the only unknown

that remains, is the mapping of the observed data to the assumed model. This can be

estimated using a Maximum Likelihood (ML) estimation.

The segmentation requires to identify the begin and end frames of the scenes, over the

video. The real scene boundary Zi is assumed to be fixed but unknown. The estimate zi of

the scene boundary, is assumed to be found near the real boundary Zi with a probability

distribution that follows a Gaussian. The Gaussian is centered around Zi, with a variance

σ. The estimate zi is obtained from visual-temporal information. Let such an observation

of the beginning and end of a scene Si be zi1 and zi2 respectively. The likelihood that shot

Si bounded by zi1 and zi2 actually corresponds to a real scene X is given by P (Si|X) =

P (zi1 , zi2|X). This likelihood corresponds to a local cost of Si corresponding to X. The

global cost of matching scene estimate set γ with real scene boundaries is given by

L(γ) = p(Z1, Z2|γ) =
∏

0<i<n

P (zi1 , zi2 |X) (4.1)

where n is the number of shots in the video. The maximization of the global likelihood

function corresponds to minimizing its negative logarithm. In cases where the scenes are

not represented by a known model, the optimization of this function could be done using

an Expectation Maximization approach, where both the segmentation and scene param-

eters are learnt simultaneously. However, using the textual information, the appropriate

scene models could be plugged into the likelihood computation. The minimization in

such a situation would correspond to a simple weighted matching or assignment problem,

which could be solved in polynomial time using dynamic programming.
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The video description, coupled with the scene models, provides an assumed model H

for the video. We expect the real video D to closely resemble H, as seen by the frame

descriptors. The ML estimation of scene segments can now be posed as a mapping of D to

H, which can be computed using a Dynamic Programming (DP) technique [74]. Assuming

that the distance array in the DP procedure is given as D, we use the DP cost computation:

D(i, j) = min


D(i− 1, j) + c(i, 0)

D(i− 1, j − 1) + d(i, j)

D(i, j − 1) + c(0, j)

(4.2)

where the local distance between two frames, i and j is given by

d(i, j) =
∑

s∈shotclasses

P (is).P (js) (4.3)

P (is) being the probability that the ith frame belongs to the s shot class; and c(i, 0) is the

cost of occlusion. The optimal path of the match is found by backtracking the DP matrix.

With this match, the observed scenes from D are warped onto the generated model H.

Such a warping specifies a correspondence between the scenes in H to those in D. Since,

the scene boundaries in H are known apriori, the corresponding segment in D can be

extracted from the optimal DP path.

The procedure is formally given in Algorithm 4.3. The algorithm takes as input the

video to segment, V and the corresponding text commentary T . In the algorithm, Dy-

namic Programming and Back Track are standard dynamic programming and backtrack-

ing routines. The result of the Algorithm 4.3, is a segmentation of the given video into

scenes. We also know which scene model was used to segment each scene. Thus, we have

simultaneously segmented, as well as classified the scenes with their labels. The sequence

of videos provides us with the scene ID for each segmented video.
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Algorithm 4.3 Segment Video(V , T )
1: Build D = video representation(V )

/* Building Hypothetical Video */
2: Set H = NULL
3: for each scene i = 1 to n do
4: Extract the scene category k′ for scene i from text T
5: Concatenate scene model Mk′ to H
6: end for
7: Compute DP = Dynamic Programming(D, H)
8: Find optimal path using P = Back Track(DP )

/*Segment Video*/
9: for each scene i = 1 to n do

10: Find the scene segment Si corresponding to i in generated video H
11: Find correspondence of Si in P as V ′i
12: Output segmented video V ′i
13: end for

4.6.1 DP on Long Sequences

Classical Dynamic Programming is memory intensive, requiring O(N2) storage for the

aggregated distance matrix D and the indicator matrix I. This places a serious restriction

on the length N of the signals that can be aligned. On a typical computer with , we

observed that the maximum length that can be aligned was only 20K frames, which would

correspond to 20 scenes in the video. To address this issue, we propose a new space-

efficient DP algorithm.

The key observation to make the DP space-efficient is that for calculating the costD(i, j),

one only needs three values from the D array: D(i− 1, j − 1), D(i, j − 1), D(i− 1, j). The

values in the D sub-matrix from [0, i− 2][0, j − 2] are not required to be stored, since their

costs are already embedded in the cells D(i − 1, j − 1), D(i, j − 1), D(i − 1, j). Thus, to

compute the values for a single row i (or column j), it suffices to only know the values of

the previous row i− 1 (or column j − 1), and the value for first value in row i, i.e., D(i, 0)

(or D(0, j0)). By keeping track of only one row or column, we could compute the entire D

matrix without having to store all of it. Further, each cell of the indicator matrix I can be
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stored as a pair of bits to indicate the direction of the lowest cost. With this improvements,

we were able to improve the maximum length for alignment from 20K to 60K frames.

However, this limit corresponds to about 60 scenes of the video, while each video typ-

ically consists of 300 scenes. In this situation, instead of aligning the entire video in one

instance, the input video and hypothetical video are segmented at five intervals corre-

sponding to the 60 scene boundary. Anchors are manually provided at the location of the

60 scene intervals in the given video, while their location in the hypothetical video can

be easily inferred in the generation process. Within each segment, the alignment then

proceeds in the usual manner. Further improvements could be obtained by using an ad-

vanced computer with larger main memory; we observed that on a 16GB RAM memory, we

could align close to 120K frames in once instance using our memory-efficient alignment

technique.

4.6.2 Alignment Accuracy

In the process of DTW between the hypothetical video H and the real data D, there

are seven parameters to learn for: i) the weights for each of the six features and ii) the

occlusion cost. The parameters were learnt by doing a dense sampling of the parameter

space, and picking the set of parameters that provide the highest alignment accuracy. The

accuracy is measured as the percentage of frames that were assigned to the right scene in

the video.

Baseline Alignment We compare our approach to baseline alignment techniques, one

that is based on a heuristic segmentation of video and another where visual information

is not considered. In Baseline1 , the video is segmented by detecting frames that contain

the pitch visual category. This is inspired by the format of the video, where every scene

always begins with a shot of the cricket pitch. In order for a sequence of pitch frames to

correspond to the beginning of a scene, the frame needs to occur in a regular play, and
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Method Accuracy
Visual Alignment 71.1%
Duration Only 7.8%
Pitch Detection 16.2%

Process Time per Video
Feature Extraction 90 minutes
Hypothetical Video Generation 0.35 seconds
Alignment Time 75 minutes

Table 4.1 (Left) Alignment accuracy across the proposed techniques and a couple of base-
line algorithms based on heuristics. The best performing setting of weighted DTW align-
ment results in an accuracy of more than 70% frames in the correct scene. This is signifi-
cantly higher than the baseline algorithms that do not perform explicit alignment between
observed and estimated visual data. (Right) The time taken by the various steps involved
in our solution pipeline, on a regular desktop machine. For a 3.5 hour video, we require
about 2.75 hours of computation time.

not during a replay. By identifying such frames, one could obtain plausible beginnings for

each scene, and hence the temporal segmentation.

The Baseline2, uses information from the text commentary, but does not use visual

information for the alignment. During building the hypothetical video H, visual features

are discarded, but only the duration of scene is retained. Each frame of the hypothetical

video only contains the scene-ID. Instead of warping H to D, we scale H to the same

length as D, and read out the scene-IDS for each frame of D as given by the same frame

in H.

We have manually generated groundtruth segmentations for 7 hours of video (1 match).

The results from the baseline and those from DTW based alignment, over the groundtruth

dataset, are presented in Table 4.1. The baselines perform quite poorly, which indicates

that visual information is very important and useful in temporal scene segmentation. The

evaluation results for the best alignment accuracy of 71% is achieved with the DTW based

alignment approach. The time required for each step of the feature extraction and align-

ment process, over a commonplace desktop machine with about 4GB of memory, is given

in Table 5.4. The total time required for 3.5 hour video is about 2.75 hours of computation.
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4.7 Annotation of Segmented Videos

With our temporal segmentation procedure, we have simultaneously segmented and

synchronized the video segments with their corresponding ball IDs. This allows us to anno-

tate the segmented scenes with the information available in text commentaries. An exam-

ple segment from the webcast commentary is shown in Figure 4.3. In these commentaries,

every scene is recorded and reported. Since the webcast is generated by professionals, it is

well-structured, which allows us to parse and extract information from the commentaries.

The number on the extreme left is given as < over number > . < ball number >, which

provides us with the ball ID. After the ball number, the name of the bowler is given, until

the preposition “to”, which is followed by the name of the batsman. The next phrase de-

scribes the outcome of the ball played. The rest of the sentences describe the action during

the ball including description of the delivery, shot played, fielding action etc. Detailed

comments regarding a ball generally implies that interesting activity has occurred during

the particular scene. The webcast also includes scores at the end of each over and detailed

descriptions at the beginning and ending of each innings. This additional information

which is not relevant for scene annotation is parsed and removed.

Firstly, each scene is annotated with factual data obtained from the text. Each scene is

annotated with the information about the ball number, bowler, batsman and outcome. The

score at the end of each ball can be computed from the text commentary itself, using the

outcome information. The score is given as< number of runs >:< number of batsmen out >.

The number of runs are calculated at the end of each ball, by incrementing it with the

number of runs in the outcome. If the outcome is “OUT”, the number of batsmen out is

incremented.

Apart from factual annotations, descriptive annotations are available from each ball

from the comments. These comments are given to describe the action to audiences that

cannot watch the match video. Hence the comments are fairly accurate and descriptive
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in conveying the events. However, they might not be provided at the same level of detail

for every scene. Finally, we store the duration of each ball in frames and seconds for

summarization purposes.

The annotation is stored in an XML database, each inning’s video described by one XML

file. XML is the content description standard for video annotation, as specified by MPEG

7. The XML schema used in our system is given in Figure 4.7.

The XML schema describes the video and each scene in it. The video is annotated with

meta information regarding the date of match, teams playing, innings number etc. Each

scene or ball is then annotated with the information parsed from the commentaries. XML

acts as a structured interface between the data and the retrieval & summarization system.

It also helps in easy sharing and porting of annotated video databases.

4.8 Applications over Annotated Videos

We have built a system over the annotated video data with the following functionalities:

1. Video Browsing: Users can easily browse matches using an intuitive interface

2. Search and Retrieval: Users can query with semantic textual queries and retrieve

results in ranked or chronological order

3. Summarization: Personalized summaries are generated based on user preference in

summary content, summary duration and delivery mode

4.8.1 Video Browsing

The segmentation and annotation enables us to build an easy-to-use interface that al-

lows the user to browse the match efficiently. The Match Browser, that we built is a table-of-

contents like display that combines video clips with their annotations. The UI is provided
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<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="matchDate" type="xs:date"/>

<xs:element name="teamA" type="xs:string"/>

<xs:element name="teamB" type="xs:string"/>

<xs:element name="firstInnings" type="xs:string"/>

<xs:element name="inningsNumber" type="xs:integer"/>

<xs:element name="fileURI" type="xs:string"/>

<xs:element name="annotatedBalls">

<xs:complexType>

<xs:sequence>

<xs:element name="ballID" type="xs:integer"/>

<xs:element name="startFrame" type="xs:integer"/>

<xs:element name="endFrame" type="xs:integer"/>

<xs:element name="ballURI" type="xs:string"/>

<xs:element name="ballNumber" type="xs:string"/>

<xs:element name="bowler" type="xs:string"/>

<xs:element name="batsman" type="xs:string"/>

<xs:element name="outcome" type="xs:string"/>

<xs:element name="comments" type="xs:string"/>

<xs:element name="scoreRuns" type="xs:integer"/>

<xs:element name="scoreWickets" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 4.7 The XML schema used to store annotated Cricket video segments.
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Figure 4.8 A screenshot of the our Match Browser UI. Each column in the table corresponds
to various annotations for each ball video. The right most column allows the user to rate
the balls based on his liking. The search box on the top-left corner allows user to search and
retrieve for his text queries. The second text box in the top takes the desired duration of
the user to generate summaries. Personalized highlights are generated using the “Advance
Search” link in the second row.

through a webpage; the user need not install any special software to access our system.

The screenshot of our interface is provided in Figure 4.8. Each row contains the infor-

mation regarding one ball. The columns of the table provide information about the ball

number, bowler, batsman and outcome. The description of the ball is given in the com-

ments column. The user can easily browse through the entire match by looking at the

table. The user can control the number of balls he wishes to see in each view. He could

choose to see all the scenes in one view, or browse the match over-by-over. Each ball is

depicted with a thumbnail. On clicking the thumbnail, the user can download and play

the clip of the scene. A typical clip is about 45 seconds in duration and about 2.5MB in
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size. The clips can be downloaded and played in less than 5 seconds, on average, over the

Intranet. By choosing to view only those scenes that he might be interested in, the user

saves considerable time by using our browser.

4.8.2 Search and Retrieval

Following our annotation, each scene is associated with a set of textual tags. We can

now build a text-based search engine over the annotated scenes. We perform a standard

stop-word detection and removal from the comment tag, before indexing the scenes. Our

system accepts text queries given by the user and searches through the index to retrieve the

scenes matching the query. The user could thus query for all scenes involving a particular

player, or with a certain outcome. The search results are shown preserving the temporal

order. Owing to an all text index back-end, the search times of our system are interactive.

However, it is not easy to fully understand and cater to user queries. For e.g., when

the user queries for “Yuvraj Six”, he probably meant to retrieve all the SIXes hit by Yuvraj

Singh. The search system retrieves all the balls which are indexed under both Yuvraj and

Six, which contains a large number of results not queried for. To provide results more

relevant to the user’s desire, the search results should be appropriately ranked.

To be able to retrieve the scenes most suitable to user query, we use standard vector

space models popular in text retrieval. Each annotated scene is considered as a bag-of-

words of its corresponding annotations. The query too is considered as a bag-of-words.

Both the scenes and queries are assumed to be points in a space whose dimensions are

given by all unique words (sans stop words) in the annotations. The similarity between

the query and annotation is given by the cosine similarity measure between annotated

scene S and the query Q as

similarity(S,Q) = cosθ =
S ·Q
|S||Q|

(4.4)
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The cosine similarity is smallest for overlapping vectors or exactly similar query and

document. It is largest when the query and document are un related. This is the distance

measure which we use to rank the retrieved results. A suitable threshold is chosen for the

similarity measure to avoid retrieving all scenes in ranked order.

4.8.3 Automatic Summarization

Another key application of annotated videos is in generating automatic summaries of

videos. Match summaries or highlights generated by the TV studio are fixed and thus

might not suit user preference. It is necessary to consider the user preferences in the

summary content and allow the user to control the duration of the summaries generated.

The user can also search the videos and rank the scenes retrieved for his given queries.

This allows the user to rank only those scenes that he would prefer to view and rank,

hence encouraging user participation in ranking.

Collecting User Preference. To be able to personalize video summarization, we need

to collect the user preferences for the scenes of the video. We allow users to rank the

scenes that they like on a scale of one to five. The ratings are collected from a pool of

potential users and the cumulative ratings are computed for each scene. Each scene is

then re-ranked based on its score. From the ratings obtained from a set of 10 users, it

was observed that the outcomes FOUR, SIX and OUT are very popular and are generally

included in the highlights. However, there are considerable number of scenes with other

outcomes which are also interesting. This could be because of interesting events occurring

in the scene. It is in these cases, that user rating will encourage such balls to be included

in the highlights.

Controlling Summary Durations. Our application allows the user to choose the du-

ration of the summary as well. Given the required duration, the system automatically

identifies scenes that are present in the summary. A threshold is calculated such that
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good length delivery on leg stump, clips Pathan on the pad, very high, and rolls towards
point as Gambhir calls for the single

good length delivery outside off stump, defended to cover for a sharp single

good length outside off stump, Uthappa gets onto the front foot and just pushes it very
so softly in front of cover and calls for the sharp single

good bowling this, Irfan pitching it on a good length and forcing Misbah to play across
the line, only to mistime it and play it back to the bowler

short of a good length and outside the off, played down to third-man with an angled
bat

Figure 4.9 Retrieved results for the query “good length”, which is a property of the bowl-
ing. The top four results are true positives. Retrieved scene videos are shown as a sequence
of keyframes. The corresponding comments in the annotation is given beside each scene,
the occurrence of the queried words is highlighted. The last result is a false positive.
Though the query words are present in the annotation, the comments are describing a
different kind of bowling which is “short of a good length”.

86



System Metric Value
Number of hours of video 64.3 hours
Size of video 63.3 GB
Average scene duration 45 secs
Average scene clip size 2.5 MB
Average time to play scene 4.5 secs
Retrieval response time 0.66 sec
Average summary duration 50 mins
Average summary file size 165 MB
Average summary generation time 30 secs
Average time to play summary 25 secs

Table 4.2 Details of the dataset that we annotate and segment with parallel commentary,
along with some of its properties. Over a large collection of more than 60 hours of video,
we could build a semantic retrieval system that answers queries in less than a second, and
can build a personalized summary video in about 30 seconds.

the duration of the balls above this threshold is closest to the desired summary duration.

Given the ranked list of all the balls, the summary would consists of all the balls with ranks

above this threshold. A summary video is generated on-line by concatenating the scenes

preserving temporal order, and provided for download to the user.

Summaries from Querying. Another novelty of our system is providing summaries

based on search queries. An advanced search and summarize interface is provided for this

purpose. This interface contains a list of all the players and outcomes. The user can choose

his favorite players and preferred outcomes. He could choose multiple players from both

teams, from different innings. He could also give textual queries such as “good length

delivery”, “poor shot” (a shot in cricket, refers to the way the ball is played with the bat),

etc. The annotations are searched through to identify balls that satisfy the given choices.

The retrieved scenes are then concatenated in temporal order to obtain a very personalized

summary of the match. This summary can either be browsed through over the webpage or

played as a video.
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The processing time for summary generation is consumed mainly in concatenating the

videos and encoding them into a single file. We use the Mencoder library to merge scene

clips into a summary video. A summary of 50 minutes duration is generated in less than

25 seconds, and the file of size 165MB can be downloaded in less than 30 seconds. This

means personalized summaries of the match video are less than a minute away for any user

in the local network. The performance metrics of our system are summarized in Table 4.2.

4.9 Discussions

We present our results on 10 matches, consisting of 64 hours of video from the 2009

ICC Champions Trophy. We applied the techniques discussed in this Chapter to segment

the video into clips of scenes, and have annotated them with the information from the

commentary. As an example, we provide search results for the query “good length”, which

corresponds to a property of the ball being bowled at a particular place on the pitch.

Keyframes for the top four retrieved scenes are given in Figure 4.9, along with the query

highlighted in the comments. It should be noted that retrieving “good length” balls using

recognition of the visual information alone, is a very difficult problem. Such semantic

querying was made possible due to the effective use of parallel text in our annotation

procedure.

As can be seen in the Figure 4.9, there are some false positives in the retrieved results.

Though the false positives contained the query words “good length”, the comments were

actually pertaining to a “short of a good length” ball. Such queries are ambiguous to our

search system, resulting in lower precision. On the other hand, the recall is limited by

the number of scenes that have been commented about in their full detail. A number

of other scenes might have been good length deliveries which was not mentioned in the

commentary. As another example, for the query “good shot” we could retrieve only three
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scenes, when realistically there would have been large number of scenes which had good

cricketing shots.

4.10 Summary

In this Chapter, we have presented a scheme to simultaneously segment and annotate

videos with their parallel text, using a unique text-driven temporal segmentation algo-

rithm. Our work has enabled text-based access to a large collection of video data, that

was difficult to navigate, search and consume. With this work, we begin with a video-page

level alignment and tighten it to a scene-paragraph level.

In future work, we could perform much more fine-grain segmentation and annotation

of both the visual and textual data. Further, statistical generative models such as Hidden

Markov Models (HMMs) could be evaluated for automatic learning and segmentation of

the Cricket video into scenes and actions/activities. The training data required to satis-

factorily learn the HMMs could be bootstrapped using the segmentation and annotation

obtained as a result of the work in this Chapter.
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Chapter 5

Reverse Annotation based Retrieval from Large
Document Image Collections

In the previous Chapters, we had addressed the problem of annotating videos with par-

allel un-aligned text. In this Chapter, we shall focus on a class of images, that are rich

in text data, namely document images created by scanning printed books. The text infor-

mation is encoded in pixels, making it difficult to access or search these archives easily.

However, for many collections, the language of the books is known beforehand. Given the

language, we could easily obtain resources such as a list of possible words or a dictionary.

The words in the image can now be treated as the meaningful entity that could be anno-

tated by the appropriate word in the known vocabulary. This broad goal is depicted in

Figure 5.1. We now present the challenges and solutions towards such an annotation on a

large-scale document image collection.

5.1 Introduction

The process of creating digital content from paper-based books is now well established,

thanks to various digitization projects around the world. Google Books [6], Internet

Archive [7], Universal Digital Library (UDL) [8], Digital Library of India (DLI) [2], etc.

have scanned millions of books, creating more than a billion document images. The infor-
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mation and knowledge captured by these image collections needs to be seamlessly accessi-

ble over the web. One of the key mechanism to provide such an access is through enabling

a search system, that could retrieve relevant content at the paragraph or sentence level,

similar to popular web search engines.

In order to build a search engine over document images, one needs to obtain the text-

equivalent for the image content [43]. This was traditionally achieved using Optical Char-

acter Recognition (OCR) [42, 155, 166]. OCRs typically perform a bottom-up recognition

of characters or character-components. Work in OCRs has focused on identifying the right

features and classifiers resulting in successful OCRs for the English language [9,33]. How-

ever, despite considerable effort, robust OCRs are not available for many Indian, Chinese,

Arabic and African languages. This is mostly because of the inherent complexity of the

languages due to an extended character set, writing style, print variations etc. More-

over, the degradations commonly present in scanned documents result in poor character-

segmentation, as well as erroneous recognition output [75,214].

Another popular approach avoided explicit recognition of text [63, 110, 148, 183]. The

concept of Word Spotting is used to search for occurrences of a query word in the image

collection. The query is either a sub-image selected by the user, or text converted to image

by rendering [63]. However, since image matching, in features space, is computation-

ally intensive, the retrieval times using this approach are large. If N is the number of

documents in the collection, and M is the number of words in each document, then, the

computations required for retrieving a single query would be of O(N.M.l2) (l is length of

feature vector for each word). If we assume that matching a pair of images requires 0.01

second, the retrieval time for a single query, from a collection of 21 million images, would

be close to three days. As the collection of images grows, the response time increases ac-

cordingly. Thus, a purely recognition-free approach is not scalable to large collections of

images and queries.
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Figure 5.1 In this Chapter, we use linguistic resources available on the Web, to annotated
scanned books from a large corpus [2]. Such an annotation could provide content-level
access to the wealth of knowledge in the physical libraries.

In our work, we propose to combine the approaches of Word-Spotting and recognition.

We shall perform the labeling of word-segments instead of working at the character level.

Word-images contain a lot more context than characters, hence making them easier to

match them rather than classify character-components. Even in situations where some

of the characters in the words are degraded, matching to other instances of the same

word may be accomplished. Further, segmentation at word-level is highly accurate since

difficult character-segmentation decisions are avoided, as can been seen in the example

of Figure 5.3. Another advantage with recognizing words is that it inherently performs a

dictionary based post-processing.

The objective of our work is to convert word-images to text, for the sake of building

a text index over the document images. However, as we shall see in Section 5.4, not all

words in a document are useful for retrieval. Some words (such as stop-words) that would

not be used in the retrieval process, need not be recognized at all. Unlike the task of

recognition where all word-images are expected to be converted to text, we shall perform

annotation of word-images with only those words that would help in retrieval. Now, there

are two major issues with annotating word-images in document images: i) what labeling

scheme to label the words and ii) how to scale the labeling scheme to large collections.
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We address these challenges through a novel Reverse Annotation framework that we

propose through this work. Unlike traditional annotation where keywords are identified

for a given image, in Reverse Annotation, the relevant images are identified for each key-

word. The traditional annotation process is depicted in Figure 5.5. The keyword-concepts

are learnt from training data, as a feature representation for the keywords. To annotate

a test image, its regions are identified, and features are extracted from each region. A

distance measure is computed between the extracted features and the keyword features.

This distance measure is used to obtain the annotations using a suitable classifier, say a

K-nearest-neighbor.

In contrast, the Reverse Annotation framework draws inspiration from generic text re-

trieval approaches, where words are indexed to speed-up matching. This is achieved by

performing an offline clustering of word-images, forming a pseudo-index for the words

in the collection. These clusters are then classified against the learnt keyword-concepts,

thus reducing the complexity of classification from the collection size to the cluster size,

as depicted in Figure 5.6. Reverse Annotation is applicable in cases where the number of

keywords for annotation, is far less than the number of images being annotated, which is

particularly true for document images.

The main contribution of our work is that we have successfully addressed the problem

of large scale document image annotation. Our approach works over those scripts which

do not have an OCR, thus making it possible to retrieve from many collections that could

not be searched hitherto. In spite of challenges such as: i) complex scripts, ii) degradations

and iii) lack of sufficient training data, we built a document image retrieval system that

answers text-queries, with instant retrieval. We show that our approach significantly scales

to large document image collections, such as a 1000 Telugu book dataset, the largest such

collection made searchable. The performance of the retrieval system over this collection

is very high, with an average precision of 0.8. Through this work, we also perform a
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Figure 5.2 Examples demonstrating the subtleties of the Telugu language. In (a) the
consonant modifier is shown to be displaced from the consonant in different ways (b) the
two characters ma and ya are distinguished only by the relative size of the circle (c) the
small stroke at the top changes the vowel that modifies the consonant.

thorough evaluation of various features, classifiers and indexing schemes towards word-

image matching.

5.2 Data: Indian Language Document Images

The visual data that we would like to make searchable is a set of 1000 scanned Telugu

books, consisting of 120K document images. A significant percentage of the books had

been published several decades ago, resulting in severe artifacts in the pages, and conse-

quently in the scanned images. Due to these degradations and the complexity of the Telugu

script itself, OCRs have not been successful in enabling text-level access to such collections.

However, there is large practical value for the information present in these digital libraries,

as they cover a wide variety of topics in Indian languages. By providing access to these

books, we could augment the information available on the web, for speakers who prefer

to read and learn in their native languages.
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(a) (b) (c)

Figure 5.3 (a) Example segment from a typical document image of our collection. No-
tice the considerable degradations, cuts, merges etc. in the passage. (b) The connected-
components of the segment in (a). Each component is drawn in one color. One can observe
the over segmentation of characters due to degradations. An OCR would not be able to
recognize the characters in this situation. (c) Segmentation of the image at the word level.
The effect of the degradations is much less severe in this case. We propose the matching
of word-images in lieu of recognizing the characters.

5.2.1 Challenges

There are three major challenges toward enabling search over a large collection of Tel-

ugu document images:

Script Complexity: The character set of Indian language scripts, especially Telugu, is

quite large. Each character is written as a conjoined consonant and vowel modifier. An

example word, and the components of each character are shown in Figure 5.2(a). Such

formatting makes it hard to segment as well as recognize the character-components. Fur-

ther, there are a significant number of visually similar character pairs. Subtle changes such

as the presence/absence of a dot, or a small stroke could differentiate between characters

(Figure 5.2(b,c)).

Degradations: Given that the books that are scanned in digital libraries are quite old,

there are significant number of degradations in the document images. These images are

generally degraded due to the age of the paper, noise from scanning, etc. An example

is shown in Figure 5.3(a). Characters are frequently broken during noise cleaning and

binarisation. There is a also significant variety in the fonts used, typeset styles and print

quality. Figure 5.4 shows the variety for one word across the collection.
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Figure 5.4 Multiple instances of a single word kaalamu from the book dataset. Notice the
large variations in the font, and the large amount of degradations in the words.

Scale of Data: Given the large amount of data we wish to handle, every step of our

algorithm needs to be designed for efficiency. A brute force method to label all words in

our collection would require more than 150 years’ of compute time. The scale of the data

also effects the memory requirements for various tasks. The features extracted from word-

segments amount to 210 GB of disk space. Since typical computers cannot handle all the

data in one instant, the solution needs to exploit data parallelism whenever possible.

5.3 Related Work on Document Retrieval

5.3.1 Recognition-based

Document recognition methods have had a long history, surveys can be found in [42,

158, 166]. Most recognition based techniques have focused on recognizing character seg-

ments. Characters are represented using various features such as patch-based, PCA, LDA,

or other statistical features [161]. The classifiers used to recognize characters have evolved

over time. In the early days of numeral and character recognition, Artificial Neural Net-

works were popular such as in LeCun et al. [135]. Recently, Francesconi et al. [97] com-

bined MLP, with a filtering step based on auto-associators. These days, Support Vector

Machines (SVM) are more often used in classifier building. Since SVMs are mostly suitable

for two-class classification problems, a chaining architecture is used to combine multiple

classifiers, such as a directed acyclic graph in Jawahar et al. [62].
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In cases where character segmentation is hard, due to ink degradations, word-level clas-

sifiers are better suited. Natarajan et al. [160] use a HMM to model characters, which are

concatenated to form a word model, which is then recognised as a whole. This technique

was built into the Byblos commercial OCR system. Chan et al. [67] uses a KPCA/LDA fea-

tures for each vertical strip of a word. A gHMM, with a bi-gram letter transition model is

used to infer word transcriptions. However, OCR techniques that use word-level context

still rely on inaccurate component-level classification as an intermediary stage.

In the presence of (inevitable) OCR errors, post-processing is very useful to correct

classifier mistakes. Kahan et al. [122] build a character error model, which is then used to

correct frequently confused characters. Another popular approach is the use of a dictionary

to rectify errors resulting in invalid words, as detailed in Lehal et al. [138]. Statistical

language models such as n-gram models are also quite successful in reducing the OCR

errors [136,160]. But, the use of language models for post processing is quite challenging

for many Indian languages like Telugu. This is because of the large number of possible

words, which makes dictionaries and language models challenging to build (see Bharati et

al. [51]).

5.3.2 Recognition-free

An alternative approach to OCR called Word Spotting [147] , avoids the recognition of

characters altogether. In the recognition-free approach, explicit labels are not assigned to

characters or words. First proposed for handwritten documents, the word-images are first

represented using profile features, and matched against the query-image using a Dynamic

Time Warping(DTW) based distance measure. The details of these techniques are provided

in Rath and Manmatha [182,183].

The word-spotting technique was applied to printed document images by Lu et al. [144],

which uses a weighted Hausdorff distance between templates and test words. For Indian
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scripts, Chaudhury et al. [68] use geometric feature graphs that exploit the structural

characteristics of the Hindi script. Konidaris et al. [126] combines synthetic data gen-

eration with user feedback to improve performance on historic Greek documents. Pro-

file features were used to retrieve from Ottoman documents by Ataer and Duygulu [38].

Zhang et al. [238] use compact features from gradient based binary features, which are

then matched by a correlation based measure [238]. A thorough evaluation of features

and distance metrics for word matching was performed in Meshesha and Jawahar [150].

However, matching of word-images is computationally intensive, taking on average 1

second for each pair, assuming offline feature extraction (Rath and Manmatha [185]).

Searching for a query within a small collection of 1000 pages could take as much as 80

hours, which is quite unacceptable. An index built over word-images would help in faster

retrieval. For example, Marinai et al. [148] build an index over approximate character

labels, which are then used in a multi-step matching and alignment with a query image.

Rath and Manmatha [185] built indexes using word-image clustering, while Kumar et

al. [128] use Locality Sensitive Hashing to index the word-images. The limitation of in-

dexing schemes, is their large memory requirements. An index over a large dataset is

typically larger than what computers can handle.

Further, word-spotting systems can only be queried-by-example, while users prefer text

querying. Text querying could only be possible by providing text labels to images. Such

labels could be assigned manually as in Balasubramanian et al. [45] and Rath and Man-

matha [185], which is obviously quite expensive. Automatic annotation of word-images

are essential for scaling up the word-spotting approach, which is what is performed in this

paper.
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5.3.3 Dataset Sizes

One of the major claims of our work is the scalability of our approach to large datasets.

Much of previous work has been restricted to laboratory settings or small document collec-

tions. Due to the unavailability of a large corpus most of the experiments were done only

on a limited number of pages. The classification results were reported at character or even

at sub-character level. For example, Negi et al. [162] report a component level accuracy

of 92% on 2524 components, while Neeba and Jawahar [161] evaluate over half-million

components.

The Ottoman documents used in Ataer and Duygulu [39] consists of 26 pages. Xiu and

Baird [232] demonstrated their work on about 50 images. Konidaris et al. [126] use 100

Greek documents for their evaluation. Chan et al. [67] use one Arabic book to demonstrate

search. The UNLV dataset [188] evaluated OCRs on a set of 2000 pages. For handwriting

documents, Lavrenko et al. [133] and Rath and Manmatha [185] evaluate their work over

20 documents. Rath et al. [184] raised the bar with a 1000 page George Washington

collection.

Our previous work in Pramod and Jawahar [175] was the first to build a retrieval system

over a collection of 500 (printed) Telugu books, consisting of 75,000 document images.

In this paper, we scale the dataset to 120,000 images, which we believe is the largest

document image collection made searchable in a non-Latin script.

5.4 Reverse Annotation

Let us begin with the assumption that we are provided with a set of labeled word-

images (training set), and the unlabeled words that need to be recognized (test set). We

shall henceforth refer to labeled word-images as exemplars. Typically, one would begin

by building classifiers such as ANN or SVM to classify the test set against the training
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Figure 5.5 Depiction of traditional annotation approaches. Given a test image, features
are extracted from its regions. These features are compared against the learnt concept
models, and the keyword of the closest match is given to the region.

set. However, unlike character sets which consist of a few hundred symbols, the number

of classes for word based recognition is typically hundreds of thousands depending on

the language vocabulary. Training classifiers for such large number of classes requires

large amount of training data, while using such classifiers in test phase could be highly

computationally expensive.

Instead of expensive classifiers, we shall use a quick and reliable Nearest-Neighbor (NN)

classifier to label word-images. As long as there is at least one labeled exemplar for a

given keyword, the corresponding words of the test set could be labeled. The NN classifier

now depends on a reliable matching scheme between the word-images of train and test

sets. We carefully select the features and distance metric by evaluating them over a large

groundtruth dataset (see Section 5.7). However, the classifier complexity is O(N1 · N2),

where N1, N2 are test and training set sizes respectively.

We further observe that there is abundant repetition in the test image collection, i.e.

most of the words occur multiple time across the collection. Let us assume that it was

possible to cluster the word-images (based on their corresponding features), such that mul-

tiple occurrences of a particular word are found in one cluster. Given such clusters, it

suffices to annotate one representative of the cluster, whose label is propagated to the rest
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Figure 5.6 Depiction of Reverse Annotation. The features from the image collections are
clustered into unknown concepts. To annotate the images, it suffices to find the correspon-
dences between these clusters and that of the keywords. Once the correspondences are
identified, the search index could be easily built.

of the collection. Since the classification is performed only once per cluster, it allows for

considerable annotation speed-up.

The clustering itself can be sped-up using a hierarchy of clusters [163]. In hierarchical

clustering, the data points are clustered into a small number of clusters. Each of these

clusters is in-turn clustered into smaller clusters and so on. The advantage of this technique

is the considerable speed up in clustering and lookup. We shall elaborate further on this

in Section 5.5.

Further, such a clustering could also be performed on the keyword-exemplars as well,

since the keyword-exemplars themselves are not totally isolated. Keyword-exemplars can

also be clustered based on the similarity in their representative features. These clusters can

now be matched at the corresponding levels of the hierarchy, such that clusters at a lower

level are only matched if their respective parents are close. This technique is depicted

in Figure 5.7. The complexity of matching exemplars with features is now reduced to

O(logN1 · logN2 · k2), where k is the branching factor for the cluster hierarchy.

It is important to note that a cluster is labeled with a keyword, only if the NN-distance

is less than a pre-defined threshold. Thus, it is likely that certain clusters, would not be

given any label at all; such as those words with no exemplars in the training set. Unlike

traditional auto-annotation, which predicts labels for the given images, our framework
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Figure 5.7 Reverse Annotation by efficient comparison of hierarchical clusters of labeled
and unlabeled word-images.

k1, k2, ..., kn keyword exemplar cluster
ki1 , ki2 , ..., kin′

i

points in cluster ki

t1, t2, ..., tm word-image clusters (centroid word-image)
tl1 , tl2 , ..., tln′′

l

word-images in cluster tl

Table 5.1 Naming convention for the Probabilistic Reverse Annotation framework.

predicts the images (or image regions) that correspond to the given label. Hence the term

Reverse Annotation.

5.4.1 Probabilistic Reverse Annotation

At the end of Reverse Annotation procedure, we have an index of the word-images

against the keywords. However, the index does not lend itself to rank the word-images for

retrieval purposes, since the associations in the index are binary. For this purpose, we ex-

tend the framework to Probabilistic Reverse Annotation, where we estimate the probability

that each word-image belongs to the keyword.
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Let us follow the naming convention presented in Table 5.1. The probability consists

of two parts. The first part measures the quality of labeling of a cluster (i.e. its centroid)

with the given keyword-exemplar. The second term measures the association of the word-

images to the cluster. The probability pij that word-image tlj matches keyword ki is given

as a product of these two terms:

pij =
s(ki||tl)∑
i

∑
l s(ki||tl)

×
s(tl||tlj)∑
j s(tl||tlj)

(5.1)

where s(x||y) is a similarity measure (inverse of a distance measure). The denominator of

the first term involves the summation over all keywords and all clusters. While computing

the denominator would be expensive, we observe that it remains a constant for all word-

image and keyword cluster pairs. We can hence ignore the denominator while computing

the score, except it would not be a value with range [0, 1]. The computation of the score can

thus be performed only between the pairs of exemplar and test-set clusters which match

in the Reverse Annotation phase, hence preserving the computational advantages of the

framework.

5.4.2 Ranking of Retrieved Documents

The final outcome of the probabilistic reverse annotation step, is a ranking of word-

images against their corresponding keywords. However, in document retrieval tasks, one

needs to rank the entire document image against the given query. We rank documents

using a ranking function similar to the Term Frequency/Inverse Document Frequency (TF-

IDF) measure. In our ranking function, the sum of number of words is replaced with

their probabilities given by the Reverse Annotation step. For the i-th query-word the TF is

defined as,

tfij =

∑
k pik∑
l,k plk

(5.2)
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where pik is the probability score for the k-th word-image to correspond to keyword ti. TF

measures the importance of the keyword for the image, and is normalized by the document

length to avoid bias to longer documents. The document length is replaced by the sum of

probability scores of all the words within the document, against their respective keywords.

This scheme ignores the words that are not labeled in the annotation step.

When the search query consists of multiple words, the relative importance of the words

in the query is an important distinguishing factor. This is estimated by the inverse document

frequency (IDF) measure, which indicates the overall importance of the given keyword in

the entire collection. The IDF measure is defined as

idfi = log
1∑

images

∑
l,k plk

(5.3)

It is basically the logarithm of the total number of documents over those containing

the given term. In our case, it is estimated as the inverse of the sum of the cumulative

probabilities over all the images. The IDF is used to normalize the TF value across all the

images.

5.5 Efficient Implementation of Reverse Annotation

Our framework is built over the clustering of test-data, where multiple occurrences

of the same word are grouped together. This is typically performed using a K-Means

algorithm over the features of the words. However, such a clustering would be more

computationally expensive than direct classification. Scalability to 1000 books or more

required that we look at alternative approaches to clustering. We shall look at three such

approaches, namely: i) Hierarchical K-Means, ii) Locality Sensitive Hashing and iii) KD-

Trees.
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5.5.1 Hierarchical K-Means

One of the limitations of the K-Means algorithm is the necessity to fix K, beforehand. If

K is less than the number of unique words in the collection, it would mean that some of

the clusters would have different words in them. To avoid different words being clustered

together, we would prefer a large K. This ensures that each cluster contains instances of

the same word, while allowing multiple clusters for the same word. However, this clearly

increases the compute time.

Hierarchical K-Means (HKM) is a way to approximate K-Means fast. The idea [163] is

that a small number of clusters - say K - are created at the top level. K is known as the

branching factor. Then each of these K clusters is expanded to K more clusters giving K2

clusters at the second level. This process is repeated up to a certain depth D so that there

are KD clusters or leaf nodes at depth D. Given a new point, to find out which cluster it

belongs to, it takes K · D comparisons unlike traditional K-Means which would take KD

comparisons. For example, if K = 10, D = 6 then there are a million leaf nodes. K-Means

requires 106 (a million) comparisons while HKM only needs 60 comparisons. To build the

entire HKM tree for a dataset of size N requires O(N ·K · D) time while K-Means would

require O(N ·KD). On a modern desktop processor the difference is 31 yrs for K-Means vs

13 hrs for HKM. For our experiments here we usually chose D = logK(N).

5.5.2 Locality Sensitive Hashing

In Locality Sensitive Hashing [116] (LSH), data points are projected onto random sub-

spaces, such as a line or hyperplane. The projected subspace is divided into spatial bins;

each point is assigned to the bin it falls into. The assumption is that points close to each

other in a high dimension space will most likely fall into the same bin. Multiple such hash

functions are generally used in collecting additional evidence to determine NNs.
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A d dimensional word feature is mapped onto a set of integers by each hash function

ha,b(x). Each hash function is indexed by a choice of random a and b. Here, a is a d-

dimensional vector with entries chosen independently from a p-stable distribution and b is

a real number chosen uniformly from the range [0, w]. For a fixed a, b the hash function

ha,b is given by,

ha,b(x) = b
a · x+ b

w
c (5.4)

Generally w = 4. The dot product a · x projects each vector onto a real line. This line is

chopped into equi-width segments of appropriate size w and hash values are assigned to

vectors based on which segment they project onto. Algorithmic details are given in [101,

116].

The storage complexity of LSH is of the order O(n.|H|), n being the number of features

hashed and H is the set of hash functions. Since the optimal |H|, also depends on the size

of the dataset, the memory required for a large dataset could be more than what modern

computers can handle [35]. The running time complexity for each query consists of two

parts: Tc and Tg. Tg is the time required to compute the hash values for the query and

to identify the buckets it falls into; it is of order O(d · k · |H|). Tc represents the time

for computing the distance to all points encountered in the retrieved buckets; Tc is equal

to O(d|collisions|), where |collisions| is the number of points encountered in the buckets

corresponding to the query.

5.5.3 KD-Trees

Another approach to address the approximate NN problem uses KD-Trees [157]. A KD-

Tree partitions the feature space with axis-parallel hyperplanes. The algorithm splits the

data in half at each level of the tree on the dimension for which the data exhibits the

greatest variance. When multiple randomized trees are built, the split dimension is chosen

randomly from the first D dimensions on which data has the greatest variance. Multiple
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trees define an overlapping split of the feature-space. These trees are looked up for NNs,

by comparing the query with the bin-boundary at each level of the tree(s). The stopping

criterion for the search is determined by parameters set by the user.

Building a KD-tree from n points takes O(n log n) time, by using a linear median finding

algorithm. Inserting a new point takes O(log n) and querying for nearest neighbors takes

O(n1−1/k + m), where k is the dimension of the KD-Tree and m is the number of nearest

neighbors

For KDTrees and HKM, we use the FLANN software provided by [157]. In the implemen-

tation, the algorithm first traverses the HKM or KD-tree and adds the unexplored branches

in each node along the path to a priority queue. It then finds the closest center in the

priority queue to the given query, and uses this node to restart the traversal. The process

is stopped when a predetermined number of nodes are visited.

5.5.4 Indexing Issues: Memory Limitation

One of the major hurdles with using the above indexing schemes over large datasets, is

that the memory requirements are much larger than what modern computers can handle.

To illustrate, the features for the 36M words of our dataset add up to a size of 210 GB in

floating point numbers. Building an index over this entire feature set is not possible with

existing techniques/code. To simplify this issue, we build indexes over smaller datasets

that can be loaded into the RAM of existing machines. It turns out that indexes could be

build over features for each subset of 20 books, obtaining 50 indexes in all. The matching

of unlabeled word-images with labeled exemplars can be accomplished by lookingup each

of the exemplars against these indexes for approximate nearest neighbors.

108



5.6 Obtaining Labeled Exemplars

Obtaining training data, in the form of labeled exemplars is essential to bootstrap the

recognition process. The obvious solution is by manually labeling some portion of the

collection. Normally, manual labeling is very expensive, when required at the word-level.

Instead of requiring manual labeling of individual word-images, we obtain transcriptions

of the document images. Manual typesetting is much quicker when performed at the page-

level, rather than at word-level.

The page-level transcriptions are aligned with the word-images. This is achieved by

segmenting the document image with the information regarding the number of lines and

words. The process begins by performing line-segmentation of the document image. If

the number of lines from the segmentation is less than the number of lines in the text,

it means two text lines have been merged by the segmentation. This often happens due

to overlapping ink pixels between the two lines. The tallest lines are thus split, until the

number of lines matches between the image and the text. On the other hand, if the number

of lines from segmentation is less than those in text, then the smallest lines are merged

together. In the second step, each line is similarly segmented into words depending on

the number of words in the given line. Exemplars for the keywords are obtained from this

labeled dataset. Some examples for one keyword, kaalamu, obtained through this method

are shown in Figure 5.4.

In case of rare-words, the transcripted data would not yield sufficient labeled exemplars.

We address this issue by generating synthetic examples by font-rendering. Unlike our

previous work [175], where keyword exemplars were obtained using a single font, in this

work, we use multiple Unicode fonts to better model the variety of fonts in the dataset.

The obtained images are then degraded using the Kanungo degradation model [123].

Rendered exemplars for the keyword shlookamuloo are shown in Figure 5.8.
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Figure 5.8 Exemplars generated from font rendering for the keyword shlookamuloo.
Word-images rendered using multiple fonts are degraded using the Kanungo degradation
model [123].

Other approaches too, could be explored to obtain keyword exemplars. One such ap-

proach is to obtain labeling of word-image using reCAPTCHAs [223]. In a reCAPTCHA,

pairs of word-images are presented for recognition by humans. The label for one of the

words is known while that of the other is not. If the human recognizes the known image,

it is assumed that their judgment about the other image is also valid. The labor provided

by humans is essentially free as reCAPTCHAs are required by many websites for sign on.

Another approach is to use a crude OCR that uses a rejection strategy so that it recognizes

only those words that it is confident about. Whenever it has some doubts, it decides not to

recognize. The word accuracy of such an OCR may be poor say 50% or less. However, the

exemplars from these approaches could be noisy.

5.7 Feature Selection

Our dataset consists of a wide variety of font-styles, font sizes, and large variation in the

amount of degradations. The features chosen for word matching need to be robust to this

variety, some of which can be seen in Figures 5.4, 5.8. We examine three types of features:

i) Profile-based, ii) SIFT based and iii) PHOG based. Profile features have been previously

used for representing word-images [180,183]. On the other hand, gradient based features
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Figure 5.9 Profile features extracted for word images include the Upper, Lower, Transition
and Projection profiles. This signal is converted to a fixed length representation by con-
verting them to the Fourier domain where the higher order frequencies are picked as the
word representation.

have been popularly used in computer vision [76, 143]. They have also been claimed to

perform better than Profile features for handwritten word-images [190].

Profile Features: Profile features were popularized by Rath and Manmatha [183],

where these features were used to represent words from handwritten documents. The

profile features we extract include (see [183] for more details):

• The Projection Profile is the number of ink pixels in each column.

• Upper and Lower Profile measures the number of background pixels between the

word and the word-boundary

• Transition Profile is calculated as number of ink-background transitions per column.

Profiles for an example word are shown in Figure 5.9. Each profile is a vector whose

size is the same as the width of the word. The dimensionality of the feature, therefore,

varies with the word used. One approach to matching these uses Dynamic Time Warping

(DTW) [45,183].

Profile + DFT: Fixed length representation could be obtained by scaling the word im-

ages to a canonical size before extracting the Profiles. However, this distorts the inherent

aspect-ratio of words. A more principled method is to compute a Discrete Fourier Trans-
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Figure 5.10 Representation of SIFT features in the Bag-of-Words model. Extracted SIFT
features from a word image are assigned to the closest visterm. This is performed efficiently
using Hierarchical K-Means. The word is then represented as a histogram of its constituent
visterm occurrences.

form (DFT) of the profiles [128, 184]. The noisy higher order coefficients of the DFT can

be discarded, resulting in a robust representation for the word-images. We use 84 Fourier

coefficients for each of the profile feature. With this representation, word-images can be

matched by comparing feature vectors using a simple distance metric such as Euclidean or

Manhattan distances.

SIFT + BoW: An alternative to Profile features is to use a point-based representation for

the word-images. SIFT [143] (Scale Invariant Feature Transform) has proved to be a very

robust interest point detector and feature descriptor for many computer vision tasks [163].

The SIFT operator contains two parts - an interest point detector and a descriptor. The

interest point detector is based on the difference between multi-scale Gaussian of the given

image. The scale-invariance property of SIFT and its high repeatability across various

affine transformations makes it a good candidate to be used in document images [39].

The pairwise matching of SIFT features between word images is time consuming. To

alleviate this, the features are mapped to a unique ID, called the visterm. Images can now

be matched by counting the overlap between corresponding visterms. The visterms are

obtained by vector quantizing the SIFT features using K-Means clustering. Each feature in
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Figure 5.11 A depiction of HoG feature extraction. A 2x2 grid is shown for clarity. In the
implementation, a 4×4 grid is used.

a word-image is represented as the index of the cluster visterm. The word-image is then

represented as a histogram of the occurrences of each visterm.

For example, if an image has F1, F2, ..., F300 features, and say the visterm size is 1000.

Each feature in the image is assigned to the closest visterm, sayW100,W200,W150,W240, ...,W100.

The number of times a visterm occurs in a word, is stored in a histogram of length 1000.

The histograms are then normalized by number of features in the word image. Given this

representation, two words are compared by finding the Euclidean distance between the

corresponding histogram feature vectors. Since the geometric configuration of the fea-

tures is ignored and only their incidence is taken into account, it is called a Bag-of-Words

representation of the image. This process is depicted in Figure 5.10. Such a representation

reduces the time required for explicit match of SIFT features, when matching two images.

PHOG + BoW: Unlike SIFT, which is a sparse detector, one could use a dense represen-

tation with similar descriptors. A histogram of oriented gradients (HoG), first proposed

for pedestrian detection [76], was recently used for handwritten documents by Rodriguez

and Perronnin [190]. A pyramidal HoG at multiple scales was shown to be much more

effective in object recognition tasks [54]. In this technique, a fixed size window is moved

across the word-image. At each instance of the sliding window, a HoG descriptor is com-

puted similar to the one shown in Figure 5.11. Once the entire word-image is scanned by

the window, the window size is doubled and the process repeated. The process is stopped

when the size of the window exceeds the smaller dimension of the word-image. The set of
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ban’gaaru itarulaku mikkili

Figure 5.12 Examples from the groundtruth dataset. Notice the severe degradations,
noise, apart from the variations in the printing. The text label for the words is given
on the top.

extracted features are vector quantized, and the word-image is represented as a histogram

of the occurrences of each visterm.

In detail, the initial window size is 16 × 16 pixels, which is moved across the image

by 8 pixels. The 16x16 window is divided into a grid of size 16 with cells of size 4 × 4

pixels each. The gradients at each pixel are quantized into one of 8 orientation bins. The

oriented gradients in each grid are accumulated, and the histograms for all the grids are

concatenated together. With this setting, we obtain a 128 dimension representation for

each window. In the next iteration, the window size is doubled to 32 × 32, and moved

across by 16 pixels and so on. To ensure that the feature length for PHOG is fixed, all the

word-images are initially scaled to a standard size.

5.8 Experimental Results

5.8.1 Groundtruth Dataset

We build a groundtruth dataset of 33,000 word-images, collected from 33 Telugu books.

Each of these word-images is labeled with the corresponding text label. The label set con-

sists of 1000 Telugu words represented in the Latin script using the OmTrans transcription

scheme. The number of occurrences of each label in the groundtruth dataset varies from
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5 to 500. The size of the word-images range from 30× 30 to 500× 300 pixels. The dataset

contains degraded images, and considerable variation in font and print style. Examples

of such words in the dataset are shown in Figure 5.12. There is also a certain amount of

noise in the word-images.

5.8.2 Feature Evaluation

The goal in this section is to identify the right features to match word-images. The

summary of feature evaluation results is given in Table 5.2. The groundtruth dataset

is divided into two sets: Train and Test, with a random 50:50 split. The Test set is

considered to be unlabeled words, that need to be annotated (the labels are only used for

evaluation). The labeled data could be either of i) the Train set (referred to as Labeled

Samples in Table 5.2), or ii) templates generated by font-rendering. The classifier is either

an NN classifier or an SVM.

The first feature we consider is the classical Profile features. These features are of

unequal length across the dataset. The matching in such cases is performed using DTW

(Dynamic Time Warping). The score from the DTW matrix is normalized by the length

of the backtrack path of the DP array. Though the result from this matching is very good

(81%), DTW has the disadvantage of high time complexity. The recognition of the Test

set alone takes around 75 hours. This expense can be avoided by using a fixed-length

description for each image, so that the Euclidean distance may be used to compare the

word-images quickly.

Fixed-length representations were evaluated for both profiles from scaled word-images

and from Profile+DFT. With either representation, the time for recognizing the Test set

is about 4 hours. For SIFT and PHOG representations for word-images, each word-image

is represented as a histogram of visterms and matched using an NN classifier or with an

SVM.
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Feature Training Data Classifier Distance Accuracy

Profile Features Labeled Samples Nearest-Neighbor DTW 81%
Profiles (Scaled) Labeled Samples Nearest-Neighbor Euclidean 68.8%
Profiles + DFT Labeled Samples Nearest-Neighbor Euclidean 78.6%
Profiles + DFT Labeled Samples Nearest-Neighbor Manhattan 82.8%

Profiles (Scaled) Labeled Samples SVM Linear Kernel 54.1%
Profiles (Scaled) Labeled Samples SVM Polynomial Kernel 48.6%
Profiles + DFT Labeled Samples SVM Linear Kernel 58%
Profiles + DFT Labeled Samples SVM Polynomial Kernel 46.8%

SIFT (1K visterms) Labeled Samples Nearest-Neighbor Euclidean 26.4%
SIFT (100K visterms) Labeled Samples Nearest-Neighbor Euclidean 8%
PHOG (100 visterms) Labeled Samples Nearest-Neighbor Euclidean 35.2%
PHOG (1000 visterms) Labeled Samples Nearest-Neighbor Euclidean 41.8%
PHOG (100K visterms) Labeled Samples Nearest-Neighbor Euclidean 14.1%
PHOG (100 visterms) Labeled Samples SVM Linear Kernel 20.8%
PHOG (1000 visterms) Labeled Samples SVM Linear Kernel 40%

Profile Features One-font Template Nearest-Neighbor DTW 29%
Profiles (Scaled) One-font Template Nearest-Neighbor Manhattan 38%
Profiles + DFT One-font Template Nearest-Neighbor Manhattan 33.3%

Profiles + DFT 28-fonts Templates Nearest-Neighbor Manhattan 54.5%

Table 5.2 Word Recognition accuracy across various features and matching schemes. The
best recognition accuracy was obtained using Profile features scaled using DFT. Nearest
neighbor classifiers have outperformed the more advanced Kernel-SVMs. The Manhattan
distance seems to work better than Euclidean distance for the Profile feature representa-
tion. Further, the matching against exemplars from a small labeled dataset result in much
better accuracies than that over a large set of synthetic exemplars.
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manassu cheisina

bhagavantuni maanavudu

Figure 5.13 Example recognition results from the book collection using our method. No-
tice that in spite of severe degradations such as cuts and merges, they were correctly
recognized. An OCR would easily fail over all these images.

As Table 5.2 shows the best performing feature was the Profiles + DFT with L1 distance

matching. Surprisingly, the gradient features - SIFT and PHOG - perform rather poorly

in spite of their great success with generic vision tasks. Rodriguez and Perronnin [190]

show that for word spotting in handwriting, gradient features work better than profile

features. However, our results are of the contrary. We believe that this is because of the

large amount of degradations present in our document images which drastically affect the

oriented gradients. The profile features are thus more robust to degradations. We shall

use the Profiles + DFT features for the rest of this paper.

From our experiments, we further observe that given the same features, an SVM always

performs poorer than a Nearest Neighbor classifier. The possible reason for this behavior

could be that the kernels we used were not quite suitable for transforming the feature

space of word-images. Another disadvantage with SVMs is their high computational cost.
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We refrain from further evaluation of kernels and limit ourselves to the NN classifier which

gives us satisfactory performance in lesser time.

Example results from our recognition module are given in Figure 5.13. As we observe, a

large number of words are correctly recognized in spite of heavy degradations. We benefit

from the presence of similar looking labeled exemplars in the training set. In cases where

our procedure fails, the features are unable to distinguish between different words.

Finally, using the labeled samples as training data always performs better than that

with font-rendered templates. However, by using multiple fonts to render exemplars, the

accuracy of recognizing the test data is about 55%. This means that rare-words, which do

not have sufficient examples in the manually-labeled data, could also be recognized with

decent accuracy.

5.8.3 Performance of Indexing Schemes

Our next experiment evaluates the performance of various indexing schemes for effi-

cient Reverse Annotation. The evaluation results from this experiment are given in Ta-

ble 5.3. The features used here are Profiles + DFT, and the distance measure is either

Euclidean or Manhattan. As can be seen, the indexing schemes give tremendous speedup

of over 500 times as compared to a brute-force NN classifier. The loss in accuracy from

the use of indexing is quite acceptable for such a speedup. The best performing scheme is

the composite of KD-Tree and HKM, used with the L1-Norm. We shall use this particular

indexing scheme for Reverse Annotating our 1000 books collection.

5.8.4 Effect of Labeled Data Quantity

One of the questions we address in this work is what amount of labeled word-images, is

required to reliably recognize unlabeled word-images. Unlike a 50:50 split that was used

in the previous experiments, we shall vary the Train, Test proportions here. We stick to
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Matching Scheme Distance Accuracy Time
NN Classifier Euclidean 78.6% 4 hours
NN Classifier Manhattan 82.8% 3.5 hours
HKM (K = 8) Euclidean 76.5% 31 secs
HKM (K = 32) Euclidean 75.1% 38 secs
HKM (K = 8) Manhattan 77.5% 2 m 25 secs
HKM (K = 32) Manhattan 77.2% 3 m 19 secs
KD-Tree (T = 8) Euclidean 69.4% 28 secs

KD-Tree (T = 32) Euclidean 72.9% 41 secs
KD-Tree (T = 8) Manhattan 71.5% 24 secs

KD-Tree (T = 32) Manhattan 75.2% 45 secs
LSH Euclidean 78.3% 18 m 14 secs
LSH Manhattan 80.1% 16 m 38 secs

HKM + KD-Tree Euclidean 76.8% 43 secs
HKM + KD-Tree Manhattan 80.3% 3 m 3 secs

Table 5.3 Word Recognition accuracy using various indexing schemes.

the Profiles + DFT features and the Euclidean distance based NN classifier as well as the

HKM based approaches with the two parameters in Table 5.3. The recognition accuracy

for different percentage of training data is shown in Figure 5.14.

For the NN classifier, it can be seen that for a labeled dataset of as small as 20%, the

recognition performance is a respectable 71%. The performance improves with additional

data until it tapers around 76.5% (for the 50:50 split), after which there is no significant

improvement. For the HKM approach with B = 8, we can achieve 70% accuracy with just

30% of the data.

5.9 Performance of Word-Retrieval

To evaluate our word-retrieval performance, we propose using an approximate estimate

of average precision. Popular Information Retrieval evaluation measures such as precision,
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Figure 5.14 Graph of % Training data Vs Recognition performance.

recall and f-measure, assume that the number of relevant documents is known in the

collection. However, given our massive collection, it is impossible for us to obtain the

exact recall value for the queries.

We manually label only the top-1000 retrieved results, as relevant or irrelevant to the

query. By labeling the search results, we are effectively evaluating results over the entire

collection; instead of evaluating over a small groundtruthed subset, like in previous works.

The number of true-positives in the top-1000 are considered as an approximation of the

recall value. Hence, when the top-1000 retrieved results are considered the Recall value

is always 1. This is very similar to the evaluation performed in the TREC web retrieval

challenge [10]. We evaluate the Precision across various values for this approximate recall.

The PRCurves for 10 example words are shown in Figure 5.15(a). It can be seen that

among the top 1000 retrieved results, the relevant words are retrieved quite accurately.

The Average Precision (AP) is computed as the average of precision at each relevant

retrieval for the given query. The Mean Average Precision (mAP) is the mean of the AP

for multiple queries. The PRCurve averaged over 100 queries is shown in Figure 5.15(b),

from which the mAP was calculated to be 0.8. This is a significant achievement, and we

are unaware of any other approaches that can generate a similar result for our data. Some

example word retrieval results are shown in Figure 5.16. The words outlined in green are
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(a) (b)

Figure 5.15 (a) Precision Vs. Approx.Recall for 10 queries evaluated on the top-1000
retrieved results. We can see that the Precision is generally high across various values
of Recall. (b) Precision-Recall curve evaluated on the top-1000 retrieved results for 100
queries.

correct results, while those in red are errors. It is evident that the top results are mostly

correct for the queries.

A few qualitative examples of document retrieval are shown in Figure 5.18 and Fig-

ure 5.17. In Figure 5.18, books are retrieved by querying for the title, in this case books

consisting of a particular set of poems. The Figure 5.17 shows specific poems retrieved by

querying the first line. The retrieved documents in this example also contain full transcrip-

tion and explanation of these popular poems, which would be quite useful to the users.

Computational Time

The superiority of our method is further highlighted by the reasonable time it takes for

enabling search. The times taken by each step of the pipeline are given in Table 5.4. The

total compute time for processing the 1000 books was close to 2700 Hours. The process

can be easily adapted to work incrementally, thus making our method easily scalable to

large collections.
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Figure 5.16 The retrieved word-images for a few example queries. These results are ob-
tained from our framework over a large 1000 book collection. The words relevant to the
query are marked in green and errors are marked red. The top-30 results for the queries
jnj-ananamu and maatramei are all correct retrievals. A few errors can be seen for the
query sharand-u. It is evident that our method overcomes many of the challenges inherent
in the problem.
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Aspect of the Pipeline Time Taken
Segmentation 42 Hours
Feature Extraction 2140 Hours
Feature file pre-processing 3.5 Hours
Indexing and Lookup 445 Hours
Post-processing 58 Hours
Total 2688.5 hours

Table 5.4 Time consumed by each stage of the pipeline; and the total time for making
1000 books searchable.

uppu kappuran’bu nokkapoolika nun’d’u meid’i pan’d’u chuud’a meilimai
yun’d’unu

Figure 5.17 In this example, two popular poems are retrieved by querying their first line.

5.10 Summary

In this Chapter, we have presented a successful framework to annotate a large collection

of document images with text-labels obtained from the language’s vocabulary. The method

we propose is applicable to similar instances where the segmentation of the visual and tex-

tual entities is known, but there are no temporal constraints to exploit (like in the previous

Chapters). Instead, we leverage the occurrence statistics to avoid repetitive evaluations of

correspondence, which is further speeded-up with indexing schemes. As an outcome of
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this approach, we were able to build a retrieval system on 1000 Telugu books, that could

not be converted to text with an OCR.

Further, the Reverse Annotation framework could be directly extended to build a re-

trieval solution over a mixed library of documents across various languages and scripts.

Towards disambiguating scripts that are visually similar (e.g. Hindi and Bangla), more

robust features such as HoG features computed over vertical strips [102], could be used

instead of the Profile features. In fact, any feature representation that could be matched

in a metric space could be used within the Reverse Annotation scheme.

While this Chapter, addressed the annotation at the word level, in the next Chapter, we

delve into a finer granularity called Character N-Grams (CNG). The limitations placed by

the lexicon, shall be overcome with the CNG labeling. The resulting search mechanism

that can answer queries from an unlimited vocabulary.
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veinkateswara shatakamu shrii kaalahastiishwara shatakamu

Figure 5.18 Example retrieval results for queries based on book titles. Queries are given
in a transliteration format called OmTrans, which is a Latin script representation for Tel-
ugu characters. Here we query for a set of Telugu poems, given the names veinkateswara
shatakamu and shrii kaalahastiishwara shatakamu. Multiple books are retrieved from the
1000 book collection, that are relevant to the given query, a few sample document seg-
ments are shown here.
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Chapter 6

Alignment and Annotation of Document Images
at Sub-Word Level

6.1 Introduction

In the previous Chapter, we showed a mechanism to obtain text-labels for word-images

of scanned documents. While this is a big stride forward towards recognition-free retrieval,

the word-level annotation can address only a limited vocabulary that it was trained for.

Further, word-spotting and word-annotation are not directly applicable to partial word

matching of a query with prefixed/suffixed words in the collection. For example, let us

assume that the document collection has an instance of bicycle, while the query is cycling.

Ideally, the document containing bicycle is relevant to the given query, and should thus be

retrieved. However, that would not be possible with a regular word-spotting/annotation

setup. This could possibly be addressed using a DTW based partial matching [45]. But,

such techniques are not scalable to large collections due to the high computational com-

plexity, especially at run-time.. Typical partial matching on even a few thousand document

images could require many hours of computing time per query, thus making it infeasible for

practical applications. Language models, that could be applied for stemming text-words

are hard to build for Indian languages [51].
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Figure 6.1 Word images extracted from handwritten documents are presented alongside
some of their Character N-Grams. A reasonable size CNG-dictionary could cover an unlim-
ited word-vocabulary. In this Chapter, we show that CNG is a novel and useful primitive
to represent document images with.

In this Chapter, we overcome the limitations of the approaches that operate either at

component level or at word-level, by proposing a new retrieval/recognition primitive based

on Character N-Gram Images (CNG-Img) [80,212]. CNG-Imges are formed as sequences

of character segments from a given word-image. This formulation is different from text

n-grams which are used to provide a statistical prior on character labels [109]. The CNG-

Img are represented and matched entirely in the image space. Due to the representative

capability of CNG-Img, the system allows for retrieving morphologically similar words

also. A small set of words, along with some of their CNGS are depicted in Figure 6.1.

It can be observed that several words contain common sub-strings, making it possible to

represent a large vocabulary with a small set of CNGS.

In the text classification community [65], n-grams over words have been well studied.

However, their use in OCR systems has been limited [208], mostly due to the fact that the

frequency information is not decisive enough to disambiguate the confusing recognition. In

another study [88], n-grams of confused characters in words are extracted and processed
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using IR methods to correct errors. Unlike previous n-gram approaches that mostly used

n-gram frequencies for post-processing, we shall rather exploit the joint appearance of

characters in n-grams for improving the matching itself.

Using the CNG-Img as a retrieval primitive, a retrieval system i) can retrieve morpholog-

ically similar words without explicit stemming, ii) answers queries from an almost unlim-

ited vocabulary, iii) ensure the retrieval is robust to degradations such as cuts and merges.

However, to build a text-based retrieval system (or QBK), we need to either i) obtain la-

beled exemplars for text CNGS or ii) recognize the CNG-Img. We address both possibilities

in this Chapter.

For the first approach, we begin with the word-level labeling achieved from the previous

Chapter. Given word-labels, the task is to infer the labeling at the sub-word or the character

n-gram (CNG) level. We propose a weakly-supervised scheme for a simultaneous CNG-

Img segmentation and annotation using a framework similar to expectation-maximization

(EM).

Following the process of obtaining labeled exemplars, we present a recognition scheme

that involves two steps: i) the recognition of individual CNGS in a given word image, and

ii) inference of the word label given the labels for each of the CNGS. The recognition

scheme using CNGS has shown to outperform both character and word based recognition

approaches. We demonstrate the approach on both printed and handwritten document

images from multiple languages.

6.2 Character N-Gram-Image as a Primitive

The Character N-Gram Spotting framework begins with segmenting word-images to

candidate character segments. All possible contiguous sequences of segments are consid-

ered as the CNG-Imges. The word-image is in-turn treated as a bag of its constituent
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G e o r g e

1
Ge eo or rg ge

2
Geo eor org rge

3
Geor eorg orge

4
Georg eorge

5
George

6

Figure 6.2 An example word image and its corresponding Character N-Gram Image set. It
is important to note that we process character n-grams in the image space only, avoiding
the need for explicit recognition.

CNG-Imges. Example CNG-Img set for a given word image is shown in Figure 6.2. The

Character N-Grams representation combines the advantages of both characters and words.

• Better disambiguation: Through the presence of multiple characters, n-grams have

more context than characters. The joint appearance of multiple characters in an n-

gram is more distinctive than each character in isolation, which allows for better

character disambiguation.

• Robustness to Segmentation: By virtue of considering all possible CNGS, the

mechanism is robust to segmentation and degradation errors. All the n-grams are

used in a unified recognition framework, which does not bias an n-gram based on its

size. For example, if a character is over-segmented into two components, the entire
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character will be represented as a bi-gram of these two components. Similarly, a

merge between two characters will be treated as a unigram, but match a correspond-

ing bi-gram from a similar word.

• Large Training Data: Each word-image consisting of L characters emits L · (L+1)/2

CNGs. In the training phase, this makes it easier to obtain considerable amount

of labeled n-gram exemplars from a small collection of labeled word-images. In

the classification phase, n-grams generated from test word-images are recognized

using n-gram models learned during training. For reasonable size of n-grams, the

number of unique CNG is limited, hence allowing for easy indexing of the CNG-Img

associated with them.

• Partial Language Model: The scheme implicitly performs a validity check of an n-

gram, by always finding the closest valid n-gram seen during training. For example,

in the word “Illinois”, the first quad gram is always recognized as “Illi” instead of a

visually similar “liil”, which is most likely unseen in training data.

• Unifying Character & Word based Approaches: By treating the characters as

uni-grams and words as L-grams, and by augmenting both with the intermediary

n-grams, the CNG-Img approach both unifies and subsumes the character and word-

level approaches known in literature.

In order to bootstrap the CNG-Img based recognition and retrieval, we need to extract

labeled exemplars for the CNGS. The following section will describe the method we pro-

pose to achieve this.
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6.3 Weakly-Supervised CNG-Img Segmentation

Given labels for word-images, the goal is to obtain character/CNG segmentation and

annotation. In case of clean printed documents, the propagation of word to character la-

bels can be performed if the number of characters and connected-components is exactly

the same. This is not true for documents that contain degradations, documents that con-

tain complex scripts such as for Indian languages and for handwritten documents due to

cursive writing.

Though much of previous transcript-alignment work operated at the word-level [112,

115], there are a few recent works that explore automatic character level annotation given

the word labels [189,242]. For example in [189], character labeling is speed-ed up using

character clustering/retrieval, while in [242], a conditional random field is used to align

the labels to the word-image components over Chinese/Japanese documents. However,

the underlying matching occurs at character or component level. We believe that better

segmentation accuracy could be obtained by matching at CNG level.

We begin with three sets of data: i) weakly-annotated data that is labeled at word

level, ii) strongly-annotated data of 300 words that is labeled at character level and iii)

un-annotated data. Over the weakly-annotated data, the character segmentation is ini-

tialized using a weak feature, in our case we use character position in the word and the

estimated character width. Let us denote the segment of character c(i, j) of word Wi, by

{L(i, j), R(i, j)}. The goal is to optimize the position of each c(i, j) within the word, as

well ensure that the segment appears similar to other instances of the same character. This

can be represented by the following objective function:

E =
∑
i,j

∑
Exc(i,j)

dist(Exc(i,j), {L(i, j), R(i, j)}) (6.1)

where dist is a function that computes dissimilarity between two image segments (or fea-

tures); andExc(i,j) are exemplars for the character c(i, j). In the CNG-Img-Spotting setting,
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c(i, j) can represent the CNG-Img in place of isolated characters. The exemplars Exc(i,j)

could be generated either from strongly annotated data (a case of weakly-supervised learn-

ing), or by the putative character segments from weakly annotated data (semi-supervised

setting). In this work, we restrict ourselves to the weakly supervised setting. The segmen-

tation of the word-image into characters (and CNG-Img) is the unknown parameter in this

function. Optimizing the above objective function is typically performed using a two-step

optimization algorithm.

In the first step, we assume that the segmentation of the CNG-Imges is provided and

optimize the objective function on the appearance of the CNG-Img segment against its

expected appearance. The features from the segments are matched against those from

exemplars in the strongly-annotated dataset. In cases where a CNG does not have an

exemplar, it is generated by concatenating its corresponding character exemplars. The

dist function is the distance between the feature vectors of the character segment and the

exemplar. We use profile features [185] which describe the upper/lower, projection and

transition characteristics for each column of the image. The length of these features varies

with the width of the image. These variable-length features are compared by finding the

cost of Dynamic Time Warping (DTW) alignment.

In the second step, the appearance of the CNG-Img segment is assumed fixed and the

segmentation is optimized. This is performed using the alignment information provided

by the DTW. Since we begin with a segment bigger than the actual n-gram, the backtrack

of the DTW path will align the character sequences, while the beginning and the end

of the segmented image would have a high “insertion” cost. The steps followed are: 1)

compute the average cost of points in the backtrack path, 2) traverse from the beginning

on the backtrack path and stop when the cost is below average; call this point estimated

left-boundary, 3) perform similar traversal from the end of the backtrack path for the

estimated right-boundary.
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Original Image

Initialization of Segmentation

Refined Segmentation

Original Image

Initialization of Segmentation

Refined Segmentation

Figure 6.3 Example of successful annotation refinement. The words “Governor” and “en-
gage” are first segmented into characters using a very weak feature (character width).
The segmentation is then refined using strong features (Profiles) and matching technique
(DTW).

We propose two ways for refining the character segments given the estimates from

DTW. The first method, called nGramAvg., finds the character boundaries as an aggregate

of the boundaries defined by all CNG that constitute the given character. For example,

given the word “George”, the left boundary of “o” is obtained as the aggregate of the left

boundaries of “or”, “org” and “orge”; similar procedure is followed for the right boundary.

In the second method, called nGramSub., the new estimate of character “o” is found by

subtracting the surrounding n-gram boundaries from the word, i.e. “o′′ = “George′′ −

“Ge′′ − “rge′′. The same procedures are extended to refine CNG segments as well.

The new estimates for the segmentation is used in the next iteration of the algorithm,

which is said to have converged when the segmentation estimates do not change beyond a

certain empirical threshold. Example results from the segmentation/annotation procedure

are shown in Figure 6.3.

134



Algorithm Annotation Error

Initialization 71.2%
Characters Only 33.0%

nGramAvg. 31.8%
nGramSub. 26.1%

Table 6.1 Performance of segmentation refinement algorithms. The proposed segmenta-
tion procedure outperforms the other methods by a large margin.

6.3.1 Segmentation Evaluation

Experimental Setup: We evaluate our approach over the popular George Washington

(GW) handwritten dataset [185]. The GW dataset consists of 20 pages containing more

than 4700 words, written by a single author. We divide the dataset into two sets for

training and testing, each contain 2300 words each. The training dataset is used to create

labeled exemplars for the search system, using the segmentation approach presented in

Section 6.3. The testing dataset is used to evaluate the retrieval performance. The word-

images are pre-processed to remove the slant from handwriting using a shear transform.

We use the profile features [185] to represent the character n-gram images, which are

known to be better suited for handwritten documents [185] and were shown to be robust

to degradations [177]. Since profile features are dependent on word width, the images

are scaled to a canonical size before feature extraction, to ensure uniform feature length

while indexing.

The segmentation error is defined as

SegmentWidth−Overlap
GroundtruthWidth

(6.2)

where Overlap is the intersection between the segment and the groundtruth.

The annotation refinement results are shown in Table 6.1. The baseline method, given

as Characters Only which uses isolated character segments refined by matching against
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character exemplars. We evaluate the error over character segments alone, in order to

compare fairly with the baseline method. The two nGram based methods out-perform

character based methods by a large margin. Among the two nGram based re-estimation

methods, nGramSub. performs slightly better than nGramAvg. The best performing setting

has an error of 25%, which amounts to about 2 pixel error on either side of a typical 10

pixels width character. Much of the error is owing to the tight groundtruth segments, while

the obtained segments contain some amount of cursive-connector pixels.

6.4 Retrieval with CNG-Img-Spotting

The process of CNG-Img Spotting can be summarized in three steps. Firstly, CNG-Imges

are obtained from the document collection and represented in a suitable feature space.

The features are indexed for quick retrieval. In the second step, given a QBE, the query

is expanded into its constituent CNG-Imges. The features from the expanded query are

looked up in the index of features. The final step consists of obtaining individual retrieval

lists for each of the query-CNG-Img, and merging them appropriately to present the user

with one ranked list of word-images.

By using a single index for all the CNG-Img, the approach robustly matches similar

CNG-Imges inspite of degradations such as cuts and merges. Since the words are in-

herently represented at a sub-word level, CNG-Img-Spotting allows for easy matching of

morphologically related words. Further, the spotting approach can be easily extended to

QBK, by converting the query-keyword to a query-image by identifying an exemplar.

Indexing Phase: The matching of CNG-Imges in the feature space is a computationally

expensive task, since each word in the collection emits a large number of CNG-Imges. In

order to speed-up the matching, we build an index using a combination of Hierarchical

K-Means (HKM) and a random forest of KD-Trees [157]. To enable building an index, the

features extracted from the CNG-Img are ensured to be of the same dimensions.

136



Retrieval Phase: Using the built index, we obtain a list of approximate nearest neigh-

bors for each Query-CNG-Img. Thus, a candidate retrieval list is obtained for each uni-

gram, bigram, etc. The task now, is to fuse the individual retrieval lists to obtain the final

relevant image set for the given query. This is achieved by providing a ranking of the indi-

vidual retrieved lists using a ranking function as described below. If Q is the query word

with length L, then let us denote as Q1, Q2, . . . , QL, the sets of CNG-Img for the query. For

each Qj
i , the approximate NNs list is given as Rj

i . Each point Pk in the retrieved list Rj
i is

weighted by its distance from the query as

Sji (Pk) = (2L−i · (L− i+ 1))−1 · (1− dist(Pk, Qj
i )) (6.3)

The first term of the ranking function ensures that longer n-grams are given more weight

than shorter n-grams. We choose to reduce the cumulative weight of each n-gram by half

for each step of the n-gram. Thus, a K-gram will be given twice the weight of K-1-gram and

so on. The second term is the distance of the retrieved CNG-Img to the query CNG-Img.

The unique words from the retrieved lists of all query-CNG-Img are scored by aggregating

their corresponding Sji (Pk) measure, across the respective retrieved lists that they occur

in. The unique words are then re-ranked and presented to the user as the retrieval list for

the given query image.

In-Vocabulary Queries: In the case of a text-query being present in the training data,

the query is said to be “in-vocabulary”. In such cases, the exemplars for the query can

be directly obtained from the training dataset. The index scheme can now be queried

against the indexed CNG-Imgs from the dataset. If multiple exemplars are present for the

given query, better results could be obtained by using each of them as a separate QBE and

aggregating the retrieved list across all of them. Multiple exemplars are particularly useful

while retrieving documents from different writers.

Out-of-Vocabulary Queries: Given a text query that was not seen previously in the

training dataset, it is called an OOV query. The OOV query is first expanded to its nGrams
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Retrieval Scheme Prec @ 10 mAP Time/Query(sec.)

QBE Word Spotting (DTW) 0.47 0.44 15
QBE Word Spotting (L2) 0.23 0.14 0.24
QBE CNG-Img-Spotting 0.36 0.32 0.27

QBK In-Vocabulary 0.54 0.50 0.59
QBK Out-of-Vocabulary 0.24 0.18 0.59

Table 6.2 Retrieval performance of the proposed system, across various query and algo-
rithm settings.

in the text space (CNG-Text). For each CNG-Text, the training dataset is searched for the

presence of an exemplar. If such an exemplar is present, it is used to query the index over

the document collection to retrieve the approx-NN list. In cases where an exemplar is not

present in the labeled dataset, such an exemplar is synthetically created by concatenating

exemplars of its constituent characters/nGrams. The synthetic exemplar is now used to

query the index. Due to the ability to construct any given query from its constituent CNG,

the OOV querying mechanism can answer queries from an unlimited vocabulary set.

6.4.1 Retrieval Evaluation

The dataset used for evaluating retrieval is the same George Washington handwritten

documents used in the previous section. A few example retrieval results are presented in

Figure 6.4. Given the query “Companies”, our system was able to retrieve similar words

such as “Company” in the Top-10 results. In case of the the query “receive”, the erroneous

result “inconceivable” is found due to the matching of the quad-gram “ceiv”.

The retrieval performance of the CNG-Img spotting framework is evaluated using two

metrics: i) Precision among top-10 results, and ii) mean average precision (mAP). The pre-

cision is computed such that morphologically similar words are labeled as correct matches.

This is obtained by finding the longest common sub-sequence (LCS) between the query and
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Text Query Correct Retrievals Errors

Companies

receive

immediate

Honour

Figure 6.4 Example retrieval results from our QBK retrieval system on the George Wash-
ington dataset. The results are obtained without explicit recognition or morphological
analysis. As we can see the results are quite accurate, with similar words being retrieved
automatically. A few errors in the retrieval are also presented.
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the retrieved word, normalized by query length. If the LCS is greater than a threshold of

0.5, they are said to match. While the precision is a representative of accuracy among the

retrieved results, the mAP is a combination of both precision and recall. The Average Pre-

cision (AP) is computed as the average of precision at each relevant retrieval for the given

query. The Mean Average Precision (mAP) is the mean of the AP for multiple queries. It is

essentially the area under the PR curve obtained from the retrieval evaluation.

The results are presented in Table 6.2. The performance of our approach is compared

against two word-spotting baselines, one that uses DTW to match the query with the col-

lection and another that uses Euclidean distance. The DTW based word spotting performs

well in the QBE setting, but takes close to 15 seconds per query. The L2-based word spot-

ting allows the use of a feature index that speeds up retrieval time to about 0.24 seconds,

but performs poorly compared to the proposed CNG-Img spotting approach. In the QBK

approach, we obtain a significant performance, given by a mean average precision of 0.5,

for in-vocabulary queries. The performance drops for OOV queries, which is mostly due to

similar CNG across words that are not morphologically related.

Time & Memory The proposed approach is also computationally efficient. The retrieval

system uses 500 MB of RAM to index the feature set over the GW collection, which takes

less than 440 seconds to build. Example query-time using different approaches is provided

in Table 6.2. All methods, with the obvious exception of DTW, have a sub-second retrieval

time. During exemplar-building, the step of segmentation refinement takes about 1.1

seconds per word. The index size and indexing time scales linearly with the dataset, which

means our framework is applicable to much larger collections. Further improvements

could always be obtained by using more compact features or better indexing schemes.
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Figure 6.5 A depiction of word recognition using n-grams. The given word is segmented to
its constituent n-grams, each of which is recognized independently. The labels obtained for
each n-gram are then fused using dynamic programming to obtain the optimal sequence
of n-gram labels. The word in this example is recognized as a bigram (of 3 characters),
unigram (1 char.) and a unigram (2 char.).

6.5 Recognition with CNG-Img

In this section, we shall apply the CNG-Img primitive towards robust recognition in the

presence of heavy degradations in document images. As a consequence of the CNG-Img

properties, the method can potentially recognize an unlimited vocabulary. The goal is to

infer the label of a given word by recognizing its constituent n-grams.

We have shown in Section 6.3, how to obtain considerable amount of labeled n-gram

exemplars from a small collections of labeled word-images. In the training phase, Towards

building a recognition system, the CNG-Img set is generated from each test word-image

and recognized using n-gram models learnt during training. The different n-grams ex-

tracted from an example word image, are shown in Figure 6.5 (b). The individual n-gram

recognitions are merged together to obtain the most suitable label for the word.

CNG-Img recognition presents these challenges:

1. Building a recognition scheme for n-grams involves classifying against 100K n-gram

classes. Classification at such large class sizes is a non-trivial problem.
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2. Recognizing n-grams in the test-phase is expensive, as the number of features to

classify is multiplied by a factor of (k + 1)/2 (for a k length word).

3. The label of the word-image needs to be inferred by aggregating the recognition of

individual n-grams.

6.5.1 Recognizing Individual CNG-Imgs

In the training phase, the design of the n-gram recognizer consists of identifying the

features and the classifier for the task. In the presence of degradations and multiple fonts,

as we saw in Section 5.7, it was observed that profile-features [185] are quite robust

in word-level matching. The profile-features proposed in [185] are of variable length,

depending on the width of the word. In order to ensure that the features are of a constant

size, all n-grams are scaled to a canonical size before profile-features are extracted.

In the presence of thousands of classes to recognize, the classifier of choice needs to

be very robust. This means that classifiers should be able to learn from a small set of

exemplars per class and also be easy to train. A Nearest Neighbor (NN) classifier would

require no training and is highly scalable with the class sizes. An NN classifier was shown

to work better than SVMs [177] for a task of classifying 33K words of 1000 classes. Further,

the context present in the n-gram is sufficiently distinguishing for many pairs of characters,

thereby obviating the need for strong classifiers (and in some cases strong features). We

use scaled profile-features with a NN classifier for the n-gram recognition.

The challenge during the test phase is that the test dataset size is increased by an or-

der of magnitude, since each word-image generates a large collection of n-grams. The

computational cost of NN classifiers can be significantly reduced by using an Approximate

Nearest Neighbor (ANN) search, similar to the ones used in Section 5.5. In ANN, the la-

beled exemplars are indexed using Hierarchical K-Means and KD-Trees [157]. Due to the

indexing, the test point need not be compared against all the exemplars in the labeled
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data. By looking up a given test n-gram in the built index, one could identify the ANN

in about 10 milli-seconds, while a regular NN would take about 5 seconds (about 500×

speedup). The obtained ANN is used to identify the label of the given n-gram.

6.5.2 Fusing N-Gram Recognition for Word Recognition

Each n-gram provides certain evidence for what the word’s label should be. In the situ-

ation where every n-gram is correctly recognized, the n-gram labels reinforce the evidence

from one another. For example, given the word “most”, if the first trigram is correctly

recognized as “mos” and the second trigram as “ost”, the overlapping “os” implies that the

word is very likely to be “most”. However, if one of the trigrams is erroneously recognized,

the inference is not immediate, thereby requiring to include evidence from the bigrams and

unigrams, etc. In this paper, we use an OR scheme where it suffices to correctly recognize

only a small subset of all the n-grams.

Given the recognition of each ith n-gram wn,i, with the corresponding confidence of

cn,i. The objective is to identify the sequence of n-grams that would result in the most

confident prediction for the entire word. The label for the word can be defined recursively

as optimizing this objective function:

Wn,i = wn,i , if n = 1

= minm∈[1,n−1]{Wn,i, (n−m) · (Wn−m,i+m·Wm,n+i−m)

n
} , otherwise

The first condition returns the unigram label, while the second condition finds the min-

imum cost between the label for the nth gram and its constituent (n − 1)th grams. This

objective function lends itself to be optimally solved using dynamic programming (DP).

Each entry in the DP array stores the cumulative confidence of the n-grams that contribute

to the word label. The backtracked path of the DP array is the most confident sequence of

n-grams. The word label is obtained by simply concatenating these n-grams. This process

is shown in Figure 6.5. The n-grams formed by the CCs are individually recognized and

a label is obtained from the closest match, this label is shown below each n-gram image.
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Aspect HW Recognition Word Spotting
(DTW based)

CNG-Img Spot-
ting

Text querying Yes No Yes
Retrieval time Instantaneous Time-consuming Interactive
Degradations Serious Effects in

Segmentation
Lesser Effects in
Segmentation

Segmentation
errors do not
matter

Data Scalability Scalable Not Scalable Scalable
Vocabulary Cover-
age

Limited by Post-
processing

Limited by Manual
Annotation

Almost Unlimited

Morphologically-
related Word
Retrieval

Requires Language
Model

Requires Partial
Matching

Inherently Ad-
dressed

Table 6.3 A comparison of our approach with other popular approaches for handwriting
retrieval. Our approach has multiple advantages over both approaches.

The word label is obtained as a concatenation of the most confident n-gram recognition

sequence. For the given example, the last unigram is confidently recognized as “on”. The

trigram corresponding to “visi” is recognized as a trigram corresponding to “vis” and a

unigram for “i”, resulting in the word label “vision”.

6.5.3 Analysis of the Algorithm

A summary of the n-gram based recognition process is provided in Algorithm 6.1. A

comparison of our approach to the popular existing approaches such as word recognition

and word-spotting is presented in Table 6.3. It is clear that our approach overcomes many

of their limitations.

Recognizing an Unseen Word: Consider the case where the word “modulation” is

OOV. A holistic word-recognition would fail to obtain a label for such a word-image. In our

approach, suppose that exemplars are present for the words “module” and “integration”,

the constituent n-grams from these exemplars would be indexed. During the test phase,
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Algorithm 6.1 N-Gram based Word Recognition Framework
Training Phase
for all Word-images in Training data do

Segment words to connected-components.
Obtain character n-gram images and extract features.

end for
Build index over all features extracted over Training data.
Test Phase
for all Word-images in Test data do

Segment words to connected-components, extract features for character n-grams.
Recognize n-grams against index built on Training data. Obtain confidence of each
recognition.
Apply Dynamic Programming on the confidence scores and the n-gram size to fuse
n-gram recognitions. Obtain the most likely word label.

end for

the n-grams “modul” and “ation” in the test word are correctly recognized against the

corresponding n-gram exemplars. When the recognition result is fused, our algorithm

would generate the correct label for the unseen word.

Effect of Cuts & Merges: In the case of cuts, a character would be split to two com-

ponents. A standard OCR would treat them as separate characters and classify them sep-

arately, deferring error-correction to the post-processing step. In our algorithm, the split

components form a valid bigram and is thus correctly classified inspite of a cut. Similarly,

in the case of merges multiple characters in the test word would be combined to appear

like one CC. In such cases, a unigram from test data would match an n-gram from training

data, resulting in a correct recognition. We have effectively negated the effect of cuts and

merges by using a single indexing scheme over all n-grams, such that it ignores the num-

ber of components and only focuses on how they appear together. Hence, the approach is

quite robust to degradations such as cuts and merges.

Limitations of Approach: One of the limitations of our approach is that it assumes

word segmentation to be provided as input. This assumption might be tough to satisfy for

Arabic documents, in which cases HMM solutions can perform well. We could address this

limitation easily by recognizing at the line-level instead of word-level. Another limitation
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Figure 6.6 Examples of words where our algorithm correctly recognizes despite degrada-
tions. Popular OCRs have failed to recognize these images. We propose a novel n-gram
based recognition scheme that addresses challenges in character recognition. In each ex-
ample, the top word is the test image and the bottom word is the concatenation of the
matched n-grams, outlined in red.

# Words # N-Grams # Cuts # Merges

Good 81K 3M 5388 (6%) 783 (0.01%)
Bad 141K 6.7M 55,149 (39%) 16781 (12%)
Ugly 23K 0.5M 1575 (6%) 16,923 (74%)

Table 6.4 Details of the test datasets for the printed Malayalam collection.

is that our approach cannot disambiguate between similar looking n-grams, such as “lil”

and “ill” from lily and pill.

6.5.4 Recognition Results

The data for our experiments is obtained from multiple sources such as scanned books

and newspapers for the Indian language of Malayalam. Groundtruth was obtained by

manual typesetting. The Training dataset consists of 100K non-degraded words. The Test

dataset is divided into three groups based on their degradations: Good, Bad and Ugly. The

details of the number and type of degradations in the test datasets are given in Table 6.4.

The Bad dataset consists of more cuts while the Ugly dataset has lot more merges. We also

build an English dataset from 140K words.

There are two baselines that we compare our approach against: i) a character classifica-

tion scheme and ii) a word recognition scheme. To ensure that there is no bias in terms of

features and classifiers, we use the same features and classifier as used for n-gram recog-

146



Character Error Rate(CER)
Malayalam MOCR Char-Rec (Uni). Word-rec(k) N-Gram Rec.

Good 4.43 4.98 50.07 4.27
Bad 19.62 12.87 59.02 7.07
Ugly 37.64 36.03 67.5 18.12

English Tesseract Char-Rec (Uni). Word-rec(k) N-Gram Rec.

Good 0.64 2.36 17.48 2.0
Bad 3.7 25.27 20.72 7.9

Word Error Rate (WER)
Malayalam MOCR Char-Rec(Uni). Word-Rec(k) N-Gram Rec.

Good 20.86 24.35 64.48 20.26
Bad 55.23 41.8 73.21 29.27
Ugly 62.94 64.76 84.65 47.73

English Tesseract Char-Rec(Uni). Word-rec(k) N-Gram Rec.

Good 3.24 8.15 19.98 7.08
Bad 10.66 49.47 24.74 21.21

Table 6.5 Character and word error rates for Malayalam and English datasets. N-Gram
based recognition consistently outperforms the character and word recognition baselines.
By using n-grams, we are able to improve character recognition by 19%.

nition (namely scaled profile-features and NN classification). The recognition accuracy is

measured at both character and word levels respectively by Character Error Rate (CER)

and Word Error Rate (WER). We also compare our approach with a state-of-the-art OCR

for both languages.

The quantitative results are provided in Table 6.5. Consider the character recognition

results on the Malayalam datasets. It is clear that the performance of all the recognition

systems degraded in performance with poor quality data. However, the loss of accuracy

is much more pronounced in the case of the standard OCR, as opposed to the proposed

N-Gram based recognition (column 5). The difference in accuracy of the Good and Ugly

datasets for the OCR was more than 33% while that of our method was less than 14%. In
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column 3 we present the results from classification using unigrams and column 4 contains

results from recognizing the word as a whole. We can see that the word-recognition per-

forms poorly over all datasets, since words that are unseen in training do not receive valid

labels in the test-phase. The improvement from unigram to n-gram is more pronounced in

the Bad dataset, which contains more cuts than merges. On the other hand, in Ugly dataset

which has more merges, the unigram performance is comparable to n-grams, since the so-

called unigrams are correctly matched to the corresponding n-gram in training data. The

trends are similar when considering the WER, and the improvements are more substantial,

about 24% over Ugly Malayalam dataset.

The English “Bad” dataset also contains a number of cuts and almost no merges, hence

the trends are similar to Malayalam Bad. However, we observe that the k-gram recognition

is better for English than Malayalam. This is a result of the smaller vocabulary size that

reduces the number of OOV words in the test set. Comparing with an OCR, we do not

observe any improvement in performance using n-gram recognition. This could be due

to better features/classifiers and a strong post-processor module used in Tesseract. Also,

Tesseract has the advantage of better design and engineering due to contributions from the

open-source community. Instead of competing with OCR, it might be a good strategy to use

n-gram recognition in those cases where the OCR is known to fail, hence complementing

existing systems with robustness for degraded documents.

Error Analysis:

We observed that many of the errors in our recognition scheme are due to erroneous,

yet confident recognition of n-grams. For example, the letter “c” is sometimes confused

with “e” with very similar confidence values. In the absence of more confident n-grams,

this error is retained in the final word. Similarly, some errors are found in similar looking

n-grams that cannot be disambiguated, such as “lil” (in lily) and “ill” (in pill). This could

possibly be addressed in the future by using stronger features for matching, or by using
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multiple labels for each n-grams from which the most appropriate is picked in the fusing

scheme.

6.6 Summary

In this Chapter, we presented an alignment of visual and textual data for document

images at a sub-word level. Consequently, we were able to build a retrieval and recogni-

tion system over printed and handwritten documents that allows: i) text-queries without

explicit recognition, ii) sub-word retrieval without morphological analyzer and iii) search

over unconstrained vocabularies without partial matching. The segmentation of the visual

data is inferred from the weakly-supervised text labels provided at the word-level. The

temporal ordering, as well as the hierarchy of the CNGS in the word image is used to build

a reliable annotation as well as recognition mechanism.
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Chapter 7

Conclusions and Future Directions

We now present a summary of the achievements, outcomes and learnings from this

thesis, and discuss possible future directions of applying and extending these ideas.

7.1 Summary and Conclusions

In this thesis, we address the problem of building text-based retrieval over multimedia

collections, using additional information obtained from parallel text sources. We proposed

novel approaches that perform alignment across information domains, across various lev-

els of spatial and temporal binding, and across the scale of the data. Our work is important

in light of the acknowledged understanding that vision-alone approaches are still far from

realizing the dream of semantic multimedia understanding.

We demonstrate our approach over four multimedia-text pairs: i) Movies with tran-

scripts, ii) Cricket videos with commentary, iii) Document images with lexicon and iv) word

images with labels. The temporal binding between the parallel annotation and the multi-

media, is relaxed as we move from one setup to the next, calling for newer approaches to

tackle the problem. In Chapter 3, we present the possibility of matching multimedia with

descriptive text, resulting in a semantic annotation of multimedia. We extend the usability

of parallel text to not only annotate, but also to segment the multimedia into meaningful
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entities, as described in Chapter 4. With the work presented in Chapter 5, we demonstrate

the feasibility of building large-scale retrieval systems using such annotation schemes. Fur-

ther, in Chapter 6 we showcase the utility of annotation in building a robust recognition

system over a challenging dataset. We show that effectively leveraging parallel text is a

promising direction toward multimedia retrieval, recognition and understanding, for the

near future.

The overall contributions of our work can be summarized as follows.

• A direction towards explicitly mapping semantic textual information to weakly-aligned

multimedia, across multiple semantic granularities and temporal bindings.

• A multitude of “model-and-match” approaches, that have shown to work better than

the classical “recognize and annotate” approach, especially with higher level seman-

tics.

• An indexing based approach to annotation, that shows tremendous speed up such

that large-scale labeling is now made feasible.

• A demonstration that practical retrieval systems could be built over large collections

of multimedia by leveraging additional information available freely.

• Retrieval systems that can answer text-queries in less than a second, searching over

large quantities of multimedia data.

• A significant amount of labeled multimedia data, that could be used to learn a host

of new classifiers such as for recognizing actions, activities, events, gestures, excite-

ment, etc.
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7.2 Future Directions

One direction of future research would be application of the techniques presented in this

work to other multimedia-text pairs. We have picked those cases, which were challenging

to begin with, yet reasonably solvable. There are several other image/video collections

that have parallel information that have yet to be exploited for annotation and retrieval,

for example i) news videos with news articles, ii) lecture videos with lecture notes/slides,

etc. Similarly, there is large scope in multimedia processing with non-text information,

for example, i) the on-board camera of a vehicle could be aligned with local information

extracted from geographical maps, ii) personal multimedia collections could be automati-

cally aligned with the appropriate “circles” in the social network, iii) cameras monitoring

patients in a hospital/ambulance could be augmented with additional sensors, etc.

Secondly, it is important to build models and solutions for multimedia data the does not

contain any parallel information. This is particularly useful in novel domains of multimedia

where generating parallel information is either expensive or unreliable due to subjective

bias. One could look at using models learned over weakly-aligned data (such as those pre-

sented in this thesis) to those data that has no such parallel information. This perspective

could be considered an extension of semi-supervised learning, where both the labeled and

unlabeled data belong to the same domain. For example, one could learn to predict user

response to an advertising campaign, by mining the reactions of previous campaigns from

social media. Similarly, by learning the relationships between a student’s behavior in the

classroom and their academic performance, one could provide focused guidance to the

next generation of students.

Finally, we would like to believe that annotation and retrieval is a stepping stone for

large scale multimedia understanding. This is the flip side of treating the understanding

problem as a means to the retrieval goal. The annotation/retrieval modules could be a

part of the understanding pipeline. Naturally, one can think of a feedback loop between
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annotation modules and understanding approaches, so that both could be improved simul-

taneously.

With the success of the Internet, through the sharing of common knowledge, we have

seen a significant boost in human learning, understanding and achievements. A similar

gain could be possible, especially in developing countries such as India, China, and those

in Africa, could benefit significantly, through the effective use of multimedia as a tool for

dissemination of information and assimilation of knowledge. We believe that our work

could take us a step forward in this direction.
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