
Learning Representations for Word Images

Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Engineering

by

Praveen Krishnan

201150899

praveen.krishnan@research.iiit.ac.in

International Institute of Information Technology

(Deemed to be University)

Hyderabad - 500 032, INDIA

Nov 2020

Copyright © Praveen Krishnan, 2020

All Rights Reserved

International Institute of Information Technology

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Learning Representations for Word Images”

by Praveen Krishnan, has been carried out under my supervision and is not submitted elsewhere for a

degree.

Date Adviser: C. V. Jawahar

To my sister,

Preeti

Acknowledgments

This is one of the last pieces of writing in my thesis and it’s rightfully kept in the beginning because

none of the following things would have been possible without these people and organizations, who

supported me all through this journey.

First and foremost, I thank my adviser Prof. C.V. Jawahar for accepting me as his graduate student at

CVIT, IIIT Hyderabad. CVIT lead me to a new world of learning and opportunities. As an adviser and

a collaborator, he inculcated within me the right mindset in pursuing research by following its vigor,

discipline, and patience. I am fortunate to learn under him. He was generous in providing his valuable

time to discuss both the technical and the general aspects of academic life.

Secondly, I express my gratitude towards the research community which includes fellow lab-mates,

researchers from other labs within IIIT, my thesis committee members, and the reviewers of my journal

and conference proceedings. These people have given their sincere efforts to discuss, evaluate and

provide critical feedback for my work. I am also fortunate to collaborate with Kartik, Minesh, Naveen,

Ravi, Ajeet, Vijay, Anshuman, and Siddhant. Together as a team, we could do interesting works in our

research domain.

I also express my deep gratitude to the funding agencies which supported me throughout my time

at IIIT. I thank Tata Consultancy Services for their generous research fellowship, Amazon for Alexa

Graduate Fellowship and IIIT for their institute fellowship program. I also acknowledge the travel

grants received from Google and IIIT which made it possible for me to attend the conferences in our

research domain.

My sincere thanks to the administrative staff at CVIT which includes Mr. Satyanarayana, (Late) Mr.

Phaneendra, Siva, Silar, Ram, Sireesha, and Rohita. I also thank the administrative staff at IIIT which

includes Ms. Prathima, Ms. Pushpalatha, Mr. Y Kishore, Mr. Appaji, Mr. Murthy, Mr. Satheesh, and

Mr. Mahender. Thank you for supporting the needs of the research student and making the process

smooth.

v

vi

In my life journey, I have been fortunate to have great friends and my time at IIIT was no such

exception. These people stood strong and supported me in all my ups and downs. Thank you Anand for

being there all the time as a friend and mentor. I made many friends at IIIT. Friends like Aniket, Pritish,

Aditya, Yasaswi, Nagendar, Deepayan, Natraj, Yashaswi, Saurabh Saini, Ajeet, Sourabh Daptardar,

Rajvi, Swagatika, Aseem, Vikram, Udit, Avijit, Ajoy, Abhishek, Tejaswi, Parikshit, Rajan, and Nandini

made my time at IIIT special. Together we juggled with our research problems while also bringing

humor in daily activities, playing games, doing exercises, and making trips to the city. A special thanks

to Thrupthi and Isha for our light daily conversations while sipping the green tea. A big thanks to the

Malayali fraternity at IIIT incl. Devadath, Varun, Minesh, Jobin, Aquib, Mithun, Shajil, Jerin, Naveen,

Vinitha, Sandhya, Litton, Ratheesh and others. We had great conversations on myriad topics such as

politics, movies, food, and social issues. Thank you, guys. I would also never forget the wonderful

faculty and friends for a life time that I got from my previous alma mater Amrita university.

Finally, I would like to express my sincere gratitude to my family who loved me unconditionally and

allowed me to dream and pursue my chosen path. My thesis is also a small tribute to the teachers who

taught me all this way.

Abstract

Reading and writing documents is one among the primary skills with which we gather and commu-

nicate information. With the emergence of artificial intelligence (AI), researchers are in constant pursuit

to build intelligent algorithms that can bring our physical and digital worlds close to each other. One

such important domain is document image analysis, where we delve into the problem of understanding

content from scanned document image collections. Considering “words” as the basic unit in under-

standing a document, in this thesis, we address the problem of finding the best possible representation

for word images.

Representation learning has been a key investigation for an AI problem. The primary goal of this the-

sis is to learn efficient representations for word images that encode its content. An ideal representation

should be invariant to multiple fonts, handwritten styles and less sensitive to noise and distortions. In the

past, representations have been handcrafted, specific to modalities (printed, handwritten), and sensitive

to the complexities in handwriting in multi-writer scenarios. In this work, we choose the paradigm of

learning from data using deep neural networks. We take our inspiration from the fact that given large

amounts of annotated data, modern deep neural networks can inherently learn better representations. In

this thesis, we also relax the need for large annotated datasets by heavily capitalizing on synthetically

generated images. We also introduce a novel problem of learning semantic representation for word im-

ages which encodes the semantics of the word and reduces the vocabulary gap that exists between the

query and the retrieved results.

The first contribution of this thesis is a simple technique to generate large amounts of synthetic data,

useful for pre-training deep neural networks. This led to the creation of IIIT-HWS dataset which is now

widely used in the document community. The other major contributions of this thesis are: (a) the design

of a deep convolutional architecture (named as HWNet) for learning an efficient holistic representation

for word images, (b) a joint embedding scheme to project words and textual strings onto a common sub-

space, and (c) a novel form of word image representation which respects the word form along with its

vii

viii

semantic meaning. The learned representations are evaluated under the tasks of word spotting and word

recognition. We report state-of-the-art performance on popular datasets under both modern/historical

and handwritten/printed document images while keeping the representation size compact in nature. Fi-

nally, in order to validate the proposed representations of this thesis, we present some interesting use

cases such as (i) finding similarity between a pair of handwritten documents images, (ii) searching for

keywords from online lecture videos, and (iii) building word retrieval system for Indic scripts.

Contents

Chapter Page

1 Introduction . 1
1.1 Motivation . 2

1.1.1 Scope . 3
1.2 Word Representation Learning . 5

1.2.1 Why Representation Learning? . 5
1.2.2 Problems of interest . 6
1.2.3 Challenges . 8

1.3 Contributions . 9
1.4 Publications . 11
1.5 Thesis Outline . 13

2 Background . 14
2.1 Classical Image Representations . 15

2.1.1 Bag of Visual Words (BoVW) Representation 16
2.1.1.1 Detectors and Descriptors . 16
2.1.1.2 Visual Vocabulary . 17
2.1.1.3 Coding and Pooling . 18

2.1.2 Higher Order Representations . 18
2.1.2.1 Vector of Locally Aggregated Descriptors (VLAD) 19
2.1.2.2 Fisher Vectors (FV) . 19

2.2 Neural Image Representations . 20
2.2.1 Convolutional Neural Networks . 21

2.2.1.1 Training . 24
2.2.1.2 Loss Functions . 25
2.2.1.3 Regularization . 26

2.2.2 ConvNet Architectures . 27
2.2.3 Transfer Learning . 30

2.3 Neural Word Embedding . 31
2.3.1 Language Modelling . 32
2.3.2 Neural Probabilistic Language Model . 33
2.3.3 C&W model . 34
2.3.4 Word2Vec . 35
2.3.5 Subword Models . 36

2.4 Image Retrieval . 38

ix

x CONTENTS

2.4.1 Distance Measures . 38
2.4.2 Evaluation Measures . 40

2.5 Word Image Representation and Spotting . 40
2.5.1 Word Image Datasets . 42
2.5.2 Related Works . 43

2.5.2.1 Classical Representation . 43
2.5.2.2 Bag of Word Representation . 44
2.5.2.3 Learned Representations . 46
2.5.2.4 Segmentation-Free Approaches . 49

2.6 Summary . 50

3 HWNet: Word Image Representation . 51
3.1 Introduction . 52
3.2 Handwritten Synthetic Dataset . 54

3.2.1 Handwritten Font Rendering . 55
3.2.2 IIIT-HWS Dataset . 55

3.3 HWNet . 56
3.3.1 HWNet Baseline Architecture . 57

3.4 HWNet v2 . 58
3.4.1 Multi-Scale Training and ROI/TPP Pooling 59
3.4.2 Data Augmentation and Elastic Distortion . 60
3.4.3 Curriculum Learning . 60
3.4.4 Transfer learning . 61

3.5 Visualizations . 61
3.6 Experiments . 64

3.6.1 Evaluation Protocol . 64
3.6.2 Ablation Studies . 64
3.6.3 Word Spotting Evaluation . 65

3.6.3.1 Architecture Evaluation . 65
3.6.3.2 State of the Art Comparison . 66
3.6.3.3 Segmentation-Free Word Spotting 68

3.6.4 Transfer Learning . 70
3.6.5 t-SNE Embedding . 72
3.6.6 Compression of Representation . 73
3.6.7 Qualitative Results and Failure Scenarios . 74
3.6.8 Implementation Details . 75

3.7 Summary . 76

4 HWNet v3: A Joint Embedding Framework for Recognition and Retrieval of Handwritten Text 77
4.1 Introduction . 78
4.2 Related Works . 79

4.2.1 Deep Embedding . 79
4.2.2 Word Recognition . 80

4.3 HWNet Embedding . 81
4.3.1 Two-stage joint feature embedding . 82
4.3.2 Synthetic Attribute Embedding . 84

CONTENTS xi

4.4 HWNet v3: End-2-End Embedding . 85
4.4.1 Variant I . 87
4.4.2 Variant II . 87
4.4.3 Training End-2-End Network . 88
4.4.4 Image and Text Representation . 88

4.5 Experiments . 89
4.5.1 Evaluation Measures . 89
4.5.2 Implementation Details . 90
4.5.3 Ablation Study . 90
4.5.4 Word Spotting Results . 92
4.5.5 Word Recognition Results . 95
4.5.6 Analysis on Embedding Size . 98
4.5.7 Effect of Pre-Training . 98

4.6 Visualization and Qualitative Results . 99
4.7 Summary . 101

5 Bringing Semantics into Word Image Representation . 103
5.1 Introduction . 104

5.1.1 Why Semantic Representation? . 106
5.1.2 Traditional Spotting vs. Semantic Spotting 106
5.1.3 Contributions . 107

5.2 Related Works . 108
5.2.1 Textual Word Embedding . 108
5.2.2 Word Image Semantic Embedding . 109

5.3 Word Image Semantic Embedding . 109
5.3.1 Normalized Word Embedding . 110
5.3.2 Semantic Embedding . 111

5.3.2.1 Lexicon Based Recognition and Embedding 112
5.3.2.2 Direct Embedding . 112

5.4 Experiments . 114
5.4.1 Evaluation Measures . 114
5.4.2 Implementation Details . 115
5.4.3 Normalized Spotting . 116
5.4.4 Semantic Spotting . 117

5.4.4.1 Ablation Study . 119
5.4.4.2 Qualitative Analysis . 120

5.5 Discussion . 121
5.6 Summary . 123

6 Use Cases of Word Image Representation . 124
6.1 Matching Handwritten Document Images . 125

6.1.1 Measure of Document Similarity (MODS) . 126
6.1.1.1 Document Segmentation . 127
6.1.1.2 Sum of Word Matches . 130
6.1.1.3 MODS matching . 130

6.1.2 Dataset and Evaluation Measures . 133

xii CONTENTS

6.1.3 Results and Discussion . 135
6.1.4 Human Evaluations . 135

6.2 Word Spotting on Lecture Videos . 136
6.2.1 Datasets and Evaluation Protocol . 137
6.2.2 Results . 138

6.3 Word Retrieval on Indic Scripts . 139
6.3.1 Digital Library of India (DLI) . 140
6.3.2 Results . 140

6.3.2.1 Word Spotting using Lexical Representation 141
6.3.2.2 Semantic Evaluation . 142

6.4 Summary . 143

7 Conclusion and Future Work . 144
7.1 Summary . 144
7.2 Future Directions . 145

Bibliography . 148

List of Figures

Figure Page

1.1 Sample document pages: (a) historical handwritten document written by George Wash-
ington [133], (b) a handwritten assignment written by a student in a course [90], (c)
a video frame containing handwritten text on classroom board, and (d) a sample page
taken from a printed book written in Hindi as part of DLI project [11]. 3

1.2 The top row shows two sample handwritten document images, while the bottom row
shows few sample word images taken from the corpus containing these pages. 4

1.3 Illustration of the holistic word representation learning problem. (a) Word Image Rep-
resentation in Lexical Space, (b) Joint Text and Image Embedding, and (c) Semantic
Embedding. 7

1.4 Typical challenges which exists while learning of representation of word images: (a)
multiple writer styles, (b) degradation and segmentation irregularities, and (c) extension
to multiple scripts and languages. 8

2.1 Bag of Visual Words representation: The figure presents different stages in the compu-
tation of BOW for images. 16

2.2 Typical architecture of a convolutional neural network for image classification task
along with filter visualizations. 21

2.3 Popular activation function used in a convolutional neural network. 22
2.4 (a) A typical convolutional layer, (b) max pooling layer. 23
2.5 (a) Basic inception module as introduced in [171], (b) Residual learning building block

as presented in [69] . 29
2.6 A typical convolutional neural network. The bottom axis shows the level of learned

feature abstraction from a trained CNN network which enables the property of transfer
learning. 30

2.7 Neural probabilistic language model. 33
2.8 Illustration of segmentation based word spotting task. Given a query word, we retrieve

all relevant word images from a pre-segmented corpus of document images. Here each
word image and the query is represented using an appropriate feature vector which is
denoted by a histogram. 41

2.9 Sample word images taken from the popular datasets used in the document image com-
munity. (a) The IAM Handwriting Database, (b) George Washington (GW), and (c)
Botany (top row) and Konzilsprotokolle (bottom row). 42

xiii

xiv LIST OF FIGURES

2.10 Evolution of word spotting methods from the perspective of different word image rep-
resentation schemes. The evaluation is conducted on the IAM [109] dataset using mean
Average Precision (mAP). 44

2.11 Bag of words based pipeline for learning word image representation. 46
2.12 Pyramid Histogram of Characters (PHOC) [9] . 47
2.13 The word attribute embedding framework as proposed in [9]. Here, both the word im-

ages and its corresponding label are first embedded into an attribute space defined using
PHOC and later projected onto a common subspace. 48

3.1 Sample nearest neighbor word images in the learned representation space. Here we
show examples from historical datasets which contains degradation and irregular seg-
mentation of words. One can also notice invariance of representation in terms of hand-
writing variations and noise in segmentation. 53

3.2 (a) Distribution of words in the IAM dataset. Here the ‘x’ axis corresponds to different
words in the vocabulary which is sorted (in descending order) based on its frequency
in the corpus. This is referred as ‘Rank’, while the ‘y’ axis shows the actual frequency
in log units. (b) Sample word images from the IIIT-HWS dataset created as part of this
work, to address the lack of training data for learning deep CNN networks. 54

3.3 Top two rows show the variations in handwritten images, the bottom two rows demon-
strate the challenges of intra class variability in images across writers. 56

3.4 (a) HWNet v2 architecture which comprises of a deep CNN architecture using ResNet
blocks along with a TPP pooling and fully connected layers, (b) Flowchart showing the
transfer learning process where we first pre-train the network on synthetic data and later
fine-tune it on real corpus. The features are extracted from the penultimate layer of the
network. 57

3.5 (a-b) Multi-scale input, (c-d) region of interest pooling and, (e-f) temporal pyramid
pooling shown at levels 2 and 3. 59

3.6 Data augmentation techniques: affine and elastic distortion. 61
3.7 Visualizations: (a) Layer 1 weights, (b) Four possible reconstructions [104] of sample

word images shown in columns. These are reconstructed from the representation ob-
tained from the penultimate layer, and (c) Visualization of the strongest activation [52]
region of a particular neuron (each column refers to one neuron) of an intermediate con-
volutional layer. These regions are highlighted using a bounding box inside the word
image. Here we notice that, in most of the cases, each neuron focus on detecting a
semantically meaningful unit. 62

3.8 Bar plot showing the word spotting performance on IAM dataset with respect to different
word lengths in the test dataset. Here, we have analysed word lengths ranging from (3,14). 69

3.9 Ablation study of word spotting in noisy word segmentation. Here we evaluate the word
spotting results by perturbing the word segmentations of the test set. The perturbations
are done randomly within an IoU range (0.5, 1.0). 70

3.10 Graph analyzing the layer for efficient transfer learning. 72
3.11 t-SNE embedding of word image representation taken from the validation set from IAM

dataset. 73
3.12 Evaluation of compression of learned representation using PCA on IAM and GW datasets. 74

LIST OF FIGURES xv

3.13 Qualitative results of word spotting. In each row, the leftmost image is the query and
remaining are the top retrieved word images based on features similarity. Here (a-d)
refers to images taken from IAM, GW, Botany and Konzilsprotokolle datasets respectively. 75

3.14 Sample failure case images where the representation fails to match lexically correct
neighbors. 76

4.1 The left part of the figure shows the motivation of HWNet features where we learn a
style invariant representation. In this chapter, we extend our representation to textual
space. Here we learn a common representation that embeds both word images and its
corresponding text (as shown in the right figure) close to each other. 78

4.2 Overview of the two-stage joint feature embedding process. 82
4.3 Computation of PHOC representation using embedding functions (φY , φX) for text and

image respectively. 83
4.4 Synthetic attribute embedding. 85
4.5 The proposed variants of the HWNet v3 End-2-End embedding network for learning

both image and textual embedding using multi-task loss function. (a) Variant I which
was first proposed in [86], uses separate feature extraction channels for real and syn-
thetic images, while (b) presents the Variant II of the End-2-End embedding network
which allows better sharing of features among the real and synthetic image. 86

4.6 Effect on performance on varying HWNet v3 embedding size on the IAM dataset. The
top figure shows the analysis of word spotting under both QBE and QBS setting. The
bottom figure presents the word recognition CER and WER values. 97

4.7 tSNE image embedding . 99
4.8 t-SNE common subspace embedding. The central plot shows a snapshot of limited

number of word classes where each color denotes one word class. We have zoomed out
two regions to show the projection of both word image and it’s textual representation.
Here the image is projected using colored round circles and the corresponding textual
representation is shown using colored stars. 100

4.9 Qualitative results of word recognition on the IAM dataset using test lexicon. The top
two rows show the successful cases, while the bottom row shows failure scenarios. Here
the green box shows the text where the prediction matches the actual text. In failure
cases, the red box shows the incorrect recognition, while the blue box shows the actual
correct answer. 101

4.10 Qualitative results of query-by-string word spotting on (a) IAM, (b) GW, (c) Botany, (d)
Konzilsprotokolle dataset respectively. The query is shown in the left most column and
the word images shown on the right are the retrieved images in the ranked order. 102

5.1 Projection of word similarity scores onto visual and semantic axes as shown in the top
and bottom locations respectively. Here the top axis uses word image representation [86]
which only focuses on the visual space, while the bottom axis uses the proposed seman-
tic representation which focuses on the meaning of the word. 105

5.2 The top row shows the nearest neighbors of a query “watched” in the traditional word
spotting setting, while the middle row shows the word images that are related to query
in terms of inflections or word morphology, while the bottom row shows the nearest
neighbors which are either related in terms of inflections, or synonyms, or related in
terms of semantics. 107

xvi LIST OF FIGURES

5.3 Intuition behind the semantic embedding process. Here each point refers to a word im-
age embedding either shown in the lexical space (shown in left) or the semantic space
(shown in right). We propose two schemes to embed word images from lexical to se-
mantic space (a) Recognize+Embed, and (b) Direct Embedding. 111

5.4 Direct word image embedding architecture. Here, we use a semantic stream which
provides the textual word embedding for the current word image being passed through
the real stream. 113

5.5 (a-b) Rate of the performance change while increasing the lexicon size in lexicon based
recognition and embedding for the IAM dataset. (a) shows semantic spotting perfor-
mance in terms of mAP for exact evaluation, while the chart (b) reports the word and
character error rates of the recognizer. (c) Qualitative results analogical tests. 120

5.6 Qualitative results of normalized and semantic word spotting. Note that, while showing
the nearest neighbors, we have removed the consecutive similar word images to empha-
size the distances among different lexical word images. 122

6.1 Given two document images Di and Dj , we are interested in computing a similarity
score S(Di,Dj) which is invariant to (i) writers, (ii) word flow across lines, (iii) spatial
shifts, and (iv) paraphrasing. In this example, the highlighted lines from Di and Dj
have almost the same content but they widely differ in terms of the spatial arrangement
of words. 126

6.2 MODS flowchart showing various modules used for the computation of similarity score
between a pair of document images D1 and D2. 127

6.3 The segmentation proposals on a challenging document page from HW-1K dataset ob-
tained from the segmentation algorithm. 129

6.4 A few major challenges of the matching process between a pair of documents D1 and
D2. (i) Finding a unique match of each potential word, (ii) removal of stopwords, (iii)
invariance to word overflow problems, and (iv) exploiting the loose ordering of words
in matching. 131

6.5 Snapshot of document images taken from the HW-DocSim dataset, written by different
writers. 134

6.6 Qualitative results of the MODS matching algorithm from the HW-DocSim dataset. Here
we show two sample matching pairs in two columns. The top region is taken from the
source and the bottom one is plagiarized. The highlighted words in rectangle have been
correctly matched along with few words which remain undetected. 135

6.7 Sample frames from the LectureVideoDB datatset. Scenes cluttered with text and fig-
ures, black boards where text background contrast is poor, low resolution images and
less legible handwriting make the text recognition harder in lecture videos. 137

6.8 Qualitative results of word spotting on LectureVideoDB dataset. Notice the robustness
of the representation in-spite of wide diversity in the quality of images due to different
writing mediums. 139

6.9 Qualitative results of query-by-string word spotting on Hindi, and Telugu datasets. The
query is shown in the left most column and the word images shown on the right are the
retrieved images in the ranked order. 141

LIST OF FIGURES xvii

6.10 Qualitative results of normalized and semantic word spotting on Hindi, and Telugu
datasets. Note that, while showing the nearest neighbors, we have removed the con-
secutive similar word images to emphasize the distances among different lexical word
images. 142

List of Tables

Table Page

2.1 The list of handwritten datasets used in this work. Here GW, Botany, and Konzilspro-
tokolle datasets are historical documents written primarily by a single author along with
a few assistants(*). 42

2.2 Overview of major methods proposed in the literature, summarizing different types of
word image representation schemes. 45

3.1 Summary of the HWNet v2 network configuration. The width, height, and number of
channels of each convolution layer are shown in square brackets, with the number of
layers that are stacked together. We present two variations in the network (as shown in
the sixth column), using a single level ROI pooling or using temporal pyramid pooling
(TPP) with three levels. 58

3.2 Ablation studies showing the effect of each of the enhancements to the baseline HWNet
architecture on IAM dataset. 65

3.3 Comparative mAP evaluation of different deep networks with respect to the HWNet and
HWNet v2 (TPP) network on IAM dataset. 66

3.4 Quantitative evaluation of word spotting on standard handwritten datasets in query-by-
example setting. Here, results for DTW and FV are taken from [9], while all other
related works are taken from their respective papers. 67

3.5 QBE mAP evaluation of HWNet v2 representation under segmentation-free scenario.
Here we use the word proposals generated using the recent state of art method Ctrl-F-
Mini [188]. As per the standard evaluation practice, we report the QBE mAP at overlap
thresholds of 50% and 25%. 71

3.6 Evaluation of word spotting using mAP on IAM test dataset by training HWNet v2 with
entire synthetic dataset while fine tuning on varying percentage of IAM training data.
Here Train=0.0% refers only using synthetic data for training. 71

4.1 Ablation Study on the IAM dataset under two variants (column 1) of End-2-End embed-
ding architectures, the choice of loss functions (column 2) and the choice of modality in
each stream (column 3 and 4). 91

xviii

LIST OF TABLES xix

4.2 Quantitative evaluation of various word spotting methods on standard handwritten datasets.
Here is the first block (rows 1-7) presents results from methods proposed in the litera-
ture. Note that in Triplet-CNN [186] we have taken the best results for IAM and GW
across different word embedding used in the paper. The next three blocks of methods
(rows 8-9, 10-13 and 14-17) present the different embedding schemes proposed in this
chapter. 93

4.3 Word recognition results on IAM dataset under different settings of lexicon based eval-
uation for making the predictions. 96

4.4 Evaluation of word spotting and recognition on the IAM dataset by learning HWNet v3
representation with the entire synthetic dataset while fine-tuning on a varying percentage
of IAM training data. Here Train=0.0% refers only using synthetic data for training. . . 98

5.1 Performance evaluation under normalized word spotting. Here we present embedding
learned and evaluated in three different scenarios (Exact, Stem and Lemma). 116

5.2 Quantitative evaluation of word image semantic representation. Following shortened
notation are used: word analogy (WA), query-by-example (QBE), query-by-string (QBS)
and in-vocabulary QBS (In-QBS). Each of the performance measure vary between (0,1)
where higher is the better. 117

6.1 Quantitative evaluation of various matching schemes on HW-DocSim dataset. We com-
pare the performance of proposed MODS framework using CNN features over baseline
methods such as NN, BOW, and embedded attributes proposed in [9]. 134

6.2 Details of the LectureVideoDB Dataset [42]. Here Type refers to the presentation/writing
medium used by the instructor. 137

6.3 Word Spotting performance using end2end embedding architecture on the various splits
of LectureVideoDB dataset. 138

6.4 The list of printed datasets used in this work. Here both Hindi and Telugu datasets are
taken from Digital Library of India [11] corpus. 140

6.5 Quantitative evaluation of word spotting on printed datasets. 141
6.6 Semantic evaluation on printed datasets from English, Hindi and Telugu languages. . . 142

Chapter 1

Introduction

The human mind is highly inquisitive! It is always in pursuit of knowledge. In this process, it is also

constantly documenting information in various forms. With a world of more than 7 billion people, there

are lots of information to share, discuss and discover. In today’s world, technology acts as a bridge that

solves these problems and in recent times, artificial intelligence (AI) is becoming an answer to many of

these challenges.

1

1.1 Motivation

The creation and dissemination of text are one of the primary ways we share and document infor-

mation. Printed books, historical manuscripts remain at the forefront of organizing and archiving the

knowledge of the world. With the advent of computers and the internet, the creation and sharing of

text have become efficient, fast and scalable. With a growing world and its increasing dependence on

technology, there is a dire necessity to bring offline documents into its digital format. These offline

documents typically exist in the form of printed books, handwritten manuscripts, court records, bills,

notes and letters etc. Bringing these documents to its digital counterparts would effectively open the

vast amount of knowledge to the society. It will also seamlessly allow us to search and transfer data

between our physical and digital worlds.

One of the first step towards bringing the physical documents to its digital form is digitization. There

exist multiple digital library projects [4, 11] across the world where millions of documents are being

scanned and stored in the form of images. These document images are in different languages and are

either created from machine-printed books, handwritten manuscripts and belong to a modern or histori-

cal era. In the current world, the availability of images containing text is not limited to documents from

digital libraries. The increasing usage of digital recording and capturing devices such as mobile cam-

eras, allows a common user to quickly capture bills, medical reports, natural scenes with text and store

it either locally or over a cloud network. One of the primary challenges which lie before the technology

community is to provide an efficient content level access to these document images. An effective solu-

tion to this would enable applications such as: (i) search and retrieval from historical datasets, personal

handwritten collections, instructional videos, and (ii) natural language applications such as finding near-

duplicate documents, machine translation, question answering, etc. More importantly, this will also lead

to an increase in digital content in non-Latin languages which would bring much more users closer to

the digital revolution.

Understanding text from images and extracting information has been one of the primary interest

areas of artificial intelligence (AI). These problems are pursued under the sub-domains of computer

vision and natural language processing and are typically formulated in a machine learning framework.

Advancements in AI are continuously bringing machines closer to human performances for tasks such as

reading text from the visual domain, understanding speech from audio signals, interpreting and extract-

ing knowledge from language. Traditionally, reading text from images is designed as an optical charac-

2

Figure 1.1 Sample document pages: (a) historical handwritten document written by George Wash-

ington [133], (b) a handwritten assignment written by a student in a course [90], (c) a video frame

containing handwritten text on classroom board, and (d) a sample page taken from a printed book writ-

ten in Hindi as part of DLI project [11].

ter recognition (OCR) problem. An OCR problem has come a long way in AI history with recognition

engines that can transcribe printed books in various languages. However, there still exist challenges in

the recognition where the document images are from the handwritten domain, historical collections, etc.

Fig. 1.1 shows sample images from different domains where the performance of traditional recognition

engines is limited. Here: (a) shows a sample page from a historical handwritten document written by

George Washington [133], (b) shows a handwritten assignment [90] created by a student, (c) shows a

video frame containing handwritten text on classroom board, and (d) shows a sample page taken from

a printed book written in Devanagari script and digitized as part of the “Digital Library of India” (DLI)

project [11].

1.1.1 Scope

A document image is a structured entity with a particular layout that contains paragraphs, lines,

words, and characters. Often such documents also contain figures, graphs, and other components

thereby increasing the complexity of the layout. One could also observe that the layout of a handwrit-

ten document is more arbitrary as compared to a machine-printed document image. Given a document

image, one has to first interpret the layout of the page and split it into its constituent parts (paragraphs,

figures, graphics, etc.). This is referred to as layout analysis which is an open research problem [20]

in the document community. Once the layout is inferred, the next problem to address is to segment

out the constituent lines, words and character images. The existing methods in this space are robust

for printed document images, however, it is challenging for handwritten collections. Given the seg-

3

Figure 1.2 The top row shows two sample handwritten document images, while the bottom row shows

few sample word images taken from the corpus containing these pages.

mentation (bounding box coordinates) of line and word images, there exist two broad categories of

techniques in literature for achieving content level access in document images: “recognition-based” and

“recognition-free”.

Recognition based approaches are very popular and easily scalable. Here the text is usually generated

from an (OCR). These systems have been highly successful in printed documents with standard fonts

for Latin languages. However, the document images that we are interested in this thesis are handwritten,

historical manuscripts, low resource languages (such as Indic scripts) and degraded printed books where

traditional printed OCR based methods are limited. Moreover, the recognition based approaches also put

a hard constraint that all the necessary symbols (textual units) which need to be recognized should be

available in the training corpus of the underlying recognition model. This limits its applicability in

historical documents which usually contains outdated characters and ligatures.

This leads us to the complementary method, where the idea is to re-formulate the problem in a

“recognition-free” manner. This was popularized as “word spotting”, originally proposed in speech

4

community [139] and later adapted to document images in [106]. Here the basic idea is, given a query

(mostly a word), retrieve all its relevant instances in the entire corpus. One can perform such a task

without the actual recognition of word, by comparing the feature representations in an appropriate

space. These holistic word image representations can be learned either in an unsupervised or a su-

pervised fashion and are found to be highly effective for complex handwritten and historical document

collections.

Considering words as the basic unit of understanding a document, in this thesis, we set our granularity

at the level of word images. We assume that the layout and the segmentation of a document image are

given a priori which could be either provided manually or as an output of an existing method in which

case it could be noisy. Fig. 1.2 shows two sample historical handwritten document images, where the

left one is a manuscript taken from READ project1 and the right image is one of the letters written by

George Washington, archived [132] as part of George Washington Papers at the Library of Congress.

The bottom row shows the sample word images extracted from the same corpus.

1.2 Word Representation Learning

Feature learning has been a key investigation for any artificial intelligence problem. In the domain of

document images, the problem of defining an optimal feature at different granularities such as word [7,9,

106,149], character/patch [137,144,175] has been an interesting quest in the community. In this thesis,

we focus on the problem of learning efficient representations for “word” images. The term “efficient

representation” within the scope of this thesis refers to the quality of representation in addressing the

various challenges as presented in Section 1.2.3. Before we delve into our problems of interest, let us

understand why we are interested in learning representation.

1.2.1 Why Representation Learning?

Broadly, there are two paradigms of approaches: (i) recognition (or transcription) of a word image

into its constituent textual string and later transferring it into the representation space using existing

textual IR algorithms, and (ii) a direct embedding of word images into the appropriate representation

space through a learned model. A perfect recognition is all we want for building any type of IR or NLP

application around document images. However, the document images that we are interested in this work

1https://read.transkribus.eu/

5

https://read.transkribus.eu/

are handwritten, historical manuscripts and degraded printed books where traditional printed Optical

Character Recognizer (OCR) based methods would result in noisy text and could lead to inferior results.

This leads us to the complementary method, where the idea is to formulate the problem from a retrieval

perspective. In this case, the focus is to learn an appropriate representation space which preserves the

similarity among the content words irrespective of their variations due to style and degradation. One of

the classical works in this space is the development of word spotting problem, originally proposed in

the speech community [139] and later introduced in the document community [106]. Here, the basic

idea is to represent the underlying word images into a representation space where matching between

the query and the candidate is posed as a retrieval problem. In literature, there exist many successful

representations which are learned either in an unsupervised setting [6, 7, 148, 149, 154, 189] or in a

supervised fashion [9, 86, 91, 168, 186]. These representations are successful in capturing the lexical

similarity at the level of word-forms while remaining invariant to a large extent to different (writer)

styles and degradations. In this thesis, we also follow this later paradigm.

1.2.2 Problems of interest

Fig. 1.3 presents an illustration of the holistic word representation learning problem. The term “holis-

tic” within our context refers to something which captures the whole property (lexical or semantic) by

implicitly capturing the information from the parts. In the figure, the placeholders (a-c) signify the three

major problems of interest of this thesis. As mentioned in the scope, we assume the document image is

pre-segmented into word bounding boxes. Given the particular word images/textual-string “music” and

“SONG”, the goal is to compute an appropriate representation (shown as a histograms in the figure).

In the bottom part of the figure, we show two such interesting representation spaces where the word

images/textual-string are projected. In the following discussion, we enumerate each of the sub-problem:

a) Word Image Representation: One of the fundamental question that we pursue in our thesis is

about finding an efficient holistic word image representation. The representation should be invari-

ant to multiple styles, deformations, noise artifacts, while only respecting the lexical (verbatim)

content of the word. In our illustration figure 1.3 (a), we present this problem of computing an

appropriate representation for the word image “music” irrespective of its style. Learning such a

representation enables to represent each word image from the corpus onto an appropriate lexical

feature space where searching similar words is achieved by finding its nearest neighbors.

6

Figure 1.3 Illustration of the holistic word representation learning problem. (a) Word Image Repre-

sentation in Lexical Space, (b) Joint Text and Image Embedding, and (c) Semantic Embedding.

b) Joint Text and Image Embedding: Our second problem of interest delves on the question of

finding out a common representation space between textual strings and word images. Such a space

where the text and images are mapped together is referred to as the embedding space. A common

representation between the word images and its textual string enables searching using query-by-

string/example or performing word recognition using a constrained lexicon. In our illustration

figure (b), we show that the textual string “music” is also embedded into the same lexical space

where its corresponding word images are lying close to each other.

c) Semantic Embedding: One of the interesting aspects in the domain of document images is its

close relationship with the text-domain. A document image essentially contains text and therefore

the “semantics” that are involved in the creation of the original text is directly applicable. Here,

we take inspiration from the recent progress in the text domain where the community has adapted

7

(a) (b) (c)

Figure 1.4 Typical challenges which exists while learning of representation of word images: (a) mul-

tiple writer styles, (b) degradation and segmentation irregularities, and (c) extension to multiple scripts

and languages.

to the distributed representation of words which encodes its semantics. In our thesis, we also

explore this novel problem, where we want our representation of word images to be not limited

by its lexical content but also include its semantic properties. In the illustration figure (c), we

show the semantic space where word images are projected based on its semantic properties. For

example the representation for word “SONG” and “music” lie close to each other. In this thesis,

we restrict the scope of semantics at the level of individual word usages which involves “inflec-

tions” (the words that are related to each other by a common root word) and “synonymy” which

refers to words having a similar meaning in a given context. Learning holistic representations

in a semantically constrained manner helps to perform search in lexical and semantic space, and

thereby reduce the vocabulary gap that exists between a query and its retrieved results.

1.2.3 Challenges

The foremost challenge in a representation learning problem is the intended type of in-variances.

Some of the major challenges in our problem statement are listed below:

1. Style and Font In-variances. We prefer to learn a style and font invariant holistic representation

which focuses solely on the content of the word. In the case of handwriting, the complexities

occur due to various underlying factors such as writing speed, smoothness of pen/writing tool on

the paper, etc. These factors make each writer have a unique style of handwriting. There are

indeed many instances where even a human finds it difficult to interpret what is written without

having enough contextual knowledge from nearby words. Figure 1.4 (a) presents a few sample

word images written by different writers.

8

2. Noise and Degradation. In the case of the historical documents, one has to deal with noise and

degradations caused on the manuscripts due to the damage that has occurred over time. Another

source of noise arises from the scanning process of documents and is typically seen in large scale

digitization projects.

3. Segmentation Irregularities. Finding accurate word-level segmentation can be demanding for

complex documents with arbitrary layouts, touching lines and non-uniform kerning. Under these

circumstances, one has to accommodate segmentation irregularities while finding the representa-

tion of these word images. Figure 1.4 (b) shows a few sample word images taken from historical

documents with complex layouts.

4. Extension to Multiple Scripts. In our work, we would like to demonstrate a generic framework

for learning word image representation which is not limited to a particular script or language.

We are particularly interested to work with printed and handwritten Indic scripts that do not have

robust text recognizers. These scripts posses additional challenges that arise from the intricacies

of the script, and lack of enough training data to build and deploy machine learning algorithms.

Figure 1.4 (c) shows a few sample word images from Indic script Devanagari and Bangla.

5. Compactness. In addition to the aforementioned challenges, we also prefer to learn compact

representation which can facilitate faster search and lower index sizes.

1.3 Contributions

The thesis has the following set of significant contributions:

1. Word Image Representation. We propose a framework for learning efficient holistic repre-

sentation for handwritten word images. The proposed method uses a deep convolutional neural

network with a traditional classification loss. The major strengths of our work lie in: (i) the ef-

ficient usage of synthetic data to pre-train a deep network, (ii) an adapted version of ResNet-34

architecture with spatial pyramid pooling, which learns discriminative features for variable-sized

word images, and (iii) realistic augmentation of training data which mimics the handwritten data.

We further investigate the process of transfer learning at various layers to reduce the domain gap

between synthetic and real domain and also analyze the in-variances learned at different layers

using various visualization techniques. Our representation leads to a state of the art word spotting

9

performance on standard handwritten datasets and historical manuscripts in different languages

with minimal representation size.

IIIT-HWS Synthetic Dataset. As part of this work, we also release a 9M synthetic handwritten

word image corpus, useful for training deep network architectures and advancing the performance

in handwritten word spotting and recognition tasks. We present this contribution along with the

dataset in Chapter 3.

2. Joint Image and Text Embedding. We propose a deep convolutional feature representation that

achieves state of the art performance for word spotting and recognition for handwritten images.

The major contributions are: (i) we propose different schemes of embedding label information

in the process of learning word image representation, (ii) we enable query-by-string word spot-

ting and constrained word recognition, (iii) we present a novel end-to-end embedding framework

for learning the common subspace using a multi-task loss function, and (iv) we also validate the

role of synthetic data as a complementary modality. We present our results on both handwrit-

ten and printed document datasets and show considerable improvement under word spotting and

recognition tasks. The details on the joint embedding process is presented in Chapter 4.

3. Semantic Embedding. In the domain of document images, for decades we have appreciated the

need for learning a holistic word-level representation, popularly used for the task of word spotting.

However, in the past, we have restricted the representation which only respects the word form,

while completely avoiding its meaning. In this work, we attempt to bridge this gap by encoding

the notion of semantics by introducing two novel forms of word image representation. The first

form learns an inflection invariant representation, thereby focusing on the root of the word, while

the second form is built along the lines of recent textual word embedding techniques such as

Word2Vec [113] and has much broader scope for semantic relationships. We observe that such

representations are useful for both traditional word spotting and also enriches the search results

by accounting for the semantic nature of the task. We report interesting results for the standard

semantic evaluation tasks such as word analogy and word similarity. In Chapter 5, we present our

semantic representation along with its evaluation studies.

4. Use Cases of Word Representation. In Chapter 6, we present the following interesting use cases

from learned representations which extend our work to newer tasks and validate its robustness to

different modalities.

10

(a) We demonstrate an interesting problem of predicting similarity between a pair of document

images written by potentially different individuals. This has applications related to matching

and mining in image collections containing handwritten content.

(b) We build a keyword based retrieval system from online lecture videos. These videos contain

text written on blackboards, whiteboards, paper, slides etc. Our retrieval system provide a

reasonable performance, in-spite of having such a diverse set of writing content with distor-

tions and poor resolution of images.

(c) Finally, we also demonstrate the generic nature of the proposed representation schemes

(Lexical and Semantic) to newer scripts and languages. Here we conduct word spotting

experiments for major Indic scripts such as Devanagari and Telugu.

1.4 Publications

Part of the work described in this thesis has previously been presented as following publications. The

total number of citations for these publications are 188 [Source: Google scholar, 28 December 2019 2]

Journal:

1. Praveen Krishnan, and C. V. Jawahar, HWNet v2: an efficient word image representation for

handwritten documents, IJDAR 2019.

2. Praveen Krishnan, and C. V. Jawahar, Bringing semantics into word image representation, Pat-

tern Recognition, 2020.

Conferences:

3. Praveen Krishnan, Kartik Dutta and C. V. Jawahar, Word Spotting and Recognition using Deep

Embedding (Oral, IAPR Nakano Best Paper Award), DAS 2018.

4. Kartik Dutta, Praveen Krishnan, Minesh Mathew and C. V. Jawahar, Towards Spotting and

Recognition of Handwritten Words in Indic Scripts (Oral), ICFHR 2018

5. Kartik Dutta, Minesh Mathew, Praveen Krishnan and C. V. Jawahar, Localizing and Recognizing

Text in Lecture Videos, ICFHR 2018.

2https://goo.gl/mPDeSZ

11

https://goo.gl/mPDeSZ

6. Praveen Krishnan and C. V. Jawahar, Matching Handwritten Document Images, ECCV 2016.

7. Praveen Krishnan, Kartik Dutta and C. V. Jawahar, Deep Feature Embedding for Accurate

Recognition and Retrieval of Handwritten Text (Oral), ICFHR 2016.

8. Praveen Krishnan and C. V. Jawahar, Bringing Semantics in Word Image Retrieval, ICDAR

2013.

9. Praveen Krishnan, Ravi Sekhar and C. V. Jawahar, Content Level Access to Digital Library of

India Pages (Oral), ICVGIP 2012.

Secondary publications which are related to the work done in this thesis:

10. Siddhant Bansal, Praveen Krishnan , and C.V. Jawahar, Improving Word Recognition using Mul-

tiple Hypotheses and Deep Embeddings, ICPR 2020.

11. Siddhant Bansal, Praveen Krishnan , and C.V. Jawahar, Fused Text Recogniser and Deep Em-

beddings Improve Word Recognition and Retrieval (Oral), DAS 2020.

12. Vijay Rowtula, Praveen Krishnan, and C. V. Jawahar, POS Tagging and Named Entity Recog-

nition on Handwritten Documents, ICON 2018.

13. Kartik Dutta, Praveen Krishnan, Minesh Mathew and C. V. Jawahar, Improving CNN-RNN Hy-

brid Networks for Handwriting Recognition (Oral), ICFHR 2018.

14. Kartik Dutta, Praveen Krishnan, Minesh Mathew and C. V. Jawahar, Offline Handwriting Recog-

nition on Devanagari using a new Benchmark Dataset (Oral), DAS 2018.

15. Kartik Dutta, Praveen Krishnan, Minesh Mathew and C. V. Jawahar, Towards Accurate Hand-

written Word Recognition for Hindi and Bangla (Oral), NCVPRIPG 2017.

16. Anshuman Majumdar, Praveen Krishnan and C. V. Jawahar, Visual Aesthetic Analysis for Hand-

written Document Images, ICFHR 2016.

17. Praveen Krishnan, Ravi Sekhar and C. V. Jawahar, Towards a Robust OCR System for Indic

Scripts, DAS 2014.

12

1.5 Thesis Outline

• In Chapter 2, we present the necessary background from the domain of computer vision (CV),

natural language processing (NLP), information retrieval (IR) and machine learning (ML) for

understanding the concepts and methods presented in this thesis. We also present an overview of

related methods of word image representations proposed in the document community.

• In Chapter 3, we present our first major contribution by proposing a deep convolutional neural

architecture for learning efficient word image representation. We present a detailed analysis of

the training process, augmentation schemes, and evaluate the quality of our representation on

standard handwritten and printed datasets.

• In Chapter 4, we present our second major contribution which proposes different variants of the

joint embedding scheme for word images and its corresponding text. The proposed representation

reports state-of-the-art results for the task of word spotting and recognition on major handwritten

and printed datasets.

• In Chapter 5, we introduce the novel form of semantic representation for word images. The

proposed semantic representation presents interesting results for semantic spotting task and is

also evaluated under standard performance metrics used in IR literature such as word analogy and

word similarity.

• In Chapter 6, we present three interesting use cases from the proposed representations of this

thesis. These are: (i) matching handwritten document images, (ii) word spotting on lecture videos,

and (iii) word retrieval on Indic scripts.

• Finally, in Chapter 7, we present the conclusion of the thesis and mention some of the future

research works in our domain which are interesting to pursue.

13

Chapter 2

Background

Hubel and Wiesel, 1959

Neocognitron, 1980

LeNet, 1998

Word Spotting, 1996

SIFT, 1999

Neural Probabilistic
Language Model, 2003

Bag of Visual Words, 2003

AlexNet, 2012

Word Embedded Attributes, 2014

Word2Vec, 2013

HWNet, 2016

14

Feature engineering has been a key investigation for any pattern recognition problem. In the visual

domain, feature extraction is a process of mapping an image represented as I ∈ I to a feature space

X ∈ X or equivalently learning a mapping function F : Rp → Rd. Here p denotes the number of pixels

in the given image and d refers to feature dimension and in most cases d << p. Depending on the task at

hand, typically a feature mapping function is expected to have the following properties:- (i) in-variance

to translation, scale & illumination, (ii) robustness to noise and degradation, (iii) compactness, and (iv)

the computational efficiency in calculation.

In this chapter, we present the necessary background and the related works from the literature which

are essential to the topic of feature learning and evaluation. We divide our discussion into five major

sections where we begin with Ssection 2.1 on classical image representation schemes which were dom-

inant to the computer vision community until the last five years. With the resurgence of neural networks

and its success to address a diverse set of problems, in Section 2.2 we will present the basics of convo-

lutional neural networks (CNN), which also has been the underlying machine learning architecture used

in this thesis. It will be followed by a discussion on how CNNs are useful for learning generic features

for images. In Section 2.3, we bring our discussions in the text or natural language processing domain

and present the popular methods from the literature which enables learning textual word-level repre-

sentations. Understanding textual word representation (popularly referred to as word embedding) is

important since one of the contributions of this thesis is in semantic embedding where we are interested

to find semantic representation for word images. In Section 2.4, we will discuss popular distance mea-

sures, evaluation measures and few other techniques commonly used in image retrieval tasks. Finally,

in Section 2.5, we present an overview of the related works in the domain of word image representation

and retrieval.

2.1 Classical Image Representations

Among numerous types of features proposed in the community, in the early 2000’s, gradient-based

local features such as Scale Invariant Feature Transform (SIFT [102]) & Histogram of Oriented Gra-

dients (HOG [34]) became popular for a wide range of vision problems. These descriptors summarize

the information within a local patch by computing the histogram of edge directions calculated from

gradients. Around the same time, a representation scheme motivated by Bag of Words (BOW) [107] in

text categorization was introduced for visual domain problems. In vision, it is commonly referred to

15

Figure 2.1 Bag of Visual Words representation: The figure presents different stages in the computation

of BOW for images.

as Bag of Visual Words (BOVW) [33, 161]. In this section, we discuss in detail the BOVW based image

representation which is widely used for image retrieval tasks.

2.1.1 Bag of Visual Words (BoVW) Representation

The fundamental assumption in BOVW based model is that an image is considered as a collection

of visual words, similar to the relationship between a textual document and its words. These visual

words referred to as b ∈ B, are part of a visual vocabulary B which is learned from a subset of the

data (collection of images) in an unsupervised manner. Given an image, a naive BOVW representation

is computed by quantizing each local descriptor to its nearest visual word and pooling them into a

histogram of visual words. A typical pipeline for BOW is shown in Fig. 2.1 which contain following

stages such as:- (i) interest point detection, (ii) computation of local descriptors, (iii) creation of visual

vocabulary (also referred as quantization), (iv) coding and (v) pooling. The following sections present

different stages of BOW pipeline as shown in Fig. 2.1 in detail.

2.1.1.1 Detectors and Descriptors

A visual word describes a local patch, which is denoted as a region of neighboring pixels. The

size of a region can span from small regions capturing only the edges to large regions referred to as

parts [79, 160] which capture much more semantic information. Given an image, the foremost step is

to extract the interest points (keypoints) where the descriptors are computed. Interest points could be

sparse or dense in nature, and ‘repeatability’ is one of the fundamental desired properties of a detector

which makes it robust to noise and other degradations. Feature detection is a low-level image processing

technique that utilizes edges, corners or blob level information. Some of the popular keypoint detectors

16

are Harris affine [66], Difference of Gaussians (DoG) [102] and maximally stable extremal regions

(MSER) [110]. Harris affine detector computes corner points and preserves the higher response points.

The DoG detector was proposed as part of SIFT descriptor which computes local maxima points in

a scale-space which is given as the difference of Gaussian pyramids. While different detectors are

typically suitable for different domain tasks, it was later found that dense or regular keypoints [26,

98] at different scales also results in competitive performances. Given a set of local interest points

computed from images, local features such as SIFT [102], HOG [34], Local Binary Pattern [119] (LBP)

are commonly used to compute the descriptors. Here both SIFT and HOG are gradient-based descriptors,

which divides an image into multiple cells (either at keypoints or uniformly), accumulate the gradient

directions into bins of fixed sizes, and summarize it into a histogram. HOG performs an additional local

contrast normalization on overlapping cells. These descriptors are quite robust to degradation along

with achieving scale and translation invariance properties.

2.1.1.2 Visual Vocabulary

Let x1, x2, . . . , xK ∈ Rd be theK descriptors computed from a random subset of the entire corpus of

images. As a working example, we take SIFT descriptor (d = 128) which is considered as the state of the

art descriptor for BOVW based representation for image retrieval problems. Learning a visual vocabulary

is essentially partitioning the local descriptor space into informative regions. Typically we use k-means

based clustering algorithm, which minimizes the sum of squared Euclidean distances between sample

points with their respective cluster centers given as:-

B∗ = argmin
B

M∑
i=1

∑
x∈Si

‖ x− µi ‖22 (2.1)

where S = {S1, S2, . . . , SM} are the set of M clusters, where each cluster Si contains the nearest set

of descriptors from the cluster mean given as µi. We refer B = [µ1, µ2, . . . , µM] as the learned visual

vocabulary also called the codebook, individual µi’s are the codewords and the entire process is referred

to as quantization. The size of the codebook M should not be small enough to under-represent the

patches from the corpus and neither too large which can introduce quantization errors. Quantization

errors refer to ambiguity in assigning codewords to descriptors that lie near the boundary of two or more

clusters. Here, M is fixed empirically by cross-validation. In general, learning visual vocabulary using

k-means on a real-world dataset with millions of descriptors is computationally demanding. There are

17

efficient clustering schemes such as hierarchical clustering proposed by Nister et al. [118] and approxi-

mate k-means using randomized kd-trees proposed by Philbin et al. [127] which bring the computational

complexity in assigning a sample to cluster O(d logM).

2.1.1.3 Coding and Pooling

The next stage in the pipeline is “coding” which performs the mapping from input feature space (Rd)

to codewords (RM). The most popular and basic coding method is vector quantization (VQ) which

assigns each descriptor to its nearest codeword from the codebook. It represents a hard quantization

scheme where, exactly one codeword is assigned to each descriptor. The VQ for an image having N

descriptors is given mathematically as:-

C∗ = argmin
C

N∑
i=1

‖ x−Bci ‖2

s.t. ‖ ci ‖l0= 1, ‖ ci ‖l1= 1, ci ≥ 0, ∀i

(2.2)

where ci ∈ RM is the respective code for the ith descriptor. To derive the BOW representation from

C = {c1, c2, . . . , cN} codes obtained from a given image, we perform “pooling”. There are two major

types of pooling:- (i) sum (or average pooling) given as h = c1 + c2 + . . . + cN , and (ii) max pooling

given as h = max(c1, c2, . . . , cN). Here h refers to the pooled representation, which has the following

advantages:- (i) derives a compact representation, (ii) brings invariance against position & illumination

conditions, and (ii) robustness to clutter, etc. However, doing a naive pooling also results in loss of

geometrical information (a fundamental limitation in the bag of words model), which is quite important

to build robust image retrieval or recognition systems. In order to partially recover geometry, a spatial

pooling scheme is proposed by Lazebnik et al. [95], which divides an images into multiple spatial

pyramids and concatenates the weighted histograms from individual regions. The weights are set high

at the fine level as compared to coarse level.

2.1.2 Higher Order Representations

The encoding schemes discussed so far are based only on the count statistics of visual words. In

terms of moments in statistics, the BOVW representation can be thought to capture the zeroth moment

from a set of samples. However, one could think of deriving much higher level representation if first and

second-order moments are utilized. In this space, the two popular representation:- (i) Vector of Linearly

18

Aggregated Descriptors (VLAD) [78] proposed by Jégou et al. utilizes the first moment information,

and (ii) Fisher Vectors (FV) [123] by Perronnin and Dance, uses first, second and third moment statistics.

2.1.2.1 Vector of Locally Aggregated Descriptors (VLAD)

Given a codebook B = {bi, i = 1, . . .M} learned with k-means and a set of local descriptors

X = {xt, t = 1, . . . , T}, the VLAD computation is done in three stages:-

Stage1: Assign NN(xt) = argminbi ||xt − bi||

Stage2: Compute residual vectors vi =
∑

xt:NN(xt)=bi
(xt − bi)

Stage3: Concatenate and L2 Normalize

As shown in the above stages, the final representation is an L2 normalized concatenated representation

from each visual word. Here, each visual word is represented by aggregating the residual vectors (first

order moment) of all the descriptors in X which are assigned to that particular visual word. The earlier

coding schemes resulted in a dimension of M where M is the number of visual words, whereas VLAD

has an increased dimensionality of d×M , where d is the dimensionality of the descriptor.

2.1.2.2 Fisher Vectors (FV)

FVs are an instantiation of Fisher Kernels (FK) [72] on visual vocabulary which gives a dense de-

scription of an image using smaller vocabularies. FK measures the similarity between a sample and

a statistical model, and was introduced to combine the benefits of generative and discriminative ap-

proaches. Given a likelihood function Pλ with parameters λ, the scoring function of a given sample X

is given as:

φλ(X) = 5λ log p(X|λ) (2.3)

The above scoring function is given by the direction in which the parameters λ of the model should be

modified to better fit the data. This results in a fixed length vectorial representation whose size is fixed

by the number of parameters. The Fisher Kernel is defined as:-

K(X,Y) = φ(X|λ)′F−1λ φ(Y |λ) (2.4)

where Fλ is the Fisher information matrix (FIM) which normalizes the input vector and is given as:-

Fλ = EX [5λ log p(X|λ)5λ log p(X|λ)′] (2.5)

19

Perronnin et al. [123] introduced FK for visual vocabulary where the vocabularies are represented by

means of a Gaussian Mixture Model (GMM). Let X = {xt, t = 1, . . . T} denote the set of T i.i.d

d-dimensional local descriptors from an image, and λ be the set of parameters of the GMM. Then

λ = {wi, µi,Σi, i = 1, . . . ,M} where wi,µi and Σi denote the weights, mean vector and covariance

matrix of Gaussian i respectively and M denotes the number of Gaussians. The scoring function for X

is given as below, which resembles average pooling as a direct consequence of the i.i.d assumption:-

φλ(X) =
1

T

T∑
i=1

5λ log p(xt|λ) (2.6)

where, p(xt|λ) =
M∑
i=1

wipi(xt|λ) (2.7)

M∑
i=1

wi = 1 (2.8)

pi(x|λ) =
exp{−1

2(x− µi)′Σ−1i (x− µi)}
(2π)D/2|Σi|1/2

(2.9)

The scoring function φλ(X) can be computed by taking derivatives with respect to each wi, µi and

Σi and normalized by the Fisher Information Matrix and concatenated to get the final representation of

an image. This leads to a representation of size (2× d+ 1)×M .

2.2 Neural Image Representations

In Section 2.1, we discussed some of the prominent image representation schemes built successfully

on top of highly engineered features such as SIFT, HOG etc. Until last five years, these features were

used to build state of art image retrieval and classification methods. More recently there has been a

paradigm shift from ‘feature engineering’ to ‘feature learning’ due to the resurgence of neural networks

and is mostly credited to the revival of Convolutional Neural Networks (CNN). LeNet-5 [96] is one of the

earliest proposed work, presents an end to end trainable pattern recognition framework which takes raw

pixels as input and learns a feature representation and classifies handwritten digits. Although the recent

architectures are inspired by LeNet-5, they use much deeper networks, better optimization algorithms,

more data and increased computing power using graphical processing units. In the next subsections,

we will present the basics of CNN architecture along with the recent advances and understand how

20

Figure 2.2 Typical architecture of a convolutional neural network for image classification task along

with filter visualizations.

these architectures lead to state of the art of image representations in the domain of natural images to

document images.

2.2.1 Convolutional Neural Networks

Convolutional neural network (CNN) is a particular type of feed forward network g which maps an

input x ∈ Rp to output y ∈ Rd. More specifically [179] g = fL ◦ · · · ◦ f1 is a sequence of simpler

functions fl, called as layers. Let x0, x1, . . . , xL−1 be the outputs of each function in the network and

x0 is the input image. Output at a specific layer l is given as f(xl−1, wl), where wl are the layer pa-

rameters (weights and biases). Given an image I ∈ RH×W×F , where H,W,F are the height, width

and number of channels (for RGB image, F = 3), the output at lth layer of CNN is given as a spatial

map xl ∈ RHl×Wl×Dl where Hl,Wl are the spatial resolution and Dl is the number of feature channels

present in layer l. There are different types of functional layers, each one performing a fixed or a learned

function to transform the inputs from one space to another. Some of important functional layers are:-

A convolutional layer computes the convolution between an input map x ∈ RH×W×F with a bank

of K multidimensional filters f ∈ RH′×W ′×F×K to produce an output y ∈ RH′′×W ′′×K . The convolu-

21

tional operation is shown in Fig. 2.4(a), which is denoted as:-

ynj = f(
F∑
k=1

xn−1k ∗ wnkj), j = {1, . . . ,K} (2.10)

where ‘n’ denotes the layer index, k is the input channel index, wnkj ∈ Rh×w is the jth set of filter

weights, ∗ denotes the convolutional operator, f(.) is an activation function and ynj is the jth output

feature map. Convolution is a linear and translation invariant operator that acts as a local detector

for images. Here, K filters are used and each filter is applied as a sliding window to a local region

of xn−1. The parameters are shared across different local region and thereby limits the number of

parameters to be learned. It also exploits the stationarity principle of an image signal and preserves the

locality of pixel dependencies. To learn complex transformation in input space, non-linear activation

functions are used after each convolutional operation. The popular activation functions are presented in

Fig. 2.3. Here both the sigmoid and tanh functions suffer from vanishing gradient phenomena due to

its smoothness towards the lower and higher domain values which leads to slower training. Rectified

Linear Units (ReLUs) [116] solves this problem by having non-saturating gradients, however, it can

suffer from having dead units by learning high negative bias. To overcome this, leaky ReLU units are

proposed which can overcome this property over the course of training. Maxout [57] activation units

are a generalization for ReLUs which learn a non-linear activation function by approximating it with

multiple piece-wise linear units.

The hyper-parameters of a convolutional layer are the spatial resolution (h,w) of the filter, the num-

ber of filters (K), the stride (s) and the padding width p. Here the stride refers to step size in the x and

y dimensions which are set as per the required output resolution. Padding is usually set to preserve the

spatial dimensionality.

Figure 2.3 Popular activation function used in a convolutional neural network.

22

Figure 2.4 (a) A typical convolutional layer, (b) max pooling layer.

In a typical CNN architecture, a pooling layer (Fig. 2.4(b)) follows a convolutional layer and typically

uses a stride more than one, thereby reducing the spatial resolution of the feature maps. Pooling does

the role of an aggregator as we move from fine-scale to coarse-scale of image and is applied over the

local spatial map which brings in-variance to image transformation and noise. The popular pooling

schemes are sum (average) and max pooling. The hyper-parameters of the pooling layers are similar to

that convolutional except the number of output feature channels remains the same to that of input. As

we tend to go further down the layers starting from the input layer at the highest scale, we progressively

reduce the resolution of the features using the pooling layers and thereby increasing the feature capacity

by capturing higher-level semantics. Therefore the network capacity is increased by increasing the

number of filters (parameters) in the later layers. In Fig. 2.2, we show 5 conv. layers and 3 pooling

layers along with the filter dimensions and the resolution of the feature maps.

Given the abstract feature representation from a set of conv. and pooling layers, a set of fully con-

nected (FC) layers are used which is treated as a classifier that maps the conv. features to output space

with dimension equivalent to the number of classes. FC layer is a multi-layer perceptron with dense

connections where all its units are connected to the previous layer units. Here, in our figure, we show

three FC layers and the output from the last FC layer is given to a softmax function with maps the score

of each neuron between (0,1) using the softmax function as given below:-

ŷi =
ex

n
i∑

k e
xnk

(2.11)

The output from a softmax layer can be treated as a normalized sample from a probability distribution.

23

2.2.1.1 Training

Training a CNN network requires to calculate the optimal set of weights for each learnable parameter

in the network. These are filter weights (W) and biases (b) which corresponds to the convolutional and

fully connected layers. For finding the optimal weights, we formulate the learning process in terms of

an optimization problem with the following objective function to minimize:-

θ∗ = argmin
θ

N∑
n=1

L(xn, yn) + λ||W ||22 (2.12)

where L(.) denotes the loss function which is parameterized by θ which contains both W, b. Here

xn, yn denotes the input sample and the ground truth label vector for the nth sample respectively. The

second part of the equation minimizes the L2 norm of the weight coefficients also referred as the weight

decay which prevents over-fitting by reducing the complexity of the network. This is also known as the

regularization process.

In general the loss function for a deep convolutional network with non-linear activation functions

is highly complex and non-convex. The most popular optimization algorithm used is the mini-batch

stochastic gradient descent (SGD) with momentum. SGD is a first order iterative optimization method

which computes the gradient of the loss and iteratively update the weights in the direction where the

loss decreases as given below:-

θn+1 = θn − η4

4 = µ4+
∂L

∂θn

(2.13)

where η is the learning rate which decides the step size of the update and µ is the momentum factor

which decides how much gradient direction from the previous step should be taken into consideration in

the current update. Note that there exists many weight initialization schemes [53,68] for better learning

the optimal weights.

In order to update the parameters of each layer in CNN network, the backpropagation [147] algorithm

is used which is an application of chain rule for derivatives. Consider the below intermediate compu-

tational block [179] from CNN network with layer f with parameters w with input x and output y. For

simplicity of explanation, we avoided the use of activation functional block.

24

Here, function h computes the loss which is scalar output z. The derivative h ◦ f with respect to x and

w is given as:-

∂z

∂w
=
∂z

∂y

∂y

∂w
(2.14)

∂z

∂x
=
∂z

∂y

∂y

∂x
(2.15)

The above derivatives are back-propagated from each intermediate layer to the input layer using the

chain rule and are applicable for all directed acyclic graphs (DAG) with differentiable layer functions.

To summarize the training process, we require two computational paths which are:-

Forward pass: which takes input x and parameters w and computes the output y.

Backward pass: which takes input x, parameters w and ∂z
∂y and computes ∂z

∂w and ∂z
∂x . Once the gradi-

ents are computed we can use SGD algorithm as shown in Equation 2.13 to update the parameters.

2.2.1.2 Loss Functions

The loss function measures the compatibility between the predictions and the ground truth. Some of

the popular loss functions for classification and retrieval problems are:-

1. Cross entropy loss: L = −
∑

i yi log(ŷi)

Here yi is the one-hot representation for the ith class and ŷi is the probability of prediction of the ith

class as obtained from the network after the softmax layer.

2. Mean square loss: L = 1
2 ||yi − ŷi||

2
2

3. Hinge loss: L = max(0, 1− yiŷi)

In addition to these there exists different loss functions such as negative log likelihood, KL divergence,

cosine embedding, margin based ranking loss etc. which are suited for different class of problems. Note

that almost all loss functions are continuous and differentiable except hinge loss where the sub-gradient

exists.

25

2.2.1.3 Regularization

To generalize well on the unseen examples of the test set and to prevent overfitting on the training

data, there are a couple of regularization methods popularly used in machine learning which are also

applicable in the context of deep learning. In this section, we discuss three such methods from the

literature.

Parameter Norm Penalty

Deep neural networks with numerous parameters typically learn complex non-linear functions that

can easily overfit on the training set. To provide restriction over the learned function and prefer simpler

models, a regularizer in the form of a penalty is added over the norm of parameters. The most popular

one is a L2 norm added in the form of λ||w||2 which was also shown in our earlier equation 2.12. Here

λ controls the amount of regularization needed. This form of regularization is also called as weight

decay since it multiplicatively shrinks the weight vector by a constant factor. The other common form

of weight penalty is using a L1 norm.

Dropouts

Dropouts [163] is a way of stochastic regularization where at each iteration of training, few neurons

are dropped randomly with a probability of p and thereby all connections to that neuron are also made

zero. It breaks the internal symmetry between the layers which causes over-fitting and demands each

neuron to learn an individual activity. While testing, all neuron units are preserved but scaled with a fac-

tor of p. Adding dropouts is similar to learning ensemble of networks which is a form of generalization.

Data Augmentation

One could generalize better if there exists more data. In practical scenarios, this is usually not

that simple because annotations are expensive or even the access to the data is sometimes limited (e.g.

in the medical domain). In such a scenario, data augmentation schemes help in generating data by

transforming the training data in ways specific to a domain. For example, in the visual domain, one

can perform image translation, rotation, scaling which is consistent with the task being considered. One

has to be careful and rely only on label preserving transformations. Injecting noise also helps in both

generating newer data and for bringing robustness in the learned features. Most of the recent state of

26

the art architecture trained for different tasks deploys such data augmentation techniques to improve the

performance.

2.2.2 ConvNet Architectures

We now discuss some of the popular convolutional architectures proposed in the literature. We will

begin with the classical work by LeCun [96] and continue our discussion with some of the prominent

architectures introduced in the recent past.

LeNet-5

As mentioned in Section 2.2, the LeNet-5 architecture [96] is one of the first incarnation of convolu-

tional networks in the form we see them today. The architecture was trained for building the handwritten

digit recognition task and comprised of 3 convolutional layers (C1,C3,C5) which includes 2 alternate

sub-sampling layers (S1, S2) in between and the last conv. layer essentially covers the entire feature

map. Following the last convolutional layer is a fully-connected layer and its output contains 10 hidden

units, one unit for each digit symbol. In contrast to the modern conv. architectures, the sub-sampling

layers (comparable to pooling layers) in LeNet-5 contains trainable parameters and the intermediate

conv. layer (C3) filters did not connect with all feature maps produced from the S2 layer. This was done

with the motivation of breaking symmetry in the network learning, thereby forcing different feature

maps to learn complementary features. The other difference from recent networks is on the output layer

of LeNet-5. It is composed of Euclidean Radial Basis Function (RBF), one of each class. Each of the

RBF units computes a Euclidean distance from the input vector and the parameter vector is hard-coded.

Also, tanh was preferred as the activation function for the conv. and the fully connected layers except

for the output layer.

AlexNet

In 2012, with the seminal work [93] of Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton,

modern-day CNNs marked its entry by winning the ImageNet Large-Scale Visual Recognition Chal-

lenge (ILSVRC) competition. The competition dataset contains roughly 1.2 million training images and

150K test images from 1000 classes. The proposed CNN architecture which was later referred to as

AlexNet successfully demonstrated training of the deep network, having around 60 million parameters

27

on two parallel GPUs. AlexNet contains 5 conv. and 3 fully connected layers, along with max-pooling

layers after 1st, 2nd, and 5th conv. layer. In terms of activation function, it used rectified linear units

(RELU) which do not suffer from the problems of saturation. Saturating units such as tanh and sigmoid

functions typically slows down the network convergence. The paper also introduces local response

normalization layers after the 1st and 2nd conv. layers that do the task of brightness normalization

by normalizing the response of feature maps in a local neighborhood. To reduce overfitting, during

training various data augmentation techniques are performed. These included image translation, hori-

zontal reflection, random crops and altering the intensity of RGB channels. For better generalization,

dropout [163] layers are used successively after the first two fully connected layers. The output from

the last fully connected layer is given to the 1000-way softmax layer.

VGGNet

The success of AlexNet made it clear that going deep is one of the ways to improve performance

and the architecture VGGNet [158] proposed by Simonyan and Zisserman was first among to lead the

race of increasing depth. The proposed work introduced multiple variants of deep architecture starting

with 11 layers to 19 layers. One of the major contributions of VGGNet is the idea of using multiple

smaller filter sizes (3× 3) which could cover larger receptive fields with less computational complexity.

They also use the 1× 1 convolutional layers originally proposed in the work of [99] as a way of adding

more non-linearity to the network with the limited expense of parameters. The VGG16 architecture with

16 weight layers (13 convolutional and 3 fully-connected layers) contains around 138 million trainable

parameters. They also performed multi-scale training by rescaling the image randomly within a certain

range. VGGNet secured the first and second position of localization and classification tasks of the

ILSVRC competition of 2014.

GoogLeNet

In [171], Szegedy et al. introduced a 22 layer deep convolutional architecture named as GoogLeNet.

The proposed architecture consists of multiple inception modules that try to approximate the local sparse

structure using dense components. Fig. 2.5(a) shows the naive inception module which contains mul-

tiple conv. layers in parallel with sizes 1 × 1, 3 × 3, 5 × 5 for multi-scale processing along with max

pooling. It also uses 1× 1 conv. layers for adding the extra non-linearity and dimensionality reduction.

The GoogLeNet architecture avoids using fully connected layers which typically contains the maximum

28

Weight layer

Weight layer

relu

relu

1x1 conv 3x3 conv 5x5 conv 3x3 max pool

Previous Layer

Concatenation

(a) (b)

Figure 2.5 (a) Basic inception module as introduced in [171], (b) Residual learning building block as

presented in [69]

number of trainable parameters and instead uses global average pooling. This limits the number of pa-

rameters in 22 layer GoogLeNet to 5 million which is significantly less than both AlexNet and VGGNet.

The proposed architecture also uses auxiliary classifiers in intermediate layers for better propagation of

gradients to initial layers. In the later set of works [172], the authors improved their architectures with

newer inception modules (v2-v3) with factorized convolutions.

ResNet

In pursuit of going further deep, in [69] the authors report a strange problem referred to as degra-

dation which makes deeper architectures to have a larger test and training error as compared to the

shallower architectures. This was not due to overfitting. To avoid this problem and also enable train-

ing of much deeper architectures, in this work the authors introduce the concept of residual training.

Consider the desired mapping function to be learned as H, the residual learning framework fits another

mapping F := H−x. Therefore the original mapping function is recast into F+x. Fig. 2.5(b) presents

the basic building block of residual learning where it is realized by a feedforward network with short-

cut connections. Note that the shortcut connection does not incur additional parameters. The proposed

module allows learning identity mapping with ease and if the optimal mapping is closer to identity, it

is easier to find by small perturbations. The work also introduces multiple ResNet architectures with

varying depth sizes of 34, 50, 101, 152, etc. ResNet-152 layer is also the winner of 2015 ImageNet

Classification challenge.

29

Figure 2.6 A typical convolutional neural network. The bottom axis shows the level of learned feature

abstraction from a trained CNN network which enables the property of transfer learning.

2.2.3 Transfer Learning

One of the key observations from a trained deep CNN network using a large dataset (e.g. AlexNet [93],

VGGNet [158] trained on imagenet corpus) is that the feature maps obtained at the intermediate layers

are generic in nature and can be utilized for other domain tasks. More specifically there is a progression

from generic to specific features [14, 38, 192] from initial layers to final layers in the network. Fig. 2.6

presents this transition. This key property of a trained convolutional network led to the popular and per-

vasive technique called as transfer learning or fine-tuning. In this setting, a pre-trained network trained

on a related task is adapted [15, 134] to obtain reasonable and even state-of-the-art performance (fea-

tures) for newer tasks. The typical rule of thumb during adaptation is as follows. If the target task has

a relatively small dataset, then fix all weights of the pre-trained network and only retrain the classifier

(final layer). In case of having larger dataset for the target task, then we fine-tune by keeping the old

weights of the pre-trained network as initialization and re-train only the last few layers of the network.

During re-training, the learning rates are either kept same or lower as compared to the ones used while

training the original network. Keeping a lower learning rate avoids network to forget the features which

were learned in the original network with a much larger dataset. These fine-tuned features [134] have

shown comparable and even better results for problems such as scene classification, human attribute

detection, instance retrieval, etc. One of the major advantages of transfer learning is that one may not

require large training data in the target domain since the pre-trained network acts as a good initializer of

weights.

In [192], Yosinski et al. performed an interesting experiment to validate how transferable are the

features in the deep neural network. Their observation are: (i) higher layer features are more specialized

to the original task for which the network was trained, (ii) there existed a co-adaptation among neurons

30

of successive layers which should be taken care while freezing initial layers while transfer learning, (iii)

fine-tuning recovers both co-adapted interactions, and improves generalization to newer tasks.

2.3 Neural Word Embedding

In the domain of text and natural languages, representation learning has majorly focussed on finding

the right vectorial representation for words. Although in this domain, the representations may exist at

different granularities such as phrases, sentences, and documents, in our discussion we limit ourselves

to “words”. Unsupervised word embedding has been quite popular and successful in NLP domain and

became a de facto representation useful for multiple downstream NLP tasks such as machine translation,

sentiment analysis, document clustering, recommendation systems, etc. In this section we will focus

on neural word embedding, embeddings learned using neural networks. However, there exists classi-

cal methods called as topic models including latent semantic analysis (LSA) [35], probabilistic latent

semantic indexing (PLSI) [70] and latent Dirichlet allocation (LDA) [21] which were quite popular and

extremely useful. In literature one could also find related keywords such as word vectors, distributed

representations, semantic representation, however, the most popular usage in recent times is “word em-

bedding” and we will also try to adhere to that in our discussions.

A word in a language in its most basic form is represented as a one-hot vector w ∈ {0, 1}n :∑n
i=1wi = 1. Here n is the size of the vocabulary. Such a sparse word vector is a valid feature

for a word and quite useful for building a vector space model of a document using a bag of words

representation. However, the one-hot feature in itself does not convey anything useful other than its

presence. One would ideally expect to extract useful properties, motivated by the linguistic traditions

which dictate the usage of words and its similarity with other words. For example, the word “find”

and “finding” are related to each other by their common root. The words “college” and “university”

are related to other since both are related to educational institutions. According to the distributional

hypothesis [67] theory, the words that occur in the same context tend to have similar meanings. In other

words, “a word is characterized by the company it keeps”. Here, the scope of the context changes in

different approaches wherein traditional topic models uses context as the entire document whereas in

recent word embedding methods the context is restricted to few ngrams or small windows of words.

Before we delve into different neural word embedding techniques, we first bring our discussion on

31

the fundamentals of language modeling formulation which forms the underlying task in many of these

techniques.

Notations: Let’s assume our corpus contains T words w1, w2, . . . , wT in a sequence and the number of

unique words in the vocabulary is |V |. Also, let vw, v′w represent the input and output word embedding

for a word w. The role of input and output embedding will be discussed in word embedding techniques.

2.3.1 Language Modelling

A language model defines a probability distribution of words in a language. Given a set of words

in a sequence, a language model assigns a probability which measures the validity of that sentence in a

language. Using chain rule, one can formulate the problem as below:

p(w1, . . . , wT) =
∏
i

p(wi|w1, . . . , wi−1) (2.16)

Under Markov assumptions, we can approximate the above probability by taking into context only the

last n words as below:

p(w1, . . . , wT) =
∏
i

p(wi|wi−1, . . . , wi−n+1) (2.17)

Under the classical technique of ngram based language modelling, we represent the probability of words

based on the frequencies of the respective ngrams:

p(wi|wi−1, . . . , wi−n+1) =
count(wi, wi−1, . . . , wi−n+1)

count(wi−1, . . . , wi−n+1)
(2.18)

Traditionally, ngram based language modelling also uses smoothing techniques such as Laplace smooth-

ing or Kneser-Ney [117] to deal with unknown sequence of words during testing.

Language modeling finds applications in spell correction, machine translation, speech recognition

and building optical character recognizers. There exist two forms of evaluations: implicit and explicit

for a language model. In explicit evaluation, we measure the performance of the downstream application

which utilizes it. For example, in an optical character recognizer, one would measure in terms of word

accuracy before and after using the language model. An implicit evaluation technique uses the concept

of perplexity, borrowed from the domain of information theory. Perplexity is the inverse probability of

the test set, normalized by the number of words.

PP (W) = p(w1, . . . , wT)−
1
T (2.19)

In general, lower the perplexity, better is the model.

32

Hidden layers

Input
Embedding

Matrix

Output
Embedding

Matrix

word
i-1

word
i-2

word
i-n+1

Figure 2.7 Neural probabilistic language model.

2.3.2 Neural Probabilistic Language Model

In [18], Bengio et al. introduced the notion of distributed representation of words which allows to

learn a probability function for a sequence of words in a language. Here, both the word representation

and probability function is learned jointly using a neural network. Fig. 2.7 presents the neural archi-

tecture comprising of a shared projection layer, a hidden layer with tanh non-linearity and an output

softmax layer. Considering the neural network as a function approximator, the objective is to learn a

function f(wi, wi−1, . . . , wi−n+1) = p(wi|wi−1, . . . , wi−n+1). Here the function is decomposed into

two parts as follows:

f(i, wi−1, . . . , wi−n+1) = g(i, C(wi−1), C(wi−2), . . . , C(wi−n+1)) (2.20)

where C(w) is the mapping of a word w ∈ V to a vector vw ∈ Rd, also referred as input word

embedding. This is implemented as shared layer which is stored in the form of the parameter matrix

of size |V | × d. The function g provides a conditional probability distribution of a word wi given its

context vectors C(wi−1), C(wi−2), . . . , C(wi−n+1). The parameters of this function corresponds to the

weights present in the input to hidden layer which could be represented by a matrix H with dimensions

h× (n− 1)d and hidden to output layer which corresponds to weight matrix U with dimension h×|V |.

Here, h is the number of hidden layer neurons. Let the overall parameters in the network correspond to

θ = (C,H,U) excluding biases, then the training objective will be to find the best θ which maximizes

the log likelihood L:

L =
1

T

T∑
i=1

log f(i, wi−1, . . . , wi−n+1; θ) +R(θ) (2.21)

33

where R(θ) is the regularization term, typically used as a weight decay parameter. In order to ensure

function f(.) to represent as probability, a softmax output layer is used which guarantees the scores to

sum to one. Therefore,

p(wi|wi−1, . . . , wi−n+1) =
exp(hT v′wi

)∑
wk∈V exp(hT v′wk

)
(2.22)

Here, h represents the hidden representation and v′wi
represents the output embedding which is stored in

the output weight matrix of U for each word wk of the vocabulary. Note that in this work, authors iden-

tifies that the intermediate hidden layers can either use a feed forward network or a recurrent network.

Also the major computational complexity in training these network is the final softmax layer which is

proportional to number of words in the vocabulary and could easily span to millions of words.

The above architecture and its basic components such as the shared input embedding layer, and the

intermediate hidden layers remain the basic underlying framework for many word embedding models.

Almost all neural architectures for NLP tasks which takes input as words would require a form of input

embedding layer which converts discrete textual data into a continuous form and therefore requires input

word embedding. The major distinction among these methods comes from whether they learn the input

embedding explicitly or implicitly. The input embedding learned for a particular task may not be general

enough to be useful for other tasks. Among the most general task is language modeling which provides

semantically rich word embedding. We now present other architectures in this space which tries to

either avoid softmax or approximate it for training on the large corpus and leads to much effective word

feature vectors.

2.3.3 C&W model

Collobert and Weston in their work [32] successfully demonstrated the role of shared input em-

bedding for different NLP tasks such as part-of-speech tagging, chunking, named entity recognition,

semantic role labeling, etc. In their formulation for language modeling, instead of using the softmax

layer they used a pairwise ranking criterion as given below:

L =
∑
s∈S

∑
w∈V

max{0, 1− fθ(s) + fθ(s
w)} (2.23)

Here S is the set of valid sentence windows from the training corpus, and sw is a corrupted sentence

where the middle word is replaced by w taken from the vocabulary. By minimizing this objective, the

network learns to output higher scores for valid sentences as compared to invalid ones. The formulation

34

also uses a margin of 1. The word features obtained in the shared layer was able to cluster semantically

similar words and proved quite useful for solving other NLP tasks.

2.3.4 Word2Vec

One of the most popular recent methods in word embedding is word2vec proposed by Mikolov et

al. in their seminal works [112, 113]. Word2Vec simplifies previous embedding models by explicitly

addressing the problem of learning efficient representation for words. It removes the expensive hidden

layer (hence not a deep architecture) and enables the language model to consider the additional context.

The work also proposes newer training strategies and approximates the softmax based loss function by

using a technique called negative sampling which is found to be extremely fast and useful for training

with a corpus of size in billions of words. Word2Vec introduced two different architectural variants that

utilize different contextual information.

Continuous Bag-of-Words Model (CBOW)

One of the first relaxation in the language modeling framework that word2vec introduced is that both

past and future words could be taken for learning word embeddings. In CBOW model, n words are taken

from both before and after the current word wi. All these context words are projected into the same

position and averaged to predict the current word wi. Under the bag assumption, the order of the words

is also ignored. The objective function is given below:

L =
1

T

T∑
i=1

log p(wi|wi−n, . . . , wi−1, wi+1, . . . , wi+n) (2.24)

Continuous Skip-gram Model

In the skip-gram model, the roles are flipped and instead of predicting the center word, the surround-

ing words are predicted using the center word. The corresponding objective function is given as:

L =
1

T

T∑
i=1

∑
−n≤j≤+n,6=0

log p(wi+j |wi) (2.25)

In the basic formulation of the above variants, a softmax function is used to compute the probability

of the current or context word. For example, in skip-gram formulation this would be given as:

p(wi+j |wi) =
exp(vwiv

′
wi+j

)∑
wk∈V exp(vwiv

′
wk

)
(2.26)

35

Note that, in the above equation instead of using hwe use vwi which refers to the input embedding vector

for word wi since word2vec has removed the notion of hidden layer. The architecture only contains the

input and output word embedding matrices.

Training

In [113], Mikolov et al. proposed efficient schemes for training word2vec models using computa-

tionally efficient approximation as compared to softmax. The first technique is a hierarchical softmax

which uses a binary tree representation for the output layer by splitting it into intermediate nodes and

leaves. The leaves contain the words from the vocabulary and intermediate nodes represent the relative

probabilities of its child nodes. The major computational advantage here is that instead of computing

|V| output nodes to obtain the probability distribution, one has to evaluate only log2(|V |) nodes.

Another technique proposed in the above work is using a sampling-based approach which avoids the

need for computing expensive softmax. Here the authors introduce a simplification of noise contrastive

estimation [64] approach referred to as negative sampling. The idea is to learn a model that differentiates

data from noise using logistic regression. The idea is similar to the one proposed in Collobert and

Weston as discussed in section 2.3.3. The negative sampling objective to maximize is given as:

L = log σ(v′wO

T vwI) +
k∑
i=1

Ewi∼Pn(w)

[
log σ(−v′wi

T vwI)
]

(2.27)

Here, vwI , v
′
wO

refers to input and output embedding for words wI , wO respectively, and σ(.) refers to

the logistic function. The formulation is designed to distinguish the target word wO from k noise words

which are sampled from the distribution Pn(w) using logistic regression. The paper uses a unigram

distribution U(w) raised 3/4th power to sample noise words. Also, k is chosen between 5−20 samples.

The word embeddings produced by word2vec encodes general semantic relationships and is now

being used as the de facto input representation for most of the NLP tasks. Moreover, the learned repre-

sentation expresses linear relationships such as the famous example king −man + women = queen

which is quite popular in the community.

2.3.5 Subword Models

Most of the previous models represent each word using a distinct vector. This ignores the internal

structure of words, thereby missing the details on morphological features which is quite important in

36

many languages. Moreover, a word which is not present in the training corpus, one cannot associate any

word vector. Such rare words in a language make it difficult to learn good quality word representation. In

order to solve these problems, recent methods in this domain use the notion of sub-word level embedding

which helps to compose the embedding of entire words by exploiting the internal structure present in

them. We discuss one such popular method which extends word2vec to subword level as presented

in [24].

In [24], Bojanowski et al. abstract the notion of similarity between word embedding using a scoring

function swhich maps pairs of (word, context) to real-valued scores. Let us rewrite Mikolov’s skip-gram

objective using negative sampling in terms of s as below:

L = log σ(s(wO, wI)) +
k∑
i=1

Ewi∼Pn(w) [log σ(−s(wi, wI))] (2.28)

In their work, each word w is represented as a bag of character n-grams. It also contains special

symbols <,> to mark the beginning of a word and its ending. This allows differentiating between

prefix and suffix of the character sequences. For example: for the word school, its 3grams would be

{< sc, sch, cho, hoo, ool, ol >} and the set will also include the entire word < school >. In their

implementation, the authors use n from 3-6. Let GS be the dictionary of an entire set of n-grams

including the unique words from the corpus and let Gw ⊂ GS are the n-grams present for word w.

Let zg be the vector representation to each n-gram g, a word is represented by the sum of the vector

representations of its constituent n-grams from this dictionary.

s(wI , wO) =
∑
g∈Gw

zTg v
′
wO

(2.29)

The above model allows sharing the representations across words. Thereby providing better embed-

ding for rare words that are common in morphologically rich languages. Also, for out-of-vocabulary

words whose constituent n-gram representation is available, we are able to compose its embeddings.

The above discussion on word embedding presents a few major techniques from the literature which

has been used in our work for learning semantic representation for word images. Interested readers are

recommended to refer to a recent survey presented in [10] for knowing other methods in this space.

37

2.4 Image Retrieval

Given the representation of an image, one of the fundamental tasks is image retrieval. This would

validate the effectiveness of the representation and also enables content level access from the corpus

of images. In an image retrieval task, given a query in the form of an exemplar image or a textual

string, we need to retrieve all the relevant images in a ranked fashion based on its similarity or distance

from the query. In this section, we discuss popular distance measures computed in the representation

space. Further, we also present the important evaluation measures used in the information retrieval IR

community for measuring the performance.

2.4.1 Distance Measures

In the case of fixed size representations such as BOW for images, neural codes, etc. there exist

different distance measures to compute the similarity between a query and the images present in the

corpus. Let use denote h1, h2 as representations for two different images, some of the popular distance

measures are:

• Cosine distance: D(h1, h2) = 1− <h1,h2>
||h1||||h2||

• L2 distance: D(h1, h2) =
√∑M

i=1(h1(i)− h2(i))2

• Chi-Square distance: D(h1, h2) =
∑M

i=1
(h1(i)−h2(i))2
(h1(i)+h2(i))

• Hellinger distance: D(h1, h2) =
∑M

i=1(
√
h1 −

√
h2)

2

Here, the first two distance measures (cosine and L2) are generic in nature while the chi-square mea-

sure is more appropriate for finding distances between histograms. The L1 normalized BOW based

representation can be assumed as probability distribution and therefore the class of distance measures

which compare two probability distributions can be used instead of the former ones. Hellinger distance

measure is one such example.

Another popular distance metric is the Earth Mover Distance (EMD) [146], which is computes the

dissimilarity between two probability distribution by solving the below optimization problem. Let S =

{ws1 , ws2 , . . . , wsm} be the source distribution with ‘m’ elements and let S = {wq1 , wq2 , . . . , wqn} be

the target distribution with ‘n’ elements. EMD is formulated as optimizing the flow between the two

38

distribution by minimizing the cost given as:

min
fi,j

m∑
i=1

n∑
j=1

fi,jdi,j

fi,j ≥ 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n
n∑
j=1

fi,j ≤ wsi for 1 ≤ i ≤ m

m∑
i=1

fi,j ≤ wqj for 1 ≤ j ≤ n

m∑
i=1

n∑
j=1

fi,j = min(

m∑
i=1

wsi ,
n∑
j=1

wqj)

(2.30)

The above formulation is posed as a transportation problem from source to destination between a

supplier and a consumer. Here, the weights of the suppliers define the respective amount of supplies

present with each supplier, while the weights of the consumer are the requirement of supplies for each

consumer. The distance between each supplier and consumer is defined using the di,j variables, and the

flow variables (fi,j) need to be optimized, which defines how much supply each supplier should send to

each consumer. The first constraint defines the non-negativity of supply from a supplier to a consumer.

The second constraint defines the total supply sent from each supplier to all consumers should not

exceed beyond the capacity of each supplier. Similarly, the third constraint defines the amount of supply

received by each consumer should not exceed its requirements. The last constraint restricts the overall

flow to be the minimum to the overall capacity of all suppliers and the overall requirement of all the

consumers together. In the case of normalized BOVW representation of two images, di,j is defined as

the distance between the ith and jth visual word in the Rd space and the weights are the representation

of codes for each visual word. Although EMD is a robust similarity measure, it is computationally

demanding to solve the linear optimization problem for finding the distances between each pair of

images.

Another popular similarity measure between a pair of temporal and variable-length sequences is de-

fined using Dynamic Time Warping (DTW) [150]. It was originally developed as a time series alignment

algorithm to solve the speech recognition problem, and uses the dynamic programming algorithm. In

the domain of document images, a word can be assumed as a temporal sequence of features of variable

length and DTW based distance measures were quite popular in classical methods such as [133]. How-

ever the computational complexity of O(N2) is a major challenge while searching in large databases.

39

2.4.2 Evaluation Measures

The standard evaluation measures [107] used in the IR domain are based on precision and recall of

the ranked list. Given a ranked list for a particular query along with the list of ground truth occurrences

in the corpus, precision is defined as the ratio between the number of relevant instances retrieved out of

all the retrieved instances. The recall is defined as the number of relevant instances retrieved out of all

the relevant instances in the ground truth. In formal terms, these are given as:

Precision (P) =
TP

TP + FP
(2.31)

Recall (R) =
TP

TP + FN
(2.32)

Here, TP, FP, FN represent the true positives, false positives and false negatives rate respectively.

There are two popular ways to combine precision and recall into a single unit which are:

• F-measure: It is the harmonic mean between precision and recall and given as F-Measure = 2. P.RP+R

• Average precision (AP): AP is calculated as the area under the precision and recall curve.

In some cases, we also use a measure called precision at N (prec@N) which measures the number

of relevant results obtained in the top-N instances in the ranked list.

Another methodology used in the IR domain for evaluating graded similarity is normalized dis-

counted cumulative gain (nDCG) [77]. The discounted cumulative gain (DCG) at position p is given

as:

DCGp =

∑p
i=1(2

reli − 1)

(log2(i+ 1))
(2.33)

where reli is the ground truth relevance for the image at rank i. The normalized measure nDCG is

defined as DCGp/IDCGp, where IDCG is the DCG measure for the ideal ranking. nDCG values

scale between 0.0− 1.0, with 1.0 for the ideal ranking.

2.5 Word Image Representation and Spotting

Learning representation for word images has been traditionally associated to accomplish the word

spotting task. Word spotting [106] refers to locate a keyword (e.g word image) given in the form of a

query which is either an exemplar word image from the underlying corpus or could be the corresponding

40

Figure 2.8 Illustration of segmentation based word spotting task. Given a query word, we retrieve all

relevant word images from a pre-segmented corpus of document images. Here each word image and the

query is represented using an appropriate feature vector which is denoted by a histogram.

text itself. The former setting is referred to as “query-by-example” and the latter is called “query-by-

text”. The method is inspired by the traditional IR techniques and is widely used in both audio and

vision communities. The basic idea is to represent word images using appropriate features. Fig. 2.8

presents an illustration of the segmentation-based word spotting task. Here the corpus of document

images is pre-segmented into words and each word image is represented using an appropriate feature

representation which encodes its lexical content. Given a query word image or its textual string, it is

also projected onto the same feature space where the corpus word images are embedded. The ranked

images are given by a matching function which finds similarity using an appropriate distance metric.

There are numerous successful attempts done in the past which focus on different aspects of the

problem such as the modality of data (printed, handwritten and scene text), nature of representation ei-

ther fixed or variable length, and type of embedding schemes. We start our discussion on related works

with an introduction of popular datasets used in the community to evaluate word spotting and recogni-

tion methods. In our later chapters, we would also be using these datasets to evaluate and compare the

proposed representation of thesis with related works. Our discussion on related works is broadly split

into four major parts: (i) the classical methods built using variable length representation schemes, (ii)

41

Figure 2.9 Sample word images taken from the popular datasets used in the document image commu-

nity. (a) The IAM Handwriting Database, (b) George Washington (GW), and (c) Botany (top row) and

Konzilsprotokolle (bottom row).

fixed length representation which are achieved using bag of words framework, (iii) learned representa-

tion using, different classifier models built on top of handcrafted features and using the deep learning

networks, and (iv) segmentation-free approaches.

2.5.1 Word Image Datasets

In this section, we present the popular datasets used in document image analysis community for

evaluating word image representation. Table 2.1 shows different datasets and their statistics in terms

of the number of words and the number of writers in case of handwritten documents. Fig 2.9 presents

sample word images taken from these datasets.

The IAM Handwriting Database [109]: It includes contributions from 657 writers making a total of

1,539 handwritten pages comprising of 115,320 words and is categorized as part of modern collection.

The database is labeled at the sentence, line, and word levels. We use the official partition for writer

independent text line recognition that splits the pages into training, validation, and test sets which are

writer independent.

Dataset Historical #Words #Writers

IAM No 1,15,320 657

GW Yes 4,894 1*

Botany Yes 20,004 1*

Konzilsprotokolle (Konz.) Yes 12,993 1*

Table 2.1 The list of handwritten datasets used in this work. Here GW, Botany, and Konzilsprotokolle

datasets are historical documents written primarily by a single author along with a few assistants(*).

42

George Washington (GW) [133]: It contains 20 pages of letters written by George Washington and his

associates in 1755 and thereby categorized into historical collection. The images are annotated at word

level and contain approximately 5,000 words. Since there is no official partition, we use a random set

(similar to [9]) of 75% for training and validation and the remaining 25% for testing.

Botany and Konzilsprotokolle [131]: These two datasets are parts of ICFHR 2016 Handwritten Key-

word Spotting Competition [131]. The original competition contains data both segmentation based and

free scenario. We took only the segmentation based data which contained cropped word images split

into training and test sets. There were also three partitions of training sets small, medium, and large.

Here we took the largest partition for conducting experiments.

In this thesis, we will be using these datasets along with in-house synthetic datasets to evaluate and

compare the proposed representation.

2.5.2 Related Works

Fig 2.10 presents an evolution of some of the key methods proposed in the space of word spotting,

which uses some of the recent representations proposed for handwritten word images. It also includes

the work proposed as part of this thesis, referred to as HWNet. As one can clearly notice, with the

introduction of deep learning, there has been a significant boost in the performance. The proposed

representation scheme of this thesis using HWNet v2 architecture further boosts the performance in this

space. In Table 2.2, we present a quick overview of the related works that we discuss in this section

based on its representation type. One can also refer to the detailed survey presented in [50] which

reviews major representation schemes proposed for the task of word spotting.

2.5.2.1 Classical Representation

Learning holistic representation for word images was popularized as word spotting which was orig-

inally proposed in [139] for speech processing. Within the document community, initial attempts in

this space mostly focused on variable length representations of word images by considering it as a tem-

poral sequence. Most of these methods used profile features [106, 108, 132] which are computed at

each column of the word image and are summarized using various pixel level statistics. Dynamic Time

Warping (DTW) based algorithms were found to be useful for matching variable length representations

and is quite popular in speech [115, 151] and other sequence matching problems. In [132], Rath et al.

used profile features namely vertical profile, upper & lower word profile, and background to ink transi-

43

Figure 2.10 Evolution of word spotting methods from the perspective of different word image repre-

sentation schemes. The evaluation is conducted on the IAM [109] dataset using mean Average Precision

(mAP).

tions. In [16, 111], profile features were combined with the shape based structural features for a partial

matching scheme using DTW. Although these features are fast to compute, it is susceptible to noise and

common degradation present in documents.

With the popularity of the local gradient features such as SIFT [102], HOG [34] which describes

a patch using histograms of edge orientations computed from a gradient image, the features are less

susceptible to stray pixels and variations in brightness and contrast. Methods such as [137,175] adapted

local gradient features for word spotting where [175] used a continuous DTW algorithm for partial

word matching from the line images and [137] used Hidden Markov Model (HMM) based classification

method. Most of the features discussed above are not robust to different fonts, writing styles and required

careful image pre-processing techniques such as binarization, slant and skew correction which remain

hard for handwritten and historical documents. Moreover, the methods such as DTW and HMM based

scheme of matching variable length representations do not scale to large datasets due to the higher time

complexity. Hence, the later methods appreciated more on fixed length representations built on top of

highly engineered features proposed in computer vision.

2.5.2.2 Bag of Word Representation

Fig. 2.11 presents the typical BOW pipeline for learning representation on word images. As explained

earlier in this chapter on our discussion of classical image representation using BOW in Section 2.1.1,

44

Method Representation

Profile [132]

Variable Length
Profile+Moments [108]

Profile+DFT [94]

Slit HoG [175]

Local Gradient Histogram [137]
HMM

SIFT [142]

SIFT [6, 7, 148, 154, 189] BoWs

SIFT [8] Fisher

SIFT [9] PHOC Attributes

Deep Learning [90] Neural Codes

Deep Learning [85, 166, 167, 186] PHOC Attributes

Deep Learning [54] Levenshtein Embedding

Table 2.2 Overview of major methods proposed in the literature, summarizing different types of word

image representation schemes.

there exists multiple stages starting from local feature detection and extraction, codebook generation,

encoding and spatial pyramid pooling. The top part of the figure visually demonstrated each of this

stage, while the bottom part visualizes the corresponding feature computation. The popularity of bag

of words (BOW) [33, 161] framework using local gradient features such as SIFT and HOG, led to its

proliferation to document images [6, 7, 148, 149, 154, 189]. Rusinol et al. [148, 149], presented a patch

based framework using BOW histograms computed from the underlying SIFT descriptors. The histogram

based representation was further projected onto a topic space using latent semantic indexing (LSI) [35],

where the latent topic space is assumed to preserve the lexical content of word images. In [154, 189],

BOW based representation was adapted for word image retrieval for machine printed documents using

standard keypoint detectors such as Harris [66], FAST [141] corner detectors, while the local features at

the keypoints were computed using SIFT. Due to the fixed length and sparse nature of the representation,

the matching was done using cosine distance and an inverted index was used for faster retrieval. Al-

davert [7] et al., presents a detailed survey for BOW based representation for handwritten word spotting

with its analysis on the effect of codebook size, choice of encoding, and type of normalization. In a

45

Figure 2.11 Bag of words based pipeline for learning word image representation.

similar line of work using local features and codebook, Almazán et al. [8] uses an exemplar-SVM [105]

for representing a query and performs the initial scoring of candidate words. Given the initial matches,

the list is re-ranked using a Fisher vector based representation [124] which is a generalization of BOW

using higher order statistics. In general, the unsupervised nature of learning of BOW based methods

make them directly applicable to historical databases where the annotation is hard and costly. However,

the limitation of local features (SIFT,HOG) to capture the larger part level information from word images

restricted these methods to work only for limited writer datasets where the variations are less.

Fusion of OCR and BoWs

In one of our earlier works [92] in this space, we propose a search scheme which fuses search results

obtained from noisy OCR text and word spotting using BOW representation. In this work, we exploit the

fact that in terms of search performance, OCR has a high precision while BOW has a high recall. We

use a modified edit distance which takes into account the confusion of different character classes of the

OCR based recognizer to re-score the results obtained using BOWs. Our fusion scheme demonstrated an

improvement of search performance on the large corpus of the Digital Library of India pages in Hindi

and Telugu languages.

2.5.2.3 Learned Representations

Most of the previous set of works in word image representation, either uses hand-engineered features

or learns it in an unsupervised fashion. In recent methods, supervised features have gained greater

46

Level 0

Level 1

Level 2

Here each dimension is
referred as an word attribute
which signifies a lexical
property.

ICFHR

Figure 2.12 Pyramid Histogram of Characters (PHOC) [9]

attention due to their superiority and robustness. We now present one of the major works in this space

on word attributes and later discuss the most recent methods using deep learning.

Word Attributes

In the domain of word spotting, the concept of word attributes [9,125] using the pyramidal histogram

of characters (PHOC) has been a key contribution to the community. An attribute representation such as

PHOC becomes the common link that connects a word image to its text. PHOC attributes are calculated

by dividing the word into multiple pyramid levels and at each level, the histogram of characters and

bi-grams are computed. The final representation is the concatenation of each level of representation.

The intuition behind the attribute is that it denotes the presence/absence of a character at a particular

spatial position. Figure 2.12 presents an illustration of PHOC feature computation.

Similar to the textual representation, PHOC representation for word images could be derived from

the scores of attribute level binary classifiers. In [9], Almazán et al. uses Fisher features of word images

for learning word image attributes while PHOC for text labels are extracted by the spatial position of

each character. Fig. 2.13 presents the attribute embedding pipeline as proposed in [9]. Here f(I), φI(I)

represents the Fisher feature for the word image I and its corresponding PHOC based attribute repre-

sentation. Given the attribute level representation for both word images (φI(I)) and text (φy(Y)), the

work also proposes a common subspace regression formulation with a closed-form solution to project

these representations onto a common subspace. Here, ψI(I), ψy(Y) represents the common subspace

representation for image I and its label Y respectively. The projection effectively allows to capture the

correlation among the attributes and leads to better representation than the naive comparison. Although

47

Figure 2.13 The word attribute embedding framework as proposed in [9]. Here, both the word images

and its corresponding label are first embedded into an attribute space defined using PHOC and later

projected onto a common subspace.

the word attribute framework is generic, the underlying handcrafted features limit the robustness of

the learned holistic features. In recent methods, this is addressed using deep neural networks to learn

features in an end to end hierarchical manner which results in better generalization.

Deep Learning

With the advancements in deep learning, there is a paradigm shift in feature engineering where fea-

tures are now learned during the training process which customizes itself to the domain of training data.

Among different types of neural networks, deep convolutional neural networks (CNN) [93, 158, 171]

have revolutionized the way features are learned for specific tasks. In the domain of word images,

Jaderberg et al. [73, 74, 76], proposed three different architecture models (char, nGram and dictionary

words) for scene text recognition. Taking inspirations for word attributes, for handwritten images, Poz-

nanski et al. [130] adapted VGGNet [158] for recognizing PHOC attributes by having multiple parallel

fully connected layers, each one predicting PHOC attributes at a particular level. In similar spirits,

different architectures [166, 168, 186] were proposed using CNN networks which embed features into

different textual embedding spaces defined by PHOC. In [166], Sudholt et al. proposes an architec-

ture to directly embed image features to PHOC attributes by having sigmoid activation in the final layer

and thereby avoiding multiple fully connected layers as presented in [130]. It is referred to as PHOC-

Net, which uses the final layer activation to derive a holistic representation for word spotting. In the

later set of works [167, 168] from the same group, PHOCNet was adapted with temporal pooling layer

(TPP-PHOCNet) and evaluated under different loss functions and optimization algorithms which further

improved the word spotting performance. In [186], the authors propose a two stage architecture where

48

a triplet CNN network is trained to reduce the distance between the anchor word image and a similar

labeled (positive) word image, while simultaneously increasing the distance between the anchor and

negative labeled word image. In the second stage, the learned image representation is embedded into

a word embedding space (PHOC, DCTOW, ngram etc) using a fully connected neural network. In the

above methods where the target embedding is an attribute space, one can query the representation space

either using query-by-string or query-by-example setting.

2.5.2.4 Segmentation-Free Approaches

In addition to the different representation schemes, one can also classify the methods in terms of

segmentation-based and segmentation-free word spotting approach. Most of the methods presented so

far belong to the setting where the segmentation of words is available in the form of ground truth. In

segmentation-free setting, the input is a page image and the underlying method first proposes potential

word hypothesis before computing its representation. In literature, one can place the segmentation-free

approaches into three broad categories. The first category of methods [8, 48, 142, 148] use a sliding

window technique where the regions are proposed along a regular grid. This typically results in a dense

extraction of bounding boxes and are computationally expensive to process. The second category of

methods utilize connected components [49, 84] along with mathematical morphological operations to

extract characters/words from the page image. Most of these methods work in a bottom-up fashion

and utilize certain rules to extract the final bounding box of words. The number of proposals obtained

using this approach is far less than sliding windows, however, they are sensitive to page quality and

degradation as seen in historical documents. In [143], authors propose a hybrid approach where the

document image is first subjected to dense text detection using sliding windows and later the word

hypothesises are computed using the set of extremal regions. The third category of methods [13, 187,

188] in the segmentation-free setting is inspired by the recent success of region proposal based object

detection techniques such as Faster R-CNN [136]. The Ctrl-F-Net [187] model proposes an end to end

trainable detection and embedding network. It utilizes a localization layer to predict potential word

proposals along with its wordness score. The initial predictions are further filtered and presented to the

embedding network. The method also utilizes a complementary external region proposal method called

as Dilated Text Proposals (DTP) to improve the overall recall of the system. The authors extended their

method in [188] by simplifying the architecture (Ctrl-F-Mini) by only utilizing the external proposals

computed using DTP. This performs faster and better in certain situations than the original architecture.

49

2.6 Summary

In this chapter, we presented the necessary background from computer vision, information retrieval

and natural language processing domains. We present our contributions in subsequent chapters by taking

insights from the existing literature. In the last section, we also presented related works from word image

representation and spotting domain. Many of these are directly related to our problems of interest and

will be compared in our experimental analysis. Our thesis contributions build on top of modern CNN

architectures for learning word image representation. In the following chapters, we present in detail

each of our contributions.

50

Chapter 3

HWNet: Word Image Representation

51

In this chapter, we present a framework for learning an efficient holistic representation for handwrit-

ten and printed word images. As defined in the Section 1.2.2, the term “holistic” in this thesis refers

to something which captures the whole property (restricted to lexical property in this chapter) by im-

plicitly extracting the information from the parts. In case of word images, one could consider the parts

to be characters and n-grams. The proposed method uses a deep convolutional neural network with

traditional classification loss. The major strengths of our work lie in: (i) the efficient usage of synthetic

data to pre-train a deep network, (ii) an adapted version of the ResNet-34 architecture with the region of

interest pooling which learns discriminative features for variable sized word images, and (iii) realistic

augmentation of training data with multiple scales and distortions which mimics the natural process of

handwriting. We further investigate the process of transfer learning to reduce the domain gap between

synthetic and real domain, and also analyze the in-variances learned at different layers of the network

using visualization techniques proposed in the literature. Our representation leads to a state-of-the-

art word spotting performance on standard handwritten datasets and historical manuscripts in different

languages with minimal representation size. We also present results on printed document datasets in En-

glish and Indic scripts which validates the generic nature of the proposed framework for learning word

image representation. This work has been previously presented as part of our publications [90, 91].

3.1 Introduction

Feature engineering has been a key investigation for any pattern recognition problem. In the domain

of document images, the problem of defining an optimal feature which describes a word [7,9,106,149],

character/patch [137,144,175] has been an interesting quest in the community over the last two decades.

With the improved representations over time, there has been a significant impact on the larger goals

of the community such as recognition and retrieval of documents, script recognition, layout analysis,

etc. In the domain of word images, initial features proposed were based on pixel level statistics [108,

132] which worked only on limited settings of the writers and font variations. Later, features such

as scale-invariant feature transform (SIFT) [102] and histogram of gradients (HOG) [34], were adapted

in document image community to build word level representations. These features are invariant to

scale, translation, and common degradation. The bag of visual words (BOW) [33, 161], were built using

these local features along with advanced encoding schemes such as Fisher [123], locality constrained

linear coding (LLC) [184], and sparse codes [191]. These features along with the learned models such

52

Figure 3.1 Sample nearest neighbor word images in the learned representation space. Here we show

examples from historical datasets which contains degradation and irregular segmentation of words. One

can also notice invariance of representation in terms of handwriting variations and noise in segmentation.

as [9], obtained state-of-the-art word spotting and recognition for historical manuscripts and multi-writer

handwritten documents.

More recently, there has been a paradigm shift from ‘feature engineering’ to ‘feature learning’ due to

the resurgence of neural networks. It is mostly credited to the revival of convolutional neural networks

(CNN) [93], availability of large scale of annotated data [36], and increased computing power using

graphical processing units (GPU). The features are learned on the fly during training and gets adapted to

the task of interest. Networks trained on large data sets also learn generic feature representation that can

be used for related tasks [135], and in many cases, have reported state-of-the-art results as compared

to the handcrafted features. When the data is limited, fine-tuning a pre-trained network has also been

demonstrated to be very effective. In the domain of document images these features have shown bet-

ter performance for word spotting [90, 166, 168, 186], recognition [130], document classification [65],

layout analysis [28], etc. In this work, we propose a deep CNN architecture named as HWNet v2, for

the task of learning an efficient word level representation for handwritten documents which can handle

multiple writers and, is robust to common forms of degradation and noise. We also show the generic

nature of the proposed representation and architecture which allows it to be used as an off-the-shelf

feature for printed documents and in building state-of-the-art word spotting systems for various lan-

guages. In order to derive a compact representation for an efficient storage and retrieval, we evaluate

the performance of compressed feature codes, where we push the compression to an order of 16-to-32

dimensions with minimal drop in performance. Fig. 3.1 shows sample word images which are consid-

ered as nearest neighbors in the proposed representation space. The shown images are quite challenging

in terms of handwriting variations, distortion created due to scanning, and irregular segmentation which

are common in historical manuscripts. These images are taken from the test sets of the datasets used in

this work, which are explained more in detail in Section 3.6.

53

Rank

Lo
g

Fr
eq

ue
nc

y

(a)

Synthetic Images Real Images

(b)

Figure 3.2 (a) Distribution of words in the IAM dataset. Here the ‘x’ axis corresponds to different

words in the vocabulary which is sorted (in descending order) based on its frequency in the corpus. This

is referred as ‘Rank’, while the ‘y’ axis shows the actual frequency in log units. (b) Sample word images

from the IIIT-HWS dataset created as part of this work, to address the lack of training data for learning

deep CNN networks.

3.2 Handwritten Synthetic Dataset

Quality data [36,43] has always played a pivotal role in the advancement of pattern recognition prob-

lems. Some of the key properties for any dataset are: (i) a good sample distribution which mimics the

real world unseen examples, (ii) quality of annotation, and (iii) scale. With the success of deep learn-

ing based methods [73, 93, 158, 171], there has been a surge in newer supervised learning architectures

which are ever more data hungry. These architectures have millions of parameters to learn, thereby need

a large amount of training data to avoid over-fitting and to generalize well. In general, data creation is a

time consuming and expensive process which requires huge human efforts. More recently, an alternative

form of data generation process with minimal supervision is getting popular [73, 140, 145], which uses

synthetic mechanisms to render and annotate images in an appropriate form. The simple idea of gener-

ating data synthetically allows overcoming the challenges in obtaining the data. In this work, we address

the need for large scale annotated datasets for handwritten images by generating synthetic words with

natural variations. Fig. 3.2 (b) shows sample handwritten word images generated using the proposed

framework which looks quite natural and comparable with its counterparts from the real world which

are shown in the last column of the figure.

Some of the popular datasets in handwritten domain are IAM handwriting dataset [109], George

Washington [45, 106], Bentham manuscripts [27], Parzival database [45] etc. Except for IAM, the re-

maining datasets are part of the historical collections which were created by one or very few writers.

54

IAM is a relatively modern dataset, which consists of unconstrained text written in forms by around 657

writers. The vocabulary of IAM is limited to nearly 11K words whereas any normal dictionary in the

English language would contain more than 100K words. Fig. 3.2 (a) shows the distribution of entire

words in IAM vocabulary which follows the typical Zipf’s law [196]. As one can notice that, out of 11K

words, nearly 10.5K word classes contain fewer than 20 samples or instances. Also, the majority of re-

maining words are stop words which are shorter in length and are less informative. The actual samples

in training data are much smaller than this, which limits building efficient deep learning networks such

as [93].

3.2.1 Handwritten Font Rendering

We use publicly available handwritten fonts for our task. The vocabulary of words is chosen from a

dictionary. For each word in the vocabulary, we randomly sample a font and render1 its corresponding

image. During this process, we vary the following parameters: (i) kerning level (inter character space),

(ii) stroke width, from a defined distribution. In order to make the pixel distribution of both foreground

(Fg) and background (Bg) pixels more natural, we sample the corresponding pixels, for both regions

from a Gaussian distribution where the parameters such as mean and standard deviation are learned from

the Fg and Bg region of IAM dataset. Finally, Gaussian filtering is done to smooth the rendered image.

3.2.2 IIIT-HWS Dataset

To address the lack of data for training handwritten word images for English, we build a synthetic

handwritten dataset of 1 million word images. We named this dataset as IIIT-HWS [89]. Some of the

sample images from this dataset are shown in Fig. 3.2 (b). Note that these images are very similar to

natural handwriting. The IIIT-HWS dataset is formed out of 750 publicly available handwritten fonts.

We use the popular Hunspell dictionary and pick a unique set of 90K words for this purpose. For each

word, we randomly sample 100 fonts and render its corresponding image. Moreover, we prefer to learn

a case-insensitive model for each word category, hence we perform three types of rendering, namely, all

letters capitalized, all letters lower, and only the first letter in caps.

1We use ImageMagick for rendering the word images. URL: http://www.imagemagick.org/script/index.
php

55

http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php

Figure 3.3 Top two rows show the variations in handwritten images, the bottom two rows demonstrate

the challenges of intra class variability in images across writers.

3.3 HWNet

In the quest for learning better holistic features for word images, we leveraged recent CNN architec-

tures to learn discriminative representations. Fig. 3.3 demonstrates the challenges across writers. The

top two rows show the variations across images in which some are even hard for humans to read without

enough context of nearby characters. The bottom two rows show different instances of the same word

written by the different writers, e.g., “inheritance” and “Fourier”, where one can clearly notice the vari-

ability in shape for each character in the word image. The learned representation needs to be invariant

to (i) both inter and intra class variability across the writers, (ii) presence of skew, (iii) quality of ink,

and (iv) quality and resolution of the scanned image. One can also notice that there can be instances

where few characters are completely distorted or degraded due to the cursive nature of word formation.

However, the knowledge of vocabulary and its overall appearance, humans can still make out the word.

One of the key differentiation of word images with respect to natural scene images is that a word im-

age is inherently a variable length representation and making it fixed size would distort the individual

characters non-uniformly.

We propose a deep CNN architecture named as HWNet, first presented in [90] for learning represen-

tation for handwritten word images, and further enhance the network capacity to address issues specific

to handwriting. The improved network architecture is one of the major contributions of this work which

is named as HWNet v2. We formulate the problem as word classification on a given vocabulary, how-

ever, given a trained network, we are interested to derive holistic features f ∈ Rd which obeys lexical

similarity to all possible words in that language (irrespective of the trained vocabulary).

56

(a)

(b)

Figure 3.4 (a) HWNet v2 architecture which comprises of a deep CNN architecture using ResNet

blocks along with a TPP pooling and fully connected layers, (b) Flowchart showing the transfer learning

process where we first pre-train the network on synthetic data and later fine-tune it on real corpus. The

features are extracted from the penultimate layer of the network.

3.3.1 HWNet Baseline Architecture

In the baseline model, we use a fixed sized gray scale word image of dimension 48 × 128. As

noted earlier, this would result in distortion of aspect ratio, however, we show in experiments, the

learned features are robust, and quite better than previous variable size representations. The underlying

architecture of our CNN model is inspired from [93]. We use a CNN with five convolutional layers with

64, 128, 256, 512, and 512 square filters with dimensions: 5, 5, 3, 3 and 3 respectively. The next two

layers are fully connected ones with 2048 neurons each. The last layer uses a fully connected (FC)

layer with dimension equal to the number of classes (vocabulary of training and validation set), and

is further connected to the softmax layer to compute the class specific probabilities. Rectified linear

units (ReLU) are used as the non-linear activation units after each weight layer except the last one, and

2× 2 max pooling is applied after first, second, and fourth convolutional layers. We use a stride of one

57

Conv1 Block1 Block2 Block3 Block4 ROI/TPP FC

3x3
[3x3,64]

x 3

[3x3,128]

x 4

[3x3,256]

x 6

[3x3,512]

x 3

ROI{6x12}

TPP{1,2,3}

[2048]

x 2

Table 3.1 Summary of the HWNet v2 network configuration. The width, height, and number of

channels of each convolution layer are shown in square brackets, with the number of layers that are

stacked together. We present two variations in the network (as shown in the sixth column), using a

single level ROI pooling or using temporal pyramid pooling (TPP) with three levels.

and padding is done to preserve the spatial dimensionality. We empirically observed that using batch

normalization [71] after each convolutional and fully connected layer, resulted in lower generalization

error as compared to dropouts. We use cross entropy loss function to predict the word class labels, and

the weights are updated using the mini batch gradient descent algorithm with momentum.

3.4 HWNet v2

In our original HWNet architecture, we limited the number of convolutional layers to five, which was

equivalent to layers proposed in AlexNet. More recently, newer architectures such as VGGNet [158],

GoogLeNet [171], and ResNets [69] have shown deeper CNN networks for better performance and the

resulting features to be more discriminative. Some of the key architectural changes brought in these

networks, which lead to efficient training are: (i) use of lower dimensional filters (3× 3) thereby having

less parameters from larger sized filters, which also acts as a forced regularizer, (ii) use of (1 × 1)

filters which acts as dimensionality reduction unit to keep the no. of parameters in control, (iii) use

of inception layer [171] which introduces multi-scale processing by having multiple parallel layers

operating at different scales, and (iv) use of residual blocks [69] to learn residual function F(x) :=

H(x)−x. HereH(x) is the desired underlying mapping. A residual layer is typically implemented using

a shortcut connection without any parameters. In our improved HWNet architecture, named as HWNet

v2, we use the ResNet34 [69] network with four blocks where each block contains multiple ResNet

modules. Instead of using global average pooling (as proposed along with ResNet architecture [69]), we

found fully connected layers in the end for learning better features from the penultimate layer. Table 3.1

shows the summary of HWNet v2 network configuration. Here each ResNet module consists of two

convolutional layers and a shortcut connection to enable residual learning. There is no max pooling in

58

Figure 3.5 (a-b) Multi-scale input, (c-d) region of interest pooling and, (e-f) temporal pyramid pooling

shown at levels 2 and 3.

the network and the spatial resolution is down sampled using a stride of 2 at the first convolutional layer

of block 2, 3 and 4. As stated earlier, we also use batch normalization after each convolutional and fully

connected layer except the last one.

3.4.1 Multi-Scale Training and ROI/TPP Pooling

One of the major limitations in the previous architecture was the requirement to use fixed dimensional

inputs so that it remains compatible with fully connected layers of the network. However as mentioned

earlier, this leads to distortion of aspect ratio which manipulates the appearance of characters present

in the word images arbitrarily. Another aspect which we tend to ignore so far due to the restriction of

fixed size is, the ability to train word images in multiple scales so that the network remains invariant to

multiple character scales. It has been observed that different writers typically write at different scales

which leads to the presence of a variable sized sequence of characters. To overcome these issues, we

use a fixed size padded image (128× 384) to accommodate variable sized input word image. As shown

in Fig. 3.5(a-b), we render different scale input image to learn scale invariant representation. Given the

output feature maps from the last convolutional layer, we only keep the activations coming from the

input region belonging to word image using ROI pooling. ROI pooling [51], layer gives a differentiable

pooling (max/average) mechanism from variable sized input feature maps into fixed sized output maps,

by constructing a grid with variable sized cells. Fig. 3.5(c-d), shows the ROI pooling where the number

59

of grids in both images remains same while the size of each grid cell varies as per the scale of the image.

In another variant of the HWNet v2 network, we use temporal pyramid pooling (TPP) similar to [167].

Both ROI and TPP takes variable length representation and produces a fixed length output depending on

the number of grids. In our usage of TPP along HWNet v2, we follow a similar paradigm of creating

pyramid levels only vertically [154, 167] with levels set at 1, 2 and 3. This would essentially capture

the temporal properties present in the word image. Fig. 3.5(e-f), shows the temporal pyramid pooling

at level 2 and 3. We also set max pooling as the preferred pooling operation within each grid for both

ROI and TPP variants. In general, both ROI, TPP pooling methods don’t require a fixed sized padded

image. We made such a decision from an implementation point of view so that we can train in batches

of images with the fixed size which wouldn’t be possible otherwise.

3.4.2 Data Augmentation and Elastic Distortion

While training a CNN network, data augmentation [93] is a common practice to introduce artificial

variations in data to make network robust to intra-class variations and prevent over-fitting. Popular data

augmentation techniques are random crops, horizontal reflection, random flipping of pixels, and affine

transformations such as scaling and translation. In this work, while training HWNet v2, we perform two

major augmentation schemes which are: (i) affine transformation and (ii) elastic distortion. In affine

transformation, we generalize to translation, scaling, rotation, and shearing. Here rotation and shearing

are restricted to certain angles which mimic the skew and cursiveness present in natural handwriting.

Elastic distortion [157] has been used in the past successfully for recognizing handwritten digits. It

mimics variations created from the oscillation of hand and inertia exerted on the writing medium. The

basic idea is to generate a random displacement field which dictates the computation of new location to

each pixel through interpolation. The displacement field is smoothed using a Gaussian filter of standard

deviation σ and scaled using constant factor α. Both σ, α are set empirically by visualizing the quality

of distorted images. Fig. 3.6 shows different possible variations created for each word image.

3.4.3 Curriculum Learning

Training with a large number of classes (10K for both HWNet and HWNet v2) typically results in

slow convergence. To avoid such scenarios, we use the strategy from curriculum learning [19], where

we start the training process from synthetic images showing easy examples (based on the number of

characters) first and harder later. We also perform an incremental learning scheme where at initial

60

Figure 3.6 Data augmentation techniques: affine and elastic distortion.

epochs, we limit the number of classes to 500 and gradually increase the classes after achieving partial

convergence. While increasing the number of classes, we copy the weights from last trained network and

randomly initialize the newer weights. This improves the training process in terms of faster convergence

in the presence of huge data (#classes).

3.4.4 Transfer learning

It is well-known that off-the-shelf CNNs [39, 135] trained for a related task could be adapted or fine-

tuned to obtain reasonable and even state-of-the-art performance for new tasks. In our case, we prefer

to perform transfer learning from the synthetic domain (IIIT-HWS) to real world setting. In general,

real world handwritten labeled corpora are not large enough to train such deep networks which contain

millions of parameters and can easily over-fit on smaller datasets. Moreover, the use of synthetic corpora

would give us better vocabulary coverage and also capture some frequent patterns in ngrams which

commonly occur in a particular language. In our case, transfer learning achieves to reduce the domain

gap between the synthetic and real world data. We employ a similar approach as presented in [193], to

do a careful study in transferring feature at a particular layer. The details of the study are presented in

the experimental Section 3.6.4.

3.5 Visualizations

One of the most intriguing question while using a deep network is “what is the designated behavior of

a neuron trained at a particular layer?”. The question is more relevant since we are dealing with a large

scale training machine with millions of parameters. Some of the recent works [52, 104, 173, 194, 195]

partly answer this question with meaningful insights on what happens behind the scenes.

61

(a) (b)

(c)

Figure 3.7 Visualizations: (a) Layer 1 weights, (b) Four possible reconstructions [104] of sample

word images shown in columns. These are reconstructed from the representation obtained from the

penultimate layer, and (c) Visualization of the strongest activation [52] region of a particular neuron

(each column refers to one neuron) of an intermediate convolutional layer. These regions are highlighted

using a bounding box inside the word image. Here we notice that, in most of the cases, each neuron

focus on detecting a semantically meaningful unit.

Fig. 3.7 shows the visualization of the trained HWNet v2 architecture. It is easy to visualize weights

for layer 1 since the filter dimension is 64×1×3×3 where we have: 64 output channels (#filters), 1 is the

channel size since the input image is gray scale, and the spatial dimension of the filter is 3× 3. Fig. 3.7

(a) visualizes these weights which bear a resemblance to the Gabor filters and detects edges in different

orientations. Visualizing neurons after layer 1 is non-trivial since the receptive field of these neurons

keeps exploding and the filters are present in higher dimensions. Here we interpret these neurons using

the non-parametric technique proposed in [52], which probes from the maximum neuron activations and

visualizes the receptive fields in the original image. Fig. 3.7 (c) shows such interesting patches which

62

correspond to the maximal activation of a particular neuron taken from a convolutional layer. Here,

each column corresponds to one neuron activation for different word images and sorted in a descending

order as per its activation values. The first four columns of the Fig 3.7 (c) correspond to a four arbitrary

neurons/channels taken from ResNet block 1, Conv. 2 (ref. Table 3.1 for block details) where the size

of effective receptive field is 15 × 15 pixels. The next four columns correspond to another set of four

arbitrary neurons from ResNet block 2, Conv. 2 where the size of the receptive field is 37 × 37. The

maximal activation patch is highlighted in a black box. As one can notice, each column corresponds to a

semantically meaningful unit such as: Col1 neuron picks an inverted ‘v’ sort of unit, Col3 takes wedge

behavior with patches coming from letters such as ‘v,W,N’ etc. while Col4 probes for a curve in the

lower right quadrant. There also exists activation such as Row5, Col2 which does not make immediate

sense in the original pixel space. The next set of columns (Col5-8) from the higher layer with larger

receptive field captures semantics such as: Col5 probes for the letter ‘i’ and a vertical line to its right,

Col6 starts detecting capital letter ‘A’ and Col7-8 focuses partly on bigram level of information. We also

tried visualizing layers after ResNet block 2, however, we couldn’t make much meaningful information

since, the receptive field covered much larger regions. We believe one could explore such scenarios

using techniques proposed in [194, 195].

Finally, we also interpret the features which are extracted from the penultimate fully connected layer

using the optimization technique proposed in [104]. The basic idea is to invert the CNN features back to

image space and arrive at possibles images which have a high degree of probability for that encoding.

This gives a better intuition of the learned layers and helps in understanding the invariances of the

network. Fig. 3.7 (b) shows the possible reconstructions from three different representations. Here, we

show the query images on the first row and its reconstruction in the following rows. One can observe

that in almost all reconstructions, there are multiple translated copies of the characters present in the

word image along with some degree of orientations. Similarly, we can see the network is invariant to

the first letter being in a capital case (see Label: “the” at Row4, Col3) which was part of the training

process. The reconstruction of the first image (see Label: “rose” at Row1, Col1) shows that possible

reconstruction images include Label: “rose” (Row2, Col1) and “jose” (Row3, Col1) since there is an

ambiguity in the query image.

63

3.6 Experiments

In this section, we empirically evaluate the proposed word image representation, perform ablation

studies to understand the importance of each architectural component in HWNet v2. To evaluate the

robustness of the feature, we take the task of word spotting, where given a query image we retrieve all

similar word images from a given retrieval set. The datasets used in this work are presented in Chapter 2,

Section 2.5.1.

3.6.1 Evaluation Protocol

For comparing results across different methods under word spotting, we use the standard information

retrieval evaluation measure, mean Average Precision (mAP), which is equal to the mean area under the

precision-recall curve. The selection of queries follows the protocol used in [9], where we filter the

stopwords from the test corpus while all words (including stopwords as distractors) are kept in the

retrieval dataset in which the search is performed. Our major focus is on evaluating the features in the

query by example setting (QBE). In this setting, since the query image is taken from the corpus, the first

retrieved image is not included in the mAP calculation. Since Botany and Konzilsprotokolle datasets

were part of keyword spotting competition where the query and retrieval set were given independently,

the dropping of query image from retrieval set was not applicable. Also, note that all evaluations for

English language datasets were done in a case-insensitive manner as followed by other related works.

3.6.2 Ablation Studies

Table 3.2 presents the ablation study to understand the key architectural changes and the role of data

in improving the performance from HWNet baseline. These experiments are evaluated under word spot-

ting for IAM dataset in the query by example setting. The performance of HWNet baseline architecture

using just the IAM training data is reported at 0.6336. The use of residual layers gives a significant boost

in performance by around 8% which emphasize the generic nature of residual blocks for better learning

while increasing the depth of CNN networks. The next big improvement comes when we use variable

length representation for word images under multiple scales for better coverage of scale space variation

of characters written by different individuals. This is enabled by using either ROI pooling or TPP before

the fully connected layers. Here we observe that TPP performs better than ROI since it is a generalization

of ROI in multiple scales captured in a pyramidal fashion. In our case, we essentially bring the temporal

64

HWNet Enhancements mAP

HWNet 0.6336

HWNet+ResNet (R) 0.7198

HWNet+R+Multi-Scale-ROI (ROI) 0.8457

HWNet+R+Multi-Scale-TPP (TPP) 0.8803

HWNet+R+TPP+Data Augmentation (D) 0.8996

HWNet+R+TPP+D+IIIT-HWS (S) 0.9164

HWNet+R+TPP+D+S+Test-Aug. (HWNet v2) 0.9241

Table 3.2 Ablation studies showing the effect of each of the enhancements to the baseline HWNet

architecture on IAM dataset.

factor into account by dividing word image along the horizontal direction in each pyramid level. It is

intuitive since the word images contain characters written along the x-axis and TPP layer exploits this

property. We now present the role of different augmentation techniques. Here we observe that using

elastic and affine distortion gives around 2% improvement, while the next major improvement is ob-

tained by pre-training the network using IIIT-HWS synthetic dataset. Under this setting, the network is

first trained using the synthetic dataset of vocabulary 10K and later fine tuned on IAM dataset, following

all architectural changes and data augmentation scheme. Finally, we also perform test time augmenta-

tion by extracting features at multiple scales. Test time augmentation techniques are quite popular in

modern deep learning based methods [93,159] where the idea is to apply data augmentation techniques

during testing so that the predictions are robust to common transformations. In our case, we resize word

images at different heights (32, 48, 64) and record the maximum values of feature activation among

individual scale representation. The final reported performance using HWNet v2 using TPP is 0.9241.

3.6.3 Word Spotting Evaluation

3.6.3.1 Architecture Evaluation

In order to validate the efficiency of baseline HWNet [90] and HWNet v2 architectures with other

popular CNN architectures used for classification, we investigate the performance of handwritten word

spotting using features obtained from two successful models, (i) AlexNet [93], which was trained on

natural images from ImageNet LSVRC data, and (ii) scene text recognition model (JSVZNet) trained on

65

Arch. Orig IAM IIIT-HWS IIIT-HWS+IAM

AlexNet 0.2997 0.4468 * *

JSVZNet 0.3746 0.4822 * *

HWNet * 0.6336 0.5784 0.8061

HWNet v2 * 0.8574 0.6387 0.9241

Table 3.3 Comparative mAP evaluation of different deep networks with respect to the HWNet and

HWNet v2 (TPP) network on IAM dataset.

a large scale vocabulary of words [73]. We validate the performance of these networks on IAM [109]

dataset. Table 3.3 reports the word spotting performance for each model and compares it with HWNet.

Here ‘Orig’ refers to the model trained with its respective original datasets (e.g. AlexNet on ImageNet

and JSVZNet on natural scene text) and ‘IAM’ refers to the model fine tuned on IAM dataset. The ‘Orig’

results (AlexNet and JSVZNet) are low, compared to the other methods for word spotting. However,

they are still superior to many of the earlier handcrafted [138] features for this task. We also notice that

JSVZNet performs better compared to AlexNet since it is trained for scene text words while the later

model is tuned for natural scene images. The results after fine tuning (‘IAM’) on IAM dataset improves

the existing results by a good margin. In the last two rows, we present the results of HWNet and

HWNet v2 architectures. There is a significant improvement in results from HWNet based architectures

w.r.t other architectures when trained on IAM dataset. The last two columns of the table presents the

results of only using synthetic data (IIIT-HWS) and along with fine tuning on real data (IIIT-HWS+IAM)

separately. Here, the reasonable results that we obtain on just using the synthetic data (column 4) suggest

the quality of generated synthetic data which captures real world variations. It also brings an interesting

thought, whether in future, does such synthetic data rendering techniques limit the dependency on the

availability of real data for training such systems. In section 3.6.4, we present such an experiment.

3.6.3.2 State of the Art Comparison

Table 3.4, presents a detailed comparison between the proposed word representation and other recent

methods in the task of word spotting in the query-by-example (QBE) setting on various datasets. The

first three rows of the table show non-deep learning methods using engineered features. Here DTW

based method uses Vinciarelli [180] features. The Fisher Vector (FV) representation [124] is computed

66

Method IAM GW Botany Konz.

DTW 0.1230 0.6063 - -

FV 0.1566 0.6272 - -

KCSR [9] 0.5573 0.9304 0.7577 0.7791

HWNet [90] 0.8061 0.9484 0.8416 0.7913

PHOCNet [166] 0.7251 0.9671 0.8969 0.9605

TPP-PHOCNet [167] 0.8274 0.9778 0.9123 0.9770

TPP-PHOCNet (BPA) [168] 0.8480 0.9790 0.9605 0.9811

TPP-PHOCNet (CPS) [168] 0.8274 0.9796 0.8081 0.9642

PHOCNet (BPA) [168] 0.8550 0.9758 0.9410 0.9708

Triplet-CNN [186] 0.8158 0.9800 0.5495 0.8215

LSDE [54] - 0.9131 - -

HWNet v2 (ROI) 0.9065 0.9601 0.9401 0.9427

HWNet v2 (TPP) 0.9241 0.9824 0.9526 0.9347

Table 3.4 Quantitative evaluation of word spotting on standard handwritten datasets in query-by-

example setting. Here, results for DTW and FV are taken from [9], while all other related works are

taken from their respective papers.

from SIFT features, reduced to 64 dimensions using PCA, and then aggregated into the Fisher Vector.

Note that both DTW based method and the Fisher representations are not learned in a supervised setting

and thus cannot directly be compared to other methods which are supervised. Here we observe that FV

performs better on these datasets compared to pixel level features using DTW. The attributes embedding

framework described in KCSR [9] gives a significant boost in the performance. It also uses FV based

image representation, and projects both image and text into a PHOC word attribute space and further

learns a common subspace where the correlation of both modalities is maximum. The improvement in

performance emphasizes the importance of supervised learning to capture the multi-writer styles and its

variations where annotated data is available.

The next set of methods consider convolutional networks for extracting features optimum for word

spotting. Here, we observe HWNet [90] based features clearly surpasses the previous method KCSR on

all datasets. It shows the robustness of learned features using the deep network and the role of synthetic

67

data to bootstrap the training. The next set of methods in this space use the principle of attribute embed-

ding framework using deep CNN networks. Here, PHOCNet [166] and TPP-PHOCNet [167, 168] uses

the output space of CNN as PHOC embedding while Triplet-CNN [186] explores with different embed-

dings such as PHOC, DCTOW and few semantic embeddings. In the table, we report the best performance

of Triplet-CNN across different proposed embeddings. More recently, Gomez et al. [54] presented a

novel embedding scheme (LSDE) by learning a subspace which respects edit distance or Levenshtein

distance between a pair of samples. Although the performance is inferior from other methods, the no-

tion of edit distance is a valid assumption while considering the string data. Finally, we compare the

proposed HWNet v2 architecture on both variants (ROI, TPP) with its predecessor (HWNet) and other

methods. As we notice HWNet v2 performs significantly better for IAM and GW datasets where we

report mAP above 0.92 and 0.98 respectively while getting comparable performance on other datasets.

We would like to stress here that the boost in performance is not just because of the synthetic data, but

also the architectural enhancements and the underlying formulation of learning holistic features using

word classification which makes HWNet v2 different from other networks. As presented in the ablation

study, in Table 3.2, one can notice the performance on IAM dataset even without adding synthetic data

(IIIT-HWS), is better than other state-of-the-art networks shown in Table 3.4.

Since the original HWNet v2 was trained on a large synthetic dataset, we would like to measure

the performance of proposed features on out-of-vocabulary (OOV) words. Note that for the proposed

method, the vocabulary comprises of a union of words present in the synthetic dataset along with the

training corpus of IAM. Here we obtain an in-vocabulary performance of 0.9223 and OOV of 0.9497

which shows the robustness of features on OOV words and also validates the unbiasedness on increasing

the vocabulary size. Here, one of the justifications for the increase in OOV performance is that, in

general OOV are larger words (in terms of no. of characters) which gives good contextual information

to its representation and thereby easier to retrieve. In order to further prove this fact, we performed an

analysis with respect to word lengths on the IAM dataset. Fig. 3.8 presents this analysis. As depicted

in the plot, the proposed word spotting system shows good results across all word lengths with better

performance for larger word lengths.

3.6.3.3 Segmentation-Free Word Spotting

In this section, we evaluate the performance of HWNet v2 representation under noisy word bounding

boxes and segmentation-free setting. This is in contrast to the previous evaluation where the segmenta-

68

Figure 3.8 Bar plot showing the word spotting performance on IAM dataset with respect to different

word lengths in the test dataset. Here, we have analysed word lengths ranging from (3,14).

tion of words are given as part of ground truth and are typically tight. In Fig. 3.9, we present an ablation

study by perturbing the ground truth word segmentation of the test dataset within a certain intersection

over union (IoU) range. A similar study of inaccurate cropping has also been presented in [58] for word

image semantic retrieval task. In our study, we vary the IoU range between (0.5, 1). Note that the per-

turbed bounding box is cropped from the original word image which could include surrounding words

and noise from the page image. While the query word image is kept intact without perturbation. As

shown in the figure, we observe the drop in performance marginal on increasing the IoU range for both

IAM and GW datasets. Even at an IoU range of 0.5, we obtain a QBE mAP of 0.8034% and 0.9300%

for IAM and GW datasets respectively.

We now extend the evaluation to the segmentation-free scenario by computing our representation on

word proposals given by an existing framework from literature. Here we use the current state of art

method Ctrl-F-Net [187, 188]. More specifically, we use the Ctrl-F-Mini model [188] which has a sim-

plified architecture with better performance. The last row of Table 3.5, presents the results of HWNet v2

representation as being used as the embedding instead of PHOC. As per the standard evaluation practice,

we report the QBE mAP at overlap thresholds of 50% and 25%. Here we observe a significant improve-

ment for IAM dataset of nearly 5%, while for GW dataset we obtain a comparable result. Note that, in

contrast to the previous ablation study under noisy segmentation, in the segmentation-free scenario, we

69

IoU Range

Q
BE

 m
AP

0.60

0.68

0.76

0.84

0.92

1.00

0.5 0.6 0.7 0.8 0.9 1

IAM GW

Figure 3.9 Ablation study of word spotting in noisy word segmentation. Here we evaluate the word

spotting results by perturbing the word segmentations of the test set. The perturbations are done ran-

domly within an IoU range (0.5, 1.0).

obtain a large number of proposals out of which many are false positives. These proposals simply act as

distractors in word spotting.

3.6.4 Transfer Learning

To better understand the transfer-ability of features from the synthetic domain to the real domain

while performing fine-tuning, we employ a similar study as presented in [193]. Fig. 3.10 compares

the performance while doing transfer learning at different layers while keeping the layers before it

either frozen or updating them. In the present analysis, we restricted the layers to four ResNet blocks

and two fully connected layers immediately after it. We also analyze in three different scenarios: (i)

Synth2HW, here the base network is trained on synthetic data (IIIT-HWS), and later fine-tuned on real

world handwritten data IAM, (ii) HW2Synth, here the base network is trained on IAM and later fine-tuned

on IIIT-HWS and (iii) Fine-Tune where all the layer weights are allowed to update while re-training. Note

that, in the first two settings the weights before the particular ResNet block/FC layer is kept frozen. We

also report the base network performance while training on Synth and IAM datasets. The performance of

70

Embedding
IAM GW

50% 25% 50% 25%

Ctrl-F-Net (DCToW) [187] 0.7200 0.7410 0.9050 0.9700

Ctrl-F-Mini (PHOC) [188] 0.7570 0.7780 0.9160 0.9700

Ctrl-F-Mini (HWNet v2) 0.8200 0.8240 0.9202 0.9665

Table 3.5 QBE mAP evaluation of HWNet v2 representation under segmentation-free scenario. Here

we use the word proposals generated using the recent state of art method Ctrl-F-Mini [188]. As per the

standard evaluation practice, we report the QBE mAP at overlap thresholds of 50% and 25%.

Train % 1.0 0.8 0.6 0.4 0.2 0.1 0.0

HWNet v2 0.9241 0.9150 0.9084 0.9025 0.8773 0.8625 0.6387

Table 3.6 Evaluation of word spotting using mAP on IAM test dataset by training HWNet v2 with

entire synthetic dataset while fine tuning on varying percentage of IAM training data. Here Train=0.0%

refers only using synthetic data for training.

Base Synth network is quite less, which indicates the presence of domain gap while Base HW performs

fairly good with the enhancements done as part of HWNet v2. Under the three settings of transfer

learning, we notice that the best performance is obtained in the third setting of fine tuning where all the

weights are simultaneously updated without freezing any layers. Except for the setting of Synth2HW

where we keep block 1 frozen, in all other scenarios we obtain inferior results which suggest that initial

layer filters learned by the synthetic data are reasonably robust and generalize well to real scenarios.

In Table 3.6 we present an interesting outcome of transfer learning from synthetic data. Here we

experiment the reduced need for real data for training HWNet v2 architecture by varying the amount

of training data as compared to previous experiments. Here also we take IAM dataset as our test bench

and use a different proportion of real data and compare the performance with architecture which uses

full training data. Here full is depicted as 1.0 while 0.0 depicts the use of only synthetic data. Note

that all these experiments are first trained on entire synthetic data and later fine-tuned using varying

proportions. As one can notice the drop in performance with reduced real training data starts very slowly

and surprisingly even using a mere 10% of real data only drops the performance by 6%. Although

this suggests the lesser dependency on real data, we believe this needs a thorough study (out of the

71

Figure 3.10 Graph analyzing the layer for efficient transfer learning.

scope of current work) to evaluate the differences in domain gap between synthetic data and the target

handwritten styles.

3.6.5 t-SNE Embedding

To better understand the learned representation space, in Fig. 3.11 we present the t-SNE [103] em-

bedding of word image representation for visualization of higher dimensional feature space. We took

the validation set from IAM dataset for t-SNE embedding. The visualization shown here brings interest-

ing insights where we see that the stopwords which occur higher in number are shifted to the periphery

of the space where they neatly group into tight clusters. The rest of the significant words from the vo-

cabulary are scattered inside the region. On a closer look, we observe the neighboring sample points

belong to the same word or words which are lexically near in space. Please note in the inner region,

it is difficult to make out tight clusters since the frequency of these words is quite low. Few of such

points are presented along with the actual validation word image taken from the dataset. One can notice

the invariance in representation space which clearly take lexical content into account. We also observe

72

Figure 3.11 t-SNE embedding of word image representation taken from the validation set from IAM

dataset.

smoothness in the representation space where words such as (might, night) and (see, seen) are found

closer in the embedding.

3.6.6 Compression of Representation

Taking inspirations from our previous analysis on embedding the representation onto a two dimen-

sional space where we gained interesting insights on the similarity of neighbors even in extreme form

of compression. We now formally extract a lower dimensional representation of HWNet features using

principal component analysis (PCA), which is a popular linear dimensionality reduction technique. We

use the validation data to extract the top eigen vectors in the representation space and project each of

the test data using them. Fig. 3.12 shows the performance variation across different compression levels

starting from 4 to 1024 on both IAM and GW datasets. Note that original HWNet features are of size

2048. It is interesting to see that there is minimal or no drop in performance in the range of dimensions

32-1024 and we even get a minor improvement in performance for 128 dimensions. This clearly states

that the original HWNet network is able to capture non-linear relationships in the data and the final

73

Figure 3.12 Evaluation of compression of learned representation using PCA on IAM and GW datasets.

representation space only contains linear components. We obtain an mAP of 0.8942 on IAM using 32

dimensions which is still the state-of-the-art as compared to other related methods reported in Table 3.4.

Note that the performance obtained using mere 8 dimensions (0.5942) is still better than some of the

non-deep learning methods.

3.6.7 Qualitative Results and Failure Scenarios

Fig. 3.13 shows sample qualitative results obtained under different datasets in the query by example

setting using HWNet v2 features. One can notice the robustness of features which make it invariant

across different writer variations in IAM, word capitalization forms, and common degradations, as seen

in the historical datasets such as Botany and Konzilsprotokolle etc. Fig. 3.14 presents some of the failure

cases where our representation fails to match lexically correct neighbors. Here we show the query image

and the top nearest neighbors in the representation space which is incorrect. We also show a sample true

positive word image which was lying farther in the representation space. Here top two rows show an

inherent ambiguity which was created due to the complexity of handwriting where word “saw” and

“love” are being retrieved as “now” and “dove”. In the case of the third row, we observe that stylization

of the character ‘L’ created a large impact. In summary, we find the ambiguity/complexity of writing

and fine grained similarity in different words to be the major causes of failures.

74

Figure 3.13 Qualitative results of word spotting. In each row, the leftmost image is the query and

remaining are the top retrieved word images based on features similarity. Here (a-d) refers to images

taken from IAM, GW, Botany and Konzilsprotokolle datasets respectively.

3.6.8 Implementation Details

HWNet v2 network is trained using stochastic gradient descent algorithm with momentum. We

set the momentum factor to be 0.9 and the learning rate is set as 1e − 2 while training from scratch

on synthetic data. In the case of fine tuning, the learning rate is initialized from 1e − 3 and manually

reduced by a factor of 10 once the loss does not change within a certain threshold in last five epochs. The

weights are initialized using He initialization [68]. With respect to data augmentation, we perform on

the fly augmentation with 50% probability whether to augment the current sample from the mini-batch.

For elastic distortion, we set the hyper-parameters α = 0.8, σ = 0.08 denoted as scaling and smoothing

parameters [157], which regulates the amount of distortion to apply. For affine transformation, we

randomly pick whether to rotate, shear or pad. The rotation and shear angles are sampled in the range of

(−5, 15) and (−0.5, 0.5) degrees respectively. For bringing translation in-variance, we randomly insert

padding in the four boundaries within a range of 0-20 pixels. In our experiments for the segmentation-

free scenario, while training the models we also perturbed the ground truth bounding boxes of training

word images within an IoU range of (0.75, 1.0) to learn features robust against the noise while testing.

We use NVIDIA GeForce GTX 1080 Ti GPUs for all our experimentation and the codes are written

using PyTorch 0.2 library. On a batch size of 8, our code takes GPU RAM of around 6.5GB and 1.4GB

75

Figure 3.14 Sample failure case images where the representation fails to match lexically correct neigh-

bors.

for training and inference respectively. The model roughly takes around 10 milliseconds for computing

representation for each word image.

3.7 Summary

We introduce a generic deep convolutional framework for learning word image representation for

document images. The underlying architecture HWNet v2 uses synthetic data for efficient pre-training

and also uses various data augmentation schemes which mimic the natural process of text creation

in documents. We further provide different insights into the fine tuning process and also understand

the invariances learned at various layers using some recent visualization techniques. We successfully

demonstrate the robustness of learned representation in terms of both performance and dimensionality of

final representation, on challenging historical manuscripts in both handwritten and printed modalities.

In the next chapter, we present a joint image and text embedding framework using HWNet features.

This would seamlessly address both query-by-example/text word spotting and word recognition using a

lexicon.

76

Chapter 4

HWNet v3: A Joint Embedding Framework for Recognition and

Retrieval of Handwritten Text

77

Learning efficient representation for word images is one of the key problems to address for successful

retrieval and recognition of handwritten documents. In the previous chapter, we presented the original

HWNet and its v2 architecture which provides us an efficient representation for both handwritten and

printed word images. In this chapter, we delve into the problem of establishing the relationship between

word images and its corresponding textual strings which further enables both retrieval and recognition.

We formulate the problem in similar spirit to our earlier work in terms of word image representation

learning, however, we now additionally expect to learn a common embedding space for both images and

text-based on its lexical content. Fig. 4.1 presents the motivation of this chapter by showing a common

representation being learned for word images and its corresponding text under different handwritten

styles. This work has been previously presented as part of our publications [85, 86].

4.1 Introduction

In this work, we follow on the quest of learning appropriate representation for word images and its

corresponding text in a label embedding framework [9, 125]. Label embedding for text images presents

a generic framework that recasts a typical recognition problem as retrieval. The basic idea is to embed

both images and their labels (text) into a common subspace which respects the lexical similarity across

domains/modalities (image and text). The key question for optimum label embedding for a textual image

lies in three parts:- (i) finding a good representation of images, (ii) deriving a similar representation for

text, and (iii) finding the common subspace to learn the similarity metric across modality. In the domain

of word spotting, the concept of word attributes [9, 125] using the pyramidal histogram of characters

thought

thinking wonder

Lexical Space

Semantic Space

Word Images Text Strings

Word Image/Text Representation

Figure 4.1 The left part of the figure shows the motivation of HWNet features where we learn a style

invariant representation. In this chapter, we extend our representation to textual space. Here we learn a

common representation that embeds both word images and its corresponding text (as shown in the right

figure) close to each other.

78

(PHOC) has been a key contribution to the community which enabled label embedding techniques to

effectively apply to word images. The textual PHOC attributes are calculated by dividing the word into

multiple pyramid levels, and at each level, the histogram of characters and bi-grams are computed and

finally concatenated. Here each attribute or the dimension denotes the presence/absence of a character

at a particular spatial position. Taking inspiration from this representation, along with the success of

deep neural networks, there have been multiple works [130, 166–168, 186] which enables projecting a

word image onto the PHOC space. Most of these works consider the final layer activation maps as the

word image attribute representation. Our work also falls under the same category, however, we explore

a novel two-stream deep architecture along with ways to utilize PHOC representation either as the target

space or as a conditional label to the input network. We also demonstrate unique ways of utilizing

synthetic modality in the learning process for word image representation.

The major contributions of this chapter are: (i) we propose different schemes of label embedding

in the domain of document images, (ii) we demonstrate query-by-example/string word spotting and

constrained word recognition, (iii) we present a novel end-2-end embedding framework for learning

the embedding space using a multi-task loss function, and finally (iv) we also validate the role of syn-

thetic data as a complementary modality to enhance the embedding process. We refer to our end-2-end

embedding network as HWNet v3.

4.2 Related Works

In this chapter, our discussion on the related works is restricted to the recent methods using deep

learning for both word image embedding and word recognition. Note that, the end goal of our work is

representation learning, therefore our discussion on recognition works would be limited to the methods

which perform word recognition using a constrained lexicon. For an elaborate discussion on previous

methods, please refer to the Section 2.5.2 in Chapter 2.

4.2.1 Deep Embedding

In Chapter 2, Section 2.5.2.3, we described the concept of word attributes [9]. The work has been

a great inspiration for most of the recent methods where the concept of learning word attributes using

PHOC is demonstrated successfully using convolutional neural networks [130,166,167], which validates

the generality of this representation. In [130], Poznanski et al. adapted VGGNet [158] for recognition of

79

PHOC attributes by having multiple parallel fully connected layers, each one predicting PHOC attributes

at a particular level. In similar directions, different architectures [166, 186] were proposed using CNN

networks which embeds features into textual embedding spaces. In [166], Sudholt et al. propose an

architecture to directly embed image features to PHOC attributes by having sigmoid activation in the final

layer. It is referred to as PHOCNet, which uses the final layer activation as the holistic representation

for word spotting. In their subsequent works [167,168], the authors extended the PHOCNet network by

adding a temporal pooling layer (TPP-PHOCNet) and evaluated different textual embedding and loss

functions.

In [186], the authors propose a two-stage architecture where a triplet CNN network is trained using

SoftPN [17] loss function in the first stage. Given a triplet (p1, p2, n), the SoftPN loss function considers

the smallest similarity between the positive image and the negative image (min(d(p1, n), d(p2, n))), as

well as the distance between the positive pairs (d(p1, p2)). In the second stage (embedding) the learned

image representation is embedded into a word embedding space (either PHOC, DCTOW, semantic, etc.)

using a fully connected neural network. The work uses cosine embedding distance between the true

and the predicted representation as the loss function in the embedding stage. Here DCTOW refers to

Discrete Cosine Transform of Words which is an alternative textual representation scheme proposed by

the same group. In DCTOW, the characters of the string are converted into a one-hot representation and

represented as a matrix. Further to this, a discrete cosine transform is taken for each row of this matrix

and cropped to retain only the first R components. The resulting matrix is flattened and provides a fixed

dimensional representation. The work also explores a semantic textual representation obtained using

LSTM Char-Large model [82].

A more recently published work in the same space is from Gomez et. al. [55] which learns an

embedding space that respects Levenshtein distance between the samples. Most of the above works use

the output activation from the penultimate layer of the CNN network as the word features to perform

spotting or retrieval.

4.2.2 Word Recognition

In the handwritten text recognition domain, most of the popular methods uses HMM [25] or recurrent

neural networks such as LSTM [23, 37, 126]. More recently, convolutional recurrent neural networks

(CRNN) [156] is the most popular architecture used in many methods. The basic idea is to formulate a

sequence-to-sequence transcription task where the input sequence of features is computed using a deep

80

CNN architecture and is further given to a recurrent network such as LSTM [62] or MDLSTM [22, 182]

for textual transcription.

In this work, we present two major ways of label embedding for word images and their corresponding

text. Our first approach extends the framework proposed by Almazán et al. [9] using deep features and

also improves the framework with an additional synthetic modality. Our second approach introduces

a novel end-to-end embedding scheme which simplifies the learning process and also provides better

representation. In both of our approaches, we bank upon the HWNet v2 architecture [91] which provides

a robust holistic representation for word images. For a detailed explanation of HWNet architecture,

interested readers are suggested to refer to Chapter 3. Note that for simplicity, we refer to the HWNet

v2 architecture and its representation as HWNet, while the v3 architecture which is proposed in this

chapter will be referred explicitly.

4.3 HWNet Embedding

Taking inspiration from the success of the original HWNet based word image representation, we

now apply these features onto word attributes framework [9] which enables joint feature embedding for

images and text. We refer to this scheme as the two-stage feature embedding and will be described in

detail in section 4.3.1. We will further enhance the two-stage scheme by incorporating the synthetic

modality onto the joint feature embedding process and will be presented in section 4.3.2. However, be-

fore delving into the joint feature embedding process, we first motivate the need for embedding HWNet

features.

A fundamental assumption used while training the HWNet architecture is that each class (word in

vocabulary) is assumed to be independent. In reality, different classes of word images share a consider-

able amount of visual information. For example, the words “School” and “Schooling” differ by just an

inflection of “ing” in the suffix part of the second word, and we would prefer the feature space to obey

the corresponding lexical ordering. Note that in this work, we only focus on lexical similarity and not

on the actual semantics, for e.g., the words “car” and “cat”, both will be constrained to be near, although

they differ a lot in the semantic space. One can argue that such a sharing of information is implicitly

learned in the convolutional layers of the network. However, we believe that there is a need to make such

relationships more explicit which would aid learning better representation. In this section, we exploit the

fine-grained relationships present among the word images using the word attribute framework [9] along

81

Figure 4.2 Overview of the two-stage joint feature embedding process.

with embedding the label information onto a common reduced subspace where both the text and image

representations lie close to each other. Given such a reduced space, we have the following advantages:

(i) The reduced space is of a much lower dimensions as compared to the original dimensions with almost

no loss in accuracy, (ii) seamlessly enable both query-by-string and query-by-example based retrieval,

and (iii) less memory footprint for representation, which enables large scale retrieval and recognition.

4.3.1 Two-stage joint feature embedding

Fig. 4.2, presents the overview of the two-stage joint feature embedding which uses HWNet features

and embeds it into a common subspace of image and text. In two-stage joint feature embedding, we

first convert HWNet features and the corresponding textual strings of the respective word images into

PHOC based representation. Given the parallel representation from both image and text modality, we

further embed it into a common subspace. The process is referred to as two-stage since the training of

the HWNet model and attributes model (for phoc based image representation) happens independent of

each other. The computation of PHOC features for text and learning of the attribute models for PHOC

based image representation are done in a similar fashion as presented in [9].

Let I = {I1, I2, . . . , In} be the set of n images from the training data and Y = {Y1,Y2, . . . ,Yn}

be the corresponding text labels. Let φY : Y → Rd be the text label embedding function which gives the

82

ICFHR

Attr.
1

Attr.
2

Attr.
d

Text Image

HWNet
Representation

(a) Textual PHOC Computation (b) Image PHOC Computation

Figure 4.3 Computation of PHOC representation using embedding functions (φY , φX) for text and

image respectively.

textual PHOC representation. Here d is the number of attributes which is equivalent to PHOC dimension.

Let X = {X1,X2, . . . ,Xn} where Xi is the HWNet representation for Ii word image. We can learn a

similar attribute space for HWNet features by training d attribute classifiers which predict the probability

of a particular attribute given its image representation. This would result in having both text and images

in a Rd space and mutually comparable. We train the attribute classifiers using linear SVMs since the

CNN (HWNet) features act as explicit feature maps that encode the non-linearities present in feature

space. Here each attribute classifier is trained discriminatively to predict a particular attribute such as

“the presence of character ‘x’ in the first half of the word image” and so on. Given d attribute classifiers,

the attribute embedding function is given as φX : X → Rd which encodes the classifier scores in

predicting each attribute. Fig. 4.3 presents the computation of φY and φX respectively.

Even though both image and text representation lies in Rd space, they are not optimally comparable

because the scores lie in different ranges. To calibrate the scores along with maximizing the correlation

between the multivariate vectors (text and images) we formulate the problem as common subspace

regression (CSR) as follows:

83

argmin
U,V

1

2
‖ UTA− V TB ‖2F +

α

2
‖ U ‖2F +

α

2
‖ V ‖2F

s.t. ψX (X)ψX (X)T = 1

ψY(Y)ψY(Y)T = 1

(4.1)

Here, ψX (X) = UTφX (X) and ψY(Y) = V TφY(Y). U, V are the projection matrices to be learned

and A = φX (X), B = φY(Y) corresponds to the respective attribute representation of word images

and its text for the training data. α controls the weight of the regularization. In CSR formulation, the

objective is to minimize the distance between an image and its corresponding text representation in a

common subspace (Rd′) found by the optimal projection matrices. In typical cases, d′ < d, which is

set empirically by tuning on a validation dataset. The above optimization problem could be treated as a

generalized eigen-vector problem, having a closed-form solution as presented in [9].

The learned subspace using projection matrices allows embedding both word images and text into

joint feature space. This facilitates query-by-example and query-by-string word spotting seamlessly. It

also enables constrained word-level recognition using a finite lexicon. More details are presented in

the experimental section. In the next subsection, we present an enhancement of the two-stage feature

embedding framework which improves the projection of text modality into the common subspace.

4.3.2 Synthetic Attribute Embedding

In our training of the HWNet architecture, we demonstrated the role of synthetic data in pre-training

deep neural networks which paved way for efficient fine-tuning on real data. In this work, we present the

interesting role of synthetic data which could help to perform joint feature embedding more efficiently.

Fig. 4.4 presents the extended framework of two-stage joint feature embedding referred to as synthetic

attribute embedding. We propose to use an additional synthetic modality to enrich the attribute embed-

ding process of text labels and observe that it gives complementary information which leads to effective

learning of common subspace. Synthetic data for word images [89] is easy to generate and is available

for most of the languages. For each textual label, we generate a corresponding synthetic image using a

given font type. Similar to PHOC representation for word images as presented in the previous section,

we use the same attribute model to compute PHOC representation for the synthetic image. Given the

PHOC representation for both text label and synthetic image, we perform a weighted sum as follows:

84

Shared

Figure 4.4 Synthetic attribute embedding.

φS(Y,S) = α× φY(Y) + (1− α)× φX (S) (4.2)

Here, S is the HWNet feature for the synthetic image corresponding to label Y , and φS(Y,S) refers

to the attribute embedding function on synthetic images and its corresponding label strings as presented

in the above equation. Note that we use a shared model for computing attribute-based representation

from both real and synthetic word images as shown in the figure. Also, the CSR formulation remains the

same as presented in equation 4.1 with the only difference that instead for φY , we now use the newer

representation given as φS . The basic idea of composing the label representation using both text and

visual (synthetic) modality allows us to exploit the complementary information during embedding. We

refer to this as synthetic attribute embedding which performed better for query-by-string retrieval. The

value for α is set empirically. Note that, in comparison with our previous framework, as presented in

section 4.3.1, the synthetic attribute embedding framework does not add any complexity in the total

number of learnable parameters of the system.

4.4 HWNet v3: End-2-End Embedding

The idea of synthetic attribute embedding, discussed in the previous section is a two-stage approach

where the image embedding is learned in the first pass while the projection onto the attribute space

happens in the second pass. We now propose HWNet v3 architecture which is an End-2-End trainable

deep word embedding network with three main motivations:- (i) replacing the attribute classifiers using

85

PHOC

Label
Stream

s t e v e
Synthetic

Text

Feature Extraction

TPP
Pooling

TPP
Pooling

Embedding

Real
Stream

(a)

PHOCs t e v e
Synthetic

Text

Feature Extraction

TPP
Pooling

Embedding

Label
Stream

Real
Stream

(b)

Figure 4.5 The proposed variants of the HWNet v3 End-2-End embedding network for learning both

image and textual embedding using multi-task loss function. (a) Variant I which was first proposed

in [86], uses separate feature extraction channels for real and synthetic images, while (b) presents the

Variant II of the End-2-End embedding network which allows better sharing of features among the real

and synthetic image.

multi-layer fully connected networks, (ii) to validate the learning of embedding space rather than fixing

it to be PHOC and, (iii) to simplify both training and testing phases. Note that, although PHOC has

shown the optimum attribute representation of word images and text, in this work, we investigate the

possibility of automatic learning of such representation. Fig. 4.5 presents the two variants of End-2-

End deep convolutional network for simultaneous learning of both textual and image embeddings. Here

the Variant I architecture was proposed in our initial work [86]. Later as an extension, we simplify

the architecture and the learning process to improve the sharing of features among channels. The later

architecture is referred to as Variant II in the figure. Note that in our discussions, we would be using

HWNet v3 and End-2-End embedding network interchangeably.

86

4.4.1 Variant I

There are two streams in the proposed architecture, real and label streams, and each stream is passed

through a set of layers of feature extraction and finally given to the embedding layer. The real stream is

associated with actual handwritten/printed word images while the label stream is used for propagating

the label information. In our case, the label information is divided into two parts: the textual string, and

the synthetic image rendering of the text. In the current set-up, we use PHOC as our textual representation

and the synthetic image is rendered using one single font. Note that, the architecture is generic to support

other textual representations such as DCToW [186] and the rendering of synthetic image could be done

using multiple fonts. In comparison with the previous two-stage embedding scheme (more closely with

synthetic attribute embedding), one could think of a real stream as the left part of the Fig. 4.4 and the

label stream as its right part.

The features of real and synthetic images are captured using convolutional layers, where we use

ResNet34 architecture for real images, while a simpler network similar to AlexNet is used for extracting

features from the synthetic image. The choice is made by understanding the complexity level of data

variations of individual image domains. Here also, we use the TPP pooling layer after the last convolu-

tional layer much similar to the one used for HWNet architecture which was presented in Chapter 3. The

label stream consists of the network comprising of a PHOC extractor which is appended to the features

obtained from the synthetic image. This is achieved by L2 normalization of both features and concate-

nating the normalized features. Note that, the weights of the convolutional network (feature extraction)

of individual streams are not shared in the Variant I scheme.

Given the pair of normalized features from real and label streams, we now perform label embedding

by projecting both these features into a common subspace. We achieve this using the embedding layer as

shown in the figure, which is a typical Siamese style network implemented as the multi-layer perceptron

with shared weights.

4.4.2 Variant II

Variant II follows a similar architecture to Variant I, however, we now share the convolutional net-

work for extracting features of real and synthetic image into one as shown in Fig. 4.5b. This allows

the features extracted from the synthetic image to be more robust and follows a similar distribution as

learned from the real stream. The other obvious advantage is in terms of the reduction of the number

87

of parameters to be learned. Given the SYNTH features from the real stream, it is concatenated with the

PHOC features coming from the label stream and a fully connected layer to used to fuse both the fea-

tures after L2 normalization. The rest of the architecture which includes the embedding layer remains

the same.

4.4.3 Training End-2-End Network

To train the above variants of the End-2-End network which could exploit features from both the

streams, we use a multi-task loss function as given below:-

L(φr, φl, y) = L1(φr, y) + L2(φl, y) + L3(φr, φl) (4.3)

Here, φr, φl are the embeddings obtained from the real and label streams respectively as shown in

the figure, while y is the ground truth label represented using one-hot representation. The first two com-

ponents (L1,L2) of the loss function are cross entropy-based classification loss functions computed on

the soft-max scores for real and label embeddings respectively. The third component (L3) is a similarity

loss function, which is defined using the cosine similarity between the pairs of features belonging to the

same label, and is given as:

L3(φr, φl) = 1− cos(φr, φl) (4.4)

The choice of classification loss was done following our experience with training HWNet, which

helped in learning efficient word image features useful for word spotting. Secondly, we chose a simpler

cosine based loss function instead of contrastive loss [29], because, in our experiments, we found such

a network is slow to train and the selection of pairs (positive and negative) is extremely crucial for opti-

mum training. Note that using cosine loss, we achieved slightly better performance than contrastive loss,

however, we believe with careful selection of hard negative samples, one may achieve better learning

using the contrastive loss. In the experiment section, we present a thorough ablation study in terms of

the importance of each variant of architecture, each loss function, and type of label stream information.

More details on the training strategy such as pre-training, data augmentation and architectural details

will be discussed in Section 4.5.2 as part of implementation details.

4.4.4 Image and Text Representation

Given the trained End-2-End embedding network, to compute embedding for the test images and

strings, we extract the L2 normalized activation from the penultimate layer of the network, which in our

88

case are φr and φl respectively. Note that for computation of representation of word images, we use

only the real stream and embedding layer, while for computing the textual embedding, we use the label

stream and the embedding layer. Note that the synthetic image that is rendered in the label stream is of

the same font used while training.

4.5 Experiments

In this section, we present the experiments conducted on the proposed embedding schemes, its vari-

ants and validate its effectiveness for the task of word spotting and recognition. The datasets used in this

work are presented in Chapter 2, Section 2.5.1. We begin this section with the description on the evalua-

tion metrics. Later we present the ablation study on the proposed variants of the End-2-End embedding

scheme. We then evaluate our two-stage and End-2-End embedding schemes and compare it with the

related methods from literature for the task of word spotting and recognition. We also conduct various

analyses on embedding size, percentage of training data required and present interesting visualization

on the embedding space.

4.5.1 Evaluation Measures

We evaluate the proposed embedding schemes for the task of word spotting and recognition. In

word spotting, we design the protocol similar to [9] and also follow the train-val-test splits given along

with each dataset. We perform our evaluation in a case-insensitive manner and also remove stopwords

from the test query set, however, stopwords are kept in retrieval set to act as outliers. For the query-by-

example (QBE) setting, we test with each exemplar image from the test query set while for query-by-

string (QBS) scenario, we take the unique strings in the test set as queries. We evaluate word spotting

using mean average precision (mAP), which is the standard evaluation method under retrieval problems.

The second major experiment is on word recognition, which is evaluated using the mean charac-

ter error rate (CER) and mean word error rate (WER). Both CER and WER are computed using the

Levenshtein distance between the predicted sequence of characters/words with actual ground truth re-

spectively. Since in this work we require word-level segmentation along with lexicon for recognition,

our comparisons in this space will be limited to the methods in literature which operate under this set-

ting. Note that, as per the standard protocol, we remove only the punctuation from the test set while

keeping all other words including stopwords for evaluation.

89

4.5.2 Implementation Details

We train the HWNet v3 network using a stochastic gradient descent algorithm with momentum. We

set the momentum factor to be 0.9 and the learning rate is set as 1e − 2 while training from scratch on

synthetic data. While performing fine-tuning, the learning rate is initialized from 1e − 3 and reduced

by a factor of 2 once the loss does not change within a certain threshold in the last two epochs. The

weights are initialized using He initialization [68]. We perform extensive data augmentation [91] while

training the network which includes elastic distortion, and affine transformations (scaling, translation,

rotation and shear). The augmentations are done on-the-fly with 50% probability of whether to augment

the current sample from the mini-batch. For elastic distortion, we set the hyper-parameters α = 0.8 and

σ = 0.08, denoted as scaling and smoothing parameters [157] respectively, which regulate the amount

of distortion. For affine transformation, we randomly pick whether to rotate, shear or pad. The rotation

and shear angles are sampled in the range of (−5, 15) and (−0.5, 0.5) degrees respectively. For bringing

translation in-variance, we randomly insert padding in the four boundaries within a range of 0-20 pixels.

In our experiments using PHOC, we extract unigrams at 10 levels and the bigrams are extracted up to

6 levels. We use NVIDIA GeForce GTX 1080 Ti GPUs for all our experimentation and the codes are

written in PyTorch library.

4.5.3 Ablation Study

In section 4.4, we presented two variants of the HWNet v3 embedding network along with the multi-

task loss function used while training. In table 4.1, we present a detailed ablation study on the IAM

dataset over these two variants (column 1), the choice of the loss function (column 2) and the choice of

modality in each stream (column 3 and 4). We pick the valid combination of loss functions among the

proposed three losses (L1,L2,L3). Note that, the valid combination requires at least one loss function

from the label stream for achieving common subspace embedding. Similarly, the possible modality

through convolution layers of real stream includes either REAL or both REAL+SYNTH images. The

later setting is referred to as Variant II. Similarly, in label stream, we have three possible settings which

are: SYNTH, PHOC, SYNTH+PHOC. The first row of the table presents the setting with Variant I, training

with all loss functions and uses the fusion of SYNTH+PHOC in label stream. We treat this as our baseline

performance where we obtain an mAP of QBE 0.9289 and 0.9650 for QBS, while CER and WER are

in the range of 3.76 and 6.77 respectively. The next three rows (row 2-4) shows the results on using a

90

Variant Loss Real Stream Label Stream QBE QBS CER WER

Variant I

L1 + L2 + L3

REAL SYNTH+PHOC

0.9289 0.9650 3.76 6.77

L1 + L2 0.9168 0.9631 31.50 28.71

L2 + L3 0.9146 0.9289 7.90 12.36

L1 + L3 0.9306 0.9705 1.90 4.10

Variant I

L1 + L3

REAL
SYNTH 0.9333 0.9695 1.98 4.18

PHOC 0.9316 0.9711 1.98 4.31

Variant II REAL+SYNTH
SYNTH 0.9297 0.9738 1.75 3.84

SYNTH+PHOC 0.9322 0.9753 1.67 3.62

Table 4.1 Ablation Study on the IAM dataset under two variants (column 1) of End-2-End embedding

architectures, the choice of loss functions (column 2) and the choice of modality in each stream (column

3 and 4).

different combination of these loss functions by excluding one loss function at a time. Here we observe

that both (L1,L3) loss functions quite important for embedding while the L2 loss function acting as

redundant and even deteriorates the performance of word recognition (last two columns) as compared to

baseline performance. We also notice the need for L3 loss since the exclusion of it (row 2) resulted in a

huge drop in performance for word recognition. One might observe a slight inconsistency here in terms

of the drop in performance among word spotting and recognition. Here we see that there is only a slight

drop in word spotting while a huge drop in CER and WER values. This is because of the word images

used for testing in word spotting and recognition. Under word spotting the standard query set removes

the stopwords which are typically shorter in length while in word recognition, we have kept all the words

except the punctuation. In our analysis, we observe that the majority of word recognition errors have

occurred for shorter words and stopwords since the embedded features were not discriminative enough.

Given the initial set of observations under different loss settings, we pick the combination of L1,L3 for

our further experimentation.

We now experiment with the choice of modality in each stream under both variants with the fixed loss

function. This is depicted from rows 5-8. Here at first, we use the Variant I architecture while keeping

only one modality (SYNTH or PHOC) in the label stream. We observe that the performance of SYNTH

stream to be either better or comparable with PHOC under all tasks. This supports our earlier claim that

91

it is possible to learn an embedding space that is comparable or better than PHOC representation space.

Finally, we present the analysis of Variant II architecture where the real stream is shared among real

and synth images. Here also we evaluate under two possible label stream settings which are SYNTH

or SYNTH+PHOC. Here we observe that performance on word recognition to be best among all other

scenarios. More specifically, the fused representation (SYNTH+PHOC) in the label stream to be better

than using only one modality. In our further experiments, we use the Variant II architecture along with

the loss function (L1 + L3) and real stream (REAL+SYNTH) and label stream (SYNTH+PHOC). Such a

setting will be referred to as HWNet v3 for the purpose of notation.

4.5.4 Word Spotting Results

Table 4.2 presents the results of word spotting under various proposed embedding methods and

comparisons are made with the recent state of the art methods. We split the rows of the table into four

blocks where in the first block we list out the state of the art word spotting methods from literature. The

next three blocks present and compare the results from our previous contributions, starting from HWNet

architecture and various embedding schemes such as two-stage joint embedding, synthetic attribute

embedding and finally to End-2-End embedding scheme. As mentioned in the dataset section, we will

be evaluating the four prominent datasets used in the community.

Most of the methods reported in the table are based on deep neural networks except the first method

KSCR [9], which uses Fisher based representation for attribute embedding. As one can observe, the

introduction of deep features, gave a significant push in the performance on all handwritten datasets.

Nevertheless the PHOC based representation originally proposed in this work inspired many of the deep

learning methods [85, 130, 166] including ours due to its optimal representation of textual strings in the

form of attributes. Rows 2-8 presents the recent methods in word spotting which uses deep features

for representation. Among these, PHOCNet [166] architecture presented by Sudholt et al. uses PHOC

representation as the output space and learns an embedding using a deep convolutional network along

with spatial pyramid pooling (SPP) to accommodate variable sizes input images. Later in the extension

of this work [168], authors modified the SPP architecture to temporal pooling layer (TPP) and evaluated

the method under different loss function, embedding schemes and optimization functions. Here TPP-

PHOCNet (BPA) stands for Binary Cross-Entropy Loss, PHOC embedding and Adam optimization

(BPA) while TPP-PHOCNet (CPS) is Cosine Loss, PHOC embedding and standard SGD optimization.

We report the best-performing methods in our table among all the ablation studies conducted in [168].

92

Method
IAM GW Botany Konzilsprotokolle

QBE QBS QBE QBS QBE QBS QBE QBS

KCSR [9] 0.5573 0.7372 0.9304 0.9129 0.7577 0.6569 0.7791 0.8291

PHOCNet [166] 0.7251 0.8297 0.9671 0.9264 0.8969 0.7447 0.9605 0.9420

Triplet-CNN [186] 0.8158 0.8949 0.9800 0.9369 - - - -

LSDE [55] - - - 0.9131 - - - -

TPP-PHOCNet (BPA) [168] 0.8480 0.9297 0.9790 0.9673 0.9605 0.9738 0.9811 0.9802

TPP-PHOCNet (CPS) [168] 0.8274 0.9342 0.9796 0.9792 0.8081 0.9015 0.9642 0.9463

PHOCNet (BPA) [168] 0.8550 0.9238 0.9758 0.9558 0.9410 0.9543 0.9708 0.9622

HWNet [90] 0.8061 - 0.9484 - 0.8416 - 0.7913 -

DeepEmbed [85] 0.8425 0.9158 0.9441 0.9284 - - - -

HWNet v2 (ROI) [91] 0.9065 - 0.9601 - 0.9401 - 0.9427 -

DeepEmbed (ROI) [86] 0.9038 0.9404 0.9801 0.9886 0.9546 0.9717 0.9411 0.9065

Synth+DeepEmbed (ROI) [86] - 0.9509 - 0.9898 - 0.9718 - 0.9143

End-2-End Embed (ROI) [86] 0.9157 0.9621 0.9839 0.9894 0.9554 0.9372 0.9316 0.7105

HWNet v2 (TPP) [91] 0.9241 - 0.9824 - 0.9526 - 0.9347 -

DeepEmbed (TPP) 0.9180 0.9463 0.9848 0.9922 0.9617 0.9804 0.9435 0.8896

Synth+DeepEmbed (TPP) - 0.9614 - 0.9922 - 0.9804 - 0.9024

HWNet v3 0.9322 0.9753 0.9948 0.9980 0.9713 0.9777 0.9624 0.9364

Table 4.2 Quantitative evaluation of various word spotting methods on standard handwritten datasets.

Here is the first block (rows 1-7) presents results from methods proposed in the literature. Note that in

Triplet-CNN [186] we have taken the best results for IAM and GW across different word embedding

used in the paper. The next three blocks of methods (rows 8-9, 10-13 and 14-17) present the different

embedding schemes proposed in this chapter.

As one can observe here that TPP-PHOCNet (BPA) generally performs the best among other variations

of the TPP-PHOCNet. Another significant architecture is the Triplet-CNN proposed by Wilkinson et

al. [186] uses a similar scheme as ours with a triplet CNN architecture for image embedding and a sep-

arate word embedding network for textual embedding. The work uses a SoftPN loss function for image

embedding and evaluates different textual embedding such as PHOC, DCToW, n-gram and semantic. In

93

our table, we have taken the best results for IAM and GW across different textual word embedding used

in this paper. In comparison with PHOCNet variants, Triplet CNN performs slightly inferior on the IAM

dataset, however, they report a good performance on the GW dataset. Note that while training for the

GW dataset, Triplet-CNN used an external real-world CVL database for pre-training the network while

the other methods do not use any external real data. More recently, Gomez et al. [55] proposed a novel

embedding scheme (LSDE) that projects both word images and the corresponding string to space which

respects the Levenshtein distance. The paper only evaluates with the GW dataset and is slightly inferior

to other methods in this space.

We now sequentially bring the embedding schemes introduced in this work and compare it against

the existing methods from the literature. In the second block (rows 8-9) of rows, we first report the

performance of our baseline HWNet architecture which was proposed in [90]. The next row DeepEm-

bed [85] reports the performance of the two-stage joint feature embedding scheme on top of original

HWNet features. Note that we refer to the two-stage embedding scheme as DeepEmbed since we intro-

duced this notation in our work of [85]. As one can observe that the joint embedding scheme enables

both QBE and QBS based word spotting. It also improves the QBE performance. In the next block

(rows 10-13) we first demonstrate the effectiveness of HWNet v2 (using ROI pooling) features and the

corresponding DeepEmbed scheme which utilizes these features. Note that at this stage, we report the

state of the art results for IAM and GW dataset across other methods proposed in the literature. The

enhancement of DeepEmbed features using synthetic modality as presented in section 4.3.2 shows a

minor improvement in all datasets under the QBS setting. Note that the QBE values remain the same

for the Synth+DeepEmbed setting. The last row in the third block (row 13) presents the End-2-End

embedding architecture Variant I which was introduced in [86]. In comparison with DeepEmbed and

Synth+DeepEmbed, the End-2-End Variant I present improvements in IAM and GW datasets, however,

for Botany, it is just comparable and for Konzilsprotokolle it is quite inferior for QBS. We found that

while training for the Konzilsprotokolle dataset in [86] we used an English font instead of using a Ger-

man which caused non-optimal learning of the label stream. The choice of font is rectified in our later

experiments.

In the final block (rows 14-17), we present the extended results while using an improved HWNet v2

architecture with TPP layer and the Variant II of End-2-End embedding scheme referred to as HWNet

v3. Given better image-level features, it has directly impacted the two-stage embedding frameworks

DeepEmbed and Synth+DeepEmbed. Both of these methods now perform comparably to each other and

94

better compared to their previous versions. The HWNet v3 (Variant II) End-2-End architecture gives

the best performance on IAM, GW and Botany dataset among other methods in the literature. While for

Konzilsprotokolle dataset, we perform comparable in terms of QBE performance, while slightly inferior

in terms of QBS performance as compared to the TPP-PHOCNet architecture.

4.5.5 Word Recognition Results

In this experiment, we evaluate the proposed embedding schemes for the task of word recognition.

Note that, the current framework only supports recognition through lexicon, thereby we compare our

method with other methods in literature which follow this convention. Table 4.3 presents the quantitative

results on lexicon-based word recognition on IAM dataset under three different lexicon setting which

are: (i) the text lexicon which contains all words from the evaluation/test set, (ii) the train+test lexicon

includes all the unique words from training set along with test set, and (iii) is a large lexicon setting

which contains 90K words taken from Hunspell dictionary. The large lexicon also includes train+test

unique words. In general, the performance gets better with a reduced lexicon size provided there are no

out-of-vocabulary words. This trend is clearly visible in the table where the error rates for test lexicon

setting is low as compared to train+test lexicon scenario.

One of the classical methods in this space is again from Almazán el al. [9] which represents a word

image in terms of learned attribute representation constructed from Fisher features. One of the first

extensions of attribute-based representation using deep learned feature is proposed by Poznanski et

al. [130] which uses a shared set of convolutional layers and multiple fully connected layers to predict

different PHOC attribute at various spatial levels. Most of the recent related works in word recogni-

tion uses either BLSTMs [63], encoder-decoder style architectures or CNN-RNN hybrid style architec-

tures [156]. In [169], the authors propose an encoder-decoder style architecture with CNNs for feature

extraction from input patches of the word image. While methods such as [40,86,185] uses a CNN-RNN

style architecture which comprises a set of convolutional layers for feature extraction and RNN (more

specifically LSTM/BLSTM) layers for character prediction through a CTC [61] loss function. In [185],

Wigington et al. use novel pre-processing and data augmentation schemes for better learning. While

CRNN-STNsynth uses an additional spatial transformer layer [75] for making the network invariant to

affine transformation. Later the authors extend their work in [40] by explicitly performing input pre-

processing (image slant and slope correction), along with data augmentation techniques to train a better

model. In [170], Sun et al. uses a convolutional multi-directional recurrent network in order to capture

95

Method Lexicon WER CER

Almazán et al. [9]

Test

20.01 11.27

Sueiras et al. [169] 12.7 6.2

Wigington et al. [185] 4.97 2.82

CRNN-STNsynth [86] 5.10 2.66

Dutta et. al. [40] 4.07 2.17

DeepEmbed (HWNet) [85] 6.69 3.72

DeepEmbed (HWNet v2) [86] 5.46 3.00

HWNet v3 3.62 1.67

Sun et al. [170]

Train+Test

11.51 -

Wigington et al. [185] 5.71 3.03

Stuner et al. [165] 5.93 2.78

Poznanski et al. [130] 6.45 3.44

Dutta et. al. [40] 4.80 2.52

HWNet v3 4.59 2.09

HWNet v3 Large (90K) 7.80 3.42

Table 4.3 Word recognition results on IAM dataset under different settings of lexicon based evaluation

for making the predictions.

context from all three directions (top, bottom and diagonal) while prediction. While Stuner et al. [165]

uses a cascade of LSTMs classifiers along with a lexicon verification operator to increase the reliability

of word predictions. The table reports the performance of all these methods under different lexicon

settings.

In test based lexicon setting, we progressively observe an improvement over the proposed two-stage

embedding schemes (DeepEmbed) using HWNet and HWNet v2 features, however, these are slightly

inferior to other existing methods in this space. The performance of proposed Variant II architecture

referred to as HWNet v3 is better than all the related methods in this space with a considerable margin.

Here we report a CER and WER value of 1.67, 3.62 respectively. A similar trend is observed in the

train+test lexicon setting where the HWNet v3 reports the best performance with a CER and WER value

of 2.09, 4.59 respectively. Note that these values are even better than most of the reported methods in the

96

Embed Size

m
A

P

0

0.25

0.5

0.75

1

2048 1024 512 256 128 64 32 16 8 4

QBE QBS

Embed Size

Er
ro

r R
at

e

0

25

50

75

100

125

2048 1024 512 256 128 64 32 16 8 4

CER WER

Figure 4.6 Effect on performance on varying HWNet v3 embedding size on the IAM dataset. The top

figure shows the analysis of word spotting under both QBE and QBS setting. The bottom figure presents

the word recognition CER and WER values.

test lexicon setting. Finally, in order to observe the robustness of the HWNet v3 based word recognition

under a large lexicon setting that possesses a huge amount of distractors, we append our lexicon to

contain 90K words from an external dictionary. We observe that under such a large lexicon, our method

works decent enough by giving a CER and WER value of 3.42 and 7.80 respectively. The last experiment

also validates the robustness of these embedding for recognition and also opens an interesting direction

in the future for lexicon-free word recognition using such representation schemes.

97

Train % 1.0 0.8 0.6 0.4 0.2 0.1 0.0

mAP-QBE 0.9322 0.9247 0.9173 0.8979 0.8837 0.8431 0.5411

mAP-QBS 0.9753 0.9703 0.9666 0.9427 0.9232 0.8614 0.6918

CER 1.67 1.89 2.04 3.36 4.01 6.65 26.40

WER 3.62 4.03 4.40 6.67 7.87 12.11 37.87

Table 4.4 Evaluation of word spotting and recognition on the IAM dataset by learning HWNet v3 rep-

resentation with the entire synthetic dataset while fine-tuning on a varying percentage of IAM training

data. Here Train=0.0% refers only using synthetic data for training.

4.5.6 Analysis on Embedding Size

Given the choice of varying the embedding size or dimensions for the embedding layer in End-

2-End variants, we now present the analysis on reducing its size in the power of 2 from the default

embedding size of 2048. Note that from now onwards, we would be using HWNet v3 representation

and its corresponding architecture for our analysis. Fig. 4.6 presents these analysis on IAM dataset for

the tasks of word spotting (top-part) and recognition (bottom-part). In both experiments, we vary the

embedding size in the range of (2048-4). As one can observe that the drop in performance is quite

negligible in the range of (2048-32) while below 32 dimensions there is a drop in the performance. This

is pattern is the same for both word spotting and recognition and also marks similarity with the original

HWNet representation as presented in [91]. Using mere 32 dimensions, we report an mAP of 0.9047 and

0.9438 for QBE and QBS respectively, while CER, WER values are 3.61 and 5.96 respectively. Having

a lower-dimensional robust representation helps in building compact search indexes and perform faster

retrieval.

4.5.7 Effect of Pre-Training

In the implementation section, we mentioned about the process of pre-training the network using

synthetic data. In Table 4.4, we present an interesting outcome of pre-training which resulted in the

reduced need for real training data. Here we experiment the reduced need for real data for learning

HWNet v3 representation by varying the amount of training data as compared to previous experiments.

Here also we take IAM dataset as our test bench and use a different proportion of real data and compare

the performance with architecture which uses full training data. Here full is depicted as 1.0 while 0.0

98

Figure 4.7 tSNE image embedding

depicts the use of only synthetic data. Note that all these experiments are first trained on entire synthetic

data and later fine-tuned using varying real data proportions. As one can notice the drop in performance

with reduced real training data starts very slowly and surprisingly even using a mere 20% of real data

only drops the performance around 5% in word spotting and around 4% in WER. Although this suggests

the lesser dependency on real data, we believe this needs a thorough study (out of the scope of current

work) to evaluate the differences in the domain gap between synthetic data and the target handwritten

styles.

4.6 Visualization and Qualitative Results

Fig. 4.7, presents the t-SNE embedding of HWNet v3 representation of IAM word images taken

from its validation corpus. For visualization, we embed these representations onto the 2D space. The

top frequent words in the dataset are usually the stopwords and the t-SNE embedding usually projects

the representation corresponding to these words onto the outer periphery of the reduced space. In the

figure, one can observe these nice clusters marked inside ellipses. The inner region contains the rest of

99

Figure 4.8 t-SNE common subspace embedding. The central plot shows a snapshot of limited number

of word classes where each color denotes one word class. We have zoomed out two regions to show the

projection of both word image and it’s textual representation. Here the image is projected using colored

round circles and the corresponding textual representation is shown using colored stars.

the word images which have fewer occurrences in the corpus. Here we have zoomed out few instances

along with their word image. Some of the examples are little, years, {god, good} etc. To observe

the common space embedding, we take a small snapshot of the reduced space and project both image

and its corresponding textual representation as shown in Fig. 4.8. To reduce the clutter we plotted

13 unique words and its corresponding instances from the dataset. The image embedding vectors are

depicted in “circle” while text embeddings are shown in “star” shape. We observe nice clustering among

different classes of word images and further we also see that within a particular cluster the image and

its corresponding text embedding lying close to each other.

Fig. 4.9 presents the qualitative results of word recognition on the IAM dataset using the test lexicon.

The top two rows show the successful cases, while the bottom row shows failure scenarios. Here the

100

family aircraft gilberto spirits

to dangling shuffle officer

grand
ground

deck
been

loose
rose

touch
took

Figure 4.9 Qualitative results of word recognition on the IAM dataset using test lexicon. The top

two rows show the successful cases, while the bottom row shows failure scenarios. Here the green box

shows the text where the prediction matches the actual text. In failure cases, the red box shows the

incorrect recognition, while the blue box shows the actual correct answer.

green box shows the text where the prediction matches the actual text. In failure cases, the red box

shows incorrect recognition, while the blue box shows the actual correct answer. Notice the robustness

of the proposed representation to recognize some of the hard words such as “shuffle”, “gilberto” etc.

While some of the failure cases such as “rose”, “took” are quite ambiguous in the image space itself

which resulted in incorrect recognition. Fig. 4.10, presents the qualitative results of word spotting across

all the datasets in the query-by-string setting. The query is shown in the left-most part of the column,

while in the right we arrange the ranked results obtained with respect to the query. Notice the variation

of styles among different writers which the representation can handle.

4.7 Summary

In this chapter, we presented two major types of label embedding techniques for word images using

deep architecture and their representations. This includes the two-stage embedding framework and an

End-to-End deep neural architecture which embeds both word images and its corresponding textual

strings onto a common subspace. We also extensively validate the role of synthetic images for pre-

training and also utilize this modality for learning the better representation of the textual data. The

proposed End-to-End framework and its representation referred to as HWNet v3 reports state-of-the-

art performance for both word spotting and recognition tasks. We also bring out a detailed ablation

101

miles

john

earth

regiment

instructions

plants

cultivated

haselberg

weigel

Query Top Ranked Results

(a)

(b)

(c)

(d)

Figure 4.10 Qualitative results of query-by-string word spotting on (a) IAM, (b) GW, (c) Botany, (d)

Konzilsprotokolle dataset respectively. The query is shown in the left most column and the word images

shown on the right are the retrieved images in the ranked order.

study on different variants of the End-2-End embedding architecture and perform analysis under varying

embedding sizes.

102

Chapter 5

Bringing Semantics into Word Image Representation

103

The shift from one-hot to distributed representation, popularly referred to as word embedding has

changed the landscape of natural language processing (NLP) and information retrieval (IR) communi-

ties. In the domain of document images, we have always appreciated the need for learning a holistic

word image representation which is popularly used for the task of word spotting. The representations

proposed for word spotting are different from word embedding in the text since the later captures the

semantic aspects of the word which is a crucial ingredient to numerous NLP and IR tasks. In this chapter,

we attempt to encode the notion of semantics into a word image representation by bringing the advance-

ments from the textual domain. We propose two novel forms of representations where the first form is

designed to be inflection invariant by focusing on the root part of the word, while the second form is

built along the lines of recent textual word embedding techniques such as Word2Vec. We observe that

such representations are useful for both traditional word spotting and also enrich the search results by

accounting the semantic nature of the task. We conduct our experiments on the challenging document

images taken from historical-modern collections, handwritten-printed domains, and Latin-Indic scripts.

For semantic evaluation, we have prepared a large synthetic word image dataset and report interesting

results for the standard semantic evaluation metrics such as word analogy and word similarity. This

work has been previously presented as part of our publication [87].

5.1 Introduction

What’s in a word? According to the linguist Ferdinand de Saussure [12], a word is like a coin that

has two sides to it and can never be separated. On one side, we have the form of the word, composed

of sounds and letters that combine to make a spoken or written word. While on the other side we have

the meaning which gives us the concept or the intuition on the word usage. In the domain of document

images, for decades we have appreciated the need for learning a holistic word-level representation which

is popularly used for the task of word spotting. However, most of the previous works in this space have

restricted the representations which only respect the word form, while ignoring its meaning. In this

chapter, we attempt to bridge this gap by encoding the notion of semantics by introducing novel forms

of word image representations.

Learning representation from the data forms the basis of any pattern recognition problem. With

good representation, one achieves better performance and insights into the underlying problem. In

the text domain, the shift from one-hot to distributed representations learned using techniques such as

104

Figure 5.1 Projection of word similarity scores onto visual and semantic axes as shown in the top and

bottom locations respectively. Here the top axis uses word image representation [86] which only focuses

on the visual space, while the bottom axis uses the proposed semantic representation which focuses on

the meaning of the word.

Word2Vec [113], and GLoVE [122] have changed the entire landscape for information retrieval (IR) and

natural language processing (NLP) problems. Such distributed representations, popularly referred to as

word embeddings, essentially embed the relationships among words by formulating a self-supervised

task (e.g., language modeling) on a large unsupervised corpus. The embedding process projects each

word into a vectorial space where the distances among the words de�ne its semantic relationships. The

learning process exploits the cue that:the words which are related in semantics keep the company

(context) of similar words in a document. The widespread use of word embeddings as the underlying

representation brought a revolution in theNLP domain. In this chapter, we would like to capitalize on this

success to document images where the community largely restricts itself to image representations that

capture only the visual properties. Fig. 5.1 presents a couple of word image pairs and their similarity

values projected along visual and semantic axes. As mentioned before, the traditional word image

representations capture only the visual properties (top-axis), while in our proposed work, we would

like to additionally encode the semantic properties (bottom-axis) of the word which further enriches the

representation.

One of the interesting aspects in the domain of document images is its close relationship with the text-

domain. A document image essentially contains text, and hence the “semantics” that are involved in the

creation of the original text are seamlessly transferable to it. In linguistics, “semantics” refers to a broad

area that investigates the meaning and relationship among words, phrases, sentences, and documents. In

this work, we restrict the scope to individual words (word images) which can be treated as a fundamental

105

between the query and its retrieved results, and (iii) We demonstrate semantic word spotting task and

evaluate the proposed representation on standard IR measures such word analogy and word similarity.

5.2 Related Works

We broadly categorize our literature review into two major subsections. We first explore the existing

literature of semantic embedding from the IR or NLP communities where the problem is more funda-

mental and has numerous applications. Secondly, we discuss some of the recent papers in the domain

of document images that address the problem of learning semantic embeddings from word images.

5.2.1 Textual Word Embedding

Learning continuous representation for textual words (word embedding) which respects their seman-

tic properties has been a fundamental quest in the text processing community. Such word embeddings

are useful in many downstream NLP and IR applications such as text classification [81], named entity

recognition [121], etc. The term word embedding was coined in the classical work of Bengio et al. [18]

where the problem is formulated in terms of language modeling. Here, the underlying task is to learn a

probability distribution of word sequences present in a context. This implicitly learns an optimum dis-

tributed representation of words. The task is achieved using a neural architecture with a cross-entropy

based loss function, however, the complexity in the output softmax layer, which is equivalent to the

size of vocabulary, presented the major computational bottleneck. One of the most popular and cited

works in the field of word embedding is by Mikolov et al. and is referred to as Word2Vec [112, 113].

Word2Vec uses a shallow neural architecture and a negative sampling loss function which is compu-

tationally far efficient than softmax. Another popular formulation referred to as GloVe proposed by

Pennington et al. [122] uses word-to-word co-occurrence statistics from the corpus to learn word repre-

sentations. Here, the basic idea is to exploit the semantic information that is present in the ratio of word

co-occurrence probabilities. Both Word2Vec and GloVe learn high-quality word representations which

can be readily used in many downstream NLP tasks. However, one of the major limitations in the above

formulations is that one cannot extract the word embedding for an out of vocabulary (OOV) word. This is

because the underlying formulation treats the individual unit as a word and hence, the word embeddings

are only learned for the words in training vocabulary. To avoid such limitations, recent methods [24,82]

were proposed at the sub-word level while keeping the overall formulation similar. Such models can

108

now also define representations for OOV words and are also quite useful for morphologically rich lan-

guages.

5.2.2 Word Image Semantic Embedding

In the document image community, there have been only very few pursuits in learning the seman-

tic aspects of the word images. One of the initial work [88] highlights the need for semantics and

demonstrated a two-stage approach for performing semantic retrieval. The basic idea is to perform a

query expansion by matching the query to an annotated corpus of word images (semantic index) which

contains the associated relationships among words defined by WordNet [114]. The work could not be

considered as semantic embedding since we didn’t embed word images into a semantic space, how-

ever, the final goal for semantic retrieval remains similar to this work. In [58], the authors proposed an

end2end representation learning using a chosen subset of concepts from WordNet using a deep convolu-

tional architecture. Here, each word image is annotated with a semantic attribute vector generated from

the WordNet and the network is trained using a weighted ranking loss function. The work demonstrated

the results on the synthetic scene text dataset in both query-by-concept and query-by-image formula-

tions. Both the above-mentioned works [58, 88] utilize the lexical database WordNet which is limited

to the available human annotations, support very few languages and defines only specific semantic rela-

tionships. However, the recent textual embedding techniques such as Word2Vec or GloVe can learn both

generic and specific semantic relationships in an unsupervised fashion. The recent work from Wilkinson

and Brun [186] is one of the first work which uses these textual embeddings to learn word image rep-

resentation. The authors propose a two-stage neural architecture that uses a cosine embedding ranking

loss to project word images into the semantic space. However, [186] only analyzes the performance

of the traditional word spotting task and does not study the semantic aspects of such a representation.

We draw inspiration from this work and systematically present a framework which can learn a better se-

mantic representation, and also evaluate it under both semantic tasks and the conventional word spotting

task.

5.3 Word Image Semantic Embedding

The definition of semantics is quite broad. In this work we restrict our scope in two forms:- (i) words

which are related to each other in the form of “common linguistic root”, and (ii) the words which are

109

related to each other in terms of “common context”. In the following section, for each form, we propose

representations that respect these semantic relationships.

5.3.1 Normalized Word Embedding

In textual search systems, one of the first pre-processing stages is word normalization, which includes

normalizing the case of the word to lower case and reducing each word to its root/stem form. For

example, words such as look, looking, looked, looks will all reduce to its root form look. In terms of

linguistic rules, these individual words convey different grammatical categories, however from a search

perspective they all convey the same information. We follow a similar paradigm where we would like

to learn normalized word embeddings for word images which are invariant to such word forms in a

language.

In the English language, we observe variations in the form of inflections to a word which expresses

different grammatical categories. These are expressed in the form of either prefix or a suffix (more

generally called affixes). The popular inflectional ending in English are “-s” (plural), “-ed” (past tense),

“-ess” (adjective), “-ing” (continuous form), etc. These affixes are added to the root word, thereby

resulting in a semantically related word. In text-domain, there are two ways to normalize such words

to their root forms:- (i) use of stemming algorithms which use heuristics to reduce the word to a stem

which is very close to the actual root form, and (ii) use of lemmatizers or morphological analyzers which

are more of linguistic rule-based systems which use the parts of speech (POS) information to deduce the

root for the word.

In this work, we imitate the process of stemming and lemmatization in the visual domain using

our image embedding network by formulating the problem of normalized word embedding. Here we

use standard and popular linguistic tools such as Porter stemmer [128] and WordNet-based Lemma-

tizer [107] which are provided as part of the NLTK toolkit [100] to strip out common affixes. This

generates a normalized representation of words with common roots. Here, the Porter stemmer uses

multiple heuristic rules in stages to strip the affixes, while the lemmatization algorithm uses the knowl-

edge of WordNet [114], a large lexical database of English annotated by humans, along with the POS

tag information of the word to derive the root form of the word. Note that POS computation for isolated

words could be ambiguous without the context information. Given the reduced number of word classes

obtained from stemmer and the lemmatizer, we train our embedding network (as presented in Chapter 4

section 4.4) with the classification losses (L1,L2) which now computes the loss in recognizing the root

110

Figure 5.3 Intuition behind the semantic embedding process. Here each point refers to a word image

embedding either shown in the lexical space (shown in left) or the semantic space (shown in right). We

propose two schemes to embed word images from lexical to semantic space (a) Recognize+Embed, and

(b) Direct Embedding.

word from the word image. Note that theL 3 loss remains the same as mentioned earlier. We empirically

observe that such a trained network gives lesser weights to popular word suf�xes and learns a feature

space where both the root of the word and its in�ections lie close to each other.

5.3.2 Semantic Embedding

We now generalize our notion of semantic representation by taking inspiration from the word em-

bedding techniques proposed in the text/NLP community, such as Word2Vec [113] and GloVe [122]

algorithms. The distributed representations learned using these word embedding techniques establish

relationships among words that occur in a similar context in a language. E.g., in the embedding space,

the words that are close toboat could bevessel or water . Here, we notice thatvessel is a synonym

to boat, while boat andwater are related only because they occur in a similar context. One can learn

these textual representations on an unsupervised corpus for any particular language and domain.

In this work, we use a pre-trained textual word embedding model and project word image features

into the learned textual embedding space with no loss of generality in representation space. We achieve

this transfer in two ways: a) recognize+embed, and b) direct embedding. This is visually demonstrated

in Fig. 5.3. In both schemes, the target semantic embedding space remains the same.

111

choosing negative samples, we sample the words from the distribution w ∼ Pn(w), where Pn(w) is

computed using unigram frequency of the word. The above triplet based ranking loss enables capturing

the relationships among samples in the embedding much better as compared to the MSE loss.

5.4 Experiments

In this section, we evaluate the proposed representation on two major datasets IAM and GW which

are described in Chapter 2, Section 2.5.1 . In our work, we also use the following synthetic dataset to

evaluate the models in a controlled fashion thereby allowing to simulate evaluation tasks used in text

embedding.

HW-SYNTH [89]: We prepared an in-house synthetic word image dataset rendered from open source

handwritten fonts as proposed in [89]. We use a vocabulary of 12K most frequent words in the English

language. For each word in the vocabulary, we render 50-4 train-test word images which are sampled

from nearly 710 fonts. The train and test data come from mutually exclusive font sets. This gives us

nearly 0.6M word images.

5.4.1 Evaluation Measures

To evaluate performance under word spotting tasks, we use the standard information retrieval eval-

uation measure, mean Average Precision (mAP). The selection of queries for each dataset follows the

protocol used in [9], where we filter the stopwords from the test corpus while all words (including stop-

words as distractors) are kept in the retrieval dataset in which the search is performed. We perform

evaluation under both query-by-example (QBE) and query-by-string (QBS) setting. In QBE setting, since

the query image is taken from the corpus, the first retrieved image is not included in the mAP calcu-

lation. While in QBS setting, the queries in test set are the unique strings (words). Also, note that all

evaluations are done in a case-insensitive manner.

For evaluating the learned semantic representation, we follow the standard measures used in the IR

community which are: (i) word similarity and (ii) word analogy. In word similarity measure, there exists

human similarity judgements on a pre-defined set of word pairs as part of the dataset. For English, we

use the popular dataset WS353 [44] which contains word pairs along with human similarity judgements,

where 0 means unrelated words and 10 is very much related or identical words. We compute Spearman’s

rank correlation coefficient [162] between the human judgement score and the cosine similarity score

114

between the pair of word image representation. Since the words in the WS353 dataset are specific ones

which may not be present completely in the handwritten image datasets, we evaluate this measure only

on the synthetic dataset where we have the control to render the appropriate word images.

For word analogy task, we use dataset introduced in [112]. The dataset contains questions of the

form A is to B as C is to D, where D must be predicted by the model. We evaluate this task on HW-

SYNTH and IAM datasets. Note that the questions which contain words which are not present in the

test image corpus are excluded from the evaluation. Here we report mean accuracy of correct prediction

on the questions.

5.4.2 Implementation Details

We train our network and its modified version for semantic embedding using stochastic gradient

descent algorithm with momentum. We set the momentum factor to be 0.9 and the learning rate is set

as 1e− 2 while training from scratch on synthetic data. While performing fine tuning, the learning rate

is initialized from 1e − 3 and reduced by a factor of 2 once the loss does not change within a certain

threshold in last two epochs. The weights are initialized using He initialization [68]. We perform

extensive data augmentation (as in done for HWNet in Chapter 3) while training the network which

includes elastic distortion, and affine transformations (scaling, translation, rotation and shear). The

augmentations are done on-the-fly with 50% probability whether to augment the current sample from

the mini-batch. For elastic distortion, we set the hyper-parameters α = 0.8 and σ = 0.08, denoted

as scaling and smoothing parameters [157] respectively, which regulate the amount of distortion. For

affine transformation, we randomly pick whether to rotate, shear or pad. The rotation and shear angles

are sampled in the range of (−5, 15) and (−0.5, 0.5) degrees respectively. For bringing translation

in-variance, we randomly insert padding in the four boundaries within a range of 0-20 pixels.

As mentioned earlier, to embed word images into semantic space, we used fastText pre-trained mod-

els [59] for English. Given the textual embedding from fastText, we further perform normalization of

the features by subtracting the mean and dividing by the standard deviation as computed from the train-

ing corpus. We found this to help in better training of the network and the same values are used while

computing the test set features.

115

Concept GT. Evaluation
HW-SYNTH IAM GW
QBE QBS QBE QBS QBE QBS

Exact

Exact 0.9849 0.9896 0.9254 0.9654 0.9937 0.9946
Stem 0.7462 0.8831 0.8635 0.9079 0.9746 0.9861

Lemma 0.8154 0.9132 0.8611 0.9209 0.9760 0.9869

Stem

Exact 0.8770 0.8731 0.9065 0.9215 0.9814 0.9631
Stem 0.9756 0.9873 0.9205 0.9569 0.9945 0.9912

Lemma 0.9394 0.9512 0.9019 0.9440 0.9907 0.9882

Lemma

Exact 0.9318 0.9270 0.9108 0.9334 0.9814 0.9689
Stem 0.9088 0.9585 0.9076 0.9395 0.9897 0.9813

Lemma 0.9756 0.9862 0.9167 0.9501 0.9901 0.9820

Table 5.1 Performance evaluation under normalized word spotting. Here we present embedding

learned and evaluated in three different scenarios (Exact, Stem and Lemma).

5.4.3 Normalized Spotting

In normalized word spotting task, we evaluate our representation presented in Section 5.3.1 which

is invariant to word form variations due to inflections. Here we validate whether the representation

essentially captures the root form of word. Table 5.1 presents the quantitative results evaluated with the

proposed representation under the word spotting task. As discussed in the section 5.3.1, we have utilized

two major linguistic knowledge sources, stemming and lemmatization to learn our embedding. We

trained our embedding in three different scenarios (Concept GT): “exact”, “stem” and “lemma”. Here

“exact” corresponds to the actual ground truth of the word taken for training, while “stem” and “lemma”

corresponds to the approximate root of the given word. In either case, the training of the network is

formulated as a classification problem while feature/representation is taken from the penultimate layer

of the network after performing L2 normalization. The evaluation for the representations learned under

each of three scenarios also follows the same scheme, where each one is evaluated under other two

scenarios.

In the table, we first evaluate (2nd row) the traditional word spotting performance (“exact” criteria)

across all the datasets. Note that the networks trained for IAM and GW are first pre-trained on the HW-

SYNTH dataset. The obtained results are slightly better to the ones reported in the original work [86] due

to the usage of the TPP layer along with better implementation strategies as explained in section 5.4.2. As

shown in the table, we first observe that using the exact representation as the Concept GT, the evaluation

116

Method
HW-SYNTH IAM GW

WS353 WA
mAP-Exact

WA
mAP-Exact mAP-Exact

QBE QBS QBE QBS In-QBS QBE QBS In-QBS
fastText [59] 0.7300 0.8197 - - 0.8345 - - - - - -
NormSpot- 0.0799 0.1715

0.9849 0.9896
0.2317

0.9254 0.9654 0.9701 0.9937 0.9946 0.9967Exact ±0.018±0.004 ±0.011

RecEmbed- 0.6841 0.7067
0.9685 0.9819

0.6019
0.7978 0.8831 0.8943 0.9537 0.9329 0.920290K ±0.053±0.005 ±0.026

Sem-MSE
0.566 0.6773

0.9282 0.9476
0.6322

0.8463 0.6972 0.8812 0.9763 0.9438 0.9894±0.05 ±0.011 ±0.031

Sem-Rank
0.6498 0.7990

0.9341 0.9553
0.6564

0.8328 0.7126 0.8613 0.9783 0.9372 0.9879±0.04 ±0.011 ±0.031
Triplet [186]

- - - - - 0.8158 0.7574 - 0.9691 0.6981 -(Semantic)

Table 5.2 Quantitative evaluation of word image semantic representation. Following shortened nota-

tion are used: word analogy (WA), query-by-example (QBE), query-by-string (QBS) and in-vocabulary

QBS (In-QBS). Each of the performance measure vary between (0,1) where higher is the better.

of retrieving words having common stem and lemma is inferior since the original representation is a

holistic feature focusing on the entire word. In the other two scenarios where we use Concept GT

as either stem or lemma, we observe that performance of exact evaluation drops. This is because for

“exact” retrieval, the words having common roots are deemed false positives. More discussion on this

loss of performance is explained in the discussion section 5.5. However, the results on the original

training criteria where the Concept GT and Evaluation are same are quite promising and better than

their corresponding counterparts where the Concept GT is exact. This demonstrates that the network

can focus on the root form of the words and put lesser importance to the affixes (prefix and suffix) that

are common across language. Spotting words by focusing on their roots would be an extremely useful

component for text/image based querying from a large corpus. The qualitative results are presented in

section 5.4.4.2.

5.4.4 Semantic Spotting

Table 5.2 presents the quantitative analysis of the proposed semantic representation learned under

different schemes. As mentioned in Section 5.4.1, we use standard measures from textual word em-

bedding literature such as word similarity and word analogy to evaluate our representation. Note that,

117

under both these schemes we report mean performance along with the standard deviation of the results

across multiple trial runs. In text literature, one does not see such trials because for each textual word,

there exists only one representation. However, in case of image corpus, for each textual word one can

sample images under different styles. Therefore, to be fair in evaluation, we conduct multiple trials,

where in each trial and for each textual word, we sample a random style image from our corpus and

take its representation for evaluation purposes. We also compute the mAP-Exact similar to Normalized

Spotting evaluation (as shown in Section 5.4.3). This will help to understand the performance of the

semantic representation for lexical word spotting where the goal is to only retrieve exact similar images.

Note that we have avoided evaluating GW dataset for semantic tasks (WS353 and Word Analogy), since

the corpus has very few images which intersect with the words in WS353 and word analogy datasets.

In this work, to embed word images into semantic space, we used fastText pre-trained models [59]

for English. The first method reported in the table (fastText) evaluates our ground truth representa-

tion under semantic evaluation measures. Here, for the analogy task, we only take those words (analogy

question pairs) which are present in our test corpus of each dataset. The numbers reported under fastText

could be taken as the upper bound for our proposed semantic representation for word images. Next, we

measure the performance of our normalized word representation (Table 5.1, ConceptGT:Exact) which

is assumed to contain only the lexical representation. Here, we are interested in understanding whether

such a representation encodes semantics or not? As one can notice, the performance on both WS353

and Analogy is considerably low in all the datasets, which states the need for dedicated encoding of

semantics while training. The next three rows in the table present the results of the proposed semantic

representation as discussed in Section 5.3.2. Here, RecEmbed-90K refers to our two stage recogni-

tion+embedding scheme under the lexicon size of 90K which is significantly larger than the test lexi-

cons in these datasets and thereby most of the words acts as distractors. The methods Sem-MSE and

Sem-Rank refer to learned representations under direct embedding scheme using the mean square error

loss and ranking loss respectively. As compared to the performance of NormSpot, we observe that is

that there is a significant improvement under semantic evaluation criterion (WS353 and Word Analogy),

however there is also a drop of nearly 8− 12% in IAM mAP-Exact evaluation while for GW and HW-

SYNTH it in range of 2− 5%. As mentioned earlier, the loss in performance for “exact” evaluation due

to inducing semantics will be discussed in more detail in section 5.5.

The other set of observation to notice is between recognition-based and recognition-free setting.

We see that in HW-SYNTH dataset, which contains synthetic images and thereby easier to recognize,

118

RecEmbed (recognition-based) method works better in analogy and mAP-Exact than Sem-MSE and

Sem-Rank (recognition-free). However, for real handwritten datasets, direct embedding is better in most

of the scenarios. This emphasizes the importance of direct embedding schemes where actual recognition

is difficult. Within direct embedding schemes, we observe that although both obtain a comparable

mAP-Exact performance, ranking based loss provides better results under semantic measures of word

similarity using WS353 and word analogy tasks. This validates that a triplet based ranking loss captures

the relationships among samples in the embedding space much better as compared to the MSE loss.

Another important point to note here is that the mAP performance of query-by-string (QBS) for both

Sem-MSE and Sem-Rank is inferior than its query-by-example (QBE) counterpart. The reason is the

out-of-vocabulary (OOV) words in the test set. Since these OOV words did not exist while training,

their embeddings through real stream does not occupy the expected semantic space where the textual

strings from semantic stream exist. Due to this reason, we also provide a In-QBS measure which only

measures the in-vocabulary performance.

The last row in the table compares our representations from the embedding proposed in Wilkinson

and Brun [186] which is the closest method in literature which uses the textual semantic embeddings to

learn word image representation. The authors propose a two-stage neural architecture that uses a cosine

embedding ranking loss to project word images into the semantic space. However, the paper does not

report semantic evaluation results as done in this work, but presents the results qualitatively. As shown,

the last row of the table reports their performance for exact (verbatim) spotting using their semantic

representation which is learned using a character level language model. Although, the proposed rep-

resentations of this work obtain better results on mAP-Exact measure, since [186] have not reported

semantic evaluation results on word similarity and analogy, we could not directly compare among the

two methods.

5.4.4.1 Ablation Study

Fig. 5.5(a-b) presents an ablation study done for lexicon based recognition and embedding on the

IAM dataset. The chart on the top shows semantic spotting performance in terms of mAP for exact

evaluation, while the chart on the bottom reports the word (WER) and character error rates (CER) of

the recognizer. In both the cases, the x axis shows the varying lexicon size of order 0-90K words. Here,

0K refers to only having lexicon words taken from the test set. Each lexicon set is the union of test

set words and other words from English vocabulary acting as distractors. As one can notice, in both

119

women - woman + man = slowly - slow + serious =

went - going + reading = sang - singing + thinking =

looked - looking +
going = went

went - going +
saying = said

gt
greater

austrian - austria + france = sister - brother + man =

queen - king + man = japan - tokyo + vienna =

wife - husband +
grandfather =

italy - rome +
santiago = chilegrandmother

(a)

(b)

(c)

Figure 5.5 (a-b) Rate of the performance change while increasing the lexicon size in lexicon based

recognition and embedding for the IAM dataset. (a) shows semantic spotting performance in terms of

mAP for exact evaluation, while the chart (b) reports the word and character error rates of the recognizer.

(c) Qualitative results analogical tests.

the scenarios the drop in performance is moderate and even on using an extremely large lexicon of size

90K, we obtain an mAP of 0.8831 for QBS, word error rate of 0.08 and character error rate of 0.039.

5.4.4.2 Qualitative Analysis

Inspired by the popular example of king−man+woman = queen in the textual word embedding

literature [113], Fig. 5.5(c) presents few such example analogical questions and their answers obtained

using the proposed semantic representation of word images. Here, we present two scenarios where the

top block shows the results when the queryB−A+C =? was formulated using its textual representation

(analogous to QBS), whereas in the middle block, the query was entirely formulated using the word

image representation (analogous to QBE). In both the cases, we show the result as the nearest word

image representation (top-1) in the image corpus to its corresponding query formulation. The top and

the middle blocks are taken from the IAM dataset where the queries were mostly syntactic in nature due

to the limited vocabulary coverage of the dataset. To demonstrate semantic queries (e.g. relationships

in country, family), we utilize our synthetic dataset HW-SYNTH as shown in the bottom block.

120

One can notice that the learned features preserve the linear semantic relationships of the original word

embedding on which it was trained. These features are largely invariant to handwritten styles and

degradations. In the figure, the last rows of each block shows the failure scenarios (marked within a red

bounding box) where the nearest image retrieved for the particular query was wrong. E.g., for the query

“looked− looking + going′′ = “gone′′ is a wrong match, whereas the correct match is “went′′ as per

the ground truth. We observe that the failure scenarios are reasonable and not far from its actual answer.

Fig. 5.6 presents the qualitative results from the learned representation for the word spotting task. The

first three rows show the results of the proposed normalized word embedding where the representation

is invariant to the word form inflections. The results are shown for the network trained using stem

information. Here, one can notice that for the query interest we obtain top results which include

interest, interests, interesting, interested irrespective of multiple handwriting styles. The first two

rows belong to the IAM dataset, while the third row presents results from the GW dataset. The next

five rows present results using the proposed semantic embedding where we have showcased the results

for retrieving semantically relevant word images. E.g., the query six retrieves six and other nearby

numbers, the query joy retrieves joy, excitement, happiness, love etc. Here, the query philip is an

interesting case where we observe that the query being a named entity, which may not have any semantic

sense, the top similar results are from other named entity words such as john, nicholas, hubert, phil,

etc. Please note that while showing the semantic spotting results, we have avoided few successive results

which have same ground truth label to show the diversity. Also the false positives are marked inside red

bounding box.

5.5 Discussion

In this section, we discuss the scope of the proposed representations along with their limitations and

also understand their relevance in the larger context which would be useful for newer problems in the

document image domain.

In our experiments, we found the semantic representation to achieve promising results for semantic

evaluation tasks such as word analogy and word similarity. We also performed a direct comparison

with the traditional word spotting task, with a motivation that an ideal semantic representation should

also be optimized for exact evaluation. However, in this case, we observed that there existed a gap

in performance. One of the major reasons is that due to the infusion of semantically similar words

121

Query Top Ranked Retrieval

interest

except

order

Normalized Spotting

Semantic Spotting

six

joy

philip

sergeant

october

Ǒदसंबर

ͧशवाजी

ఐదు

జ�Ǵయ

disambar

shivaajee

Aidu

Jātīya

Figure 5.6 Qualitative results of normalized and semantic word spotting. Note that, while showing

the nearest neighbors, we have removed the consecutive similar word images to emphasize the distances

among different lexical word images.

along with the exact matches, there is a reduction in precision for the exact evaluation. One can notice

this issue for the query joy in Fig. 5.6 (Row:6), where we see the exact matches are at rank 1, and 6,

while the top results also contain other related words which are relevant in a semantic sense. Hence,

in the interest of performance, we place the proposed semantic representation as complementary to the

traditional lexical representation.

In this chapter, we have proposed two frameworks for semantic embedding: (i) lexicon-based recog-

nition and embedding, and (ii) direct embedding. We observe that the direct embedding gives better

performance for semantic tasks (analogy and similarity) whereas the recognition scheme gives better

performance for exact spotting. The limitation in the direct embedding scheme is that its semantic cov-

erage is limited to training words, whereas for the recognition scheme, it is limited by the lexicon words

which is irrespective of training vocabulary. In our experiments, we validate this using a huge lexicon

of size 90K words where the drop in performance is marginal. However, there exists a typical issue in

the recognition based framework when the recognition of word image fails. In these cases, we typically

embed into a wrong semantic representation which may be completely unrelated to the query. We be-

122

lieve that a direct embedding scheme is relatively better in such a setting of failures since it can take

partial cues from the root of words (if such roots existed in training corpus).

Given these semantic representations, we understand their importance in the context of historical

documents where such semantic results could help in obtaining much richer information from huge

document corpus. Considering the success stories of word embedding methods in the textual domain,

we believe that one could now attempt NLP downstream tasks such as named entity detection, text clas-

sification, etc. directly on document images, which could enable exploring newer interesting problems

in the community.

5.6 Summary

In this chapter, we presented novel ways of holistic representations for word images that preserve

the semantic properties of words along with their forms. We have introduced two such frameworks: a) a

normalized word embedding, which is invariant to multiple word inflections, and b) semantic embedding

that draws its properties along modern textual word embedding schemes and is more generic in capturing

the relationships among semantically similar words. We obtain promising results on semantic tasks such

as word analogy and word similarity along with the traditional retrieval experiments. We also validated

the robustness of the features on challenging handwritten datasets.

123

Chapter 6

Use Cases of Word Image Representation

124

In this chapter, we present novel applications built using the representations proposed in this the-

sis. These applications widen the scope of our work and also validates the robustness of the proposed

representation. In our first problem, we present an interesting case study on addressing the problem of

predicting the similarity between a pair of handwritten document images written by potentially differ-

ent individuals. This has applications related to matching and mining in image collections containing

handwritten content. In our second problem of interest, we present an application on searching for key-

words inside instructional videos. With the growing popularity of online lecture videos, there exists

an interesting problem of search and retrieval from these video collections for effective access of con-

tent. We demonstrate the applicability of our representation for this task under its unique challenges.

Thirdly, as discussed in our contributions, we validate the generic nature of our representation on newer

scripts and languages by performing word spotting in printed document images taken from challenging

Indic document collections. The above three use cases has been previously presented as part of our

publications [41, 42, 90].

6.1 Matching Handwritten Document Images

Matching textual documents is a well-studied problem in text processing [107] with applications in

plagiarism detection in electronic documents [129]. For computer programs, MOSS [152] provides a

solution to compare two programs and is robust against a set of alterations e.g., formatting and changes

in variable names. However, when the documents are scanned images, these methods can not be directly

applied. There have been some attempts [30, 80] to find duplicate and near-duplicates in multimedia

databases. However, they are not directly applicable to documents where the objective is to compare

images based on the textual content. For printed document images, matching based on geometry or

organization of a set of keypoints has been successful [46, 174, 181]. This works well for duplicate as

well as cut-and-paste detection in printed documents. However, due to the unique set of challenges in

handwritten documents such as a wide variety of word styles, the extraction of reliable keypoints with

geometric matching is not very successful. Other major challenges include paraphrasing of the textual

content, non-rigidity of word ordering which leads to word overflows across lines.

In this work, we design a scheme for matching a pair of handwritten document images. The prob-

lem is illustrated in Fig. 6.1. We validate the effectiveness of our method on an application, named

125

D
j

D
i

S(D
i
,D

j
)

Figure 6.1 Given two document images Di and Dj , we are interested in computing a similarity score

S(Di,Dj) which is invariant to (i) writers, (ii) word flow across lines, (iii) spatial shifts, and (iv) para-

phrasing. In this example, the highlighted lines from Di and Dj have almost the same content but they

widely differ in terms of the spatial arrangement of words.

as the measure of document similarity (MODS).1 MODS compares two handwritten document images

and provides a normalized score as a measure of similarity between two images. The similarity score

is computed by detecting patterns of text re-usages across documents written by different individuals

irrespective of the minor variations in word forms, word ordering, layout or paraphrasing of the con-

tent. The advantage of our matching scheme is that it does not require an accurate segmentation of the

documents. To calibrate the similarity score with that of human perception, we conduct a human experi-

ment where a set of individuals are advised to create similar documents with natural variations. We also

demonstrate an application of comparing handwritten assignments given as part of a course curriculum

in our university.

6.1.1 Measure of Document Similarity (MODS)

Given two document images, we address the problem of matching and deducing the similarity score

between them with the help of word spotting which has been one of our prominent tasks used for eval-

uating the word representations. Under this formulation, we follow a recognition-free approach which

1In parallel to measure of software similarity (MOSS) [152], which has emerged as the de facto standard across the univer-
sities to compare software solutions from students.

126

Figure 6.2 MODS flowchart showing various modules used for the computation of similarity score

between a pair of document images D1 and D2.

avoids the complexities that arise in a recognition-based scheme (OCR) and typically result in noisy text

for unconstrained handwritten document collections. Fig. 6.2 presents the flowchart of our matching

framework. Given a pair of document images, we first compute its word segmentation proposals as

described in the next section.

6.1.1.1 Document Segmentation

A document image contains structured objects. The objects here are the words and structure is the

order in which words are presented. Segmentation of a handwritten document image into constituent

words is a challenging task because of the unconstrained nature of documents such as variable place-

ments of page elements (figures, graphs and equations), presence of skewed lines, and irregular kerning.

Most of the methods such as [47, 164] are bottom-up approaches with tunable parameters to arrive at

a unique segmentation of words and lines. Considering the complexity of handwritten documents, we

argue that a reasonably practical system, should work with multiple possible lines and word segmenta-

tion proposals with a high recall. We use a simple multi-stage bottom-up approach similar to [101] by

forming three sets of connected components (CCs) on the binarized image based on its sizes. CCs in

s1 set contains area less than 0.1µ, s3 set contains CCs having area large than µ + 2σ while remaining

CCs are categorized as s2. Here µ, σ is the mean and standard deviation which is computed from the

extracted CCs in terms of its area. The small (s1), medium (s2) and large (s3) CC sets are assumed to be

punctuation, actual characters and high probable line merge respectively. We associate each component

in s2 with its adjacent component if the cost given by:- Cost(i, j) = OL(i, j) + D(i, j) + θ(i, j), is

above a certain threshold. Here i, j are two components, OL is the amount of overlap in y-axis which

is given by intersection over union, D is the normalized distance between the centroids of the ith and

127

Algorithm 1 Word segmentation pseudo code

procedure

Input: I, γ. . Input parameters.

Output: Wbb . Word bounding boxes.

Ib ← binarize(I) . Otsu thresholdin.g

CCa ← extractCC(Ib) . Get CC bounding boxes and its centroids.

CCa ← preProcess(CCa) . Remove very large components.

{CCs1, CCs2, CCs3} ← groupCC(CCa) . Grouping CC’s into categories.

OLs2 ← ccOverlap(CCs2) . CC Overlap matrix.

N ← zeros(|s2|, |s2|) . Initialize a neighborhood square matrix.

for cci ∈ CCs2 do

j ← argminj{1−OLs2(cci, ccj) +D(cci, ccj) + θ(cci, ccj)} . Here D and θ are the

functions returning the distance and angle between centroids of CC’s.

if θ(cci, ccj) ≥ γ then

N (i, j) = 1

Ls2 ← computeLines(N) . Associate words to lines.

for cci ∈ CCs3 do

{CCL, CCR} ← lineOverlap(cci, Ls2) . Get the leftmost(L) and rightmost(R) CC.

N ← splitAssociate(CCL, CCR) . Update neighborhood matrix.

La ← computeLines(N) . Update line info.

g ← clusterCCgaps(La,N) . Group the inter CC gaps into two clusters.

{α} ← findThres(g) . Derive multiple thresholds.

Wbb ← splitWords(La, α)

jth component, and θ(i, j) gives the angle between the centroids of the components. After the initial

assignment, we now associate the s3 components by checking whether these components intersects in

the path of detected lines. In such a case, we slice the component horizontally and join it to the top and

the bottom line respectively. Finally the components present in s1 are associated with nearest detected

lines. Given the bounding boxes of a set of CCs and its line associations, we analyse the inter CC

spacing and derive multiple thresholds to group it into words. This results in multiple word bounding

128

Figure 6.3 The segmentation proposals on a challenging document page from HW-1K dataset ob-

tained from the segmentation algorithm.

box hypotheses with a high recall. Minor reduction in the precision at this stage is taken care by our

matching scheme.

Algorithm 1 presents the pseudo-code for extracting the word bounding box proposals from a given

document image I. We start with the binarization of the document page using Otsu thresholding and

extract out the connected components (CC) from it. We pre-process the CC’s to remove very large

components, mostly the figures. We further group CC’s into small (s1), medium (s2) and large (s3)

connected components, assumed to be punctuation, actual characters and high probable line merge

respectively. We compute an overlap matrixOLs2 among the components of s2 and for each CC, we find

out the most compatible neighboring component as shown in the algorithm. If the obtained component

is above a given threshold of γ, we associate it as a valid neighbor, represented in a neighborhood

matrix N . Using N , we arrive at line bounding box information. To include each s3 component which

was suspected as line merges, we measure its overlap with the detected lines and get its leftmost and

rightmost nearest CC’s associated in the detected lines. If there are multiple potential left and right pairs,

we split the given s3 component horizontally and merge it with existing lines. Using the updated N ,

we list out all CC gaps and perform k-means clustering. The samples assigned to the cluster with lower

mean value is taken, and we derive multiple word thresholds using the mean and max CC gaps from

these samples. Fig. 6.3 presents the line (left figure) and word (right figure) segmentation proposals on

a sample document image taken from the HW-1K dataset. The details on the dataset will be presented

in Section 6.1.4.

Given word segmentation proposals, we propose two matching formulations where the first one is a

naive word matching algorithm which ignores both structural and linguistic constraints, while the sec-

ond one incorporates both of these. We refer to the first method as sum of word matches and the second

129

one as MODS matching. Under both matching algorithms, we represent the word images using the nor-

malized HWNet representation as presented in Chapter 5, Section 5.3.1. The normalized representation

is invariant to multiple handwriting styles, word inflections, and robust to image degradations.

6.1.1.2 Sum of Word Matches

We define a naive similarity score between a pair of documents as the sum of its individual word

matches (SWM). Let dkl be the l2 distance between a pair of word images wk ∈ Di and wl ∈ Dj .

We define the document similarity as the symmetric distance between the best word matches across the

documents as follows:

SN (Di,Dj) =
1

|Di|+ |Dj |

 ∑
wk∈Di

min
wl∈Dj

dkl +
∑
wl∈Dj

min
wk∈Di

dlk

 . (6.1)

This is a normalized symmetric distance where |Di| is the number of words in the document Di. To

reduce the exhaustive matches, we use an approximate nearest neighbor search using KD trees.

6.1.1.3 MODS matching

The problem of document matching and devising a scheme to compute the similarity score is a

challenging task. We demonstrate these challenges in the form of an illustration as shown in Fig. 6.4.

We address these problems along with their solution at two levels: (i) individual word matches, and (ii)

bringing a notion of structural similarity in the form of locality constraints.

Word matches

1. Alternations: In general, the pair of documents of interest need not have the same content and

hence, not all words need to have a correspondence in the second image. We enforce this with a

simple threshold of γ on the distance used for matching.

2. Stopwords: These are the words which occur most commonly in a language. For e.g. the words

‘is’, ‘the’, ‘and’ are some of the stopwords used in ‘English’ language. The presence of stop-

words in documents acts as a noise that corrupts the matching process for many natural language

processing systems due to their high frequency. In Fig. 6.4 we show some of these words in dark

green boxes. We observed that the trained HWNet is reasonably robust in classifying stopwords

due to their limited number and increased presence in training data. Therefore, we could take

130

Figure 6.4 A few major challenges of the matching process between a pair of documentsD1 andD2.

(i) Finding a unique match of each potential word, (ii) removal of stopwords, (iii) invariance to word

over�ow problems, and (iv) exploiting the loose ordering of words in matching.

the softmax scores (probabilities) from the last layer of HWNet and classify a word image as a

stopword if the scores of one of the stopword classes is above a certain threshold.

Locality constraints

The following three major challenges are addressed using locality constraints in the matching pro-

cess. We �rst list out the challenges and later propose the solution given byMODS.

1. Uniqueness: Though a word in the �rst image can match with multiple images in the second

image, we are interested in a unique match. In Fig. 6.4 the highlighted words in dark red such as

“Google” and “PageRank” occur at multiple places in both documents but the valid matches need

to be unique that obeys the given locality.

2. Word over�ow: As we deal with documents of unconstrained nature, similar sentences across

different documents can span a variable number of lines, a property of an individual writing style.

In terms of the geometry of position of words, this results in a major shift of words (from right

extreme to the left extreme). One such pair of occurrence is shown in Fig. 6.4 as a blue colored

dashed region. We refer to this problem as word over�ow.

131

Figure 6.6 Qualitative results of the MODS matching algorithm from the HW-DocSim dataset. Here

we show two sample matching pairs in two columns. The top region is taken from the source and the

bottom one is plagiarized. The highlighted words in rectangle have been correctly matched along with

few words which remain undetected.

6.1.3 Results and Discussion

We now establish two baselines for comparison. Our first approach uses a classical visual bag of

words (BOW) approach computed at the interest points. The BOW representation has been successfully

used in many image retrieval tasks including the document images [155,189]. We use SIFT descriptors,

quantized using LLC and represented using a spatial pyramid of size 1 × 3. Our second baseline (NN)

uses the classical word spotting scheme based on profile features similar to [133]. While the first one

is scalable for large datasets, the second one is not appropriate due to the time complexity of classical

DTW. In both these methods, the best match is identified as the document which has the most number of

word/patch matches. Table 6.1 reports the quantitative evaluation for various matching schemes along

with the baselines. The proposed MODS framework along with HWNet features [90] performs better in

both evaluation measures consistently. Using SWM word matching scheme over the proposed HWNet

features, we achieve a nDCG score of 0.8569 and AUC of 0.9465. This is further improved in the

MODS framework, which incorporates loose ordering and is invariant to word overflow problems. Note

that, in both cases (SWM and MODS), the stopwords are removed as preprocessing. We also evaluate our

framework with the word attribute framework proposed in [9] and observe a similar trend that validates

the effectiveness of deep features and the matching scheme provided by MODS. Fig. 6.6 shows some

qualitative results of matching pairs from the HW-DocSim dataset.

6.1.4 Human Evaluations

To validate the performance of the system on an unrestricted collection, we introduce the HW-1K

dataset which is collected from the real assignments of a class as part of an active course in the university.

135

The dataset contains nearly 1K handwritten pages from more than 100 students. The content in these

documents varied text, figures, plots, and mathematical symbols. Most of the documents follow a

complex layout with misalignment in paragraphs, huge variations in line and word spacing and a high

degree of skewness over the content. The scanned images also possessed degradation in quality due

to loose handling by the students which created folds and noise over the paper. We perform a human

evaluation where we picked a set of 50 assignment images written by different students, and gathered

the top-1 similar document image present in the corpus using MODS. We asked five humans evaluators

to give a score to the top-1 retrieval on a Likert scale of 0−3 where 0 is “very dis-similar”, 1 is “similar

only for few word matches”, 2 is “partially similar” and 3 is “totally similar”. Here, the scale-1 refers to

the case where the document pair refers to the same topic. Thus there could be individual word matches

but the text is not plagiarized. The average agreement to the human judgments as evaluated for the top-1

similar document is reported at 2.356 with 3 as the best score.

6.2 Word Spotting on Lecture Videos

Lecture videos are getting abundant with the increasing interest in e-learning in the form of Open-

CourseWare (OCW) lectures and Massive Open Online Courses (MOOCs). Text is present almost

everywhere in a lecture video; particularly in lectures on Science, Mathematics and Engineering. Text

alone could be used for a variety of of tasks like keyword generation, video indexing and enabling

search and extracting class notes [97, 177, 183, 190]. Text in lecture videos comprises of handwritten

text written on a blackboard or a paper, text written using a stylus on a tablet and displayed on a screen

or font rendered text appearing in presentation slides (digital text). Lectures are recorded using one or

more cameras, and the camera(s) are typically positioned to directly face the blackboard or the presen-

tation slides. Usually text recognition from presentation slides is less challenging as the text is more

legible, and with little variations in style. However, the text on blackboards, whiteboards, and on paper

is handwritten and not very legible due to poor lighting, smaller size or poor contrast. In this section, we

present an application of our representation in searching text inside such lecture videos. This work is

part of the larger work around benchmarking the problem of localization and recognition of text inside

lecture videos and is first published in [42]. In this application, we limit our discussion on word spotting

experiment using word embeddings as proposed in Chapter 4, Section 4.4.

136

Figure 6.7 Sample frames from the LectureVideoDB datatset. Scenes cluttered with text and figures,

black boards where text background contrast is poor, low resolution images and less legible handwriting

make the text recognition harder in lecture videos.

6.2.1 Datasets and Evaluation Protocol

We use the Lecture Video (LectureVideoDB) Dataset created as part of the work presented in [42].

The dataset is created from course videos of 24 different courses across science, management and engi-

neering. These courses are offered by e-learning initiatives such as MIT OCW [2], Khan Academy [1]

and NPTEL [3]. Fig. 6.7 shows sample frame images as part of this dataset. Table 6.2 describes the

breakdown of the LectureVideoDB across four modalities: slides, whiteboard, paper, and blackboard.

The ground truth information contains both the bounding box coordinates for each word image and its

text for each sampled frame taken from the video. Since we are interested only on the word spotting

task, we use the ground truth bounding box coordinates as the segmentation proposal. In addition to

LectureVideoDB, we also use IAM handwriting database [109] for the purpose of pre-training. As de-

scribed in our earlier chapters, the dataset consists of contributions from over 657 writers and comprises

of 115,320 words in English.

We follow the evaluation protocol for word spotting as presented in [9] using the train/val/test splits

created for the LectureVideoDB dataset. We conduct both query-by-string (QBS) and query-by-example

Type #Frames #Words #Writers
Slides 1145 52225 5

Whiteboard 945 21160 7
Paper 1281 27900 9

Blackboard 2103 36460 14

Table 6.2 Details of the LectureVideoDB Dataset [42]. Here Type refers to the presentation/writing

medium used by the instructor.

137

Train Dataset
mAP

Data-Split
mAP

QBE QBS QBE QBS

IAM 0.4311 0.4531

Slides 0.7272 0.7157
Whiteboard 0.3628 0.3234

Paper 0.2165 0.3882
Blackboard 0.0721 0.2156

LectureVideoDB 0.7909 0.7404

Slides 0.8726 0.7977
Whiteboard 0.6205 0.4799

Paper 0.8035 0.8037
Blackboard 0.7151 0.7028

Table 6.3 Word Spotting performance using end2end embedding architecture on the various splits of

LectureVideoDB dataset.

(QBE) on the test corpus. For QBE setting, the queries are the subset of words taken from the test corpus

having a frequency more than 1. However all the words are kept in the retrieval set. For QBS scenario,

we take the unique set of strings in the test set as queries. In both cases, we report the mean average

precision value (mAP) which is standard measure for a word spotting task. We also removed stopwords

from the query set and the performance is evaluated in a case-insensitive manner.

6.2.2 Results

As mentioned earlier, we use the embeddings computed from our End-2-End embedding network

for representing both word images and the textual strings. Table 6.3, presents the quantitative results

of word spotting on LectureVideoDB dataset under both QBE and QBS setting. Here we first evaluate

the baseline performance of the pre-trained End2End embedding network on IAM train set. As one can

observe the performance is quite inferior where we report the QBE and QBS mAP of 0.4311 and 0.4531.

We believe this is due to the huge biasness in the training set of IAM where the images are only written

on white paper with ink pens, whereas the LectureVideoDB dataset contain various other modalities

such white text on blackboards, text on slides with different colors etc. In our next experiment we fine-

tuned the network using the training samples from the LectureVideoDB to remove this biasness. Here

we observe a clear improvement of performance with QBE being reported at 0.7909 and QBS of 0.7404

which is encouraging. However, the performance still does not come close with the level of performance

of word spotting on the IAM test set. We attribute this to the complexity of the underlying problem for

138

regularization

projection

orthogonal

energy

patterns

graph

 Query Top Ranked Results

Figure 6.8 Qualitative results of word spotting on LectureVideoDB dataset. Notice the robustness of

the representation in-spite of wide diversity in the quality of images due to different writing mediums.

spotting text in lecture videos due to the presence of multiple modalities along with the challenges posed

by image capture and low resolution videos of some courses.

Fig. 6.8 presents sample qualitative results from of the word spotting using QBS. One can notice the

diversity of results where the word images are from different modalities, resolutions and degradations.

Also note the robustness in retrieving certain word images such as “orthogonal” where the word image

is highly skewed in nature.

6.3 Word Retrieval on Indic Scripts

In our final application, we extend and validate the representations proposed as part of this thesis

to Indic scripts. In this work, we present the word retrieval system for two popular Indic scripts –

Devanagari and Telugu. A lot of documents in these scripts have been made available by Digital Library

of India (DLI) [11] which contains historical documents, ancient manuscripts and literary resources with

cultural significance. Devanagari and Telugu are among the two most popular Indian scripts. Unlike

Latin script, Indic scripts contains higher number of character set, the concept of modifiers (consonant is

modified in-case it is followed by a vowel), and compound characters (a consonant follows one or more

consonant(s), a new character gets formed). These challenges creates complexities in understanding text

from Indic documents. For more details about the Devanagari and Telugu scripts, interested reader can

refer to [120].

139

6.3.1 Digital Library of India (DLI)

Digital Library of India (DLI) has emerged as one of the largest collections of document images in

Indian scripts [11]. DLI, as a part of Million Book Project (MBP), has contributed to the free access of

knowledge to Billions of people. In addition, it also helped in digitally archiving the rare and precious

books in many of the Indian languages. DLI archives printed content (mostly books and journals) as

scanned document images. A major challenge presently faced by the DLI is the lack of content level

access to the individual pages. As it stands, content (in Indian languages) can be primarily accessed only

by the meta data of the books, which is manually created. These books are available as binary images,

and the binarization has already resulted in significant cuts and merges in the word images. We argue

that, even if a reliable high performance OCR is not readily available, effective search is still possible.

In our experiments, we use a subset of DLI corpus which we annotated as part of our work in [92]. The

details are given below:

DLI Hindi and Telugu [92]: These two datasets, belonging to Hindi (Devanagari script) and Telugu

languages from Indic scripts and are part of the DLI project. We take one such subset [92] which was

annotated at the level of lines and words and referred to as HS1 and TS1 datasets.

English-1601 [189]: In addition to printed Indic scripts, we also pick a English book for our experi-

mentation. This is a book in English titled “Adventures of Sherlock Holmes” written by Arthur Conan

Doyle. This was first used in [189] for comparing OCR based results with image search. Note that this

book is not from the DLI corpus. Table 6.4 lists outs the details of the above three dataset.

6.3.2 Results

We validate our representations (Lexical and Semantic) which are discussed in Chapters 3,4, and 5 on

above datasets. The evaluation protocol remains the same. For lexical representation, we follow the rules

of word spotting as mentioned in Chapter 4, Section 4.5.1. While for semantic evaluation we conduct

Dataset #Pages #Words
English-1601 310 1,13,008
DLI Hindi (HS1) 1,533 4,20,100
DLI Telugu (TS1) 1,005 1,61,265

Table 6.4 The list of printed datasets used in this work. Here both Hindi and Telugu datasets are taken

from Digital Library of India [11] corpus.

140

Method Supervision
English Hindi Telugu

mAP-QBE mAP-QBS mAP-QBE mAP-QBS mAP-QBE mAP-QBS
Yalniz et.al [189] No 0.9300 - - - - -
Krishnan et.al [92] No - - 0.6055 - 0.7438 -
HWNet v2 Yes 0.9570 - 0.9509 - 0.9582 -
HWNet v3 Yes 0.9939 0.9921 0.9537 0.9659 0.9499 0.9474

Table 6.5 Quantitative evaluation of word spotting on printed datasets.

ग्रन्थ <granth>

दोनों <donon>

రోజుల్లో <Rōjullō>

క్రొ త్త <Krotta>

 Query Top Ranked Results

Figure 6.9 Qualitative results of query-by-string word spotting on Hindi, and Telugu datasets. The

query is shown in the left most column and the word images shown on the right are the retrieved images

in the ranked order.

only the word analogy task and exact evaluation which are mentioned in Chapter 5, Section 5.4.1. For

better understanding of the notations used, readers are requested to refer these respective sections.

6.3.2.1 Word Spotting using Lexical Representation

Table 6.5 presents the quantitative results of word spotting on the printed datasets. Here the methods

proposed in Yalniz et al. [189] and Krishnan et al. [92] uses an unsupervised bag of word framework for

deriving a holistic word-level descriptor. These methods are not directly comparable with HWNet based

methods which are learned in a supervised fashion. However such comparison highlights the superiority

of supervised methods. Note that the previous methods have not reported query-by-string results since

those methods didn’t embed textual strings into the representation space. From the results, we notice

141

Method Supervision
English Hindi Telugu

WA
mAP-Exact

WA
mAP-Exact mAP-Exact

QBE QBS QBE QBS QBE QBS
fastText [59] - 0.8140 - - 0.5714 - - - -
Yalniz et.al [189] No - 0.9300 - - - - - -
Krishnan et.al [92] No - - - - 0.6055 - 0.7438 -
HWNet v2 Yes - 0.9570 - - 0.9509 - 0.9582 -
HWNet v3 Yes - 0.9939 0.9921 - 0.9537 0.9659 0.9499 0.9474

Sem-Rank Yes
0.7901

0.9905 0.9566
0.5321

0.9428 0.9359 0.9538 0.9461±0.003 ±0.018

Table 6.6 Semantic evaluation on printed datasets from English, Hindi and Telugu languages.

Figure 6.10 Qualitative results of normalized and semantic word spotting on Hindi, and Telugu

datasets. Note that, while showing the nearest neighbors, we have removed the consecutive similar

word images to emphasize the distances among different lexical word images.

that the performance of word spotting has improved significantly on all these datasets and for printed

English, one could directly use HWNet v2/v3 features as off-the-shelf for various document tasks. The

improvement of results in Hindi and Telugu also suggests that such an architecture can be used for

various other languages with wide variations in scripts and language constructs. Fig. 6.9 presents the

qualitative results of word spotting in Indic scripts. The first four rows shows query-by-example (QBE)

results and the last four rows shows query-by-string (QBS) results.

6.3.2.2 Semantic Evaluation

Table 6.6 presents the quantitative analysis of the proposed semantic representation from Chapter 5.

As mentioned in that chapter, we use word analogy measure from textual word embedding literature to

evaluate our representation. For English, we use the word analogy dataset introduced in [112], while

142

for Hindi we use the one provided in [59]. To our knowledge there does not exist a similar dataset for

Telugu language. We also report the mAP-Exact measure to observe the drop in performance for lexical

(verbatim) word spotting. To embed word images into semantic space, we used fastText pre-trained

models [59] for English, Hindi and Telugu languages.

The first method reported in the table (fastText) evaluates our ground truth representation under word

analogy task. Here, for the analogy task (WA), we only take those words (analogy question pairs) which

are present in our test corpus of each dataset. The numbers reported under fastText could be taken

as the upper bound for our proposed semantic representation for word images. The next three rows

reports the word spotting performance under lexical representations. The last row (Sem-Rank) reports

the evaluation of the proposed semantic representation from Chapter 5 under both word analogy and

mAP-Exact measures. We observe that in terms of analogy performance (WA), the gap between the

fastText and Sem-Rank is quite closer than the one reported for the English in handwritten domain.

Also, one can see that the drop in mAP-Exact performance for Sem-Rank quite minimal as compared

to HWNet v3. Fig. 6.10 presents qualitative results for Hindi and Telugu language word images under

semantic word spotting. Note that the existing dataset is binary in nature and contains degradations due

to the binarization process. Here the top results are meaningful and semantically coherent in nature.

6.4 Summary

In this chapter, we bring out three different applications using the representations proposed in this

thesis. In our first application, we propose the MODS method which estimates a measure of similarity for

two handwritten documents. In the next two applications, we validate the performance of our represen-

tation in building retrieval system under newer modalities such as lecture videos and printed documents

from Indic scripts. Under both scenarios, we are able to successfully demonstrate a promising system

which is highly useful to the community.

143

Chapter 7

Conclusion and Future Work

In this thesis, we presented different representation schemes for word images that respect the lexical

and semantic properties of a word. The word image representation, denoted by a vector of real-valued

numbers could be thought in a similar manner to what the ASCII or UNICODE representation does for

the text. We validated our primary argument that one could learn such representations in a data-driven

manner where the reliance on the annotated dataset can be minimized using the synthetic data. In this

chapter, we present the summary of the thesis, its contributions, impact in the document community and

also list out few important ideas to pursue in the future.

7.1 Summary

The thesis focuses on the problem of learning efficient representations for word images from scanned

handwritten and machine-printed documents. The proposed representations are compact in size and

encode the content information while remaining invariant to different styles, fonts, degradation, and

noise. Our learning framework is supervised in nature and generic to different scripts and languages.

The thesis presents two broad categories of representation: (i) lexical, and (ii) semantic. In our primary

contribution, we introduced the learning architecture HWNet in Chapter 3 which provides an efficient

word image representation in lexical space. Our architecture is one of the initial deep convolutional

neural networks proposed in the community for word representation learning. In this work, we also

release a large scale synthetic word image dataset (IIIT-HWS) useful for pre-training the deep network

and generalize well on real-world handwritten collections. In our next contribution, in Chapter 4 we

presented different ways of jointly embedding word images and its corresponding textual strings onto

a common subspace. The common word representation across image and text modality allows both

144

query-by-text/image and also enables word recognition under constrained lexicon. In Chapter 5, we

introduced the novel problem of learning semantic representation from word images. The representation

encodes the semantics of the word and helps to identify synonyms, words related to common root

and essentially reduces the vocabulary gap that exists between the query and the retrieved results. We

presented detailed evaluation and visualization studies to understand different representations. Under

lexical representation, we evaluated for the tasks of word spotting and word recognition, whereas for

semantic representation we used word similarity and analogical tests. The HWNet v2 and HWNet v3

representation report state of the art results for most of the standard handwritten and printed datasets.

Finally, in Chapter 6, we presented different use cases built using these representations. Here at first,

we demonstrated an interesting case study on the problem of matching pairs of handwritten document

images. The proposed system provides a similarity score on the basis of patterns of text re-usages

between document images irrespective of writing style and content re-ordering. We tested our system

on real-world handwritten assignments given as part of the course conducted in our university. In our

second use case, we demonstrated a keyword retrieval system from online lecture videos. The retrieval

system provides a reasonable performance, in-spite of having such a diverse set of writing content on

blackboards, whiteboards, paper, slides etc. Finally, we also evaluated our representations for popular

Indic scripts (Devanagari and Telugu) to validate the generic nature of our learning framework.

We consider the thesis work to be significant in the document image community. The IIIT-HWS

dataset has gained popularity for pre-training deep neural networks in our domain. The learned represen-

tations have significantly improved the state of art performance for word spotting and word recognition

in handwritten images. With the demonstration of newer applications, we have essentially widened the

scope of utilizing such representations for enabling natural language applications. We also consider our

works in Indic scripts, under both printed and handwritten domains [41] to be a significant benchmark

for the document community in India.

7.2 Future Directions

The thesis opens up many promising directions as listed below:

• Spotting Words in Complex and Unstructured Documents: It is quite amazing to see how hu-

mans can quickly spot a word within a complex layout document where segmentation is extremely

hard. These scenarios are quite common for both modern and historical handwritten documents.

145

More recently, there have been interesting line of works [187,188] in literature which builds word

spotting in a segmentation-free manner. These networks are inspired by the success of region

proposal based object detection techniques such as Faster R-CNN [136] and adapted to document

images. One could also think of using attention mechanism [60] to process an entire document

page and focus onto the region where a particular keyword is likely to be present. Such an in-

tegration of detection/attention mechanism within the representation learning framework would

allow us to work with complex layout documents.

• Domain Adaptation: An important question that intrigues us: Can we build a real-world hand-

writing recognition or spotting system entirely using synthetic data? Here also we would like to

raise our expectation to human levels where we see that humans can generalize well to unseen

styles by learning through typewritten fonts. Given the availability of a large amount of annotated

synthetic data almost free and a huge corpus of unsupervised images in the target language, there

exists a scope to formulate a domain adaptation task which transfers knowledge to the target do-

main. The solution to such a problem will provide a boost in solving problems in low resource

languages, historical documents which typically contain very little or no annotated data.

• Sub-word Representations: It would be interesting to explore the granularity of representation

at the level of character n-grams/patches by augmenting the representation with the intermedi-

ate layer activations. Such representations have recently gathered lots of interest in the natural

language community by providing better representations for out of vocabulary words and rare

words of a language. We also believe that such an enriched representation would capture local

information which would be useful to distinguish between classes with minimum edit distance.

• Synthetic Data Generation: Our thesis highlighted the role of synthetic data in training deep

networks. It’s no doubt that with much more realistic synthetic data, the dependence on real-

world annotated data would reduce. The recent success in generative models such as GAN [56],

VAE [83], and PixelRNN [178] has provided interesting ways to generate realistic data in a par-

ticular domain. We consider this track of research of generating synthetic word/line images in

multiple fonts and styles to be a direction worth pursuing.

• Indic Scripts: Although, this thesis demonstrates an application of Indic script word spotting, the

scope of works that one could pursue within Indian language documents is huge. This includes

146

working with multiple languages/scripts, various historical documents that are typewritten, hand-

written, on palm leaves, etc. There also exists a dire necessity to build better handwriting recog-

nition systems for both offline and online domains. One of the primary challenges to address is

the lack of annotated datasets in these languages. Since many of these languages have some sort

of shared properties and origins, one could also think of solutions that can exploit these factors.

The other challenges exist due to the script complexities and the agglutinative properties of the

language. Given its huge community base, simple contributions would also make a huge impact

on society.

• Applications in Educational Domain: There are many exciting applications in the educational

domain where our work is directly applicable. One such important problem is providing content

level access from instructional videos which are uploaded online as part of Massive Open Online

Courses (MOOC). Extracting content from videos needs one to interpret speech, text written on

blackboards, slides, etc. which could be posed as a multi-modal information retrieval problem.

In one of our recent works [42], we worked upon the problem of spotting text inside these videos

to facilitate text level searching using representations proposed in this thesis. The other set of

problems that are interesting in this domain are: how to automatically grade handwritten answer

sheets, finding plagiarism in assignments, collect and interpret feedback. We believe that the

automation of these tasks could help modern educational institutions cater to a large number of

students.

147

Bibliography

[1] Khan Academy. https://www.khanacademy.org/, Last Retrieved 2018-03-28.

[2] MIT opencourseware. https://ocw.mit.edu/index.htm, Last Retrieved 2018-03-28.

[3] NPTEL. http://nptel.ac.in/, Last Retrieved 2018-03-28.

[4] Project Gutenberg. (n.d.). www.gutenberg.org, Last Retrieved 2019-11-24.

[5] C. Adak, B. B. Chaudhuri, and M. Blumenstein. Named entity recognition from unstructured handwritten

document images. In 12th IAPR Workshop on Document Analysis Systems, DAS, pages 375–380, 2016.

[6] D. Aldavert, M. Rusiñol, R. Toledo, and J. Lladós. Integrating visual and textual cues for query-by-string

word spotting. In International Conference on Document Analysis and Recognition, ICDAR, pages 511–

515, 2013.

[7] D. Aldavert, M. Rusiñol, R. Toledo, and J. Lladós. A study of bag-of-visual-words representations for

handwritten keyword spotting. Int. J. Document Anal. Recognit., 18(3):223–234, 2015.

[8] J. Almazán, A. Gordo, A. Fornés, and E. Valveny. Segmentation-free word spotting with exemplar svms.

Pattern Recognit., 47(12):3967–3978, 2014.

[9] J. Almazán, A. Gordo, A. Fornés, and E. Valveny. Word spotting and recognition with embedded attributes.

IEEE Trans. Pattern Anal. Mach. Intell., 36(12):2552–2566, 2014.

[10] F. Almeida and G. Xexéo. Word embeddings: A survey. CoRR, abs/1901.09069, 2019.

[11] V. Ambati, N. Balakrishnan, R. Reddy, L. Pratha, and C. Jawahar. The digital library of india project:

Process, policies and architecture. In International Conference on Digital Libraries, ICDL, 2006.

[12] C. Anderson. Essentials of linguistics. https://creativecommons.org/licenses/by-sa/

4.0/, Last Retrieved 2019-01-19.

[13] G. Axler and L. Wolf. Toward a dataset-agnostic word segmentation method. In International Conference

on Image Processing, ICIP, pages 2635–2639, 2018.

[14] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. From generic to specific deep rep-

resentations for visual recognition. In IEEE Conference on Computer Vision and Pattern Recognition

Workshops, CVPRW, pages 36–45, 2015.

[15] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. Neural codes for image retrieval. In European

Conference on Computer Vision, ECCV, pages 584–599, 2014.

148

www.gutenberg.org
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

[16] A. Balasubramanian, M. Meshesha, and C. V. Jawahar. Retrieval from document image collections. In

H. Bunke and A. L. Spitz, editors, International Workshop on Document Analysis Systems, DAS, volume

3872, pages 1–12, 2006.

[17] V. Balntas, E. Johns, L. Tang, and K. Mikolajczyk. PN-Net: Conjoined triple deep network for learning

local image descriptors. CoRR, abs/1601.05030, 2016.

[18] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. J. Mach.

Learn. Res., 3:1137–1155, 2003.

[19] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In International Conference

on Machine Learning, ICML, volume 382, pages 41–48, 2009.

[20] G. M. BinMakhashen and S. A. Mahmoud. Document layout analysis: A comprehensive survey. ACM

Comput. Surv., 52(6):109:1–109:36, 2020.

[21] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,

2003.

[22] T. Bluche, J. Louradour, and R. O. Messina. Scan, attend and read: End-to-end handwritten paragraph

recognition with MDLSTM attention. In International Conference on Document Analysis and Recognition,

ICDAR, pages 1050–1055, 2017.

[23] T. Bluche, H. Ney, and C. Kermorvant. A comparison of sequence-trained deep neural networks and re-

current neural networks optical modeling for handwriting recognition. In Statistical Language and Speech

Processing - Second International Conference, SLSP, volume 8791, pages 199–210, 2014.

[24] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information.

Trans. Assoc. Comput. Linguistics, TACL, 5:135–146, 2017.

[25] S. E. Boquera, M. J. C. Bleda, J. Gorbe-Moya, and F. Zamora-Martínez. Improving offline handwritten

text recognition with hybrid HMM/ANN models. IEEE Trans. Pattern Anal. Mach. Intell., 33(4):767–779,

2011.

[26] A. Bosch, A. Zisserman, and X. Muñoz. Scene classification via plsa. In 9th European Conference on

Computer Vision, ECCV, volume 3954, pages 517–530, 2006.

[27] T. Causer and V. Wallace. Building A volunteer community: Results and findings from Transcribe Ben-

tham. Digit. Humanit. Q., 6(2), 2012.

[28] K. Chen, M. Seuret, M. Liwicki, J. Hennebert, and R. Ingold. Page segmentation of historical docu-

ment images with convolutional autoencoders. In International Conference on Document Analysis and

Recognition, ICDAR, pages 1011–1015, 2015.

[29] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to

face verification. In Computer Vision and Pattern Recognition, CVPR, pages 539–546, 2005.

[30] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-idf weighting.

In British Machine Vision Conference, BMVC, pages 1–10, 2008.

149

[31] P. D. Clough and M. Stevenson. Developing a corpus of plagiarised short answers. Language Resources

and Evaluation, LREC, 45(1):5–24, 2011.

[32] R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural networks

with multitask learning. In International Conference Machine Learning, ICML, volume 307, pages 160–

167, 2008.

[33] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints.

In Workshop on statistical learning in computer vision, ECCV, volume 1, pages 1–2, 2004.

[34] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Computer Vision and

Pattern Recognition, CVPR, pages 886–893, 2005.

[35] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent

semantic analysis. J. Am. Soc. Inf. Sci., 41(6):391–407, 1990.

[36] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. Imagenet: A large-scale hierarchical image database.

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 248–255, 2009.

[37] P. Doetsch, M. Kozielski, and H. Ney. Fast and robust training of recurrent neural networks for offline

handwriting recognition. In International Conference on Frontiers in Handwriting Recognition, ICFHR,

pages 279–284, 2014.

[38] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolu-

tional activation feature for generic visual recognition. In International Conference on Machine Learning,

ICML, volume 32, pages 647–655, 2014.

[39] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolu-

tional activation feature for generic visual recognition. In International Conference on Machine Learning,

ICML, volume 32, pages 647–655, 2014.

[40] K. Dutta, P. Krishnan, M. Mathew, and C. V. Jawahar. Improving CNN-RNN hybrid networks for hand-

writing recognition. In International Conference on Frontiers in Handwriting Recognition, ICFHR, pages

80–85, 2018.

[41] K. Dutta, P. Krishnan, M. Mathew, and C. V. Jawahar. Towards spotting and recognition of handwritten

words in Indic scripts. In International Conference on Frontiers in Handwriting Recognition, ICFHR,

pages 32–37, 2018.

[42] K. Dutta, M. Mathew, P. Krishnan, and C. V. Jawahar. Localizing and recognizing text in lecture videos.

In International Conference on Frontiers in Handwriting Recognition, ICFHR, pages 235–240, 2018.

[43] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisserman. The pascal visual object

classes (VOC) challenge. Int. J. Comput. Vis., 88(2):303–338, 2010.

[44] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin. Placing search

in context: The concept revisited. ACM Transactions on information systems, 2002.

[45] A. Fischer, A. Keller, V. Frinken, and H. Bunke. Lexicon-free handwritten word spotting using character

HMMs. Pattern Recognit. Lett., 33(7):934–942, 2012.

150

[46] A. Gandhi and C. V. Jawahar. Detection of cut-and-paste in document images. In International Conference

on Document Analysis and Recognition, ICDAR, pages 653–657, 2013.

[47] B. Gatos, N. Stamatopoulos, and G. Louloudis. ICDAR2009 handwriting segmentation contest. Int. J.

Document Anal. Recognit., 14(1):25–33, 2011.

[48] S. K. Ghosh and E. Valveny. A sliding window framework for word spotting based on word attributes. In

Pattern Recognition and Image Analysis, IbPRIA, volume 9117, pages 652–661, 2015.

[49] S. K. Ghosh and E. Valveny. Text box proposals for handwritten word spotting from documents. Int. J.

Document Anal. Recognit., 21(1-2):91–108, 2018.

[50] A. P. Giotis, G. Sfikas, B. Gatos, and C. Nikou. A survey of document image word spotting techniques.

Pattern Recognit., 68:310–332, 2017.

[51] R. Girshick. Fast R-CNN. In IEEE International Conference on Computer Vision, ICCV, pages 1440–

1448, 2015.

[52] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Computer Vision and Pattern Recognition, CVPR, pages 580–587, 2014.

[53] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In

International Conference on Artificial Intelligence and Statistics, AISTATS, volume 9, pages 249–256.

JMLR.org, 2010.

[54] L. Gomez-Bigorda, M. Rusiñol, and D. Karatzas. LSDE: levenshtein space deep embedding for query-by-

string word spotting. In International Conference on Document Analysis and Recognition, ICDAR, pages

499–504, 2017.

[55] L. Gomez-Bigorda, M. Rusiñol, and D. Karatzas. LSDE: levenshtein space deep embedding for query-by-

string word spotting. In International Conference on Document Analysis and Recognition, ICDAR, pages

499–504, 2017.

[56] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial nets. In Advances in neural information processing systems, NIPS, pages 2672–

2680, 2014.

[57] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio. Maxout networks. In

International Conference on Machine Learning, ICML, volume 28, pages 1319–1327, 2013.

[58] A. Gordo, J. Almazán, N. Murray, and F. Perronnin. LEWIS: latent embeddings for word images and their

semantics. In International Conference on Computer Vision, ICCV, pages 1242–1250, 2015.

[59] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov. Learning word vectors for 157 languages.

In Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC,

2018.

[60] A. Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013.

151

[61] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber. Connectionist temporal classification: la-

belling unsegmented sequence data with recurrent neural networks. In Proceedings of the Twenty-Third

International Conference, ICML, volume 148, pages 369–376, 2006.

[62] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel connectionist

system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell., 31(5):855–

868, 2009.

[63] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other

neural network architectures. Neural Networks, 18(5-6):602–610, 2005.

[64] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnormal-

ized statistical models. In Proceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics, AISTATS, volume 9, pages 297–304, 2010.

[65] A. W. Harley, A. Ufkes, and K. G. Derpanis. Evaluation of deep convolutional nets for document image

classification and retrieval. In International Conference on Document Analysis and Recognition, ICDAR,

pages 991–995, 2015.

[66] C. G. Harris and M. Stephens. A combined corner and edge detector. In C. J. Taylor, editor, Alvey Vision

Conference, AVC, pages 1–6, 1988.

[67] Z. S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[68] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification. In IEEE International Conference on Computer Vision, ICCV, pages 1026–1034,

2015.

[69] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE Conference

on Computer Vision and Pattern Recognition, CVPR, pages 770–778, 2016.

[70] T. Hofmann. Probabilistic latent semantic analysis. In K. B. Laskey and H. Prade, editors, Uncertainty in

Artificial Intelligence, UAI, pages 289–296, 1999.

[71] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal co-

variate shift. In F. R. Bach and D. M. Blei, editors, International Conference on Machine Learning,ICML,

volume 37, pages 448–456, 2015.

[72] T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In Advances in

Neural Information Processing Systems, NIPS, pages 487–493, 1998.

[73] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Synthetic data and artificial neural networks

for natural scene text recognition. CoRR, abs/1406.2227, 2014.

[74] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Reading text in the wild with convolutional

neural networks. Int. J. Comput. Vis., 116(1):1–20, 2016.

[75] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks. In Ad-

vances in Neural Information Processing Systems, NIPS, pages 2017–2025, 2015.

152

[76] M. Jaderberg, A. Vedaldi, and A. Zisserman. Deep features for text spotting. In European Conference on

Computer Vision, ECCV, volume 8692, pages 512–528, 2014.

[77] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Transactions on

Information Systems, TOIS, 20(4):422–446, 2002.

[78] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image rep-

resentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 3304–3311,

2010.

[79] M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene

classification. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 923–930,

2013.

[80] Y. Ke, R. Sukthankar, and L. Huston. An efficient parts-based near-duplicate and sub-image retrieval

system. In ACM International Conference on Multimedia, ACM-MM, pages 869–876, 2004.

[81] Y. Kim. Convolutional neural networks for sentence classification. In A. Moschitti, B. Pang, and W. Daele-

mans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-

ing, EMNLP, pages 1746–1751. ACL, 2014.

[82] Y. Kim, Y. Jernite, D. A. Sontag, and A. M. Rush. Character-aware neural language models. In D. Schuur-

mans and M. P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,

pages 2741–2749, 2016.

[83] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference on Learning

Representations, ICLR, 2014.

[84] A. Kovalchuk, L. Wolf, and N. Dershowitz. A simple and fast word spotting method. In International

Conference on Frontiers in Handwriting Recognition, ICFHR, pages 3–8, 2014.

[85] P. Krishnan, K. Dutta, and C. V. Jawahar. Deep feature embedding for accurate recognition and retrieval

of handwritten text. In International Conference on Frontiers in Handwriting Recognition, ICFHR, pages

289–294, 2016.

[86] P. Krishnan, K. Dutta, and C. V. Jawahar. Word spotting and recognition using deep embedding. In IAPR

International Workshop on Document Analysis Systems, DAS, pages 1–6, 2018.

[87] P. Krishnan and C. Jawahar. Bringing semantics into word image representation. Pattern Recognition,

108:107542, 2020.

[88] P. Krishnan and C. V. Jawahar. Bringing semantics in word image retrieval. In 12th International Confer-

ence on Document Analysis and Recognition, ICDAR, pages 733–737, 2013.

[89] P. Krishnan and C. V. Jawahar. Generating synthetic data for text recognition. CoRR, abs/1608.04224,

2016.

[90] P. Krishnan and C. V. Jawahar. Matching handwritten document images. In European Conference on

Computer Vision, ECCV, volume 9905, pages 766–782, 2016.

153

[91] P. Krishnan and C. V. Jawahar. Hwnet v2: an efficient word image representation for handwritten docu-

ments. Int. J. Document Anal. Recognit., IJDAR, 22(4):387–405, 2019.

[92] P. Krishnan, R. Shekhar, and C. V. Jawahar. Content level access to digital library of india pages. In

B. Triggs, K. Bala, and S. Chandran, editors, Indian Conference on Vision, Graphics and Image Process-

ing, ICVGIP, page 5, 2012.

[93] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing Systems, NIPS, pages 1106–1114, 2012.

[94] A. Kumar, C. V. Jawahar, and R. Manmatha. Efficient search in document image collections. In Asian

Conference on Computer Vision, ACCV, volume 4843, pages 586–595, 2007.

[95] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recogniz-

ing natural scene categories. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR,

volume 2, pages 2169–2178, 2006.

[96] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998.

[97] G. C. Lee, F. Yeh, Y. Chen, and T. Chang. Robust handwriting extraction and lecture video summarization.

Multim. Tools Appl., 76(5):7067–7085, 2017.

[98] F. Li and P. Perona. A bayesian hierarchical model for learning natural scene categories. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, CVPR, pages 524–531, 2005.

[99] M. Lin, Q. Chen, and S. Yan. Network in network. In 2nd International Conference on Learning Repre-

sentations, ICLR, 2014.

[100] E. Loper and S. Bird. NLTK: the natural language toolkit. CoRR, cs.CL/0205028, 2002.

[101] G. Louloudis, B. Gatos, I. Pratikakis, and C. Halatsis. Text line and word segmentation of handwritten

documents. Pattern Recognit., 42(12):3169–3183, 2009.

[102] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., IJCV,

60(2):91–110, 2004.

[103] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning research, JMLR,

9:2579–2605, 2008.

[104] A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In Computer

Vision and Pattern Recognition, CVPR, pages 5188–5196, 2015.

[105] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-SVMs for object detection and beyond.

In IEEE International Conference on Computer Vision, ICCV, pages 89–96, 2011.

[106] R. Manmatha, C. Han, and E. M. Riseman. Word spotting: A new approach to indexing handwriting. In

Computer Vision and Pattern Recognition, CVPR, pages 631–637, 1996.

[107] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval. Cambridge University

Press, 2008.

154

[108] U. Marti and H. Bunke. Using a statistical language model to improve the performance of an hmm-based

cursive handwriting recognition system. Int. J. Pattern Recognit. Artif. Intell., 15(1):65–90, 2001.

[109] U. Marti and H. Bunke. The IAM-database: an english sentence database for offline handwriting recogni-

tion. Int. J. Document Anal. Recognit., 5(1):39–46, 2002.

[110] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally stable extremal

regions. Image Vis. Comput., 22(10):761–767, 2004.

[111] M. Meshesha and C. V. Jawahar. Matching word images for content-based retrieval from printed document

images. Int. J. Document Anal. Recognit., 11(1):29–38, 2008.

[112] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector

space. In 1st International Conference on Learning Representations, ICLR, 2013.

[113] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and

phrases and their compositionality. In Advances in neural information processing systems, NIPS, pages

3111–3119, 2013.

[114] G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41, 1995.

[115] C. Myers, L. Rabiner, and A. Rosenberg. Performance tradeoffs in dynamic time warping algorithms for

isolated word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(6):623–

635, 1980.

[116] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In International

Conference on Machine Learning, ICML, pages 807–814, 2010.

[117] H. Ney, U. Essen, and R. Kneser. On the estimation of ’small’ probabilities by leaving-one-out. IEEE

Trans. Pattern Anal. Mach. Intell., PAMI, 17(12):1202–1212, 1995.

[118] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, CVPR, pages 2161–2168, 2006.

[119] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation invariant texture classi-

fication with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell., PAMI, 24(7):971–987, 2002.

[120] U. Pal and B. B. Chaudhuri. Indian script character recognition: a survey. Pattern Recognition,

37(9):1887–1899, 2004.

[121] A. Passos, V. Kumar, and A. McCallum. Lexicon infused phrase embeddings for named entity resolution.

In R. Morante and W. Yih, editors, Proceedings of the Eighteenth Conference on Computational Natural

Language Learning, CoNLL, pages 78–86, 2014.

[122] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In Pro-

ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, pages

1532–1543. ACL, 2014.

[123] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In Computer

Vision and Pattern Recognition, CVPR, pages 1–8, 2007.

155

[124] F. Perronnin and J. A. Rodríguez-Serrano. Fisher kernels for handwritten word-spotting. In International

Conference on Document Analysis and Recognition, ICDAR, pages 106–110, 2009.

[125] F. Perronnin and J. A. Rodríguez-Serrano. Fisher kernels for handwritten word-spotting. In International

Conference on Document Analysis and Recognition, ICDAR, pages 106–110, 2009.

[126] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. Dropout improves recurrent neural networks for

handwriting recognition. In International Conference on Frontiers in Handwriting Recognition, ICFHR,

pages 285–290, 2014.

[127] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and

fast spatial matching. In IEEE conference on computer vision and pattern recognition, CVPR, pages 1–8,

2007.

[128] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[129] M. Potthast, M. Hagen, A. Beyer, M. Busse, M. Tippmann, P. Rosso, and B. Stein. Overview of the 6th

international competition on plagiarism detection. In Working Notes for CLEF Conference, volume 1180

of CEUR Workshop Proceedings, pages 845–876, 2014.

[130] A. Poznanski and L. Wolf. Cnn-n-gram for handwriting word recognition. In Computer vision and pattern

recognition, CVPR, pages 2305–2314, 2016.

[131] I. Pratikakis, K. Zagoris, B. Gatos, J. Puigcerver, A. H. Toselli, and E. Vidal. ICFHR2016 handwritten

keyword spotting competition (H-KWS 2016). In International Conference on Frontiers in Handwriting

Recognition, ICFHR, pages 613–618, 2016.

[132] T. M. Rath and R. Manmatha. Word image matching using dynamic time warping. In Computer Vision

and Pattern Recognition, CVPR, pages 521–527, 2003.

[133] T. M. Rath and R. Manmatha. Word spotting for historical documents. Int. J. Document Anal. Recognit.,

9(2-4):139–152, 2007.

[134] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-shelf: An astounding

baseline for recognition. In IEEE Conference on Computer Vision and Pattern Recognition Workshops,

CVPRW, pages 512–519, 2014.

[135] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-shelf: An astounding

baseline for recognition. In IEEE Conference on Computer Vision and Pattern Recognition Workshops,

CVPRW, pages 512–519, 2014.

[136] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object detection with region

proposal networks. In Neural Information Processing Systems, NIPS, pages 91–99, 2015.

[137] J. A. Rodriguez and F. Perronnin. Local gradient histogram features for word spotting in unconstrained

handwritten documents. pages 7–12, 2008.

[138] J. A. Rodríguez-Serrano and F. Perronnin. A model-based sequence similarity with application to hand-

written word spotting. IEEE Trans. Pattern Anal. Mach. Intell., 34(11):2108–2120, 2012.

156

[139] J. R. Rohlicek, W. Russell, S. Roukos, and H. Gish. Continuous hidden markov modeling for speaker-

independent word spotting. In International Conference on Acoustics, Speech, and Signal Processing,,

pages 627–630, 1989.

[140] G. Ros, L. Sellart, J. Materzynska, D. Vázquez, and A. M. López. The SYNTHIA dataset: A large col-

lection of synthetic images for semantic segmentation of urban scenes. In IEEE Conference on Computer

Vision and Pattern Recognition, CVPR, pages 3234–3243, 2016.

[141] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In European Conference

on Computer, ECCV, volume 3951, pages 430–443, 2006.

[142] L. Rothacker, M. Rusiñol, and G. A. Fink. Bag-of-features hmms for segmentation-free word spotting

in handwritten documents. In International Conference on Document Analysis and Recognition, ICDAR,

pages 1305–1309, 2013.

[143] L. Rothacker, S. Sudholt, E. Rusakov, M. Kasperidus, and G. A. Fink. Word hypotheses for segmentation-

free word spotting in historic document images. In IAPR International Conference on Document Analysis

and Recognition, ICDAR, pages 1174–1179, 2017.

[144] P. P. Roy, F. Rayar, and J. Ramel. Word spotting in historical documents using primitive codebook and

dynamic programming. Image Vis. Comput., 44:15–28, 2015.

[145] A. Rozantsev, V. Lepetit, and P. Fua. On rendering synthetic images for training an object detector. Com-

put. Vis. Image Underst., 137:24–37, 2015.

[146] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval.

International journal of computer vision, IJCV, 40(2):99–121, 2000.

[147] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors.

Nature, 323(6088):533–536, 1986.

[148] M. Rusiñol, D. Aldavert, R. Toledo, and J. Lladós. Browsing heterogeneous document collections by a

segmentation-free word spotting method. In International Conference on Document Analysis and Recog-

nition, ICDAR, pages 63–67, 2011.

[149] M. Rusiñol, D. Aldavert, R. Toledo, and J. Lladós. Efficient segmentation-free keyword spotting in histor-

ical document collections. Pattern Recognit., 48(2):545–555, 2015.

[150] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. IEEE

transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

[151] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. IEEE

transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

[152] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local algorithms for document fingerprinting.

In International Conference on Management of Data, SIGMOD, pages 76–85, 2003.

[153] A. Sharma and D. B. Jayagopi. Automated grading of handwritten essays. In 16th International Confer-

ence on Frontiers in Handwriting Recognition, ICFHR, pages 279–284. IEEE Computer Society, 2018.

157

[154] R. Shekhar and C. V. Jawahar. Word image retrieval using bag of visual words. In IAPR International

Workshop on Document Analysis Systems, DAS, pages 297–301, 2012.

[155] R. Shekhar and C. V. Jawahar. Document specific sparse coding for word retrieval. In International

Conference on Document Analysis and Recognition, ICDAR, pages 643–647, 2013.

[156] B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural network for image-based sequence recog-

nition and its application to scene text recognition. IEEE transactions on pattern analysis and machine

intelligence, 39(11):2298–2304, 2016.

[157] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to

visual document analysis. In International Conference on Document Analysis and Recognition, ICDAR,

pages 958–962, 2003.

[158] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In

International Conference on Learning Representations, ICLR, 2015.

[159] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In

International Conference on Learning Representations, ICLR, 2015.

[160] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In 12th

European Conference on Computer Vision, ECCV, volume 7573, pages 73–86, 2012.

[161] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In IEEE

International Conference on Computer Vision, ICCV, pages 1470–1477, 2003.

[162] C. Spearman. The proof and measurement of association between two things. The American Journal of

Psychology, 100(3/4):441–471, 1987.

[163] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to

prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, 2014.

[164] N. Stamatopoulos, B. Gatos, G. Louloudis, U. Pal, and A. Alaei. ICDAR 2013 handwriting segmentation

contest. In International Conference on Document Analysis and Recognition, ICDAR, pages 1402–1406,

2013.

[165] B. Stuner, C. Chatelain, and T. Paquet. Cohort of LSTM and lexicon verification for handwriting recogni-

tion with gigantic lexicon. CoRR, abs/1612.07528, 2016.

[166] S. Sudholt and G. A. Fink. PHOCNet: A deep convolutional neural network for word spotting in hand-

written documents. In International Conference on Frontiers in Handwriting Recognition, ICFHR, pages

277–282, 2016.

[167] S. Sudholt and G. A. Fink. Evaluating word string embeddings and loss functions for CNN-based word

spotting. In International Conference on Document Analysis and Recognition, ICDAR, pages 493–498,

2017.

[168] S. Sudholt and G. A. Fink. Attribute cnns for word spotting in handwritten documents. Int. J. Document

Anal. Recognit., 21(3):199–218, 2018.

158

[169] J. Sueiras, V. Ruíz, Á. Sánchez, and J. F. Vélez. Offline continuous handwriting recognition using sequence

to sequence neural networks. Neurocomputing, 289:119–128, 2018.

[170] Z. Sun, L. Jin, Z. Xie, Z. Feng, and S. Zhang. Convolutional multi-directional recurrent network for

offline handwritten text recognition. In International Conference on Frontiers in Handwriting Recognition,

ICFHR, pages 240–245, 2016.

[171] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions. In Computer Vision and Pattern Recognition, CVPR, pages 1–9,

2015.

[172] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for

computer vision. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 2818–

2826, 2016.

[173] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus. Intriguing

properties of neural networks. In International Conference on Learning Representations, ICLR, 2014.

[174] K. Takeda, K. Kise, and M. Iwamura. Real-time document image retrieval for a 10 million pages database

with a memory efficient and stability improved LLAH. In International Conference on Document Analysis

and Recognition, ICDAR, pages 1054–1058, 2011.

[175] K. Terasawa and Y. Tanaka. Slit style HOG feature for document image word spotting. In International

Conference on Document Analysis and Recognition, ICDAR, pages 116–120, 2009.

[176] J. I. Toledo, S. Sudholt, A. Fornés, J. Cucurull, G. A. Fink, and J. Lladós. Handwritten word image cate-

gorization with convolutional neural networks and spatial pyramid pooling. In Structural, Syntactic, and

Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR, volume 10029 of Lecture

Notes in Computer Science, pages 543–552, 2016.

[177] T. Tuna, J. Subhlok, and S. Shah. Indexing and keyword search to ease navigation in lecture videos. In

Applied Imagery Pattern Recognition Workshop: Imaging for Decision Making, AIPR, pages 1–8, 2011.

[178] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. In M. Balcan

and K. Q. Weinberger, editors, International Conference on Machine Learning, ICML, volume 48, pages

1747–1756, 2016.

[179] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for MATLAB. In ACM Conference

on Multimedia Conference, MM, pages 689–692, 2015.

[180] A. Vinciarelli and S. Bengio. Offline cursive word recognition using continuous density hidden markov

models trained with PCA or ICA features. In International Conference on Pattern Recognition, ICPR,

pages 81–84, 2002.

[181] S. N. P. Vitaladevuni, F. Choi, R. Prasad, and P. Natarajan. Detecting near-duplicate document images

using interest point matching. In International Conference on Pattern Recognition, ICPR, pages 347–350,

2012.

159

[182] P. Voigtlaender, P. Doetsch, and H. Ney. Handwriting recognition with large multidimensional long short-

term memory recurrent neural networks. In International Conference on Frontiers in Handwriting Recog-

nition, ICFHR, pages 228–233, 2016.

[183] F. Wang, C. Ngo, and T. Pong. Synchronization of lecture videos and electronic slides by video text

analysis. In ACM International Conference on Multimedia, ACMMM, pages 315–318, 2003.

[184] J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong. Locality-constrained linear coding for image

classification. In Computer Vision and Pattern Recognition, CVPR, pages 3360–3367, 2010.

[185] C. Wigington, S. Stewart, B. L. Davis, B. Barrett, B. L. Price, and S. Cohen. Data augmentation for recog-

nition of handwritten words and lines using a CNN-LSTM network. In IAPR International Conference on

Document Analysis and Recognition, ICDAR, pages 639–645, 2017.

[186] T. Wilkinson and A. Brun. Semantic and verbatim word spotting using deep neural networks. In Interna-

tional Conference on Frontiers in Handwriting Recognition, ICFHR, pages 307–312, 2016.

[187] T. Wilkinson, J. Lindström, and A. Brun. Neural ctrl-f: Segmentation-free query-by-string word spotting

in handwritten manuscript collections. In International Conference on Computer Vision, ICCV, pages

4443–4452, 2017.

[188] T. Wilkinson, J. Lindström, and A. Brun. Neural word search in historical manuscript collections. CoRR,

abs/1812.02771, 2018.

[189] I. Z. Yalniz and R. Manmatha. An efficient framework for searching text in noisy document images. In

IAPR International Workshop on Document Analysis Systems, DAS, pages 48–52, 2012.

[190] H. Yang, M. Siebert, P. Lühne, H. Sack, and C. Meinel. Lecture video indexing and analysis using video

OCR technology. In International Conference on Signal-Image Technology and Internet-Based Systems,

SITIS, pages 54–61, 2011.

[191] J. Yang, K. Yu, Y. Gong, and T. S. Huang. Linear spatial pyramid matching using sparse coding for image

classification. In Computer Vision and Pattern Recognition, CVPR, pages 1794–1801, 2009.

[192] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks?

In Advances in Neural Information Processing Systems, NIPS, pages 3320–3328, 2014.

[193] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks?

In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in

Neural Information Processing Systems, NIPS, pages 3320–3328, 2014.

[194] J. Yosinski, J. Clune, A. M. Nguyen, T. J. Fuchs, and H. Lipson. Understanding neural networks through

deep visualization. CoRR, abs/1506.06579, 2015.

[195] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European Confer-

ence on Computer Vision, ECCV, volume 8689, pages 818–833, 2014.

[196] G. K. Zipf. The psycho-biology of language: An introduction to dynamic philology, volume 21. Psychology

Press, 1999.

160

	Introduction
	Motivation
	Scope

	Word Representation Learning
	Why Representation Learning?
	Problems of interest
	Challenges

	Contributions
	Publications
	Thesis Outline

	Background
	Classical Image Representations
	Bag of Visual Words (BoVW) Representation
	Detectors and Descriptors
	Visual Vocabulary
	Coding and Pooling

	Higher Order Representations
	Vector of Locally Aggregated Descriptors (VLAD)
	Fisher Vectors (FV)

	Neural Image Representations
	Convolutional Neural Networks
	Training
	Loss Functions
	Regularization

	ConvNet Architectures
	Transfer Learning

	Neural Word Embedding
	Language Modelling
	Neural Probabilistic Language Model
	C&W model
	Word2Vec
	Subword Models

	Image Retrieval
	Distance Measures
	Evaluation Measures

	Word Image Representation and Spotting
	Word Image Datasets
	Related Works
	Classical Representation
	Bag of Word Representation
	Learned Representations
	Segmentation-Free Approaches

	Summary

	HWNet: Word Image Representation
	Introduction
	Handwritten Synthetic Dataset
	Handwritten Font Rendering
	IIIT-HWS Dataset

	HWNet
	HWNet Baseline Architecture

	HWNet v2
	Multi-Scale Training and ROI/TPP Pooling
	Data Augmentation and Elastic Distortion
	Curriculum Learning
	Transfer learning

	Visualizations
	Experiments
	Evaluation Protocol
	Ablation Studies
	Word Spotting Evaluation
	Architecture Evaluation
	State of the Art Comparison
	Segmentation-Free Word Spotting

	Transfer Learning
	t-SNE Embedding
	Compression of Representation
	Qualitative Results and Failure Scenarios
	Implementation Details

	Summary

	HWNet v3: A Joint Embedding Framework for Recognition and Retrieval of Handwritten Text
	Introduction
	Related Works
	Deep Embedding
	Word Recognition

	HWNet Embedding
	Two-stage joint feature embedding
	Synthetic Attribute Embedding

	HWNet v3: End-2-End Embedding
	Variant I
	Variant II
	Training End-2-End Network
	Image and Text Representation

	Experiments
	Evaluation Measures
	Implementation Details
	Ablation Study
	Word Spotting Results
	Word Recognition Results
	Analysis on Embedding Size
	Effect of Pre-Training

	Visualization and Qualitative Results
	Summary

	Bringing Semantics into Word Image Representation
	Introduction
	Why Semantic Representation?
	Traditional Spotting vs. Semantic Spotting
	Contributions

	Related Works
	Textual Word Embedding
	Word Image Semantic Embedding

	Word Image Semantic Embedding
	Normalized Word Embedding
	Semantic Embedding
	Lexicon Based Recognition and Embedding
	Direct Embedding

	Experiments
	Evaluation Measures
	Implementation Details
	Normalized Spotting
	Semantic Spotting
	Ablation Study
	Qualitative Analysis

	Discussion
	Summary

	Use Cases of Word Image Representation
	Matching Handwritten Document Images
	Measure of Document Similarity (MODS)
	Document Segmentation
	Sum of Word Matches
	MODS matching

	Dataset and Evaluation Measures
	Results and Discussion
	Human Evaluations

	Word Spotting on Lecture Videos
	Datasets and Evaluation Protocol
	Results

	Word Retrieval on Indic Scripts
	Digital Library of India (DLI)
	Results
	Word Spotting using Lexical Representation
	Semantic Evaluation

	Summary

	Conclusion and Future Work
	Summary
	Future Directions

	Bibliography

