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Abstract

Ever so often a need arises in clinical scenarios, for iatéyy information from multiple images or
modalities for the purposes of diagnosis and pathologykingc Registration, the most fundamental
step in such an integration, is the task of spatially aligrarpair of images of the same scene acquired
from different sources, viewpoints and time. This thesiscewns the task of registration specific to
three most popular retinal imaging modalities namely Célandus Imaging (CFl), Red-Free Imaging
(RFI) and Fluoroscein Fundus Angiography (FFA). CFl is oi®d under white light which enables the
experts to examine the overall condition of the retina imdolor. In RFI, the illuminating light is fil-
tered to remove red color which improves the contrast batwessel and other structures. FFA is a set
of time sequence images acquired under infrared light afferorescent dye is injected intravenously
into the blood stream. This provides high contrast vesdetrimation revealing blood flow dynamics,
leaks and blockages.

Retina is a part of the central nervous system (CNS) whicloisposed of many different types
of tissues. Given this distinctive feature, a wide varietydizseases affecting different body systems
uniquely affect the retina. These Systemic diseases iadRidbetes, Hypertension, Atherosclerosis ,
Sickle cell disease, Multiple sclerosis to name a few. Readwancements reveal a close association
of retinal vascular signs to cerebrovascular, cardiodas@and metabolic outcomes. Simply put, the
health of blood vessels in the eye often indicates the ciomditf the blood vessels (arteries and veins)
throughout the body.

Registration of multimodal retinal images aids in the dizgga of various kinds of retinal diseases
like Glaucoma, Diabetic Retinopathy, Age Related Macuksgeheration etc. Single modality images
acquired over a period of time are used for pathology tragkiRegistration is also used for constructing
a mosaic image of the entire retina from several narrow fielages, which aids comprehensive retinal
examination. Another key application area for registratgsurgery, both in the planning stage and dur-
ing surgery for which only optical range information is dable. Fusion of these modalities also helps
increase the anatomical range of visual inspection, eatiyation of potentially serious pathologies and
assess the relationship between blood flow and the diseesesing on the surface of the retina.

The task of registering retinal images is challenging givenwide range of pathologies captured via
different modalities in different ways, geometric and mhmoétric variation, illumination artifacts, noise
and other degradations. Many successful methods have lbepased in the past for the registering
retinal images. A review of these methods show good perfocemaver healthy retinal images. How-
ever, the scope of handling a wide range of pathologies igdirfor most of the approaches. Further,
these methods fail to register poor quality images, esjwdmthe multimodal case. In this work, we
propose a feature based retinal image registration ahgorapable of handling such challenging image



pairs.

At the core of this algorithm is a novel landmark detector deskcriptor scheme. A set of landmarks
are detected on the topographic surface of retina usingafuney dispersion measure. The descriptor
is based on local projections using radon transform whigradterizes local structures in an abstract
sense rendering it less sensitive to pathologies and rdrseving essence from the recent developments
in robust estimation methods, a modified MSAC(M-estimagample and Consensus) is proposed for
false correspondence pruning. On the whole, the minor iboritons at each stage of feature based reg-
istration scheme presented here are of significance. Waateabur method against two recent schemes
on three different datasets which includes both monomauatdinaultimodal images. The results show
that our method gives better accuracy for poor quality artdgdagy affected images while performing
on par with the existing methods on normal images.
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Chapter 1

Image Registration

1.1 Introduction

Unlike machines, humans perform vision related tasks Ba®gnizing similar objects, patterns, loca-
tions, etc with utmost ease. Image registration is the pyragep to facilitate machines to perform some
of these tasks. The goal of registration is to spatiallyratigo or more images of the same scene/object
acquired from different sources, view points and time. Biegiion estimates the deformation between
images and transforms one image into the coordinates ofttee tw align them.

Fig 1.1 shows an example of the 2-D registration where twalkahimages of the same area are taken
at different times using different sensors. In abstrachgeihere registration is achieved by identifying
similar/corresponding regions (labeled in Fig 1.1) in bibth images and overlaying one on top of the
other to align them.

Figure 1.1: (a) & (b) showing two aerial photos of the samenscand their corresponding points (c)
registered images

Registration is required in remote sensing (multi-spédiassification, environmental monitoring,
change detection, image mosaicing, weather forecasitegpating information into geographic infor-
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mation systems (GIS)), in medicine (diagnosis, surgemmpleg and during surgery, mosaicing, track-
ing, fusion etc), in cartography (map updating) and in cotapuision (tracking,stereo-vision, object
recognition, target localization, super-resolution ieagtc).

The last two decades have seen a remarkable developmenagingntechnology. Given the diverse
nature of the images captured and their use in day to dayniéey researchers have tried to solve the
most primary, yet a challenging problem in image procesamijcomputer vision klnage registration

It has grown from being perceived as a minor precursor to edgdipline of its own [1].

Though significant progress has been made in this subfieédiodhe wide variety of images, modalities
and numerous degradations, it is impossible to develop argeregistration algorithm to cater to all
the applications. Many details have to be taken into acctudivelop a registration technique for a
specific application, like geometric and radiometric defations, noise, image characteristics, required
accuracy and stability, etc. This thesis concentrates timatémage registration. The domain specific
background is introduced in the next section.

1.2 Background

The retina is a light sensitive tissue lining the inner stefaf the eye Fig 1.2(a). The image of the visual
world is created on the retina, much similar to a basic camEna retina is a complex interconnected
multi-layered network of neurons with the surface linedwvgpecial photosensitive cells called the pho-
toreceptors. The basic anatomy of the retina includes thie disk, macula, fovea and vasculature
Fig 1.2(b). The optic disk is an oval shaped bright disk wredr¢he vessels appear to converge. The
optic nerve is made up of thousands of nerve fibers which passieal signals to the brain for further
processing. It is also called the blind spot due to the lagihoftoreceptors cells in the area. Next to the
optic disk is the macula with fovea at its center. Fovea hgh boncentration of cone cells (a type of
photoreceptor) which is responsible for our sharp visiamn,iless sensitive to the light.

There are many inherited and acquired diseases or disdtdgrsay affect the retina, like macular
degeneration, hypertensive retinopathy, diabetic rptitiny, etc (Fig 1.3). As the retina is a part of the
central nervous system, it is an excellent indicator ofesyt pathologies. The first digital fundus cam-
era was developed in 1990, to diagnose these diseaseslrgdtee retina. The digital fundus camera
(retina camera) is a specialized low powered microscopelad to a camera to capture images of the
retina. The retinal imaging equipment today magnifies up.5& %ith a resolution of 3000x3000 and
angular resolution ranging between°1d 50°. However, imaging the retina is analogous to peeping
inside a closed room through a key hole, which means that aplsirt of the retina can be imaged at
a time. As a part of National Institute of Health (NIH -U.S,&arly Treatment Diabetic Retinopathy
Study (ETDRS) committee has set standards for the retinatjiing. The ETDRS imaging protocol
specifies seven fields of view for the retina. The specifioatioclude the minimum region of overlap,

3



(b)

Figure 1.2: (a)Anatomy of the Human Eye (b) Retinal Image
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(a) Dry Macular Degeneration  (b) Wet Macular Degeneration
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- L wool spot
(c) Diabetic Retinopathy (d) Hypertensive Retinopathy

Figure 1.3: Common Retinal Disorders




minimum number of views, resolution, quality etc. Howevepiactice these rules are seldom followed.
In practical scenarios, images vary in resolution, oveillapmination changes, etc.

In medical imaging, various types of equipment, probes othods used to acquire images of the
body are referred to as modality (Example: Computed TonpbgraX-ray, Ultrasound, etc). The most
popular fundus photography modalities are Color Fundug&@Fl), Red-Free Image (RFI) and Fluo-
rescein Fundus Angiogram (FFA), Fig 1.4 . CFl is obtainedennchite light which enables the experts
to examine the overall condition of the retina in full coldn RFI, the illuminating light is filtered to
remove red color which improves the contrast between vesgkbther structures. FFA is a set of time
sequence images acquired under ultraviolet light afteradkcent dye is injected intravenously into the
blood stream. This provides high contrast vessel inforonatévealing blood flow dynamics, leaks and
blockages. Despite the contrast difference between CFR&dthey reveal similar optical information
about retina. Aligning images acquired from a single magadi called monomodal registration and we
refer to term multimodal registration when images from mben one modality are to be aligned.

(a) (b) (©)

Figure 1.4: Image showing the following modalities of imaga) Color Fundus Image (b) Red Free
Image and (c) Fluorescein Fundus Angiogram

1.3 Problem Statement

Given two multimodal imageg(X ) andg(X’) whereX = (x1, z5...2,), n =2 andX’ = (x, 24...2], )for
2-D images, the goal of registration is to estimate a transition functionT that establishes pixel to
pixel mapping between these images.

T: f(X) = g(X') & T(f(X)) = g(X') (1)

The transformation functiofi’ defines the deformation between the images, Fig 1.5. Tho et
tion may include rotation, shift, scale, etc, which are ogliegd by a set of parameters. The number of
parameters is called “Degrees of freedom”.

Another way of defining the problem would be through the comi® system. The images captured
by the acquisition device are stored in different coordiedtames due to the lack of any reference
coordinate system. Registration can be defined as the groEaansforming one of the images into the

5



@) (b) (©)
Figure 1.5: Registration of a sample multimodal image pajrf(X) (b) g(X’) and (c)T(f(X)) =
9(X")

coordinate system of the other. The image taken as the nefeis called the fixed image and the image
to be transformed is known as moving image.

1.4 Motivation & Challenges

In this thesis, we propose a generic framework for monomadidimultimodal registration. Monomodal
images taken over a period of time are used for pathologkitrgc Different views of the retina obtained
from the same modality are combined into a single image tm famosaic to inspect overall health of
the retina. Multimodal registration is the primary stepusihg complementary information contained in
different imaging modalities for diagnostic purposes asd to track pathologies over a period of time.
Information obtained through registration of two imagingdualities aids in the diagnosis of various
kinds of retinal diseases such as glaucoma, diabetic pthy and age related macular degeneration.
A key application area for registration is surgery, bothhe planning stage and during surgery at
which time only optical range information is available. Fusof these modalities also helps increase
the anatomical range of visual inspection and provides anmfea early detection of potentially serious
pathologies and reveals the relationship between the liloadnd the diseases occurring on the surface
of the retina.

The challenges involved in retinal image registration carsbmmarized as follows: (1) The retina
is a curved surface and its projection onto the imaging piadeces radial distortion. To model this, a
second order polynomial or a quadratic transformation rhisdgsually employed [2]. (2) The images
may be obtained from two uncalibrated cameras. (3) The ingagétup parameters might vary as per
the requirement of the clinical expert. The CFl image is llguaw in resolution (as compared to
FFA) which is enough to examine the overall health of theneefor a preliminary diagnosis. (4) The
images are obtained from the same retina using differergosercaptures complementary information
due to which the pathologies(MA, Exudates, etc) may not begdeed in all of them, resulting in false
matches, (Fig 1.6(a)-(b)). (5) FFA has better contrast asdlution than CFI as it is obtained under
infrared light invasively but the time of acquisition in FpAays a major role. The image may not be
taken before the dye enters and leaves the retina, whichesiceiped as dull parallel edges in FFA



images. We refer to this as ill acquisition timed FFA. Fig(@)é (6) The captured field of view is
variable and is specified in degrees of visual angle betvg®erb0°. This affects the magnification
level of structures visible in the images to be registeredelbas the degree of overlap between them.
(7) Variability in contrast across multimodal images is aoaon problem in practical scenarios. (8)
The common artifacts in the CFl is the non-uniform illumipatand green channel noise which is due
to the natural light entering the eye and the internal rafladt the surface of the retina, thus the quality
of the image is compromised, Fig 1.6(c)-(e). (9) The ovebefpveen the multimodal images is critical
for the accurate registration, the strength of registratieethod depends on its ability to align images
with minimum percentage of overlap, Fig 1.6(g)-(h). (10)idngitudinal studies, images can have a
wide temporal separation. Hence, new pathologies can appédadisappear over time.

A variety of methods have been reported in the literaturectviaiddress these challenges to varying
degrees of success [1-30]. Existing approaches for retimadje registration perform poorly in prac-
tical scenarios due to variabilities mentioned above. is thesis we especially lay emphasis on low
resolution poor quality multimodal retinal images in thegence of diverse pathologies Fig 1.6(i)-(t).

1.5 Overview

The goal of registration is to estimate the deformation leetwthe images while taking the domain
specific information into consideration. A closer look at fhroblem statement intuitively reveals two
methods of solving it. The first method operates directlyroage intensity values, continuously trans-
forming the entire image so as to align it with the other. Thage is considered to be registered when
desirable alignment is obtained for the respective trangdition. These methods are called area based
methods. The second method relies on a few salient pointstvare most prominent in both the im-
ages. The goal here is to detect the corresponding pairdgrtkfregions across the images from which
the deformation is estimated. These are known as featuesl lmasthods.

Feature based methods have gained popularity over the aseal Imethods as they are more robust
to illumination changes, partial overlap between the insageclusion, changes in background, and
viewpoint [3]. Despite these advantages, area based ne#nedtill preferred over feature based meth-
ods in the medical domain due to two main factors:(1) theilitgtbo handle local deformations, which
are especially the case with human organs and (2) dealirtg imfibrmation from different imaging
modalities/sources.

Retina is the only part of the central nervous system whichlmimaged directly. Retinal imaging
is unique when compared to its other radiology(medicalnteuparts. Retina is a curved surface and
only a part of it can be imaged at an instance. The most impiodifference is that the transformation
between any two images of the same retina do not have anyis@grilocal deformations. So, a feature
based strategy can be used if the issue of multi-modal irdtiam is addressed.

In computer vision, feature based matching methods likel SBURF, GLOH etc, which belong to
the class of invariant detectors/descriptors, have redesignificant attention over the last decade [3].



However, these methods are limited to natural images wthrietlolatained by directly recording the in-
cident light. But medical imaging, in a restricted sensegen as the solution of mathematical inverse
problem. This means that cause (the properties of livirgué} is inferred from effect (the observed
signal) [1]. This inference is biased by modality specifiésep artifacts and other degradations. In
monomodal case, often artifacts like green channel noeserasent in only a single image which leads
to large variations between both the images. In multimodaasets, the information captured by a
specific modality reveals only certain characteristicshef dbject. For example, CT scan reveals hard
and dense structures better while MRI shows details in tftetissues. Hence, general feature based
methods perform poorly on multimodal medical data due tcctivaplementary information present in
them. In this work, we propose a novel feature based retimstranethod capable of handling these
monomodal and multimodal variations across images.

Feature based methods typically follow a three step appredetection of significant landmarks across
images, establishing correspondence using featurecesdraround landmarks and the estimation of
the transformation function using correspondences. Etaghis registration has its typical problems
and the contribution of this thesis lies in these individomddules. For each module, the contribution
level is graded as minor or major based on the novelty and/atian.

1. Vessel Enhancemenf normalized vesselness measure on the lines of scale $ipeoey pro-
posed by [4] has been put forth for vessel enhancement imatdéthages. The role of this step
is to bring a given image pair into a single representatias thypassing the multimodal changes
and rendering it invariant to illumination, contrast chasgnd other noise factordviimnor

2. Landmark DetectionWe propose a novel measure of curvature dispersion on gagtaphic
surface of the image to detect landmarkkajor

3. Radon DescriptarA Radon based descriptor is introduced for scale invaralmist matching in
retinal images. This projection based local shape descrgatptures abstract higher level infor-
mation thus rendering the descriptor less sensitive tomssand noise. This helps establishing
accurate correspondence in poor quality caddsyor

4. False match rejection and initial transformation estinoatiA Variant of MSAC (M-estimator
sample and consensus) from robust statistics is proposegettt false matches and estimate the
initial transformation across image$4ajor

5. Transformation model selectiof novel transformation model selection scheme is introduce
which exploits the information on the spatial distributioithe matches.Minor

1.6 Organization of the Thesis

This thesis is organized as follows: Chapter 2, gives a léetaurvey of general registration schemes.
Chapter 3 gives an elaborate report on our initial work on omeodal retinal image matching. In Chap-
ter 4, the drawbacks of this work are addressed and a rofausefvork for multimodal and monomodal



retinal image registration scheme is proposed. We condhel¢hesis in the last section of Chapter 4
and show additional retinal image registration results ppéndix 1.



© (@) (m) n)
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Figure 1.6: (a)-(b) Image pair with complementary inforimaj(c) shows green channel noise in CFI
image, (d) ill timed FFA capture showing dull edges, (e) Imatpowing shine through artifact, (f)
pathology affected case, (g)-(h) low overlap case, (i){§)-(I), (m)-(n), (0)-(p), (q)-(r), (s)-(t) show
some challenging pairs. The yellow labels C, F, R on the imagpresent CFI, FFA and RFI images
respectively.
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Chapter 2

Background

Overview:This chapter gives a review of existing registration schewleile classifying them based on appli-
cation, method and strategy. The background introducekiigwchapter provides insights into various techniques,
their advantages and shortcomings. The major goal here gésent generic registration schemes which help
justify and motivate the design of our proposed method fdtimadal retinal image registration.

The first classification is based on the types of applicatiagch narrows down the rest of the registration
survey to methods designed for applications similar to thescat hand. Next classification criteria is the nature
of the method: Area based Vs Feature based methods. Featses bnethods are reviewed in details where as
the area based methods are restricted to classical schémepjng the scope of this thesis in view. Finally, the
classification of the transformation models is reviewedehehich paves way to model the deformations specific
to the retinal images in the later chapters.

2.1 Classification of Image registration methods

All large systems which are used in evaluating images usstration or a similar operation as an inter-
mediate step. As mentioned previously, to devise a genggistration method for all the applications is
impossible due to variations in modalities, deformationd ather degradations. Over the years, broad
range of techniques have been proposed for various apptisain image processing and computer
vision. Several successful attempts have been made in §1¢5)46] to classify these technigques and
wrap flexible frameworks around the problem for assistindpé@selection of the most suitable technique
for a specific problem.

There are many ways to categorize existing registratiornots, detailed explanation can be found
at [7], [8] and [3]. [3] gives the recent classification of istcation methodologies based on application,
feature detection, matching, optimization methods andsfaamation estimation. Borrowing ideas
from [3], we classify the registration methods under thregmeategories

e Type of applications

e Area Vs Feature based methods

11



e Global Vs Local mapping models

The next few section have been adopted from [1].

2.1.1 Types of applications

According to [3], the applications of image registratiom te categorized into four classes. D)fferent
view point The images acquired belong to the same scene but taken fffaredt viewpoints. here
registration is used for mosaicing, shape recovery, sigslution, depth estimation, stereo-vision etc.
(i) Different times The images are taken at different times instances are wsedidease tracking,
change detection, motion tracking etc. (iiifferent sensorsOften in the medical domain there is a
need to combine or fuse the information obtained from diffiéisensors so that the complementary data
can be integrated into a single image. For example, CT (Ctedplomography) reveals anatomical
structures likes bones, hard tissues etc and PET (Positrissibn Tomography) reveals the functional
information. Fusing these two modalities aid in surgennplag and intervention. (ivcene to Model
Images of a scene are registered to a model, which is a conmgpiresentation of the scene. These are
quite popular in developing atlas and specimen classificati

2.1.2 Area Vs Feature based methods

The goal of the registration is to estimate the deformatietvben the images, a closer look at the prob-
lem statement intuitively reveals two methods of solvingTihe first method continuously transforms
the entire moving image so as to align it with the fixed imadae image is considered to be registered
when desirable alignment is obtained for the respectivestormation parameters. These methods are
called area based methods. The second method relies on alfeat points which are most prominent
in both the images. The goal here is to detect the correspomudiirs of points/regions across the images
from which the deformation is estimated. These are knowreatife based methods. They shall be
dealt in detail in the next sections.

Area based methods:

The area based methods operate directly on the image ityteahies of specific region of interest(ROI-
window) or the entire image without deriving any structurdbrmation. The idea behind area based
method is quite simple. Given two imagg&X ) andg(X"’), fixed and moving image respectively. The
moving image is transformed(shifted, rotated and scaleidhwdwre called transformation parameters)
to create a perfect alignment with the fixed image. The aligmnor correspondence is validated for
its goodness with the help of a similarity criteria. The ireagre considered to be registered when the
similarity criteria reaches its maximum value for a givehafgparameters. This methods typically use
an optimization framework since exhaustively searchinthis space explodes with the increase in the
transformation parameters.

12
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Figure 2.1: Area based method for image registration

Essentially area based methods have three components
1. similarity measure

2. optimization method

3. transformation model.

(i) Similarity Measure As the name implies similarity measures determine howetyosvo signals/
images are related. The higher the score of the measure ttiee ise¢he alignment between the images
or specific window pairs. So the objective in this formulatig to find the transformation function
which maximizes the similarity measure. One of classic lgirity measures used for registration is
Normalized Cross-Correlation.

N S((X) = B(F(X) (X[, ;) — E(9(X; ;)
cC(i,j) =
VI = B2 X((0(X ) — B9 ;)

(2.1)
where(i, j) are the spatial coordinates afd.) is the expectation of the image.

Several other measures have been proposed like covaridter@on, correlation coefficient, cosine
angle criterion,etc ([9]). The major drawback of this metfies in its inability to handle large scale and
rotation factors. Also when the region of interest is smotith discriminability decreases and leads to
false matches. Even with these limitations they have beed estensively used in the medical domain,
especially dealing with multi-sensor data.
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Mutual Information similarity measure has emerged fromittiermation theory and was first pro-
posed by [10] in 1992. It gives the statical dependency ofitiensity values especially when the
structural information is not prominent.Mutual infornmatiis given by

MI(f(X),9(X") = H(f(X)) + H(9(X")) — H(f(X),9(X")) (2.2)
WhereH (.) andH(.,.) are the marginal and joint entropies respectively, given by
H(z) = —Ey(log(P(X))) (2.3)

and P(X) is the probability distribution of.

Mutual Information is recent e technique for registratidmuulti-sensor images especially in the
medical domain. Anatomical images like CT, MRI and functiorages like PET, SPECT differ in
structure as well as information content. Mutual Inforroatexploits the intensity distribution between
the images to align the complementary data. The other sityilmeasure which have recently been
proposed like cross-entropy [11] , Entropy [12] have prokehe more effective than MI.

Mutual information only exploits the statistical dependgtetween the two distributions but does
not embed any neighborhood information. Recently, [13pps@d mutual information of regions which
takes even the neighborhood information into account. hieannodifications and improvements have
been made in this area, which is beyond the scope of thissthesi

(if) Optimization To find the maxima of a similarity measure( or minima of a iiskarity) for given
set of transformation parameters exhaustively over thieeettansformation space explodes with the
increase in the degrees of freedom. Brute force may be used thie transformation includes only
translation, but in case of higher transformation modelsptimization framework is required to lo-
calize the maxima. Various optimization methods have beseul dor the registration of multi-modal
images, like Gauss-Newton minimization, Gradient Desdeetenberg-Marquardt, Powell optimiza-
tion etc. A detailed literature review of these optimizatechemes and its application can be found
at [5], [6], [3]. Often in this framework, a regularizatioartn(penalty term) is included with the objec-
tive function. The regularization term interconnects ttams$formation and the data to be transformed.
There are referred as the energy minimization methods iliténature.

(i) Transformation models with be dealt in detail in thédasections.

Feature based method

Feature based methods are used when local structural iafiommhas better distinctive signatures as
compared to the intensity distributions. This method isegloss a correspondence problem i.e given a
region/point in fixed image, find the homologous region/pairthe moving image. By establishing the
relationship between corresponding points across bothrthges, the deformation is estimated.
Feature based methods typically have four steps:

14



1. Feature detection

2. Feature matching

3. Transformation(deformation) estimation
4. Image resampling and transformation

() Feature detection: Feature detection aims at computing higher abstractibtecal intensities of
an image. Feature based methods are driven by a set of eatslgtable salient points/regions in both
the images. These features may be points,lines, curveggimhs which are well spread across the im-
ages. This method demands a reasonable amount of ovenapdrethe images even in the presence of
object occlusion or any other noise factors. The featurest lmeiwell localized and should be invariant
to local degradations.

Point Features:As the name implies these are the salient points in an imagshwiay represent cor-
ners, high variance points, centroids of regions or localature discontinuities. Point features range
from simple corners, edge intersections to sophisticatatstormation( geometric) invariant detectors.
These are generally known as interest point detectors Rl4]Foint based features shall be dealt in
detail in the following chapters.

Line Features:line features represent discontinuities in image intgnsithese discontinuities are
referred to as edges (lines, curves, region contours,efbgre are two main methods to detect edges
in a image- Search based and Zero-crossing based. Seaeth hathods usually compute the edge
strength( usually first order derivative) and search forcallonaxima direction to detect the edges. Ze-
ros crossing based methods compute the second order dexsvdirectly to find these discontinuities.
Recently edge detection via phase congruence [15], whiahriesguency domain approach, has proven
to be more robust to noise and other degradations.A surveyrafmber of different edge detection
methods can be found in [16].

Region FeaturesRegions are closed-boundary areas with specific propémtiatensity distribution,
texture, color etc. Salient region detection can also becésted to process of image segmentation. The
goal is to classify the image into two (in some cases moreysels region and non-region, based on
the properties mentioned above. These regions which asetddtare usually represented by their
center of gravity or by any other higher order moments [1He Tegion detected must be stable in the
presence of deformations like skewing, scaling, rotagitin,and invariant to contrast and other random
noise variations. These region based detectors are gienegtdrred to as blob detectors. In early
literature, LOG,DOG, determinant of hessian have been asthsively [18]. Recently, [6] proposed
a method based on this scheme to simultaneously segmerggiater remote sensing images. Regions
detected based on homogeneity of intensities was propos§tBbcalled maximally stable extremal
regions(MSER), the regions detected are invariant to a veidge of deformations.

15



The features detected in both the images shall be referrasl ¢ontrol points.

(i) Feature matching At the feature detection stage a set of control points haem lextracted from
both the images which are to be matched to establish paisgisespondence across images. Feature
matching step is the most crucial part of image registratiamework. Features that appear similar
may not be matched accurately due to false detections atetieetibns stage, unpredictable imaging
conditions and different sensors. A trade off is usually enbdtween the discriminability of different
features and their ability to handles variations in noise atter artifacts. Also the matching strategy
has to handle features that do not have any correspondeiice pa

Various methods like spatial relations, descriptors,xatian methods wavelets and pyramidal ap-
proaches exist in literature for feature matching. In thists we focus on the first two methods only.

Spatial relation based method:These set of methods exploit the spatial relations betweercaon-
trol points to establish correspondence. Goshtasby [2§jqeed a method based on graph matching to
register remote sensing images. This method does not im@gany local neighborhood information,
which makes it apt for applications where the local inforierais ambiguous or corrupted. It is particu-
larly useful for applications like mosaicing [21]. [22] ae#ed a clustering based technique to establish
correspondence. For all the each control point (CP) paitstthie transformation parameters are rep-
resented as a point in transformation space. The controtgaeiith accurate matches are clustered
together where as the other combinations are spread ousisghce. The centroid of this cluster repre-
sents the best transformation parameters which yield atzunatches. In this method, both matching
and transformation estimation are coupled together. A atelfased on minimization of edge distances
was presented by Borrow [23] called the chamfer matchings fitethod was further improved by [24]
by using distance transform in root mean square minimindtiamework. Iterative close point algo-
rithm introduced by Besl and Kay [25] is well known for its sess in 3D registration. This algorithm
refines matches based on spatially closest feature arotuindla accurate correspondence established.

Invariant descriptordDescriptors establish correspondence using the infoomagktracted from the
close neighborhood of the detected features. It is a comppotsentation which describes the neigh-
borhood of a feature at a higher(abstract) level. For exveatufe that is detected, a descriptor is extracted
which represents unique structural characteristics ofdgmn. Given a set of CPs and their respective
descriptors for both the images, all the points in the fixedgmare matched with ones in the moving
image to compute a matching score. Every point in fixed imhgehas a highest matching score to its
moving image counterpart, are tagged as corresponding. pair

With a goal of establishing a generalized criteria for dggors,they are to fulfill several conditions.
Invariance is an important property which enables matclewven when the image is deformed. This
assumes that the descriptor for a known correspondencaatiignificantly vary under geometric or
photometric distortions. Uniqueness defines the discativia property of the descriptor to characterize
afeature. The descriptor must be similar to its correspandounterpart and differentiate false matches
with a large margin. Repeatability defines the ability todgisimilar matches under varying imaging
condition, time instances and noise.
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The most simple descriptor is the image intensity. Arounthdaature, a window of known size is
extracted and correspondence is established by findingowinmhir across images which have maxi-
mum similarity. Correlation Coefficient [26], Cross-Cdation and Mutual information [27] are well
established similarity metrics for ROl matching based oagmintensities.

To represent local shape, specific descriptors are usechvemitbed the structural information in
them. These shape descriptors include chain code repaéisentpolygonal approximations, shape
numbers and Fourier descriptors [28]. For close boundaipne, moment based descriptors have been
successfully used for registration. Hu [17] introducedaniant moments which describes the region
contours by projecting the local binary patterns into highreler dimensions. Flusser and Suk [29] gave
affine invariant moments which was illustrated over landsaiges. Holm [30] integrated moments with
geometric properties like perimeter and area. Flusserif8idduced blur invariant moments which
were further improved by incorporating rotational invada called combined blur- rotational invariant
descriptors.

Another class of detectors and descriptors which have dgiopularity over the recent years are in-
variant interest point/region detectors and descripies$IFT(scale invariant feature transform) [32],
SURF( speed up robust features) [33], etc which will be dised in detail in chapter 4.

(iii) Transformation Estimation: After the correspondence is established the next step Hitoae
the transformation/mapping between the images. The transtion function must align the moving
image with the fixed image irrespective of the occlusion awerlap. Transformation must handle
errors and distortions induced by the imaging equipmentievatitaining the required alignment error.
As mentioned above, given the variety of images availablgingle transformation model cannot be
applied to all the registration problems. For example, mjitw@o images which are deformed by just
translation, then assuming a model with rotation,traimiaand scale would be an overkill. Assuming
the right model for the problem is called the model selectimmblem.

Appropriate selection of the transformation model assdistselecting/ developing the techniques
for registration. So, the next section is dedicated to thsgification of transformation models, their
variants and geometric properties.

(iv) Image resampling and transformation: Once the transformation function has been estimated,
the next step is to transform the moving image into the thedinates of the fixed image by resampling.
The transformation may be realized as forward or backwardping. Forward mapping methods are
often complicated to implement and also produce holes irntiagie, which is why backward mapping
techniques are a better choice. To transform the movingéntatg the fixed images coordinates inter-
polation schemes are used to fill holes which occur due toitweade nature of the grid. Interpolation is
a convolution operation via the interpolation kernel. Tdhesil kernel is a 2-D sinc function which is dif-
ficult to implement due to the infinite extent of the functidrhus approximations are used to reduce the
computational cost. Popular interpolation functions aliedar, bicubic, quadric splines, cubic splines
and gaussians. These interpolation schemes are usuajbctbto a trade off between accuracy and
computational cost, which is why Bilinear and Bicubic areenfused. A detail survey and comparison
of resampling are investigated in [34].
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2.1.3 Global Vs Local mapping

In mathematics,transformations models are studied utdename geometric transforms. They deal
with the properties of objects under various deformatidrisese Transformation models can be classi-
fied as : Global mapping and Local Mapping methods. A more lpopuay of classification is rigid Vs
non-rigid, but for the purpose of developing backgroundtliis thesis, we stick to the initial classifica-
tion. Global mapping is used when the deformation betweemgaa can be expressed a single function
which describes the mapping for the entire image. Theseadette used only in the absence of local
deformations between the images. On the other hand, Loggdimamethods are specifically designed
to handle the local changes by giving preference to indalidontrol points and regions. These meth-
ods cannot be defined succinctly and therefore represeptadbige matrix, whose values represent the
displacement of each pixel from moving image to fixed image.

Global mapping methods:

Often in practical applications, the deformation betwaeades may be simple, like rotation, transla-
tion and scaling, which means that the shape is preservedeéptthe images. The transform which
preserves the shape is cal8uhnilarity transform A similarity transform is an isometry composed with
anisotropic or uniform scaling, given by

2’ = s(wcos(0) — ysin(0)) + t, (2.4)
Y = s(zsin(0) + ycos(0)) + t, (2.5)

the homogeneous coordinate representation of similagtystorm is given by,

a scos(@) —ssin(f) t.| (x
y | = |ssin(@) scos(d) t,| |y (2.6)
1 0 0 1 1
compactly represented by
X' —sR X +t 2.7)

This transform model has four degrees of freedom, wkeré, ¢,, t, are the scale, rotation and
translation parameters respectively. SiRcis an orthogonal matrix, this transform preserves the angle
between the lines and ratio of lengths. It requires two smpwading pairs to estimate a similarity
transform. Figure 2.2 depicts an example of similarity $farm.

Affine is another linear transform with six degrees of fremggiven by

¥ =ag+ a1r + azy (2.8)
y' = by + b1z + bay (29)
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Figure 2.2: Example of similarity transform (a) Originalage (b) Transformed image

matrix representation is given by

! ain a2 ity
v | = |aan axn ty| |y (2.10)
1 0 0 1 1
compactly represeted by
X' =A X+t (2.11)

The additional degrees of freedom come from the shear paesnmcorporated itA matrix, it
produces distortion in one axis direction proportionalh®e other.

1 « 1 0
sheary; = Agp 2 = (0 1) sheargy y = Ay = (ﬁ 1) (2.12)
Another distortion which affine can handle is the change jpeeksratio
scale = Age = (335 O) (2.13)
0 sy

Aspect ratio is the relative scale betwegnands,, by scaling them independently their ratio is al-
tered.This model requires three corresponding pairs tmatd the transformation parameters. It maps
a parallelogram into square. It does not preserve anglesoduen-isotropic scaling, but parallel lines
remain parallel and the ratio of lengths between lines isgmad. Figure 2.3 shows an example of
affine transform.lIt is used typically when distance betwesmmera to scene is large as compared to the
object.

The next in hierarchy of geometric transforms is a non linearsform called Projective. It given by,
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Figure 2.3: Example of Affine transform (a) Original imagé Tnansformed image

;G0 + a1z + agy

(2.14)

1+ cix+ coy
Y = bo + b1z + boy (2.15)

1+ciz+ coy

Compact representation is given by,
At

X' = X 2.16
(o) 216)

wherev = (v, v9). The projective transform has 8 parameters and requirerfonircollinear corre-
sponding pairs in order to estimate the parameters. This doepreserve parallelism but the straight-
ness of lines and planarity of surfaces are intact.It alssgmves the cross ratio( ratio of ratio of lengths).
This model is apt to capture a flat scene whose optical axistiperpendicular to the camera. Example
of a projective transform is shown in Figure 2.4.

£ #
g
. 4

Figure 2.4: Example of Projective transform (a) Originahipe (b) Transformed image
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Polynomial transforms are another class of transformatimuels which map curved lines into
straight lines in the image. It will be dealt in greater detachapter 6.

Local mapping functions These functions are used when the global transforms cédramatie local
deformations. The weighted least squares and weighted metrods have been proposed to register
the images locally by weighting the CPs based on image déaefvise linear and Piece wise cubic
are two other methods which employ triangulations to maj édangle individually which accounts
for the local deformations.

Under the banner of deformable registration, many methasie been proposed in literature which
are specifically designed handle local deformations. Gawsgeighted, Thin-plate, Multiquadric and
B spline methods belong to a popular class of global mappiethaas called radial basis which have
the ability to handle deformations locally. To handle mooenplex deformations Elastic and Fluid
registration are often used in the field of medical imageyasiml A few more methods of deformable
registration are Diffusion based registration, Level $etsed registration and optical flow based regis-
tration.
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Chapter 3

Initial Work on Monomodal Retinal
Image Matching

Overview: Our initial work on retinal image registration was focused mgistration of monomodal images
with limited deformation and photometric variations. Insttwork, we illustrate a fast method for obtaining
landmarks/interest points based on changes in a topogeagbscriptor of a retinal image. Building on the
curvature primal sketch introduced by Asada and Brady [3%] describing interest points on planar curves,
we extend the notion to grayscale images. We view an imagea@sographic surface and propose to identify
interest points on this surface using curvature as a desaripThis is illustrated by modeling retinal vessels
as trenches and identifying landmarks as points where #ectr behavior changes, such as it splits or bends
sharply. Based on this model, we present a method which beesutface curvature to characterize landmark
points on retinal vessels as points of high dispersion irctimeature orientation histogram computed around the
points. This approach yields junction/crossover pointetihal vessels and provides a means to derive additional
information about the type of junction. A scheme is develdpeusing such information and determining the
correspondence between sets of landmarks from two imaggsddy a rigid transformation. We conclude this
chapter by reporting the limitations of this initial work dmmotivate the need for more robust schemes to fit
practical scenarios.

3.1 Introduction

Retinal images provide visual information to clinical e’geon pathological changes, and early signs
of systemic diseases like diabetes and hypertension. @kamghe retinal image over time are essential
to observe and track in the diagnostic process. In autonatalysis, a set of known image primitives

(features) like points, lines and curves are used for fintliegchange/transformation. For instance in
point-based registration, key points are extracted froenttvo images and the transformation is esti-
mated using only the coordinates of the matched key pointsh 8ey features are called landmarks.
Landmarks are anatomically significant, visually salietistinct features in the image that are iden-
tifiable and comparable across images. Apart from regigiratandmarks are useful in several tasks
including localization of disorders, surgery planningnstoucting mosaics and synthesizing panoramic
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3.2 Background on Landmark Detection

Several methods use the bifurcation points (junctions) @odsover points of vessels as landmarks
[36—-38]. This is because they are meaningful landmarks, ssn@antically higher level than points,
lines and curves on the image. Morphological processinggusgvolving structural elements of T-
shape has been used to locate vessel bifurcation poirgs raftucing the vessels to 1-pixel wide paths
[37]. Changes in image gradient information have also beed to select landmark points [36]. Here,
an edge-direction dispersion measure is computed in a wintfoaround every edge pixel and its
local maximas are declared as landmark points. A fixed wintéwvill result in inconsistencies in
localization of landmarks as well as their density alongtthe, since the branches in the vessel tree of
a retinal image are of varying thickness. Consequentlgr aftiditional processing like smoothing of
histograms and pose clustering, only a subset of the larkdnaae used to derive a set of corresponding
landmarks from a pair of images. Motivated by the need toaektthe full vessel tree accurately, a
recent approach uses a multiscale approach and matcheslthlteace the medial axis of thick and very
thin vessels [38]. Landmark points on this vessel tree arectkd at intersections of multiple traces.
However, the vessel extraction step is computationallyequomplex.

In point-set based registration, the need is only for ditedf a set of landmark points with maximal
information content. Hence, an approach that does not ie@dicurate vessel tree extraction is of
interest. In this work, we present such a method, which gtiirantees the points to be located on
vessel branching/crossover points and encapsulatesceddiitnformation which is directly useful in
matching landmarks across image pairs.

3.3 Method

Interest points have been described for planar curves, lppimg discontinuities in the curve to the
local tangent-orientation space and obtaining descriptivom the new space [35]. The underlying
hypothesis is that discontinuities have higher infornmrationtent and are hence of interest. We propose
a grayscale analogy and view a given image as a topographidalceS and examine how it changes
to locate interesting points, specifically by analyzing Weey S bendsat any point. Vessel branching
points and crossovers are subsets of such points of sigrtitieand inS.

Let us consider detecting landmarks from a given color feniduagel.. We restrict our analysis
to the green plané, of the image which has maximum contrast. We embed the grieysoage/,
in 3-D where it can be viewed as a surfagge Fig.[3.1]. The intrinsic surface curvature is a suitable
descriptor ofSy, assumingl, to be twice differentiable. The curvature descriptor cstssof four
quantities based on the Hessian matrix pf39]. These are two Eigen values andas, (with az < a4)
and the corresponding vectors andv.. Rules for identifying specific topographic features sush a
ridge, trench (inverted ridge), pit, saddle, plateau negiare based on different combinations of the
descriptor quantities [39, 40]. Vessels, being darker tharbackground, appear as trenches and have
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been segmented using the curvature descriptor [41]. Thenkggtorsyv, at neighboring points in a
trench are oriented in the same direction, provided theckreloes not bend or branch at any of these
points. This observation is used to detect the vessel pmetid crossover points: Consider a some
neighborhoodV,, around a poinp in I,. Let h, be the curvature orientation histogram (COH) of the
directions ofv, of points inN,. We define a dispersion measutgp) based on thentropyin b, to
determine the saliency @fand declare the local maxima 6f(p) as landmarks.

Trench

Vessel Subsection

Figure 3.1: Image showing topographic surface of the suiosec

3.3.1 Pre-processing

In a flat region, the curvature magnitudes are negligiblé,an~ 0. Flat regions do not yield points
of high information content, and hence we restrict the caiatjmn of H at only image discontinuities,
specifically vessel pixels. Since extraction of all junotipoints is not necessary, a simple method
suffices to extract vessel pixels. A background estima#@j by median filtering/,, is performed and
suppressed froni, by subtraction, to obtain a shade corrected imhge Blood vessels are extracted
based on the fact that they have negative valuekin They are then shifted to positive values by
adding| min(/.)| to get pre-processed imagpg, Fig.[3.2(a)]. The background has uniform high value
in I,,, while vessels and dark regions occupy lower intensityltev8ince, majority& 90%) of the
pixels are in the background region a binary vessel map miredd via simple thresholding . Next, a
morphological thinning followed by closing is applied tdaim only the pixels on the medial axis of
vessels. This vessel map is denoted aBig.[3.2(b)].

3.3.2 Dispersion measure

For every vessel pixeg in I, we compute orientation vectots from I, Fig.[3.3] and then the COH
hy, by considering a neighborhoadl, on I,. The dispersion measurg, shown in Fig.[3.4], which is
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(b) Vessel map after thresholding

(a) Background subtracted image

Figure 3.2: Preprocessing

(b) Direction ofv; on and around vessel pixels

(a) Image Subsection

Figure 3.3: Quiver plot of Image subsection

the entropy of this COH is found as

(3.1)

1
hp (i)

Thus, corresponding to the vessel mgpwe now have a dispersion madp Note that at any point
p the value of E(p) will be high when the orientations af, within N, do not align, signifying the

Z hy (i) log
1

i

n

E(p) =
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presence of a junction at while E(p) will be low in the absence of a junction as the orientationssof
directions are roughly along the progression of the vedael.obtain landmark$®> = {p} from E by
applying non-maximum suppression,See Fig.[4.9].

(a) Image subsection (b) Dispersion map

Figure 3.4: Dipsersion Map showing high entropy regionseith color. It can be inferred visually that
high entropy regions correspond to vessel crossover otigmpoints.

3.3.3 Landmark Detection Results

Images from the STARE [43] and DRIVE [44] dataset have beed tstest our approach. The Hessian
matrix was computed at the vessel pixels/grusing Gaussian smoothing withax 9 mask ¢ = 1),
and3 x 3 Prewitt mask. The Eigen vecter was normalized and & x 5 neighborhood §,) was
considered for obtaining a 12-bin orientation histograyn(angular resolution o15°). The entropy
map E is computed and non-maximum suppressionzofs performed, with radius 12 and threshold
th = max(FE)/2, to obtain the landmarks. The performance of the proposdtaden different local
context is shown in Fig.[3.6].

Fig.[3.7] shows results of our method and of two other methahe which uses a dispersion mea-
sure on gradient vectors [36] and another which uses veasalg [38]. Results show that the proposed
method provides landmarks that are sparser and maximdtiyniative (as they always coincide with
junctions) in comparison to the gradient-based method evttegy occur anywhere along the vessel.
Both the proposed method and the vessel tracing-based dhgitfld landmarks only if the vessels are
detected. Branch points on some minor vessels and a T-shapech are not detected in Fig.[3.7(a)],
because the incident vessels were not detected. Likewiseriapproach, the misses depend on qual-
ity of I,. This step can be refined, for instance by improving conwwésessels, independent of the
detection step, to increase the number of detected jursciiatesired.

3.3.4 Correspondence computation scheme

The COHs that are the basis of the proposed landmark poiettitant, are a rich source of information.
Sample subimages related by rotation and the correspor@idg pairs are shown in Fig. 3.8. We
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Figure 3.5: Landmark detection on stare images

now show a way to to use them to find the correspondence betimeesets of landmark points. Let
P, = {p1} and P, = {p2} be the set of landmark points computed from two imafeand I, related
by an affine transformation. L&t = {hy;,1 <i < m}and®y = {hy;,1 < j < n}, m < nbethe
respective COHs.

We compute an x n distance matrixD between the histograms ih; and ®,, whereD;; is the
distance betweeh;; andhs; using an appropriate histogram distance measure. Smalles/ofD;;
signify a good match betweeh; and P» ;. An affine transformation affects the COHs in a predictable
manner. They are translation invariant while rotationsugelcyclic shifts. Thus, correspondence can
be determined by matching cyclically shifted histograms.

For eachl < i < m, we find; for which D, is minimum. We then check iD . is minimum at
a=iforalll < a <m,toaddthe tupl¢P,, %) to the initial correspondence s€.

Different correspondence sef§ are obtained by applying circular shifts to COHslin and recom-
puting the new distance matri®,, & denoting the shift size. A cost functiox), is computed for each
C}, as follows.

> (i), Dig
|Cl
The best correspondence set is found'gsvhereb = arg min \.

e = (3.2)
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(a) landmark detection on blur sub  (b) landmark detection around
image optic disk

Figure 3.6: Landmark detection in different local contexts

k 0 1 2 3 4 5 6 7 8 9 10 11
\: | 0.685 0.242 0.535 0.647 0.786 0.627 0.716 0.668 0.518 0.614 0.751 0.629
ick| | 8 10 5 5 5 4 4 5 4 5 5 3
lwp| | 5 10 2 1 0 0 1 1 0 0 0 1

Table 3.1:)\; values for our 12-bin histograms$wy| denotes the number of matches visually found to
be correct inC*

A sample result of testing the above scheme using a rotafiafi’as shown in Fig.[3.9]. The earth
mover’s distance [45] was used to compudg and ground distances were provided considering the
cyclic nature of the orientation space. Table 3.1 showsaheeg of\;, for 12 shifts of COHs computed
over al5 x 15 window. The match illustrated in Fig.[3.9] is obtained foe= 1 which indicates that the
images are related by a rotation between 15 and 30 degrees.

From the above results, we see that the COH has potential tsdx directly in correspondence
computation. We have not considered scale variation, wigighires parameterizing the COHs on scale
(or neighborhood size).

3.4 Conclusion & Limitations

A simple approach to detect retinal landmark points on Vasate has been proposed based on entropy
of the COH computed in the neighborhood of a point. Our meftrodides a set of sparse, yet max-
imally informative set of landmarks (junctions). The attiee feature of the method is that the COHs
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(a) Gradient vector method (b) Vessel tracing method (c) Proposed method

Figure 3.7: Comparison of different approaches to landrdatkction

implicitly capture the vessel branching information at adaark point including the angles between
them. In retinal images, this information remains invari@nrigid transformation. This is very useful

in establishing correspondence between sets of landmamkspabtained from images related by rigid
transformations.

Though the proposed method is fast, its applications arélinThe assumption of rigid transforma-
tion severely limits the scale and view change handling lodipas of the method. The other drawback
is the amount of information overlap between the images.ifiages with less than 40% information
overlap, establishing one to one correspondence betweeralaset of landmarks across images may
not be enough to estimate the transformation function. Alsere is no mechanism in the pipeline to
prune false correspondence which may have been estabbshwden similar looking region across im-
ages. This method cannot be adapted to multimodal retiredénmatching as the COH is sensitive to
local information and cannot establish one to one corredgoece when the information across images
is complementary. We address these limitations in the reagpter and propose a method capable of
registering both monomodal and multimodal retinal images.
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Figure 3.8: COH at a junction before and after transfornmatio

(a) Detections on a sub-image (b) Detections after rotation b6

Figure 3.9: Corresponding landmarks between an image stiéitsformed version
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Chapter 4

A Unified Registration Framework for
Monomodal and Multimodal Retinal
Images

Overview: Previously proposed methods, including our own, are séywéiraited in its ability to register im-
ages in the presence of diverse pathologies, poor quatity,ihformation overlap and other degradations. To
address these drawbacks, we propose a robust retinal imegjstration algorithm capable of handling chal-
lenging monomodal and multimodal image pairs. At the corthizf method is the novel feature detector and
descriptor scheme. The detector is based on the extracitygdurvature points on the surface of the retina using
Curvature Dispersion measure. The descriptor is based oal lprojections using radon transform which char-
acterizes local structures in an abstract sense. Thus,eend it less sensitive to pathologies and noise. Drawing
essence from the recent developments in robust estimagtods, a modified MSAC(M-estimators Sample and
Consensus) is proposed. On the whole, the minor contribsitid each stage of feature based registration scheme
presented here is of significance. We evaluate our methoidstgao recent schemes on three different datasets
which includes both monomodal and multimodal images . Thelteshow that our method is able to perform
well for poor quality and pathology affected images whilefpening on par with the existing methods on normal
images.

4.1 Introduction

Registration of multimodal retinal images aids in the diagja of various kinds of retinal diseases. Sin-
gle modality images acquired over a period of time are usegddthology tracking. Registration is also
the primary step in constructing a mosaic image of the entitiea from several narrow field images,
which aids comprehensive retinal examination. Anotherd@ylication area for registration is surgery,
both in the planning stage and during surgery for which ong§ical range information is available.
Fusion of these modalities also helps increase the anaabraioge of visual inspection, early detection
of potentially serious pathologies [46] and assess théioakhip between blood flow and the diseases
occurring on the surface of the retina [47].
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The presence of pathologies alter the appearance of tinalretiages captured via different modal-
ities in different ways. For instance, drusen which occuage related macular degeneration appears
as yellowish blobs in CFI but are not visible in FFA. Such midgspecific impact of pathologies is
a challenge for registration. Another source of difficukythe varying quality of the images to be
registered, the variability caused both by imaging coadgiand patient-dependent variations. Sample
multimodal image pairs are shown in Fig4.1 and Fig4.2 itatst these variations.

Many successful methods have been proposed in the pastefoegistering retinal images. A review
of these methods shows exceptional accuracy in terms afratigt error. However, the scope of han-
dling a wide range of pathologies is limited for most of th@maches [48]. Further, these methods fail
to register poor quality images [49]. Recently, [49] pragebs novel approach to handle poor quality
cases. Though this approach successfully handles suclypality images, the performance in terms of
accuracy is restricted. Our interest lies in finding a solufor registration that is robust to pathologies
and image quality changes without sacrificing accuracy.his paper, we propose a new method that
addresses these requirements. In the next section thetuiterspecific to retinal image registration is
presented.

(b)

Figure 4.1: Sample multimodal image pair from Dataset-IGajor Fundus Image and (b) Fluoroscein
Fundus Angiogram

4.2 Related work

Existing approaches for retinal image registration can lasstfied into two broad categories: area
based methods [1-6] and feature based methods[7-30]. Tieyspresented here is specific to retinal
images. It is not he same as literature mentioned in chaptér@a based methods operate directly
on the intensity values at a global level and choose a saitsibtilarity measure to drive the registra-
tion. These methods typically use an optimization framéweith the objective of maximizing the
similarity measure, while estimating the transformati@tween the images. Feature based methods,
on the other hand, typically follow a three step approachteatimn of significant landmarks across
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(b)

Figure 4.2: Sample image pair from Dataset-1ll (a) Redfreade and the corresponding (b) Angiogram

images, establishing correspondence using featurescesdraround landmarks and the estimation of
the transformation function using correspondences. Simeeetina can be modeled well using global
transformation models, deformable transformation modedsconsidered unnecessary.

An early example of an area based approach is that of Mettapetial [50]. They adopt a scheme
based on Measure of Match similarity criterion driven by &@énalgorithms and Simulated Annealing
optimization. In [51], Mutual Information (MI) based siraiity measure was used with simulated an-
nealing for aligning stereo and temporal images under tigidsformation. In general, feature based
approaches have gained popularity as they are more robosthoesion, illumination changes, partial
overlap between the images as well as changes in backgrauhsdi@wvpoint. Also, the texture-less,
non-vascular regions and a non-uniform contrast acrosslitied degrades the performance of area
based methods. The search space for area based methodséscexponentially with an increase in
degrees of freedom in the transformation function, whicil$e undesirable.

Feature based approaches aim at establishing accuragsmondences by extracting local descrip-
tions across images. They do not rely on the complementémyniation present in multimodal images
and can handle variations in single modality images. MetHmaked on this approach may be subdi-
vided into three classes depending on the type of featuré: U4 Intensity based (2) Vessel based
and (3) Region based features. The first class of methodrelgcal intensity measures like Sum
of squared differences (SSD), Cross-Correlation etc. &edil [52] proposed a sequential similarity
detection scheme using template matching over vesseligmscand bifurcations. This method is less
sensitive to local contrast changes than the traditiofs®es. Nagin et al [53] used edge enhancement
and correlation to extract vessels followed by maximizatbcross correlation. Markow et al [54] pro-
posed a similar method, where the blood vessel templatesxaaeted using cross correlation and edge
detection following which a correspondence is establighsdg maximization of the cross correlation
framework. Jagoe et al [55] proposed dimensionality redoodf the vessel junction feature set fol-
lowed by triangulation of points to establish matching.ZR¢hal [56] also performed vessel extraction,
followed by affine matching of symbolic representationngsiigid transformation. These methods are
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not robust to image quality degradation and pathology pieseas they rely on intensity distributions
to establish matches. Furthermore, they usually extratisstal information around a large fixed sized
window of each landmark which leads to low similarity if palihgies are present within a window in
one image. The fixed size of the window also poses a challehga the images to be registered differ
in magnification.

The second class of feature based methods rely directly enabculature information. A Hough
transform based scheme is used in [37] to detect vessetsviolh which a Bayesian estimation is
done to find the best fit parameters of a rigid transformatibn[2], the similarity weighted matrix
for all possible correspondences is computed based on igmtations of vascular centerlines and the
similarity measure is converted to a prior probability. Tresformation is estimated in a hierarchical
manner from lower order to higher order models. Vessel jansthave also been used as landmarks
in a expectation maximization framework to establish gpomdences [46]. A dual-bootstrap iterative
closest point (dual-bootstrap ICP) algorithm was intreatbi [47]. Here, starting with one or more
initial, low-order estimates of transformation (that acewate in small image regions called bootstrap
regions) an iterative refinement is done by expanding thésh@ap region. A testing phase in each
iteration assesses the need for a higher order transfanmatodel. A hybrid approach using both
vessel features as well as intensity features to estalisespondence has been proposed in [57] via a
hierarchical registration model. In [58] radial distortits corrected prior to the registration and vessel
junctions are used to create a composite image of the refilnacheme based on phase correlation
was proposed in [59]. Recently, a new monomodal registrdtiamework based on graph matching
has been proposed [60]. This is based on the observatioththaessel structures posses unigue local
signatures. STRUC-SAC estimator method is used to find reatabross images.

All the above methods rely on segmented vasculature infoomavhich may be unreliable in the case
of poor quality and severely pathology-affected imagessehmethods also tend to fail in low overlap
cases due to the lack of sufficient number of landmark mat(easpt in [60]). There is a third class
of methods which do not rely on vasculature and instead gnpgalpular local descriptors such as Scale
Invariant Feature Transform (SIFT) [32] and Speed Up Robaatures (SURF) [33]. They are designed
for monomodal images and posses several desirable pegpstch as scale invariance, illumination
invariance and noise invariance. Since they rely on gradigarmation they are not appropriate for
multimodal medical images. An attempt to address this prolis Gradient Mirror based SIFT (GM -
SIFT) [61] which is able to handle non-linear changes innsiy found in generic multimodal images.
SIFT features have been used in [6] to establish correspardillowed by bundle adjustment to
create a 3D metric reconstruction of the retinal surfacefroultiple views. In [62], Salient regions are
extracted and their descriptions are used for the matcHingpaomodal retinal images.

A variant of [47], called the General dual bootstrap ICP wesppsed in [63] for generic images,
where the faces and corners extracted at multiple scalegsa as landmarks. The strength of this
method lies in the fact that it requires only a single ac@unaitial match to drive the entire registration,
however in many cases it fails to do so due to the presence ofle variety of pathologies. Chen
et al [49] have derived a descriptor specifically for registm of poor quality retinal images which is
called a Partially Intensity Invariant Feature Descrigt®eHFD). Here, starting with Harris corners as
landmarks, the orientation information of the local neigittood is extracted to construct the descriptor.
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PIIFD is partially invariant to affine, viewpoint and intétyschanges and is reported to perform better
than the SIFT. [49]and [63] do not rely on vessel informatéomd hence perform well in low overlap
cases. However, since they rely on gradient informatiog #re not robust to pathologies.

We propose a scheme for registration of both multimodal aodomodal retinal images. The goal is
to handle poor quality and pathology affected retinal insagibile not compromising on performance
in terms accuracy, even in the case of low overlap images. pftygosed scheme follows the feature
descriptor based registration framework: landmark digtedbllowed by a 2-step matching and es-
timation of transformation. The contributions are in thdiuidual modules of this framework. The
proposed method has been evaluated against two methodbk alkir use a feature descriptor based
approach, namely, [63] and [49]. While the former gives #roe performance in terms of accuracy,
it fails on poor quality and pathology affected images. Téigel is robust to quality degradation but
trades off the performance. We next present the proposeubehand results of its evaluation in detail.

4.3 Method

The proposed registration scheme has the following steps:
e \lessel enhancement based oreaselnesmeasure.
e Landmark detection using Curvature Dispersion MeasureMLD
e Radon based descriptor computation for each landmark.
e Initial matching using a bilateral matching scheme.
e False match rejection and initial transformation estipratising variant of MSAC.
¢ Refinement and accurate localization using Normalized O@usrelation.
e Transformation model selection and final transformatidimegion using M-estimators.

e Image resampling using bicubic interpolation.

A schematic diagram of the proposed pipeline of processimgegistration is given in Fig [4.3].
Before we look at the each of these modules in detail, we igighthe contributions made: (1) A nor-
malized vesselness measure, which on the lines of scale $pagry proposed by [64], has been put
forth for vessel enhancement. The role of this step is toghaigiven image pair into a single represen-
tation thus rendering it invariant to illumination, cordst@hanges and other noise factors. (2) Extraction
of landmarks is based on a novel measure of curvature disper$3) A Radon based descriptor is
introduced for scale invariant robust matching in retimahges. This projection based local shape de-
scriptor captures abstract higher level information tlarlering the descriptor less sensitive to lesions
and noise. This helps establishing accurate correspoadsn when the lesions are in the proximity of
the landmarks. (4) A Variant of MSAC (M-estimator sample andsensus) is designed to reject false
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matches and estimate the initial transformation to a lowdemwtype (Affine). The resulting accurate
matches are refined and localized using normalized crosslaton. (6) A novel transformation model
selection scheme is introduced which exploits the inforomabn the spatial distribution of the matches.
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Figure 4.3: Block diagram of the proposed method

Through out this work only the green channel of the color iem&QFI) is considered as it provides
the maximum contrast between the vessels and the background

4.3.1 Vessel Enhancement

Irrespective of the modality, blood vessels are the mostoguiate representatives of a retinal image in
the context of registration. They are well spread and aniadiy significant structures which posses
unique local characteristics that rarely change over timiewever, extracting reliable vessel features
based on its original representation (intensity) is a elmgling task due to non-linear intensity difference
between modalities of interest (CFl and FFA), degradatiieshon-uniform illumination, poor contrast
and green channel noise. To address these issues, we bringnaigage pair ( both multimodal or
monomodal images) into a single representation by enhgvessel like structures and suppressing the
background. On the lines of scale space theory, Lindebelipd®posed a generalized ridge strength
measure which was successfully used to enhance blood sdssetodeling the vasculature as ridges.
In this work, we further the generalized measure to obtaieteebrepresentation of the vasculature. We
use the ternvesselnesmeasure in accordance with the literature [40], to refeidge strength in the
present context.

We enhance the image as follows: Given an im#gg wherex = {z, y}, find its scale space repre-
sentation and compute vesselness measure at everyspoiraximize this measure across scales.
The imagd and its coordinateg = {z, y}, when embedded in 3D, is viewed as a topographical surface
in which the vessels appear as trenches/ridges. These adralacterized based on eigen analysis of
the Hessian matri{ - surface curvature descriptor[31]. The four quantitiecurfvature descriptors
are eigen valuea;,\, (principle curvatures) wherg&( > ;) and their respective eigen vectaers vs.
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() (d)

Figure 4.4: (a) Color Fundus Image (b) Fluoroscein Angiogeand (c)-(d) their respective vesselness
measures. The sub-figures show a zoomed view.

In [64], the vesselness is computed as a measure of ridgetirbased on the principle curvatures
and )., which is given by

Ry(x,0) =(A{(0) — A5(0))° (4.1)

whereR)y is referred to as thequare of they - normalized square of principle curvature difference

This measure gives strong response to elongated strudtaréise vessels, while minimizing the
affect of blob like structures [64]. This important progeensures that the affect of small lesions in
the retinal image are minimized. Due to the square term orciple curvatures, the dynamic range of
the response is quite high. For extracting meaningful featthe range of the response is constrained
by computing{/Rx(x, 7). This operation remaps the responses into a narrow rangesffeats the
structural discriminability of the extracted features.

In order to overcome this drawback, we compute the modifisdelaess measure as

_ M) ~ M(0)]

6 o) = 3o+ 2300)

4.2)

Unlike the original formulation the entire numerator is squared but only its absolute value is used.
This ensures that the responses are not mapped into a braager The denominator in this expression
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acts as a normalization factor, thus mapping the respotseainarrow range compensating for the in-
dividual squared terms. Our experiments reva@ll; increase in the number of accurate initial matches
using the modified vesselness measure. This means thatthepeng of responses into a narrow range
maintains good structural discriminability for the purpaxf feature extraction.

The maximal response over multiple scales of the proposeskimess measufeenhances the vessel
like structures on the topography.

R(x) = argmax,(R(0)) (4.3)

The orientation informatiol®  is also computed as the principle curvature minima diretig) cor-
responding to vesselness measir@n multiple scales.The vesselness representafibn @) thus
obtained is used for detecting landmarks as well as derieoicag descriptions.

Through out the literature, many vesselness measures kavedooposed as an intermediate step to
achieve segmentation [38], [40]. These measures captgselstructures with high discriminability
which is apt for segmentation. For multimodal registratibigh discriminability in vasculature yields
less number of matches across images due to the compleménfanmation across images. In this
framework, we use the vesselness only to obtain an abstractugal representation of the vasculature,
i.e. to boost long tubular structures and suppress the bawkgd. The goal here is to achieve an
abstract vasculature representation where both the niedadire represented as closely as possible,
See Fig.[4.4].

4.3.2 Landmark Detection

Landmarks are anatomically significant, visually salielstinct features in an image that are identifi-
able and comparable across images. Traditional featustllragistration schemes use vessel junctions
and cross-over points as landmarks. However, since the mnodwverlap between the images is not
known apriori, using just vessel junctions or cross-ovenisomay not yield enough common land-
marks for registering an image pair. Also, due to the complaiary information and contrast variations
in multimodal images, these traditional landmarks(vegsettion and cross-over points) are seldom
sufficient. A dense set of landmarks is needed to addresisshis which is both meaningful(present on
vasculature) and available in plenty.

As mentioned previously, in the context of retinal imageisegtion, vessel structures are the most
important representatives of the retinal image. Thoughtréditional landmarks reasonably describe
how the vasculature is distributed on the surface of theagthey are inadequate for the task of reg-
istering images with large variability and low overlapo characterize the vasculature better, we seek
to find a dense set of landmarks which indicate subtle chaimgree vessel profile, primarily how the
vessel bends or changes orientatidinese landmarks are both meaningful and available inyolémti-
dentally, the vessel junctions and cross-over points wbald subset of such landmarks, See Fig.[4.9].
On the topographic surface of the retinal image, introducelde previous chapter, these subtle changes
map directly to discrepancies in the local curvature odagohs [65]. The landmarks are detected by
identifying points with high discrepancies using a disjmrsneasure over the local curvature orienta-
tion histogram, we refer to this &urvature Dispersion Measure

38



We want the landmarks to characterize only the vasculatur@,so computing curvature dispersion
measure over the entire image is unnecessary. For this voglirte a candidate selection(CS) stage
before the extraction of landmarks. This stage identifigsisie points on the vasculature reducing
the overhead of computing landmarks through out the imagdesasures that the following important
attributes are incorporated.

e They are widely spread or distributed across the retinal gmawide spread ensures that there
are enough landmarks for matching even if the overlap betwee images is small. Also, this
attribute is crucial during the initial transformation iestion stage as they form supports while
fitting an affine transformation model across images, Seesdd.3.5].

e They have maximum presence on visually and anatomicalhfisignt structures such as vascu-
lature and minimum presence on pathologigébis ensures that the same types of landmarks are
largely visible in different modalities and hence aid inaddishing correspondences.

From the set of points extracted using the CS stage, the larkdnare detected by computing the
curvature dispersion measure. A schematic representatigirown in fig.[4.5].

Vessel Enhancement
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Figure 4.5: A schematic showing different stages in Vesséldicement and Landmark Detection.

The input to the landmark detection stage is the originalgiené(x), the vessel enhanced image
and its curvature orientation mapg. f(x) is used for the candidate selection stage whiland©
are used to compute the curvature dispersion measure. Wextescribe the candidate selection stage
which has two modules, CS-l and CS-II.

In the first stage of candidate selection CS-I, a rough stratmapPg, is to be estimated, which can
be interpreted as a coarse level vessel segmentation. Bhhaye is to obtain a structural representation
of the vasculature while suppressing blob like pathologdiiero Aneurysms. First, the background is
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estimated using a median filter with a large window sizefglty 31x31). The median filter gives a
coarse representation of the background and minimizes#sepce of blob like structures in the image.
We then subtract the background from the original imagettinehe vasculature. The vessel structures
have negative values in this background subtracted infag€elhey are then shifted to positive values
by subtracting frommax( fi4) to get pre-processed imagg The background has uniform low values
in f, while the vessels occupy the higher intensity levels. Simeajority (90%) of the pixels are in
the background (lower range), a rough structural vesselimaptained by extracting the ta@% of

the fs via simply thresholding. Next, morphological operatiome ased to reject isolated structures
smaller than a fixed radius. The median filtering used in theghwd minimizes the influence of lesions
by suppressing them as shown in fig.[4.6].

fog(x) = f(x) — median filter(f(x)). (4.4)
fs =l max(fyg(x)) = fog(x) | (4.5)
Ppy(x) = fs > 1 (4.6)

t1 is a threshold selected as 10%ofix (fs).

(o

Figure 4.6: (a) shows the structural mBp, against (b) its corresponding patch from the green channel
of CFI. The lesions in this image are highlighted in red.

In CS-ll stage, a candidate set of high curvature pointseleeted using a blob detector. High curva-
ture points on the topographic surface directly relatesgoatinuities in the image which are salient.
These high curvature points are a superset of the landmatkstdd through the curvature dispersion
measure (described next). This means that by restrictegamputation of curvature dispersion mea-
sure only to high curvature points, we can further reducetimeputational burden.

The Determinant of Hessian(DOH) is a well known blob detef@d], that can extract high curvature
points from an image. The DOH ¢fis computed at multiple scales and non-maximal suppression
used to extract the desired 9&%,,,see fig.[4.7].

det Hp(x,0) = 0 (Lyy Ly — Liy) = %A1 \e) (4.7)

where L is the gaussian convolved image ahg, represents the second derivative computed in the
direction ofa.
Ppp(x) = argmaxlocal y ) (det Hy(x,0)). (4.8)
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Figure 4.7: Image showing the high curvature poiRts, detected by the determinant of hessian oper-
ator.

Figure 4.8: Image showing the selected candid&gsbtained though the CS stage. The candidates
are maximally present on the vasculature.

A final candidate set is obtained &5,=Pp;, N Pgy, see fig.[4.8]. Pp;, holds the rough structural
binary map andPp, is a set of high curvature points. The candidate/3gt, which are the common
set of points extracted from CS-l and CS-Il, ensures that#melidates are wide spread and maximally
present on the vasculature while minimizing their presemcbackground and pathologies. Next, a set
of landmarks are extracted frof).; following a method we presented in [65].
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When considering as a topographic surface, the direction of the principleimmér©  of the vessels
are oriented parallel to each other. The discrepancy indbal lorientation in the neighborhood of
Or indicates the subtle change in vessel profile, i.e its dorcind width. Based on this observation, a
local dispersion measure is defined and used to obtain latkdrfram a curvature orientation histogram
(COH).

The method proposed here is different from the one propasdei previous chapter, primarily in
how the landmarks are defined. Here, we seek a dense set ofidaksl on the vasculature and not
just junctions and cross-over points. In the previous @afite curvature orientation histogram is con-
structed by simply binning the curvature orientations. Berte, we modify the histogram construction
by weighting each bin with the local vesselness measuessociated with each orientation. This mod-
ification helps characterize subtle changes in the vesséilgpand not just vessel junction / cross-over
points.

If & C ©R on the neighborhoodV,of every candidate point € P, the local COH, is constructed
as

hp(Ok) = (n—]\?) T (4.9)

Where 0, refers tof binned intok bins, ng, is the no. of pixels with respect to the orientation
0y, M the total no. of pixels in the neighborhoad, andr; is sum of the local vesselness measure
corresponding td, .

The dispersion measure mapis the entropy of the COH given by

1
hp(ek)

The value ofE(p) will be high when the vesselnessis significant and the orientations ©fz within
N,, do not align, indicating the change in vessel profile whighaur desired landmarks. We derive the
desired set of landmarkig from E(p) through non-maximal suppression.

The above method yields well localized landmarks charaeterby the discrepancies in the local
curvature orientations. The candidate selection stegsayitical role in both localization of landmarks
as well as suppressing candidates from pathology affectddhamogeneous regions. The CS-Il stage
helps in localization while the CS-I stage helps minimizedffect of pathology affected areas and other
homogeneous regions on landmark detection. Overall thlmarks obtained though this process are
maximimally present on the vasculature that correspontiéahanges in the local vessel orientation,
which in turn implicitly indicates the presence of locallpigue vessel profile. This observation is
consistent with the results shown in Fig.[4.9]. In compamisthe Harris corner detector used in [49] is
sensitive to pathology affected and non vascular area€][4-Hence, a majority of these points may not
have consistent matches across modalities.

E(p) =) hy(6))log (4.10)
k=1

4.3.3 Radon based Descriptor

Computation of a descriptor in general can be seen as anmttermepresent a signal or image data
in a compact format while retaining relevant informatiom. addition to compact representation, it is
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Figure 4.9: Detected landmarks, using the Curvature Dispemeasure.

Figure 4.10: Results of Harris corner detector on CFlI.

also important for a descriptor to be robust to geometric gimatometric changes that occur across
images. In the case of retinal images, we seek to find a comgaresentation which is less sensitive to
pathologies while still holding enough discriminability ¢stablish correspondence across multimodal
pairs. Even if such a representation is obtained, it is gsal@atil the notion of scale is addressed. By
scale we refer to the size of the window used for each landaeeiktract the descriptor. We provide a
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novel solution to handle scale changes across multimotiahlénages. Next, we motivate and propose
a new robust descriptor for retinal image matching.

Gradient based descriptors for retinal landmarks have peenlar [61] [49]. However, they are
adversely affected by the presence of lesions in the nerpbbd of a landmark [48]. Also the window
size is influenced by the scale at which the landmarks areteteand in multimodal retinal images
two similar points/regions may not correspond to the sarakeséience, we propose a projection based
method termed the Radon descriptor (RD) to address thasesisEhe radon descriptor represents infor-
mation around each landmark point in a compact form whiladpaninfluenced by pathologies. Instead
of relying on scale to determine the windows size, for eanodn@ark, we compute multiple descriptors
for varying window sizes. This approach of having multipksdriptions for a single landmark point is
computationally feasible because the descriptor is coctstd using simple projections.

Radon transform , a well known shape descriptor [66], candsel o capture the local structures
around each landmark point. The Radon transform of a fumgtie, y) denoted byy(s, 0) is given by

g(s,0) = /OO /OO f(x,y)d (zcosl + ysinh — s) dxdy, (4.12)

with —oo < s < 00, 0 < 0 < 7. wheres is the distance from the origin arids the angle of projection.
Rotating a function by an angt results in a shift in the projection (Radon) domainéy

Rfy(r,¢+00) = g(s,0 + 6o) (4.12)

whereR is the transform operator anfg(r, ), is the representation of the functibm polar co-ordinate
frame. Since we wish to derive a descriptor that is rotatimariant, the axis of the RT is aligned to the
dominant local direction at a landmark point prior to thealiggor derivation. We next explain this in
detail.

The inputs to this stage are the landmafksand the vesselness representatiorand © . For
each landmark point, a patch of si&W is extracted on the vessel enhanced im&gd he principle
minima direction® p within the patch are binned into 18 equally spaced bins. Thedrresponding
to max(Or) is taken as the dominant orientation. The patch is thenedtat align to this dominant
direction. Starting with the dominant orientation, the Badransform (projection) is computed for
uniform angular intervals. The individual projection ptes are normalized and appended as the feature
descriptor for the given landmark. The resulting Radon digiss RD,, (w refers to the window size)
at locationp; is given as

RD.(pi) = {96, 905 905 -----90,, } (4.13)

Here,n represents the angular resolution and its choice is aarfactor. Ifn is high, the descriptor
can be too fine grained and hence lose out on robustness. flimag inot allow for matching across
regions between multimodal images. On the other hand, aloan lead to the descriptor not capturing
the local structure well, losing discriminative power. Thadance lies in the selection ef for all the
experiments presented in this work we wse 12.

The next important step is to address the issue of window Biaeeach landmark window size refers
to the size of the local neighborhood around which the desgris constructed. In general computer
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vision techniques like SIFT [32] and SURF [33] the scale iedained at the landmark detection stage.
The characteristic scate. of every landmark is determined through the principles afesspace theory
proposed by [64] and the descriptor is constructed from alavirs size obxo,. around each landmark.

This method of scale selection cannot be employed for mallshimages. The characteristic scale of
the two corresponding landmarks between images may notebeatine due to the change in modality.
To address this issue, for each landmark we compute mullipéeriptors for varying window sizes
and perform matching as if they belong to different landmmarkhis means that we handle local scale
differences at the descriptor level instead of the detdet@l. The descriptors are computed for multiple
window sizes as follows.

RD(p;) = {RDuy1, RDy3, RDys......RDy } (4.14)

wherewl > w2 > w3 > wm. for each landmarlp;, m descriptors of varying window sizes are
extracted. The descriptors thus obtained are all is res@@&0 using bilinear interpolation.

4.3.4 Matching based on Descriptors

After the computation of descriptors, the next importaagstfor feature based registration is to obtain
correspondence between the two images using appropriathimgstrategy. In our approach, Bilateral
matching technique [49] is used to ensure one to one comesgpce. For two sets of landmarks and
Qo with descriptorsD,, and D, respectively, a set of corresponder@g; is obtained by finding the
best matches by minimizing the Euclidean distance betwedéscriptors in the fixed image, to the
moving imageD,. Similarly, a second s&f,» is obtained by starting from the moving image to fixed
image. The final correspondence is given@y = Cj;1 N Cyre. If matching is only one way, one to
one correspondence cannot be guaranteed.

The nearest neighbor in the descriptor space is obtainestitmasEuclidean distance (jf, o), with
0 closest) between points. This distance can be convertechisimilarity measure (if0, 1], with 1
closest) by a monotonic decreasing function. In this pagerchoose the following similarity measure
known as Euclidean-normalized similarity [67] given by

Similarity(D,,Dy) = ¢~ Pr—Pal (4.15)

Given the overhead of computing multiple descriptors fahelandmark, the distance can be com-
puted in a single operation as

ID, — Dyl = /ID, |2 + [Dy||? -~ 2D,D, (4.16)

The result of bilateral matching on a sample image pair isvshia Fig. [4.11].
We restrict the number of initial correspondencésto N based on the similarity measure, where
N = 300.
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Figure 4.11: Result of Bilateral Matching showing Corraggence set’;

4.3.5 Initial transformation estimation and outlier rejection using modified MSAC

After the initial matching step, we now havg set of correspondences which are much more than the
Degrees of freedom(DOF) in the transformation model. Thasformation models, described in the
later sections, like second order polynomial transformela®F-12 , bilinear Transform have DOF-8.
With the increase in the DOF, the predictability outsiderttgion of fitting decreases [46]. To overcome
this behavior we restrict the initial transformation motteh lower order one, i.e Affine. After outlier
rejection and further localization of landmarks, the higheder transformations are estimated as the
final transformation. This assumption is valid as the parsype effects in the images are minor , i.e the
retina being imaged is roughly parallel to the image plarghefcamera [2].

Initial matches established using any feature based g¢scmethod do not guarantee 100% accurate
correspondence as matching is performed around a smahlbwigoods around landmarks, the false
matches are called outliers. In computer vision, RANSAQ(@Ren Sample and Consensus) is a popular
parameter estimation technique if the data is corruptediiiees. RANSAC is a Hypothesis and Verify
scheme, which generates the hypothesis from a small saet@ad validates its consistency across the
entire set using a cost function. The hypothesis which mirémthe overall cost function of the entire
set yields the optimal parameters. Though, the method isrgerthe modifications we propose are of
significance.

Hypothesis Generation

In RANSAC, from the initial set”; with N number of correspondences, a Minimal Sample Set(MSS)
is randomly selected and the model parameters are estiroalgdrom the MSS. The MSS is defined
by the minimum number of correspondences required to etdithe parameters. For affine case the
cardinality of MSS is 3. The selection of MSS are random, Whitans, all the correspondences are
given equal importance. In the current scenario, the magchiores computed from bilateral matching
is a reasonable measure to grade the correspondence agctrdiieir quality. So instead of randomly
selecting points from the entire correspondence set, viatetbie hypothesis generation to a few corre-
spondences which have highest matching scores, but usattheset to evaluate the cost function. By
this we assume that the correspondences with high matchorgsare less likely to be contaminated.
So this can be a called semi randomized algorithm. The nuofldep quality correspondencéds, are
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selected as

N it N <o
Ty = H(N) :{ 9+ 00N if N <

whered is constant, which is set to 40. The functiéf(-) exhibits a linear behavior until and trans-
forms into a monotonically increasing function beyond ftCl,, represents the top quality match set
with minimum outlier percentage, three correspondingspaiie selected at random from this set to cre-
ate M. Given the fact that the perspective effect in retinal insaiganinor, additional constrains can be
imposed on such selection even before the hypothesis isajede From any three randomly selected
corresponding pairs, a triangle can be constructed in bothing and fixed image. If the points roughly
correspond to each other then the two triangle are similasis dan be easily computed using the Angle-
Angle Similar triangle criteria with a minimum overhead. | e points which obey this criteria are
pooled intoM; which is our final minimal sample set.

(4.17)

Verification

Verification is the process of estimating the goodness offfthe generated hypothesis to the entire
sample set. The elements consistent with the generatedhegi® are called the Consensus Set(CS).
The goodness of fit is expressed in terms of cost functioniwisitco be minimized/maximized over the
entire dataset. The original RANSAC framework uses theinalitly of the consensus set as the cost
function to be maximized. [68] provided an alternative dosiction on the lines of M-estimators,and
dubbed this method as MSAC( M-estimator Sample and ConsgnButhis work, we adopt this cost
function as the criteria to be minimized. The cost functiof' is given by

CF=5.p(e?) wherei=1..n (4.18)

Wheree; is the error on individual points and) is

2 2
9 e’ ifer <6
— 4.19
p(e”) { 6 otherwise ( )

Assuming that the elements are affected by gaussian noisg é6fcan be computed as

5= Jn\/Fxfgl (Pr(inliers)) (4.20)

WhereFX‘%1 is the inverse cumulative distribution associated withstjuared distribution of the ran-
dom variableZ?(j—;P and Pr(inliers) is the probability of inliers. See [69] for implementation
details.

The hypothesis and verification steps are iterated consélgumtil the stopping criterion is achieved.
The stopping criterion is given by

~ loge
Siter = [m} (4.22)
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where(1 — ¢) is the probability of picking an MSS from/; with at least a single outlier andis the
threshold.

The new correspondence set(s and the affine parameters estimated4as The moving image
and its Vessel enhanced image are transformed into a newlinat® system based on the estimated
parameterd. This transformation process is necessary for the accloeddization of landmarks in the
next step. As a consequence of this operation, the scatratiife between moving and fixed image is
removed.

Figure 4.12: True correspondence Setafter outlier rejection.

4.3.6 Refinement & localization of correspondences

Given the accurate correspondence(sgand the estimated initial(affine) transformatidnthe refine-
ment step extracts all the possible correspondences fremritinal landmark sef, and@, which fit
the estimated transformation parameters. These includiriarks which failed to find matches across
images at the initial matching stage.

q; = argmingec, p,) lg — Apill (4.22)

Cs = |lg; — pil| < disty (4.23)

The set of new correspondences are givelhyn P; = {p;} € Py andQs = {q;} € Qo. dist; is a
distance threshold, hetést; = 4.

The estimation of higher order transformations are seesit localization errors. To minimize the
error in the final transformation estimation step, it is resaey to localize the correspondence Get
We use normalized cross correlation (NCC) in the local neighood of each landmark i@, to achieve
localization. NCC is computed over the vessel enhancedanraggead of the intensity, which is given
by.

1 p,y) —p)glx —u,y—v)—¢q
NOC(u) — Ly 0 P~y ) 020
o p%q
q; = argmaxy,y NCC(u,v) (4.25)

wherep & ¢ are the corresponding landmarks& g are the mean and, v represent a local neigh-
borhood around each landmarkis the number of pixels im andv.
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Figure 4.13: Result after refinement and localization.

4.3.7 Model selection and transformation estimation

[2] has shown that a second order transformation is the nppsbariate model to register retinal images
given their curved nature.

[56] _ [ 011 612 013 014 015 06 (4.26)

2
(] 021 Oz O3 024 05 0O x
)

1

The initial criteria for the model selection are the no. ofrespondences in séts, i.e |Cs|. If the
number of correspondences is less than the parameters tstibvated a lower order transformation
model is selected. The lower order transformations areea#imd bilinear transforms. The bilinear
transform is given by

xry
[ 56] _ [911 tha 013 014 ] x (4.27)
(] o1 O o3 0Oy Yy
1
which is
X' = ¢X (4.28)

Cs5 holds the best set of localized correspondences that istasestimate the final transformation.
The spatial spread of these correspondences is a vitalr factestimating the final transformation.
Even if the no. of correspondences are greater than the numfiparameters to be estimated, in few
cases(especially if the information overlap between treges is low) dense set of correspondences are
established in small regions. The lack of well spread cpordences leads to registration error. This
is called correspondence cluttering. In such cases, itdvbalappropriate to fall back to lower order
transformations to minimize the overall registration erro

To select the appropriate transformation model, we proposgatial dispersion measure which es-
timates the spread of these established corresponderic&s<1C;(P;) and X is the centroid of the
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correspondences. The euclidean distances betweex el X are binned into 18 equally spaced his-
tograms. The entropy score of this histogram gives theapiisipersion of the correspondences. Based
on the spatial dispersion of correspondences and the nuofilEnrrespondences the transformation
model is selected.

Given the model, we now estimate the transformation. Thesfeamation estimation using least
squares is sensitive to errors in the localization of cpoadences. This issue is addressed by using
robust estimation techniques. One of the most popular ofagsese estimators are M-estimators. The
general form for parameter estimation using M-estimatgven by

¢ = argming (Z (X" — ¢X||\a)> (4.29)

i=1

wherep is the Bi-weighted loss function [2] andis the scale estimate. Since no closed form solution
exists for this loss function, it is implemented using Itaely re-weighted Least squares as given in [2].
After the estimation of the final transformation, the movinmage is resampled into the coordinates of
the fixed image using bicubic interpolation.

4.4 Discussion & Results

We evaluate the performance of our method on three diffetatatsets. Dataset | consists of 126 multi-
modal image pairs(CFl and FFA), acquired from same numbgatiénts. Dataset Il has 20 monomodal
image pairs(CFl images) and Dataset Il consists of 18 ehglhg image pairs(both monomodal and
multimodal which includes CFI, FFA and Redfree images)eméd from various internet sources.
These datasets have a wide variety of pathologies and thgesrexhibit various acquisition artifacts
like non-uniform illumination, motion blur etc. The restin varies from 256x256 to 1204x1200 and
angular resolution between 380°. The lowest overlap case in the dataset is 30% and the highest
rotation angle is 25 The images have been obtained from Zeiss fundus camera.

We evaluate the proposed method against two other meth@BI@P [70] and PIIFD [49]. GDBICP
was chosen for comparison as out it outperforms most of tistirey algorithms and has become a stan-
dard for retinal image registration. And PIIFD was sele@sdt is the only method which is specifically
tailored to handle poor quality images. We evaluate our otktgainst these two schemes on three dif-
ferent datasets which includes both monomodal and muli@himdages . The results show that our
method is able to perform well for poor quality and patholedfected images while performing on par
with the existing methods on normal images.

4.4.1 Implementation Details and Parameter Settings

The proposed method has been implemented in Matlab 7.11AMib 64x processor. GDBICP al-
gorithm is available as an executable file written in C++ &f][7The experiments are validated in
“-complete” mode, which enables it to register difficult isaiAnother optional parameter is the trans-
formation model, all the given models have been tried exihaalg from higher to lower order models
only if registration failed. Matlab code for PIIFD has bedrianed from the authors and the parameters
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have been set as per the author’s guidelines. For the pugfida& evaluation, the number of interest
points detected by both the methods are made approximajabl(€00-800 per image). In [49] it has
been shown that PIIFD performs better than SIFT and so it badeen included in our validation
process.

For each image pair in Dataset-1, the proposed method tdl@ms &0-80 Sec where as the PIIFD
takes 40-45 Sec. The increase in time is due to the landméektin stage and a more elaborate initial
transformation estimation scheme incorporated in our ésaark. It has been observed that the Harris
corners detected in PIIFD are well spread across the imaf#e the point features detected by our
method are confined to vessel structures. However the carerpoorly localized across images if
the scale difference between the images-is3. In next stage, vessels are enhanced using multiscale
hessian computation over 5 scales= {1,1.5,2,2.5,3}. The window size for the scale invariant
computation of the radon descriptords= {41,49,51, 71,85} and the relation between the window
sizes isw;+1 = 1.2w;. The valuel.2 was experimentally determined based on the the discririityab
of the descriptor with increase in the scale.

4.4.2 Evaluation

Appropriate evaluation methodology is critical for untddsand accurate qualification of the perfor-
mance of various registration schemes. Unfortunately fmdéis images no benchmark dataset or
ground truth exist. This has prompted researchers to de\edternative comparison schemes, one
such popular scheme is Centerline Measurement Error(CIHe vessel centerlines are traced for the
pair of unregistered images and the centerline is densetplea. The sampled points are then trans-
formed from the moving image to the fixed image based on thimatd transform. The euclidean
distance between the closest traced point in the fixed imag¢he transformed points in the registered
image is taken as the sample error. The median of all the saerpbrs is the final Centerline mea-
surement error(CME). We use a similar strategy to validateperformance but report on the lines of
mean centerline measurement error(M-CME), here the \&aseltraced on the registered pair instead
of the original images. This modification considers the freglmpling step in section[ 4.3.6] also for
validation purpose. The Vessel tracer is available as aoutakle at [70]. The CME criteria is used
to evaluate the performance of Dataset 1&Il. Since detgctive vessel centerline of the poor quality
images in dataset Il is a challenging task, the performésealidated through visual inspection.

Based on the standard validation process of retinal regjisir schemes [49], we examine our method
on the lines of rotation invariance, scale handling cajiadsiland overlap criteria. In all the experiments
presented below, the registration is considered to haledf#ithe CME error is above 0.96. For all
practical purposes, the failed cases are mapped to CMEdadrior

Rotational Invariance test

The goal of this test is to examine the rotational invariacegabilities of the proposed descriptor. The
M-CME error is calculated between moving image and fixed ierlayg rotating the moving image from
0-180 at 10, between 10 multimodal pairs. The results show M-CME esalinost constant{.18)

for all the rotated angles of the moving image, demonsiyatie rotational invariance of the proposed
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Scale Invariance Test
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Figure 4.14: Scale test: Mean centerline measurement eiedive to the scale factor.

descriptor. The slight variation in M-CME error is due to theadom nature of the initial transformation
estimation step.

Scale Invariance test

To demonstrate the scale invariance of the descriptor, MEGdcomputed on the registered pair while
the scale of the moving image is increased from 1 to 2.5 inssté.1. The results show that our

method is scale invariant up to scale factor of 1.6. In clihjoractices the scale differences are below
1.5 [22], so the invariance factor is adequate.

Overlap Test

Overlap is the percentage of common area between the megigiair. Five pairs with varying percent-
age of overlap area has been used to validate this test. thredl datasets, the minimum percentage of
overlap is 35%. Images of varying degrees of overlap ardeddeom 10-20 percent using GIMP [71].
The results show that the M-CME error quickly falls after 30R4FD has been shown to perform well
till 20%, it has been observed that the number of cornersctimteare well spread across the image
which helps cope with the low percentage of overlap if theudangresolution of the image remains the
same.

4.4.3 General Discussion

In our previous publication [48], after the computation @flon descriptor, a FFT (Fast Fourier Trans-
form) step was included in the descriptor computation wkiels used for better discriminability and as
a dimentionality reduction step. The FFT step is excludgtiémpresent study as more number of initial
matches are obtained per image without it. Though the prelsscriptor has less discriminating capa-
bilities without the FFT step, after the initial matchingst the robust parameter estimation technique
can be relied upon to reject the false matches. The key wautd balance the discriminability of the
descriptor between corresponding and non correspondiing Ipathe selecting appropriate number of

52



Overlap Test
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Figure 4.15: Overlap test: Mean centerline measuremeait exiative to the percentage of overlap.

angular resolutions. The length of the PIIFD descriptora8 &nd radon transform yields a descriptor
of length 720.

On the lines of PCA-SIFT [72] a dimensionality reductionpster the proposed descriptor was stud-
ied. About 500 corresponding image patches were manualkegdifor PCA based dimensionality, the
method is similar to eigen faces [73]. As a result, the nunolbeccurate correspondences decreased by
30%. This tends to increase registration error in poor tadathology effected and low overlap cases.
In the matching step, a two way matching technique has bemptedi which avoids the consequence of
hard thresholding based on similarity, thus identifyingque matches even with low similarity, espe-
cially in the presence of lesions.

One of the drawbacks of our method is that it cannot handl&asireversal changes in images. In
general retinal images, the vessels are either dark onthirégtkground or vice-versa. In very rare cases,
see Fig.[4.19], the vessels are both bright and dark at time $eme and the registration fails. But in
practical scenarios this is of little interest.

4.4.4 Results

Based on the M-CME criteria described in the above sectivaradl performance on two datasets is
given below.

Table 4.1: Mean Centerline Measurement Error

Dataset GDBICP PIIFD#1 our Method

Dataset-1(126 pairs) 0.845 0.956 0.85838
Dataset-11(20 pairs) 0.823 0.906 0:84.8

The success of registration can be categorized into twaygdéss: accurate and acceptable. Pairs
registered with 0.90 M-CME error are categorized as aceuzaatl acceptable ones are between 0.9-
0.96. Errors above 0.96 are considered as failed cases.

Performance on dataset-lll has been evaluated based aal inspection. Three volunteers have
ranked each registered pair for all three methods. It has barefully analyzed by viewing the reg-
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Table 4.2: Overall Pairs Registered

Method Dataset Pairs Registered  Category  # of pairs
GDBICP  Dataset 78 Accurate 8
Acceptable -
Accurate 27
PIIFD D -1 4
ataset 9 Acceptable 67
Our method Dataset-| 112 Accurate 84
Acceptable 28
GDBICP  Dataset-|| 18 Accurate 18
Acceptable -
PIIFD Dataset-|| 20 Accurate 6
Acceptable 14
Accurate 11
Our method Dataset-I 20
Acceptable 9

istered mosaic in checked-board view. The continuity okeésin this view is the prime cue for this
inspection.

Table 4.3: Dataset-Ill Evaluation

Method Failure Success

GDBICP 14 4
PIIFD 6 12
Our method 4 14

Out of the 13 images registered between PIIFD and our mefPideD performed better in 3 cases
where as our method performed well in 10 cases. The resulterea different datasets are given in
Fig.[4.16], [4.17],[ 4.18] and the failed cases are showRig[4.19].

From the results presented in this section, it can be irdetihat GDBICP well, but comparatively
for only a subset of the Dataset which contain normal imagBse method fails if a single initial
point correspondence cannot be established. This is a carsg@mario in poor quality images. PIIFD
performs better for poor quality and pathology affectedgasabut the accuracy is compromised due to
the nature of final transformation estimation step in thefeork. Our method shows better registration
capabilities in terms of both accuracy and registering pp@lity and pathology affected images.
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Figure 4.16: Registration of multimodal images from datassing the proposed method.

Figure 4.17: Registration of monomodal images from dathsesting the proposed method
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Figure 4.18: Registration of challenging image pairs fraatadet Il|
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Figure 4.19: Failed cases due to the contrast reversal iimudal image pairs
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Chapter 5

Conclusion and Futurework
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5.1 Conclusion

The human retina can be affected by a variety of pathologkesGlaucoma, Diabetic Retinopathy,
Age Related Macular degeneration etc. In clinical scesatiioe presence of these diseases and poor
quality of the images makes the task of feature based ratiesirchallenging. To address these issues
a novel feature based registration scheme has been ineddécset of salient landmarks are detected
based on the curvature changes on the topographic surfate oétina using Curvature Dispersion
Measure. A local descriptor based on Radon transform has fre@osed for robust matching across
retinal images. The proposed method uses curvature(t¢dsged enhancement to boost the vessel
structures and Radon transform based representation te inadvariant to geometric changes. The
attractive feature of this descriptor is its robustnesshépresence of lesions while still retaining the
required structural information. A modified MSAC(M-estitoes Sample and Consensus) has been
proposed for pruning false correspondence and estimaimgnttial transformation function. On the
whole, the minor contributions at each stage of featureasgistration scheme presented here is of
significance. We evaluated our method against two recemnses on three different datasets which
includes both monomodal and multimodal images. The reshtigv that our method is able to perform
well for poor quality and pathology affected images whilefpaming on par with the existing methods
on normal images.

5.2 Futurework

Possible extension to this work includes (i) Optimizatidnhe proposed method in terms of computa-
tional efficiency. One such promising direction is to usetimelsolution optimization procedures. (ii)
Multiscale filtering is the most computationally expenspaat of the algorithm. Integral Image based
representation may be pursued for approximating the fi#tgpanses. (iii) An extension to 3D medical
data would be an interesting direction to explore. (iv) Beabased registration algorithms are in gen-
eral easily parallelized for real-time intervention sysée A GPU based implementation would yield
rapid speeds for such systems. (iv) The dimension of thenrdéscriptor is 720 long, dimensionality
reduction methods beyond PCA may yield a much more compactigdon. (V) The proposed method
may be generalized to a wide varieties of modalities if thagformation model selection is automated.
(vi) Extension of registration algorithms to Superresolut Mosaicing, Fusion, Vessel Segmentation,
automatic pathology detection are still an active area sdaech.
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Chapter 6

Appendix |

In this section we show additional retinal image registratiesults for the purpose of visual inspection.
We show the results using the standard checkerboard patidrine primary cues for visually evaluating
the result is to trace the vessel structures through thekehieaard. In this view the FFA images are

inverted for the purpose of easy interpretation.

6.1 Registration of Multimodal Retinal Images- DataSet-|
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Figure 6.3: Image showing registration of CFI/FFA.
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Figure 6.4:

Figure 6.6: Image showing registration of CFI/FFA.
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Figure 6.9: Image showing registration of CFI/FFA.
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Figure 6.12: Image showing registration of CFI/FFA.
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Figure 6.13: Color Fundus Image (CFI) Figure 6.14: Fluroscein Fundus Angiogram FFA)

Figure 6.15: Image showing registration of CFI/FFA.
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Figure 6.18: Image showing registration of CFI/FFA.
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Figure 6.19: Color Fundus Image (CFl) Figure 6.20: Fluroscein Fundus Angiogram FFA)

Figure 6.21: Image showing registration of CFI/FFA.
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Figure 6.22: Color Fundus Image (CFl)

Figure 6.24: Image showing registration of CFI/FFA.
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Figure 6.25: Color Fundus Image (CFl)

Figure 6.27: Image showing registration of CFI/FFA.
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6.2 Registration of Retinal Images- DataSet-ll|
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Figure 6.30: Image shozvllng registration of CFI/FFA.



Figure 6.31: Color Fundus Image (CFI) Figure 6.32: Fluroscein Fundus Angiogram FFA)

Figure 6.33: Image showing registration of CFI/FFA.



Figure 6.34: Color Fundus Image (CFI) Figure 6.35: Fluroscein Fundus Angiogram FFA)

Figure 6.36: Image showing registration of CFI/FFA.
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Figure 6.37: Color Fundus Image (CFl) Figure 6.38: Fluroscein Fundus Angiogram FFA)

Figure 6.39: Image showing registration of CFI/FFA.
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Figure 6.40: Color Fundus Image (CFl) Figure 6.41: Fluroscein Fundus Angiogram FFA)

Figure 6.42: Image showing registration of CFI/FFA.
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Figure 6.43: Color Fundus Image (CFl) Figure 6.44: Fluroscein Fundus Angiogram FFA)

Figure 6.45: Image showing registration of CFI/FFA.
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Figure 6.48: Image showing registration of CFI/FFA.
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Figure 6.49: Color Fundus Image (CFI) Figure 6.50: Fluroscein Fundus Angiogram FFA)

Figure 6.51: Image showing registration of CFI/FFA.

78



Figure 6.52: Color Fundus Image (CFI) Figure 6.53: Fluroscein Fundus Angiogram FFA)

Figure 6.54: Image showing registration of CFI/FFA.



Figure 6.55: Color Fundus Image (CFl) Figure 6.56: Fluroscein Fundus Angiogram FFA)

Figure 6.57: Image showing registration of CFI/FFA.
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