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Abstract

Over the last few years, the amount of image and video data present over the internet, and in the
personal collections has been increasing rapidly. Therefore, the need for organizing and searching
these vast collections of data efficiently has also increased. This has led to the research in the areas of
content based retrieval and recognition of scenes/objects in visual data. There has been lot of research
in these areas over the last few years and are still not yet at a deployable stage for real-world usage. For
these technologies to be deployable, these solutions should not only be accurate, but also efficient and
scalable. For all these related problems of visual recognition, there are two major phases, namely feature
extraction stage and learning stage. The feature extraction stage deals with building a representation for
the image/video data and the learning stage deals with learning how a function which can distinguish
the classes. In this thesis, we focus on building efficient methods for visual content recognition and
detection in images and videos. We mainly propose new ideas for the learning stage. For this purpose
we start from using the state-of-the-art techniques and then show how our proposed ideas influence the
computational time and performance.

Firstly, we show the utility of state of the art image representations and classification methods for the
purpose of large scale semantic video retrieval. We demonstrate this on TRECVID 2008 and TRECVID
2009 datasets containing videos for the retrieval of various scenes, objects and actions. We use Support
Vector Machines(SVMs) as classifiers, which have been the popular choice for classification tasks in
many fields. They have become popular mainly because of their good generalization capability. For
obtaining non-linear decision boundaries, SVMs use a kernel function. This kernel function helps in
finding a linear classifier in some high dimensional feature space, without actually computing the higher
dimensional vectors. In many situations, we need to use computationally expensive non-linear functions
as kernels. On the other hand, Linear kernel is computationally inexpensive, however it gives poorer
results in most of the cases.

Another contribution of this thesis is a method for improving the performance of computationally
inexpensive classifiers like linear SVM. For this purpose, we explore the utility of sub-categories, which
are the sub groupings present in the feature space of each semantic class of data. We model these
subcategories by using Structural SVM framework. Also, we analyze how the choice of the groupings
effect the results and present a method to learn the optimal groupings. We investigate our methods on
various synthetic two dimensional datasets and real world datasets namely, VOC 2007 and TRECVID
2008.
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Non-linear kernel methods yield state-of-the-art performance for image classification and object de-
tection. However, large scale problems require machine learning techniques of at most linear complexity
and these are usually limited to linear kernels. This unfortunately rules out gold-standard kernels such
as the generalized RBF kernels (e.g. exponential-χ2). All the No-linear kernels help in computing the
inner product in a high dimensional space different from the input space. This helps in overcoming the
explicit computation of the high dimensional vectors. The function which can be used to compute this
high dimensional feature vector is called the feature map. But this feature map is hard to compute and
is very high dimensional. In the literature, explicit feature finite dimensional feature maps have been
proposed to approximate the additive kernels (intersection, χ2) by linear ones, thus enabling the use of
fast machine learning technique in a non-linear context. Also, an analogous technique was proposed
for the translation invariant RBF kernels. As a part of this thesis, we complete the construction and
combine the two techniques to obtain explicit feature maps for the generalized RBF kernels. Further-
more, we investigate a learning method using l1 regularization to encourage sparsity in the final vector
representation, and thus reduce its dimension. We evaluate this technique on the VOC 2007 detection
challenge, showing when it can improve on fast additive kernels, and the trade-offs in complexity and
accuracy.
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Chapter 1

Introduction

Over the last few years, there has been an exponential increase in the amount of visual data (like
images and videos) present over the web servers and personal computing devices. For example, ac-
cording to official statistics of Youtube(a video sharing website), amount of video content uploaded per
minute on their website has increased from 6 hours in 2007 to 20 hours in 2009, which shows the rate
of increase in the video content over the web. This ubiquitous amount of multimedia content is mainly
caused by various advancements and availability of cheaper image acquisition devices(cameras), data
storage, internet bandwidth, etc., This tremendous increase in visual data has triggered the need for
methods to automatically organize and perform a real-time semantic search for the content of inter-
est. These methods are needed to be automatic as manual labelling of the information present in the
images/videos is a cumbersome task and requires lot of human labour.

This thesis deals with the design of large-scale techniques mainly for the problems of Image Catego-
rization, Object Detection and Concept-Based Image/Video retrieval. The task of Image Categorization
is to assign a category label for a given image based on the visual content present in the given image.
This is also referred to as Image Classification in the literature. One needs to note that in image cat-
egorization, what we are dealing with is an “image category recognition” problem and not a “specific
sample recognition” problem. In the case of specific sample recognition, the task is to find whether a
specific example object/scene is present in the given image. Tasks of Scene/Object classification can
also be considered as Image Categorization problems. In the case of Object Detection, object category
label along with the exact position (bounding box) of the object has to be found. The aim of Concept-
Based Retrieval is to rank the given set of images/videos based on confidence of presence of the given
concept. A concept is nothing but a category which can be either object, scene or even an action. Exam-
ples of concepts are Cityscape, Aeroplane, Person playing a musical instrument, etc. Note that the main
difference between image categorization and concept retrieval is that i) in the case of image categoriza-
tion, the category label assigned to a given image is important and ii) in the case of image retrieval, the
ranking of the images is important. Most of the image categorization techniques form the base for both
Object Detection and Concept-Based Retrieval techniques[73, 62]. Solutions for all these problems will
help in automatic understanding and analysis of the visual data by machines.
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1.1 Challenges

Categorization/Retrieval of the visual data is very challenging due to the wide range of variations
possible for images belonging to a category of interest. Some of these possible variations are explained
as follows:

• Transformations and varying view angle: Images of the same scene can go through different affine
transformations like rotation, scale and shear. These kind of transformations can be induced in the
process of data acquisition (ex: changes in the camera angle) or by the post-processing of videos.
• Illumination: Lighting conditions of the environment will have a profound influence on the ap-

pearance of a scene/object. Images taken of the same location can have different illumination,
which mainly depends on the time and the other objects in and around the location. There can
also be shadows depending on the position of light sources, which changes the appearance of
the scene/object. These differences in appearance of the scenes/objects due to change in lighting
conditions makes the task of visual categorization/retrieval very much difficult. Images of the
“cityscape” category taken at different lighting conditions can be seen in the Figure 1.2

Figure 1.1 Intra-class variations present in the images belonging to the category “Boat/Ship”. You can see that
there are a lot of variations possible visually, even though they all have the same semantic meaning according to
the humans.

Figure 1.2 Effect of illumination on the images of “Cityscape” category. Because of the change in lighting
conditions, the task of image categorization becomes more challenging.

Figure 1.3 Images of “Car” category having different poses. This is another challenging aspect of image classi-
fication as can have variations in both, model and pose of the car.

2



Figure 1.4 Effect of Occlusions and Truncations: Here you can find some of the objects with some of their parts
either occluded by other objects or not covered in the image acquisition process. Image classification needs to be
robust to handle this problem.

• Semantic Variations: There can be lot of variations in the appearance of objects/scenes belong-
ing to the same category (intra-class variations). For example, we can see the diversity of the
images belonging to the category “cars” in the Figure 1.3. Similar example can be seen for the
“boat/ship” category in the Figure 1.1. Also there can be lot of similarities between the images
of objects/scenes belonging to different categories(inter-class variations). These similarities can
be in any of their features like color, shape, texture etc.,
• Occlusions: Truncations and occlusions result in the invisibility of important parts of the object

in the images/videos, which makes it difficult to recognize them. This problem can be seen from
examples shown in Figure 1.4.

Other variations include complex backgrounds (sometimes background can be similar to the object of
interest), articulations etc.,

1.2 Applications

Some of the applications where classification/retrieval of visual data can be very useful are given
below.

1. Broadcast Video Search: With the various developments in storage devices, large volumes of
broadcast data can be recorded and archived. During many points of time, people may have to
manually browse all these video archives in order to find their content of interest. Automatic
labelling of this data with appropriate tags can be useful for faster and easier retrieval of “content
of interest” from this large scale data.

2. Web data Indexing: There is a large volume of images and videos present over the web. With
the advent of many multimedia sharing websites like Flickr[24], Youtube[80], Picasa[54] etc., the
need for good search engines has become necessary. Most of the present multimedia search en-
gines depend on the meta information like filename and text around the images. This information
may not describe the content properly most of the times, resulting in the “incorrect” results for a
query in the search engines.

3. Security: Because of the availability of advanced CCTV cameras for surveillance, there is a lot of
visual data available. This data needs to be continuously monitored for security purposes. Object
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detection techniques will be very much helpful for detecting objects of interest in these videos.
Also, object classification/detection techniques can be helpful in the design of intelligent parking
systems.

4. Robotic Systems: Object/scene classification can be very useful for the design of autonomous
vehicles, which can take required decisions based on the category detected. These kind of robotic
systems can be very useful in order to give warning messages prior to any dangers.

5. Human Computer Interaction: Object detection and retrieval techniques can be very much useful
in providing advanced input methods. It presents a new way of providing automatic inputs for
the computers. For example, one can show the object to the webcam attached to the camera and
search for the details of the object using various object detection and retrieval techniques.

6. Others: Some of the other applications of object classification/detection/retrieval include automa-
tion in manufacturing industries, intelligent traffic monitoring and analysis, clinical diagnosis,
satellite image processing etc.,

1.3 Contributions

In this thesis, we start by showing the utility of the state-of-the-art image classification techniques
for indexing large scale image and video data. This is demonstrated on TRECVID 2008 and TRECVID
2009 video collections for retrieval of various scene, object and action categories.

One of the ideas that we propose in thesis is the use of sub-categories. The objective of this inves-
tigation is to obtain better classification performance with computationally inexpensive kernels. The
basis for our idea is that there exist natural groups or sub-categories for a given category. Our idea is
to find classifiers for each of these groups separately and combine the outputs of the classifiers for each
of these subcategories. We have used structured-SVM [69] framework for doing this. We show exper-
imentally how the choice of these subcategories can effect the performance. We also present a method
to automatically find these groupings [81].

Another idea that we propose as a part of this thesis is the generalized RBF feature maps for speeding
up the training and testing time of SVM. Though SVM classifiers with non-linear kernels have shown
a good performance, they are computationally expensive. Most of the CPU cycles during training and
testing are spent in the computation of the non-linear kernel function between the pairs of samples.
There have been methods to speedup the training and testing time for RBF kernels[55] and homogeneous
family of kernels[75]. In this thesis, we propose a method to speedup the training and testing for the
generalized RBF-kernels by combining these two ideas.

Our contributions through this thesis can be summarized as follows:

• Demonstrated the utility of efficient classification methods for indexing large scale image and
video data. We validate the results on TRECVID 2008 and 2009 video collections.
• Showed how modeling of subcategories can be useful for improving the performance of the linear

classifiers with experiments on large datasets.

4



• Proposed generalized RBF-feature maps for efficient object detection and classification.

1.4 Organization

The remaining part of this thesis is organized as follows. In the Chapter 2, we shall present the
technical background about features and support vector machines. Then, we discuss each of our con-
tributions in three separate chapters. In Chapter 3, we shall present the utility of efficient classification
methods for large scale video retrieval purposes on TRECVID video collections. Investigations about
the usage of subcategories for performance improvements is presented in Chapter 4. We propose gen-
eralized RBF-feature maps and their utility for efficient detection in the Chapter 5. Finally, we draw
conclusions from this thesis in Chapter 5.
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Chapter 2

Background

This chapter helps in gaining technical background for understanding next chapters. Image catego-
rization mainly involves the use of Computer Vision and Machine Learning techniques. Many of the
architectures for image classification in literature consists of three major phases, i) Feature Extraction
and ii) Training and iii) Testing. Feature Extraction phase involves the computation of “feature rep-
resentations” which characterize a given image. A simple example of feature representation is Color
Histogram, which captures the distribution of different color quantization levels in the given image.
There can be lot of unimportant data in images which cannot be used for discriminating it from other
scenes/objects. Good features are the ones which can describe discriminative properties of a category.
Many feature representations proposed in literature are designed to handle one or more of the above
mentioned variations. Also, for each of the categories, different set of features can be useful. For ex-
ample, a shape feature can be useful for classification between bananas and apples, but it is not a good
feature for classification between apples and peaches. Some of the successful features for object/scene
classification tasks can be divided into two types, Global features and Local features.

Global features are computed over the entire image, where as local features are computed over the
local regions of an image. Global features are more sensitive to image variations, such as occlusion and
viewpoint variations. Examples for global representations are color histograms [64], eigen-spaces [48]
and GIST[67]. Examples for local representations are Bag of Words(BoW) representation [13], His-
togram of Oriented Gradients(HoG) [12]. Extraction of local feature representation involves two steps,
finding interesting local regions in an image, and computing descriptors for these regions. A well known
interest point detector and descriptor is the Scale Invariant Feature Transform (SIFT) [39]. Traditionally,
local features are computed around interest points like corners or edge points. Good detectors are the
ones which can detect an interest point independent of the imaging conditions. Other alternatives for
detection of interesting regions is to use a densely sampled grid of regions in the image. This method
is shown to be successful for image classification tasks[73, 13]. One of the disadvantages with dense
sampling is that it requires generation of many descriptors. Local feature representations are found to
be more robust for visual classification/retrieval tasks. Especially SIFT-based visual word representa-

6



tions are shown to be one of the most successful for image classification, detection and retrieval tasks
[60, 13, 73]. Details about feature extraction methods used in this thesis are explained in Section 2.1.

Image Classification methods can be broadly divided into two types i) Generative approaches ii) Dis-
criminative approaches

Examples for generative classifiers include Probabilistic Latent Semantic Analysis(pLSA) [29], La-
tent Dirichlet Allocation(LDA) [14, 20], etc., Examples for discriminative approaches include Support
Vector Machines(SVM) [11, 13], Adaboost [25, 65], etc. We have used SVMs as classifiers in this thesis.
SVM classifiers have shown a great success for image classification tasks. They are designed with the
intuition of maximizing the margin, which is the maximum possible distance between the samples near
to the boundary of the classifier. SVMs have become successful mainly due to their ability of separating
non-linear input spaces. This is made possible with the use of a mapping function which transforms the
feature space to a large-dimensional space, where the samples can be easily divided. SVM optimization
functions mainly involve the dot product of this feature transform. The problem of computing this dot
product even in the infinite dimensions is made easier by the functions called as kernel functions which
help in overcoming the computation of the feature transform. These kernel functions help in finding a
discriminative classifier in a higher dimensional space.

In training phase of the classification, a function(model) which can differentiate between the given
two classes is learnt using the labelled training examples. Note that, we are referring to the case of binary
classification, where we need to classify any given image into only one of the two categories. The other
kind of classification, where a given sample is to be assigned to one of the n-classes(n ≥ 2) is called as
multi-class classification. More details about multi-class classification is discussed in the Chapter 2. In
this thesis we focus on the training methods which use batch learning way, i.e., if there is a new sample,
training process starts from the beginning on the set augmented with the new sample. In testing phase
of the classification, the learnt function is evaluated on the given test sample to find its label.

The other problem which we deal with in this thesis is that of object detection, which aims to find a
bounding box along with the label of the object. It is a tougher task compared to Image Classification.
Many of the methods for object detection use sliding-window based classifiers. More specifically, these
classifiers search over windows of all possible scales and aspect ratios over the complete image. In order
to speedup this process, there have been methods to cut down the search space of the possible windows
in the image [33]. Vedaldi et al. [73] have proposed a cascade of classifiers, in which the computational
complexity of classifier increases as we move along the layers of the cascade. This helps in filtering
most of the samples in the first layer using a low-computational complexity classifier. We have used this
cascade-based framework for object detection in this thesis.

Literature of works designed for improving the performance of image classification comprises of two
categories, a) those which focus on designing better feature representations and b) those which focus on
designing better classifiers.Note that the methods designed to improve performance of image classifica-
tion are applicable to object detection. Gemert et al. [26] have proposed a soft-histogram representations
for image classification. Some of the other works which focused on better feature representation for im-
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age classification include [36, 35, 51, 32]. Varma and Ray [71] presented a method to combine multiple
sources of features in a Multiple Kernel Learning framework. It was shown that it results in a good
performance in [73, 8] by using multiple sources of information. Other research has been to design
techniques to speedup the computation of local image descriptors. Some of these include SURF [4],
GLOH [46] and DAISY [16]. Faster methods of computing robust feature representations is very much
important to perform the tasks of image classification and retrieval in real-time.

Bosch et al. [8] were successful in improving the performance by using a hybrid approach, which
combines both discriminative and generative based classifiers. Other direction in order to improve the
image classification and detection approaches includes the use of context [49].

Now, we describe in detail various image representations that we use in our experiments for image
classification. Later on, we discuss in detail about Support Vector Machines (SVM) classifiers and
Kernel Methods which form the backbone of this thesis.

2.1 Image Representation

Raw pixel information of images alone may not be enough for image classification tasks. For ex-
ample, a pixel-wise comparison between two images that humans would consider very similar can be
treated as very different when measured by some distance measures (e.g. Euclidean norm). The reason
for this is that the raw pixel representation lacks many invariances. For example, translations, small ro-
tations, small changes in size, blur, brightness, pose and contrast are the factors that humans consider as
irrelevant while judging if two images are same. Therefore, the input image data has to be transformed
into a meaningful set of features. This process of extracting a meaningful set of features from a given
data is called in general as feature extraction. A good feature representation of images for classification
tasks should be

1. invariant for the images of same “semantic” category and

2. discriminant between the images of two different categories.

In literature, many features are proposed for the purpose of image classification. We explain some of
these features that we used in our experiments in later chapters.

2.1.1 GIST

GIST descriptor was first proposed by Oliva & Torralba [50] for scene classification. It is a global
scene descriptor, which is based on a set of perceptual dimensions: naturalness (vs. man-made), open-
ness (presence of a horizon line), roughness (fractal complexity), expansion (perspective in man-made
scenes), ruggedness (deviation from the horizon in natural scenes) that represent the dominant spatial
structure of a scene. These perceptual qualities are together referred as the Spatial Envelope. It has been
shown by [50] that spatial envelope properties can be reliably estimated using spectral and coarsely
localized information.
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Figure 2.1 Images of Man-made environments when plotted along semantic degrees of openness and expansion
(from[50])
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Computation: At first, a given image is initially divided into a m×m (usually m = 4) grid of non-
overlapping windows. Then for each cell in the grid, a set of filters (of different orientations at different
scales) are applied. Each dimension of the final GIST descriptor for a cell corresponds to the average
of the output of filter response on that cell. GIST descriptor for the complete image is then obtained
by concatenating the GIST descriptors of all the cells. In summary, GIST feature representation for an
image is a vector g, where each individual dimension gk is computed as

gk =
∑
x,y

wk(x, y)× ‖I(x, y)⊗ hk(x, y)‖2 (2.1)

where ⊗ denotes image convolution and × is a pixel-wise multiplication. I(x, y) is the intensity value
of the input image at point (x, y), and hk(x, y) is a filter from a bank of multi-scale oriented Gabor
filters (say No orientations and Ns scales) and wk(x, y) is a spatial window that will compute the
average output energy of each filter at different image locations. The windows wk(x, y) divide the
image in a grid of m×m non-overlapping windows. The dimension of the resultant descriptor will be
(m×m×No ×Ns).

2.1.2 Appearance Based Representations (BoW & PHOWGray)

Bag of Words representation (also known as bag-of-features) was first proposed for solving prob-
lems related to Natural Language Processing(NLP) and Information Retrieval. In NLP domain, a text
document using this model is represented as an unordered collection of words, disregarding the gram-
mar rules and order of words. For example, “this is a thesis” and “thesis this a is” are considered to be
same under this model. Similar approach was first used in the computer-vision domain for the problem
of texture recognition[38, 72]. The goal of texture recognition is to recognize textures captured from
different camera viewpoints, and under varying illumination. At first, Leungand and Malik[38] quan-
tized responses of a filter bank applied densely over an entire image. These quantizations of appearance
descriptors are called “textons” and textures are represented by distributions of textons. Varma and
Zisserman [72] modified this approach by quantizing small image patches rather than filter responses.
BoW representation was later used for the tasks of content-based image retrieval [60]. In the recent
past, many works using bag-of-words have shown impressive levels of performance for object/scene
classification tasks[22, 13, 20, 73].

In computer vision, BoW representation is based on the analogy of considering “images” as “docu-
ments” and “image patches” as “words in the documents”. These image patches are specifically repre-
sented by using visual words, which are formed by vector quantizing the visual features (color, texture,
etc.,) like local region descriptors. Success of BoW methods for vision tasks can be mainly attributed
to the use of local region descriptors. This is because, local regions are more robust to occlusions and
spatial variations. Construction of “Bag-of-Words” representation from the images mainly involves the
following steps:

1. Finding Regions of interests

10



Figure 2.2 a) Original Image b) Original image overlayed with Harris-Affine Regions c) Figure illustrating the
computation of dense descriptors

2. Computing local descriptors for regions of interest

3. Vector quantization of the local descriptors into “visual words” to form a visual vocabulary

4. Assigning the nearest visual word for each region descriptor

For the tasks of image-classification, bag-of-words are represented with a histogram of the visual
words in the given image, which captures the distribution of different visual words in a given image.
Histograms help in allowing variations in the positions of the patches in an image and also to have a
fixed length representation. Each of these steps required for computing BoW are explained as follows:

Finding Regions of Interest In general, process of finding “regions of interest” is referred to as Fea-
ture detection and the descriptors computed for these regions are called as feature descriptors. Given an
image, feature detection involves extraction of “regions of interest” (local patches). Some of the region
detectors present in the literature are i) Harris Points [28] ii) Harris-Laplace regions [44] iii) Hessian-
Laplace regions [45, 39] iv) Harris-Affine [45] v) Hessian-Affine [45, 47] vi) Maximally Stable Extremal
Regions [43] . Many of these region detectors use different image measurements and find regions which
are invariant to some properties like scale, rotation and affine transformations. The total number of
interesting regions detected in an image depends on the content present in the image. Figure 2.2a
and Figure 2.2b show the original image containing airplane and the interest points detected using a
Harris-Affine detector [45].

Instead of finding these “interesting regions”, people have shown that using regions on a regular
grid of the image as interesting regions is effective for image classification [20]. In this method, the
regions of interest are selected on an evenly sampled grid spaced at n × n pixels for a given image.
The descriptor computed in this manner are referred to as dense descriptors. Figure 2.2c illustrates the
computation of dense descriptors.

Computing local descriptors for regions of interest A descriptor for each of the regions of interest
is computed in this step. In this thesis, we use SIFT[39] descriptors as local region descriptors. SIFT
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Figure 2.3 The SIFT descriptor of [39]. On the left are the gradients of an image patch. The blue circle indicates
the Gaussian center-weighting. These samples are then accumulated into orientation histograms summarizing the
contents over 4× 4 subregions, as shown on the right, with the length of each arrow corresponding to the sum of
the gradient magnitudes along that direction within the region. A 2 × 2 descriptor array computed from an 8x8
set of samples is shown here.

descriptors are computed for the normalized image patches. SIFT descriptor is a 3D histogram of
gradient location and orientation, where location is quantized into a 4× 4 location grid and the gradient
angle is quantized into 8 orientations. The resulting descriptor is of dimension 128. Each orientation
plane represents the gradient magnitude corresponding to a given orientation. To obtain illumination
invariance, the descriptor is normalized by the square root of the sum of squared components. Figure 2.3
illustrates the approach of computing SIFT descriptor. Many other variations of SIFT feature descriptors
like GLOH [46], PCA-SIFT, SURF [4] are proposed in literature of which, many are mainly designed
for faster computations.

Visual Vocabulary: Feature descriptors(local region descriptors) computed for different images are
clustered using a clustering algorithm like k-means to obtain a set of cluster centers referred as “visual-
words”. The set of “visual-words” is together referred to as a “visual vocabulary”.

Histograms of visual words Once we obtain a vocabulary, we assign the nearest visual word from the
vocabulary for each region descriptor in the image. So, now we will have a set of visual words occurring
in the image. Histogram of visual words for the given image captures the distribution of different visual
words in vocabulary. One can also use a soft assignment in preparation of histograms, which can give
better results as reported in [52, 26] Figure 2.5 schematically describes the steps involved in the
constructing the bag-of-words model for image-classification.

Spatial information can be a valuable source of information for discrimination of many classes(for
e.g., sky is usually present on the top region showing a mountain/cityscape category). Unfortunately,
bag-of-words representation discards all information about spatial structure present in the image. For
this purpose, many methods have been proposed to incorporate this spatial information [57, 37]. There-
fore, to augment bag-of-features with global spatial information, Lazebnik et al. proposed a method for
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Figure 2.4 Example spatial pyramid division

including spatial information in BoW [37]. In this approach, instead of a representing the whole image
with a single global “histogram of visual words”, a number of local histograms are formed, typically in
a pyramid structure from coarse to fine. This pyramid structure, which is a multi-level recursive image
decomposition can be seen in Figure 2.4. At level 0, the decomposition has only single cell(the whole
image). And for each lth level, l > 0 , each cell of the (l − 1)th is divided into four sub-quadrants.
Therefore lth-level in the spatial pyramid will have 4l cells.

To summarize, the representation of Pyramid Histogram of visual Words is a concatenation of the
histograms of different levels into a single vector. In this thesis, we have used three levels for the pyramid
representation. The distance between the two PHOW descriptors reflects the extent to which the images
contain similar appearance and the extent to which the appearances correspond in their spatial layout.

2.1.3 Shape Descriptors (HOG & PHOG)

PHOG descriptor, which is also referred as Shape descriptor was proposed by Bosch et. al [7] for
the purpose of image classification. It was designed with an objective of describing an image with
its local shape and the spatial layout of the shape. It captures local shape by using the distribution
of edge orientations within a region. The spatial layout is captured by tiling the image into regions
at multiple resolutions. The final descriptor is a concatenation of a histogram of orientation gradients
over each subregion of the image at different pyramid levels, hence called as Pyramid - Histogram of
Gradients. This descriptor is similar to the Histogram of Gradients(HoG) which gave promising results
for pedestrian detection [12]. The main differences are that HoG is computed in a more dense manner
and involves normalization of the histograms grouped by multiple cells.

Computation: An edge detector(e.g. canny detector) is first applied on the given image. PHOG
descriptor is the concatenation of “histogram of edge orientations” computed over cells defined by a
multi-level recursive image decomposition similar to the PHOW descriptor [37] mentioned in the above
section. And for a given cell in the image, its local shape is represented with a histogram of edge orien-
tations quantized into b bins, where each bin of the histogram corresponds to the number of edges that
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Figure 2.5 Complete pipeline of preparing “Histogram of Visual Words” for a given image

have orientations belonging to a certain range. The contribution of each edge is weighted according to
its magnitude, with a soft assignment to neighboring bins. There are two variants for this descriptor:

1. PHOG 180/Shape180: In this case, orientations in the range [0,180] are considered i.e., the con-
trast sign of the gradient is ignored.

2. PHOG 360/Shape360: In this case, orientations in the complete range [0,360] are considered.

2.2 Support Vector Machines (SVM)

Classification of the given data is a common task in machine learning. In a classification problem,
the learner approximates a function which can map a given vector data into one of the various class
labels. In supervised setting, it is done by looking at a set of input-output examples of the function.
The finite input-output example data which is used for learning the classification function is called the
training data.

Support Vector Machines(SVM) is one of the successful supervised learning methods for this prob-
lem. They have strong theoretical foundations and have shown excellent empirical success in various
fields. Support Vector Machines are trained so that the decision function would classify the unseen
example data accurately. This ability to classify unseen example data accurately is referred to as gener-
alization. High generalization capability is one of the main reasons for the success of SVMs. From now
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Figure 2.6 Example showing the margin and support vectors in the case of linearly separable data

on, we would be looking at a two-class case (+ve class and -ve class) unless specified. Lets see the basic
idea behind the SVMs at first. Given a set of a d-dimensional vectors, a linear classifier tries to separate
them with a (d−1)-dimensional hyperplane. There are many hyperplanes that might classify the data. If
we define “margin” as the distance between the nearest samples on both sides of the hyperplane, SVMs
are designed to choose the hyperplane that has the largest margin between the two classes. If such a
hyperplane exists, it is known as the maximum-margin hyperplane and the linear classifier it defines is
known as a maximum margin classifier. We shall review the basic theory of SVMs for different cases in
the following sections.

Notations: To describe the task in mathematical terms, we introduce the following notations

• an example data point is denoted by x ∈ Rd,

• class membership for a data point is denoted by y ∈ {−1,+1},
• the set of training examples is denoted by X = {x1, . . . , xn},
• class labels for the training set is denoted by Y = {y1, . . . , yn}

2.2.1 Linear Support Vector Machines: Hard-Margin case

At first, lets see the case when the data can be linearly separable. From the training data, we would
like to learn a classification function F : Rd → {−1,+1} i.e., a function that decides the class of a
given example x.
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In SVMs, F is chosen as the sign of a linear function i.e.,

F = sign(f(x)) (2.2)

where f : Rd → R is the decision function. This decision function is based on the hyperplane separating
the two classes. Any hyperplane separating the two classes will be of the form :

w1x1 + w2x2 + . . . wdxd + b = 0 (2.3)

where x1, . . . , xd are the components of x, and w1, . . . , wd are the coefficients of the weight vector w
and b is the bias. Therefore, decision function f can be written as

f(x) = 〈w, x〉+ b , where 〈., .〉 denotes the dot product (2.4)

The points xi which lie on the hyperplane satisfy 〈w, x〉+b = 0, wherew is normal to the hyperplane,
b
‖w‖ is the perpendicular distance from the hyperplane to the origin, and ‖w‖ is the Euclidean norm of
w. Let d+ and d− be the shortest distance from the separating hyperplane to the closest positive and
negative example respectively. The margin of a separating hyperplane is then defined as d+ + d−. For
the linearly separable case, the support vector algorithm simply looks for the separating hyperplane with
largest margin. As the data is linearly separable in this case, we can select two hyperplanes in a way
that there are no points between them and maximize the distance between them. These hyperplanes can
be written as follows

〈w, x〉+ b = 1

〈w, x〉+ b = −1

The margin which is the distance between those hyperplanes will be equal to 2
‖w‖ . As we want to

maximize the margin, we want to minimize the term ‖w‖. It would be difficult to solve min‖w‖ because
of the square root involved in calculation of ‖w‖. Therefore, min‖w‖2 is used as the optimization
problem to make it easier. Also, as we do not want any data points falling into the margin, we add the
following constraints

〈w, x〉+ b ≥ 1 ∀xi with yi = 1

and

〈w, x〉+ b ≤ −1 ∀xi with yi = −1

After combining the above inequality constraints into a single constraint, we will have the following
primal optimization problem. This is a quadratic programming problem.

min
w,b

1
2
‖w‖2 (2.5)

subject to

yi(〈w, xi〉+ b) ≥ 1 (2.6)
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Note that factor 1
2 is used for mathematical convenience. The Lagrangian formulation of the above

problem which replaces the inequality constraints with equality constraints.

LP =
1
2
‖w‖2 −

n∑
i=1

αi[yi(〈w, xi〉+ b)− 1] (2.7)

where αi ≥ 0 , ∀i are lagrangian multipliers for each of the inequality constraints Equation (2.6). The
above Lagrangian is maximized with respect to αi, and minimized with respect to w and b. Conse-
quently, at this saddle point, the derivatives of L with respect to primal variables must vanish,

∂

∂b
LP (w, b, α) = 0

∂

∂w
LP (w, b, α) = 0

αi[yi(〈w, xi〉+ b)− 1] = 0∀i

αi ≥ 0

which leads to
n∑
i=1

αiyi = 0 (2.8)

and

w =
n∑
i=1

αiyixi (2.9)

This problem is solved by using standard quadratic programming techniques. It can also be solved by
solving its dual problem, which is easier and gives the same solutions as the one obtained by solving the
primal version. Due to the convexity of the primal optimization problem, the solution is unique but the
coefficients αi need not be unique. The points for which αi are non-zero are called as support vectors.
Figure 2.6 summarizes the situation for a 2-dimensional data, plotting support vector points with extra
circles around them. Dual form of the optimization problem is written as

LD = max
α∈Rn

{
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj〈xi, xj〉 (2.10)

subject to αi ≥ 0, i = 1, . . . , n (2.11)

and
n∑
i=1

αiyi = 0 (2.12)

If we substitute the Equation (2.9) in the original decision function Equation (2.4), then we have

f(x) =
n∑
i=1

αiyix
T
i x+ b (2.13)
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Figure 2.7 Example showing the case where linear-hyperplane cannot be drawn

2.2.2 Linear Support Vector Machines: Soft-Margin case

Till now, we showed how SVMs are designed when that the training data is linearly separable. When
the data is not linearly separable, there is no feasible solution and hard-margin SVM is unsolvable. An
example of this can be found in the Figure 2.7. This section shows how hard SVMs are modified to
apply them in inseparable case. In order to assign the penalty on the errors, non-negative slack variables
ξi ≥ 0, i = 1, . . . , n are introduced in the Equation (2.6) as follows

(yi〈w.xi〉+ b) ≥ 1− ξi for i = 1, . . . , n (2.14)

ξi ≥ 0∀i (2.15)

For any point in the training data xi ( Figure 2.7), if 0 < ξi < 1, the data do not have the maximum
margin but are still correctly classified. But if ξi ≥ 1, the data are misclassified by the optimal hyper-
plane. Therefore, we have

∑
i ξi as an upper bound on the number of training errors. In order to assign

an extra cost for these errors, the objective function to be minimized will be

Q(w, b, ξ) = ‖w‖2 + C(
∑
i

ξki ) (2.16)

subject to yi(〈w, xi〉+ b) ≥ 1− ξi for i = 1, . . . , n (2.17)

In the above equations, C is the margin-parameter to be chosen by the user, which determines the
trade-off between the maximization of the margin and minimization of the classification error. This is
a convex programming problem for any positive integer k; for k = 2 and k = 1 it is also a quadratic
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programming problem, and the choice k = 1 has the further advantage that neither the ξi, nor their
Lagrange multipliers, appear in the dual optimization problem.

We call the obtained hyperplane the soft-margin hyperplane. When k = 1, we call the support vector
machine as the L1 soft-margin support vector machine and when k = 2, the L2 soft-margin support
vector machine. First we shall discuss L1 soft-margin support vector machines. Similar to the case of
separable case, at first lagrangian multipliers are introduced in the optimization function as follows

LP (w, b, ξ, α, β) ≡ 1
2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi(yi(〈w, x〉+ b)− 1 + ξi)−
n∑
i=1

βiξi (2.18)

whereαi, βi,∀i are non-negative Lagrangian multipliers. For optimal solution, the following Karush-
Kuhn-Tucker(KKT) conditions should be satisfied

∂LP (w, b, ξ, α, β)
∂w

= 0 (2.19)

∂LP (w, b, ξ, α, β)
∂b

= 0 (2.20)

∂LP (w, b, ξ, α, β)
∂ξ

= 0 (2.21)

αi(yi(〈w, xi〉+ b)− 1 + ξi) = 0 for i = 1, . . . , n (2.22)

βiξi = 0 for i = 1, . . . , n (2.23)

αi ≥ 0 , βi ≥ 0 , ξi ≥ 0 for i = 1, . . . , n (2.24)

Applying Equations (2.19) to (2.21) on Equation (2.18), we have the following

w =
n∑
i=1

αiyixi (2.25)

n∑
i=1

αiyi = 0 , (2.26)

αi + βi = C for i = 1, . . . , n (2.27)

Substituting, the above into Equation (2.18), we obtain the following dual problem,

LD(α) ≡ max
∑
i

αi −
1
2

∑
i,j

αiαj〈xi, xj〉yiyj (2.28)

subject to the constraints: 0 ≤ αi ≤ C , (2.29)∑
i

αiyi = 0 for i = 1, . . . , n (2.30)
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Not that the main difference now is that the αi is now bounded by C. Substituting the Equa-
tion (2.25) in Equation (2.4) our decision function will become

f(x) =
n∑
i=0

αiyi〈xi, x〉+ b (2.31)

where nV is the number of training samples out of which, the feature vectors for xi, for which αi is
non-zero are called as support vectors.

2.2.3 Non-Linear Support Vector Machines

Till now, we have seen how to compute a large-margin hyperplane and that it is good due to its
generalization ability. But there is still a major drawback, as whatever we have done so far is linear
in the data. In order to use much more general decision surfaces, the input data {x1, . . . , xn} ∈ X

is transformed into a high-dimensional feature space, using a non-linear map ψ : Rd 7→ F ;. A linear
classifier is then found in the transformed high-dimensional space. The only requirement of F is that
dot product can be defined in that space. It can be an infinite-dimensional space and no assumptions are
made on the dimensionality of F . For a given training data set, SVM is now constructed in F instead
of Rd i.e., using the set of examples

{ψ(x1), y1}, . . . , {ψ(xn), yn} ∈ RN x {±1} (2.32)

Using this mapped set of examples, we need to estimate the decision function in F . Intuitively, the
difficulty of constructing a decision function in input space should grow with the dimension of the
patterns, which is called as the curse of dimensionality.

So now, if we substitute x with ψ(x) in Equations (2.28) and (2.31) , our optimization function will
be

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj〈ψ(xi), ψ(xj)〉 (2.33)

and decision function will be

f(x) =
n∑
i=1

αiyi〈ψ(xi), ψ(x)〉+ b (2.34)

Note that the above equations require only the dot product of the feature vectors in the transformed
high-dimensional space. These expensive calculations are reduced significantly by using “kernel-trick”.
Computation of the feature-map is bypassed by using a kernel function k which results in the dot product
of data points in the transformed space.

Instead of making a non-linear transformation of the input vectors followed by dot products with
support vectors in the high-dimensional space F , the order of operations is interchanged. A comparison
is first done between two vectors in the input space, and then a non-linear transformation (ex: by taking
their dot product or some distance measure) of the result is made. Training a non-linear SVM which
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requires the computation of the dot products 〈ψ(xi), ψ(xj)〉 in the transformed space can be reduced by
defining a suitable kernel function k, such that

k(xi, xj) = 〈ψ(xi), ψ(xj)〉 (2.35)

By constructing a matrix Q, such that (Q)ij = yiyjk(xi, xj), the above optimization problem
in Equation (2.33) is written as

max
α

αT 1− 1
2
αTQα (2.36)

subject to αT y = 0 (2.37)

α ≥ 0 (2.38)

C1− α ≥ 0 (2.39)

and the decision function Equation (2.34) is re-written as follows

f(x) =
nSV∑
i=1

αiyik(ψ(xi), ψ(x)) + b (2.40)

What is a valid kernel ? Now the question is that which function k corresponds to a dot product in
some feature space F . In other words, how can we find a map ψ, such that kernel function k computes
the dot product in the space mapped by the function ψ. The answer to this question is given by the
Mercer’s theorem. Before going to Mercer’s theorem, lets see the following definitions

Positive Definite Kernel Function: Let X be a non-empty set. A function k : X × X 7→ R is called
positive definite kernel function, if

• k is symmetric, i.e., k(x, y) = k(y, x) for all x, y ∈ X .

• For any finite set of points x1, . . . , xn ∈ X , the kernel matrix Kij = (k(xi, xj))i,j is positive
semi-definite, i.e., for all vectors t ∈ Rn :

n∑
i,j=1

tiKi,jtj ≥ 0 (2.41)

Hilbert space A vector space H is called as Hilbert space if it is equipped with an inner product
〈., .〉H : H × H 7→ R and it is complete under the induced norm ‖v‖H =

√
〈v, v〉H, i.e. all Cauchy

sequences of elements inH converge to a limit that lies inH.
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Mercers Theorem: Let X be a non-empty set. For any positive definite kernel function k : X ×X 7→
R, there exists ad Hilbert spaceH and a feature map ψ : X 7→ H such that

k(x, y) = 〈ψ(x), ψ(y)〉H (2.42)

where 〈., .〉 denotes the inner product in H. For a kernel function k to be valid, the completeness
property is of less importance, but the existence of an inner product is crucial for using the kernel
function k instead of explicit evaluation of inner product in the Hilbert space. Because of this theorem,
positive definite kernel functions are also called as Mercel kernels.

2.2.4 More on Kernels

In the above section, we have seen how to check if a kernel function is valid. In this section we shall
see how kernel functions can be constructed, some of the famous kernels used for pattern recognition
and computer vision problems.

Construction kernel functions Although Equation (2.41) looks to be simple, it is in practice difficult
to check the criteria for a given function k : H × H 7→ R. However, it is relatively easy to construct
functions k that positive definite kernels, by using the following principals:

• For any ψ : X 7→ Rn, k(x, y) = 〈ψ(x), ψ(y)〉 is a kernel.
• If d : X × X 7→ R is a distance function, i.e.,

– d(x, y) ≥ 0 for all x, y ∈ X ,
– d(x, y) = 0 only for x = y,
– d(x, y) = d(y, x) for all x, y ∈ X ,
– d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X ,

then k(x, y) = e−γd(x,y) is a kernel for any γ ∈ R+.
• We can construct kernels from other kernels:

– If k is a kernel and α ∈ R+, then k + α and αk are also kernels.
– If k1, k2 are kernels, then k1 + k2 and k1.k2 are also kernels.

Example Kernels Some of the first kernels used for pattern recognition problems are as follows

1. Linear Kernel: If we have a linearly separable data in the original input space, we need not map
the input space into a high-dimensional space. We can use linear kernel in such a situation, which
is a dot product of the two vectors in the original space.

k(x, y) = 〈x, y〉 (2.43)

2. Polynomial Kernel: Polynomial kernels of degree p are given by

k(x, y) = (〈x, y〉+ 1)p (2.44)
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3. Radial Basis Function Kernel(Gaussian Kernel):

k(x, y) = exp
−‖x−y‖2

2σ2 (2.45)

where σ is the parameter which controls the radius and σ > 0

4. Sigmoid Kernel:

k(x, y) = tanh(m〈x, y〉+ c) , for some(not every) m > 0 and c > 0 (2.46)

linear kernel (C = 0.1)
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Figure 2.8 Boundaries obtained using SVMs with linear and RBF kernels

2.2.4.1 Kernels in Computer Vision

Kernel methods have been extensively used in computer vision in the past decade. There has been
much attention by Computer Vision researchers on finding good data representations and algorithms
to tackle problems, such as Optical Character Recognition(OCR), Object/Scene Classification, Action
Recognition, and Content Based Image/Video Retrieval. Kernel methods proved to be successful for all
these problems because of their interpret-ability and flexibility, mainly because: in constructing a kernel
function one can integrate knowledge that humans have related to the specific problem. This leads to
the improved performance over the methods where this kind of prior knowledge cannot be integrated.

Some of the popular choice of kernels used for computer vision tasks are given below

• Generalized Intersection Kernel

k(x, y) =
∑
i

min(xi, yi)γ (2.47)

when γ = 1 it is called as Intersection Kernel
• Exponential-χ2 Kernel

k(x, y) = e
−γ 1

2

P
i

(xi−yi)
2

(xi+yi) (2.48)

• Chi2 Kernel
k(x, y) = 2

∑
i

xiyi
(xi + yi)

(2.49)

We shall now look at some of the kernels designed for specific representations.
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Spatial Pyramid Kernel Spatial Pyramid matching works by placing a sequence of increasingly
coarser grids over the feature space (not over the image) and taking a weighted sum of the number
of matches that occur at each level of resolution (L). At any fixed resolution, two points are said to
match if they fall into the same bin of the grid; matches found at finer resolutions are weighted more
highly than matches found at coarser resolutions w1 represents the weight at level l. The bag of visual
words representation discards all information about spatial structure from the image. However, spatial
information can be a valuable source of information, e.g. in image segmentation, where sky regions
tend to occur much more frequently at the top of the image than at the bottom. Consequently, the idea
of local histograms has proved useful in this setup as well. Instead of one global visual word histogram,
a number of local histograms are formed, typically in a pyramid structure from coarse to fine. Each sub-
histogram has K bins and counts how many descriptors with center point in the corresponding pyramid
cell have a specific code-book vector as nearest neighbor. Subsequently, either all local histograms are
concatenated into a single larger histogram, or separate kernel functions are applied for each level and
cell, and the resulting kernel values combined into a single spatial pyramid score, e.g. by a weighted
sum

kSP (x, y) =
L∑
l=1

βl

Kl∑
k=1

k(hx(l,k), h
y
(l,k)) (2.50)

where L is the number of levels and β is a per-level weight factor. Kl is the number of cells in the
lth level, and hx(l,k) and hy(l,k) are the local histograms of hx and hy respectively. The base kernel k
is typically chosen from the same selection of histogram kernels as above, with or without separate
histogram normalization.

2.2.5 Multiple Kernel Learning

Fusing multiple sources of data is important in computer vision. Images can be represented by
multiple set of features, each capturing certain specific aspects like color, textures and shapes. The
importance of different features changes with the tasks; for instance, color information increases the de-
tection of stop signs while coloring is almost irrelevant to find the cars as they can have different colors.
Techniques for combining the relevant features required for the task at hand are therefore important for
object categorization problems.

For object classification tasks, each of the descriptors provides good classification accuracies for
different image classification tasks. Combining information from such multiple sources has been shown
to be more effective. It has been shown in literature on how multiple features can be combined by using
kernels corresponding to each feature representation [71]

If kf denotes the kernel for the feature f , and if there are F features to be combined, then the resultant
linear combination of kernels can be written as

k(x, y) =
F∑
f=1

dfkf (2.51)
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Figure 2.9 To understand the result of linear combination k = αk1+(1−α)k2 for the given two kernels k1, k2,
the induced feature spaces

√
(α)ψ(x),

√
(a − α)ψ(x) corresponding to the two kernels are plotted for a various

values of α

where kf is the kernel for the f th feature. Note that, the above combination of kernels is a mercer
kernel according to the sum rule provided that each of the kernels kf is a mercer kernel. Learning the
weights of individual kernels df along with the SVM parameters is called as Multiple kernel learning.
It was first proposed for small scale problems by [34] and for large scale problems by [63]. Varma et.
al [71] proposed a gradient descent method for MKL and showed impressive results on varied object
classification tasks. Giving weights to different kernels allows us to give more weightage(importance)
to the more discriminative features for a given class. If df = 0,then it implies that the corresponding
feature is not discriminative and it is not useful for the classification task.
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Chapter 3

Large scale video retrieval based on Semantic Concepts

Traditionally many video retrieval engines have been designed by using the meta information of
videos like filename, tags, and the text surrounding the image/video. These retrieval methods result
in a poor retrieval performance when the information is not explicitly mentioned or if the information
mentioned is not semantically apt. In order to have correct information, one can think of annotating
these videos manually. But annotation of these videos with correct information requires huge amount
of manual labor and time. This leads to the requirement of automatic semantic video retrieval methods.
The main problem for any semantic video retrieval approach is the semantic gap between the data inter-
pretation in the computers(pixel level) and their conceptual interpretation by humans(like description of
content in video) [62]. In order to limit this semantic gap, video retrieval approaches have focused on
semantic methods. Key-word based approach is one of them, where specific semantic concepts (cate-
gories) with a small intra-class variability are detected. These methods are based on image-classification
techniques. One of the works which use image classification for content based indexing is proposed in
[70]. In order to have a good video retrieval engine, we need these concepts detectors for thousands and
thousands of concepts. We refer this methodology as “video retrieval based on semantic concepts”.

In this chapter, we explain the generic framework for this task, followed by our framework and
various experiments that we have performed for this purpose. In our methods, we use only visual
information at individual frames and do not use any textual, audio and temporal information. These
techniques are developed and used for our submissions in the TRECVID (see Section 3.1), high-level-
feature extraction competition [68, 61] in the years 2008 and 2009. Note that, the task of video retrieval
based on semantic concepts is referred as “high-level feature extraction” (HLF task) by TRECVID.

3.1 TRECVID Benchmark

The TREC Video Retrieval Evaluation (TRECVID) [68] is an international benchmarking activity
conducted annually by NIST, to encourage research in content based video information retrieval by
providing a large test collection, uniform scoring procedures, and a forum for organizations interested
in comparing their results. This involves evaluation of a set of approaches by different teams from all
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over the world for versatile of tasks related to video retrieval. Tasks that are evaluated in the years
2008 and 2009 include i) Surveillance Event Detection, ii) High-Level Feature Extraction, iii) Search
(Interactive, Manually-assisted, and/or fully automatic), iv) Video summarization and v) Content-Based
Copy Detection.

3.1.1 High-level Feature Extraction

The task of “high-level feature extraction” can be formally explained as follows: given a collection
of videos shots, for a given concept category, (e.g. Mountain, people-dancing) return the list of the top
video shots from the collection, ranked according to the highest probability of the shot containing the
concept. Every year, this competition is conducted for retrieving a predefined set of concepts. These set
of concepts range over objects, scenes, people, and events with varying degrees of complexity. Example
images of categories evaluated in the years 2008 and 2009 can be seen in the Figure 3.1.

Data: All the participating teams in the competition are provided with two sets of MPEG-1 video data
(of resolution 352× 288), i) Development dataset (DEVEL) ii) Test dataset (TEST). This video dataset
contains broadcast TV videos covering wide range of programs like science news, news reports, docu-
mentaries, educational programming, and archival video almost entirely in Dutch. Complete statistics
of the development and test data of 2008 and 2009 is summarized in the Table 3.2. Note that 2008 and
2009 have the same set of data which in turn is the combination of 2007 development data and 2007 test
data. TRECVID dataset is more challenging and of large size compared to the other image datasets, in
terms of variability of images present in the dataset and number of test images. Table 3.1 compares the
statistics of images present in different publicly available datasets for classification.

Dataset Type No. of Images No. of categories

PASCAL VOC 2009 [17] Images 14,743 20
CALTECH 256 [27] Images 30,607 256
Scene-15 [37] Images 4485 15

Table 3.1 Statistics of various image datasets available with the class level information of scenes or
objects present in them. TRECVID dataset is the only major dataset for video data. There are other
huge(in orders of lakhs) image datasets like imagenet [15] and LabelMe [56]. These datasets are not
fixed in number as new images along with annotations are added to these datasets. Presently ImageNet
has 195,331 annotated images and LabelMe has 43,244 annotated images.

Each video-shot of development data is annotated (as positive or negative) manually by users of par-
ticipating teams through a collaborative annotation [1]. A team can acquire the complete annotations for
the development data only if it annotates 3% of the total number of annotations. Our team [53, 76] has
participated in collaborative annotations in 2008 and 2009 to get the annotations for the development
data. Statistics of the positives and negatives for different categories found according to the annotations
can be seen in Table 3.3. Teams are expected to develop their algorithms using the positive and negative
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Set Name Total Duration (hours) No. of shots Storage Space No. of key-frames
(for Videos) Extracted

2008-DEVEL 100 36,262 61 GB 43,616
2008-TEST 100 39,873 60 GB 81,274
2009-DEVEL 100 36,262 61 GB 73,859
2009-TEST 280 97,149 107GB 2,00,990

Table 3.2 TRECVID 2008 and 2009 Data Statistics

examples provided in the development data. Annotations will not be available for the test data, and is
used for a common evaluation of generalization ability of algorithms from various teams. Each partic-
ipating team submits ranked file-lists of video-shots for each semantic concept to NIST for evaluation.
A ranked list obtained by using a certain method is referred to as a run, and up to 6 different runs can
be submitted for evaluation.

Evaluation Measures: In general, Average Precision (AP) [77] is used as the evaluation measure
for retrieval problems, which is designed such that importance is given to the correct ranking of the
documents (video-shots in our case). It forms the basis of performance measure for TRECVID HLF
task and most of the experiments in this chapter. Average Precision is a single-valued measure that is
proportional to the area under a precision-recall curve. This value is equal to the average of the precision
values at different recall levels, giving a single combined measure of precision and recall. It is defined
as

AP =
∑N

r=1(P (r)×R(r))
Nrel

(3.1)

where r is the rank, N is the number of retrieved shots, R(r) is a binary function stating the relevance
of the shot retrieved with rank r, P (r) is the precision at the rank r, and Nrel is the total number of
relevant shots in the test set. In TRECVID HLF tasks, N is set to 2000, i.e., only a maximum of 2000
shots for a run can be submitted and evaluated.

The mean average precision (MAP) which is the mean of the average precision values over all
the concepts evaluated, is used to compare the combined performance of all the concept detectors in
TRECVID. In order to evaluate the performance, one needs the ground truth for test data. But due to
the large size of the test data, it was not possible for NIST-TRECVID organizing team to prepare a
concept-wise ground truth of the complete test data. For this purpose, they used the following pooling
technique. First, a pool of possibly relevant shots is obtained by gathering the sets of shots returned by
the participating teams. These sets are then merged, duplicate shots are removed, and only the remaining
shots are annotated manually. These annotations are then used for evaluation of all the submitted runs.
It should be observed that this technique can result in the underestimation of the performance of new
algorithms and, new runs which were not part of the official evaluation, as all unique relevant shots
retrieved by them will be missing from the ground truth collected.
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Figure 3.1 Example images for different classes from TRECVID 2009 dataset
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Figure 3.2 Pipeline for semantic concept based video retrieval

The approximate AP calculated in this manner is referred to as Inferred Average Precision (IAP) [79],
and is used for comparing the performance of various detectors on the test data. And the mean of this
performance measure over all concept detectors is referred to as the mean inferred average precision
(mIAP).

3.2 Complete Pipeline for key-word based semantic video retrieval

In order to retrieve videos of semantic concepts at accurate points of the time in video, video se-
quences are first divided into basic segments (called as video-shots). These video-shots consist of se-
quence of frames that represent a continuous action in space and time. There are many automatic video
segmentation algorithms in literature, most of which depend on comparison of successive frames in the
video at pixel or frame level (e.g. a change in the camera view point). Each of these video-shots are
represented by a single frame which is called as a key-frame. One simple choice of a key-frame can
be the middle frame of the video-shot. We can also choose to have multiple key-frames for a given
video-shot.

Semantic Concept based Video retrieval is solved by treating it as a supervised machine-learning
problem of image-classification, where a classifier’s confidence score for the key-frame is used for
ranking the corresponding video-shot. If there are multiple key-frames in a video-shot, then the maxi-
mum of the confidences for all the key-frames in the shot is considered for ranking that shot. Note that
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Category TRAIN VAL
No. of pos. No. of neg. No. of pos. No. of neg.

Two people 1964 19723 2543 19140
Hand 1108 20437 916 20297
Street 949 20852 972 20746
Cityscape 626 21275 442 20990
Flower 335 21400 391 21353
Boat Ship 256 21282 266 21610
Nighttime 254 21271 275 21583
Kitchen 253 21347 67 21746
Singing 143 21409 427 21266
Classroom 141 21417 153 21312
Telephone 132 21416 88 21905
Mountain 132 21398 147 21430
Driver 117 21398 192 21413
Bridge 113 21433 93 21690
Emergency Vehicle 86 21498 75 21900
Dog 79 21466 78 21722
Bus 78 21463 31 22034
Demonstration Or Protest 70 21397 89 21655
Harbor 66 21446 163 21723
Airplane flying 11 21517 68 21770

Table 3.3 Statistics of example key-frames in DEVEL set for each category of TRECVID-2008 HLF
task

the main difference between image classification and semantic concept video retrieval is that ranking
is important in the problem of retrieval irrespective of the label assigned by the classifier. This HLF
task is mainly challenging due to the wide variety of variations present in the dataset and also because
of the huge size of the dataset. TRECVID dataset is very huge compared to many other publicly avail-
able scene and object category datasets like PASCAL VOC [18, 17], 15-Scene Category dataset [37],
Caltech-256 dataset [27].

Given a d-dimensional feature vector xi corresponding to a image i, the aim is to obtain a classi-
fier/model that can provide a confidence measure indicating whether semantic concept Cj is present
in the given image i. This computation of feature vectors xi for each image i is called as the Fea-
ture extraction. As explained in Chapter 1, the process of finding the confidence measure is a standard
machine-learning problem involving two phases i) Training and ii) Testing .

Figure 3.2 summarizes the complete pipeline of semantic concept based video retrieval. We have
used vision only approach in our framework, focusing mainly on the scene-like categories(where local-
ization of any object is not required). Feature representations that we used in our experiments include
GIST, PHOW(Pyramid Histogram of visual Words) and PHOG (Pyramid Histogram of Oriented Gra-
dients). Our approaches use Support Vector Machines (SVMs) as the classifiers. More details about
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Category TRAIN VAL
No. of pos No. of neg No. of pos No. of neg

Hand 1058 35508 824 36329
Female-human-close-up 924 35696 1030 36209
Cityscape 542 36038 445 36718
Doorway 378 36155 204 36977
Nighttime 341 36267 237 37002
Person-playing -a-musical-instr. 221 36397 591 36638
People-dancing 207 36344 270 36743
Demonstration Or Protest 196 36417 277 36962
Classroom 151 36447 135 37096
Boat Ship 127 36493 60 37179
Telephone 116 36504 127 37112
Chair 109 36511 196 37043
Person-eating 104 36502 71 37164
People-singing 87 36533 380 36859
Traffic Intersection 86 36496 49 37165
Bicycle 74 36538 189 37030
Person-playing-soccer 71 36549 74 37165
Bus 46 36574 32 37207
Infant 37 36504 30 37149
Airplane Flying 19 36601 78 37161

Table 3.4 Statistics of example key-frames in DEVEL set for each category of TRECVID-2009 HLF
task

the feature representations we used and the SVM classifiers is provided in Chapter 2. We discuss our
experimental setup and various experiments that we have performed for HLF-task(TRECVID 2008 and
2009) in the next section.

3.3 Experiments

Experimental Setup In order to evaluate the performance of the learned model, we have divided the
TRECVID DEVEL set into two sets, i) training set which we refer as TRAIN and ii) validation set which
we refer as VAL. TRAIN set corresponds to TRECVID 2007-DEVEL set and VAL set corresponds to
TRECVID 2007-TEST set (refer Table 3.3). Parameters for various feature representations that we
used in our experiments are given below:

• GIST: We have computed GIST descriptors using the publicly available MATLAB code [50]. We
used a grid size of m = 4 (4× 4 blocks) for No = 8 orientation filters at Ns = 4 different scales,
resulting in a 512 dimensional( 4× 4× 8× 4) descriptor for a given image.
• Pyramid Histogram of Gradients (PHOG): We have used PHOG-180 version with 8 bins at 3-

levels of spatial pyramid, i.e., histograms for each cell at each level are computed by assigning
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pixels based on the gradient angle to one of the 8 equal divisions of the range [0− 180] ignoring
the sign of the gradient.

• Pyramid Histogram of Visual Words (PHOW): We use PHOWgray version in which the descriptors
are computed using the gray image. These features are computed using dense SIFT[13] descrip-
tors on a regular grid with spacing of M = 5 pixels. At each grid point of the gray images, the
descriptors are computed over circular support patches at 4 different scales: 5, 10, 15, 20. To deal
with the empty patches, we zero all SIFT descriptors with L2 norm below a threshold of 200.
These dense SIFT descriptors are vector quantized into visual words using k-means clustering
with k = 300 to obtain a visual vocabulary. As usage of all the descriptors is infeasible due
to memory constraints, we randomly subsample the descriptors during clustering. Then for any
image, each pixel is assigned to the nearest visual word using L2 distance. Finally, histograms of
visual words for l = 3 levels are computed to obtain the PHOWgray features for a given image.

3.3.1 Performance Variation with different features

First, we show the performance of different features for some of the scene classes in 2009 HLF task.
For this experiment, we used a SVM classifier with exp-χ2 kernel, where χ2(x, y), x, y ∈ Rd is defined
as

χ2(x, y) =
1
2

d∑
i=1

(xi − yi)2

(xi + yi)
(3.2)

Statistics of the number of positive and negative samples used for training and testing for each class
can be seen in the table Table 3.4. Also, we present the performance obtained by combination of
features. We combine multiple features by using Multiple Kernel Learning framework [71], where each
kernel corresponds to a feature. Recall that the final kernel which is the weighted linear combination of
individual kernels is given by

Kcomb =
F∑
f=1

diKf (3.3)

The weights for these kernels are learnt using the gradient descent based MKL algorithm by [71]. We
found that the combining of features gives only a slight improvement in the performance. We can

Class Name GIST PHOG180 PHOWgray MKL(PHOWgray+PHOG+GIST)
Cityscape 0.33 0.26 0.56 0.57
Demonstration Or Protest 0.25 0.14 0.50 0.49
Traffic Intersection 0.18 0.14 0.21 0.24
Classroom 0.01 0.02 0.09 0.10
Nighttime 0.07 0.05 0.38 0.39

Table 3.5 Performance variation with different feature representations for key-frames. We can see that
using PHOWgray gives the best performance out of all the cases
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ClassName Linear RBF Intersection exp-χ2

Normalization L1 L2 L1 L2 L1 L2 L1 L2
1. Cityscape 0.32 0.33 0.39 0.41 0.53 0.48 0.56 0.54
2. Demonstration Or Protest 0.35 0.33 0.34 0.36 0.46 0.42 0.50 0.49
3. Traffic Intersection 0.12 0.15 0.14 0.19 0.20 0.17 0.21 0.21
4. Classroom 0.03 0.02 0.02 0.02 0.08 0.05 0.09 0.08
5. Nighttime 0.22 0.13 0.30 0.19 0.35 0.36 0.38 0.35

Table 3.6 Performance Variation with different choice of kernels using L1-normalized and L2-
normalized PHOWgray features

notice that PHOWgray outperforms all the other features for almost all the classes. We therefore have
concentrated mainly on using PHOWgray features for the most of our experiments in this chapter.

3.3.2 SVM parameter selection

We now show the effect of different SVM parameters on the performance of HLF task. These
experiments are performed using only 3 levels of PHOWgray features. SVM parameters that can effect
the performance are i) the penalty parameter C. ii) the choice of Kernel function k(x, y) and We found
that the value of C = 1 is the optimal choice in our experiments.

Choice of kernel function: There are also parameters which are specific to some of the kernels.
For example, γ is the parameter that is needed to be tuned for exponential family of kernels. However
using the value as γ = 1

mean(D) where D is the distance matrix has shown to be a good heuristic in
literature [71]. Table 3.6 shows the performance using Linear, RBF, Intersection and exp-χ2 kernels.
We show these results using both L1-normalized and L2-normalized PHOWgray features.

We can observe that exp-χ2 with L1-normalization out-performs all the other kernels. Also, we
can see that results with L2-normalization are better than L1-normalization for linear and RBF kernels.
And in the case of Intersection and exp-χ2 kernels, we can see that using L1-normalization is better than
L2-normalization. Results for some of the classes of 2009 using the intersection kernel are given in the
Table 3.7. In this table, the performance measure used on VAL data is AP, where as the performance
measure used on TEST data is infAP. We can see that there is a significant difference between the AP
and infAP for most of the classes.

3.3.3 Speedup with Fast Intersection Kernel

In the previous section, we have seen that exp-χ2 kernel and intersection kernel gives better perfor-
mance than linear kernels. Unfortunately these results come at a great computational expense compared
to the linear kernels, because non-linear kernels require memory and computation, linearly proportional
to the number of support vectors during testing. But, the good thing about intersection kernel is that
there is a speed-up technique proposed recently for its computation[42]. In this section, we show that
use of fast intersection kernel is a good choice for large scale categorization tasks and especially for
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Category AP inferred AP
Training Set TRAIN TRAIN+VAL
Testing Set VAL TEST
Cityscape 0.54 0.28

Demonstration
Or Protest 0.45 0.03
Doorway 0.41 0.21
Nighttime 0.40 0.24

Hand 0.39 0.20
Boat Ship 0.23 0.17

Female-human-face-closeup 0.20 0.19
Traffic Intersection 0.17 0.16

Person-playing-soccer 0.11 0.31

Table 3.7 The table shows performance obtained for some of the classes of 2009. It reports the average
precision obtained by using PHOW + fast intersection kernel SVM when trained on TRAIN and evalu-
ated on VAL, and TRECVID inferred AP when trained on TRAIN+VAL. To compute average precision
on TRAIN+VAL the complete and cleaned annotations were used. In several cases the difference in AP
and infAP is remarkable.

HLF-task. At first, we shall see how the speedup with intersection kernel is achieved. Recall that in-
tersection kernel k(x, y) for the given d-dimensional histograms x and y (x ∈ Rd, y ∈ Rd) is defined
as

K(x, y) =
d∑
i=1

min(xi, yi) (3.4)

and the decision function f for classification using Support Vector Machines is defined as

f(x) =
nSV∑
j=1

αjcjk(xi, x) + b (3.5)

=
nSV∑
j=1

αjcj

(
d∑
i=1

min(xj(i), x(i))

)
+ b (3.6)

where αj and yj denote the support vector coefficient and class label for the j sample correspondingly,
b denotes the bias and nSV denotes number of support vectors.

Time complexity for evaluating the function f(x) takes O(nSV.d). Maji et. al [42] proposed a
method to achieve this result in O(d. log nSV ). They also extend it further to find an approximate
classifier in O(d). The trick for speeding up starts with the exchanging of the summations in the above
equation, to obtain
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f(x) =
nSV∑
j=1

αjcj

(
d∑
i=1

min(xj(i), x(i))

)
+ b (3.7)

=
d∑
i=1

nSV∑
j=1

αjcjmin(xj(i), x(i))

+ b (3.8)

=
d∑
i=1

fi(x(i)) + b (3.9)

Now we have the decision function as the summation of individual functions fi, each of them defined
as

fi(s) =
nSV∑
j=1

min(xi(j), s) (3.10)

Each of the above functions fi can be computed in O(logm) time as follows. Let us consider the
function fi(s) for a fixed value of i. If x̄j(i) denotes the sorted values of xj(i)in increasing order with
corresponding α’s and labels as αj and cj . If r denotes the largest integer such that x̄r(i) ≤ s, then we
have,

fi(s) =
nSV∑
j=1

ᾱj c̄jmin(x̄j(i), s) (3.11)

=
∑

1≤j≤r
ᾱj c̄j x̄j(i) + s

∑
r≤l≤nSV

ᾱj c̄j (3.12)

denote the first term in the above equation by Ai(r) and second term by Bi(r).

As the above function is piecewise linear, and the functions Ai(r) and Bi(r) depend only on the
support vector parameters α and y. By precomputing the d functions fi, then fi(s) can be computed
in two steps. i) first finding r, the position of s = x(i) in the sorted list x̄(i) using binary search and
ii) linearly interpolating between fi(x̄r) and fi(x̄r+1). This enables the reduction of complexity for
computing the decision function f(x) from O(d ∗ nSV ) to O(d log nSV ).

In order to compute f(x) approximately in O(d),[42] compute fi(s) with a table look-up in the
piecewise linear/constant approximation. This is made possible by using the fact that fi(s) can be
represented as a piecewise linear segments.

In order to show the trade-off between performance and the testing time, we show the following
experiment comparing the AP ( Average Precision ) and Testing Time for some of the scene categories
in TRECVID 2009 using exp-χ2 kernel, intersection and fast-intersection kernel. We use the MATLAB
implementation[41] provided by the authors of [42] for results of fast-intersection kernel. For the fast-
intersection kernel, we have used a piecewise-linear approximation. In the Table 3.8, we can see that
a speedup of nearly 10X is achieved by using fast-intersection kernel for all the categories over using
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exp-χ2 with a slight change in the performance.

ClassName Training Size Validation Size exp-χ2 Intersection Fast-Intersection
Pos Neg Pos Neg AP Testing AP Testing AP Testing

Time Time Time
(secs) (secs) (secs)

Cityscape 542 7208 445 36781 0.56 1926 0.53 1440 0.53 170
Demonstration 196 7284 277 36962 0.50 1132 0.46 840 0.46 112
Or Protest
Traffic 86 7300 49 37165 0.21 845 0.17 670 0.17 106
Intersection
Classroom 151 7290 135 37096 0.07 1408 0.08 980 0.08 109
Nighttime 351 7254 237 37002 0.38 987 0.35 792 0.35 114

Table 3.8 We can see the speedup achieved using fast-intersection Kernel with only a slight effect on
performance

3.3.4 Effect of training data size

In this experiment, we show the effect of number of training positives and training negatives on the
performance of the classifier. We performed this experiment for Cityscape and Demonstration Or Protest
categories, using the fast-intersection kernel[42] and L1-normalized PHOWgray features. We have fixed
the value of C as one for this experiment.

Graphs in the Figure 3.3 and Figure 3.4 show the variation of AP(z-axis) with change in the
percentage of total available positives and negative samples used. The value of AP for each point in the
graphs is averaged over AP’s obtained by training with 3 different random sets of positive and negative
training samples. We can see that the performance mainly increases by increasing the number of positive
training samples. Also, we can observe that there is not much effect by the change of the number of
negative training samples. From the graphs, we can see that 10% of total negative samples can give the
same performance as the one given by using all the negative samples(which is nearly equal to 0.55 for
Cityscape and 0.45 for Demonstration Or Protest).

3.3.5 Effect of noise in the training data

We found that the collaborative annotations for the TRECVID high level features to be quite noisy:
some shots are wrongly annotated, and others are labeled as skip when they are, in fact, unambiguously
positive or negative for the feature. To remove this noise in the annotation, we used a weak classifier
trained on the noisy data for each high level feature as follows

1. Train a classifier using all the +ves and a subset of -ves in TRAIN and VAL sets according to the
Collaborative Annotation.
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Figure 3.3 Variation of Average Precision with number
of positive samples and negative samples for “Cityscape”
category

Figure 3.4 Variation of Average Precision with number
of positive samples and negative samples for “Demon-
stration Or Protest” category

2. Re-rank all the images in the TRAIN+VAL set based on the classifier output.

3. Refine the annotations of the top 5000 ranked images.

In this manner, we could find many of the wrong annotations with minimal manual effort. This re-
finement was found to be very effective. For example, for the Doorway category the AP performance
increased from 0.16 using noisy annotations to 0.41 using cleaned annotations. Note that the perfor-
mance on both of these results is assessed on the cleaned annotated VAL set.

As there are very less number of positive samples in the training data, we have downloaded images
with tags related to each of the categories using Google Image Search and photo-sharing websites like
Flickr. As these image search engines are not content-based, we got lot of images which do not have the
query scene in them. For this purpose, we have filtered these images manually and then used them for
training. We refer this set of extra images downloaded from internet as WEB set

In order to evaluate the effect of adding these extra images, we have trained classifiers using TRAIN
+ WEB sets and evaluated it on the VAL set. The performance comparison with and without extra
images for the 2 scene categories “Cityscape” and “Classroom” is shown in the Table 3.9. We can see
that there is only a slight improvement in the performance by adding extra images.

ClassName Trained with Trained with Trained With
TRAIN set WEB set TRAIN+WEB set

Cityscape 0.44 0.33 0.45
Trecvid size: 543
WEB size: 3652
Classroom(543 + 3652) 0.12 0.04 0.06
Trecvid size:160
WEB size:3183

Table 3.9 Comparison of performance(AP) on VAL set obtained by training using TRAIN set, WEB set
and TRAIN+WEB set
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ClassName SIFT based PHOWgray DAISY based PHOWgray

Cityscape 0.36 0.21
Two People 0.12 0.11
Mountain 0.18 0.10
Hand 0.11 0.09

Table 3.10 Comparison between the performance obtained using SIFT based PHOWgray and DAISY
based PHOWgray. We can see that the performance of SIFT is slightly higher in almost all the cate-
gories. But, DAISY is faster to compute compared to SIFT descriptor.

3.3.6 Speeding up the feature extraction

We have seen that PHOWgray feature representation is very much useful for HLF task. Majority
of the time taken for computing these PHOWgray features is spent in the computation of dense SIFT
descriptors. In order to speedup this process, we have experimented by replacing SIFT descriptors
with its variant called as DAISY descriptors [66]. Computation of DAISY descriptor for an image of
352 × 288 took only 1 second as opposed to the 30 seconds. Comparison of the results using SIFT
based PHOW and DAISY based PHOW representation is presented in the Table 3.10. This experiment
is done by training on some of the TRECVID 2008 categories by training on TRECVID 2008 DEVEL
set and testing on TRECVID 2008 VAL set. We have used SVM with intersection kernel as classifier.
We can see that the results obtained using DAISY based PHOWgray are almost equal to those obtained
using SIFT based PHOWgray.

3.3.7 Use of Subcategories

Images belonging to a category can be further divided into groups of images (or sub-categories)
based on their visual appearance(color, pose, appearance, etc.,). For example, cityscape category can
be divided into the following categories: Cityscape-topview, Cityscape-Far, Cityscape-near, Cityscape-
veryfar and Cityscape-verynear,etc.,

Most of the image categorization techniques in literature[13, 7, 20] learn the classifier for the given
category using a single training set of images covering all these sub-categories. This can result in an
inaccurate model for the given category, as it is a tough task for the classifier to learn all the variations
present in the training set.

For this purpose, we propose to build a classifier for each of the sub-categories SCi of category
Ci separately, and then combine the outputs of these classifiers for testing the presence of category
Ci in a given image. We conduct this experiment for two categories of TRECVID 2009 HLF task
namely Cityscape and Demonstration Or Protest. For this purpose, we have annotated the key-frames
of TRAIN and VAL sets with the subcategory it belongs to. Example images belonging to each of the
subcategories are shown in the figure Figures 3.5 and 4.1. We used PHOWgray features and SVM
with fast intersection kernel as classifier for this experiment. Though quantitatively the AP obtained by
using subcategories was not greater than the AP without using subcategories, we found that a different
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ranking of images is obtained by using this method. Also we found that some of the positive images
which have low scores get high scores when subcategories are used. More experiments using this idea
of sub-categories are presented in the next chapter.

3.4 Submitted Results

We have submitted runs for all the categories in 2008 and 2009. For 2008 submission, we have
used exp-χ2 kernel, without refining the data. For 2009 submission, we have used the fast intersection
kernel with refined data. Key-frames of the top ranked shots in TEST data 2009 submitted for HLF
task for categories “Hand” and “Female-human-face-closeup” can be seen in the Figures 3.7 and 3.8.
Figure 3.6 shows the inferredAP according to TRECVID 2008. According to this performance measure,
we performed very well and are in the third position for the Cityscape category.

3.5 Generalization: Results on a different video dataset

Classifiers trained using TRECVID data were used to retrieve some of the semantic categories from
video data provided by BBC TV channel. This data is completely different from the TRECVID DEVEL
and TEST datasets, is a collection of 428 very old videos(1970’s) of different TV programmes. The total
duration of the videos is 220 hours and in total there are 137921 key-frames. These videos are divided
into shots by using a automatic video segmentation. We then retrieved the video-shots in the same way
as we did for TRECVID test data. Top results for the categories Person-playing-a-musical-instrument,
Boat ship and Cityscape categories are shown in the Figures 3.9 and 3.10. These results show that
the classifiers have a very good generalization power as these classifiers are trained on a completely
different data.

3.6 Discussions

In this chapter, we analyzed the performance of various features and SVM-based classification meth-
ods for the task of large scale concept retrieval. We presented our attempts to improve the performance
beyond the best performing state-of-the-art methods. Augmented with various experiments, we have
shown the success of SVM with combination of PHOW features for many scene categories in TRECVID
2009 High Level Feature extraction competitions. We also presented how the choice of fast SVM’s is
highly suitable for the task of large-scale semantic concept retrieval.
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Cityscape_far

Cityscape_topView
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Figure 3.5 Example images for different sub-classes for ”Cityscape” from TRECVID 2009 DEVEL dataset
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Figure 3.6 Inferred AP for different categories for our TRECVID08 submission

Figure 3.7 Results for category “Hand” on TRECVID09 Test Data

42



Figure 3.8 Results for category “Female-human-face-closeup” on TRECVID09 Test Data
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Figure 3.9 Results for category “Cityscape” in BBC data using the classifiers trained on TRECVID data
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Figure 3.10 Results for category “Person-playing-a-musical-instrument” in BBC data using the classifiers
trained on TRECVID data
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Chapter 4

Modelling Sub-Categories

4.1 Introduction

As discussed previously in the section 3.3.7, set of images belonging to a semantic category can be
further sub-divided into sub-groups, such that images belonging to a sub-category share a common as-
pect(for example “pose”). In general, training a classifier uses only the class label and the feature vectors
of examples. In this chapter, we show how sub-categories(sub-classes) information can be augmented
with class labels, to improve the performance of SVMs. We mainly show how this helps in boosting
the performance of computationally inexpensive kernels like “linear kernel”. We present our attempts
using sub-category information to improve the performance of SVMs with “linear kernels” such that
it can perform as good as computationally expensive kernels like “quasi-linear(ex: intersection)” and
“non-linear” kernels (ex: RBF).

To train a classifier for a category of interest, standard SVM formulation uses pairs of (xi, yi), i ∈
{1, . . . , n} . Here, xi denotes the feature vector and yi denotes the label for the given sample i. If
ysi denotes the sub-category label for a given sample, we want to use tuples of the form (xi, yi, ysi )
in the training process. We use structural SVM to show how this sub-categories information can be
included in the training process [69]. Structured SVMs is a generalized SVM classifier designed for
learning a function which can predict a complex label like trees, sequences or sets (e.g. prediction
of a parse tree for a given sentence). Also, we investigate the use of different kinds of sub-category
groupings for improving the performance. For this purpose, we analyze the performance for problems
of classification and detection obtained using different ways of groupings. Example way of grouping
the set of images is to cluster them in their features space. We present an iterative algorithm similar to
the one proposed in [81] for learning sub-category labels for the training set that can lead to optimal
performance. We also analyze the performance variation based on different initializations. The structure
of this chapter is as follows. At first, we provide the background for structured SVMs [69] and latent
structural SVMs [81]. Later we present our approach of using sub-category information using structured
SVMs and latent structural SVMs. We show the performance comparison for classification/detection
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Figure 4.1 Example images for different subclasses present in the category “CAR” based on “pose” information
(from VOC 2007 dataset). The annotations of subclasses are already included in the dataset.

using sub-categories with the approach that does not use sub-categories on 2-D synthetic dataset and
also for some of the categories in PASCAL VOC 2007 [18] and TRECVID 2009 datasets.

4.2 Structured SVMs

Background: Suppose we are given a training set S of input and output pairs (xi, yi), . . . , (xn, yn) ∈
(X × Y). Structural SVMs learn a prediction rule of the form

fw(x) = arg max
y∈Y

〈w, ψ(x, y)〉 (4.1)

where ψ is a joint feature map which describes the relationship between input vector x and the structured
output label y. The design of this join feature map function ψ mainly depends on the application. Here
w is the parameter vector to be determined in the process of training using the training set S.

In training stage, w is determined by minimizing the regularized risk on the training set S. This
risk is measured by using a loss function ∆(y, y′), which measures the risk of predicting the output of
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a sample as y′, whose ground truth is y. Training process in Structural SVMs optimizes the objective
function whose final form after including the Lagrangian multipliers can be written as

min
w

1
2
||w||2 + C

n∑
i=1

[max
ŷ∈Y

[∆(yi, ŷ) + 〈w, ψ(xi, ŷ)〉]− 〈w, ψ(xi, yi)〉] (4.2)

This is a convex optimization problem and is solved efficiently by using cutting-plane or stochastic
gradient methods [69, 82, 31, 23]. For our problem, we consider the class label y augmented with
the subclass label ysi as the output label for a given sample. If we have C classes and Si subclasses,
i ∈ {1, 2 . . . , C} for each of the class, then we will have a total of

∑C
i=1 Si possible tuples of (y, ysi ).

In order to introduce non-linearity, a joint kernel function corresponding to the joint feature map is
used in structured SVMs.

Our formulation: In our case, the joint feature map and the joint kernel function are defined as follows

ψ(x, (y, ys)) = [(v ⊗ 1d)� ψ(x)] (4.3)

K(xi, yi, ysi ,xj , yj , y
s
j ) = K(xi,xj) if yi == yj and ysi == ysj (4.4)

where v’s are a set of indicator variables. Number of such variables is equal to the total number of pos-
sible ys and 1d denotes a d-dimensional unit vector. Here, vj ∈ {0, 1} and vj = 1 means that the image
belongs to that combination of class label and subcategory label. And,⊗ denotes the Kronecker product
and � denotes the Hamard product. The expression for the joint feature map ψ can be understood as a
stacking of vectors, placing the feature representation ψ(x) at the place where v is equal to 1.

We use the following loss function which penalizes only the misclassification’s at the class level,

∆(yi, yj , ysi , y
s
j ) = 1 if yi == yj (4.5)

In our experiments, we consider the classifier “without using sub-class information” as the baseline
classifier. If we use structured SVM for this 2-class problem (no subclasses), we will ys ∈ {1, 2} and
y ∈ {−1, 1}

Structured SVM formulation without sub-class information is slightly different from the standard
SVM formulation due to a missing bias term. In the next section, we show how structured SVM formu-
lation without sub-class can be equalized to the standard SVM formulation.

Adding Bias Given a set of example inputs {x1,x2, ....xn} with labels {y1, y2, .....yn} ∈ {+1,−1}.
Our aim is to prepare a prediction function f which maps from x to y. Recall that, in standard SVM
formulation, our objective function which tries to minimize the margin w is
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min
w,b

1
2
||w||2 + C

n∑
i=1

ξi

ξ ≥ (1− yi(〈w,xi〉+ b)) ∀i

ξ ≥ 0

where ξ is the slack variable which allows mistakes and C is the regularization constant.

In training step, structured SVM’s find the parameter w which minimizes a risk function on the
training data. The objective function minimized during training is

min
w

1
2
||w||2 + C

n∑
i=1

ξi

ξi ≥ (1 + 〈w, ψ(xi, ŷ)〉 − 〈w, ψ(xi, y)〉)4(yi, ŷi) ∀i

In order to make structured SVM formulation equivalent to standard SVM formulation without any
subcategories, we end up with the optimization function of the following form after substituting the
corresponding loss function and feature map function. This formulation involves a additional variable
B. It is found that setting B to a high value (around 100) gives acceptable results.

min
w,b

1
2
||w||2 +

1
2

(
b

B
)
2

+
∑
i

ξi

ξi ≥ 1− yi(〈w,xi〉+ b)

ξi ≥ 0

(4.6)

4.3 Learning the optimal sub-categories

Till now, we have seen how sub-categories can be included in a structured SVM framework for
improving the performance of classification. Now we consider the problem of finding the groupings
which can give best possible performance. To solve this problem, we use the work of learning structural
SVMs with latent variables [81]. This work proposes the use of latent variables in the training data and
shows how structural SVMs can be learnt using latent variables. This is proposed with an intuition
that input-output relationships are not only characterized by (x, y) ∈ (X × Y) pairs in the training set
alone, but also on a set of unobserved latent variables h ∈ H. [81] present an algorithm using which
latent variables and structural SVMs are optimized alternatively in an iterative manner. In our case,
we consider sub-category labels as the latent variables in the formulation. Use of latent variables in
structural SVM formulation was also introduced in a different manner in [21].
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Structural SVM with latent variables: If (xi, yi), (i = 1, . . . , n) are the given set of training samples
and hi be the latent variable for each sample i, then structural SVM formulation is extended to include
h by adding an extra argument in the joint feature map ψ(x, y) making it ψ(x, y, h). This joint feature
map describes the relation among input x, output label y and latent variable h. A joint kernel function
can also be defined in similar manner.

The prediction rule in the case of latent structured SVM id defined as

fw(x) = arg max
(y,h)∈Y×H

[〈w, ψ(x, y, h)〉] (4.7)

The objective function optimized in this case is of the form

min
w

[
1
2
||w||2 +C

n∑
i=1

max
(ŷ,ĥ)∈(Y×H)

[w.ψ(xi, ŷ, ĥ) + ∆(y, ŷi, ĥ)]− [C
n∑
i=1

max
h∈H
〈w, ψ(xi, yi, h)〉]] (4.8)

Algorithm 1 Algorithm for Latent Variable Optimization.
1: for t = 1 to nIterations do
2: Train the Struct. SVM classifier to find the parameter w(t) using h(t− 1)
3: Use Struct. SVM parameters to find the new subcategory labels

hi(t) = arg max
ĥ∈H

[〈w, φ(xi, yi, ĥ)〉] ∀i ∈ 1, . . . , n

4: t← t+ 1
5: end for

The complete algorithm for learning the optimal sub-category labels starting from any set of sub-
category labels is presented in the Algorithm. 1. This algorithm alternates between i) finding the latent
h∗i variables that best explain the training pair(xi, yi) and ii) finding the structural SVM parameters. It
is similar to the iterative optimization process of Expectation-Maximization algorithm.

4.4 Experimental Results

For our experiments, we used a MATLAB implementation of structural SVM which is based on
the publicly available C-implementation [9]. At first, we show how sub-categories can be useful for
improving the classification performance on a synthetic 2-dimensional data. For this purpose, we have
generated different kinds of 2-D data. These different 2-dimensional data are plotted in the Figure 4.2.
Each of them differ in the arrangement of positive and negative examples. We compare the performance
obtained using “linear kernel” and “intersection kernel”, with subcategories and without subcategories.
We denote different cases as follows

• Linear Kernel without subcategories by LIN
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• Linear Kernel with subcategories by LINsub

• Intersection Kernel without subcategories by INT
• Intersection Kernel with subcategories by INTsub

For each of these 2-D data, Figures 4.4 and 4.5 show the boundary and performance comparison for
LIN, LINsub and INT. Red colored points are the positive samples and the green points are the negative
samples. In order to show how the space is classified, we have plotted the space with a color-map based
on the scores obtained at different points in the space. We can clearly see how sub-category information
is very much useful in the case of linear kernel. By using sub-category information the region marked
with red color is being classified properly. Also, it is observed that LINsub over-performs INT when the
data is highly correlated. We can see an example case in the Figure 4.5, where LINsub over-performs the
INT. Effect of the parameterC for all the three cases is shown in the Figure 4.3. Figure 4.6 shows how
the category and sub-category labels are changed with each iteration (We show this for some iterations
to make it easily understandable). Initially, we have started with an idea of using subclasses only for
the positive class, but it is found to be beneficial using subclasses also for the negative class. This can
be especially seen in the Figure 4.7, which shows the variation of boundaries and performance with
change in the number of subclasses used for positive and negative classes. Also, we show that similar
performance can be obtained by using different types of initialization. We have considered two kinds of
sub category initializations: 1. RANDOM subclass labels and 2. Subclass labels obtained by using any
Clustering algorithm (ex: k-means).

4.4.1 Real Data

We study the effect of using subcategories by performing experiments on real data for TRECVID
2009 High Level Feature Extraction task for videos [61] and PASCAL Visual Object Category 2007
object detection task for images [18].

VOC 2007 For object detection task on VOC 2007 dataset [18], we have used the pipeline of [73].
This pipeline contains a cascade layer of classifiers, varying from weak to strong classifiers with increase
in layer. Also, the computational complexity of the classifier increases with each layer. Specifically, the
first layer uses a classifier based on linear kernel, second layer uses a χ2 kernel and the third stage uses
exp-χ2 kernel. Training is done using bounding boxes of the object category examples and negative
examples, each of them having different scales and aspect ratios. We work on the output of the second
layer of this cascade. We have used only level 2 of PHOW features for these experiments. We per-
formed the experiments, same as those performed on the 2-dimensional synthetic dataset. Figures 4.8
and 4.9 show the variation of AP on training and validation data with change in the number of sub-
categories in positive and negative data for linear kernel. Figures 4.10 and 4.11 shows the improvement
of performance for linear kernel with each iteration of optimizing subcategory labels using latent SVM.
Figure 4.12 shows the similar performance variation using intersection kernel. The summary of the re-
sults is that we were able to get better performance by using linear kernel with subcategories compared
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Class 1
Class 2

Figure 4.2 Example synthetic 2-D datasets that we used for our experiments to show how “SVM with linear
kernel using subcategories” can perform as good as “SVM with intersection kernel without using subcategories”.
In each dataset, we can see that the positive and negative data are arranged in different manner. In each of these
figures, we have two classes (one class marked with ‘+’ and other with ‘o’) and for some of the classes, we show
how subclasses can exist in one of the classes. Each of these subclasses are marked with a different colour.

to the linear kernel without subcategories. But “linear kernel with subcategories” performed poorly
compared to the “intersection kernel without subcategories”. And similarly the performance(Average
Precision) obtained using “intersection kernel with subcategories” is less than the one obtained using
“exp-χ2 kernel without subcategories”.

TRECVID: We have performed experiments using two feature representations, PHOW and PHOG.
Table Table 4.1 summarizes the results of different experiments for linear kernel. We can see that
there is a slight improvement in the Average Precision for all the cases of “linear kernel + subcate-
gories” compared to the case of “linear kernel without subcategories”. Similarly Table 4.2 shows the
performance comparison for the case of intersection kernel. Here, “intersection kernel without and
with subcategories” are compared with the “exp-χ2 kernel without subcategories”. We can see that in
most of the cases that sub-categories helps in improving the performance. But it can be observed that,
“linear+subcategories” still performs poorly compared to “intersection kernel+without subcategories”.
Similarly “intersection kernel + subcategories” does not perform as good as “exp-χ2 kernel + without
subcategories”. Results using PHOG features can be seen in the table Table 4.3. We can observe that
same pattern of performance comparison both for PHOW and PHOG features between different kernels
with and without using subcategories.
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ClassName Linear Linear - With Linear - With Intersection
Without Subclass SubClass-random SubClass-kmeans Without Subclass

SetName Train Val Train Val Train Val Train Val
1. Cityscape 0.89 0.27 0.97 0.29 0.97 0.29 0.98 0.46
2. Doorway 0.99 0.22 0.99 0.21 0.99 0.22 1.00 0.32
3. Nighttime 0.89 0.09 0.82 0.12 0.90 0.12 0.97 0.25

Table 4.1 Performance Variation with and without subcategories using linear kernel and level2 of
PHOWgray features. We consider “linear kernel without subcategories” as the baseline and aim to reach
the performance of “intersection kernel” by using “linear kernel with subcategories“

ClassName Intersection Intersection - With Intersection - With exp-χ2

Without Subclass SubClass-random SubClass-kmeans Without Subclass
SetName Train Val Train Val Train Val Train Val
1. Cityscape 0.98 0.46 0.99 0.45 0.99 0.42 1.00 0.49
2. Doorway 1.00 0.32 1.00 0.33 1.00 0.29 1.00 0.33
3. Nighttime 0.97 0.25 0.99 0.25 0.99 0.27 0.98 0.27

Table 4.2 Performance Variation with and without subcategories using intersection kernel and level2 of
PHOWgray features. We consider “intersection without subcategories” as the baseline and aim to reach
the performance of exp-χ2 by using “intersection kernel with subcategories”

4.5 Summary

We have presented a method for using the subcategory information to improve the performance of
the low complexity kernels like linear kernel. We showed how the subcategory information can be learnt
automatically with an iterative optimization method. Performance of the proposed method is showcased
on various synthetic 2-dimensional datasets, and also on real world datasets for video retrieval and object
detection problems.

ClassName Linear Linear - With Intersection
Without Subclass SubClass-random Without Subclass

SetName Train Val Train Val Train Val
1. Cityscape 0.65 0.21 0.78 0.24 0.86 0.25
2. Doorway 0.76 0.12 0.87 0.12 0.77 0.14

Table 4.3 Performance Variation with and without subcategories using linear kernel and level2 of
PHOG-180 features. We consider “linear kernel without subcategories” as the baseline and aim to
reach the performance of “intersection kernel” by using “linear kernel with subcategories“
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Figure 4.3 Comparison of boundaries obtained with and without subcategories using linear kernel for “DataType
1” with different values of SVM parameter C. We can also see the boundary obtained using intersection kernel.
Each row corresponds to a different value of C. We can see that linear kernel with sub-categories is better than the
one without using sub-categories.
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Figure 4.4 For datasets 1,2,3: Comparison of boundaries obtained and performance obtained using a) linear
kernel with subcategories, b) linear kernel without subcategories and c) intersection kernel without subcategories.
We can see that linear kernel with subcategories performs as good as intersection kernel.

55



Linear Without SubClasses
ACC: Train:  50.67 , Val:  38.50

−1 0 1

−1

−0.5

0

0.5

1

Linear With SubClasses
(5 positive, 1 negative subclasses)

ACC: Train:  0.91 , Val:  0.83

−1 0 1

−1

−0.5

0

0.5

1

Intersection Without SubClasses
ACC: Train:  100.00 , Val:  96.08

−1 0 1

−1

−0.5

0

0.5

1

Linear Without SubClasses
ACC: Train:  81.67 , Val:  82.67

−1 0 1

−1

−0.5

0

0.5

1

Linear With SubClasses
(5 positive, 1 negative subclasses)

ACC: Train:  0.95 , Val:  0.97

−1 0 1

−1

−0.5

0

0.5

1

Intersection Without SubClasses
ACC: Train:  100.00 , Val:  99.67

−1 0 1

−1

−0.5

0

0.5

1

Linear Without SubClasses
ACC: Train:  86.00 , Val:  78.67

−1 0 1

−1

−0.5

0

0.5

1

Linear With SubClasses
(5 positive, 1 negative subclasses)

ACC: Train:  0.98 , Val:  0.97

−1 0 1

−1

−0.5

0

0.5

1

Intersection Without SubClasses
ACC: Train:  100.00 , Val:  97.00

−1 0 1

−1

−0.5

0

0.5

1

Figure 4.5 For datasets 4,5,6: Comparison of boundaries obtained and performance obtained using a) linear
kernel with subcategories, b) linear kernel without subcategories and c) intersection kernel without subcategories.
We can see that linear kernel with subcategories performs as good as intersection kernel.

56



Linear With SubClasses
Train: 57.00 , Val: 55.33

Iteration: 1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Linear With SubClasses
Train: 85.00 , Val: 89.00

Iteration: 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Linear With SubClasses
Train: 90.67 , Val: 90.67

Iteration: 6

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Linear With SubClasses
Train: 92.33 , Val: 91.00

Iteration: 10

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

SubClass−1 SubClass−4 SubClass−6 SubClass−7 SubClass−8 SubClass−9

Figure 4.6 This figure shows how the classification accuracy and boundaries improve with each iteration of
latent optimization using different initialization for “Datatype 2”. Here we show the boundaries for iterations
1,2,6 and 10. The performance on validation data has changed from 55.3% after 1st iteration to 91.0% after the
10th iteration.
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Figure 4.7 In the above figure, we can compare the performance and boundaries obtained using different number
of positive and negative clusters for “Datatype 2”. We can see that including subcategories for both positive and
negative classes results in a better boundary and performance
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Figure 4.8 This result is on VOC 2007 data for “car” category. Variation
of Average Precision on training set by varying the number of subclasses in
positive and negative data. Here we train on training set and test on training set
only. We can see that the performance increases by increasing both the number
of positive and negative clusters.

Figure 4.9 This result is on VOC 2007 data for “car” category. Variation of
AP on validation set by varying the number of subclasses in positive and nega-
tive data. Here we train on training set and test on validation set. Here we can
see that the performance increases with increase in the number of positve sub-
classes, but there is only slight variation with change in the number of negative
subclasses
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Figure 4.10 This result is on VOC 2007 data for “car” category. Variation of AP
with Linear kernel using different initializations: Here we use linear kernel along with
the subcategories. The two horizontal lines at the bottom correspond to the linear and
intersection kernel without using subcategories. We can see that Average Precision
increases with iterations of latent variable optimization for all types of initializations.

Figure 4.11 This result is on VOC 2007 data for “car” category. Variation of AP with
Linear kernel using different seeds of random initializations: Here we observe how
the random initializations effect the optimization. We can see that there is only a little
difference in the final performance obtained using different random initializations.60



Figure 4.12 This result is on VOC 2007 data for “car” category. The above fig-
ure shows the variation of AP with intersection kernel using different initializations.
We can see that the average precision obtained using different initializations vary
by around 0.02-0.03. However, we can observe that intersection kernel with sub-
categories is better than that of the one without using subcategories for all types of
initializations.
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Chapter 5

Efficient Detection and Classification

5.1 Introduction

In computer vision applications such as object category classification and detection, the gold-standard
kernels are the so called generalized radial-basis function (RBF) kernels [83, 74]. A typical example is
the exponential-χ2 kernel

K(x,y) = e−
1

2σ2 χ
2(x,y), χ2(x,y) =

1
2

d∑
l=1

(xl − yl)2

xl + yl
.

These kernels combine the benefits of two other important classes of kernels: the homogeneous additive
kernels (e.g. the χ2 kernel) and the RBF kernels (e.g. the exponential kernel). The homogeneous additive
kernels are designed to compare histograms and are particularly useful in computer vision since most
descriptors are, in fact, histograms (e.g. SIFT [39], GIST [67], HOG [12], bag-of-words [13], spatial
pyramids [37]). The RBF kernels, on the other hand, can represent local templates which is useful for
highly variable visual aspects.

A major problem in the use of the generalized RBF kernels is their computational cost. Training a
non-linear SVM with such kernels is typically O(dN2) or O(dN3), where N is the number of train-
ing examples and d the data dimensionality. Testing the learned SVM is also very expensive, usually
O(dN), from the need to compare each novel datum to the support vectors determined during training
(and these are usually of order N ). In contrast, there exist methods that can train a linear SVM in time
O(dN) only (e.g. SVM-perf [30], PEGASOS [59], LIBLINEAR [19]) and testing is only of order O(d)
for a linear kernel (since it only involves a scalar product between the learnt weight vector w and the
feature vector of the test image x).

The fact that kernels can be seen as inner product in an appropriate vector space suggests that it
may be possible to train and test efficiently SVMs even in the non-linear case. In symbols, for every
positive-definite (PD) kernel K(x,y) there exists a feature map Ψ(x) such that

K(x,y) = 〈Ψ(x),Ψ(y)〉 (5.1)
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where 〈·, ·〉 denotes the inner product in feature space. Typically Ψ(x) is infinite dimensional and
therefore not suitable for numerical computations. It may however be possible to find an approximate
feature map Ψ̂(x) that (i) is finite dimensional and that (ii) generates a kernel 〈Ψ(x),Ψ(y)〉 that is a
close approximation of (5.1), i.e.

K̂(x,y) = 〈Ψ̂(x), Ψ̂(y)〉, K̂(x,y) ≈ K(x,y). (5.2)

So far feature maps have been proposed for the homogeneous additive kernels [40, 75] and for the
RBF kernels [55]. In this paper we complete the story and give efficient approximated feature maps for
the generalized RBF kernels. Specifically, Sect. 5.2.1 and Sect. 5.2.2 review the homogeneous additive
and RBF kernels and their feature maps. Sect. 5.2.3 then reviews the generalized RBF kernels and
derives feature maps for them, summarizing results on the approximation error and the computational
cost, and Sect. 5.3 describes learning methods using l1 regularization to encourage sparsity and improve
testing speed. Finally, Sect. 5.5 compares empirically the various kernels and their approximations for
the case of object detectors on the VOC 2007 dataset [18]. We show that the approximate feature map
can improve performance significantly over that of the original additive kernels. An alternative to the
method we propose is to employ Nyström-type approximations [78, 2, 5] to obtain linear feature maps,
but these require a data dependent training step that we avoid here.

5.2 Kernels and feature maps

This section reviews the additive homogeneous kernels (Sect. 5.2.1), the RBF kernels (Sect. 5.2.2),
and their feature maps [75, 55]. It then introduces the generalized RBF kernels and gives a finite dimen-
sional approximate feature map for them (Sect. 5.2.3).

5.2.1 Additive homogeneous kernels

Common additive homogeneous kernels [75], such as the χ2, intersection, Jensen-Shannon (JS),
Hellinger’s, are designed to compare probability distributions. An additive kernel is defined as

K(x,y) =
d∑
l=1

k(xl,yl) (5.3)

where d is the dimension of the input histograms x,y, l is the component (bin) index, and k(x, y) is
an homogeneous PD kernel on the non-negative reals R+

0 (the kernel k is homogeneous if k(cx, cy) =
ck(x, y) for any c > 0). For instance, setting k(x, y) = min(x, y) in (5.3) yields the intersection kernel,
and setting k(x, y) = 2xy/(x+ y) yields the χ2 kernel.

[75] proposes closed-form approximated feature maps for all common homogeneous kernels. The
construction starts by factorizing k(x, y) as

k(x, y) =
√
xyK(λ), λ = log

y

x
. (5.4)
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where K(λ) is called the kernel signature, and is a scalar function that fully describes the kernel k. It is
then noted that K(λ) is the Fourier transform of a symmetric non-negative measure κ(ω) dω

K(λ) =
∫ ∞
−∞

e−iωλκ(ω) dω. (5.5)

This in turn can be used to define a feature map k(x, y) = 〈Ψ(x),Ψ(y)〉 by

k(x, y) =
√
xyK

(
log

y

x

)
=
∫ ∞
−∞

(√
xκ(ω)e−iω log x

)∗ (√
yκ(ω)e−iω log y

)
dω

=
∫ ∞
−∞

[Ψ(x)]∗ω[Ψ(y)]ω dω, [Ψ(x)]ω =
√
xκ(ω)e−iω log x

(5.6)

An approximate finite feature map Ψ̂(x) can be constructed by sampling and truncating (5.6):

[Ψ̂(x)]j =
√
L[Ψ(x)]jL, j = −n, . . . , n. (5.7)

Due to symmetries of the feature map Ψ(x), (5.7) reduces to a real vector of dimension 2n + 1 [75].
The explicit form of the feature map in the case of χ2 is given in Fig. 5.1.

Since for the intersection, χ2, Jensen-Shannon, and Hellinger’s kernels the density κ(ω) can be
computed in closed form, the approximated feature map Ψ̂(x) can also be computed from (5.7) in
closed form. A corresponding approximate feature map for an additive homogeneous kernel K(x,y) ≈
〈Ψ̂(x), Ψ̂(y)〉, is obtained by stacking Ψ̂(xl) for each of the d components of x, i.e. Ψ̂(x) = stackl=1,...,d Ψ̂(xl).

5.2.2 RBF kernels

The radial-basis function (RBF) kernels such as the exponential (Gaussian) kernel are function of
the Euclidean distance between vectors x,y:

KRB(x,y) = k(‖x− y‖22)

where k : R+
0 → R is the kernel profile [10]. An important example is the exponential kernel

KRB(x,y) = exp
(
− 1

2σ2
‖x− y‖22

)
.

Such kernels are a particular cases of the translation invariant kernels that can be written as

KRB(x,y) = KRB(λλλ), λλλ = y − x.

We may call KRB the kernel signature in analogy with the homogeneous case, but here the signature has
d-dimensional input λλλ. Moreover λλλ = y − x has a linear rather than logarithmic dependency on x and
y. As noticed in [55] and analogously to (5.6), the signature is the Fourier transform of a non-negative
symmetric density κRB(ωωω) (Bochner theorem) and κRB(ωωω) can be used to define a feature map ΨRB(x)
for the RBF kernel:

KRB(λλλ) =
∫

Rd
e−iωωω

>λλλκRB(ωωω) dωωω, [ΨRB(x)]ωωω =
√
κRB(ωωω)e−iωωω

>x. (5.8)
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Differently from (5.7), it is not practical to regularly sample [ΨRB(x)]ωωω to obtain an approximate feature
map due to the high dimensionality ofωωω ∈ Rd. Instead, [55] proposes to use random sampling. Without
loss of generality, assume that the kernel is properly normalized, i.e. that KRB(x,x) = 1. Then 1 =
KRB(x,x) = KRB(0) =

∫
κRB(ωωω) dωωω implies that κRB(ωωω) is non-negative and sums to one. Hence

κRB(ωωω) can be thought of as a probability density and (5.8) approximated by an empirical average:

KRB(λλλ) = E[e−iωωω
>λλλ] ≈ 1

m

m∑
j=1

e−iωωω
>
j λλλ, ωωω,ωωω1, . . . ,ωωωm ∼ κRB(ωωω).

The summation can be expressed as 〈Ψ̂RB(x), Ψ̂RB(y)〉, where the approximated feature map Ψ̂RB(x) is
given by

[Ψ̂RB(x)]j =
1√
m
e−iωωω

>
j x, j = 1, . . . ,m.

Note that the vectors ωωωj ∈ Rd are randomly sampled from κRB(ωωω) and act on the data x as random
projections. Note also that the complex vector Ψ̂RB(x) can be equivalently written as a 2m dimensional
real vector in terms of sine and cosine functions [55]. Its form for the exponential kernel is given
in Fig. 5.1.

5.2.3 Generalized RBF kernels

The generalized RBF kernels extend the RBF kernels to use a metric not necessarily Euclidean. For
our purposes, this is best seen in terms of kernels. Recall that, for any PD kernel K(x,y), the equation

D2(x,y) = K(x,x) +K(y,y)− 2K(x,y) (5.11)

defines a corresponding squared metric [58]. For instance, from the intersection, χ2, JS, and Hellinger’s
kernel one obtains the l1 distance, and the squared χ2, JS, and Hellinger’s distances respectively. Given
an RBF kernel KRB(x,y) = k(‖x− y‖22), one can then obtain a corresponding generalized variant

KRBD2(x,y) = k(D2(x,y)). (5.12)

Constructing an approximate feature map for (5.12) involves two steps. First, the feature map (5.7) can
be used to approximate D2(x,y) as Euclidean distance in feature space:

D2(x,y) ≈ K̂(x,x) + K̂(y,y)− 2K̂(x,y)

= 〈Ψ̂(x), Ψ̂(x)〉+ 〈Ψ̂(y), Ψ̂(y)〉 − 2〈Ψ̂(x), Ψ̂(y)〉

= ‖Ψ̂(x)− Ψ̂(y)‖22.

(5.13)

Hence the generalized RBF kernel KRBD2 can be approximated by the RBF kernel

KRBD2(x,y) ≈ KRB(Ψ̂(x), Ψ̂(y)) = k(‖Ψ̂(x)− Ψ̂(y)‖22).
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Compute a 2m dimensional approximate finite feature map for the exponential-χ2 kernel
K(x,y) = exp(− 1

2σ2χ
2(x,y)).

Preprocessing: Draw m random vectors ωωω, sampled from a (2n+ 1)d isotropic Gaussian of
variance 1/σ2.

Given: A vector x ∈ Rd.
Compute: The approximate feature map Ψ̂RBχ2(x)

1: Construct the 2n+ 1 dimensional vector Ψ̂(x) by setting for j = 0, . . . , 2n

[Ψ̂(x)]j =


√
xL sech(0), j = 0,√
2xL sech(π j+1

2 L) cos
(
j+1

2 L log x
)

j > 0 odd,√
2xL sech(π j2L) sin

(
j
2L log x

)
j > 0 even,

(5.9)

2: Construct the 2m dimensional vector Ψ̂RBχ2(x) by setting for j = 1, . . . , 2m

[Ψ̂RBχ2(x)]j =


1√
m

cos
(
ωωω>j+1

2

Ψ̂(x)
)
, j odd,

1√
m

sin
(
ωωω>j

2

Ψ̂(x)
)
, j even.

(5.10)

Figure 5.1 Feature map for the exponential-χ2 kernel. The resulting vector is 2m dimensional. Here
n controls the χ2 approximation, and is typically chosen as a small number, e.g. n = 1 (and in this
case L ≈ 0.8, see [75] for details on how to choose this parameter). The algorithm requires only two
modifications for any other RBF-D2 kernel. First, (5.9) should be adjusted according to (5.6) to match
the metric D2 (closed forms are given in [75]). Second, the projections ωωωj should be sampled from
from the density κRB(ωωω) corresponding to the desired RBF profile as given by (5.8).

Second, the random Fourier features (Sect. 5.2.2) can be used to approximate KRB. Composing the two
approximations yields an approximated feature map for the generalized RBF kernel:

[Ψ̂RBD2(x)]j = e−iωωω
>
j Ψ̂(x), j = −n, . . . , n. (5.14)

The complete procedure (from measured feature vector x to approximating feature vector Ψ̂RBχ2(x)
for the RBF-χ2 kernel is given in Fig. 5.1.

Errors and computational cost. The cost of computing the feature map (5.14) is O(mnd), where m
is the number of random Fourier features, n the dimensionality of the feature map (5.7) of the additive
kernel, and d is the dimensionality of the data x. As shown in [75], usually small values of n (e.g.
n = 1, 2) are sufficient to yield good accuracy. In particular, it can be shown (the proof is omitted for
brevity) that the error decreases exponentially fast with n for the smooth kernels such as χ2. Based
on (5.11) and (5.12), the error in approximating the additive kernel propagates to the RBF-D2 kernel
multiplied by the Lipschiz constant of the RBF kernel profile k, which is usually small. Overall, it
can be shown that the error is dominated by approximating the RBF kernel by the m random Fourier
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features. In particular, based on the error analysis of [55], m = Ω(1/ε2) random projections are needed
to achieve a uniform approximation error ε with any fixed (large) probability.

5.3 Classification with a standard Linear SVM

A limitation of the random Fourier features is the relatively large number of projections required
to obtain good accuracy (Sect. 5.5). As seen in Sect. 5.2.3, the accuracy improves only as O(1/

√
m)

with the number of projections, and the cost of evaluating the feature map Ψ̂RBD2(x) is O(mdn). The
parameter n can usually be small (e.g. n = 1), but m is often in the order of several thousands. Note,
however, that the random Fourier features ωωωj can be “optimized” in several ways. For instance, it is
possible to select (e.g. learn) from a large set of such features only the ones that are useful for a specific
problem.

5.4 Speedup by learning useful projections using sparse SVM

The simplest way to select useful random Fourier features is to use an appropriate regularizer for
SVM training. Recall that in training a linear SVM one solves the problem

min
w

1
2
‖w‖2 +

C

N

N∑
i=1

l(xi, yi; w), l(xi, yi; w) = max{0, 1− yi〈w, Ψ̂RBD2(xi)〉} (5.15)

where x1, . . . ,xN are training vectors, y1, . . . , yN ∈ {−1,+1} their labels, and l(xi, yi; w) the hinge
loss. We consider two other formulations where l1 regularization is used in order to encourage sparsity
in the w vector, and for which efficient implementations exist in LIBLINEAR [19]:

minw
1
2‖w‖1 + C

N

∑N
i=1 l(xi, yi; w)2, (5.16)

minw
1
2‖w‖1 + C

N

∑N
i=1 log(1 + exp(−yi〈Ψ(xi),w〉)). (5.17)

these are known respectively as l1l2-SVM and l1-logistic regression. We will refer to these implemen-
tations as SVMsparse and LRsparse respectively, and to the standard SVM of (5.15) as SVMdense.

From (5.10) we see that successive components of Ψ̂2j−1(x), Ψ̂2j(x) of the feature map share the
same projection ωωωj . Thus if w2j−1 = w2j = 0 the projection ωωωj can be discarded in the evaluation
of the SVM 〈w, Ψ̂RBD2(x)〉. Setting such projections to zero can be encouraged by considering the
problem

min
w

1
2

m∑
j=1

√
w2

2j−1 + w2
2j +

C

N

N∑
i=1

l(xi, yi; w), (5.18)

This problem is known as Multiple Kernel Learning SVM (MKL-SVM) [3, 71] where we defined a base
kernel for each projection ωωωj .
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Figure 5.2 Effect of RBF kernels on different feature types. AP of the sliding window object detec-
tor [75] for PHOW and PHOG features and χ2 and exp-χ2. The PHOG features benefit substantially from
the use of the exponential kernel, while the PHOW features are much less sensitive.

Notice that, compared to the MKL formulation (5.18), the SVMsparse and LRsparse formulations en-
courage any coefficient, but not specifically pairs of related coefficients, to be zero. In practice, thus,
we can remove a projection ωωωj only if both w2j−1 and w2j are set to zero. This is usually sufficient to
discard a very large number of projections, but we would expect an implementation of the MKL for-
mulation to results in an even larger number of discarded projections. We don’t investigate MKL any
further here though.

5.5 Experiments

We evaluate the proposed feature maps as part of the construction of an object detector on the PAS-
CAL VOC 2007 [18] data. The VOC detection challenge involves predicting the bounding box and label
of each instance of the target class in several thousand test images. We work on top of the state-of-the-
art multiple-stage detector proposed in [73], using source code provided by the authors. The multiple
stages are a cascade of a linear, χ2 and exponential-χ2 (exp-χ2) detector. Thus the feature map (5.14)
can be used to speed-up the third stage of the cascade (exp-χ2), which is also noted to be the bottleneck
in [73].
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Figure 5.3 Additive, exponential, and approximated kernels. Performance of a car detector. The
baselines are the exact exp-χ2 kernel (corresponding to the third stage of the cascade [73]) and the
exact additive χ2 kernel (second stage). The exponential variant is better by 20% AP. The approximated
exp-χ2 kernel is shown for an increasing number of random Fourier features m (results are averaged
over five sets of random projections). The approximation trades-off speed and accuracy. For instance,
at 30% AP the approximation is twice as fast as the exact exp-χ2 kernel and twice as accurate as the
exact additive χ2 kernel. The sparse solutions found by SVMsparse and LRsparse are faster still with only
a small impact on performance (and in some case with improved performance).

5.5.1 Experimental Setup

While [73] uses up to six image descriptors, here we focus only on PHOG and PHOW since these
illustrate the main features of the proposed approach. PHOW are visual words obtained from rotationally
invariant SIFT descriptors extracted on a regular grid with five pixels spacing, at four multiple scales (10,
15, 20, 25 pixel radii), zeroing the low contrast ones. Descriptors are then quantized in 300 visual words.
PHOG [6] is a sparse multi-scale version of HOG [12]. The Canny edge detector is used to compute
an edge map and the underlying image gradient is used to assign an orientation and a weight to each
edge pixel. The orientation angle is then quantized in sixteen bins with soft linear assignment and an
histogram is computed. Both PHOW and PHOG features are then converted into spatial histograms [37]
with 1 × 1, 2 × 2, and 4 × 4 subdivisions in order to characterize each candidate object bounding box
B. Overall each region is described by a 6,300 dimensional vector x for the PHOW features and 336
dimensional for the PHOG features.

Fig. 5.2 compares the performance of the exact kernels with PHOW and PHOG features. A first
important observation is that, while the PHOG features benefit substantially from the exponential kernel,
the improvements with the PHOW features is much more limited. Our interpretation is as follows: The
PHOG features (edglets) are not very discriminative in isolation, but their combination, capturing the
shape of the object, is. This makes the local exponential kernel particularly important (for its template
matching ability). The PHOW features, on the other hand, are quite discriminative in isolation since
they match the semi-local SIFT ‘footprint’, and can be used with an additive kernel that, by operating
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Figure 5.4 Sparsity vs performance. In order to make the approximated random Fourier features
more competitive, we perform a random selection of the useful projections. Based on the formulations
of Sect. 5.3, the only parameter that controls sparsity is C, which also controls overfitting. As C is
increased from 10 to 200 the AP matches the one of the dense SVM, but also the testing time. For low
value of C it is however possible to obtain fairly competitive AP (about 30%, still much better than the
exact χ2 kernel) with a seven-fold increase of speed compared to the exact kernel.

independently on each component, is more similar to a voting process than to template matching. In
this case, just the presence of certain visual words is important, not so much their specific combination.
Thus less is gained by the exp-χ2 kernel over the χ2 kernel. Therefore, in the rest of the experiments
we focus only on the PHOG features.

5.5.2 Approximated kernels.

Fig. 5.3 compares the exact and approximated exp-χ2 generalized RBF kernels and the χ2 additive
homogeneous kernel on the object class car. The exact exp-χ2 kernel performs much better than χ2

for the PHOG features. The dense approximated version, SVMdense, converges to the exact exp-χ2

performance as more random projections are added. With around 104 projections the approximated
exp-χ2 kernel is already much better than the χ2 kernel, and it is about seven times faster in testing than
the exact exp-χ2. The sparse SVM, and especially the sparse logistic regression, can further discard up
to half of the projections as redundant, without impacting accuracy significantly. In this example the
approximation does not improve training time compared to th exact kernel due to the limited amount of
training data; however, the training complexity is just linear, compared to quadratic of the exact kernel,
so that the approximate representation would be better for large enough data sets. The exact RBF kernel,
which could be approximated by using directly the technique from [55], was also tested but resulted in
extremely poor performance (below 11% AP). This is due to the fact that the l2 metric is a particularly
poor match for the PHOG features. Fig. 5.4 and 5.5 illustrate in more detail the effect ofC on the sparsity
and speed and their trade-off. It can be seen that an AP performance far superior to that of an exact χ2

kernel can be achieved at a lower test cost. For example for C = 10 and 2 × 104 projections the AP is
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Figure 5.5 Effect of C on sparsity. Both SVMsparse and the LRsparse control sparsity through the
regularization parameter C. The figure illustrates for LRsparse the variation of testing time (inversely
proportional to the sparsity of the learned weight vector w) and average precision as C is varied. The
experiment is averaged over five sets of random projections, and repeated for sets of 15 × 103 and
30 × 103 projections. Notice how searching among more projections finds smaller sets of projections
for a given level of accuracy.

about twice that of exact χ2 and it is about three times faster. Fig. 5.6 shows that similar effects hold for
all the 20 VOC classes.

5.6 Summary

We have introduced a method to construct a finite dimensional approximate feature map for the
generalized RBF kernels. In general, the approximation is independent of the number of support vectors,
yields linear training complexity, and may easily be included into an on-line training framework. We
have shown that the finite feature map can be used to speedup testing significantly in a detection task
while still yielding an accuracy far superior to that of the additive kernels for certain visual features.
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Figure 5.6 Effect on all VOC classes Exact exponential and additive χ2 kernels for the twenty classes
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sparse SVM is from two to three times better than the dense SVM.
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Chapter 6

Conclusions and Future work

To conclude this thesis, we have proposed methods for efficient detection and classification of vi-
sual data. Our aim has been to achieve speedup with good classification performance. Each of the
contributions of this thesis can be summarized as follows.

We have started working using SVMs which have proven to be a very good choice of classifiers for
a wide range of applications in literature. But the problem with these has been that their computational
complexity. We have mainly focused on working on large real world datasets.

To this end, we have experimented using various state-of-the-art image representations (like bag of
words, histogram of orient gradients) and SVM classifiers for the task of semantic video retrieval. We
have shown how the choices of representations, classifier parameters, noise in the annotations effect
the performance of the classifiers. We have demonstrated this on the datasets of TRECVID High level
feature extraction task for the years 2008 and 2009 for various categories of scenes, objects and actions.
We have also shown that fast intersection kernel can be a good choice for this task of semantic video
retrieval. Possible future directions in this work are more experiments on feature parameters and re-
placing the local feature descriptors namely SIFT with other descriptors which can be computed in a
faster manner. Also we have used a generic approach, that is we have used a common set of features
and classification methodologies for all the classes. We can try to find the optimal set of features and
classifiers for each of the categories separately. Also, we can apply some post-processing classifiers
which are designed based on the heuristics specific to the category of interest. This can boost the results
further.

Then, we have shown how the sub-categories within each class can be used to improve the perfor-
mance of classification/detection. We have shown that this can be particularly useful for the case of
computationally inexpensive kernels like linear kernels. We have also proposed a method for learning
these sub-groupings, that help in achieving the optimal performance. We have performed experiments
on synthetic 2-dimensional datasets and real life datasets(VOC 2007 and TRECVID). We have inves-
tigated the use of subcategories using different sets of features, different SVM parameters, number of
subclasses and choice of classes for different kernels using subcategories. Possible directions in this
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work would be the use of learning better combination of features for each subclass by usina multiple
kernel learning frameworkr for each subclass.

Finally, we have introduced a method to construct a finite dimensional approximate feature map
for the generalized RBF kernels. In general, the approximation is independent of the number of support
vectors, yields linear training complexity, and may easily be included into an on-line training framework.
We have shown that the finite feature map can be used to speedup testing significantly in a detection task
while still yielding an accuracy far superior to that of the additive kernels for certain visual features. As
a future work, the feature maps for generalized RBF kernels can be used in conjunction with the feature
maps of intersection kernel to obtain a better performance in a fast manner. In order to speedup further,
we should find a better mechanism of finding/learning the good projections.
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