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Abstract

Accurate and Robust estimation of optical flow continues to be of interest due to the deep penetration
of digital cameras into many areas including robot navigation and video surveillance applications. The
canonical approach to the flow estimation relies on local brightness constancy which has limitations. In
this thesis, we re-examine the optic flow problem and formulate an alternate hypothesis that optical flow
is an apparent motion of local information across frames and propose a novel framework to robustly es-
timate flow parameters. Pixel-level matching approach has been implemented according to the proposed
formulation in which optical flow is estimated based on local information associated with each pixel.
Self information and a variety of divergence measures have been investigated for capturing the local
information. Results of benchmarking with the Middlebury dataset show that the proposed formulation
is comparable to the top performing methods in accurate flow computation. The distinguishing aspects
however are that these results hold for small as well as large displacements and the flow estimation is
robust to distortions such as noise, illumination changes, non-uniform blur etc. Thus, the local infor-
mation based approach offers a promising alternative to computing optical flow. We also developed a
method to remove motion blur from frames by using the information measures. The effectiveness of
the proposed motion estimation approach is also demonstrated on extraction of structure from motion
of synthetic microtexture patterns, cardiac ultrasound sequences and colorization of black and white
videos.
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Chapter 1

INTRODUCTION

Visual motion is the 2D velocity field corresponding to the movement of brightness patterns in the
image plane of a camera/eye. In general, it depends on the relative motion between 3D objects and the
camera, and provides rich information about the structures of the objects and their dynamic behaviour.
Human beings rely on the skills of perceiving and understanding visual motion in order to move around,
meet with people, watch movies and perform many other essential daily tasks. If we want computers
to assist us and interact with us, we must endow them with a similar capability for analyzing visual
motion, that is, accurately measuring and appropriately interpreting the 2D motion present in digital
images. This has turned out to be a highly complicated and error-prone process. The co-existence of
profound significance and great challenge makes visual motion analysis a very important and active
research area in computer vision.

Optical flow is a flexible representation of visual motion that is particularly suitable for computers
analyzing digital images. It associates each image pixel with a flow vector (vx, vy) or (v, θ), indicating
apparent instantaneous 2-D velocity. Optical flow (OF) computation is a classical problem in vision. It
underlies robust and accurate motion estimation in key applications such as automatic robot navigation,
tracking objects/people, derivation of structure from motion from noisy data such as cardiac ultrasound,
etc. One of the first important studies on the computation of optical flow was done by Horn and Schunk
[35] in the year 1981. According to their work, OF is defined as follows.

The optical flow is a velocity field in the image, which transforms one image into the next image
in a sequence. As such it is not uniquely determined; the motion field, on the other hand, is a purely
geometric concept, without any ambiguity - it is the projection into the image of three-dimensional
motion vectors [36].

In order to illustrate the concept of OF, Fig.1.1 shows three frames that are part of a video sequence
taken by a camera on a computer. The optical flow estimated for the tenth frame, which is subsampled
by 10 to avoid being too crowded, is shown in Fig.1. It overall agrees with our perception of motion in
the scene.
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(a) frame09 (b) frame10 (c) frame11

(d) OF estimated between frame10 and frame11

Figure 1.1 Three frames in a video sequence taken by a camera on computer and the estimated OF field
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1.1 Problem statement & Motivation

The canonical approach to estimating OF is based on matching patches using a brightness constancy
(BC) assumption. However, this constraint is quite limited and is often invalid in real scenes, leading to
difficulty in OF computation. In image regions that are roughly homogeneous, for instance, the OF is
ambiguous because the BC assumption is satisfied by many different motions. This assumption is also
violated by occlusions and by changing illumination, non-rigid motion, shadows, transparency, reflec-
tion etc. Additional constraints such as gradient constancy or regularization in an energy minimisation
framework have been attempted. However, situations where these fail appear quite frequently in prac-
tice. For instance, gradient based approaches do not work well for low temporal sampling found in
sequences obtained at low frames/sec, unexpected fast motions, etc. Hence, the problem of OF compu-
tation needs a fresh examination.

An alternative approach is to consider a pixel as a random variable (RV) and use local statistics for
matching across frames. Even if the brightness of one pixel undergoes large changes between two con-
secutive frames, the local statistics of that pixel will be more stable and experience much less significant
changes. Although, there have been several theories to measure information in a random variable, it has
not been studied well in the context of motion analysis. Statistical information on the other hand, has
been utilised in several ways in image alignment for medical image registration.

Two classes of measures are relevant for quantifying information: (i) Self information measures
which relate to the information present in the single RV (ex: Shannon’s entropy, Burg’s entropy etc.);
(ii) Mutual information based measures which relate to the dependence between two RVs (ex. Mutual
Information, Kolmogorov divergence etc.). A vast number of entropy measures have been introduced in
the Information theory literature generalizing Shannon’s entropy. These are parametric, trigonometric
and weighted entropies.

1.2 Contribution

In this work, we consider the statistical information such as divergence between the probability
densities of RVs for OF estimation. Our motivation is to address the limitations in the BC-based OF
formulation in vogue and explore an approach that does not trade off robustness for accuracy. The
contribution of this work includes the following three aspects.

1. a new formulation for OF estimation in terms of a local information preservation rather than
brightness preservation. This may provide a unified approach for handling small and large dis-
placements while maintaining robustness to several degradations;

2. a pixel level matching method for robust as well as accurate OF estimation;

3. an extensive analysis of the impact of different information measures based on different diver-
gence theories on OF computation;

3



1.3 Applications

The estimation of robust optical flow can be useful for many applications in computer vision and
medical image processing etc. Hence, we also examined some selected applications from the above
mentioned research fields where we need robust as well as accurate flow. Those are listed below.

• Structure from Motion (Motion Edge Detection) : We use the direction map of computed flow field
to detect the edges formed by two different coherently moving patterns in different directions.

• Heart-beat Rate estimation in Ultra-sonography : We use the cyclic nature of flow vectors to
estimate Heart rate from a given ultrasound cardiac image sequence.

• Color Flow in Film Colorization : We use flow fields to propagate color from most informative
key frame (i.e. the frame which contains maximum number of frames).

We also extended the idea of Statistical information optimization to remove the effect of motion blur
which is a common distortion in video capturing.

1.4 Organization

The first half of the thesis is devoted to optical flow estimation, and the rest describes the applications
where we need robust as well as accurate flow. To enhance visual motion analysis robustness, which is
the central issue in our study, statistical tools are extensively explored at every stage. Given the diversity
of the topics, previous work is summarized and mathematical and statistical tools are introduced when
the need arises.

Chapter 2: The common formulations of the optical flow problem are reviewed. The chapter first in-
troduces the standard formulation of the brightness constancy constraint and then reviews three common
techniques for flow estimation: gradient, block matching, and frequency based methods. In addition to
describing the approaches, the chapter explores where they are violated and examines the current ap-
proaches for coping with motion discontinuities. Finally, we also discusses about the top ranked and
well-known OF methods at Middlebury evaluation web site.

Chapter 3: The chapter introduces the robust estimation framework and uses it to reformulate the
local and global approaches. We then test the effectiveness of frame work with different variants of
divergence and discuss about some key implementation issues.

Chapter 4: The chapter discusses about the experiments we conducted to test the robustness and
accuracy levels of the proposed formulation. As a part of this, detailed descriptions of the dataset and
experimental results on real and synthetic images are presented. A survey on computational speeds are
also presented.

Chapter 5: The chapter demonstrates the performance of the proposed formulation on three appli-
cation where one needs robust as well as accurate flow fields. Those applications include (i) Motion

4



edge detection: an algorithm to locate motion edge by using OF fields, (ii) Heartbeat rate estimation: a
method to estimate heart rate from a given ultrasound cardiac image sequence by using cyclic movement
of myocardial points, and (iii) Color flow: a method to propagate the colors from a automatically se-
lected key frame by using flow vectors. For each application, experimental results on real and synthetic
images are presented.

Chapter 6: An Information-based approach can also be used to address a common problem in
capturing videos which is motion blur. This occurs due to the relative motion between the camera and
the scene during the integration time. The chapter proposes a method to remove motion blur from the
frames by using information measures with some additional constraints.

Chapter 7: We conclude by examining what questions have been answered and what questions
remain open. In doing so we point to a number of future directions for work in optical flow.

5



Chapter 2

RELATED WORK

In this chapter, we present an overview on different techniques which are used to estimate the Optical
Flow in conventional optical flow algorithms. Furthermore, we give examples of algorithms that imple-
ment the different techniques. For a comprehensive evaluation of optical flow algorithms we recommend
the articles of Barron et al. [6] and McCane et al. [57].

Existing algorithms for OF determination can be divided into three broad categories:

• gradient based computation

• phase correlation based methods

• block matching methods

Apart from their differences, these techniques implement three processing stages. According to
Barron et al. [6] these steps are as follows.

1. Noise reduction by applying low-pass or band-pass filters on the input frames.

2. Extraction of basic measurements, such as spatio-temporal derivatives (to measure normal com-
ponents of velocity) or local correlation surfaces.

3. Integration of these measurements, to derive a two-dimensional motion field, which often involves
assumptions on the motion field such as the motion varies smoothly.

We begin with the Brightness Constancy (BC) assumption as most of the OF methods depend on this
assumption.

2.1 Brightness constancy assumption

Let I(x, y, t) be the image intensity at a point (x, y) at time t. The BC assumption can be expressed
as

I(x, y, t) = I(x+ ∂x, y + ∂y, t+ ∂t) (2.1)
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I(x, y, t) = I(x+ vx∂t, y + vy∂t, t+ ∂t) (2.2)

where (∂x, ∂y) is the spatial displacement during the time interval ∂t, and (vx, vy) = (∂x∂t ,
∂y
∂t ) is the

optical flow vector. This equation simply states that a pixel maintains its intensity value during motion,
or corresponding points in different frames have the brightness.

2.2 Gradient based methods

In gradient based techniques [35, 50, 15, 14], flow estimation depends on spatio-temporal derivatives
of image intensity. These methods use approximations of the BC constraint Eq.2.2 by using Taylor series
expansion.

I(x, y, t) = I(x, y, t) + Ixvx∂t+ Iyvy∂t+ It∂t+ ε (2.3)

where (Ix, Iy, It) is the image intensity gradient vector at the point (x, y, t), and ε represents the higher-
order terms. If ε is negligible, the equation simplifies to

Ixvx + Iyvy + It = 0 (2.4)

which is a linear equation with two unknowns vx and vy. This is called as the aperture problem of OF.
Given n ≥ 2 pixels of the same motion, they can be grouped together and then vx, vy can be calcu-

lated through linear regression. Another way of obtaining constraints is to exploit second-order image
derivatives. Differentiating Eq.2.4 with respect to x, y and t respectively gives three more equations:

Ixxvx + Iyxvy + Itx = 0 (2.5)

Ixyvx + Iyyvy + Ity = 0 (2.6)

Ixtvx + Iytvy + Itt = 0 (2.7)

They can be used alone [6] or combined with Eq.2.4 [30] to solve for (vx, vy).
The most distinct attraction of gradient-based constraints, compared with matching-based constraints,

is their ease of computation. The use of derivatives allows more efficient exploration of the solution
space and hence achieves lower complexity and higher floating point precision [6]. However, it is impor-
tant to point out that such advantages do come with a cost: the additional assumptions made in deriving
the gradient-based constraints dictates a limited applicability. First of all, gradient-based constraints are
valid only for small displacements, which in practice means magnitude< 1 or 2 pixels/frame. Secondly,
in order for the higher-order terms to be negligible, the local image intensity function should be close to
a planar structure, which is also often violated. Finally, derivative estimation is a problematic process
itself. It requires a linearisation step in order to make the computation tractable. This requires a warping
strategy to handle large displacements, which can be problematic [87].
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2.3 Block matching methods

Block matching methods [3, 48] find the flow vector or displacement that yields the best match be-
tween image regions in different frames. Best match can be defined in terms of maximizing a similarity
measure such as the normalized cross-correlation (NCC), or minimizing a distance measure such as the
sum-of-absolute-differences (SAD) and sum-of-squared-difference (SSD):

(vx, vy) = argminv
∑

(x,y)εB

[I(x, y, t)− I(x+ vx∂t, y + vy∂t, t+ ∂t)]2 (2.8)

where B is the set of pixels spanned by the block.

The block matching strategy provides a good trade-off between complexity and efficiency [48]. Sev-
eral block matching criteria have been proposed using the SSD and SAD between two blocks. The
popularity of these two criteria is due to their computational simplicity and performance. However, they
do not consider the nature of the image and the information contained in a frame. These methods are
severely limited in handling any image degradation. A variant that addresses this problem to some ex-
tent is an entropy based block matching [11]. This uses a k-th nearest neighbor approach and minimizes
the entropy of the displaced frame differences.

2.4 Frequency domain methods

Transforming the BC assumption Eq.2.2 to Fourier domain yields

I∗(ωx, ωy, ωt) = I∗(ωx, ωy, ωt)e
−j(vx∂tωx+vy∂tωy+∂tωt) (2.9)

where I∗(ωx, ωy, ωt) is the Fourier transform of I(x, y, t) and wx, wy, wt denote spatio-temporal fre-
quency. Clearly, for this equation to hold, it must satisfy

vxωx + vyωy + ωt = 0 (2.10)

This is the basic constraint for frequency domain approaches. It states that all non-zero energy
associated with a translating 2-D pattern lies on a plane through the origin in the frequency space,
and the norm of the plane defines the optical flow vector. Frequency domain approaches are often
presented as biological models of human motion sensing. They can handle cases that are difficult for
matching approaches. But, extracting the non-zero energy plane usually involves heavy computation.
As a consequence, they are not as popular as the other two types of approaches. Another strategy to
improve robustness to brightness changes is to rely on phase correlation [25]. A recent version of this
approach uses the Fourier-Mellin transform to calculate the phase correlation of each pair of co-sited
patches [34].
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2.5 Middlebury benchmark site: Top ranked methods

The Middlebury benchmark site [1] presents a ranked list of methods for OF computation. Of these,
the top ranking methods are: The MDP Flow2 method [87] which estimates a coarse to fine motion
flow for both large and small displacements; the Classic+NL method [79] which employs modern opti-
mization techniques to improve the accuracy of the classical Horn-Schunk approach [35]; the Layers++
method [80] that employs a layered model-based approach aimed at overcoming shortcomings of pre-
vious approaches via a probabilistic OF estimator. The BC assumption is however common to all of
the above mentioned methods. For handling large motion scenarios, a concept of coarse-to-fine image
warping is introduced in [50]. The flow estimates are initialized from coarser levels, where displace-
ments are small enough to be estimated by local optimization. This procedure cannot estimate the flow
of structures that are smaller than their displacement. Brox et al [13] address this problem by integrat-
ing the energy minimization and descriptor matching strategies into a variational approach and guide
the local optimization to large displacement solutions.

2.6 Large displacement OF methods

For handling large motion scenarios, a concept of coarse-to-fine image warping is introduced in
[50]. They initialize the flow estimates from coarser levels, where displacements are small enough to be
estimated by local optimization. This procedure cannot estimate the flow of structures that are smaller
than their displacement. Brox et al [13] address this problem by integrating the energy minimization
and descriptor matching strategies into a variational approach and guide the local optimization to large
displacement solutions.

Matching by maximising mutual information is quite common in the medical image registration
methods [66]. These methods estimate the sparse transformation field by aligning the centres of large
size image patches. Hence, these methods cannot be used directly to compute dense flow fields on
normal images. Glocker’s work [27] for instance, uses a MRF model for non-rigid registration with the
optimal MRF found by maximising a similarity measure such as mutual information and normalized
mutual information etc, computed on relatively large size patches. Mutual information is known to
be non-convex and has typically many local maxima [59, 29]. Therefore, the non-convexity and hence
non-linearity of the motion estimation problem is enhanced by the usage of mutual information. Finally,
mutual information decouples the brightness value from the location information. Hence, judging the
output of the flow estimation process is difficult.

This thesis attempts to show that a local information constancy assumption acts as a more general
criterion that overcomes many limitations of the methods discussed above and hence propose a local-
level information maximization criteria for OF estimation.
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Figure 2.1 Screenshot of the middlebury optical flow evaluation and ranks web page
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Chapter 3

INFORMATION FLOW

3.1 Motivation

Our motivation is to find a solution for robust estimation of OF. In a motion sequence, there is indeed
an apparent variation in the brightness pattern across frames. In the past, this has been taken literally
to be the source of the flow field and accordingly spatiotemporal intensity gradients have formed the
basis for OF estimation. However, humans perceive motion robustly under varying ambient conditions
(illumination, noise).

A remarkable example of this is the second order, non-Fourier type of motion perception demon-
strated by Sperling [76] and texture patterns in [2]. The distinguishing feature of this type of motion is
that the patterns consist of regions of microtextures which move coherently. Clearly, the BC assumption
does not hold here and hence it cannot account for the perceived motion between regions. Texture-
information, which is a higher order statistic than luminance information, is said to be exploited in the
perception this type of motion [19].

Taking cue from this, we argue that underlying the apparent variation in brightness pattern is a flow
of local information across frames. Accordingly, we formulate OF as an apparent movement of local
information between the frames rather than of brightness patterns. This formulation removes the direct
dependence of OF on flow of brightness patterns and hence, permits build in an inherent robustness
to distortions such as illumination changes, noise, etc., which preserve the statistical structure of the
images. By this formulation, if we consider a pixel in frame, local information given by this pixel flows
to another unknown pixel of the next frame. Thus, the OF estimation can be modelled as a problem
of estimation of motion of local information between two pixels across successive frames. We propose
using a divergence metric to identify the corresponding pixel in the adjacent frame and compute the flow
vector.

Divergence based approaches are adopted in registering multimodal and multiband images in med-
ical and remote sensing applications [53, 66, 78] where the modalities can have very different contrast
and hence brightness or pixel intensity is not a useful feature. The Kullback-Leibler’s divergence is
popular in estimating the transformation function that relates the images to be registered. The degree
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of change (transformation) between the two images to be registered is generally gross in comparison to
that expected in successive frames of a video. Hence, it is of interest to examine if a divergence based
strategy can be adopted for accurate OF computation. The key issues of interest here are the effect of
this strategy on the accuracy/robustness of the extracted flow field and the ability to handle different
magnitudes of displacements between frames.

3.2 Optical flow to Information flow

It is often advantageous to treat images as realizations of a stochastic process as it helps quantify
questions regarding image information content via probability distributions and correlation functions
[75]. Examples of such an approach can be seen in medical image registration, visual context modelling,
etc.

3.2.1 Constant local information constraint

We assume a frame, denoted as I(x) with x being the location vector, in a given image sequence to
be a stochastic process and consider patches centered around each pixel in the frame as a set of events.
Hence, a local patch around a pixel at x represents the random variable associated with the pixel and this
local patch is constituted by pixels in the neighborhood Ω(x). We assume that pixels in a local patch to
be samples of the random variable associated with the pixel at x. For convenience, Ω(x) is taken to be a
block of size SxS centered at x. The random variable associated with the pixel at x is denoted as

R(x) = {I(y)|y ∈ Ω(x)} (3.1)

The conventional BC assumption is expressed as I(x + ∆x, t + ∆t) = I(x, t) with I denoting the
brightness at x and t denoting time. This is used to establish corresponding pixels in successive frames.
We introduce an analogous constant-local-information constraint for finding the corresponding pixels
based on the match in the information present in them:

Inf(R(x + ∆x, t+ ∆t)) = Inf(R(x, t)) (3.2)

where Inf(R(x)) denotes information present inR(x). This constraint states that the motion ∆x should
not change the information. Thus, the information measure for the pixel at x is invariant to motion
between a frame pair. This is more flexible than the BC constraint as it tolerates some local deformation.
If the measures are carefully selected and designed, it is also robust to any distortion like illumination
fluctuations.
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3.2.2 Information Flow Constraint Equations

Two variants of the proposed formulation in Eq.3.2 arise from considering two kinds of information
measures. For the first variant, we can consider the self information of one RV (R(x)) while for the
second one, we can consider the information in two RVs (in two frames).

3.2.2.1 Self-information measures

In information theory, self-information is a measure of the information content associated with the
outcome of a random variable. The term self-information is also sometimes used as a synonym of
entropy and was introduced by Claude E. Shannon [74]. An example of entropy optimization based
motion estimation is the approach in [11]. A systematic attempt to develop a generalization of Shannon’s
entropy was carried by out Renyi [69], who characterized an entropy of order k as

Hk(R) = (1− k)−1 log(
n∑
i=1

P (ri)
k), k 6= 1, k > 0 (3.3)

where R is a random variable, P its probability density function (pdf) and k is a real number. We can
easily verify that

lim
k→1

Hk(R) = H(R) (3.4)

where H(R) is the Shannon’s entropy.

Coming back to Eq.3.2, when we use entropy as an information measure,

Hk(R(x + ∆x, t+ ∆t))−Hk(R(x, t)) = 0 (3.5)

This equation is the equivalent of the well known BC equation. It can be interpreted as imposing BC-
like constraint on the patch around x in the entropy space before and after motion. Using a first order
approximation for the first term, it is clear that

∇Tx Hk(R(x, t))∆x +∇tHk(R(x, t))∆t = 0

∇Tx Hk(R(x, t))∆x
∆t +∇tHk(R(x, t)) = 0

∇Tx Hk(R(x, t))v +∇tHk(R(x, t)) = 0 (3.6)

where v = [∆x
∆t ] is the flow vector at x;∇Tx Hk(R(x, t)) is the gradient, and∇tHk(R(x, t)) is the entropy

frame difference. We call the Eq.3.6 as Local information flow constraint.
Denoting the term ∇Tx Hk(R(x, t)) as U and the term ∇tHk(R(x, t)) as b, we see that Eq.3.6 is a

simple linear constraint on motion.

Uv = −b (3.7)

If the rank(U) = 2, the least squares solution solution, v = −(UTU)−1UTb, of this overdetermined
system leads to a unique determination of the information flow at x, and thus the motion at x.
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3.2.2.2 Mutual information based measures

If we consider a pair of RVs (each from a pair of successive frames) the amount of information one
random variable (in frame1) contains about the other (in frame2) is of relevance. In Eq.3.2, there are
two RVs; one on left hand side (R(x + ∆x, t+ ∆t)) and a second one on the right hand side (R(x, t)).
Reformulating this with mutual information (MI) as an information measure the goal of OF estimation
is maximisation of this information.

maximize MI(R(x + ∆x, t+ ∆t);R(x, t)) (3.8)

∆x = argmax∆x∈Sr(MI(R(x + ∆x);R(x)))

where MI is a measure of mutual information and ∆x is the unknown flow vector describing the move-
ment of a pixel at x between successive frames and Sr is the search range.

One way to define the mutual information associated with a pair of RVs is via the divergence measure
[44]. The divergence between a pair of of RVs is defined as the distance between the product of their
marginal pdfs and the joint pdf. Such measures have been used in the analysis of contingency tables
[28], in signal processing [40, 41], in pattern recognition [7, 18] and in medical image registration
[54, 31, 55, 22]. These are based on generalised divergence theories and are known to offer improved
accuracy, robustness and speedy convergence for image registration [54, 22]. We next, present some of
the divergence measures that are of interest.

Kullback-Leibler Divergence (KLD):
The canonical measure for mutual information was introduced by Shannon and Weaver in 1949. It is
also known as Kullback-Leibler Divergence [44]. Given two random variables R1 and R2 the KLD
between them is defined as the distance between the joint pdf and the product of the marginal pdfs. It is
expressed as

KLD(R1;R2) =
∑
r1∈R1

∑
r2∈R2

PR1R2(r1, r2)log(
PR1R2(r1, r2)

PR1(r1)PR2(r2)
). (3.9)

where R1 and R2 are two patches in two video frames; PR1R2(r1, r2), PR1(r1), PR2(r2) are the joint
and marginal probability density functions (pdf) of random variables R1 and R2 respectively; and r1, r2

are realizations of random variables R1 and R2 respectively.
Normalized Kullback-Liebler Divergence (NKD):

In medical image registration, KLD is generally normalized with the corresponding average entropy
[23]. This is called as Normalized Kullback-Liebler Divergence measure (D) was used for image regis-
tration in [64]. NKD is defined in [56] as

NKD(R1;R2) =

−2
∑

r1∈R1

∑
r2∈R2

PR1R2(r1, r2)log(
PR1R2

(r1,r2)

PR1
(r1)PR2

(r2))∑
r1∈R1

PR1(r1)log(PR1(r1)) +
∑

r2∈R2

PR2(r2)log(PR2(r2))
. (3.10)
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Kolmogorov Divergence (KD):
Recently, an attempt has been made to increase the computational tractability of divergence measures
based on Kolmogorov’s divergence theory [90]. This results in a measure which is defined as the Man-
hattan distance between two distributions of RVs R1 and R2.

KD(R1;R2) =
∑
r1∈R1

∑
r2∈R2

|PR1R2(r1, r2)− PR1(r1)PR2(r2)|. (3.11)

It can be noted that this essentially measures the degree of independence between R1 and R2.

Iα-Divergence (ID):
Estimation of Iα-information arises as a step towards non-parametric estimation of Shannon entropy.
However, estimation of the α-entropy is of interest in its own right and has been employed for image
retrieval [32]. This has been used for image registration from multiple modalities via the α-Jensen
difference [52]. The expression for ID is given as

ID(R1;R2) =
1

α(α− 1)
(
∑
r1∈R1

∑
r2∈R2

PαR1R2
(r1, r2)

Pα−1
R1

(r1)Pα−1
R2

(r2)
− 1). (3.12)

Renyi Divergence (RD):
Another tractable divergence measure is the RD measure [33] as it requires only marginal pdf estimation
and avoids both polynomial expansions and estimation of joint pdf. The RD measure for a pair of RVs
is given by

RD(R1;R2) =
1

α− 1
log

∑
r1∈R1

∑
r2∈R2

PαR1
(r1)P 1−α

R2
(r2). (3.13)

Tsallis Divergence (TD):
Tsallis divergence [81] is a generalization of the standard Boltzmann-Gibbs entropy. A variant of this
divergence measure is reported as TD measure which is as given as

TD(R1;R2) =
1

(α− 1)
(
∑
r1∈R1

∑
r2∈R2

PαR1R2
(r1, r2)

Pα−1
R1

(r1)Pα−1
R2

(r2)
− 1). (3.14)

Our proposal is to use Eq.3.8 to estimate motion by matching pixels across frames. The information
measure to be used can be any of the variants of the divergence measures listed above, which are gen-
erally viewed as inversely proportional to the similarity between 2 RVs. Since the variants presented
above estimate the divergence between joint and marginal pdfs, maximization of MI(R1;R2) serves to
maximize the dependence of one RV on the other.

The divergence variants are derived from statistical information and not brightness. This aspect dis-
tinguishes them from other similarity measures: i) a divergence measure has the capacity to capture any
kind of relationship between variables because it is built from the joint and marginal pdfs of the variables
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and does not utilize statistics of any grade or order; ii) it is shift invariant under spatial transformations
[44]. The second property is based on the fact that the argument of the summands in the above equations
are non-dimensional [26]. These properties hold for all kind of motions, such as translations, rotations,
and any movement that preserves the order of the original elements of the variables. Thus, the proposed
estimator is a robust OF estimator.

3.3 Implementation issues

A number of issues arise in the course of implementation of the proposed approach for OF estimation.
We discuss them next.

3.3.1 Block size and Boundary issues

In the proposed formulation, a patch around every pixel is considered for computing local informa-
tion. The patch is chosen as a block of size SxS. S is an important parameter in this algorithm just as it
is in phase correlation or block matching based motion estimation methods. S should be large enough
to capture large displacement vectors and small enough so that these vectors remain constant within the
block. Empirically, it was found that a block size of 11x11 provided the best results for an image size
of around 300x500.

In practice, a fixed block size of 11x11 cannot be maintained at the image boundaries. Hence, the
block size was varied depending on the distance from the image boundaries. Suppose l,r,t and b are the
distances of a pixel from the left, right, top and bottom boundaries respectively. Then the block size was
chosen to be mxn where m = min(l, 5) +min(r, 5) + 1 and n = min(t, 5) +min(b, 5) + 1.

3.3.2 Range of displacement

The choice of the range of displacement (or the search range for match) impacts a few factors, with
the key ones being computational efficiency and ability to handle small versus large displacements. In
video sequences acquired at a good frame rate, the displacement of a pixel between two adjacent frames
is no more than 5 pixels. Hence, the search range for finding the matching patch was fixed to [-7:7].
This can be made higher for handling larger displacements however it will incur a higher computational
load.

3.3.3 Estimation of Probability Density Functions

Since the proposed approach is dependent on an information measure, PDF estimation is required.
This is a fundamental yet difficult problem in computer vision. Most published methods can be classified
as either histogram based methods or kernel density estimation (KDE, also called Parzen Windows
estimators) based methods. The latter has the advantage of being nonparametric. However, both have
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limitations. As a consequence of the law of large numbers, histograms require a relatively large number
of observed pixels to give an accurate and smooth estimate of the underlying density. Hence, they
perform poorly for the local estimation (from small image patches) of information measures. KDEs
require relatively fewer samples to a give a good density estimate, but the result critically depends upon
choosing the window width of the kernel. An excellent overview of nonparametric PDF estimators can
be found in [39].

In our work, a multi-variate Parzen kernel density estimation [85, 84] was used to estimate the pdfs.
This involves placing a kernel function at each sample location and evaluating the density as a sum of
the kernels. The estimation was based on a Gaussian kernel of bandwidth given as

σN = 2.345.σ∗N .N
−1/5 (3.15)

where σ∗N is the estimated standard deviation for N (=S2) data points [9]. In this work, S = 11 was
used.

3.3.4 Smoothing

In order to suppress noise due to the gradient terms in divergence based computation, a smoothing
step was included: The velocity at x was computed as the weighted average of the velocities of its
neighbors. The weights were chosen to be dependent on the information associated with the pixels.
This non-linear weight mapping helps in forcing the motion vector to be in the direction of maximum
information flow.

Let vx be the estimated velocity for a pixel at x. Then, the smoothed velocity denoted as v’x is
computed as

v’x =

∑
y∈Nx

MI(R(y + vy);R(y))vy∑
y∈Nx

MI(R(y + vy);R(y))
(3.16)

where Nx is the 5x5 neighborhood around x and MI(R(y + vy);R(y)) is the mutual information
between RVs associated with y and y + vy. Sub-pixel accurate flow vectors are found following [77] by
simply upsampling the input image using bicubic interpolation.

3.4 Summary

In this chapter, we have presented the concept of information flow and derivation of information flow
constraint equations and also explained about two kinds of information measures. We also discussed
about some issues in the implementation of proposed formulation.
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Chapter 4

EXPERIMENTS & RESULTS

The performance of the proposed robust OF estimation algorithms was evaluated using the bench-
mark Middlebury database [1], which includes synthetic and real scenes. The database consists of two
sets, one with ground truth for calibration of the method and a second one without ground truth. Both
sets were used in the assessment. These data sequences provide challenges including the aperture prob-
lem, texture-less regions, motion discontinuities, occlusions, large motions, small objects, non-rigid
motion, mixed pixels, changes in illumination, motion blur, non-Lambertian reflectance, and camera
noise [5]. Thus, these sequences provide meaningful comparisons across OF algorithms.

Since the proposed method adopts a matching strategy based on divergence, to check if the accuracy
of the flow computation is compromised we considered a weighted variant of the divergence term. For
this purpose we followed [65] which uses a gradient vector based weighting approach. The weighting
function is defined as

W (R1, R2) =
∑

(x,x’)∈(R1∩R2)

cos2(αx,x’) (4.1)

where αx,x’ is the angle between the gradient vectors ∇x and ∇x’ at a sample point (in one frame) and
its corresponding point (in the next frame) and is defined as αx,x’ = arccos ∇x.∇x’

|∇x||∇x’| . The data term to
be maxmized is defined as

D(R1, R2) = W (R1, R2)MI(R1, R2) (4.2)

We first present a comparison of OF estimation obtained with Eq.3.8 and Eq.4.2. These are reported
for different divergence measures. Table 4.1, lists the errors in estimated OF for the Rubberwhale image
sequence [1]. As in [1], the vector difference e between the ground truth OF and estimated OF is
determined and the average and standard deviation of the angle of this e as AAE and SAE, respectively,
are reported. From the tabulated results it appears that, on average, the weighting helps reduce the errors
by roughly 15 to 18%. Hence, in the rest of our experiments we used weighted variants to evaluate the
proposed formulation.

Computed flow maps for the proposed formulation along with the ground truth flow are shown for
the Rubberwhale sequence in the Fig.4.1. All flow maps are color coded according to [5] (see Fig.4.2)
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Table 4.1 Comparison of proposed OF estimation with and without weighting of the information mea-
sures for the Rubberwhale image sequence

MI measure AAE SAE
Without weighting
KLD 4.48 20.6
NKD 3.63 9.20
KD 12.8 14.7
ID 9.65 16.9
RD 27.5 26.5
TD 13.8 24.7
Average error 11.9 18.8
With weighting
KLD 4.98 9.97
NKD 3.19 7.41
KD 10.3 11.9
ID 10.1 17.4
RD 20.6 22.6
TD 11.4 23.2
Average error 10.1 15.4

plus scaled and resized. Included here is the flow map estimated with self information measure H ,
(mentioned in Section 3.2.2.1). It can be seen clearly from the figures that the results of NKD, H, and
KLD coincide well with the ground truth flow field. (Please use soft copy of the thesis to observe colors
of the figures.)

Next, we present results of a quantitative assessment of the computed flow fields computed for six
sequences. Comparison of performance with some leading OF estimation methods are also included.
Experiments were specifically done to test the accuracy, robustness to distortions of the flow field and
computational speed of computation.

4.1 Accuracy

The proposed method uses local statistics to match at the pixel level to produce dense flow field.
Hence, the accuracy of the proposed method was compared with the results of other existing dense
flow algorithms such as Classic+NL[80], Black-Anandan method [10], TV-L1-Flow [86] and a modern
Horn-Schunck’s method [79]. The AAE and SAE figures are presented in Table 4.2 are taken from
Middlebury website [1]. The best figures (least error) for each sequence are indicated in bold and the
average rank (across the 12 columns) of a method is listed as part of the suffix in the label for the method
in the first column.

From these figures, it can be observed that overall: a) the proposed formulation with the NKD
measure performs competitively against other existing methods; b) most of the errors with the proposed
method are at corner points (also seen in Fig.4.1) which could possibly be due to the final smoothing step
in our algorithm; c) almost all the divergence variants outperform existing methods on the challenging
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Figure 4.1 Results on Rubberwhale data sequence. Top row, left to right: Ground truth flow; Flow fields
with KLD, NKD and KD. Bottom row, left to right shows flow fields with ID, RD, TD, H.

Figure 4.2 Color coding of flow vectors: Direction is coded by hue and magnitude by saturation.
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Table 4.2 Comparison of AAE and SAE error metrics for different methods on the Middlebury data
sequences.

Army Schefflera Wooden Grove Urban Yosemite
Methodavg.rank AAE SAE AAE SAE AAE SAE AAE SAE AAE SAE AAE SAE

Classic+NL1.83 3.20 7.40 3.46 12.3 2.78 12.5 2.83 5.03 3.40 8.94 2.87 2.29
TV-L1-Flow4.42 3.36 7.64 6.50 21.3 3.80 17.5 3.34 5.25 5.97 14.5 3.57 3.38
Black-Anandan6.75 6.81 10.5 13.0 26.1 8.29 20.8 4.18 6.29 6.19 17.1 3.63 4.06
Horn-Schunck7.91 8.01 11.8 14.2 25.5 12.4 26.1 4.64 6.12 8.21 19.9 4.01 3.95

NKD1.81 3.19 7.41 3.44 12.1 2.98 13.3 2.96 5.05 3.40 9.18 2.83 2.57
KLD4.41 4.98 9.37 5.53 20.9 3.02 14.3 4.48 6.52 3.27 11.5 3.62 5.64
KD6.25 10.9 11.0 9.01 24.9 10.6 15.9 4.81 4.74 12.1 8.71 4.54 3.29
ID8.41 10.7 17.5 11.5 23.3 15.4 17.0 4.65 10.7 11.7 14.6 25.0 13.9
TD9.41 18.0 13.2 23.6 12.3 26.5 16.2 27.8 19.9 15.9 23.4 21.7 24.7
RD9.25 20.6 22.6 12.1 35.4 11.0 25.8 31.5 17.5 14.1 17.0 5.18 13.5

H5.75 5.64 11.5 6.32 21.7 2.61 19.2 3.74 7.69 5.36 14.7 3.18 5.19

Urban and Schefflera image sequences. In particular, our method with NKD outperforms most of
other methods on scenes with hidden texture such as Army and Schefflera and synthetic scenes such as
Yosemite. However, on the Wooden sequence, which is also a hidden texture sequence, the performance
dips marginally. Performance with KLD is also comparable with that of other methods for Army,
Urban, Schefflera, Yosemite sequences. OF computed with Kolmogorov divergence (KD) has very less
SAE for Grove sequence while with H the error is low for Wooden image sequence.

In general, the accuracy levels of our method withRD andKD are very low which is to be expected
as these divergence measures are designed to decrease the computational load by compromising the
accuracy.

The reason for superior performance of our method withNKD (1st rank among all variants of infor-
mation measure) is the simultaneous maximization of information along with minimizing the entropy
factors. This is due to the normalization by the uncertainty terms in the denominator in Eq.3.10. The
success (2nd rank) of the KLD based method is due to the non-dimensional nature of the argument of
the summand. The self information measure H based method is 3rd ranked due, mostly to its capability
to minimize the distance between two marginal distributions.

The accuracy levels of the KD based method is not consistent on all images as NKD and KLD.
This is possibly due to the fact that the measure is simplistic. An interesting outcome is the superior
performance of the self informationH- based method over RD,ID and TD-based estimation. This could
be due to fact that unlikeH , the methods based on RD,ID and TD use ratio of exponents of pdfs to match
the pixels and computation of these exponents and ratios yield noisy OF estimation. Some surprising
results can also be noted from Table 4.2: a) The KD criterion is showing very less SAE compared to
other methods on Wooden and Urban sequences which are synthetic ones. b) The same behaviour is
shown by H criterion in AAE terms on Wooden image sequence which contains hidden texture. c) The
KLD criterion is showing less AAE value on Urban sequence which is a synthetic image sequence.
These behaviours are possibly due to the gradient weighting in Eq.4.2. At the time of submission, the
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proposed formulation labeled as OF-MOI, with weighted NKD measure stands 15th and 19th in the
AAE and SAE rankings respectively [1].

Additional results are shown in Fig.4.3 to demonstrate the quality of computed flow fields computed
with NKD and classic+NL methods. The flow fields have been scaled and resized for closer examina-
tion. It can be seen clearly from the figures that the flow maps estimated with the proposed formulation
coincide well with the ground truth flow field.

Detailed comparison can be found on Middlebury website [1] for the weighted NKD-based flow
estimation. Based on these results, it can be concluded that the information maximisation strategy
does not compromise accuracy of OF estimation. The inclusion of a gradient-based weight for the
information measure serves to marginally boost the performance.

4.2 Robustness to distortions

A key benefit of information flow-based OF estimation should be increased robustness to image-level
distortions. This was tested by imposing different distortions on 2 input data sequences of which one
was a real and other synthetic sequence. Five types of degradation were considered: salt pepper noise
(10% of the frame), overexposure from a camera flash simulated by a uniform mean shift (boost all
pixel values by 20), missing data simulated by introducing random black patches, combination of the
previous 3 degradations and spatially varying Gaussian blur.

Sample degraded images for a RubberWhale (real) frame and their corresponding flow fields esti-
mated with NKD are shown in Fig. 4.4. The flow fields were estimated using the Classic+NL[80],
kNN-ME method [11] and FMT method [34]. The last two methods are block-based and designed to
handle degradations. These results were compared with the flows estimated with our formulation. The
computed error metrics for the RubberWhale and Grove3 (synthetic) sequences are presented in Tables
4.3 and 4.4 respectively.

Table 4.3 Assessment results for flow estimation on degraded RubberWhale (real) image sequence.

Original Noise Overexposure Missing patches Combo Non-uniform blur
Method AAE SAE AAE SAE AAE SAE AAE SAE AAE SAE AAE SAE

kNNME 6.76 10.8 15.1 22.9 9.10 12.5 13.6 21.3 17.2 21.5 11.5 8.52
FMT 10.1 16.2 19.4 26.0 12.8 25.7 20.2 41.7 28.1 38.4 18.3 35.2
Classic+NL 3.81 7.49 12.1 21.7 6.82 6.72 12.6 19.1 19.1 23.56 5.44 15.7

KLD 3.48 9.69 4.71 10.5 5.84 10.5 5.59 9.56 6.00 11.4 4.99 10.7
NKD 2.73 7.52 2.87 8.84 3.85 10.6 3.51 8.15 4.46 9.21 4.16 9.43
KD 10.8 17.7 12.3 23.4 11.6 21.5 11.8 19.8 19.1 29.4 11.4 22.5
ID 10.5 16.9 10.9 18.8 11.3 17.8 12.2 19.6 15.5 23.8 10.8 19.7
RD 17.5 16.6 19.3 18.5 17.7 21.0 20.5 28.4 22.1 31.7 18.2 28.8
TD 23.8 14.5 25.8 26.0 26.3 27.1 24.9 22.4 33.0 23.9 26.4 29.7

H 16.7 11.4 18.1 12.1 18.3 14.5 13.6 16.2 26.0 19.1 18.9 16.5
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Figure 4.3 NKD results on some middlebury data sequences [Dimetrodon(hidden texture), Grove3 (syn-
thetic) and Venus (stereo)] sequences: First column : frame 10, Second column: Our result, Third
column: Result of classic+NL method, Fourth column: Groundtruth flow.
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Figure 4.4 Flow fields for images with distortions. Top row: original image and a noisy frame; Second
row: Overexposure and missing patches; Third row: multiple distortions and non-uniform blur
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Table 4.4 Assessment results for flow estimation on degraded on Grove3 (synthetic) image sequence.

Original Noise Overexposure Missing patches Combo Non-uniform blur
Method AAE SAE AAE SAE AAE SAE AAE SAE AAE SAE AAE SAE

kNNME 5.84 10.5 12.4 26.7 11.9 16.9 13.0 28.2 20.4 30.2 15.5 18.4
FMT 11.6 9.58 16.8 15.1 13.9 11.5 17.7 19.2 26.9 29.5 18.4 22.1
Classic+NL 3.38 5.62 15.6 16.8 7.11 9.75 22.1 9.16 22.7 26.8 10.9 9.57

KLD 4.79 3.17 6.50 6.51 5.18 9.51 5.75 8.73 7.85 12.3 5.25 7.08
NKD 2.70 5.76 3.15 7.16 3.94 5.96 5.16 9.41 7.29 11.5 4.82 6.73
KD 5.27 7.98 8.50 7.78 7.24 12.8 9.44 6.38 19.7 8.79 6.61 8.45
ID 5.74 18.3 7.38 15.5 6.81 19.7 9.65 9.95 10.9 12.7 5.86 8.17
RD 22.9 11.3 22.4 25.7 20.4 12.3 21.0 12.1 31.5 20.3 26.7 12.6
TD 25.8 17.3 25.6 19.1 27.1 14.5 33.5 20.4 40.5 21.0 27.4 19.8

H 5.58 16.1 6.85 8.13 7.23 14.8 7.51 10.5 10.0 23.2 11.9 14.9

The results in Table 4.3 indicate that the block-based approaches fare better under distortion com-
pared to the Classic+NL method as the error increases rapidly for the latter, which is to be expected
as these methods have an inherent resistance to noise as against pixel-level methods. However, the
kNN-ME method [11] is susceptible to mixed, noisy, and blurry environments while the FMT method
[34] is relatively robust to only brightness changes and blur. The proposed formulation with all variants
perform consistently well across sequences as the increase in error under distortions is quite small. This
confirms that the information maximisation criterion is indeed a good strategy for robust OF estimation.
The results on the synthetic sequence exhibit a trend similar to that on real sequence.

4.3 Large Motion

Classical OF estimation requires dense sampling in time. But, in real scenarios, there may be videos
(surveillance for instance) with low sampling rate. Classical approaches result in erroneous OF estima-
tion in such scenarios. However, coarse-to-fine warping schemes have relaxed this constraint to some
extent. Articulated motion in general and human motion in particular remain challenging. For instance,
small body parts like hands can move extremely fast. OF estimation becomes more ambiguous in those
regions. We have tested our proposed approach on the Backyard (Dog dance) image sequence [1] which
have large displacements. The proposed formulation was used to estimate the OF by expanding the
search range to [-25:25].

Brox et.al [12] proposed a method tailored to handle large displacements. For comparison we show
the flow fields estimated by that method and our (NKD-based) method in Fig.4.5. It is difficult to judge
the accuracy levels of these flow fields as ground truth is not available. The flow fields of the proposed
method (with NKD) and Brox’s method appear to be similar. However, the structure of the boy in the
background and the ball in the air appear to crisper in the flow field estimated by the proposed method.
However, the computation times for the two methods are not comparable: 94 seconds for [12] and 1763
seconds for our method.
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(a) (b) (c) (d)

Figure 4.5 OF estimation on frames with large displacement: a)Frame 07; b)Frame 08; c) Flow field
with [12] and d) Flow field of the proposed method.

From the above qualitative and quantitative results of different experiments, it can be clearly seen
that the proposed method is accurate, able to handle small and large displacements and robust under
distortions.

4.4 Computational speed

Generally, local motion integration at a large and adaptive scale incurs a high computational cost.
Computation of any information measure is expensive as it relies on joint and/or marginal pdf estimation.
The computation time for our formulation with different variants along with other existing methods
are presented in Table 4.5 on the Urban image sequence [5]. The reported computation times are for
implementations on a dual core 1.83 GHz processor with 3GB of memory, on Windows 7 operating
system, without any optimization of codes. We have used the available codes for some existing methods.
Computing the statistics of a block of size 11x11 around every pixel and matching by searching within
range of [-7:7] leads to a high computational load in our formulation. A fast searching algorithm such as
diamond search algorithm or simulated annealing techniques etc, could be explored to reduce this cost.
The local motion integration at a large and adaptive scale is another reason for the load. These deserve
attention in the future. Interestingly, a leading, recent method [80] which uses a probabilistic OF model
in layers is also computationally quite intensive.

Based on our extensive experiments the following recommendations can be made for flow computa-
tion with the proposed formulation: NKD for good accuracy; NKD, KLD for robust flow computa-
tion andH , RD for fast computation. Thus the local information-based approach offers both robustness
and accuracy albeit at a higher computational load. A fast computation of flow is feasible with H with
a small trade off in accuracy. While high computational cost may seem prohibitive for real time ap-
plications, the strength of our formulation in terms of robustness to degradations and ability to extract
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Table 4.5 Comparison of computational times on Urban image sequence

Method Run time(in secs)

TV-L1-Flow [86] 8
Horn-Schunck [35] 49

FMT [34] 814
kNN-ME [11] 905

Classic+NL [79] 972
Layers++ [80] 18206

RD 93
H 135

KD 516
KLD 1072

ID 1080
NKD 1120
TD 1374

structure from motion even from noisy data is of interest, especially in applications such as echocardio-
graphy. We will demonstrate some of these applications in the next section.

4.5 Summary

We have taken an information theoretic approach to OF computation and relied on statistical infor-
mation to obtain an accurate and robust flow. The performance of the information-based formulation
with NKD and KLD was found to be on par with the leading methods in terms of accuracy with an
additional key strength of providing robustness to flow field estimation which current methods lack.
Thus the information theoretic approach offers both robustness and accuracy without comprising either
of them, albeit at a higher computational load (the current OF computation from a pair of frames from
urban image sequence takes 1120 seconds on a dual core processor). A fast computation of flow is
feasible with H but with a little trade off in accuracy. While high computational cost may seem pro-
hibitive for real time applications, the methods strength in terms of robustness to distortions and ability
to extract structure from motion even from noisy data is of interest, especially in applications such as
echocardiography.
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Chapter 5

APPLICATIONS OF INFORMATION FLOW

In this chapter, we show that the proposed robust OF formulation can be used in developing systems
for applications in both noisy and non-noisy environments. In this chapter, we address three applica-
tions of information flow formulation: (i) Motion edge detection and (ii) Heart-rate estimation from
Ultrasonography and (iii) Color flow. The conventional OF methods which assume BC may fail in these
scenarios in the first two applications. Hence, we have used the proposed Information flow formulation
for robust and accurate OF estimation.

5.1 Motion edge detection

A well known phenomenon in visual perception is the type II motion as mentioned in Chapter 3.
Examples of this type of motion can be found in [2]. Motion edges are edges perceived by humans
when the image contains regions filled with coherently moving microtextures. These motion edges in
turn, define structures which are apparently in motion these figures. These type of edges can be observed
individual frames (see Figure 5.1).

5.1.1 Edges from OF

We tested the proposed OF method to see if a similar structure can be extracted from a computed
OF field. Figure 5.2 shows two samples. In the first of these examples, humans perceive a central
annulus framed by a rectangle on the periphery, moving upwards against a textured field. The OF
field computed by the Classic+NL method and the our method are shown in Figure 5.2. We did some
post-processing with 1-D median filters and intensity profiles to get sharp edges. We have scanned the
magnitude image (of flow fields) with 1-D median filters along rows and columns individually. This
will reduce the fuzzyness at edges. In the second the number of structures increases to three. The OF
field corresponding to the Classic+NL is incoherent with the central annulus shape barely visible. In
contrast, the outputs of our method show a clear separation of the flow fields into distinct classes. The
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(a) frame1 (b) frame2 (c) frame3

Figure 5.1 Some frames from a motion edge sequence

extraction of motion edges and hence the annulus and rectangular frames is quite straightforward from
these OF fields.

We can attempt the following explanation for the two surprising percepts seen in Figure 5.2. The two
regions seen in the figure are filled with different fields of coherent motion, one horizontal, the other
vertical. Thus one will be a bright region in the population of cells sensitive to rightward horizontal
motion (’horizontal motion image’), while the other will be bright in the ’vertical motion image’. The
edge separating the two regions will be present in both, as and edge between a light and a dark region.
In both these images the edge present will carry the corresponding motion signal, much as it might at
the boundary between a coherently moving textured area and a dark background. Thus the horizontal
motion image will generate a horizontally moving edge percept, and the vertical motion image will
generate a vertically moving edge percept. One of these two will repress the other and thus ’capture’ the
edge, much as presumably happens in binocular fusion. If the edge is captured by the vertically moving
percept, the region outside the circle will be seen as having an edge moving coherently downward and
so will be perceived as an area with a circular hole in it moving downward. If the edge is captured by the
horizontally moving percept, the circle will have an edge moving horizontally and so will be perceived
as an object moving horizontally.

There is much interest in explaining the coherence of such fundamental gestalts as edges. So, it is
reasonable to detect those motion edges in a given random dot image sequence. These data sequences
are downloaded from [2]. We locate these gestalts by applying our method (with NKD criterion) on
any two adjacent frames of given image sequence and then finding edges on color maps of flow. We
observed that our method is unable to find correct edge corners. However, this issue can be solved by
using some post-processing steps. Final Edge detection results are as shown in Figure 5.2.
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Figure 5.2 Detection of motion edges by using our method: Left column: a frame from 2 input image
sequences; color coded flow fields of Classic+NL method [80] (middle column:) and the proposed
method (right column).

5.2 Heart-rate estimation from Ultrasonography

Heart-rate (HR) is very important parameter in analysing the vascular blood supply and in the iden-
tification of pathological abnormalities. In general, physician records ECG also while cardiac image
acquisition to know HR and position of beats [43]. When comparing cardiac motion in Ultrasound (US)
sequence and ECG, it should be kept in mind that mechanical and electrical activity are involved and
are not identical. Although both quantities arise from the cardiac cycle, there is a variation of the time
interval between electrical activation and the main ejection of blood of approximately eight milliseconds
[82]. Hence, using ECG signal to know the HR beats in US image sequence is not right strategy. Hence,
there is a clear need to develop algorithms which estimate the HR and length of each cardiac cycle
(beat-to-beat resolution) [16]. Therefore, we track some myocardial landmarks temporally to estimate
HR and beats.

Underlying the heartbeat is the myocardial cyclic motion. Hence, a system for estimating the Heart-
beat Rate (HR) can be designed as follows: 1. Detection of landmarks (points on myocardial boundary);
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Figure 5.3 Flow chart of the HR estimation

2. Tracking of landmarks using Optical flow and 3. Average HR estimation. The flow chart of HR esti-
mation system is as shown in Figure 5.6.

5.2.1 Landmarks detection

Points on myocardial boundary are of interest as they follows periodic motion rather than the points
on inner part of the heart. Automatic detection of Myocardial boundary is a difficult task because of
the speckle noise present in US images. To reduce the influence of speckle noise, the original image
is filtered by an averaging mask of size 15x15. Figure 5.4(b) shows the result of applying the filtering
process to the echocardiographic images shown in Figure 5.4(a).
Morphological Operations: The smoothed image is converted to a binary image using a thresholding
operation. The thereshold can be found empirically determined. The resulting binary image may contain
several small holes in the middle of posterior segment of left ventricle, generated by speckle noise or
artefacts that are not previously eliminated by smoothing. These holes are filled using a morphological
closing with structuring element of 5x5 to reduce unwanted or noisy segments. The desired myocardial
boundary (Figure 5.4(d)) is the inside edge of the binary image. This is found using a Canny edge
detector.
Points detection : Any point on myocardial boundary is suitable as point of interest as it follows periodic
path while cardiac motion. So, we selected a point set (after rejection of points on/nearer to the image
boundary) which are the intersection points of walls map with the fundamental lines x=0, y=0, x=y and
x=-y (see Figure 5.4(e)).

5.2.2 Tracking of landmarks

To track or analyse the cyclic motion of landmarks, we defined a signal called Temporal Flow Graph
(TFG) as follows.

Consider a point of interest undergoing motion captured in an video sequence. The displacement/motion
of this point over two frames is represented by a vector v. Estimation of such a vector at every point

31



(a) input image (b) smoothed image (c) binarized image

(d) canny edge detection (e) Intersecting points of
edge map and lines

(f) overlapped with raw
image

Figure 5.4 Landmarks detection

over the entire sequence yields a dense motion field commonly referred to as optical flow. Let us con-
sider quantising the direction (or angle, θ) of the motion vector to be +1 when θ < 1800 and -1 when
θ > 1800. This helps represent the displacement of over time as a 1-D function of time where the
value of the function is determined by the displacement magnitude and the sign is determined by the
displacement direction. Let I be a given image sequence and let the instantaneous displacement at a
point of interest between the nth and (n+ 1)th frame be of magnitude vpn in the direction θpn which is
quantised as follows

dir(θn) =

−1, −1800 ≤ θn < 00

+1, 00 ≤ θn < 1800

The cumulative sum of the instantaneous displacement of a point helps track the motion flow of that
point over time. We can view such a sum as a temporal flow graph (TFG).

TFG(k) =
k∑

n=1

vn.dir(θn) (5.1)

where k is the frame index. From Eq.5.1, we can observe that the TFG of a point undergoing cyclic
motion will be a periodic function. We can use this fact to analyse the heart-beat rate variability and
abnormalities in cyclic motion.

The parameters (vn, θn) in Eq.5.1 were derived using the proposed information flow (OF) algorithm
by using the D metric (Eq. 4.2).
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(a)

Figure 5.5 The TFG for a myocardial boundary point

The TFG graph (Magnitude of v vs. frame number) of a random point on myocardial boundary is
shown in Figure 5.5. Every peak in this graph corresponds to a beat.

Heartbeat estimation: The periodicity (in general quasi-periodicity) of each TFG signal can be esti-
mated using any periodicity estimation method such as [37]. The beat to beat (peak to peak) intervals
can be found from the TFG following which the median of the peak intervals yields the desired peri-
odicity of the corresponding landmark. In general, it is better to determine the periodicity (P) of heart
motion as the average value estimated from many co-located landmarks. Finally, Average heartbeat rate
can be calculated as

HR =
P

fps
× 60 (beatsperminute) (5.2)

where fps is the frames per second rate of the acquired data.
The proposed HR estimation method was implemented and evaluated over a set of US sequences

(recorded on different subjects) sourced from a local hospital. The dataset contained echo videos (of
3 minutes duration each) recorded on 19 patients. The ECG reference was also collected and taken to
be the ground-truth. The difference between the HR estimated by our method and the ECG is the error
is estimation. These error values are presented in Table 5.1. Included here are results when the optical
flow is computed using two other methods.

Table 5.1 Comparison of HR rates
US1 US2 US3 US4 US5 US6

Classic+NL6.2 8.2 9.0 5.3 3.8 -6.6 -4.2
kNN −ME3.0 2.1 -3.7 3.4 2.5 -4.3 -1.5
Our method1.7 0.4 3.5 -1.6 -1.4 0.7 -2.2

From the Table 5.1, it can be clearly seen that proposed scheme is performing well as the results are
nearer to the ECG. For a fair comparison, the optical flow computation using Classic+NL was preceded
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by a denoising stage as the method is very sensitive to noise. The kNN-ME methods is designed to be
robust to noise and hence no denoising was done. Nevertheless, the tabulated results show that the error
values tend to be lower with the proposed method for almost all sequences. The first column lists (in
the suffix) the mean absolute error for each method across 6 sequences. These values indicate that the
proposed method even outperforms the kNN-ME method.

5.3 Color Flow

Colorization is the process of addition of color to a black and white video or still image. A colored
image is a vector valued function often represented as three separate channels (Y ,Cb and Cr). A gray
scale image, in contrast, is a scalar valued function. Thus, the colorization process requires mapping of
a scalar to a vector valued function which has no unique solution.

A number of automated and semi-automated techniques exist for colorizing monochrome video [46]-
[88]. The prior art systems suffer from one or more of the following disadvantages: (a) slow processing
speed, with each frame to be colorized requiring many minutes or hours, resulting in unduly high pro-
cessing cost [83]; (b) lack of operator convenience and flexibility (selection of seed points/regions on
each frame and colors to them) that is needed to facilitate obtainment of quality colorized video [70];
(c) high computational complexity and/or cost(money) of the colorizing system itself [83].

In order to decrease the amount of user interaction, we propose a fully-automated process to colorize
a sequence representing a single scene which is extendable to a general video sequence. For every
single-scene sequence, we assume that there is a frame which contains all the objects. We call this frame
as the Most Informative (MI) frame. We propose colorizing this MI frame by using an existing static
image colorization method followed by propagation of colors from colorized MI frame to remaining
frames based on the motion vectors between frames. Motion estimation is performed using an optical
flow technique. All pixels which are not colorized at the end of the previous step is colorized by a
refinement step to assign colors. A general video sequence can consist of several scenes. Hence, our
colorization strategy requires pre-segmenting the entire video into several scenes using a shot detection
method [17], prior to colorization.

5.3.1 Proposed method

Let the given scene/shot be denoted as I(n). The proposed system for colorization of I(n) mainly
consists of three parts: (a) MI frame selection; (b) Colorizing the MI frame; (c) Optical flow (OF)
computation for all frames by taking MI frame as the starting frame. Thus, if the n = k is the MI frame,
then OF is computed between the frame pairs I(k ± i), I(k ± (i+ 1)); i = 0, 1, 2..; (d) Propagation of
color; (e) Refinement for colorizing the remaining pixels. The block diagram of the proposed algorithm
is given in Fig.5.6.
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5.3.1.1 Most Informative (MI) frame selection

The MI frame is defined to be the frame which contains maximum number of objects present in that
scene. Hence, this frame should have maximum spatial activity (entropy) and highest amount of edges
across the sequence. We detected this frame by maximizing a score S which is defined as,

S(n) = wh
H(n)

σh
+ we

E(n)

σe
(5.3)

Here, σh and σe are the standard deviations of H(n) and E(n) respectively. wh and we are empirically
determined weights. The first term H(n) captures to the spatial activity and the second term E(n)

corresponds to the amount of edge content of the nth frame. H(n) is the entropy of the nth frame and
is given as

H(n) = −
∑
x

p(x, n) log2(p(x, n)) (5.4)

where p(x, n) is the probability of the grey value x in the intensity histogram of the nth-frame. For an
8-bit image, H(n)ε[0, 8].

The amount of edge content present in the nth-frame is determined by computing the energy of the
gradient of the frame In.

E(n) =
∑
x

∑
y

|∂In
∂x

+
∂In
∂y
|2 (5.5)

Finally, the MI frame is selected as the frame with the highest score.

k = argmaxkεnS(n) (5.6)

where k is the frame number of MI frame.

The above summarized procedure for MI frame can also be used to automatically extract from a
video sequence a single key frame representative of its content.

Figure 5.6 Block diagram of the colorization scheme
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5.3.1.2 Colorizing the MI frame

After the selection of MI frame, denoted as Ik in Fig.5.6, we colorize the MI frame using a scribble
based colorization process from [46] as explained earlier.

The information flow method (with H) was used for motion field estimation to generate the desired
motion vectors at every pixel.

5.3.1.3 Color propagation

This is the main task in the colorization process. We assign or propagate the color to a pixel in the
current frame from its corresponding location in the neighbouring frame. We do this process starting
with the coloured MI frame Ik. Given Ik, the neighbouring frame pairs to its right and left are first
determined. These are denoted as fkL = (Ik−i, Ik−i−1) and fkR = (Ik+j , Ik+j+1) respectively. The
optical flow is computed for each pair and the color of the kth frame is propagated to the neighbouring
frame (Ik−i and Ik+i) based on the flow information. This is done iteratively until the end of the
sequence is reached in both right/left directions. Thus, in the first iteration (j = 0), the colors of pixels
in Ik+1 are found from the colors from Ik, according to the motion between these two frames. Likewise,
in the next iteration (j = 1), the pixels in Ik+2 will inherit colors from Ik+1 according to the motion
between these frames. This process repeats until the last frame (N ). A similar process is followed to
color frames which are left neighbours of the MI frame.

5.3.1.4 Refinement

It is possible that some pixels are missed in the process of color propagation between the frames.
Colorizing them is the refinement process. This is based on a test for similarity between the greyvalues
of the pixel to be colourized (missed pixel) and its neighbours which are already colorized: (1) If the
intensity (Y) of the missed pixel is similar to its neighbouring pixel, then they should have same colors
(chromatic values: Cb, Cr). (2) If a set of connected pixels are missing and the size of this cluster is
more than 5x5, then it either signals the introduction of a new object into the scene or shadow formation
due to a change in illumination. This is best resolved by involving the user. Hence, in this case, the user
is asked to decide the color with scribble or marker.
The proposed scheme should result in the requirement of a relatively smaller number of user input. This
was also seen to be true when experimenting with our large variety of videos.

5.3.2 Results

The proposed colorization system was implemented in MATLAB-R2009a on Windows7 ultimate
(32-bit OS), Processor Intel(R)Core2Duo 1.83 GHz, RAM 3GB. It was tested on videos from Levin’s
data base [46] and animated videos which were independently obtained. In all cases, the system was able
to produce high quality colored videos in a short time. We present some sample in this section. In order
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Figure 5.7 Colorization of an Lake scene from a 83-frame clip. First row: greyscale input frames (1,9,18
(MI frame),67,83); Corresponding frames colorized by the proposed (second row) and scribble based
methods [46] (third row); Sample zoomed regions are shown in the bottom row.

to assess the performance of the proposed method a set of comparisons were carried out: Comparison
with (i) state of art, (ii) ground truth and (iii) some challenging sequences like animation sequences.

5.3.2.1 Comparison with State of Art

Fig.5.7 shows some selected frames from a greyscale movie clip (containing 83 frames) and the
corresponding colorized frames. Our system detected frame 18 as the MI frame and did not ask for user
interaction for the entire movie clip except for MI frame colorization. The colorization process of this
video took about 1 minute and 42 seconds. For comparison, results of colorization with the method in
[46] is also shown. This method required 12 scribbles from the user. Our results indicate comparable
quality of results. Since our method uses Optical Flow only to define the local temporal neighborhood,
it is robust to tracking failures. Some zoomed details are also provided in the bottom row for a detailed
comparison from which we can observe a small amount of overlapping between colors at the edges.
This is because of the erroneous motion vectors given by OF method at edges. However, these will be
invisible while playing a movie.

Sample MI (frame 27) and some of preceding (frame 5) and later (frame 33) frames for a scene cap-
tured by a camera in a car are provided in Fig.5.8. The reflection on the windscreen has a subtle change
in colour which is successfully propagated in the distant (5th) as well as relatively proximal (33rd)
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frames. The effectiveness of the proposed system and color propagation are better observed in videos
which have been made available at http://web.iiit.ac.in/˜vsrao/colorization.

(a) 5 (b) 27 (c) 33

Figure 5.8 Colorization of a car video scene. From left to right: 5th, 27th (MI frame) and 33rd frames.
Top row: greyscale input; Bottom row: colorized result.

5.3.2.2 Comparison with Ground-truth

We also evaluated our system on colour videos by colorising the greyscale version and using the
original colour as ground truth for validation. Some sample frames of a party scene (consisting of 63
frames) are shown in Fig.5.9. For this scene, frame 19 was detected as the MI frame. No other user
input was given. The results for the distal (5th and (45th) frames still appear to be very close in quality
to the original colour frames. This is also illustrated by using PSNR measure to quantify error in
colourisation. The PSNR value for the nth colorized frame is given by,

PSNR(n) = 20 log10(
255

MSE(n)
) (5.7)

where MSE(n) is the mean squared error between the original and the colorized nthframe. Fig.5.10
shows the PSNR plot for 63 frames, with the x-axis representing the frame number. Generally, the
higher the PSNR value the more similar is the colored image to the original one. The plot peaks at 19th

frame which is the MI frame. The first and final frames have least PSNR. The PSNR degrades for non-
MI frames due to the color propagation error. However, given the highly magnified scale for the y-axis
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Figure 5.9 Colorization of a party video scene. From left to right: 5th, 19th (MI frame) and 45th frames.
First row: greyscale input; second row: colorized result; third row: ground truth.

in this plot, the degradation is only by 2 % which demonstrates the effectiveness of the propagation
strategy. The entire colorization process of 63 frames took 93 seconds.

5.3.2.3 Animated movie scenes

Colorisation on animated movie scenes from Finding Nemo and Megamind were also tested. Fig.5.11
shows our result and ground truth (GT) version of frame 31 from a scene of Finding Nemo movie.
We can clearly observe that there is very little overlap between color content of objects at edges. In
general, animated movie scenes contain large motion fields. Hence, optical flow algorithms might be
more erroneous in such cases. Large displacement optical flow methods are more suitable for such
sequences, however they are computationally expensive. Sudden appearance of objects in a scene is
another characteristic of such sequences. Accordingly, the required number of user interaction can
increase for our system. In our experiments with a large dataset, the maximum number of times that
user interacted to decide color with scribbles was found to be 16 for a clip of 274 frames from Megamind
animated movie.
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Figure 5.10 PSNR plot for the party movie scene with 63 frames.

Figure 5.11 Ground truth and colorized result for frame 31 of Finding Nemo video scene. (a) our result,
(b) original frame (GT), (c) zoomed regions.

5.3.2.4 Robustness

In real scenarios, there may be videos with noise and/or low resolution (surveillance for instance).
Classical approaches result in erroneous OF in such scenarios which in turn results in accurate color
propagation. We have tested the performance of the information flow based approach on a toddler image
sequence which is of low resolution (180x240). The key benefit, robustness of the method was tested
by imposing noisy environment (adding salt&pepper noise) to toddler image sequence. Frame36 and its
version which contains 15% noise and their corresponding colorized frames are shown in Fig.5.12. From
the figure, it can be observed that salt & pepper noise does not affect the color propagation framework
and on-off points (due to salt & pepper noise) also got colorized with neighboring colors. The former
one due to robust nature of the information flow formulation and the later one due to refinement step in
color propagation method.

Run time Statistics: Key features of the proposed system are computational simplicity and a greatly
reduced need for user interaction. This is demonstrated by the time required for computations in our
method with that of Levin’s method [46] to colorize the scene in Fig.5.8 which has 60 frames. [46] re-
ports that the user interaction is used for the first frame and 11 other frames. The required computations
are listed in Table 1. Here, U is the unit time taken by the user to specify colors to seed points in a frame
which is a minimum of 30 seconds. F is the unit time for colorization of the MI frame and M1, M2 are
the unit times taken for color propagation between two frames by [46] and our methods respectively.
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Figure 5.12 Color propagation in Noisy environments: (a)Frame36; (b) Noisy frame36; (c)colorized
frame of (a); and (d) colorized frame of (b).

Task Method[46] Our method
MI frame selection 0 0.8 sec
Colorizing key frame U+F U+F
User interactions 11(U+F) 0
Color propagation 48M1 59M2

Total Time 12U+12F+48M1 U+F+0.8+59M2
∼ 17.04 min ∼ 2.33 min

M2 is inclusive of the refinement time. The total time shown for [46] is the time taken by using the code
available at http://www.cs.huji.ac.il/˜yweiss/Colorization/.

5.4 Summary

In this chapter, we have looked at three applications which uses information flow framework for
robust motion field estimation. Those applications include motion edge detection, HR estimation in
ultrasonography and Color propagation in film colorization.
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Chapter 6

MOTION BLUR

In this chapter, we discuss about the motion blur which is a common problem in capturing videos with
a fast moving camera/objects. We consider deblurring the frames which are blurred due to fast moving
camera. In general, fast moving camera (not rotating) produces uniform blur in frames. We propose
a method to deblur these kind of images by using statistical information only. In this work, we start
with a hypothesis that there is sufficient information within a blurred image and approach the deblurring
problem as an optimisation process where the de-blurring is to be done by satisfying a set of conditions
which includes constraints on statistical information measures: Shannon’s entropy and Burg’s entropy.
These conditions are derived from first principles underlying the degradation process assuming noise-
free environments. We propose a novel but effective method for removing motion blur from a single
blurred image via an iterative algorithm. The strength of this method is that it enables deblurring without
resorting to estimation of the blur kernel or blur depth. The proposed iterative method has been tested
on several images with different degrees of blur. The obtained results have been compared with state of
the art techniques including those that require more than one input image. The results are consistently
of high quality and comparable or superior to the existing methods which demonstrates the effectiveness
of the proposed technique.

6.1 Introduction

Very often images are corrupted by motion blur due to the relative motion between the camera and
the scene during the integration time of the image. Recovering un-blurred image from a motion blurred
image has long been a fundamental research problem in digital imaging. The standard way to express
the relationship between the observed image g(i, j) and its uncorrupted version f(i, j) in noise-free
environments is

g(i, j) = f(i, j) ∗ h(i, j) (6.1)

where h is the blur kernel or point spread function (PSF) and ∗ is the convolution operator. Numerous
methods have been proposed in the past for motion de-blurring. If one assumes that the blur kernel
is shift-invariant, the problem reduces to that of image de-convolution. Image de-convolution can be
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further separated into the blind and non-blind cases. In non-blind de-convolution, the motion blur kernel
is assumed to be known or computed elsewhere; the only task remaining is to estimate the un-blurred
latent image. Traditional methods such as Weiner filtering and Richardson-Lucy (RL) de-convolution
[51] were proposed decades ago, but continue to be widely used in many image restoration tasks because
they are simple and efficient. However, these methods tend to suffer from unpleasant ringing artifacts
that appear near strong edges. In the case of blind de-convolution [24] [38], the problem is even more
ill-posed, since both the blur kernel and latent image are assumed unknown. The complexity of natural
image structures and diversity of blur kernel shapes make it easy to over- or under-fit probabilistic priors
[24].

In this work, we begin our investigation of the blind de-convolution problem by exploring the ma-
jor causes of visual artifacts such as ringing. Our study shows that the performance of current de-
convolution methods is highly dependent on accurate estimation of motion blur parameters. We there-
fore observe that a better model of de-blurring and a more explicit handling of visual artifacts caused by
the blur kernel estimate errors should substantially improve results. Based on these ideas, we propose
an approach in which deblurring is achieved iteratively without explicitly estimating the blur kernel, by
satisfying a set of conditions.

6.2 Related Work

We first review techniques for non-blind de-convolution, where the blur kernel is known and only
a latent image must be recovered from the observed, blurred image. The most common technique is
the RL technique for de-convolution [51], which computes the latent image with the assumption that
its pixel intensities conform to a Poisson distribution. Donatelli et al. [21] use a PDE-based model to
recover a latent image with reduced ringing by incorporating an anti-reflective boundary condition and a
re-blurring step. A common approach in the signal processing community to the de-convolution problem
is to transpose the problem to the wavelet or the frequency domain (an example is [62]); However, many
of these papers lack experiments in de-blurring real photographs, and few of them attempt to model
error in the estimated kernel. Levin et al. [45] use a sparse derivative prior to avoid ringing artifacts in
de-convolution. Most non-blind de-convolution methods assume that the blur kernel contains no errors,
however, even small kernel errors can lead to significant artifacts. Finally, many of these de-convolution
methods require complex parameter settings and long computation times.

Blind de-convolution is a significantly more challenging and ill-posed problem, since the blur kernel
is also unknown. Some techniques make the problem more tractable by leveraging additional input,
such as multiple images. Rav-Acha et al. [68] utilise the information in two motion blurred images,
while Yuan et al. [89] use a pair of images, one blurred and one noisy, to facilitate capture in low light
conditions. Another strategy adopted has been to take advantage of additional, specialized hardware.
Ben-Ezra and Nayar [8] attach a low-resolution video camera to a high-resolution still camera to help in
recording the blur kernel. Raskar et al. [67] flutter the opening and closing of the camera shutter during
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exposure to minimize the loss of high spatial frequencies. This method requires the object motion path to
be specified by the user. The most ill-posed problem is single-image blind de-convolution, which must
both estimate the PSF and the latent image. Early approaches usually assume simple parametric models
for the PSF such as a low-pass filter in the frequency domain [42] or a sum of normal distributions [47].
Fergus et al.[24] showed that blur kernels are often complex and sharp; they use ensemble learning
(Miskin and MacKay [58]) to recover a blur kernel while assuming a some statistical distribution for
natural image gradients. A variational method is used to approximate the posterior distribution and the
RL technique is used for de-convolution. Jia et al. [38] recovered the PSF from the perspective of
transparency by assuming the transparency map of a clear foreground object should be two-tone. This
method is limited by a need to find regions that produce high quality matting results. Qi shan et al. [72]
creates an unified probabilistic framework for both blur kernel estimation and latent image recovery by
allowing these two estimation problems to interact to avoid local minima and ringing artifacts.

Our hypothesis is that there is sufficient information in the blurred image to aid deblurring process.
Accordingly we aim to devise a solution which takes a novel different approach to the problem. We first
present the necessary basics and then present the proposed method.

6.3 Modeling Motion Blur

Let us assume that a linear, non-recursive (FIR) model represents the degradation of digital (sampled)
images caused by motion blur. The original, blur freeM×N image f is convolved with a blur kernel h.
De-blurring images requires the application of the de-blurring operator D, which produces a de-blurred
image f when applied to the blurred image g, that is D(g) = f .

The blur kernel provides information of the underlying motion during the capture process. In the
most simple case, such as for a uniform linear motion along the x-axis with a speed of k pixels during
the capturing period, the PSF is given by a one-dimensional vector of the length k+1:

hlin =
1

k + 1
[111 . . . 1] (6.2)

[8] propose a method to determine the motion paths during the capturing process. Their analysis
shows that the model for the PSF has to be extended to represent motion in a two-dimensional plane.
The PSF is a matrix h of size U×V , where each entry h(i, j) i=1, 2, . . . , U , j=1, 2, . . . , V represents the
percentage the camera has been displaced by i− (U/2), j − (V/2) from the centre during the capture.

h =
1

K


h1,1 h1,2 . . . h1,V

h2,1 h2,2 . . .
...

...
. . .

...
hU,1 hU,2 . . . hU,V

 (6.3)

Where the parameter K is a normalizing constant to ensure that the sum over the entries of the matrix
equals to 1.
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6.4 Proposed Method

The proposed method consists of two parts. i) direction detection to estimate the direction of motion
(φ) and ii) compensation for blur. These are presented in detail below.

6.4.1 Direction Detection

Since motion blur is essentially directional averaging, it results in parallel white bands in the Fourier
spectrum of a degraded image. This has been used to effectively determine the direction (φ) of the
motion blur [60] [61]. We extract the blur direction using the same principle but using the Radon
transform: Let |G(u, v)| be the amplitude spectrum of the given blurred image g[m,n]. We take the
Radon transform (RT) of this function |G(u, v)| to find the direction of these bands and find the angle
corresponding to the maxima in the RT. After finding the motion direction estimation, the blurred image
g is rotated to align it with the computed motion direction. The desired deblurred image is estimated by
compensating for the blur as described next.

6.4.2 Compensation

Deblurring can be viewed as a problem where a set of corrupted data (blurred pixel values) is given
and the process of deblurring has to recover the original pixel values while satisfying some conditions.
This leads to casting the compensation step as an optimisation process which satisfies a set of conditions.
The requisite conditions can be identified from the basic principles underlying the blur process.

6.4.2.1 C1. Conservation of Mass

If the blur kernel is a normalized one, the mean value of the signal will not change after convolution.
Given that the blur kernel in eq 6.3 is normalized, this implies the sum of all pixel values in the blurred
image must equal to that in the restored image [20]. The sum of all pixel values in blurred image as M1

is given as

M1 =
∑∑

g(i, j) (6.4)

6.4.2.2 C2. Conservation of Energy

The degradation process obeys Law of conservation of energy as the motion of an object or of the
camera does not need any optical energy [20]. Hence, the energy of a blurred image is same as that in
the original image. This energy denoted by M2 is

M2 =
∑∑

g(i, j)2 (6.5)
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6.4.2.3 C3. Entropy condition

Many restoration algorithms are based on minimization of Shannons entropy E (examples are [20],[63]),
which is given as

E = −
∑∑

g(i, j) log[g(i, j)] (6.6)

The basic assumption behind these methods is that the Shannons entropy of the original image is less
than that of the degraded image. This may not hold for very large-size blur kernels. We have found that
the entropy of images increases with blur depth up to a certain level, after which it starts decreasing.
Hence, we include the next condition.

6.4.2.4 C4. Information condition

For a related inversion problem in speech processing, an alternate measure for entropy, namely the
Burg entropy is used which is defined as

B = −
∑∑

log[g(i, j)] (6.7)

Burg’s entropy has been argued to be a better representation of information content and has previ-
ously been used in image reconstruction [4]. In the context of restoration, it has been shown that B value
of a restored image is higher than that of the corrupted source image [63]. In the proposed method, this
entropy measure is used and deblurring aims to maximise the same.

6.4.2.5 Compensate Function

Given a current pixel value in a motion blurred image, its value is likely to be due to an averaging
process over its immediate neighbours. Hence, a compensate function Cf is defined to reverse this
process. The function for two adjacent pixels is defined as follows:

C2
f (i, j) = a.g(i, j)− b.g(i, j − 1)− c.g(i, j + 1) (6.8)

The function for four adjacent pixels is defined as

C4
f (i, j) = a.g(i, j)− b.g(i, j − 1)− c.g(i, j + 1) (6.9)

−d.g(i, j − 2)− e.g(i, j + 2)

where a, b, c, d and e are unknown re-weight parameters which will be found iteratively. An illustration
for processing a row of pixels is shown in Figure 6.1.

From the Figure 6.1, it can be seen that estimation of a current pixel depends on 3 pixels from the
previous iteration. Hence, after k iterations, estimation of a current pixel depends on 3k pixels in the
input blurred image. So the number required iterations is indirectly based on the length of blur (L).
In each iteration, the optimum values of of the re-weight parameters are estimated by imposing the
condition set C1 through C4. Next, we present an algorithm for the same. For simplicity we assume a
C2
f case.
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Figure 6.1 Four iterations of a row in an image using C2
f .

6.4.2.6 Algorithm for Optimization

The problem at hand is optimization of weight parameters a, b, and c with respect to the condition
set. The uni-variate method is adopted for a solution of this problem, by multiplying the step size Si by
very small increment ε. In this method, only one parameter is changed at a time to produce a sequence
of improved approximations to reach the optimum point. Starting at a base point Pi = (a, b, c)i in the
ith iteration, the value of any one of (n− 1) parameters is fixed while others are varied. The purpose is
to produce a new base point Pi+1. The search is now continued in a new direction. The new direction
is obtained by changing any one of the n − 1 parameters that has been fixed in the previous iteration.
After all the n directions are searched sequentially, the first cycle is completed and values of a,b and
c are obtained. These are placed in a dummy image which forms the input for the next iteration. The
entire process of sequential optimization is repeated until the values of (a,b,c) is approximately (1,0,0).
The choice of the direction and the step length in the modified uni-variate method is summarized here.

MODIFIED UNIVARIATE ALGORITHM

1. Choose a starting point Pi = (a, b, c)i and set i = 1.

2. Find the search direction Si as 6.8

STi =


((1, 0, 0, 0, 0, . . . ) i=1, n+1, 2n+1
(0, 1, 0, 0, 0, . . . ) i=2, n+2, 2n+2
...
(0, 0, 0, 0, 0, . . . , 1) i=n, 2n, 3n, . . .

3. For the current direction Si , find the values of M1, M2, E and B and check if condition set is
satisfied. If condition set is not satisfied, find whether the entropy (E) values decreases in the
positive or negative direction. For this, we take a small probe length (ε), also called learning
factor and evaluate Ei = E(Pi), E+

i = E(Pi + εSi) and Ei− = E(Pi − εSi). If E+
i > E−i ,

Si will be the correct direction for decreasing the values of Ei, and if E+
i < E−i , -Si will be the

correct direction. If both E+
i and E−i are less than Ei , we take Pi as the minimum of the two.

4. Set Pi+1 = Pi + εSi.
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Figure 6.2 Blurred images captured by a hand-held camera and corresponding outputs of our method.

5. Ei + 1 = E(Pi+1).

6. Set i = i+1 and go to step 2. Continue this procedure until (a,b,c) satisfies the condition set.

We have taken a unit step length for computational simplicity. The algorithm for the de-blurring tech-
nique is as follows.

ALGORITHM FOR ITERATIVE MOTION DEBLURRING (IMD)

1. Find the angle of direction of motion (φ)

2. Rotate the coordinate system by an angle φ.

3. Apply the compensate function to rotated R, G, and B planes of blurred image individually.

4. Impose the condition set using Modified Uni-variate method for each plane.

5. Create dummy image planes with a,b, and c.

6. Repeat 3 to 6 steps with these dummy image planes until we get a=1, b=0, c=0 approximately for
each plane.

7. Anti-rotate the image.

8. Display the restored image.

Any algorithm that performs de-convolution in the Fourier domain needs a post processing step to
suppress ringing artifacts at the image boundaries; for example, Fergus et al. [24] process the image
near boundaries using the Matlab edgetaper command. We instead use the approach of Liu and Jia [49]
to suppress the ringing. Some results of this method are provided in Figure 6.2.

6.5 Experimental Results

The proposed iterative deblurring algorithm was tested on numerous images. We present some sam-
ple results in this section. Two blurred test images captured using a handheld camera and the corre-
sponding deblurred results obtained by the proposed method is shown in Figure 6.2.
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Figure 6.3 (a) motion blurred image used in [68]. (b) Deblurred result from [68] using information from
two blurred images. (c) IMD result using only blurred image shown in (a).

In order to assess the performance of to proposed method against existing methods a set of com-
parisons were carried out: Deblurring i) without use of additional images and ii) with use of additional
information/images. Henceforth, the proposed technique is referred to as IMD for convenience.

Deblurring without use of additional images
A uniformly blurred image and the deblurred results are shown in Figure. 6.4(a). The results of RL,
Levin et al. [45] and IMD techniques are shown in Figure 6.4 (b), (c) respectively. IMD result exhibits
sharper image details and fewer artifacts such as ringing around sharp edges, than the others.

We next illustrate blind de-convolution on two test images taken from [72]; These are shown in
Figure 6.5 and Figure 6.6. The blur is due to camera shake. The results of two sample techniques

Figure 6.4 Non-blind de-convolution example. (a) blurred image used in [72]. Deblurred results of (b)
RL algorithm (c) sparse prior method [45] and (d) IMD.
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namely [24] and [38] which are based on the RL technique are also taken from [72]. The degree of blur
in the second image shown in Figure 6.6 (a)) is caused by a large-size kernel, which is challenging for
kernel estimation. The results of IMD is shown alongside for comparison for both test images. The
IMD results for the green toy image is comparable with some areas such as the right ear, being restored
better. The colour and sheen are superior in the result of [38]. The IMD results for the second test image
in Figure 6.6 (a)) is in comparison clearer compared to the other two techniques. This implies that IMD
is superior at handling high degree of blur. A comparison with the most recent deblurring method [72]
which uses a probabilistic approach is shown in Figure 6.7. The two results appear to be of similar
quality.

Figure 6.5 Blind deconvolution example 1. a) input blurred images; de-blurring results of b) Fergus et
al. [24], c) Jia et al. [38] and d) IMD.

Figure 6.6 Blind deconvolution example 2. a) input blurred image; de-blurring results of b) Fergus et
al. [24], c) Jia et al. [38] and d) IMD. Other two methods use RL de-convolution to restore the blurred
image.

Deblurring with the use of additional images
In this section, we compare the IMD performance against methods which use additional input. Two
blurred images with different camera motions are used in [68] to create the results in Figure 6.3. In
comparison, the IMD result based on the first blurred input is remarkably of the same quality. The
technique in [89] uses information from two images, one blurred and one noisy, to create the result in
Figure 6.8 and Figure. 6.9. Finally, Ben-Ezra and Nayar [8] acquire a blur kernel using a video camera
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Figure 6.7 Blind deconvolution example 3. a) input image; de-blurring results of b) [72], b) and c)
IMD.

Figure 6.8 Deblurring with additional input images from [89]. a) The blurred input image, b) result
from [89], c) IMD result with only blurred image as input and d) some close-ups of our results.

that is attached to a still camera, and then use the kernel to deconvolve the blurred photo produced by
the still camera. Their result is shown in Figure. 6.10. In comparison with all these three cases, IMD
remarkably produces comparable results with just one input image.

Finally, two more challenging real examples and IMD results are shown in Figure 6.11, all containing
complex structures and blur from a variety of camera motions. The ringing, even around strong edges
and textures, are significantly reduced. The remaining artifact is caused mainly by the fact that the
motion blur is not absolutely spatially invariant. Using a hand-held camera, slight camera rotation and
motion parallax are easily introduced by Shan et al. [73] .
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Figure 6.9 Deblurring with additional input images from [89]. a) The blurred input image, b) result
from [89], c) IMD result with only blurred image as input and d) some close-ups of our results.

Figure 6.10 Deblurring with additional input images from [8] a) a motion blurred image of a building
from the paper of Ben-Ezra and Nayar[8], b) their result using information from an attached video
camera to estimate camera motion and c) IMD result obtained with one input image.

Figure 6.11 Deblurring on two challenging cases: the captured blurred images from [71] and corre-
sponding IMD results.
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6.6 Summary

In this work, a novel image restoration method has been proposed to remove camera motion blur
from a single image by viewing deblurring as an optimisation process. The method does not involve
estimation of the blur kernel or blur depth and achieves the deblurring iteratively. Our main contributions
are an effective model for removing blur that accounts for its spatial distribution, and a local prior to
suppress ringing artifacts. This model improves unblurred image estimation even with a very simple
compensate function after a modified uni-variate optimization process is applied.

The proposed technique avoids the computation of blur depth parameter which is often erroneous.
The successful results obtained with this technique is principally due to the optimization scheme that
re-weights the relative membership values of neighboring pixels in current pixel value, over the course
of the optimization. We have found that this re-weighting approach can work very accurately in case of
horizontal uniform motion blur even if it is blurred by a large-size kernel.

The proposed technique was found to successfully deblur most motion blurred images. However, one
failure mode occurs when the blurred image is affected by blur that is not shift-invariant, e.g., from slight
camera rotation or non-uniform object motion. An interesting direction of future work is to explore the
removal of non-shift-invariant blur using a general compensate function assumption.

Another interesting observation that arises from our work is that images, which are blurred with a
very large-size kernel, contain more information than the original images. Our results show that for
moderately blurred images, edge, color, and texture information can be satisfactorily recovered. A
successful motion de-blurring method, thus, makes it possible to take advantage of information that is
currently buried in blurred images, which may find applications in many imaging-related tasks, such as
image understanding, 3D reconstruction, and video editing.

53



Chapter 7

CONCLUSIONS

In this work, we have proposed a local information based formulation to OF computation and relied
on local statistics to obtain an accurate and robust flow. We have reported some investigations which
showed that the performance of the formulation with NKD and KLD was found to be on par with
the leading methods in terms of accuracy with an additional key strength of providing robustness to
flow estimation which is lacking in current methods. Based on our experimental results, the following
insights were observed for flow computation: NKD for good accuracy; NKD, KLD for robust flow
computation and H, RD for fast computation. Thus, the proposed approach offers both robustness and
accuracy without comprising either of them, albeit at a higher computational load. A fast computation of
flow is feasible with H but with some trade off in accuracy. While the high computational cost may seem
prohibitive for real time applications, the offsetting features are robustness to degradations and ability
to extract structure from motion even from noisy data. This is of interest especially in applications such
as echocardiography.

We demonstrated the performance of the proposed formulation on three different applications where
one needs robust as well as accurate OF estimation. We achieved good results especially in motion edge
detection as well as heart-beat rate estimation in ultrasonography. A new signal called the Temporal
Flow Graph which describes the temporal behaviour of the landmark has been defined. HR estimation
is shown to be simplified using the TFG. The proposed HR estimation can also be extended for in-vivo
analysis for animal studies and for assessing fetal cardiovascular health. We also tried to automate
the problem of color propagation in colorization of videos/films by using OF fields. The process of
colorization remains a manually intensive and time consuming process. In this work, we have suggested
a method that helps graphic artists to colorize films with less manual effort. We propose a framework
which capitalises on the notion that not all frames will have maximum information together with the
fact that frames of a scene are related by a motion field. Thus, an artist needs to color automatically
selected most informative frames (1 per scene) which is subsequently propagated using OF fields. With
the current framework, little more user effort is needed when the video contains more objects not all
of which may be present in one frame such as capturing a scene with rotating camera or a still camera
capturing a busy road (surveillance videos) scene. In such scenarios also, user effort for the proposed
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method is far less than that of other methods. Our future work aims at colorization of these kind of
scenes with least user interactions.

We also proposed a method remove the effect of motion blur which is a common problem in cap-
turing video with fast moving cameras. The proposed deblurring model improves unblurred image
estimation even with a very simple compensate function after a modified uni-variate statistical infor-
mation optimization process is applied. The proposed technique avoids the computation of blur depth
parameter which is often erroneous. The successful results obtained with this technique is principally
due to the optimization scheme that re-weights the relative membership values of neighboring pixels in
current pixel value, over the course of the optimization. We have found that this re-weighting approach
can work very accurately in case of horizontal uniform motion blur even if it is blurred by a large-size
kernel. The proposed technique was found to successfully deblur most motion blurred images. How-
ever, one failure mode occurs when the blurred image is affected by blur that is not shift-invariant, e.g.,
from slight camera rotation or non-uniform object motion. An interesting direction of future work is to
explore the removal of non-shift-invariant blur using a general compensate function assumption. An-
other interesting observation that arises from our work is that images, which are blurred with a very
large-size kernel, contain more information than the original images. Our results show that for moder-
ately blurred images, edge, color, and texture information can be satisfactorily recovered. A successful
statistical information optimizing method, thus, makes it possible to take advantage of information that
is currently buried in blurred images, which may find applications in many imaging-related tasks, such
as image understanding, 3D reconstruction, and video editing.
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