
Error Detection and Correction in Indic OCRs

Thesis submitted in partial fulfillment
of the requirements for the degree of

MS in
Computer Science and Engineering

by Research

by

Vinitha V S
201307548

vinitha.vs@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

December 2017

Copyright c© Vinitha V S, 2017

All Rights Reserved

Scanned by CamScanner

05-12-2017

To

my family and friends

Acknowledgements

First of all, I would like to express my sincere gratitude to Prof. C.V Jawahar, who introduced me to
research. His vision and guidance have inspired me to dream bigger and aim higher.

I am blessed to have been taught by the Professors at IIIT-H who have helped imbibe in me curiosity
and the urge to excel. I also extend my thanks to CVIT faculty, P. J. Narayanan, Anoop Namboodiri,
Jayanthi Sivaswamy, Avinash Sharma and Vineet Gandhi whose presence in the lab creates a motivating
environment. My sincere thanks to Dr.Girish Varma for providing me valuable insights and motivation
during my work at lab. I am also thankful to Prof. Vineet Chaitanya, who has been generous to give
me his valuable suggestions during my research work. I extend my thanks to CVIT lab staff and others
including Silar, Phani, Satya, Shiva, Prathima, Rajan and Nandini who were always available for any
work/academic related requirements. I would like to thank the lab and the institution for providing
adequate facilities for minds to learn and prosper. A special thanks to the IIIT library staff for providing
a good reading and learning environment.

I would also take this opportunity to thank my lab mates and friends at CVIT, especially Naveen
Sankaran, Karthika Mohan, Rajvi Shah, Praveen Krishnan, Jobin K V, Pritish, Sourab, Thrupthi, Ajeet
Kumar Singh, Koustav, Aniket, Suriya Singh, Udit Roy, Minesh Mathew, Aquib Jamal and Varun Bhar-
gavan who always lent a helping hand whenever needed. During my times of self doubt, you have
extended your support and helped me put myself back on track. Without my friends, my life at IIIT

would not have been easy. I thank Falah, Vidya Naidu and Basil George for making the days memo-
rable.

Finally, I thank my family for believing in me and supporting me in my decision to pursue my
dreams.

v

Abstract

Indian languages have a rich literature that is not available in digitized form. Attempts have been
made to preserve this repository of art and information by maintaining a digital library of scanned
books. However, this does not fulfill the purpose as indexing and searching the documents is difficult in
images. An OCR system can be used to convert the scanned documents to editable form. However, the
OCR systems are error prone. These errors are largely unavoidable and occur due to issues like poor-
quality images, complex font, unknown glyphs etc. A post-processing system can help in improving the
accuracy by using the information about the patterns and constraints in the word and sentence formation
to identify the errors and correct them.

OCR is considered to be a problem attempted with marked success in Latin scripts, especially English.
This is not the case with Indic scripts as the error rates of various OCR systems available are compar-
atively high. The OCR pipeline includes three main stages, namely segmentation, text recognition and
post-processing. We observe that Indic scripts have complex scripts and glyph segmentation itself is a
challenge. The existence of visually similar glyphs also makes the recognition process difficult. The
challenges faced in the post-processing stage are largely due to the properties of Indian languages. The
inflectional properties of some languages like Telugu and Malayalam and agglutination of words cre-
ates issues due to the enormous and growing vocabulary in these languages. Unlike alphabet system in
English, Indic scripts follow alphasyllabary writing system. Hence the choice of unicodes as the basic
unit of a word is questionable. Aksharas which are a more meaningful unit is considered as a better
alternative to unicodes. In this thesis, we analyze the challenges in building an efficient post-processor
for Indic language OCRs and propose two novel error detection techniques.

The post-processing module deals with the detection of errors in the recognized text and correction of
those detected errors. To understand the issues in post-processing in Indian languages, we first perform
a statistical analysis of the textual data. The unavailability of huge corpus prompted us to crawl various
newspaper sites and Wikipedia dump to obtain the required text data. We compare the unique word
distribution and word cover of popular Indian languages with English. We observe that languages
like Telugu, Tamil, Kannada and Malayalam tend to have huge number of unique words compared to
English. We also observe how many words get converted to other valid words in the language, using the
Hamming distance between the words as a measure.

We empirically analyze the effectiveness of statistical language models for error detection and cor-
rection. First we use an ngram model for detection of errors in the OCR output. We use akshara split

vi

vii

words to create a bigram and trigram language model which gives the probability of a word. A word
is declared as an error word if it has lower probability than a pre-computed threshold value. For error
correction, we replace the lowest probability ngram with a higher probability one from the ngram list.
We observe that akshara level ngrams perform better than unicode level ngram models in both error
detection and correction. We also discuss why the dictionary based method, a popular method used in
English, is not a reliable solution for error detection and correction in case of Indic OCRs. We use a
simple binary dictionary method for error detection, wherein if the word is present in the dictionary, it is
tagged as a correct word and error otherwise. The major bottleneck in using a lexicon is the enormous
words in the languages like Telugu and Malayalam. In error correction, we use Levenshtein and Gestalt
scores to select the candidate words from the dictionary for replacement of error word. Inflection of
words causes issues in selecting the correct words as the candidate list consists of many words which
are close to the error word.

We propose two novel methods for detecting errors in the OCR output. Both the methods are language
independent and does not require knowledge of language grammar. For detecting the errors in the OCR

output, the first method proposed uses a recurrent neural network to learn the patterns of errors and
correct words in the OCR output. The second method is using a Gaussian mixture model based clustering
technique. Both methods use a language model of unicode as well as akshara split words in creating
the features. We argue that aksharas are a better choice as the basic unit of a word than unicode. An
akshara is formed by the combination of one or more unicode characters. We tested our method on four
popular Indian languages and report an average error detection performance above 80% on a dataset of
5K pages recognized using two state of the art OCR systems.

Contents

Chapter Page

1 Introduction and Related Work . 1
1.1 Overview of Popular Recognition Systems . 3
1.2 Motivation . 4
1.3 Contributions . 4
1.4 Thesis Organization . 5
1.5 Related Work . 5

1.5.1 Post-processing in English OCR . 5
1.5.2 Post-processing in Indic OCRs . 6

2 Indian Languages: Overview . 8
2.1 Indian Language Structure . 8
2.2 Encoding standards . 9
2.3 Dilemma: What is the basic Unit? . 10

2.3.1 Akshara . 10
2.3.2 Unicode Representation . 10

3 Challenges in Post-Processing in Indic OCRs . 12
3.1 Errors in OCR Output . 12

3.1.1 Types of OCR Errors . 14
3.1.2 Analysis of Indic OCR Errors . 18

3.2 Challenges . 20
3.2.1 Closely Related Works . 20
3.2.2 Exploding Number of Unique Words . 20
3.2.3 Overlapping of Glyphs . 22
3.2.4 Words at one Hamming Distance . 24
3.2.5 Lack of mature grammatical tools . 24

3.3 Summary . 25

4 An Empirical Study of Effectiveness of Post-processing in Indic Scripts 26
4.1 Introduction . 26
4.2 Methodology . 27

4.2.1 SLM based Post-Processing . 28
4.2.1.1 Statistical Language Models: An Overview 28
4.2.1.2 Language Model Creation . 29
4.2.1.3 Error Detection using SLM . 29

viii

CONTENTS ix

4.2.1.4 Error Correction . 30
4.2.2 Dictionary based Post-Processing . 30

4.2.2.1 Dictionary Creation . 30
4.2.2.2 Error Detection . 31
4.2.2.3 Error Correction . 32

4.3 Results and Analysis . 33
4.3.1 Results using SLM . 33
4.3.2 Results and Analysis of Dictionary method 36

4.4 Summary . 38

5 Error Detection In Indic OCR using RNN and GMM . 39
5.1 Methodology . 39

5.1.1 Basic OCR Model and Error Detection Procedure 39
5.1.2 Structure of the Solution . 41
5.1.3 Gaussian Mixture Model for Error Detection 42
5.1.4 Error Detection using RNN . 42

5.2 Experiments . 43
5.2.1 Corpus Creation . 43
5.2.2 Data and Evaluation Metrics . 44
5.2.3 Results of using RNN and GMM Methods . 44
5.2.4 Combining RNN and GMM Approaches . 45
5.2.5 Observations . 46

5.3 Discussions . 49

6 Conclusion . 52
6.1 Future Work . 53

List of Figures

Figure Page

1.1 Figure shows the text recognized by the OCR, passing through different stages of the
post-processing module. The text recognized by the OCR contains errors which are
detected in the detection stage. The error words detected are shown in red color. In the
error correction stage, these error words are corrected(shown in blue color). 2

1.2 The figure shows some errors which occurred during OCR recognition process. The red
boxes show the error characters and blue boxes show the intended characters. 3

2.1 Percentage of native speakers of the scheduled languages in India, according to 2001
Census of India [1] . 8

2.2 Figure shows the word ’yamuna’ written in different Indic scripts namely Hindi, Pun-
jabi, Bengali, Gujarati, Telugu, Tamil, Kannada, Malayalam and Urdu 9

2.3 The figure shows the akshara and unicode level splitting of words in Hindi and Malay-
alam. The akshara level split gives components each of which are composed of one or
more unicode symbols. In the unicode level split(bottom level) it can be observed that
the unicode character halant, is not visible in the akshara level split or in the original
word. 11

3.1 Types of OCR errors: Figure (a) shows a word in Telugu language, its image and the
mis-recognized OCR output which is another valid word in Telugu. A unicode character
(in red box) is recognized as another unicode character (in blue box). Figure (b) shows
a Gujarati word, the image of which when recognized, gives an invalid word as output.
The unicode character (in red box) is recognized as a group of graphemes (in blue box) 13

3.2 Figure shows some real word errors(top box) and non-word errors(bottom box) in Hindi
and Malayalam. In Hindi, inflection due to gender causes existence of words with vari-
ations in the unicode glyph at the end of the word. Such real word errors can be difficult
to detect without applying grammar rules. 13

3.3 Figure shows four boxes which shows unicode characters responsible for substitution
and deletion errors in Malayalam and Hindi. The first box shows the unicode character
pair of a dependent vowel in Malayalam. The unicodes in the box correspond to long
and short vowel sounds. The second box also shows another visually similar unicode
pair in Malayalam. The third box shows a similar pair of unicode characters in Hindi.
The last box shows anusvara, a unicode character used in Hindi, which is often missed
by the OCR resulting in deletion error. 15

x

LIST OF FIGURES xi

3.4 The Figure (a) shows a word in Hindi in which unicode rearrangement is required to
render the word correctly. Figure (b) shows a similar case in Malayalam. Each akshara
unit in a word is shown in single color. 18

3.5 The Figure shows some errors which have distorted arrangement of unicodes in the
words. The colored part shows the region where error occurred due to incorrect ordering 19

3.6 Unique word coverage between Malayalam, Telugu and English. For a language to get
saturated, we would require a large dataset.(better seen in colour) 22

3.7 Figure shows the segmentation of each disjoint glyph in a word in Telugu. It is seen that
segmentation of each glyph is a difficult task because of the nature of the script. 22

3.8 Figure shows different ways in which same word is written. Here compounding of char-
acters causes three unicode characters to combine into a single connected component

. 23

3.9 Figure shows visually similar characters in Gujarati, Malayalam, Hindi and Telugu
scripts along with their unicode values. 23

3.10 Figure shows the words that can be converted to another valid character with a Hamming
distance of 1. The first row shows words in Malayalam and second that in Hindi. . . . 24

3.11 Plot showing the percentage of words converting to other valid words in various languages. 25

4.1 Error Detection using a simple dictionary method. The words output by the shape clas-
sifier is input to a dictionary. The word is labelled as error if it is not present in the
dictionary. For each error word top n candidate words are retrieved for replacement. . . 31

4.2 Figure shows errors classified according to its Hamming distance (1 to 4 and above 4)
from the actual word in different language OCR outputs. 33

4.3 Error Detection using SLM at unicode level, for different errors at varying distance from
the actual word (shown in different colors). 34

4.4 Error Detection using SLM (akshara level for Indian languages and unicode for English)
for different errors (shown in different colors) at varying distance from the actual word. 34

4.5 Figure shows comparison of Error Detection using akshara (blue color) and unicode
level (red color) SLM for Indian languages. 35

4.6 Error Detection using SLM at unicode level, for different errors (shown in different col-
ors) at varying distance from the actual word. The errors beyond distance 1 are not
corrected using SLM. 35

4.7 Error Correction using SLM (akshara level for Indian languages and unicode for En-
glish) for different errors (shown in different colors) at varying distance from the actual
word. Very few errors beyond distance 1 are not corrected using SLM. 36

4.8 Figure shows the results using 2 different Dictionaries, Dictionary which has all cor-
rect words corresponding to the error words included (red) and one in which it is not
explicitly included (blue). Gestalt score is used to find the candidate words. 37

4.9 Figure shows the results using 2 different Dictionaries, Dictionary which has all cor-
rect words corresponding to the error words included (red) and one in which it is not
explicitly included (blue). Levenshtein distance is used to find the candidate words. . . 38

xii LIST OF FIGURES

5.1 The image shows how feature is created from a word for RNN and GMM training. After
adding markers to the beginning and end of akshara split words in a huge corpus, its
language model is generated. The bigram and trigram models are clustered separately.
We then perform Dictionary Building to find the cluster centroids and create bags of
syllables, which is stored as a lookup table. The GMM model takes as input, the fixed
length histogram of the syllable split words whereas the RNN uses the raw bigram and
trigram syllable probability. Each model then makes a prediction of the label of the
input word. A word is declared error only if both the models label it as an error. 41

5.2 The bar graph shows the precision recall and F-score using RNN, GMM and the combined
approach in Malayalam. The precision in the combined approach exceeds both the
individual approaches. 47

5.3 The bar graph shows the precision recall and F-score using RNN, GMM and the combined
approach in Hindi. The precision in the combined approach exceeds both the individual
approaches. 47

5.4 The bar graph shows the precision recall and F-score using RNN, GMM and the com-
bined approach in Gujarati.The precision in the combined approach exceeds both the
individual approaches. 48

5.5 The bar graph shows the precision recall and F-score using RNN, GMM and the combined
approach in Telugu.The precision in the combined approach exceeds both the individual
approaches. 48

5.6 Figure shows some of the test cases and the labels assigned to them by each model.
Cross mark and tick mark indicates that the label is error and correct respectively. De-
cision column shows the prediction made by combined method. 49

List of Tables

Table Page

3.1 Figure shows OCR word error rates for different Indian languages for an SVM based
recognizer . 14

3.2 Figure shows OCR character error rates for different Indian languages for an SVM based
recognizer . 15

3.3 Figure shows RNN OCR character error rates for different Indian languages 16
3.4 Figure shows RNN OCR word error rates for different Indian languages 16
3.5 Character Error Rates of Tesseract OCR . 17
3.6 Word Error Rates of Tesseract OCR . 17
3.7 Table shows the details of the data set used to create corpus. The data is obtained by

crawling various online news sites. 21
3.8 The Table shows the word cover statistics of different Indic scripts and English. 21

4.1 Details of the vocabulary size used to build the dictionary1 and dictionary2. 32

5.1 Statistics of Unique Words and Syllables in Different Indian Languages. 40
5.2 Details of the data set used for corpus and language model creation in various languages 44
5.3 Details of Training and Testing Corpus Size . 44
5.4 True Positive, False Positive, True Negative and False Negativer percentage for Languages 45
5.5 Comparing Precision, Recall and F-Score values for RNN and GMM approaches. (The

values are shown in percentage) . 45
5.6 Rules for labeling a word by combining the models 46
5.7 Results of error detection on a RNN based OCR using the pre-trained error detection

model. We have used a combination approach discussed in previous session to achieve
this result. The values are in percentage. 46

5.8 The Table shows qualitative results comparing the SLM based method and the RNN based
method for error detection in languages Malayalam, Hindi and Telugu. For each method,
the prediction made for the word is seen. A word is predicted ’correct’ or ’error’ 50

xiii

Chapter 1

Introduction and Related Work

Indian languages have a long history. There is also rich literature collection in these languages. A
bulk of this literature is available only in the form of printed text. If we do not preserve the printed
documents we may lose this precious information. The best way to preserve this information is to store
the data in digital format. Hence the Optical Character Recognition (OCR) problem for Indic scripts is of
paramount importance. An OCR can be used to convert scanned document images to editable electronic
documents [2]. Although efforts have been made to build OCRs for Indic scripts, the effectiveness of the
techniques employed in English OCRs is not yet reproducible in Indic scripts. For instance, Tesseract
[3] and ABBYY [4] provide accuracies exceeding 99% in English for reasonable quality of documents.
This is not the case with Indic scripts. Indic OCRs are more error prone than their Latin counterparts.
A deeper understanding of the problem is required to improve the accuracy of Indic OCRs and make
them suitable for practical applications. In this thesis, we first try to enumerate the major bottlenecks in
improving the OCR accuracy. We also explore the complexity of Indic scripts, the nature of fonts and
their encoding standards.

A basic OCR system pipeline includes three major stages.

1. Pre-processing
This step involves preparing the image to ensure that the best quality image is input to the next
stage. The scanned pages or images usually contain noises which hinder the recognition process.
Methods used for pre-processing include skew correction, binarisation, layout analysis, script
recognition etc. The segmentation of characters, words, lines etc. are also done in this stage.

2. Recognition
In this stage, the text in the image is recognized and the image is converted into editable text
format. Image features like HOG,SIFT, profile based features etc. are used for recognition. A
classifier then assigns the glyph in the image to the closest matching glyph in the language. Pop-
ular classifiers used for this purpose include nearest neighbour, SVM and neural networks etc.

3. Post-processing
This is the stage where the errors made in the recognition phase is identified and corrected. The

1

two stages in post-processing are error detection and error correction. The knowledge of grammar
of the language and co-occurrence frequencies can help in this process. For example, if the word
”I am” is recognized as ”1 am”, the occurrence of former word sequence has more chance of exist-
ing together than latter. Statistical language models are widely used to obtain this co-occurrence
probabilities of words or characters in words. This information along with the information about
the characters which can be confused with each other can help us identify the mistakes and correct
them. Figure 1.1 shows how post processing is done on the OCR recognized text. The stages of
error detection and error correction and its effects on the recognized text is shown in the Figure.

Figure 1.1: Figure shows the text recognized by the OCR, passing through different stages of the post-processing

module. The text recognized by the OCR contains errors which are detected in the detection stage. The error

words detected are shown in red color. In the error correction stage, these error words are corrected(shown in blue

color).

Figure 1.2 shows some of the errors which occurred during the OCR recognition in a 5K page data set [5].
While observing the errors in red boxes, and its corresponding correct characters, it is understood that
many errors occur due to the visual similarity of the characters in Indic scripts. For example, in Hindi
and Malayalam languages shown in Figure 1.2, the error has occurred due to the visual similarity of the

2

characters shown in red and blue bounding boxes. The error in Kannada OCR shown in the Figure has
occurred due to the complex representations of characters in the language. Two consonants when occur
together are sometimes represented by placing the second consonant below the first one. This causes
the size of the characters to be smaller than when presented normally, leading to errors. During such
representations, the OCR is unable to distinguish the minor differences in the glyphs. This complicates
the recognition process. A similar error is seen in Telugu also.

Figure 1.2: The figure shows some errors which occurred during OCR recognition process. The red boxes show

the error characters and blue boxes show the intended characters.

1.1 Overview of Popular Recognition Systems

We have used the output of three different recognizers in our experiments, namely an SVM based [6],
RNN based [7] and Tesseract OCR [8]. Though the main functionality of these OCRs are the same i.e
recognition, they differ in the method used for recognition. In the SVM based OCR, the shape classi-
fier used is a support vector machine. SVM based classification is a supervised learning method, which
separates the classes using a hyperplane or a set of hyperplanes between them. The classes here are

3

the isolated characters in a language. Hence segmentation of the glyphs or characters is the first task
done. These are then passed to the recognizer for classification. The segmentation is critical here be-
cause any issues in segmentation can cause the recognizer to incorrectly recognize the words. The
second recognizer is a neural network based shape classifier which models the problem of recognition
as transcription. This recognizer does not need segmentation of individual glyphs or characters before
recognition. The bidirectional RNN architecture has the ability to access long range context, learn se-
quence alignment and work without segmenting the individual glyphs. These recognizers are getting
much recognition in recent times due to the superiority in performance. Thirdly, we use Tesseract, a
free-software, originally developed by Hewlett-Packard Laboratories and now maintained by Google. It
uses a two-pass process for recognition. The first pass makes an attempt to recognize each word. Each
word which is satisfactorily recognized is passed to the second stage consisting of an adaptive classifier.
Recently Tesseract has made improvisations to exploit the use of neural networks for recognition.

1.2 Motivation

India has a rich collection of literature spread across various languages, civilizations and time peri-
ods. If we do not take effort to preserve this treasure, inherent vice will eventually destroy the books
which have recorded our journey through time. Digitizing these texts can prevent their loss through
eventual decay. Optical character recognition (OCR) is a technology which has helped in this regard.
OCR systems are generally not perfect and at times can falsely identify the scanned text, causing mis-
spellings and linguistic errors in the output. Since the quality of images cannot be guaranteed at all
times, the performance of the OCR cannot be the improved by improving the classifier accuracy alone.
A post-processing system added to a recognizer can help in this regard. It can identify and rectify those
errors created in the recognition phase. The OCR pipeline available today is not at par with English
and other Latin language OCRs. To address this problem, we first need to identify and understand the
challenges unique to Indic scripts and ways to overcome them.

1.3 Contributions

In this thesis, we have examined the major challenges involved in post-processing of OCR output in
Indic scripts. Extending the work done by Sankaran and Jawahar [9] and Sankaran [10], we explore
the reasons why some of the post-processing methods employed with success in case of English do not
work well with Indic scripts. We analyze the text corpus in major Indian languages to find the unique
word coverage. Also we understand how the words in languages like Hindi can be converted to other
valid words by changing just one glyph in the word. We have compared various language statistics for
Indic scripts like unique word count, word cover, number of words at particular Hamming distance, etc.
with those for English by including more languages and larger corpus in most languages. Since we
required ample amount of data to create a good language model, we have created a huge corpus of data

4

crawled from various online sources like newspapers and Wikipedia dump. This was necessary as the
available corpus for Indic languages is nowhere near the huge corpus available for English, for example
the BNC corpus [11]. The crawled corpus contained many undesirable characters such as other language
words, typographical errors etc. These were carefully removed and a large corpus which is fairly clean is
created. We also perform experiments to demonstrate why error detection and correction using popular
methods like dictionary and statistical language models do not work well in Indic scripts. Finally, we
have also proposed two novel error detection techniques which are language agnostic. The methods
use bigram and trigram language models of aksharas in words as features to create the models. We
have used a bidirectional recurrent neural network based classifier to learn two classes of words, namely
correct and error words produced by the OCR output. In the second method, we have used Gaussian
mixture model based clustering method in which depending on which cluster the word is close to, the
word is tagged as a correct word or error word.

1.4 Thesis Organization

In this thesis, we have first analyzed in detail, the various issues due to which we are not able to
produce high accuracy OCR output. In Chapter 1, we look into the previous works done in English
for performing post-processing of the OCR output. We then present the related works done in Indic
language OCR post-processing. Chapter 2 gives an overview of the multiplicity of languages and scripts
in India. This Chapter also mentions about the two different encoding standards popularly used in Indic
scripts, namely ISCII and Unicode encoding. Next we explore akshara as a more meaningful basic unit
of a word and compare with unicode. In Chapter 3, we analyze various issues which pose challenges in
creating a highly accurate post-processing system in Indic language OCRs. We analyze the unique word
counts, word cover statistics, words at a Hamming distance etc. In Chapter 4, we empirically analyze
the effectiveness of traditional approaches for error detection and correction in Indic scripts, namely,
a statistical language model based method and a dictionary based method for Indic scripts. We also
compare its performance with English. Finally, in Chapter 5, we showcase two novel and successful
error detection approaches which are language agnostic. We show the results of these methods in four
major Indic scripts.

1.5 Related Work

1.5.1 Post-processing in English OCR

Most early spell checking systems relied on dictionary based method for spell correction [12, 13].
The use of a dictionary can be thought of as the most straight forward approach for detecting the er-
roneous words in the OCR output [14, 15]. The presence/absence of a word in the dictionary is used
to check the validity of the word. The availability of a nearly complete dictionary can give good re-

5

sults in this method, if one exists! Many spell checking and correction systems make use of this binary
dictionary method efficiently [16]. With the advances in natural language processing techniques, espe-
cially the use of statistical language models(SLM) and noisy channel models opened doors for alternate
methods for error detection and correction. In [17], Tong explores the use of statistical language models
using letter ngrams, character confusion probabilities and word-bigram probabilities. The work presents
letter ngrams and character confusion probabilities to find possible word candidates for replacement of
an error word. A word-bigram model along with Viterbi algorithm is used to predict the word which
would better place itself in the sentence. In [18], stochastic error-correcting parsing using Viterbi al-
gorithm has been able to produce significant results in post-processing. Successful attempts have been
made to make use of Shannon’s [19] noisy channel model for error correction. In [20], Brill and Moore
use a noisy channel model with source model and channel model (error model) to find the most likely
word in the dictionary which may be converted to an error word. For the detection of real word errors, a
trigram based noisy-channel model is employed in [21]. In noisy-channel model, the goal is to find the
intended word given an erroneous word. In some cases, for example, when the error word is a proper
noun which is not present in the dictionary, it may be better to accept the error word as the intended
word rather than attempting to find a replacement word from the dictionary. Packer et al. [22] used
Hidden Markov Models (HMMs) for detecting OCR errors. In [23], the author uses part-of-speech tri-
grams combined with Bayesian methods for context sensitive spelling correction. In [24], Smith uses a
shape classifier model, a word ngram model and a binary ngram dictionary model to detect the errors
in English. In [25], huge data available from Google is used to detect and correct misspelled words
including non word and real word errors in the OCR output text. Non word errors are the errors which
are invalid words in the language. Real word errors are errors which are valid words in the language.
Detection and correction of real word errors is a more challenging task than non-word errors.

1.5.2 Post-processing in Indic OCRs

The earliest works in error detection and correction were mainly focused on languages like En-
glish [17] and few other Latin languages. There have also been a few attempts made to develop post-
processing modules for Indian languages to improve the overall OCR accuracy. The scope of applying
part of speech taggers and other NLP techniques in Indic OCR post-processing is restricted due to the
unavailability of such reliable models for these languages. Hence we can find most early works piv-
oting around language specific features such as the morphology of the words or size and shape of the
words. In [26], a shape based post-processing system for Gurumukhi OCR was employed. Here the size
and shape of Gurumukhi words were used to create partitions of words. The visual similarity between
words is used to correct them. In [27], an error correction system for Bangla language is proposed.
The approach involves morphological parsing of the word to split the word into root and suffix. Then a
check is done to know if the root and suffix part of the word can exist together grammatically. In [28],
a multi-stage graph based reasoning, aided by sub-character level language model is used to correct
errors in the OCR output in Malayalam. Here unicode characters are used as the basic unit of a word to

6

create the language model. Sankaran [10] applies various techniques for error detection in two major
Indian languages, namely Malayalam and Telugu. This work compares various approaches for error
detection like using a simple dictionary look up along with an SVM classifier to make predictions. An
ngram based error detection scheme is also explored in which each ngram in an input string is looked
up in a pre-compiled table of ngram statistics to ascertain its existence or its frequency. We can observe
that early post-processing works were focused on a particular language. One of the reasons for this is
that the techniques applied for error detection and correction required some knowledge of the language
used. For instance in [29], splitting the word into root and suffix will be difficult without knowing the
grammar details of Bangla. We will see in Chapter 2 that most Indian languages belong to two major
language families, Indo-Aryan and Dravidian. These two languages families are similar in the sense that
there is a significant overlap of the words used and there exist a correspondence between the unicodes
in these languages. However, the properties like inflection due to gender, agglutination etc. displayed
by these languages are different. The language properties like agglutination is severe in some languages
like Telugu and Malayalam, but not a major issue in languages like Hindi. On the other hand, inflec-
tional variations due to gender is prominent in Hindi and Gujarati. Hence the post-processing techniques
also need to be carefully chosen. An attempt to develop a generic solution which could be applied to all
Indian languages was first seen in [10]. Though this work explores only two languages, the technique
does not employee any language specific method for error detection and is language agnostic.

7

Chapter 2

Indian Languages: Overview

2.1 Indian Language Structure

Indic scripts have their origin traced back to the ancient Brahmi script. According to the census
of India in 2001[1], there are 1365 rationalized mother tongues, 234 identifiable mother tongues and
22 major languages in India. It also identifies 27 native languages which are mostly dialects/variants
grouped under the language Hindi. The Census of India reports only those languages which have more
than 10,000 native speakers. Hindi is the mother tongue for 41% of Indians, followed by Bengali (8%)
and Telugu (7%). Nepali, Sindhi, Konkani, Dogri, Manipuri, Bodo and Sanskrit are spoken by less
than 1% of Indians. Figure 2.1 shows the percentage of native speakers of some scheduled languages in
India. The number of speakers of Bodo and Sanskrit is negligible and is omitted in the Figure. There are

Figure 2.1: Percentage of native speakers of the scheduled languages in India, according to 2001 Census of

India [1]

8

two major language families in India, namely Indo-Aryan and Dravidian language family. About 75%
of the population are speakers of Indo-Aryan languages which includes Hindi, Bengali, Marathi, Urdu,
Gujarati, Punjabi, and Assamese. Dravidian language family is the second largest language family
accounting for some 215 million speakers, or approximately 20% of the population. Telugu, Tamil,
Kannada and Malayalam have the most number of speakers and is predominant in the southern part of
India. The huge diversity poses challenges in the attempts for building a robust OCR and post-processor.
The Figure 2.2 shows the word ’yamuna’ in different Indic scripts.

Figure 2.2: Figure shows the word ’yamuna’ written in different Indic scripts namely Hindi, Punjabi, Bengali,

Gujarati, Telugu, Tamil, Kannada, Malayalam and Urdu

2.2 Encoding standards

The two popular encoding standards available for Indic scripts are Indian Standard Code for In-
formation Interchange (ISCII) and Unicode encoding [30]. ISCII is an 8-bit encoding that uses escape
sequences to indicate the particular Indic script represented by a following coded character sequence.
Unicode is now widely used as the encoding standard and ISCII is now rendered largely obsolete. Ac-
cording to the Unicode Consortium, except for a few minor differences, ISCII and unicode correspond
directly. Unicode is designed to be a multilingual encoding that does not require any escape sequences
or switching between scripts. For any given Indic script, the consonant and vowel letter codes of Uni-
code are based on ISCII. ISCII allows control over character formation by combining letters with the
characters nukta, inv and halant. Unicode provides similar control with the Zero Width Joiner (ZWJ)
and Zero Width Non Joiner (ZWNJ) characters. It is notable that in some cases, there can be more than
one ways in which a character can be represented in Unicode. For example, the Malayalam glyph rep-
resented by hexadecimal value ’0xd7b’ can also be written as a combination of ’0xd28’,’0xd4d’ and
’0x200d’.

9

2.3 Dilemma: What is the basic Unit?

In Indian languages, the question of choosing the basic recognizable unit of a word is debatable. Each
character or glyph has a unicode value associated with it. Decomposition of a word into its constituent
unicode characters certainly ensures atomicity, but fails to give insight as to how these bigrams or
trigrams can build a meaningful word. This means that the bigram or trigram unicodes may not really
say anything about the correctness of a word. This prompts us to go for the akshara level splitting of
the word.

2.3.1 Akshara

Indic languages are syllabic in nature and follows abugida or alphasyllabary writing system [31].
The alphasyllabary writing system differs from the alphabet writing system (followed by languages like
English). In alphabet system, vowels have status equal to consonants whereas in alphasyllabary system,
consonant-vowel sequences are the basic unit of a word. This also implies that when in English a word
can begin with any of the alphabets, in Indic scripts it is not allowed. Each unit is based on a consonant
letter and vowel notation is only secondary. In Indic scripts the basic unit of a word is called akshara.
Akshara is the basic writing unit in Indic scripts which is also an orthographic representation of a speech
sound in Indian language [32]. An akshara follows the pattern C ∗ V , where C is a consonant and V

is a vowel. All scripts have their own number shapes also. Most scripts now follow Western punctua-
tion, but there are also some special punctuation, for example DANDA marks the end of a sentence in
Hindi. Aksharas are similar to syllables in English language. In certain languages like Malayalam, a
syllable may be composed of more than one akshara. We would be using the terms akshara and syllable
interchangeably.

2.3.2 Unicode Representation

Unicode character encoding standard, defined by the Unicode Standard [30], is widely used to rep-
resent Indic characters today. In Indic scripts, the unicode values are not associated with each akshara,
but several unicode characters may be present in one akshara. This is shown in Figure 2.3 in which the
constituent aksharas and unicodes of a Malayalam word is seen.

The question now becomes which unit should be considered as the basic recognition unit of a word
in Indic scripts. As against the alphasyllabary system, the alphabet system has a one-to one mapping for
each alphabet to a unicode value. In alphasyllabary system, each glyph has a unicode value associated
with it, hence an akshara has multiple unicode values, one for each of its constituent glyph. Following
the post-processing works in English and other Latin languages which use alphabet system, it is tempting
to consider unicode values as the basic recognition unit of a word. The primary issue with unicode is that
some unicode values like halant in Hindi and dependent vowel signs does not have any existence alone
and can only be used along with a consonant. Akshara on the other hand, is a phonological unit which

10

Figure 2.3: The figure shows the akshara and unicode level splitting of words in Hindi and Malayalam. The

akshara level split gives components each of which are composed of one or more unicode symbols. In the

unicode level split(bottom level) it can be observed that the unicode character halant, is not visible in the akshara

level split or in the original word.

contains more information regarding the word formation. In order to split words into aksharas, a simple
regular expression which recognizes the pattern of zero or more consonants followed by a vowel can be
used. For error detection in OCR output, we find that syllable level splitting better suits our requirement.
Word formation is related to morphological as well as phonological features [33]. Syllables provide
phonological information and are widely used in speech recognition systems [34].

In our work, we have used akshara as the basic unit of a word. While considering language model
creation, there were two options: 1)using unicode level splitting of words and 2) akshara level splitting
of words. We have used akshara level splitting since our goal is to identify the patterns in correct word
formation and incorrect word formation. In our experiments, we used both unicode and aksharas as
basic unit of a word. However, we prefer to use akshara over unicode. The first reason is that akshara
serves as a more meaningful unit of recognition as it captures a valid phonological unit. Secondly,
each language has a nearly finite list of valid aksharas. Presence of an error in the word creates invalid
aksharas to be formed. This calls out the presence of error in the word.

11

Chapter 3

Challenges in Post-Processing in Indic OCRs

Errors generally occur in the OCR output when the OCR mis-recognizes a glyph or a grapheme cluster
with a visually similar glyph or grapheme cluster. To understand the challenges of post-processing, we
first need to understand the types of errors which occur in the recognizer output.

3.1 Errors in OCR Output

There are two main categories of OCR errors, namely real word error and non-word error. A real
word error occurs when the incorrectly recognized word is another valid word in the language. For
example if the OCR recognizes the word ’fine’ as ’tine’ which is another valid word, then a real word
error occurs. On the other hand, if ’fine’ is recognized as ’iine’, the error created is called a non-word
error. Figure 3.1 (a) shows a real word error in Telugu language where a word is incorrectly recognized,
and the output is also a valid word. Real word errors are difficult to detect unless we have enough context
information because these words belong to the dictionary but are not the intended words. Figure 3.1 (b)
shows an example of a non-word error in Gujarati language, where a unicode glyph is mis-recognized
as a group of grapheme.

In [14], Kukich mentions about the difficulty of context depended word correction in English, without
full-blown NLP capabilities such as robust natural language parsing, semantic understanding, pragmatic
modeling and discourse structure modeling. Context dependent error correction is still an open problem
in Indian languages as the advances in NLP are not sufficient to aid in improved error correction. Figure
3.2 below shows some real word errors and non-word errors in OCR output. In case of both real word
and non-word errors, run-on or split words errors which occur when errors cross word boundaries can
complicate the post-processing. Insertion of new characters (insertion error) , deletion of any valid
character in the word (deletion error) and framing errors (error which occur when a single letter is
substituted for multiple letter sequence or vice-versa) can all result in changing the length of the intended
word. Hence, error correction of words with deletion and insertion error is much more challenging than
a substitution error.

12

Figure 3.1: Types of OCR errors: Figure (a) shows a word in Telugu language, its image and the mis-recognized

OCR output which is another valid word in Telugu. A unicode character (in red box) is recognized as another

unicode character (in blue box). Figure (b) shows a Gujarati word, the image of which when recognized, gives an

invalid word as output. The unicode character (in red box) is recognized as a group of graphemes (in blue box)

Figure 3.2: Figure shows some real word errors(top box) and non-word errors(bottom box) in Hindi and Malay-

alam. In Hindi, inflection due to gender causes existence of words with variations in the unicode glyph at the end

of the word. Such real word errors can be difficult to detect without applying grammar rules.

13

3.1.1 Types of OCR Errors

We analyzed the errors occurring on the dataset [5]. We considered substitution, insertion and dele-
tion errors as they give a more fine grained picture of the nature of errors occurring. We calculate the
word error rate as well as the character error rates.

Word error rate is the percentage of erroneous words. Character error rate is calculated with respect
to unicode characters. Character error rate shows the percentage of unicode characters that have been
incorrectly recognized by the OCR. In order to compute the error rates, we have to first align the recog-
nized word sequence with the reference (ground truth) word sequence using dynamic string alignment.
Note that the word error rates are higher compared to character error rates. This is natural as even a
single character in a long word can create a word error. We also observe that different Indian languages
have varying complexity with respect to errors. The word and character error rates in Telugu, Gujarati
and Kannada are much higher than other languages like Gurumukhi, Malayalam and Bangla. The com-
plexity of Telugu (explained later in Section 3.2.3) and Kannada scripts with nearly touching glyphs
can complicate the recognition process and create errors. The existence of glyphs which are difficult to
visually distinguish also serve as a possible reason for this increased error rates in these scripts.

Telugu Gujarati Kannada Tamil Hindi Malayalam Bangla Gurumukhi

Test data size

(words)
635,669 846,469 420,365 702,864 1,546,148 818,938 454,854 1,541,798

Word

error rate
73.77 63.92 63.58 49.21 34.06 31.39 26.17 24.92

Substitution

error rate
59.95 53.54 50.38 43.24 29.95 25.65 19.06 17.66

Insertion

error rate
12.92 10.11 11.52 2.79 1.91 5.55 6.69 7.05

Deletion

error rate
0.89 0.27 1.68 3.18 2.20 0.19 0.42 0.21

Table 3.1: Figure shows OCR word error rates for different Indian languages for an SVM based recognizer

We can observe that among the three types of errors, namely substitution, insertion and deletion
errors, the incidence of substitution error is much higher than the other two types of errors. This is
possibly because of the existence of visually similar glyphs. But most errors in the OCR output is due
to the recognition of matras incorrectly. This occurs due to the confusion between matras ending with
long and short vowel sounds. This issue causes substitution errors. Insertion errors occur mainly due to
the mis-recognition of a single/group of unicode characters with other unicode characters whose length
exceeds the length of original characters. Another issue occurs when OCR omits the unicode characters
such as anusvara (represented by a dot above the letters) which is used to indicate the plural form of

14

Gujarati Telugu Tamil Kannada Hindi Bangla Gurumukhi Malayalam

Test data size

(Characters)
3,990,243 4,385,500 5,545,503 3,069,767 5,554,255 2,078,260 5,517,503 7,798,388

Character

error rate
37.25 28.86 20.65 20.24 16.94 8.96 8.37 5.99

Substitution

error rate
18.14 16.58 7.30 9.78 8.50 4.11 3.86 2.77

Insertion

error rate
16.43 7.66 4.44 4.72 3.52 3.04 2.74 1.69

Deletion

error rate
2.68 4.61 8.91 5.74 4.92 1.81 1.77 1.53

Table 3.2: Figure shows OCR character error rates for different Indian languages for an SVM based recognizer

some words. The omission of this glyph results in deletion error. The issue of similar matras and
anusvara is better explained in Figure 3.3. It is observed that deletion errors are the least occurring of
all the three types of errors and good quality image can reduce deletion errors significantly.

Figure 3.3: Figure shows four boxes which shows unicode characters responsible for substitution and deletion

errors in Malayalam and Hindi. The first box shows the unicode character pair of a dependent vowel in Malayalam.

The unicodes in the box correspond to long and short vowel sounds. The second box also shows another visually

similar unicode pair in Malayalam. The third box shows a similar pair of unicode characters in Hindi. The last

box shows anusvara, a unicode character used in Hindi, which is often missed by the OCR resulting in deletion

error.

In order to understand the state of current OCRs we have obtained statistical results of errors pro-
duced by two different OCRs, namely Tesseract [8] and RNN OCR [7] on a subset of the dataset used
previously [5]. The character error rate details of RNN OCR is shown in Table 3.3 and word error rate
details are shown in Table 3.4. Similar statistics for Tesseract OCR is shown in Table 3.5 and Table 3.6.
We observe that the OCR using RNN based classifier performs better in the set of books we have used for
recognition. The word level accuracy of RNN based OCR is significantly better in languages like Telugu
and Malayalam. In case of Gujarati, both Tesseract and RNN based OCR have struggled to recognize the

15

words correctly. An OCR can perform better if the recognition model is better adapted to the font used
for testing. The RNN based OCR has an upper hand in this case.

Malayalam Kannada Telugu Hindi Gujarati

Test data size

(Characters)
238,213 179,640 372,202 238,055 185,619

Character

error rate
1.60 2.59 1.83 8.84 13.40

Substitution

error rate
1.03 1.28 1.02 1.76 4.41

Insertion

error rate
0.41 0.72 2.36 2.86 7.44

Deletion

error rate
0.17 0.59 11.63 4.22 1.54

Table 3.3: Figure shows RNN OCR character error rates for different Indian languages

Malayalam Kannada Telugu Hindi Gujarati

Test data size

(Words)
25,423 25,741 55,703 70,207 39,321

Word

error rate
9.05 11.01 6.89 19.05 24.65

Substitution

error rate
8.27 8.84 6.44 13.71 19.03

Insertion

error rate
0.74 2.05 0.66 0.66 5.56

Deletion

error rate
0.03 0.11 0.49 4.67 0.06

Table 3.4: Figure shows RNN OCR word error rates for different Indian languages

However we observe that the Tesseract OCR produces less deletion errors in languages like Hindi.
In other languages, the deletion error rates are comparable. The major errors produced by the Tesseract

16

OCR is due to substitution and insertion errors. The complexity of Indic scripts and similar looking
glyphs have resulted in these errors.

Malayalam Kannada Telugu Hindi Gujarati

Test data size

(Characters)
238,213 179,640 372,202 238,055 185,619

Character

error rate
34.83 9.71 18.84 16.53 15.60

Substitution

error rate
19.24 5.16 11.34 5.54 7.41

Insertion

error rate
11.91 3.85 6.83 7.27 6.70

Deletion

error rate
3.68 0.70 0.66 3.72 1.50

Table 3.5: Character Error Rates of Tesseract OCR

Malayalam Kannada Telugu Hindi Gujarati

Test data size

(Words)
25,423 25,741 55,703 70,207 39,321

Word

error rate
91.37 27.94 47.83 26.44 28.47

Substitution

error rate
86.31 25.66 45.22 21.03 23.76

Insertion

error rate
5.05 2.06 2.47 2.09 4.13

Deletion

error rate
0.01 0.21 0.15 3.33 0.58

Table 3.6: Word Error Rates of Tesseract OCR

17

3.1.2 Analysis of Indic OCR Errors

In the previous section, we have seen the common types of errors which can occur in the Indic OCR

output. In addition to the errors created due to the mis-recognition of characters/glyphs, there are some
errors which occur due to the way segmentation and recognition is done in OCRs. In this section we
look at some such errors which are not usually present in Languages like English. These errors occur
specifically due to ordering of unicode to form a word. The type of segmentation used in OCR pipeline
has a major role to play in this error. In the OCR pipeline, the task of the recognizer is to classify
the characters in a word using a pre-trained classifier. Different classifiers like KNN and Multilayer
perceptron (MLP) were used initially for this recognition task [35]. Many classifiers using Support
Vector Machine (SVM) also became popular later [6]. In all these classifiers, segmentation of connected
components was an indispensable and critical task. Unlike English where each character recognized in
a word had to be placed next to the previously recognized one, in Indic scripts the ordering of unicodes
recognized had to be done to generate meaningful text. This means that the unicodes if simply put in
the order of recognition may not give valid words in most Indic scripts. An example of such ordering
needed in Hindi and Malayalam is shown in Figure 3.4.

(a)

(b)

Figure 3.4: The Figure (a) shows a word in Hindi in which unicode rearrangement is required to render the word

correctly. Figure (b) shows a similar case in Malayalam. Each akshara unit in a word is shown in single color.

18

Each akshara in the word is shown in unique color. The unicodes corresponding to the akshara in the
word is shown using arrows. In Figure (a), the dependent vowel sign is placed before the consonant in
the Hindi word. In unicode order, it appears after the consonant (check the intersection of arrows). The
Malayalam word shown in Figure (b), shows another such example where arranging unicodes is critical
to render the word correctly. When we observed the errors created by the SVM based shape classifier
in [6], we found that most of the errors which were created had violated the rules of arrangement of
unicodes in the language. A few examples of such errors are seen in Figure 3.5.

Figure 3.5: The Figure shows some errors which have distorted arrangement of unicodes in the words. The

colored part shows the region where error occurred due to incorrect ordering

In word 1 in the Figure 3.5, a Malayalam word is shown in which two different dependent vowel
signs are attached to a consonant, making it an unacceptable word. In the word 2, the same vowel sign
is repeated twice. The word 3 also shows another Malayalam word wherein an anuswara is followed
by a dependent vowel sign due to an insertion error. Since the vowel sign has no consonant to attach
itself with, it is seen along with a circular dotted symbol. In words 5 and 6, similar errors in language
Hindi (Devanagari script) is seen. In word 5, the position of the dependent vowel is changed. Instead of
attaching to the second consonant, the dependent vowel is seen with the first consonant itself. In word 6,
three different dependent vowel signs are seen after a consonant due to insertion error. Similar errors in
Telugu are seen in words 7 and 8. Recognition using Hidden Markov Models (HMM) [36] made things
simpler as now we could do away with the symbol/glyph segmentation task. HMM based approaches
explicitly tried to address this problem by defining the input as a sequence of feature vectors. The use of
Recurrent Neural Network (RNN) [7] based recognizer modules considered the problem as transcribing
a set of feature vectors to output labels. When we observed the errors in an RNN based OCR, we found
that the errors due to incorrect arrangement of unicodes were completely eliminated. The resulting
errors were mainly due to issues like insertion, deletion or mis-recognition of symbols.

19

3.2 Challenges

Detecting errors can be a simple task if there is a nearly complete dictionary at hand. Many Indian
languages are highly inflectional in nature which means that a word can take multiple forms due to
gender, size or contextual factors. Inflectional nature of these languages make them morphologically
rich. These languages are also agglutinative in nature which causes two or more words to combine
to form another valid word. Inflection and agglutination results in massive increase in the number of
words in the language. Hence maintaining a nearly complete dictionary is not a solution, but can only
be a supplementary strategy. In this section we discuss various issues which pose challenges in post
processing.

3.2.1 Closely Related Works

There are challenges offered by Indic scripts which are unique to these languages. A detailed work
in this direction have been in [37] which presents statistical analysis of ten major Indian languages.
The paper mentions that a study analyzing the language statistics could not be done previously due
not the non-availability of a balanced corpus. The authors have used resources like CIIL corpus [38],
newspapers and other books to create a balanced corpus. In this work, an estimate of the words in the
corpus along with the frequency is made available. The study compares behaviour of morphologically
rich language Telugu, which has a large unique word count with languages like Hindi in which the words
are repeated often. The paper also makes a significant analysis of the number of words required to cover
a certain percentage of the corpus. This gives an idea of the enormity of the words in a language. It
is observed that Dravidian languages need more words to cover a significant percentage of the words
in the language than Indo-Aryan languages. Sankaran et al. [10] shows a comparison of the word
coverage in Indic scripts with English using [11] corpus. This gives a picture of how error detection
using methods like using a binary dictionary is effective in English and not much successful in Indic
scripts. The paper [10] has used a larger corpus for experiments and the results are supportive of the
experimental results observed in [37]. Another interesting observation is regarding how fast the number
of new words observed declines in English [10]. However, in Indic languages, especially Telugu and
Malayalam, this convergence has not happened with the available corpus. This explains why it is easier
to create a dictionary in English with a good coverage using a standard corpus, but is difficult in Indian
languages. We have repeated many of the experiments in these works using a larger corpus for most
languages, consisting of crawled corpus from web. The details of the corpus is given in Table 3.7.

3.2.2 Exploding Number of Unique Words

In order to get an estimate of the word cover of languages, we have used the word coverage estimate.
Word coverage is a measure of the number of unique words needed to cover certain percent of a lan-

20

Corpus English Gujarati Hindi Kannada Malayalam Marathi Tamil Telugu

Total Words 6,026,940 4,328,769 18,180,174 3,889,172 5,999,978 4,188,321 10,949,052 3,193,283

Unique Words
233,158

(3.87%)

288,406

(6.66%)

288,535

(1.59%)

607,051

(15.61%)

1,016,856

(16.94%)

289,949

(6.92%)

1,022,403

(9.34%)

432,554

(13.54%)

Table 3.7: Table shows the details of the data set used to create corpus. The data is obtained by crawling various

online news sites.

guage. We have recreated the word cover statistics from a similar work [37]. The Table 3.8 shows the
word coverage statistics of major Indian languages and English.

Corpus % English Gujarati Hindi Kannada Malayalam Marathi Tamil Telugu

10 3 9 4 28 45 23 58 66

20 10 48 10 203 283 103 248 272

30 35 158 29 783 944 300 691 793

40 107 426 88 2253 2594 723 1657 1905

50 362 1027 226 5613 6456 1572 3812 4303

60 1037 2389 535 13415 15422 3420 8963 9689

70 2643 5674 1221 33478 37870 7991 22624 22856

80 7103 14955 2957 94830 101738 20834 64921 60660

Table 3.8: The Table shows the word cover statistics of different Indic scripts and English.

To avoid any bias due to the differences in the size of the corpus available for each language, we have
restricted the total number of words in each language to 3 Million. We can observe that while English
requires around 7K words to cover 80% of the corpus, highly inflectional languages like Malayalam
requires 100K words. It is interesting to observe that Dravidian languages require more than 60K words
to cover 80% of the corpus while Indo-Aryan languages need much lesser words. It is interesting to
observe that the unique number of words in a book of nearly 46K words was only around 5200 in Hindi.
On the other hand, in Malayalam, a book of 33K words had 16K unique words in it.

We also estimate the average number of unique words per 1000 words in the language as the corpus
size increases. A similar experiment was performed on three languages in [10]. We created the statistics
in 8 different languages. The Figure 3.6 shows that while the number of unique words for languages like
English, Hindi, Gujarati and Marathi becomes close to zero really fast, for languages like Telugu,Tamil,
Kannada and Malayalam, the convergence requires a larger corpus. It is observed that Indo-Dravidian
languages have large unique word occurrences compared to Indo-Aryan languages.

21

Figure 3.6: Unique word coverage between Malayalam, Telugu and English. For a language to get saturated, we

would require a large dataset.(better seen in colour)

3.2.3 Overlapping of Glyphs

One of the major issues in Indic scripts is that of the complexity of scripts causing overlapping of
glyphs during segmentation. Perfect glyph segmentation is a challenge since most Indic scripts have
dependent vowels or other modified consonants which are connected to a consonant. This leads to
issues in perfect glyph or character segmentation because a single character touching another character
is segmented as a single character, thereby hindering the correct recognition process. Except for a
few languages like Malayalam and Tamil, the complexity of scripts affects the OCR accuracy and post-
processing activities. Generally in OCR systems, each non-touching independent symbol, referred to
as glyph is the basic recognition unit. The segmentation of each word involves identification of these
glyphs. Glyphs are segmented using connected components. This is depicted in Figure 3.7. In English,

Figure 3.7: Figure shows the segmentation of each disjoint glyph in a word in Telugu. It is seen that segmentation

of each glyph is a difficult task because of the nature of the script.

22

this level of segmentation is relatively easier because of the simple nature of the script. A major issue
in Indic scripts is that the glyph level segmentation is overlapping due to the complexity of scripts
(note the overlapping boxes). Most Indic scripts have dependent vowels or other modified consonants
which are connected to a consonant. Hence perfect glyph segmentation is a challenge. This causes
recognition issues leading to errors in the output such as a glyph getting mis-recognized as another
glyph or cluster of graphemes. Post-processors are useful in this context wherein, a good Language
Model and knowledge of error patterns can handle the issues created by similar shaped glyphs. Another
issue is the combination of two or more unicode characters forming a compound character. One such
instance in Malayalam is shown in Figure 3.8.

Figure 3.8: Figure shows different ways in which same word is written. Here compounding of characters causes

three unicode characters to combine into a single connected component

Another major factor contributing to the difficulty is the visual similarity of various unicode charac-
ters in the languages. This is shown in figure 3.9. Some of these characters are difficult to distinguish

Figure 3.9: Figure shows visually similar characters in Gujarati, Malayalam, Hindi and Telugu scripts along with

their unicode values.

23

even for humans,without knowledge of the language.

3.2.4 Words at one Hamming Distance

The chances of mis-recognizing a word is more when there exist many words at a Hamming distance
of one from the intended word. For example, the words {’bot’, ’cat’, ’sat’, ’bag’, ’pat’, ’rat’, ’bar’,
’ban’} are all valid words at a Hamming distance of one from the word ’bat’. To identify the word in the
image, the full context information may be necessary. For instance if the article is about machines and
intelligence, ’bot’ may make more sense. On the other hand, if it is a sports related article, then ’bat’
makes more sense. There can be instances where the context information can also be of not much help
in finding the word. This is because in Indian languages words can display variations due to inflection
with only a single unicode glyph change. An example of this behavior is shown in the Figure 3.10
for some words in Malayalam and Hindi. In Hindi, most verbs display this inflection based on gender
and singularity or plurality of the subject. In order to analyze the severity of the issue, [10] has used a

Figure 3.10: Figure shows the words that can be converted to another valid character with a Hamming distance of

1. The first row shows words in Malayalam and second that in Hindi.

plot of words which exists at particular Hamming distance. We have repeated the experiment in more
languages in Figure 3.11. We can see that for languages like Gujarati, Hindi and Tamil, there exists
many words at a single Hamming distance. This increases the incidence of real word errors. Malayalam
has the least number of words at Hamming distance 1.

3.2.5 Lack of mature grammatical tools

To work at the word level, a suitable method would be to identify and decouple the agglutinated
words. Also, separating the inflectional affixes can simplify any attempt made to detect errors. The
performance of morphological analyzers and sandhi splitters developed for most Indian languages do
not meet the level of accuracy required to aid in error detection [39]. This is because any incorrect
identification and decoupling of agglutinated words can result in recognition of correct words as errors
by the post-processor, which can negate its usefulness. Any post-processing system which should handle
real word errors will require information about the parts of speech of a sentence. The parts of speech
taggers can help identify the correctness of the inflectional word to a great extent. Also tools for semantic

24

Figure 3.11: Plot showing the percentage of words converting to other valid words in various languages.

understanding, pragmatic modeling and discourse structure modeling if available would enhance the
performance of the post-processing module, by incorporating the language information at a greater
level than by mere language models created from words or sentences.

3.3 Summary

The errors in the output of Indic OCRs occur not only due to mis-recognition of glyphs/symbols but
also due to the arrangement of the unicodes after recognition to form a word. Recognition systems which
did not depend on sub-word level segmentation played a laudable job in removing these errors. The
errors which occur in Indic OCR output are largely due to the almost touching glyphs and similar looking
glyphs. To correct these error words is also a challenging task. The existence of huge vocabulary,
especially in Dravidian languages like Telugu and Malayalam makes the error detection and correction
using simple Dictionary method inefficient. The existence of many words at a Hamming distance of one
from a word makes error correction process in languages like Hindi even more challenging. There are
many words from which we have to choose the correct word for replacement of the error word. Also only
if we have highly efficient grammatical tools can we come up with methods to deal with agglutinated
words which is one of the primary causes of exploding number of unique words. At present we do
not have efficient sandhi splitters which can help in splitting these words. These issues make post-
processing in Indic scripts a challenging task which requires alternate methods to solve the problem.

25

Chapter 4

An Empirical Study of Effectiveness of Post-processing in Indic Scripts

4.1 Introduction

Errors in OCR system are largely unavoidable and occur due to issues like poor-quality images, com-
plex font etc. A post-processing system can help in improving the accuracy by using the information
about the patterns and constraints in the word and sentence formation to identify the errors and correct
them. Indic OCRs have trailed behind in achieving accuracy comparable to English OCRs [4, 8], which
have claimed accuracy close to 99%. The errors persisting in the recognized text, after the shape clas-
sifier has done the recognition task, are handled by a post-processing module. This module uses the
language information to improve the accuracy of text recognized further. First we explore the effec-
tiveness of a statistical language model or SLM based error correction technique, for post-processing.
We have used character (unicode) level bigram and trigram language models to find the errors in the
OCR output. Since aksharas form a more meaningful sub-unit of a word, we evaluate the performance
of SLM based method using akshara level ngram Model. It is often assumed that a simple dictionary
method, if employed can increase the accuracy significantly. We perform experiments to understand the
efficacy of dictionary based method for error correction. We analyze if the dictionary based method is
able to correct the errors in Indic OCR output as well as it perform in English.

Both SLM and dictionary based methods can only detect error words which are not valid words in
the language, known as non-word errors. For example, consider the sentence “Take a break”. If the
OCR recognizes this sentence as “Tale a break”, both the above mentioned approaches are bound to
fail as Tale is a valid word in English. These class of errors known as real word errors require context
information and can be corrected by using a word level statistical language model [17]. Non-word
errors form a major portion of errors in the OCR output and detecting and correcting them should itself
improve the OCR error rate significantly. Hence we restrict our work to only non-word errors at present.

The SLM based method relies on the use of a language model, which computes the probability of
a sequence of characters or words. We have conducted the experiments using two different language
models, namely unicode level and akshara level. We have not used word level language model which is
a popular approach in English [17]. The character based language models better model languages with

26

a rich morphology. To use a word level language model, a huge corpus containing text from different
domains is essential. Since we do not have such a corpus, we restrict our work to character and akshara
level language model.

The success of dictionary based method for error detection depends on the number of words included
in the dictionary. If a word correctly recognized by the OCR is not present in the dictionary, then the
dictionary based method would label it as an error (when the word is actually correct). These false
positives will affect the recognition accuracy of the OCR as these words would be replaced by any
word which is closer to the detected ’error word’ from the dictionary. Therefore, it is essential that the
dictionary we use should cover a large percentage of words in the language. This itself is another issue
as the number of words required to cover a language like Telugu and Malayalam is much larger than
those required in English [10]. Another issue is availability of balanced corpus in Indic languages. Since
a large corpus like BNC corpus [11] in English, which is collected from a wide range of sources is not
available in Indian languages for direct use, we depend on crawled corpus from the web. This corpus
mainly involves the news sites and other such sources. This restricts our dictionary words, making
it less diverse. The availability of corpus which covers a wide range of topics can solve this issue.
Another bottleneck occurs due to the properties like inflection and agglutination. Inflection causes a
word to exist in different forms to express a grammatical function such as tense, gender, mood, number,
person etc. Usually these words show variation at the end of a word. A bigger challenge is when many
words join together to form new words (agglutination). This creates too many words to be included in
the dictionary. Since we do not have highly efficient NLP tools to split the agglutinated word into its
constituent words, this issue is left unsolved at present. The advantages of using a dictionary lies mainly
in the fact that it does not require any complex post-processing model, but an unabridged dictionary
containing the words in the respective language. Another factor to consider is updating the dictionary
continuously as and when new words are added in the language. Though this method fails to detect
correctness of some words like proper nouns (whose addition to the dictionary is a difficult task), it is a
straight forward and effective method, especially in English.

In this Chapter, our aim is to understand if traditional post-processing approaches which work well in
English would perform the same in Indic OCR outputs. We perform experiments to assert the importance
of considering akshara as the basic unit of a word in Indic scripts, instead of unicode which can represent
alphabets in English. We also understand the different errors occurring at various Hamming distances
from the original word and the effect of these error detection and correction techniques on these errors.

4.2 Methodology

We have conducted experiments using SLM and dictionary, to analyze the performance of post-
processing in Indic scripts with English OCR output. In our experiments, we have not included shape
classifier accuracy information such as the probability of recognized characters and next probable char-
acter information. We also do not take into account the character confusion information, which depends

27

on the OCR system used for recognition. Assuming that the OCR output text is available, we use ngram
probabilities to detect the errors and find possible replacement words for correcting the errors detected.

4.2.1 SLM based Post-Processing

4.2.1.1 Statistical Language Models: An Overview

The works related to statistical language modeling task has been in progress since the beginning
of the 20th century when Markov tried to model letter sequences in works of Russian literature [40].
Linguist G K Zipf [41, 42] studied statistical properties of text and formulated an empirical law using
mathematical statistics. Zipf’s law states that given a large sample of words used, the frequency of
any word is inversely proportional to its rank in the frequency table. However, it was Shannons work
[19] that inspired later research in this area. Shannon used a prediction machine that involved n-grams
to investigate the information content of English text. He evaluated n-gram models performance by
comparing their cross-entropy on text with the true entropy estimated using predictions made by human
subjects. For many years, statistical language models have been used primarily for automatic speech
recognition. Since the first significant language model was proposed [43], statistical language modeling
has become a integral component of speech recognition, machine translation, spelling correction, and
so forth. There are other applications of natural language processing tasks such as natural language
generation and summarization. A statistical language model is a probability distribution over all possi-
ble sentences or other linguistic units in a language [43]. It can also be viewed as a statistical model
for generating text. The task of language modeling, in general, is to answer the question: how likely
can we observe the ith word in a sequence assuming that we know the preceding i-1 words? In most
applications of language modeling, such as speech recognition and information retrieval, the probability
of a sentence is decomposed into a product of ngram probabilities of constituent tokens. Consider a
sequence S of k words,

S = w1, w2, ..., wk

An ngram language model considers the word sequence S to be a Markov process with probability

Pn(S) =

k∏
i=1

P (wi|wi−1, wi−2, ..., wi−n+1)

where n implies that it is nth order of the Markov process. A bigram model is estimated by using the
information about the co-occurrence of pairs of words i.e, n = 2. When n = 1, we get a unigram
model which estimates the probabilities of individual words. In information retrieval, the role of word
order is less clear and unigram models have been used extensively. Unigrams are powerful, especially

28

in cases where occurrence of words like “Dissappointed”, “Interesting” etc. gives more insight into the
sentiment of the text. For applications such as speech recognition, natural language generation, machine
translation etc., word order is important and higher-order (usually trigram) models are used. To establish
the word ngram language model, probability estimates are typically derived from frequencies of ngram
patterns in the training data. It is highly likely that many possible word combinations would not appear
in the actual data used for estimation, even if the size of the data is huge and the value of n is small.
As a consequence, for rare or unseen events the likelihood estimates that are directly based on counts
can cause issues. This is often referred to as the data sparseness problem. A popular method used for
issues like data sparseness is smoothing. Many smoothing techniques are available today like Additive
smoothing, Good Turing Estimate, Kneser-Ney smoothing etc [40]. Evaluation of language models
has typically been done using a measure called “perplexity” [40] which is directly related to entropy.
Entropy measures the average uncertainty of a single random variable. From a language perspective, it
is the information that is produced on an average, for each letter of text in the language. When a model
which has enough information about the text it has modeled, the uncertainty or entropy will be less.
Hence, lower the entropy, the better the model.

4.2.1.2 Language Model Creation

As we have seen, the goal of using language modeling here is to learn a probability distribution over
a sequence of tokens in a word. Tokens used here are characters and aksharas in a word [40]. In SLM

based error correction, we have used the probability of bigrams and trigrams in words for error detec-
tion and correction. Bigrams provide the conditional probability of a token given the preceding token.
Bigram probability is equal to the probability of their bigram, or the co-occurrence of the two tokens
P (Wn−1,Wn) divided by the probability of the preceding token. This is shown in the equation below.

P (Wn|Wn−1) =
P (Wn−1,Wn)

P (Wn−1)

where Wn is the nth token and Wn−1 is the token preceding it, i.e (n− 1)th token. Similarly, a trigram
uses the probability of a character, given the previous two characters in a word. We have created the
language model using SRILM [44]. We have combined the corpus created from the 5K books [5] and
crawled corpus [45] to create the language model. Smoothing is done to take into account those words
which have not appeared in the corpora, in which case a probability of zero will be assigned to them.
We have used the Good Turing Estimate for applying smoothing in the language model.

4.2.1.3 Error Detection using SLM

In this approach, we use a unicode level language model which gives the bigram and trigram prob-
abilities of unicodes in a word. This is used as a look-up table. We then find the average of bigram
and trigram probabilities of unicodes in the input word using the look-up table. If this value is less

29

than a threshold, we declare the word as error and correct word otherwise. The basis of this method is
the assumption that all the non-word errors have a probability (calculated from its constituent ngrams)
much less than that of the correct words. For each word which is fed into the error detection module,
we split the word into its constituent unicode characters and obtain the bigram and trigram probabilities
of its characters. If a bigram or trigram is not found in the bigram or trigram list, it is given a very low
probability value, indicative of the presence of an error. The computation of the word probability is as
follows. Consider a word ”bags”. We begin by splitting it into ”b-a-g-s”. We then append a start-of-
word (< s >) and end-of-word (< /s >) marker at the beginning and end of word. Now we identify
bigrams in the word, which in our case are {< s >b, ba, ag, gs, s< /s > }. We find the product of
these bigrams which gives bigram probability of the word. The trigrams in this case are {< s >ba, bag,
ags, gs< /s > }. We also find the trigram probability of the word. We compute the average of these
two probabilities, which is then used to decide if the word is error or not. This is done by comparing the
probability value with a threshold previously estimated from a list of correct words in the language.

4.2.1.4 Error Correction

The assumption behind this approach is that the error in a word exists at the lowest probability ngram.
Now, to replace this ngram we find a list of ngrams which are at least distance from the ngram to be
replaced. From the candidates for replacement, we choose that ngram which maximizes the probability
of the word. Repeat the above steps on the result for a fixed number of times (for correcting multiple
errors) or till average of bigram and trigram probability obtained is above a threshold. To replace an
ngram, we search both these bigram and trigram list because a deletion error or an insertion error can
be taken care of by looking in both the lists. There are two possible issues we face in this method. Even
with many ngram replacements we may not get a word probability which is satisfactory. In this case
we stop the replacement after a fixed number of iterations. The second issue is that different ngram
replacements can give us different words which are all valid words in the language. In this case we
choose the word whose probability is the highest.

4.2.2 Dictionary based Post-Processing

4.2.2.1 Dictionary Creation

For error detection using Dictionary, we check if the word is present in the dictionary or not. The
word will be labeled as a correct word only if the word is present in the dictionary. Figure 4.1 shows the
error detection stage using a dictionary. The Figure 4.1 also shows correction stage wherein candidates
for replacement are generated. Even if the word is a valid word, if it is not present in the dictionary, it
will be labeled as an error word. This is critical in case of dictionary method because a dictionary with
insufficient word coverage will create a lot of false positives (correct words recognized as errors). These
words when passed to the next stage will result in these words being replaced by other words closer to

30

Figure 4.1: Error Detection using a simple dictionary method. The words output by the shape classifier is input to

a dictionary. The word is labelled as error if it is not present in the dictionary. For each error word top n candidate

words are retrieved for replacement.

these words. This causes the word error rate of the OCR pipeline to increase instead of decreasing after
using a post-processor. The solution to avoid such issues would be to make the dictionary as huge as
possible. Also we need to continuously add new words emerging in the language to the dictionary.

Generally, the success of dictionary method depends on the size of the dictionary. In our case, to
create a large dictionary in English is a fairly easy task as there are huge corpus like Google dataset [25]
etc. In case of Indian languages we have the limitation of corpus availability. The only large corpus we
can depend on is the crawled corpus which is abundantly available [45]. However, the variation of data
you observe in books cannot be found in the crawled data. Hence, we have used the words present in
5K book corpus [5] to create a dictionary in all the five languages. The words in the test book may have
overlap with words in the dictionary, but is not guaranteed. Let us call this dictionary 1. The details
of the number of words in the dictionary 1 for each language is given in the Table 4.1. We have also
created another dictionary (dictionary 2) which contains all the words in dictionary 1 along with the
correct words in the book used for testing.

4.2.2.2 Error Detection

For error detection, we check if the word is present in the dictionary or not. The word will be labeled
as a correct word only if the word is present in the dictionary. Even if the word is a valid word, if it
is not present in the dictionary, it will be labeled as an error word. This is critical in case of dictionary
method because a dictionary with insufficient word coverage will create a lot of false positives (correct
words recognized as errors). These words when passed to the next stage will result in these words being
replaced. This causes the word error rate of the OCR pipeline to increase rather than decrease after using
a post-processor. The issue in Indian languages is that the dictionary cannot cover all the words. We
cannot even guarantee that the dictionary will cover most of the common words in the language. The

31

Language English Hindi Gurumukhi Telugu Malayalam

Words in

dictionary1
38,727 92,620 90,844 258,299 331,007

Words in

dictionary2
40,410 93,530 91,297 264,831 336,013

Table 4.1: Details of the vocabulary size used to build the dictionary1 and dictionary2.

reason being that the words in languages like Malayalam, Telugu etc. are agglutinative. Though their
sandhi split words may exist, their agglutinative combinations are difficult to cover. And we cannot
add all the agglutinated words to the dictionary as the list is nearly endless because of the enormous
combinations of words generated.

4.2.2.3 Error Correction

When a word is detected as error in the previous stage, the closest word from the dictionary is used
to replace it. As a first step, a list of top ’n’ candidate words are retrieved from the dictionary. There
are many ways to find the closest matching word in the dictionary. A popular method is using edit
distance (Levenshtein distance) based distance metric[46]. In this method, the distance is the number
of deletions, insertions, or substitutions required to transform the source word into the target word.
Another popular metric used to find the closest matching words is Gestalt algorithm [47] which is used
in spell checkers.

We have conducted the experiments in four different Indian languages namely Hindi and Gurumukhi
(Indo-Aryan languages) and Telugu and Malayalam (Dravidian languages) [48]. We also compare the
results of performance in these languages with English. To analyze the errors corrected, we divided the
errors based on their distance from the actual word into five classes namely, errors at distance 1 to 4
and above 4. The classification of errors based on Hamming distance from the actual word is shown in
Figure 4.2. The errors at lower Hamming distances from the correct word should be easier to correct
than the ones which are at larger distances. The errors produced depend on the shape classifier used
and the quality of images used for recognition. We can find that in the Figure above, English has a
significant portion of errors which are above 4 distance from the actual word. This will affect the error
correction process in English. These types of errors are due to faulty images or font issues which makes
comparison of different OCR errors difficult. Hence, we have considered only those errors which are at
a distance less than or equal to Hamming distance 3 from the actual word for error correction.

32

Figure 4.2: Figure shows errors classified according to its Hamming distance (1 to 4 and above 4) from the actual

word in different language OCR outputs.

4.3 Results and Analysis

4.3.1 Results using SLM

The results of error detection using unicode level SLM is shown in Figure 4.3. The Figure shows
errors at varying distance from the actual word in different colors. It is observed that this method does
a significant role in detecting errors, especially in languages like English and Gurumukhi. We repeated
the experiment, this time using aksharas instead of unicode level SLM. The result of error detection
using aksharas is shown in Figure 4.4. The error detection accuracy for errors at various distances are
shown in different colors. A comparison of error detection performance using akshara and unicode is
shown in Figure 4.5. It is clear that akshara level SLM do a significantly better job in detecting the errors.
This is because insertion or deletion of even a small glyph in the word can alter the aksharas formed.
When a valid word is split, the aksharas generated also will be valid. On the other hand, splitting an
error word causes formation of invalid aksharas which are less likely to be listed in the unigram list of
aksharas. Formation of such aksharas are indicative of presence of error in the word. This information
is not available in unicodes; hence unicode performance is not as good as that of akshara split words.
It is also observed that in Malayalam, more than 75% of the errors at Hamming distance 1 could be
detected using aksharas while around 30% only could be detected using unicodes. Telugu also shows a
significant improvement in error detection results when we switched to aksharas. The error correction
using SLM at unicode level is shown in Figure 4.6. The error correction is not significant in any of the
languages when unicode level language model is used. The result of error correction using aksharas

33

Figure 4.3: Error Detection using SLM at unicode level, for different errors at varying distance from the actual

word (shown in different colors).

Figure 4.4: Error Detection using SLM (akshara level for Indian languages and unicode for English) for different

errors (shown in different colors) at varying distance from the actual word.

34

Figure 4.5: Figure shows comparison of Error Detection using akshara (blue color) and unicode level (red color)

SLM for Indian languages.

Figure 4.6: Error Detection using SLM at unicode level, for different errors (shown in different colors) at varying

distance from the actual word. The errors beyond distance 1 are not corrected using SLM.

35

is shown in Figure 4.7. The results using aksharas are better than those using unicode, both for error

Figure 4.7: Error Correction using SLM (akshara level for Indian languages and unicode for English) for different

errors (shown in different colors) at varying distance from the actual word. Very few errors beyond distance 1 are

not corrected using SLM.

detection and correction. However, error correction using unicode and akshara do not yield promising
results in any language. The use of ngrams for error correction can create multiple candidate words.
Since we have to choose only one word for replacement, we have chosen the word with the highest
probability. This can create a situation wherein a correct replacement which does not have the highest
probability among the candidate words being ignored by the system.

4.3.2 Results and Analysis of Dictionary method

In the error detection experiment performed using dictionary, in Hindi 57% of errors were detected
and in Gurumukhi 66% of the errors were detected. The highest error detection is observed in Malay-
alam and Telugu, 78% and 70% respectively. In English, only 44% of the errors could be detected.
When we observed the errors in English, many errors which occurred were real word errors, due to
incorrect recognition of punctuation etc. In Hindi, when matras were recognized incorrectly, inflec-
tion caused many incorrectly recognized words to be valid words. The results of experiments of error
correction using dictionary method is shown in Figure 4.8, in which we have retrieved the top 3 candi-
dates for error correction from the dictionary. In order to observe the performance of this method when
all correct alternatives are available in the dictionary, we have done the experiment using dictionary 2.
When using dictionary 1, we can see that in English, 56% of errors could be corrected. However, after
using dictionary 2, the percentage of error words corrected is 61%. When we compare this with other

36

Figure 4.8: Figure shows the results using 2 different Dictionaries, Dictionary which has all correct words corre-

sponding to the error words included (red) and one in which it is not explicitly included (blue). Gestalt score is

used to find the candidate words.

languages, we can see that in Malayalam, the correction accuracy increased from 36% to 62%. This is
a significant increase. A similar behavior is observed in Telugu, from 29% to 50%. Though Hindi and
Gurumukhi also have their error correction rate improved, it is not comparable to the increase we see in
Malayalam and Telugu. This shows that the dictionary 1 covers many common words in the languages
in English, Hindi and Gurumukhi. Whereas in Telugu and Malayalam, many words were added which
were not present in original dictionary. The error detection in inflectional languages is easy if we are
able to create a good dictionary. An alternate method we can use is to split the words which are agglu-
tinated so that the words before agglutination, if present in the dictionary can validate the word. This
requires improved language processing tools in the language. The results using Levenshtein distance as
the distance metric are shown in Figure 4.9 which is comparable to the results obtained using Gestalt
score.

37

Figure 4.9: Figure shows the results using 2 different Dictionaries, Dictionary which has all correct words cor-

responding to the error words included (red) and one in which it is not explicitly included (blue). Levenshtein

distance is used to find the candidate words.

4.4 Summary

In Indic language OCRs, traditional methods used for error detection and correction such as dictio-
nary and character ngrams alone cannot solve the problem. A major bottleneck is the availability of
a balanced corpus to create an unabridged dictionary and word level language model. The dictionary
creation is particularly a difficult task for Dravidian languages such as Telugu and Malayalam due to
the exploding number of unique words. We also need grammatical tools like morphological analyzers,
POS taggers etc. to tackle the problem effectively. Also when compared to unicode, aksharas are more
meaningful choice as the basic unit of a word in Indian languages. Akshara level language models
contain more information when compared to unicode level language models.

38

Chapter 5

Error Detection In Indic OCR using RNN and GMM

In this thesis, we propose an error detection technique for Indian languages using a combination of
Recurrent Neural Network (RNN) and a Gaussian Mixture Model (GMM). In Indian languages, words are
composed of aksharas which are similar to syllables in English. We divide words into their constituent
aksharas and use their bigram and trigram probabilities to build features for training the classifiers. RNN

learns the pattern of word formation using aksharas in correct and incorrect words from their bigram and
trigram probabilities. We use the GMM model to check the misclassification of right words as errors by
the RNN. The error detection approach essentially requires the learning of patterns which can distinguish
a word as error or not. This was the motivation behind using RNN which offers good trainability. Our
method can be used on any language without requiring knowledge of the intricacies of its grammar,
provided we have a fairly large and clean corpus. Unavailability of a large corpus prompted us to use a
web crawler to take advantage of the huge digital content available online.

5.1 Methodology

5.1.1 Basic OCR Model and Error Detection Procedure

One of the primary issues in Indian languages is the unavailability of a huge corpus like the British
National Corpus [11], Brown Corpus etc. which are available for English. A huge corpus is essential
to create a good language model for any language. The unique word coverage of the existing corpora
like [38] are not sufficient for our application. To include words across domains, a common approach
[37] is to use a corpus made by crawling popular news sites and other websites in popular Indian lan-
guages. The crawled data contains noise due to unwise use for Zero-Width Joiners (ZWJ) and Zero-
Width Non-Joiners (ZWNJ) which are used for proper rendering of the unicode symbols. Also many
unicode characters which do not belong to the concerned language may also be present in the crawled
data. The unicode range for the language is used to filter out the undesirable characters from the corpus.
Further, simple cleaning techniques like eliminating words with occurrence of successive vowels are
also done. Splitting of words into aksharas can be done using a simple regular expression. Akshara is

39

formed using zero or more consonants followed by a vowel. When a word is split into its constituent
syllables, if the syllables formed does not belong to the set of syllables already created from the corpus
of large words, it is likely that an error has occurred. The words in a particular language has a set of
commonly used syllables. This set is not finite, yet if a large corpus is used, we get a fair share of the
commonly used syllables. The presence of errors in a word often results in the formation of syllables
which are generally not found in the language. However, with the increasing influence and incorporation
of words over time from other languages, especially English, the number of syllables in the language is
also increasing. For example, many English words like stall, bag, office etc. are widely transliterated to
Indian languages, introducing new syllables. Also, in error words, even if the constituent syllables are
valid, its bigram or trigram combinations may have less probability. In our experiments, we first split the
words into their constituent syllables to compute their bigram and trigram probabilities in the corpus.
Table 5.1 shows the number of unique words in the crawled corpus, which is used to create syllables in
each language, along with the number of unique syllables, bigram and trigram counts.

SRILM toolkit [44] is used to compute the bigram and trigram probabilities of syllables and smooth-
ing is done using Good-Turing discounting to estimate the probabilities of unseen objects [49]. Proba-
bility computations are done for ngrams using nth-order Markov chain assumption and log probabilities
are used in computations, since the probability values are very small. The probability of unseen syllable
ngrams are taken care of using the smoothing technique as shown below.

p0 =
N1

N
pr =

(r + 1)S(Nr+1)

NS(Nr)

where p0 is the probability for an unseen syllable ngram, pr is the probability for an ngram encoun-
tered r times, N is the total number of ngrams, Ni is the count of ngrams occuring i times and S is
a smoothing function. The Simple Good-Turing (SGT) method uses a simple linear smoothing func-
tion and also specifies a threshold for switching from Good-Turing estimate to Maximum Likelihood
Estimate (MLE) for higher frequencies as Good-Turing estimate is accurate only for lower frequencies.
We create a lookup table (LT) of these syllables along with their bigram and trigram probabilities for
creating features of the words.

Language
Unique

Words

Unique

Syllables

Bigram

Count

Trigram

Count

Hindi 891,960 15,805 313,989 407,534

Malayalam 398,887 7,257 124,033 176,087

Gujarati 643,986 7,889 172,581 271,075

Telugu 1,305,852 10,762 254,960 441,806

Table 5.1: Statistics of Unique Words and Syllables in Different Indian Languages.

40

Figure 5.1: The image shows how feature is created from a word for RNN and GMM training. After adding markers

to the beginning and end of akshara split words in a huge corpus, its language model is generated. The bigram

and trigram models are clustered separately. We then perform Dictionary Building to find the cluster centroids

and create bags of syllables, which is stored as a lookup table. The GMM model takes as input, the fixed length

histogram of the syllable split words whereas the RNN uses the raw bigram and trigram syllable probability. Each

model then makes a prediction of the label of the input word. A word is declared error only if both the models

label it as an error.

5.1.2 Structure of the Solution

We use two methods for detecting errors in the OCR output; one using generative model and the other
using a neural network. In generative approach, we use a Gaussian Mixture Model to create models
for correct words and error words in the OCR output. In the second approach, we use BLSTM [50]
deep learning neural network for classification. In order to create features for training, we have used
the bigram and trigram probability of syllables in the corpus, obtained from the lookup table LT. We
split each word in the huge corpus into its constituent syllables and add special characters to mark the
beginning and end of the word. This is important because in Indian languages, only a specific set of
syllables can occur at the beginning of any word. Certain unicode character combinations which occur
in the erroneous words, may not be present in the list of syllables created from the huge corpus. We
assign a very low probability value to bigrams and trigrams containing these character groups.

41

5.1.3 Gaussian Mixture Model for Error Detection

In this method we first cluster the probabilities of all syllable bigrams in the corpus, using K-means
clustering to create bags of syllable bigrams. We have found 10 to be optimum number of clusters
giving good results by testing on validation data. Each bag has a minimum probability and a maximum
probability bigram. We then use this bag of syllable bigrams to create a histogram of each syllable split
word. The same procedure is done for probabilities of syllable trigrams. If there are J bags for syllable
bigrams and N bags for syllable trigrams, the size of the feature is J + N + 2. Here the 2 is for the
additional bags for unseen syllable bigrams and trigrams. The steps to creating feature vector for a word
are as follows:

1. Create a zero vector of dimension equal to J .

2. For each syllable bigram in the word identify the bag j in which the bigram probability lies.

3. Increment by one, the count of the the jth component in the feature vector.

4. In case of new syllables, we increment the count of the bag reserved for unseen bigrams.

5. Repeat the procedure for trigrams using zero vector of size N .

6. Concatenate the above feature vectors to get the final feature vector.

These two histograms of bigram and trigram probabilities are used to create a Gaussian Mixture Model.
In the model we used validation dataset to find the optimum number of components such that issues of
over fitting of data (with too many components) are taken care of. The procedure is done for obtaining
the models for correct words as well as erroneous words. For each word in the testing data, we find the
model which best fits the histogram of the word. The word is declared error if it fits the error model and
right otherwise. In GMM model, we use the information in the language model to predict the label of
the words. When the GMM is given an unseen word whose syllable bigram and trigram probabilities are
comparable to the trained valid word probability, it can use the language model information to correctly
predict the label of the word. We preferred to use GMM over other generative methods because of
the flexibility it offered in selecting the number of mixture components and its ability to cluster multi
dimensional data of unknown distribution better.

5.1.4 Error Detection using RNN

Recurrent neural network (RNN) is a class of neural networks with the capability of persisting the
information from previous states. The loops or connections in the nodes of the recurrent neural network
enable it to use an “internal memory” to remember and process past information[51]. In our problem of
error detection in OCR output, we use a Long Short Term Memory (LSTM) network. The LSTMs have
been used in a wide range of problems including text recognition in images and generating language
models. Bidirectional RNNs are based on the idea that the output at particular time may not only be

42

dependent on the previous elements in the sequence, but also on the future elements. We prefer the use
of LSTM for error word detection over other classifiers like support vector machines. A neural network
can learn the error model in the erroneous words during training. Apart from the advantage provided by
the use of networks for better learning, it also provides flexibility of using arbitrary number of sequences
as input. The number of unicodes or aksharas in words are not fixed, leading to different number of
bigrams and trigrams in different length words. We need not use padding or other methods to create
fixed length feature while using a LSTM. While GMM uses bags of akshara level ngram probabilities,
RNN uses the raw values of probabilities for training. For each bigram and trigram in the word, the
bigram probabilities, followed by trigram probabilities form the feature vector for the word. The size of
the feature for each word having n syllables is 2n − 3, the sum of the number of bigrams and trigrams
in the word. Figure 5.1 illustrates the feature creation and prediction in GMM and RNN.

5.2 Experiments

In order to create error words for training, we used the OCR outputs of Hindi, Gujarati, Malayalam
and Telugu OCRs [6]. We used 5K document images from each language and used the OCR output
collected from the respectieve OCRs. Recursive Text Alignment Tool (RETA) [52] is used to align the
OCR output with the annotated ground truth text and extract the misrecognized words. We have ignored
numbers, punctuations, special characters etc. which are not identified correctly by the OCR.

5.2.1 Corpus Creation

We have used a corpora consisting of seven popular Indian languages in our experiments. The corpus
is collected by crawling various online newspapers and Wikipedia dump. For some languages, we have
also relied on the crawled and maintained corpus available for download [45]. The details of the corpus
used are shown in the Table 5.2 below. The crawled corpus needed extensive cleaning as they contained
noise and unicode characters from other languages. For cleaning task, we maintained a list of aksharas
which were manually separated into valid and invalid set. These were obtained by splitting words in
the crawled corpus into aksharas. Any word which contained invalid aksharas were removed. We also
removed words which contained unicode characters not belonging to the language. Most languages
have variations in the word suffixes and sentence structure depending on different regions which use
the same language. These dialects may not be covered when using the crawled corpus as it belongs to
a more formal context. Due to the seeming intractability of this issue, we have relied on the crawled
corpus obtained. In order to analyze the errors in OCR output, we have used OCR outputs from [6]. We
have also analyzed the errors produced by two other OCR systems namely Tesseract and an RNN based
OCR.

43

Corpus English Gujarati Hindi Kannada Malayalam Marathi Tamil Telugu

Total Words 6,026,940 4,328,769 18,180,174 3,889,172 5,999,978 4,188,321 10,949,052 3,193,283

Unique Words
233,158

(3.87%)

288,406

(6.66%)

288,535

(1.59%)

607,051

(15.61%)

1,016,856

(16.94%)

289,949

(6.92%)

1,022,403

(9.34%)

432,554

(13.54%)

Table 5.2: Details of the data set used for corpus and language model creation in various languages

5.2.2 Data and Evaluation Metrics

The details of the data used for training and testing using RNN and GMM is shown in table 5.3. We
used a train-val-test split ratio of 64-16-20 in the experiments. In order to evaluate the error detection

Language
Words for Training Words for Testing

Errors Correct Errors Correct

Hindi 81,632 89,196 20,308 22,299

Malayalam 966,16 137,171 24,155 34,293

Gujarati 150,825 171,730 37,706 42,932

Telugu 149,501 174,113 37,376 43,529

Table 5.3: Details of Training and Testing Corpus Size

accuracy, we use True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)
values. TP gives the percentage of errors correctly detected and TN gives the percentage of correct
words rightly detected by the post processor. The FN value shows the undetected errors and its value
goes up when there are more real word errors. When the right words are labeled as errors, the FP value
increases. This can occur when the correct word pattern is not recognized by the post processor A good
error detection system should give significant TP without generating much FP. This means that while
all/most of the error words are detected correctly, the percentage of correct words labeled as errors
should be kept minimum if not zero. We have used Precision, Recall and F-measure to compare the
results of various approaches. Our aim is to maintain a high precision value because large number of
correct words recognized as errors make the error detection module insignificant in post processing.

5.2.3 Results of using RNN and GMM Methods

The results of error detection experiments using RNN is shown in table 5.4. While Malayalam,
Gujarati and Telugu has comparable values of True Postives, a many errors went undetected in Hindi.
Analyzing the results, we identify the presence of many valid words as errors. We behavior is seconded
by the presence of large number of words at a particular Hamming distance [10] in Hindi. Therefore,
when a character is mis-recognized by the OCR, there is a good chance that another valid word is formed,

44

which is difficult to detect. Other False Positives include words which are not inherently found in the
language such as names of people, places etc. The table 5.5 shows the results of both RNN and GMM

Language TP TN FP FN

Hindi 72.30 90.90 9.10 27.70

Malayalam 87.56 94.23 5.77 12.44

Gujarati 83.47 93.70 6.30 16.53

Telugu 80.34 95.69 4.31 19.66

Table 5.4: True Positive, False Positive, True Negative and False Negativer percentage for Languages

methods. While comparing the F-measure values of both the approaches, we can see that RNN based

Language
RNN GMM

Precision Recall F-score Precision Recall F-score

Hindi 89.30 77.22 82.82 85.46 77.44 81.25

Malayalam 93.82 87.56 90.58 88.47 84.70 86.54

Gujarati 92.98 83.47 87.97 92.05 80.28 85.77

Telugu 94.91 80.34 87.01 92.44 79.55 85.51

Table 5.5: Comparing Precision, Recall and F-Score values for RNN and GMM approaches. (The values are shown

in percentage)

approach performs better than GMM. This can be attributed to the effective learning capability of neural
networks. It is also observed that the Recall of Hindi is almost same in both the approaches. The
effectiveness of both the approaches can be combined to build a powerful post processor.

5.2.4 Combining RNN and GMM Approaches

One of the important concerns in OCR post processing is the misclassification of correct words iden-
tified correctly by the OCR. The cost of mis-classifying a correct word in the OCR output as ’error’ by
the post processor is much higher than the cost of not identifying an error. This implies that we should
be more concerned about increasing the precision. A good post processor should try to minimize the
occurrence of False Positives while also trying to maximize the True Positives.

As observed in [24] relying on one method can fix some obvious errors but it can also increase the
rate of hallucination of correct words as errors. We combine both our approaches to create a more
reliable classifier wherein a word is declared as an error only if both the models label it as an error. The
table 5.6 shows how a word is given a label from the labels of RNN and GMM approach.

45

RNN output GMM output
Combined Approach

Output

Error Error Error

Error Right Right

Right Error Right

Right Right Right

Table 5.6: Rules for labeling a word by combining the models
The results of the combined approach for different languages are shown in figure 5.2, 5.3, 5.4 and

5.5 for languages Malayalam, Hindi, Gujarati and Telugu respectively.

5.2.5 Observations

The error detection in OCR output using RNN and GMM gives us good detection accuracies. The
primary reason for this is the exploitation of the potential of a neural network and complementing its
predictions using a generative method. Also the use of akshara as the basic recognition unit of a word
helps in learning the morphology of a word and patterns in word formation, enabling better prediction of
labels of unseen words as errors or correct words. The method fails to detect correct words like person
names or place names which are not related to the region where the language is used. Also detection of
errors in punctuation and digits is a troublesome task. Overall, the approach succeeds in providing a fair
solution for detecting non word errors in the OCR output. We evaluate the error detection accuracy on
the output of RNN OCR and the results are shown in table 5.7. Some qualitative results of the combined
approach are shown in figure 5.6.

We observed that long words like the Malayalam word, which are actually correct are identified
correctly by the RNN. The GMM does well at picking up transliterated words from languages like
English as shown in the Hindi example. It can be seen that combining both the models helps to reduce
mis-classification of correct words.

Language TP TN FP FN Precision Recall F-Score

Malayalam 75.57 85.38 14.62 24.43 83.79 75.57 79.47

Gujarati 67.39 94.83 5.17 32.61 92.87 67.39 78.11

Hindi 64.83 87.98 12.02 35.17 84.36 64.83 73.32

Table 5.7: Results of error detection on a RNN based OCR using the pre-trained error detection model. We have

used a combination approach discussed in previous session to achieve this result. The values are in percentage.

46

Figure 5.2: The bar graph shows the precision recall and F-score using RNN, GMM and the combined approach in

Malayalam. The precision in the combined approach exceeds both the individual approaches.

Figure 5.3: The bar graph shows the precision recall and F-score using RNN, GMM and the combined approach in

Hindi. The precision in the combined approach exceeds both the individual approaches.

47

Figure 5.4: The bar graph shows the precision recall and F-score using RNN, GMM and the combined approach in

Gujarati.The precision in the combined approach exceeds both the individual approaches.

Figure 5.5: The bar graph shows the precision recall and F-score using RNN, GMM and the combined approach in

Telugu.The precision in the combined approach exceeds both the individual approaches.

48

Figure 5.6: Figure shows some of the test cases and the labels assigned to them by each model. Cross mark and

tick mark indicates that the label is error and correct respectively. Decision column shows the prediction made by

combined method.

5.3 Discussions

We have employed four techniques for error detection in shape recognizer output in this thesis. In
Chapter 4 we have seen the use of dictionary for error detection. We also explored error detection using
Statistical Language Models. In this chapter we have used two different error detection methods, using
a Recurrent Neural Network which can learn sequences and a Gaussian Mixture Model based clustering
method. In two methods employed for error detection, namely, RNN based method and SLM based
method, we have used the bigram and trigram probability to decide if the word is an error word or not.
In RNN based method, we used a machine learning model which uses bigram and trigram probabilities
of aksharas as features to predict the presence of error. In SLM based model, we have used the average
of bigrams and trigrams as a threshold to decide if the word is an error. We compare both the methods
for error detection as both the methods relie on ngrams for error detection. In Figure 5.8, we walk
through some qualitative results of the experiments done using both the methods.

To compare the two methods, we performed an experiment on a Hindi book in which we found that
the RNN based method was able to achieve an f-score of 34% while SLM based method could achieve
only 5%. It is observed that both the methods struggle to identify the correctness of transliterated
words. This is an expected behavior since both the methods are based on the akshara ngrams and
since the transliterated words (from English) do contain ngrams which are not commonly found in the
language. An instance of this case is shown in the first word in Figure 5.8. We also observed that in
Malayalam, RNN classifies most words with chillu letters as error words, mostly because the frequency
of occurrence of these characters are less. In the third word shown in Figure, the agglutination of words
resulted in formation of akshara which has less probability of occurrence in natural text. The SLM

49

No Word Language
Actual

Label
RNN SLM

1 Malayalam Correct Error Error

2 Malayalam Correct Error Correct

3 Malayalam Correct Correct Error

4 Malayalam Error Correct Error

5 Malayalam Error Error Correct

6 Hindi Correct Error Correct

7 Hindi Correct Error Correct

8 Hindi Correct Correct Error

9 Hindi Error Correct Error

10 Hindi Error Error Correct

11 Hindi Error Correct Error

12 Telugu Correct Correct Error

13 Telugu Correct Correct Error

14 Telugu Error Correct Error

Table 5.8: The Table shows qualitative results comparing the SLM based method and the RNN based method for

error detection in languages Malayalam, Hindi and Telugu. For each method, the prediction made for the word is

seen. A word is predicted ’correct’ or ’error’

50

identifies this correct word as error. Another observation is that the RNN also classifies words with
single akshara as error. It may be because the training of RNN involved unique words. The system
fails to recognize the correctness of such words which occur multiple times in natural scenarios. Some
instances of such words are seen in the sixth row of the Figure. The SLM on the other hand classifies
these words correctly. In most Indian languages, the independent vowels occur at the beginning of the
word. However, in certain cases, independent vowels can occur at the middle of a word. Since these
cases are very rare, the RNN could not learn this behaviour and classified the word in seventh row as
error. The SLM could predict the correct class of this word. On the whole, we see that if the errors
produces aksharas which are not seen previously, the SLM marks them as error easily. The RNN learns
the patterns of word formation and use this to classify errors.

51

Chapter 6

Conclusion

In this thesis, we first analyzed the issues and challenges posed by Indian languages in the OCR

pipeline. This is discussed in Chapter 3. The major issues were related to the large number of unique
words existing in these languages. The complexity of scripts with touching glyphs was identified as
another issue. We relied on akshara as the basic unit of a word as against unicode, which is popularly
used. We compared the issues in Indic scripts with English, in which language, the OCR performance is
laudable. In order to compare the languages, we relied on a crawled corpus obtained from various online
resources like newspapers, Wikipedia etc. This step was necessary due to the lack of availability of a
huge corpus in Indian languages. We compared the dictionary and Statistical Language Model based
error detection and correction schemes in English with Indian languages. We found that dictionary is
not an effective method for error detection in Indic scripts, especially Malayalam and Telugu, unlike
in English. This is because creating a good dictionary was itself a difficult task, without which the
whole method would fail. For error correction, we use a dictionary. We identify the closest words to
a given word as replacement of that word. We make use of Levenshtein distance selecting the closest
words from the dictionary. A human can then select the most appropriate word from the given options.
Akshara level SLMs performed better than unicode level SLM because akshara formed a meaningful unit
of a word and formation of invalid aksharas pointed the presence of errors.

Further, we discussed and implemented two kinds of error detection methods in Chapter 5. The
first method is using a Gaussian mixture model based clustering technique where the probabilities of
bigrams and trigrams of aksharas in correct words and error words were used as features. The second
method was using a Recurrent Neural Network which is good at sequence learning tasks. Both methods
provide reasonably good accuracy, detecting almost 80% of the errors in the OCR output. The RNN

based method gives better performance than the clustering based method. We use a combination of both
methods to reduce the occurrence of False Positives while also trying to maximize the True Positives.

52

6.1 Future Work

In the future we would like to try new features to train the neural network. Currently we only use the
probabilities of akshara split bigrams and trigrams as features. We can make use of any development
in the NLP capabilities to conquer issues related to inflection and agglutination. For instance we can
use POS taggers to tag proper nouns which can then be treated as a special case in error detection and
correction. We can also use word level ngram features to predict the real word errors in the OCR output.
Also in the area of error correction, we can use word level ngrams to get more information about the
most suitable word for replacement. This when used with the closest words from dictionary, selected
using least Levenshtein distance can help in error correction. We can also extend this work to other
language OCRs.

53

Related Publications

• Vinitha V S, C V Jawahar, ”Error Detection in Indic OCRs”, in Document Analysis Systems, 2016

• Vinitha V S, C V Jawahar, ”An Emperical Study of Effectiveness of Post-processing in Indic Scripts”,
in MOCR, 2017 (submitted)

54

Bibliography

[1] “Census of India.” x, 8

[2] M. Cheriet, N. Kharma, C. L. Liu, and C. Y. Suen, Character Recognition Systems. John Wiley &
Sons, 2007. 1

[3] “Tesseract Optical Character Recognition Engine .” 1

[4] “Abbyy finereader,” 1, 26

[5] A. Kumar and C. Jawahar, “Content-level annotation of large collection of printed document im-
ages,” in ICDAR, 2007. 2, 14, 15, 29, 31

[6] D. Arya, T. Patnaik, S. Chaudhury, C. V. Jawahar, B.B.Chaudhuri, A.G.Ramakrishna, C. Bhagvati,
and G. S. Lehal, “Experiences of integration and performance testing of multilingual ocr for printed
indian scripts,” in ICDAR, 2011. 3, 18, 19, 43

[7] N. Sankaran and C. Jawahar, “Recognition of printed devanagari text using blstm neural network,”
in ICPR, 2012. 3, 15, 19

[8] R. Smith, “An overview of the tesseract ocr engine,” ICDAR, 2007. 3, 15, 26

[9] N. Sankaran, Word recognition in Indic scripts. MS thesis, IIIT Hyderabad, 2014. 4

[10] N. Sankaran and C. V. Jawahar, “Error detection in highly inflectional languages,” in ICDAR, 2013.
4, 7, 20, 21, 24, 27, 44

[11] “British National Corpus (BNC).” 5, 20, 27, 39

[12] J. Bentley, “Programming pearls: little languages,” Communications of the ACM, 1986. 5

[13] M. D. McIlroy, “Development of a spelling list,” IEEE Transactions on Communications, 1982. 5

[14] K. Kukich, “Techniques for automatically correcting words in text,” ACM Comput. Surv., 1992. 5,
12

[15] Y. Bassil and M. Alwani, “Ocr post-processing error correction algorithm using google online
spelling suggestion,” arXiv:1204.0191, 2012. 5

55

[16] A. Carlson and I. Fette, “Memory-based context-sensitive spelling correction at web scale,” in
Machine Learning and Applications, 2007. 6

[17] X. Tong and D. A. Evans, “A statistical approach to automatic ocr error correction in context,” in
Proceedings of the fourth workshop on very large corpora, 1996. 6, 26

[18] J.-C. Amengual and E. Vidal, “Efficient error-correcting viterbi parsing,” Pattern Analysis and
Machine Intelligence, 1998. 6

[19] C. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, 1948. 6,
28

[20] E. Brill and R. C. Moore, “An improved error model for noisy channel spelling correction,” Asso-
ciation for Computational Linguistics, 2000. 6

[21] A. Wilcox-OHearn, G. Hirst, and A. Budanitsky, “Real-word spelling correction with trigrams:
A reconsideration of the Mays, Damerau, and Mercer model,” Computational Linguistics and
Intelligent Text Processing, 2008. 6

[22] T. L. Packer, “Performing information extraction to improve ocr error detection in semi-structured
historical documents,” in Historical Document Imaging and Processing, 2011. 6

[23] R. Golding and Y. Schabes, “Combining trigram-based and feature-based methods for context-
sensitive spelling correction,” in ACL, 1996. 6

[24] R. Smith, “Limits on the Application of Frequency-Based Language Models to OCR,” in ICDAR,
2011. 6, 45

[25] Y. Bassil and M. Alwani, “OCR context-sensitive error correction based on google web 1T 5-gram
data set,” American Journal of Scientific Research, 2012. 6, 31

[26] G. Lehal, C. Singh, and R. Lehal, “A shape based post processor for Gurmukhi OCR,” in ICDAR,
2001. 6

[27] U. Pal, P. K. Kundu, and B. B. Chaudhuri, “OCR error correction of an inflectional indian language
using morphological parsing,” Journal Of Information Science and Engineering, vol. 16, 2000. 6

[28] K. Mohan and C. V. Jawahar, “A post-processing scheme for malayalam using statistical sub-
character language models,” in DAS, 2010. 6

[29] B. Chaudhuri and U. Pal, “OCR error detection and correction of an inflectional indian language
script,” in Pattern Recognition, 1996. 7

[30] M. Needleman, “The unicode standard,” Serials review, 2000. 9, 10

56

[31] R. Ishida, “An introduction to indic scripts,” in Proceedings of the 22nd International Unicode
Conference, 2002. 10

[32] K. Prahallad, V. Keri, S. Rajendran, and A. W. Black, “The IIIT-H Indic speech databases,” in
INTERSPEECH, 2012. 10

[33] Y.-S. Hwang, B.-R. Park, H.-C. Rim, and S.-W. Lee, “A contextual post-processing model for Ko-
rean OCR using synthesized statistical information,” in International Conference on Multimodal
Interface, 1999. 11

[34] A. Ganapathiraju, J. Hamaker, J. Picone, M. Ordowski, and G. R. Doddington, “Syllable-based
large vocabulary continuous speech recognition,” Speech and Audio Processing, 2001. 11

[35] U. Pal and B. Chaudhuri, “Indian script character recognition: a survey,” Pattern Recognition,
2004. 18

[36] P. S. Natarajan, E. MacRostie, and M. Decerbo, “The bbn byblos hindi ocr system,” in Electronic
Imaging, 2005. 19

[37] A. Bharati, P. Rao, R. Sangal, and S. M. Bendre, “Basic Statistical Analysis of Corpus and Cross
Comparision,” in ICON, 2002. 20, 21, 39

[38] “Central Institute Of Indian Languages (CIIL) Corpus.” 20, 39

[39] P. Kuncham, K. Nelakuditi, S. Nallani, and R. Mamidi, “Statistical sandhi splitter for agglutinative
languages,” in Intelligent Text Processing and Computational Linguistics, 2015. 24

[40] C. D. Manning, H. Schütze, et al., Foundations of statistical natural language processing. MIT
Press, 1999. 28, 29

[41] G. K. Zipf, “Relative frequency as a determinant of phonetic change,” Harvard studies in classical
philology, 1929. 28

[42] G. K. Zipf, “Selected studies of the principle of relative frequency in language,” Harvard Univer-
sity Press, 1932. 28

[43] R. Rosenfeld, “Two decades of statistical language modeling: Where do we go from here?,” Pro-
ceedings of the IEEE, 2000. 28

[44] A. Stolcke et al., “Srilm-an extensible language modeling toolkit.,” in INTERSPEECH, 2002. 29,
40

[45] D. Goldhahn, T. Eckart, and U. Quasthoff, “Building large monolingual dictionaries at the leipzig
corpora collection: From 100 to 200 languages.,” in LREC, 2012. 29, 31, 43

57

[46] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in
Soviet physics doklady, 1966. 32

[47] J. W. Ratcliff and D. E. Metzener, “Pattern-matching-the gestalt approach,” Dr Dobbs Journal,
1988. 32

[48] A. Zograf, Languages of South Asia: a guide. Routledge Kegan & Paul, 1982. 32

[49] W. Gale and G. Sampson, “Good-turing smoothing without tears,” Journal of Quantitative Lin-
guistics, 1995. 40

[50] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A novel
connectionist system for unconstrained handwriting recognition,” Pattern Analysis and Machine
Intelligence, 2009. 41

[51] L. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications, 2001. 42

[52] I. Z. Yalniz and R. Manmatha, “A fast alignment scheme for automatic ocr evaluation of books,”
in ICDAR, 2011. 43

58

