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Abstract

Image segmentation and layer extraction in video referé@tiocess of segmenting the image or video
frames into various constituent objects. Automatic teghes for these are not always suitable, as the
objective is often difficult to describe. With the advent mifigractive techniques in the field, these algo-
rithms are now usable for selecting an object of intereshinreage or video precisely with less efforts.
Object segmentation brings up various other possibilltilescut and paste of objects from one image
or video to another.

Object removal in image and videos is another applicatidntefest. As the name suggest the task is to
eliminate an object from the image or video. This involvekering the information of the background
previously occluded by the object. Object removal in bothge and videos have found interesting ap-
plications especially in the entertainment industry. Thacept of filling-in of information from the
surrounding region for images and surrounding frames fdeas has been applied for recovering dam-
aged images or clips.

This thesis presents two new approaches. The first is focobggmentation or layer extraction from
a video. This method allows segmenting complex objects dieas, which can have difficult motion
model. The algorithm integrates a robust points trackingprthm to a 3D graph cuts formulation.
Tracking is used for propagating the user given seeds infeagds to the intermediate frames which
helps to provide better initialization to the graph cutsmoation. The second is an approach for video
completion in indoor scenes. We propose a novel method é@os/completion using multiview infor-
mation without applying a full frame or complete motion segration. The heart of the algorithm is
a method to partition the scenes into regions supportingipiellhomographies based on a geometric
formulation and thereby providing precise segmentaticgneat the points where the actual scene in-
formation is missing due to the removal of the object. We destrate our algorithms on a number of
representative videos. We also present a few directionfufore work that extends the work presented
here.

vi
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Chapter 1

Introduction

With the increase in the storage capabilities, images atabgi are increasingly becoming very pop-
ular form of stored data. A large number of handhelds avi@labthe market have ability to capture
images and videos. The increasing availability of such fofrdata increases the need for ways of ma-
nipulating the captured information to suit the user dersaid a result, image and video manipulation
has been an active topic of research in the recent past. Mahyigues which were traditionally used
in motion pictures for creating special effects mainly bpesenced artists on specialized hardware are
now becoming more and more automated and easy to use. THalsgap and hardware is slowly
being replaced by more advanced algorithms in software.yNtaeresting video editing applications
have been demonstrated recently including video spri#ls Y&deo textures [65], video matching [63],
motion magnification [48], video synthesis and editing [Bf§automatic photo pop-up [30].

As computing power has increased over the years the algwitiave become faster and real time.
The improved speed of the algorithm makes user interacti@siple while the algorithm is in action.
Most image manipulation tools like Adobe Photoshop 7 [1] ®8 [60] provide users with brushes
to perform various actions interactively rather than perniog them automatically. The trend is to find
methods to improve the output with some user interactiomerathan finding automatic methods with
less than optimal output. This has been illustrated by variecently proposed techniques like [3, 42,
46,47,57,71,72,77].

One of the interesting application of the image and video imdation techniques is object seg-
mentation from an image or video. The segmented object cqrasied over a new background. The
problems of image segmentation and grouping remain grediiedges to computer vision. Despite a
lot of work in the area the algorithms for image segmentasianstill not as successful and versatile as
that of edge detection or other low-level vision problenss Even believed that the problem of image
segmentation is an ill-defined one, as the expected outmatt izell defined. The technique of extract-
ing an object with precise boundary information is knowrVedting while that of pasting it over a new
background is termed @ompositing These techniques find interesting uses in creating botlradat
and unrealistic scenes. The area has have come a long wayraditional blue screen matting with
specialized setup to current natural image matting whesgpnoialized setup is needed. In recent years,



these techniques have been extended to videos. An objesjestbry over the frames is termed as a
layer. The process of extracting a layer from a video is therefailedlayer extraction An object can
be extracted from a video as a layer and directly compositedl different video. These techniques find
use in the entertainment industry where the actors commnuatfiprm in front of a studio background
and are later composited into complex environments.

The extraction of objects from images and videos has andtieresting applicationyiz object
removal. An unwanted object in the image or video is removadi lzackground is recovered so as to
make the image or video look natural. Object removal is vegularly used in film post production to
improve the composition of the scene. Object removal is aésal to repair bad films in which case the
destroyed part of the frame is removed. Interactive teclesdo remove objects can also be beneficial
to individual users to clean up their amateur videos offline.

1.1 Layer Extraction

Layer extraction has been a topic of research in recent y®&&ny techniques have been proposed
for automatic segmentation of layers [39, 66, 78,81]. Adticmsegmentation of video is useful in many
application like compression, coding, recognition [81iteractive segmentation of images [47,61] and
videos [46, 77] has developed recently. The superior quiléy achieve with minimal user interaction
makes them very attractive. These segmentation methods digectives similar to those of layer
extraction. The extracted layers can be used in many agiplsaof advanced video editing including
matting and compositing. The problem is closely relatedhéodbject tracking problem which also has
received lot of attention over the years.

The experience from the domain of image segmentation hasusszl in video layer extraction ap-
proaches to a large extent. Many techniques proposed faaskg39, 81, 82] directly or indirectly de-
pend on clustering of motion vectors across frames sinolaise the color values used in case of image
segmentation techniques. Graph cuts have also emergettlyeas a popular method for segmenta-
tion of images [11]. The success of image segmentation igobs have motivated their application to
videos [46, 77].

One way to extract layers in a video is to segment each fradependently. There are certain issues
which discourage the use of such techniques:

1. The object’'s segmentation over individual frames maypnovide temporal continuity.
2. The segmentation information obtained in earlier framemt used.
3. The technique will be slow due to the huge amount of re-agation at every frame.

We try to address these problems in this thesis. We proposetlaochin Chapter 3 based on the
assumption that objects in videos usually exhibit smalliomst over frames and also the frames are
temporally highly related. We use a multi-frame graph whielips maintain temporal continuity and



leverage the segmentation obtained in one frame for laterds. We also prune a large part of the frame
from being a part of the minimization process, making thelramaller in terms of number of nodes
and edges. Robust tracking provides hard constraints itatbet frame which act as good seed points
for the graph cuts minimization of the next frame. We also itetive graph cuts algorithm during
the interactive correction to make the interaction fast wead time. Together, our algorithm provides
mostly automatic and accurate layers.

The layer obtained by our approach can then be used for yasfedther applications like video
cutout, matting, compositing and object removal etc. ThHeails mask found using our method can be
used to produce a trimap input to Bayesian matting [15] teglento find the precise alpha values for
the boundaries of the object. Our approach produces theiositpilar in quality to that of other video
matting techniques [14, 53].

1.2 Object Removal and Video Completion

Segmenting and removing objects from images or videos isughngurrent interest. Object removal
leaves the image or video with unknown information where dbgect was earlier placed. Missing
information recovery in images is callépainting This is accomplished by inferring or guessing the
missing information from the surrounding regions. For wslethe process is termed esmpletion
Video completion uses the information from the past and tharé frames to fill the pixels in the
missing region. When no information is available for someefs, inpainting algorithms are used to
fill them. Video completion has many applications. Postpietion editing of professional videos in
creative ways is possible with effective video completiechniques. Video completion is perhaps most
useful for with home videos. Video can be cleaned up by rengpunnecessary parts of the scene and
filling the gaps correctly. Inpainting and video completisroften interactive and involve the users as
the objective is to provide desirable and appealing output.

Image inpainting inevitably requires approximation agetie no way of obtaining the missing infor-
mation. For videos, the missing information in the curreatfe may be available from nearby frames.
Significant work has been done on inpainting and profeskimmage manipulation applications and
tools exist to accomplish the task to various degrees. Thaiso to the problem of object removal
in video depends also on the scene complexity. Most videgtetion work has focused on scenes in
which a single background motion is present such as an outd@me. In scenes with multiple large
motion, motion layer segmentation methods are used torokieierent motions layers. A particular
layer can be removed by filling the information with the backad layers. Another common approach
is the interpolation of the motion flow vectors of the unknowagion from the surrounding regions.
Scenes with multiple motion, such as indoor scenes, ardéedigithg to these algorithms. For scenes
with many planes, motion model fitting may not be suitablehagskioundaries between the layers are
not exact. This is especially problematic for video comiplets the region being filled could straddle



these boundaries. Periodicity of motion is also often usethniques which fill the holes by patching
from some other part of the video.

In Chapter 4, we present a technique for video completiorinfdoor scenes. We concentrate on
scenes where the background motion consists of two or theee®in the neighborhood of the object
to be removed. Our main contribution is the use of the gegnodintersecting planes in multiple views
for motion segmentation, without applying a dense motiggnsantation in the image. We also show
that segmentation of only the nearby background around theimy region is sufficient for the task of
video completion. Full-frame motion segmentation can theivoided. The geometric nature of the
method ensures accurate and unique background assigronikatgixels in the unknown region, which
to the best of our knowledge is not possible with other videmletion methods. We particularly
concentrate on scenes where the neighborhood around #e tdbpe removed is planar in nature.

1.3 Contributions of the Thesis

This contributions of the thesis are in presenting two nepr@gches. The first is an object seg-
mentation or layer extraction technique for a video. Thighod allows segmenting complex objects
in videos, which can have difficult motion models. The altjori integrates a robust point tracking
algorithm and a 3D graph cuts formulation. Tracking is ussdpfopagating the user-given seeds in
key frames to the intermediate frames which helps to probé&teer initialization to the graph cuts pro-
cess. The second contribution is an approach for video cgtioplin indoor scenes. We propose a
novel method for video completion using multiview infornagt without applying a full frame or com-
plete motion segmentation. The heart of the algorithm is thatkto partition the scenes into regions
supporting multiple homographies based on a geometricudtation and thereby providing precise seg-
mentation even at points where the actual scene informatinorissing due to the removal of the object.
We demonstrate our algorithm on a number of representatilens. We also present a few directions
for future work that extends the work presented here.

1.4 Organization of the Thesis

This chapter describes a general introduction to the pnablee attempt to solve in the thesis. The
importance of the two problems, namely object segmentatimhremoval in videos is described.

Chapter 2 discusses the related and previous work in thediiddger extraction and object removal.
We review the related topics like image segmentation, setaiactive image segmentation, interactive
image segmentation, matting, layer extraction, motiomsgygation, image registration, image inpaint-
ing, texture synthesis, image completion and video congpiair object removal. The chapter provides
a detailed review of various techniques which have beengsexp over the years. The discussion pro-
vides a background into understanding the general probéerddssues faced in solving the problem
and the techniques which evolved to overcome them.
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In Chapter 3, we discusses the details of our algorithm fgerl@xtraction or object segmentation.
The problem of layer extraction is introduced in detailg¢hd he focus of the chapter is on our approach
and the advantages it provides over the current method jecbdegmentation in videos.

In Chapter 4, we describe the details of our algorithm foeobjemoval in videos. We demonstrate
our novel approach of video completion which uses purelyngedcal method and doesn't involve any
approximation or interpolation.

We derive some conclusions and discuss areas for future w@hapter 5.



Chapter 2

Related work

The work presented in this thesis spans two related problEirst is the object segmentation or layer
extraction in videos which deals with extracting out the afepixels satisfying certain homogeneity
criteria such as color or motion from all the frames. The sdgaroblem is that of object removal from
the video where we remove the object from the video and fillpilkels belonging to the object by the
background information such that the video looks plausible

Layer extraction problem is closely related to problems iikage segmentation, object segmentation
in videos, image and video matting, interactive image egjtvideo editing and object removal [83].
Our video completion is closely related to a few well studieablems these include Image registration,
Inpainting and texture synthesis. In many cases the atgoribr completion of videos is considered as
an extension to an image completion algorithm. We provideed keview of the related work in these
domains before discussing about the work in the field of victmopletion and object removal.

2.1 Image Segmentation

The problem of image segmentation has been studied for atioveg The automated techniques
are based on clustering the image pixels based on a simitaiierion, which includes intensity or
color similarity and spatial coherence. Methods in thiggaty were the earliest to be proposed. These
include Watershed segmentation [76] and Mean Shift secatient[17]. Watershed segmentation visu-
alizes the image as a surface with the gray values or intesgit any particular pixel representing the
height of the surface at that point. The algorithm involveslifig the points on the surface which are
local minima in the regions.

Mean shift segmentation models the problem of segmentatatustering in the feature space while
giving importance to the image domain information also. Sigaificant features in images correspond
to regions with high density. First a radius and an initiaddtion is chosen for the search window.
The algorithm then computes the mean shift vector and &tessithe search window by that amount
in each iteration until the mean shift vector is close to aghich represents a mode for the cluster.
This algorithm has the advantage of not requiring to knowrttmaber of final clusters. However, the
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clustering decision is highly affected by color similarighich is used as the homogeneity criteria for
clustering.

More recently, Felzenszwalb and Huttenlocher [21] prodaae efficient graph-theoretical method
for segmentation, where the image is represented by a gnaphich each pixel is a node and the edges
connect the neighboring pixels with weights proportiomeatheir dissimilarity such as difference in in-
tensity, color, motion, location or some other local atitédh Their predicate for evaluating the existence
of boundary between two region is based on measuring iatgom and intra-region dissimilarity be-
tween pixels similart to the one proposed by Shi and Malikanmalized cut$67]. The basic problem
with the automated methods is setting of some parametehfesholding or weighting various terms
which in general is non intuitive and very specific to the imagder consideration.

All the algorithms discussed above belong to the categotyottom-up approaches, owing to the
generally output of these algorithms a new set of algoritlmadied the top bottom approaches were
proposed. Top-down approaches try to solve the image segtimenproblem in a class specific sense.
These algorithms fit a deformable model of a known object fgraehorse to the image. The shape of
the deformed model gives an estimate of the desired segtiment®ur method is itself a bottom-up
approach. We refer the reader to [44, 58] for a details of smpa&own approaches.

2.2 Semi-interactive Image Segmentation

Methods like image shapping [25] and intelligent scissbdd [n Adobe Photoshop [1] allow users to
obtain a contour around the object boundary by roughly trecthe object’'s boundary with the mouse.
As the mouse is moved across the contour the plausible bouidealculated. If the boundary is not
satisfactory new seed points are added by the user. Theteadsately on local features like gradient
information and Laplacian zero-crossing measures.

2.3 Interactive Image Segmentation

Recently techniques like Interactive image segmentafigéh Lazy Snapping [47], and GrabCut [61]
have demonstrated that with small user input the segmentafian image can be driven according to
higher level context rather than the automatic color basgpingntation techniques. The interactive
segmentation methods provide an easy way of segmentinglerrbpjects in an image, which would
otherwise require tedious boundary selection.

Most interactive techniques are based on graph cuts [10lid @jfaph cuts based techniques, a graph
G = (V, E) is constructed such that the détincludes all the pixels in the image wherdass the set
of edges connecting these pixels, similar to [21]. The dbjeds expressed in terms of minimization of
the energy which is defined as the sum of a data term and an lsnesstterm. Boykov and Jolly [11]
modeled the data term by pixel similarity to background eefwound using gray scale histogram. The
smoothness term is defined as the dissimilarity betweendwoexted pixels. User interaction is needed



8 CHAPTER2. RELATED WORK

to first provide the seed points for foreground and backgitaegions from which the foreground and
background histograms are evaluated. User can also ititelgggmprove the output of the optimization
by providing extra strokes and running an iterative optatian on the same graph again.

GrabCut [61] improves the interactive segmentation tesumni[11] first by making use of Gaussian
Mixture Model(GMM) to allow segmentation process in col@mthin instead of intensity histograms.
Secondly, the one shot graph cut minimization is replaceaiopre powerful iterative procedure, which
iterates between estimation and parameter learning.|¥thal user interaction requirements are relaxed
as user only needs to provide the background seeds.

GMM s are used for modeling the foreground and backgrournidmegn color space in [15,29,46,62].
Color space is more discriminative compared to gray scalézviMs provide a compact representation
the of color values compared to color histograms. Colowohistms have a large number of bins with
small frequency each bin.

2.4 Matting and Compositing

Matting is the process of obtaining accurate alpha valuéiseaboundaries of the object, called the
the alpha matte. The problem is solving the equation :

C=axF+(1—a)xB (2.1)

where F and B represent the foreground and the background it pixel whose composited color
is C anda represents the alpha value. F, B amdonstitute the seven unknowns. The problem is
under-constrained the number of equations is only three.

In blue screen matting technique [70], the desired foregglomage is separated from a constant
or almost constant backing color, which has mostly been, lilues giving the method the name. The
knowledge of the background color helps reducing the nurabeariables from the original seven to
four.

Natural matting involves solving Equation 2.1 in a geneedec In most natural matting systems,
the user specifies a trimap to the system specifying pixelstwédre (i) 100% foreground = 1) (ii)
100% backgroundo = 0) or (iii) unknown, i.e., for which the alpha is to be deterein The system
then estimates the values for the unknown region. Ruzon and Tomasi [62] modefdneground and
background colors as a mixture of Gaussians for which theilaision P(F) and P(B) is learnt using
surrounding samples for an unknown point, thealue is then estimated as coming from an intermedi-
ate distribution P(C), somewhere between foreground ankigoaund distributions. The intermediate
distribution is also defined as a sum of Gaussians, each f@aatus<entered at a distinct mean vattle
located fractionally (according to a given alpha) alongha lbetween the mean of each foreground and
background cluster pair with fractionally interpolated/ananceX . The optimal alpha is the one that
yields an optimal alpha is the one that yields an intermeditribution for which the observed color
has the maximum probability. Chuaegal [15] model color distributions probabilistically and alpls
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obtained by finding a maximum a posteriori(MAP) estimateheffe, B andx values at a pixel given the
value of C. This requires modelling the probability distion of the foreground and background color
from the nearby known foreground and background regions.

Poisson Matting [71] models the matting problem as a contioinaof automated global Poisson
matting and interactive local Poisson matting. Global mismatting is based on the idea that the
gradient of the foreground and background is very small @megb to gradient of the alpha matte of
the image. This assumption doesn't give very preciselues at points where F and B have strong
gradients and the method requires substantial applicafitme manual brushing tool or a local Poisson
matting step. The main requirement for most matting sysisitige specification of proper trimap input.
Matting techniques can be applied in cascade to our layeaaidn method to obtain fine mattes after
the layers are extracted.

Compositing is easy once the precise alpha values are laleaé the boundary but methods like
and do not perform very well on highly textured regions whigyey can easily choose the wrong di-
rections [61]. Poisson editing [59] method allows seamtdgsing of two images. An object can be
selected imprecisely in source image and then transfereldetaestination image so it merges with
the background seamlessly. This method avoids the use ¢ihgaf the objects to be moved to the
destination image. The smooth mixing is implicitly detemed by the method.

Advances in the methods for image segmentation and mattsd]] have motivated the researchers
to provide similar techniques for videos. Chatetgal. proposed video matting [14], where they prop-
agate the user given trimaps for the key frames to the intdiate frames and apply image matting
technique on each frame. As discussed byt al [46], the dense optical flow can not be accurately
determined for all pixels and errors creep in. Other teanesglike Interactive Video Cutout [77] and
Video Object Cut and Paste [46] allow extraction of the objeam a video. Wanget al [77] proposed
taking user inputs for seeding across the set of frames yieeia user interface. A 3D graph is con-
structed by using pixel, region and volume level nodes atst&f only pixel nodes using a hierarchical
mean shift clustering [16] based on color similarity ciigier The graph cut minimization on this 3D
graph provides the segmentation for the video. The methodges for real-time correction via inter-
active graph cuts. L&t al's approach is similar to Wanet al except for the use of only 2D regions as
the nodes and a method to improve the segmentation obtaineshjion level 3D graph cuts on video
by a pixel level 2D graph cuts on selective sub window of eaameé.

2.5 Layer Extraction

Layer extraction methods usually rely on motion model estiom for a set of regions followed by
a clustering technique to cluster regions with similar motmodels. In one of the earliest work on
layer extraction, Adelson and Wang [78] proposed the paiicke- motion model estimation followed
by clustering of patches with similar motion model. Ke andchEde [39] formulated the problem of
layer extraction by first expanding the seed region intéahidyers and then clustering them in a lower
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dimensional subspace. Xiaa al [81] proposed a technique for layer extraction by first ey
regions of seed correspondence and then growing them teeaytshapes using the graph cuts approach
integrated with level sets based formulation. The readsuggiested to refer to [81] for a more detailed
survey of layer extraction work.

Most of these techniques [39, 78, 81] target at automatest leytraction and in theory assume the
existence of a prominent single motion model for a layer.racpice, the object that we want to segment
from the video may not show consistency in motion model acitssspread. Human motion is a typical
example. Layer extraction is closely related to motion semfiation, which we discuss in Section 2.6.

Interactive methods are sometimes more suitable becaeseas guide the output to the desired.
For instance, the shadow of the object may possess the sattmmwdel as the object but the user
might like to exclude it from the foreground layer. Purelf@uatic techniques find this case difficult
to handle as shown in Figure 3.1. The method we propose a&béeitor handling reasonably fast inter-
frame motion for an object. The point based tracking enstlrasthe seeds are available over frames
even if the layer’s shape is changing quite often. This setopld require large number of key frames
in the usual 3D graph cuts setting.

2.6 Motion Segmentation

Traditional motion-based segmentation methods employ wrltion information which allows the
handling of only rigid motion or piecewise rigid motion. Famtly, techniques employing spatio-
temporal segmentation techniques have been proposed.e Témiques employ both motion and
spatial information for segmentation. The advantage afdhmethods is that application of both avoids
over-segmentation, which is typical to segmentation tegles and overcomes the noise-sensitivity
and inaccuracy problems of purely motion-based segmentg8R]. The spatio-temporal segmentation
techniques also adapt easily to more generic non-rigidanaind therefore to more generic scenes.
Two major categories of 2D motion-based segmentation areyitical flow discontinuity based and the
change detection based. Computation of motion and deteafimotion boundaries present a chicken
and egg dilemma as noted by [82]. Local flow discontinuitystese used to find optimal boundaries
in many technigues. In essence, the optical flow field hasdheesstatistical characteristics as that of
intensity or color in an image. Image segmentation expeéesuggests that only optical flow field is
not sufficient for motion segmentation and high level infation and rules are helpful in analysis.

Wills et al [80] proposed a graph cuts formulation for motion segmamat-irst a set of dominant
motions in the two views is obtained. The energy terms in ttaply are based on the re-projection
error due to each motion model and the smoothness term iseddfssed on color similarity between
the pixels. The graph cuts minimization is then performeddsign to each pixel one of the dominant
motions. Only planar motion is considered and all motion et®dre represented by & 3 homography
matrix. Bhatet al [9] proposed a similar method for dense optical flow estiorain scenes with
multiple large rigid motions. They extend the method pragblsy willset al[80] by also taking care of
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non planar motion layer, using the Fundamental matrix asdadlity combination as a label for pixels
not satisfying any homography.

2.7 Image Registration

Image registration refers to the problem of finding the tiamsation that needs to be applied to
one of the image to align it with the second image. Regisinatias been a topic of research for many
years [12]. The great deal of work in this field is driven by thmportance of registration in various
problems, including medical imaging and satellite imagivitere the images taken from two or more
different sensors needs to be registered for purpose of stnd analysis. The same concept is also
responsible for the panoramic mosaic generation.

It is a established that two views of a planar scene are telatea projective transformation. This
projective transformation can be represented up to scabe 3»3 matrix, called the Homography (or
H) matrix [23]. In usual scenes the number of planes in an eisgery large and registration is applied
more at region level rather than the image level. Numerousats@nd methods have been suggested for
estimation of the parameters of H Matrix. The reader is ssiggkto refer to [2,5, 12, 82] for a detailed
review. In our work we mainly use the 4 point algorithm [26]doordination with robust estimation
methods. This matrix is used for transforming the pixelsrie rames’ coordinate system to anothers.
The pixel's which are missing in a particular frame are labkg in the neighboring frame using the
homography information. This is the idea used in creatiomos$aics [73].

2.8 Image Inpainting, Texture Synthesis, and Image Compl&n

Image inpaintindills-in the unknown regions (or holes) in an image based ersthrounding pixels.
Structure propagation and texture synthesis are the twio bpproaches for image inpainting. Struc-
ture propagation methods propagate the structure arowndrtknown region progressively to inside
it. Bertalmioet al [6] proposed a method for filling-in of the image holes by awétic propagation of
images the isophotes (lines of similar intensity) in the gedy means of Laplacian smoothness op-
erator. Their method belongs to a class of methods called BPA3Ed methods [4, 13]. J& al [34]
proposedmage repairingwhere the damaged image is first segmented using textunemiafimn and
the segmentation is extended to the missing regioteviaor voting The color value for a missing pixel
is then synthesized using only known pixels from the sammneggain using ND tensor voting.

Texture synthesis methods [19, 20, 28] assume the existfna@gattern in the image and fill the
pixels in the missing region by finding a patch matching thigimsoring texture in the whole image.
In [20] texture synthesis was demonstrated at pixel level,an unknown pixel's value is synthesized
by matching the known neighboring pixels in the source megidexture synthesis at block level is
proposed in [19].
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Structure propagation methods work well only on small holesereas texture synthesis methods
require texture in the image. Methods combining both stmecpropagation and texture synthesis have
also been proposed [7, 18]. Bertalngibal [7] decomposed the original image into a texture image and
a structure image. The texture image is completed by testgmthesis method while structure image is
completed using a structure propagation algorithm.

Block level synthesis methods are also termed as exematmebmethods. Exemplar-based ap-
proaches are observed to give the best inpainting resufithir@si et al[18] were the first demonstrated
the application of exemplar-based approaches on natueglemrather than texture-only images. It was
demonstrated that the filling order is crucial and priorifyfibing was biased towards patches which
were on the continuation of strong edges and were surroubgddgh-confidence pixels. The tech-
nigue was improved and generalized in recent works [41,25, Bunet al [72] require the user to
specify the curves on which the most salient missing streateside. Its an exemplar based approach
where the target patches are selected by use of belief pabpagoased energy minimization. Ko-
modakis and Tziritas [41] proposed a new image completigorahm based on an improved belief
propagation algorithm called Priority Belief Propagat{®BP). The method is exemplar based and the
PBP is used to find the appropriate patch for a given hole pifieiently. The proposed method has the
advantage of yielding a globally optimal filling rather tharaking greedy decision like [18] and being
applicable to texture synthesis as well as image inpaintirdpesn’t use any user intervention.

Kanget al [38] proposed a technique for inpainting or region fillingngsmultiple views of a scene.
Their technique is based on finding the appropriate regiaimensecond view and then mapping the
pixels back to the first view using the affine projection chldted using the correspondence in the two
views. Similar methods are used in video completion as dissd below. In Interactive Digital Pho-
tomontage [3], Agarwalat al demonstrated that for a sequence of images taken from sawepwint,

i.e. fixed camera positions, the transient/moving foregdoobject removal can be done by applying a
maximum likelihood filter at each pixel. This technique isdhetically very similar to that of registering
the sequence of images to a reference image and then filingrtknown pixels in the reference image
from other images.

2.9 Video Completion or Object Removal

Object removal in videos has received attention in receatsyelwo types of techniques have been
proposed. The first type finds out the missing data by seaydbma patch matching the neighborhood
of the hole in the video similar to the exemplar based metlimdase of images. The match is defined
in terms of spatial and temporal feature similarity. Peditd in motion is a common assumption for
these techniques. Space time video completion [79] useg difivensional sum of squared differences
to find the appropriate patch for filling the holes where thérites include the three color values and
velocity along x and y directiorvideo Repairingoroposed by Jiat al[35] recovers the missing part of
foreground objects bgnovelsampling and alignment using tensor voting to generateslobmotion by
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connecting the last frame to the first frame. dial [36]'s method is another exemplar based approach
for video completion. They use the motion information abaepas a criteria for determining the priority
of filling as well as for determining the appropriate souraéch. The patches are merged using a graph
cuts based method for minimizing seams.

Motion field interpolation based methods have also beenldeed recently. Kokaranet al [40]
perform object removal by using the motion information toamstruct the missing data by recursively
propagating data from the surrounding regions. Matsushi&h[52] proposednotion inpaintingwhere
the inference of the unknown pixels information is basedhendptical flow vectors which are in turn
interpolated based on the flow of the surrounding pixels. hingecond scenario, explicit use of the
geometry of multiple views is made to infer the informatioissing in the current frame from the nearby
frames. This is directly related to the problem of disoddnsn computer vision. The fact that two
views of a plane are related by a perspective transformaidimed using a Homography matrix, forms
the basis of most such approaches.elial [35] proposed the repairing of the static background by the
use of planar layered mosaics. The layers are assumed taitebde from initial manual segmentation
followed by tracking using the mean shift algorithm. Simég@proach has been demonstrated by Zhang
et al [83]. They use an automatic layer extraction approach vighb by layered mosaicing. If some
holes still remain, an image inpainting approach is usedamé-wise manner based on a graph cuts
formulation.

When the camera is far from the background, the nearby frarhtte background can be approx-
imated to be related by an affine or projective transfornmatidhis approximation is used by some
methods [35]. Such methods will fail for indoor scenes wihrardtiple background motion exists. In
general, it would be impossible to identify every singlen@an the scene and apply layer mosaicing on
each of them individually, automatically and accurately.

Structure from motion problems employ some techniguesatetelevant to this problem. Vincent
and Laganitre [75] discuss the problem of dividing the image planes. They start with a set of point
correspondence and apply the RANSAC [22] algorithm with ptingal selection of the four initial
points to maximize the chance that the points are on same.pkdhthe other points in the image are
declared to belong to the plane whose homography givestdegsbjection error. Friedrickt al [24]
finds the interest regions [56] in the two views on which affiegion matching is performed. The affine
matching is helpful in removing the non-planar regions froomsiderations. On the matched region
the homography is determined and a region growing is peddraround the region to include regions
which match the homography well. During the region growitgps the homography is updated to
include the new interest points inside the region for th@reston. At the termination of the region
growing, the scene is segmented into a set of planar regions.
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2.10 Summary

In this thesis, we propose two novel approaches. The firgtoapp is for object segmentation in
videos. The user segments the first frame using the inteeaictiage segmentation technique. A 3D
graph is constructed in which the segmented image is usegpana and an unsegmented image be-
comes the second plane. The pixels in the first plane are demsileg earlier segmentation and those
in the second plane are seeded by tracking pixels from thdrfrme. Our 3D graph cut optimization
thus runs on two frames at once as against [46] where muftihees are used to build a single graph.
Further we use tracking of pixels to seed nodes in the intéiaie frame automatically which is a novel
contribution compared to earlier works where it was eithwrused [46] or was accepted from the user
via a special 3D interface [77]. The special advantage oaffproach against the automatic approach
for object segmentation in video is a high level of flexiilih determine the object or the layer extent,
which is not possible in automatic motion segmentationr@pkes [81].

The method for video completion we propose here is diffefeorh earlier approaches as we use
a geometric approach for segmentation of only a small regironind the missing region instead of
going for a complete image segmentation [9, 83]. Our methaxithe special advantage of not being
entirely dependent on motion segmentation using opticat fidich is still an unsolved problem in
general case. The method handles the case of the backgrontaining two or three different planes
and doesn’'t assume an affine relation between two frameg aigtiuence [52]. We only use the motion
flow vector for a weak clustering of pixels to determine thenlegraphies of the various planes. Final
segmentation between the planes is obtained using gerestadigen vectors of the two planes. Our
method doesn’t involve any interpolation as in the case Bf§9]. Each pixel in the unknown region
gets a definitely source plane label.



Chapter 3

Layer Extraction Using Graph Cuts and Tracking

We present a new method for layer extraction by tracking angid body with no fixed motion
model in a video. The method integrates a graph cuts appmabhrobust point based tracking to
achieve good tracking of the whole object over frames of widWith minimal user interaction, our
method can perform fine layer extraction over irregular omotand difficult object boundaries. To
achieve this, we apply 3D graph cuts on a pair of frames angagate the labels obtained in the
earlier frame to a new frame by use of robust tracking metAdek user can interactively improve the
automatically extracted layers using a few extra strokegdessary.

As described in literature [10, 11,46, 61, 77] graph cutsnaigation for more than 2 labels is com-
paratively slower compared to a 2-label case. As is the camapproach we also solve the multiple
layer extraction problem by solving a cascade of 2-layenssgation at a time.

3.1 Layer Extraction Using Graph Cuts and Tracking

An overview of our system is shown in Figure 3.2. The stepsliad are the following. The
user first selects one or more key frames from the video andesetg them using an interactive image
segmentation technique into foreground and backgrouridne@We use the term foreground to mean
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Figure 3.1 Advantage of interactive segmentation: shadow of trainalaraar (a) can be regarded as
part of the background layer in our case (c), unlike the aatantase in [81] (b). (marked by red circle)

15
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Input Frames

|

Llnteractive 2D segmentatiﬁn

for key frames

Track seeds in to
target frame(s)

Obtain the segmentation
using 3D graph cut minimizatipn §

for intermediate frames

‘ Interactive correction ‘
and refinement

Extracted Layer

Figure 3.2 Overview of the different steps of our system.

the layer to be extracted and background to refer to all thkelpin the image which are not part of this
layer.)

Using the segmentation given in the key frame(s), robusking provides the seed points for the
intermediate frames. Our algorithm can proceed with just key frame, namely, the first frame. We
build a 3D graph for each pair of frames using individual {gx@s nodes of the graph. The 3D graph
cuts technique [11] is then applied and the segmentatiorhiseeed for the new frame. This is continued
for all the frames in the video.

The user can manually inspect the segmentation results rawvitlp extra strokes to improve the
results of the automatic segmentation. In the followingssations we provide the details of each of the
above steps.

3.1.1 Interactive Segmentation for Key Frames

Interactive segmentation is done for one or more key framéisd video. This step is based on the
interactive segmentation method by Boykov and Jolly [11le Tiser gives a few strokes to mark the
foreground and background regions in the image in each keydr Since we move only forward in
frames, it is sufficient to start with the first frame as the keyne. During the process, any frame can
be segmented from scratch and can effectively become a &mgefrif the user desires.
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3.1.2 Automatic Propagation of Segmentation

Various approaches [11,46, 77] discuss the use of the ntinrcmore than two dimensional data. A
3D graph can be obtained by treating a set of frames as pladesoanecting the pixels in these images
to the pixel of neighboring frames in addition to the neigiihg pixels in the same frame. Some of
these approaches do not give hard constraints in the intkaedrames [11, 46] while others take them
from the user [77]. We propose a novel approach to obtain #ing tonstraints automatically. Based
on the segmentation of the previous frame, we obtain goddres points inside both foreground and
background regions [68]. These features are then trackedtothe next frame where they are used for
setting the hard constraints for further segmentation.

3.1.2.1 Propagation Step

We use robust tracking to propagate the seed points fromraneefto another. In our approach we
use the KLT tracker [68, 74] which tracks given feature poinbm one frame to another. We track two
kinds of points: one set is obtained as a set of pixels whielgaod features to track [68] and second
is a set of pixels spread evenly in the imhg€he KLT algorithm tracks these points in the next frame.
Points not tracked confidently are ignored. Confidence issared in terms of residual error per pixel.
We use a value of 10 as threshold in our experiments. In peeaty good tracking algorithm can be
used to propagate pixels from foreground and backgrouridiregcross frames. Algorithm 1 describes
this step in pseudo code.

As shown in Figure 3.4, we label the points tracked from thekgeound region in the source frame
as background in the target frame. The same holds for théspkéhe foreground region.

Input: The framesF; and F; with segmentation labdl, for F;
Output: Some seed labels fd,

begin
[*obtain the feature list using KLT tracking */
featurelist=trackKLTFeatures (F}, F>);
[*propagate the labels to the next frame */

foreach (11,12) € feature_list do

| La(l2) = Li(lh)
end

end

Algorithm 1: Algorithm for propagation step.

3.1.2.2 3D Graph Construction

We build graphs using two frames at a time. The first frame & which has been segmented
previously. The next frame is the frame which has to be setgdeizach pixel in the image is connected

precisely, only on the region of interest
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Figure 3.3The 3D graph construction. Every pixel p is connected to §immirs in same frame (only 4
shown, marked by blue edges), and 9 pixels in the neighbdramge, marked by red edges, and to the
two terminal nodes namely the source (foreground) and fiakkground) marked in cyan and green
colors respectively. The energy for the three types of cotimes areFs, F, and E; respectively.

to its 8 neighbors in the same frame and to the 9 neighborsimext frame, as shown in Figure 3.3.
We can use a more densely connected graph in theory but oeriexgnts show this gives good results.

Now we define the energy terms for the min-cut algorithm. Tinergy that needs to be minimized
can be seen as the sum of three terms as [46]

E=> Eipfo)+\ >, Bapagfold+X Y. Bspq fofs) (3.1)
(p,a)€VI) (p,9)€Ve)
where f,, is the foreground/background label for the pixel.x.denote the relative importance of the
terms. We use values;, = 10 and A, = 1 in our experiments.

The termE; (p, f,) denotes the data energy term [61]. It is the penalty of laele pixel p asf,,.
This term is defined as the similarity of the pixel color tottbithe foreground or background samples.
Boykov and Jolly [11] defined this similarity using gray sealistogram.

We use the Gaussian Mixture Models (GMMs), which are comgnoiskd to represent the fore-
ground and background pixels, in place of intensity histogrWe use the method originally proposed
by Orchard and Bouman [55] for obtaining the approximate GiidMn the user segmented images.
Let us denote the components of the foreground GMM§by, 3., w,,) for m € [1, M|, where M is
number of Gaussians in the model. We use a valuk/of 6 in our experiments. For a pixel coler
the distance to the foreground GMMs is defined as [46, 61]

¢ = min [D(wl, Z})+ D(c,ut,, 21, 3.2)
me[1,M]
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where
1
D(w,¥) = —logw + 2 log | X|, (3.3)
and

S(e— w57 (e~ p). (3.4)

D(c,p,X) =
Our definition of £ is similar to one proposed by Boykov and Jolly [11]. The terwalue for seed
points is set to a very high valug to the seed’s label node (source or sink) and very sralio( the
opposite label. The value for a non-seed point is set to beligtanced’ andd® for the edge to the
background and foreground respectively. The values arieteéepn Table 3.1. The valuft is defined

as:

K =1+ max > Vipar

¢:ENp
edge | weight(cost) for
\.db peEPp¢ OB
{p,S} K peO
0 peB
Vi peEPp¢ OB
{p,T} 0 pe O
K peB

Table 3.1 Weights assigned to the various edges in the graph. p is aeYyipigraph, S and T are the
two virtual nodes representing the source and sink resjgdgti

The termsFEs and E'3 denote the interaction penalty for intra-frame neighlgppixels and the pixels
in the neighboring frame. We define these values using thiknalvn interaction penalty measure [11]:

llep — ch?} 1
2x02 dist(p,q)’

where||c, — ¢,||? is the Euclidean distance of the color values of pixeindg. The termo can
be described as a parameter weighing the contrast. A higie wdlb puts a low penalty on high color
difference and vice versa. The teifrf), — f,| ensures that the penalty is taken only for the boundary
values [11]. We use a value ef= 50 for our experiments.

The algorithm for extracting a single layer in the sequesdesied in Algorithm 2. The previously
segmented frame is loaded as the first plane on graph, witpideds labeled either background or
foreground. The labeling of these pixels is not changedndutihe minimization. The frame to be
segmented is loaded as the second plane of the graph. Pigdtaeked from the first frame to second

E(p7q7fp7fq):‘fp_fq|'exp{_ (35)
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Input: The framest;.

Output: The segmentation labels dnF;]

begin

if F; is key framehen

| goto nextFrame;

end

[*load the previous(segmented) frame as the first plane ®@gréph *

graphPlane;=loadFrame(F;_1);

/*load the current frame as the second plane on the graph */

graphPlanes=loadFrame(F;);

[*Track feature points from previous frame to current usiigorithm 1. */

featuresList fpropagateSeedd; 1, F;);

[*Calculate the edge weights for all the edges in the graph. /

calculateEdgeWeightgéfor each pixel(p, ¢) € graphPlane;— 2);

[*Set the terminal weights for each pixel on plane 1 from psegmentation knowledge  */

setTerminalWeightgfor each pixel p irgraphPlane;);

/*Set the terminal weights for each tracked pixel on plane 2 [ F

setTerminalWeightqfor each pixely, s.t. (p, q) € featureList);

/*Obtain the segmentation label by running the 3D graph mitsmization on the constructed
graph */

L[F;]=graphCutMinimisation ();

end

Algorithm 2: Algorithm for layer extraction.

(@) (b) (©

Figure 3.4 The tracking process: (a) The calendar layer is shown segahém source frame, (b) The
estimated region mask to decide which pixels (shown in Blatkhe image will be included in graph
cuts minimization for segmentation of next frame, (c) Thedseoints or hard constraints obtained
using reliable tracking of points from the source frame (raticates background and blue indicates
foreground).
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and these pixels are set as hard constraint. All the pixethanpreviously segmented frame act as
hard constraint too. The segmentation is obtained for tixefr@me by graph cut minimization on the
constructed graph.

3.1.3 Interactive Refinement

User interaction is needed to manually refine some of thdliiagpe obtained in the intermediate
frames during the process. In our system, the user giveotinective strokes in one frame and chooses
the number of frames for which the automatic segmentatiemp Isas to be re-done. Once the segmenta-
tion is obtained for a particular frame, user can interatyivnodify the segmentation using the iterative
max-flow algorithm on the original 3D graph. Iterative graplis optimization on a already saturated
graph are applied by changing the weights of the pixels noblkehe user and running the optimization
on the modified graph. If pixel which was earlier not a seed pixel is now declared a foregtraeed,
the weights of the edges are updated as described in Table 3.2

t-link | initial cost add new cost
{p,S} \.d° K+t\.dl | K+ p
{p, T} \.d’ \.dP cp

Table 3.2 Iterative graph cuts weight updatgs,is the added seed foreground pixet, represents
constant which is actually sum of thié andd/ .

Unlike other approaches which have a final stage where usgaation can be applied, in our tech-
nigue user can interact and improve the labellings (segatien) at any intermediate frame. Interaction
step is fast as we will see in Section 3.2.

3.1.4 Speeding Up the Segmentation

A typical graph cut on the whole video could be slow due to #rgé number of pixels over which
optimization is to be applied. As pointed out in Section bre of the main emphasis of our approach
is to make the 3D graph cuts more efficient using the tempawispatial continuity. We increase the
efficiency using several steps.

We first limit the object position in the the second frame taaghborhood of its previous position,
called the estimated region mask. We can prune all the pixeish are not in the union of the original
mask and estimated region mask (Figure 3.4). The estimatgdr mask can be computed based on
the estimated motion of the object and any knowledge of mati@del. In our experiments, we use
a radial disc around the previous position as the estimagidm mask. This prunes out large parts of
the image from the graph and boosts the efficiency by botldagihe calculation of the energy terms
and the actual running of the minimization algorithm. Weajst many hard constraints using tracking
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and avoid calculating the computation intensive energytions for these pixel positions. Finally we
use an iterative graph cuts algorithm and avoid the experigivn scratch optimization during the user
interaction.

(e) ) (¢)] (h)

Figure 3.5 Layers obtained by application of our method on thebile & calendarsequence. (a-d)
show four input frames from the sequence. The extracteddaye shown in (e-h). Note the separation
of shadow in (e-f) as discussed in Figure 3.1.

3.2 Results

We show the layers extracted from timobile & calendarsequence and tHwer gardersequence
in Figure 3.5 and Figure 3.6 respectively. The figure showasttie algorithm extracts the ball from the
surrounding objects, many of which have similar colorsteuell. It should be noted that the ball's
motion doesn’t follow any specific motion model. The traisfs|adow was also declared as part of the
background layer as can be seen in Figure 3.1.

In case of theflower gardensequence the tree matches in color with some of the backdrmain
gions. In this case more user interactions were requirechtmark the spilling-in of the background
in foreground regions and vice versa. The average intgeptiocessing time was less than a second
per frame. The time required for interactive correctionetes on boundary smoothness. The garden
and house layer separation for example required just 3dkedrafter the first key frame. Figure 3.7
shows another example where we segment the football andr@aya single layer from the video. This
example demonstrates that the layer extraction in our @gpris highly driven by the user’s choice.

The time required for the segmentation depends on the ddipets the graph size is dependent on
it. For a small object like ball in thenobile & calendarsequence, time taken on each iteration of 3D
graph cuts is around 1 second, while for the calendar it israt@ seconds. Iterative improvements on
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Figure 3.6 Layers obtained by application of our method on tloever gardensequence. (a-d) show
four input frames from the sequence. The extracted layerstawn in (e-h).

(h)

the graph are fast and take less that 0.1 second per optiomz#tll the experiments are performed on
an Athlon 2600+ Machine, with 256MB RAM. The sequence hade# size of 328240. The overall
processing time for one layer comes to around 2.5-4 secomlisding the interaction. Therefore a
50-frame video can be processed in 3-4 minutes. Our apptuasithe advantage of allowing precise
user inputs while performing 3D graph cuts on individuak gdiframes if necessary.

Figure 3.7 The football and player can be extracted as a single layeubglgorithm even though their
motions do not have any common motion model.

3.3 Application to video matting

The layers obtained by the method represent optimal boigsdat pixel level for the foreground
and background. We can further improve the layers by franse-application of matting. We use the
matting technique proposed by Lewéhal [43]. The mask obtained in the layer extraction process is
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eroded to obtain the sure foreground region, a negationlatedi mask from the whole image gives
the sure background region. All the other pixels are labaedinknowns. This trimap is passed to
the matting algorithm, which produces an alpha matte forithege. This process is illustrated in
Figure 3.8. The individual alpha mattes in each frames ae tombined to give the video matte for
the object across the video. Figure 3.9 compares the layamela by initial layer segmentation with
those obtained after applying matting. Matting produceshmore smooth layer transition boundaries
and removes the extra non-foreground pixels from the lagyeducing a cleaner foreground layer. The
application of matting provides as alpha matte of the objédtth can be used to compose the layer on
a different foreground. This is specially useful for obgeutith fine boundaries like hair. Figure 3.10
shows the application of the alpha mattes obtained usingrbeess to cut paste the actor from the
original video onto a video with a new background.

(a) (b) (©) (d)

Figure 3.8 Matting: The input frame (a) is first segmented in to foregiband background layers (b).
(c) shows the trimap obtained by simple morphological djp@neon the binary segmentation map (b).
(d) shows the alpha matte obtained using the trimap (c) bijcpion of a matting technique.

3.4 Summary

We proposed a method that integrates robust feature tiga¢&iseed the hard constraints on a 3D
graph cuts minimization is proposed. This method can be feed variety of purposes where layer
extraction is useful. Combined with a matting approach dyet obtained can be refined to have precise
alpha values at the borders. The method has the advantagadifrtyg non-rigid object segmentation.
The method clearly falls in the category of spatio-tempanation segmentation methods. Our method
is currently limited to binary labeling. We propose to intigate the feasibility of multi-label segmen-
tation. Significant improvement to the algorithm’s effiaggns terms of processing time is expected
when graph cuts is performed for pixel clusters in 2D and 3D §&7] instead of individual pixels. The
3D graph cuts optimization can be further quickened up byafigePU for calculation of the terminal
links(t-links) which is independent for each pixel and can be calculatsgfaue to parallelization in
hardware.

A limitation of our technique is the requirement of texturetbe foreground and background regions,
which is mainly required for the tracking to work. Perforroarof pixel correspondence methods like
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(9) (h) (i)

Figure 3.9 Alpha Matte extracted from the frames of the actor-sequefack,c) show the input frames,
(d,e,f) show the segmentation obtained by layer extraciidwe final alpha mattes obtained by applying
matting are shown in the (g,h,i).
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0

Figure 3.10The actor is cut from the input frames (a,d,g,j) and is pasted new background (b,e,g,k).
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KLT is highly dependent on the textured-ness of the regiorather words the image should have good
corners. However as new tracking measures like SIFT baaekitig or region level tracking evolve the
limitation can be overcome.
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Figure 3.11The User Interface of the software for layer extraction oeds.



Chapter 4

Object Removal and Video Completion for Indoor Scenes

In this Chapter, we present a new approach for object renameavideo completion of indoor scenes.
In indoor images, the frames are not affine related. The negéar the object to be removed can have
multiple planes with sharply different motions. Dense motestimation may fail for such scenes due
to missing pixels. We use feature tracking to find dominantiondoetween two frames. The geometry
of the motion of multiple planes is used to segment the matgers into component planes. The
homography corresponding to each hole pixel is used to wégnee in the future or past for filling it.
We show the application of our technique on some typical andideos.

Video Frames

|

[ Interactive object extraction]

Video with unknown region (hole)

Video completion |
Y

[ Feature tracking over 2 views}

‘ Motions estimation and segmentation ‘

'

‘ Planewise completion ‘

|
'

Object Removed Video

Figure 4.1 The overview of the various steps of our system.

28
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4.1 Video Completion for Indoor Scenes

In this paper, we address the problem of object removal adeovcompletion for indoor scenes
where the transformation of the background is non triviad &ariable. An overview of the process
is shown in Figure 4.1. We track the foreground (the objedbdéaremoved) interactively using the
method described in the previous chapter [33] to track theatd across the video. We assume that the
background has a maximum of 2 planes around the object torbevesl in two adjacent views. The
region around the object is segmented into one or two plars#sy dominant motion model estimation
followed by an optimal boundary detection algorithm. Wertlagply the respective homography [26]
to recover the unknown pixels from the neighboring framdwesE steps are explained below.

4.1.1 Object Segmentation

The segmentation step provides the masks of the object terheved across the video frames.
Unlike image inpainting techniques, getting this mask fribvea user in each frame is not feasible. We
use an interactive method of object extraction using gragpé and feature tracking to generate the mask
across the video sequence as described in the previousch@pe user gives a binary segmentation of
the first frame, marking the foreground and the background tMatk features points in the segmented
frame to the current frame (unsegmented) and set them apsigsd in the 3D graph constructed with
the two frames. A graph cuts optimization on the graph gitessegmentation for the current frame.
The user can mark extra stroke and run the iterative graphocumprove the segmentation before
proceeding to next frame.

After running through the frames of video, we get the objeaskin each frame. This mask defines
the region to be filled in using the video completion algarith

(a) (b)

Figure 4.2 Two different cases of object removal (a) The local backgdoaround the object is a single

plane (b) The local background around the object is spread more than 1 plane. Due to the local
nature of the plane segmentation technique the first casgoégn’t need any motion segmentation.
Motion segmentation in the second case (b) is also local fareand even though there are more
planes in the image only the two planes which constitute bjeot's background would be segmented.
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4.1.2 Video Completion

Our algorithm’s basic assumption is the existence of a pisgeplanar background in local neigh-
borhood of the object to be removed. Our video completioorélyn can be divided into following
major sub-steps.

4.1.2.1 Feature Tracking in Two Views

The first step is finding the corresponding feature pointhétivo frames of the video. We use
the KLT tracking for tracking point features across the fesmThe method involves finding trackable
features in the first image, which are then matched in thengkitoage. We find the features selectively
in only local neighborhood of the hole, this is to ensure thatonly consider useful correspondences
for our motion estimation and completion steps. We call #ggan around the hole where we do the se-
lective matching as the Region of Interest (ROI). Figure(B)Zhows the optical flow vectors calculated
in the ROI. The ROI can be obtained by dilating the object magk an appropriate thickness. The
algorithm is described in Algorithm 3. We use simple morplgétal operations [31] to obtain a region
around the object, in which KLT features(points) are extdc These features are then tracked into the
next frame and the features which are not matched in objedtfhinorhood are removed(pruned) from
the list.

Input: The two adjacent framel;, and F5, with the object maska/;, Ms

Output: The valid features list featurist

begin

[*Dilate the mask); with a specific structure element */
D; = dilatelmage(M;);

/*find the features in the first image within valid regial; */
features- findFeatureq 1 whereM, = 255);

[*track the features in to the second image *
featurelist = trackFeatures(F5;,features);

[*prune those features which are outsitl */

pruneFeatureqfeaturelist,M5);
end

Algorithm 3 Algorithm for finding selective correspondences.

4.1.2.2 Motion Segmentation

Given point correspondences in the two images(frames)aiouiis to find the planar segmentation
of the ROIs. Figure 4.2 shows the two possible scenariosigur€ 4.2(a) the ROI around the object is
a single plane, while in Figure 4.2 (b) the ROI includes twitedént planes. We use a combination of
two approaches to robustly estimate the segmentation gfdims inside the ROI into multiple planes.
The algorithm proceeds by finding the dominant motions inR# using the set of correspondences.
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We use the RANSAC [22] algorithm to determine the dominantiomo RANSAC algorithm has the
advantage of being robust to outliers, which are indeedeptda our correspondence pairs due to the
existence of multiple planes.

To begin with, we use all the correspondence pairs to deterhie dominant motion. The features
which are inliers for the current dominant motion are thanaeed from the set and the step is repeated
to find the next dominant motion. To avoid RANSAC algorithrarfr choosing wrong set of initial four
points, we modify the selection phase to accept the set otponly if they are within a set threshold
distance. The points which are declared inliers to the RAN&yorithm are then used for a least square
error fitting estimate of the homography using the normdliB&T algorithm [27]. This fitting gives
us the final homography for the set of points. Figure 4.3 (shaws the automatically determined first
and second dominant motions as cluster of optical flow veatgdrich are their inliers. The algorithm
for finding dominant motion is listed in Algorithm 4. We clestthe motion vectors to determine the
underlying motion model (Homography), until the number oassigned motion vectors is below a
threshold, when we declare then as outliers or false carregnces.

Input: The Set of valid correspondence pairs in framhgand F5
Output: The set of dominant motiond;

begin

/*Obtain the set of correspondence from the Algorithm 3 il
Sp=set of all correspondence pairs obtained,;

1 =1;

[*While the number of elements in the set is greater thanfseshold *
while |S;_1| ge 7 do

/*Find the dominant motion model using RANSAC */
H; =fitRANSAC (Si—l) ;

[*Get the inliers satisfying the homography */

I; =getlnliers(S;_1,H;) ;

[*Update the set of correspondence pair, yet to be assignadnotion model */
Si =5 —1;;

end

end

Algorithm 4 : Algorithm for finding dominant motion models.

4.1.3 Optimal Boundary Estimation

Optimal boundary estimation is needed to actually sepanat®Ol into two different planes. This
information is later used during the filling-in process. &ltiat we cannot depend on the region growing
method to give us the boundaries of the planes unlike oth#drade [24,75] because we cannot estimate
these boundaries in the unknown region. We assume theeéuntins of the two planar regions to be
a line. LetH; and H, be the homography due to, and =, between the two views. We find the
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generalized eigenvectodd the pair(H;, Hy) by solving the equation,
Hlv = )\HQU.

The eigenvectors obtained have the property that two of thenthe projections of two points on
the line of intersection of the two planes, 75 on to the image plang, and third one is the epipole in
the imagel;. The two eigenvectors corresponding to the points on thespdan be identified due to the
equality of their corresponding eigenvalues. The readafesred to Johansson [37] for a proof of this
fact.

Input: The set of dominant motion modets;
Output: The region segmented in to different dominant motion medel
begin
[*for each pair of homographies froid; */
foreach (H;, H;) pair from H/s do
/*Find the eigen vectors corresponding to equal eigen galyee, */
e;=eigenVectorgH;,H;) ;
[*determine the line(s) partitioning the planes pair
L;; =lineFromPoints(e, e2)
end
end
Partition the region using,;;

Algorithm 5: Algorithm for partitioning regions into various planes.

Using the homogeneous coordinates of the two points on tagemplane, we can obtain the exact
line of intersection in the image. In fact we need this lindyaver the ROI. Thus, we have the planar
layers for the ROI. We warp these layers in the neighboriagmé to the frame to be fill-in the unknown
region. The correspondence between layers obtained in iswesvis established by measuring the
percentage of the tracked points that are part of the layprawious frame. In the ongoing discussion
we use the wordabel of a pixel to refer to the layer assigned it. Figure 4.3 (fvb@ line obtained by
this method, (g) shows the plane segmentation in the ROIlwikidefined by the line. The algorithm is
listed in Algorithm 5.

The correctness of the line determined using the methodsneetle ensured as small errors in
homography calculation can lead to high errors in line deiation. In fact the homography pair
may have complex generalized eigenvalues and eigenveamdrsnay not yield a valid pair of points
to obtain the line. We validate the correctness of the boyntiae by ensuring that it partitions the
correspondence pairs into different clusters dependintherhomography to which they belong. In
case the line is not determinable or validation fails we iobilae line from a neighboring frame where
it was detected and verified by applying the underlying horapiy.

It should be noted that the methods which give good resuitslémse motion segmentation from
multiple views are not suitable for segmentation of the famwith the missing region. Graph cuts based
motion segmentation techniques [9, 80] determine the damtimotion models in the scene and assign
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Figure 4.3 Intermediate outputs at the various stages of the algorf)rmput image (second frame is
not shown) (b) The object to be removed is masked out andrrégishown in black (c) Sparse optical
flow vectors on the image (shown in red, in twice the origiriaé 40 make them visible) (d,e) First
and second dominant motion vectors clustered respectffelyine of intersection of the two planes

calculated as detailed in Section 4.1.3. (g) The surrogndackground of the region is segmented into
two planes (h) Output of graph cuts based binary partitgoiithe segments, shown for comparison (i)

The results of the completion on this frame.
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each pixel to one of the motion model based on an optimal gcaph segmentation. The unknown

pixel can never be accurately assigned to any particulal labthese approaches due to lack of both
color and motion information, which are used for deterngnine weights in the graph. We show the
result of applying binary graph cuts partitioning in Figdr8(f), to illustrate this fact. We only apply a

binary labeling in the graph, the white region shows poinfg®rting first dominant motion and gray

region shows points supporting second dominant regiony €gion of the image was not considered
for the segmentation stage. Similarly methods like [24 Wbich assign the pixels to the motion model
or planes based on re-projection error measure can nohabsiginknown pixels to any particular layer

accurately.

4.1.4 Layer-wise Video Completion

The line dividing the two planes gives a single confidentll&dbeach pixel in the ROI. Once the label
is determined we can fill the hole by warping the nearby fraaee®rding to the homography related
to the label. We build the mosaic of each plane using the beighg frames. The missing pixels are
assigned the color from the mosaic of the plane correspaedertheir label. This method is in principle
similar to the layered mosaic approaches [35, 83]. Therdiffee is that we have exact knowledge of
which plane an unknown pixel belongs to and use only thaesponding plane (layer). The blending
of homographies of multiple layers is not needed. As in ci$®yered mosaic approaches the intensity
mismatch might occur due to combination of various framiespke blending methods could be applied
to circumvent the error due to this. Algorithm 6 lists thealthm for layer completion. A planar
mosaic is build for each plane in the scene. The missing pixehn frame are then obtained from the
mosaic corresponding to the plane they belong to.

Input: The partitioned region R with label L for each pixel
Output: The completed region
begin
/*Obtain mosaic for each plane present in image */
foreach planep € Image Ido
| Mosaic[p]amosaicPlanép);
end
[*for each pixel in the unknown regioR *

foreachq € R do
* assign the value to the pixel g from the mosaic *

() = Mosaic[p](L[q]);
end

end

Algorithm 6: Algorithm for layer-wise video completion.
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4.1.5 Inpainting

Some pixels may remain unknown after the layer-wise videnpietion due to absence of the in-
formation in the video. Pixels which are always covered lgy/ dbject to removed belong to this set.
As in case of image inpainting techniques we can only apprate the values of these pixels based on
the surrounding information. The extra information howeasdhe knowledge of which plane the pixel
belongs to. We can restrict the filling algorithm to use valaely from the corresponding plane.

4.2 Results

We demonstrate the application of our approach on two segserfigure 4.4 shows the results of
our algorithm on a synthetic sequence. The sequence isgebom with two wall, a roof and a ceiling
with four planes. Our approach removes the monkey as shotie ifigure. Due to intensity difference
on the wall during the motion the mosaicing of the wall over tiews generate some intensity seams.
Simple blending applied during the mosaic constructioregjitnuch better results. No application of
inpainting was needed in this sequence.

Figure 4.5 demonstrate the result of the technique apphiedreal sequence. Some black holes are
present in the output due to unavailability of data. Inpagis not being applied on the sequence as
it is neither structure rich nor texture rich. Seams whiah ésible in the results can be removed by
applying some blending approach.

The algorithm takes around two seconds per frame for theomsggmentation and plane matching.
The completion step depends on number of neighboring frarsed for creating the mosaic and takes
around 1-2 seconds when 12 (6 forward and 6 backward) frareassad.

Our method can also be used for object removal in pairs of@nag@/e demonstrate a simple example
of this in Figure 4.6. The background of the flag object hasdtplanes. Motion estimation gives us
three different motion models. The intersection line isagttd for each pair of planes and used in same
way as described as for videos for layer-wise completiorhefunknown region. We used an affine
region detection and matching, based on scaling invarigaiufe transformation (SIFT) [50, 51], an
implementation of which is available from [49], to determithe point correspondences as the inter-
frame motion was large in this case. There is also significhahge in illumination between the views,
which is apparent after the flag is removed and the image ipkied. Both images didn't see table in
the region near the flag and in the region containing the flelggglow. Thus, that information could not
be filled in.

4.3 Summary

In this chapter, we addressed the problem of video objecbvahand completion for indoor scenes.
Our method involves user interaction only for object sétectnd performs the rest of the operations
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Figure 4.4 The process applied on a synthetic sequence. (a-d) showéh&dmes of the sequence.
(e-h) show the frames after completion. The monkey is remhdk@n the original video. (a,e) have
only one background plane, while in (b,c,d) two planes aesent in the background.
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Figure 4.5 The process applied on a real sequence, we remove the bottietlie video (a-e) shows
five frames of the sequence. (f-j) shows the results of videoptetion algorithm on each input frame.
Initial and final frames have only one background while franrethe middle have two background
planes. The output has visible seams at the junction of tim@ved object due to very high intensity
change in the scene.

(d)

Figure 4.6 Application of our approach to images. (a,b) two views ofshene containing 3 different

background planes. (c) shows the lines partitioning thegda(d) Image (@) is filled-in using informa-
tion from image (b) to remove the hole created due to the rexhflag. Note that the shadow of the flag
is present in the completed image as shadow region was matselfor removal.
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without any user interaction. Ours is an attempt to use mewMti information for scene inference and
video completion. We showed results on scenes with pieeglanar background near the object to be
removed. The technique can be easily extended to more pdarieng as the dominant motion segmen-
tation can be achieved. We also demonstrated the apphcatithe technique for image completion for
images taken with widely distant viewpoints.

The geometric information we used give better segmentationultiple motions. The motions are
segmented at the pixel level without region growing or iptdation, unlike the motion segmentation
performed in the image space. Motion inpainting methodsveark well for scenes with a multiple
planes or non-textured surfaces. Combining the geometfaoration with motion inpainting will
be the most promising one for scenes with multiple planese advantage of the motion inpainting
techniques lies in its applicability to large number of s®nWe propose to investigate the problem
further in that direction. The use of user interaction toenstind the scene better is also an interesting
problem.



4.3. SUMMARY 39

() (k) ()

Figure 4.7 The video object removal technique applied for removingaardrom a clip from the movie
Shawshank Redemptiofa,b,c) are the input frames. (d,e,f) and (g,h,i) show tieeted masks and
the layers using the layer extraction technique preseméchapter 3. (j,k,I) show the output frames
where the actor walking across the scene is removed fromidee.v
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Discussions, Conclusions and Future Work

In this thesis, we presented two new algorithms. The firstisrier object segmentation in videos.
Our approach allows for segmenting objects in a spatio-teaipvay by combining 3D graph cuts based
segmentation with a tracking approach. We successfullgleasegmentation of objects with complex
motion models, as the method doesn’t depend on motion mstiedation. Thus our approach handles
a larger set of objects as compared to non-rigid objects.n@itinod, to the best of our knowledge, is the
first attempt at combining tracking to the graph cuts alpamifor obtaining seeds in the intermediate
frames of a video. Robust tracking provides the seeds attresatermediate frames of the graph which
results in optimal boundary via graph cuts minimization.

Our approach was developed with the objective of layer etitna, where precise alpha values at the
boundaries are not needed. However, the layers obtaindudgnethod can be easily used to generate
the trimap, which is required as input by most matting alfpon. We have demonstrated the result of
applying matting using the trimap obtained by our algoritiinal the results are encouraging.

Some recent approaches have proposed graph cuts applieatioregions as primitives. Wangt
al [77] demonstrated the application of graph cuts minim@athn such a graph with pixel clustering
at inter-frame and intra-frame level. Though the techniguerall takes significant amount of time due
to the clustering step, the interaction during graph cuts iserations of graph cuts are much faster.
Assuming regions to be of size of around 100 pixels each. Tineber of nodes can easily be brought
down by a factor of 100. This produces a significant time iniproent. Region level tracking has
been demonstrated recently via use of affine invariant featatectors [49, 50] and methods based on
geometric hashing. Region level tracking and graph cutstlvarefore provide two advantage to us.
Firstly, the tracking at region level can be used to seed rtargler part of the graph in the target image.
Secondly, efficiency can be improved by working on a regiaellerimitive instead of pixels. As has
been demonstrated in many applications of multiresolutgmmniques like image registration, texture
synthesis or more recently in matting [43], multiresolat@pplication of the 3D graph cuts algorithm
holds good promises of performance gain.

As future work in this direction, we would like to explore thse of region-level primitives as nodes
for the 3D graph. One interesting direction with respect bgect segmentation from videos is the

40
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use of motion clusters along with color based approach. dgh@uch approaches have been tried in
automatic cases [39, 81], interactive correction-basethools for segmentation are yet to be explored.
Another interesting direction for investigation is in udectass specific image information, which has
been shown to be more effective in object segmentation ig@&wal44, 58]. The efficiency of these
algorithms can easily be improved for videos due to the teaimmntinuity assumption which brings
down the search space drastically.

Our video completion method is a geometry based approacke ush of multiview information
for determining the occluded region in one frame from thegleoring frames is promising due to the
precise (non-approximate) calculation of a pixel's val@@mpared to the motion flow based methods
which involve approximation or estimation of motion flow filve particles inside the hole, our method
uses exact information for the pixel available from the ofr@mes.

Though motion segmentation using 2D motion vectors is @opdinding motion flow in smooth
regions accurately is a difficult problem. Our approach, éxmv, doesn't depend completely on the
motion vectors, in fact we use motion vectors clustering ¢alestimate the homography of the planes
between the two frames. We can therefore replace the depemds motion flow estimation using
other techniques like the one proposed by Jain and Jawa2janf®re the homography for two images
is found using contours instead of point correspondencés. determination of the exact partitioning
boundary can still be performed using the geometric fortradaused in our approach.

The drawback of the technique is its limited applicabilityhe approach inherently involves motion
segmentation of scenes into planar layers, which is not feissomplex scenes. For motion segmen-
tation we use the optical flow information between two fram€&ke success of motion segmentation
depends on the separability of the motion vectors. In gracit is observed that the thresholding pa-
rameters for most clustering problems cannot be determiasdy. For instance, the parameter for
thresholding inliers in RANSAC algorithm may vary acroserses. We believe that the userbtion
historyin initializing the point set for RANSAC will improve the sagentation results.

Exemplar methods based on SSD [35, 36, 79] are very reg&iati the domain of videos. The
assumption for periodic repetition of a patch doesn't fitlwéth perspective distortions, though an
extension of approach followed in [57] may provide bettsufes on more generic scene. The approach
of Pavi€et al clearly demonstrates that with the help of little user iattion the technique can be
extended to a very large set of images [57]. The interfactfiely allows the user to select the target
patch’s position and size and a real-time optimal sourcehpsgarch is shown to the user. The results
demonstrated bring up possibilities for further researchaw user interaction can help to get more
plausible solutions. The problem of video completion caso ddenefit from user interaction. The 3D
scene information, if available, can be used in an intergstiay. Once a correspondence between
image frame and the 3D model can be established removingtelifem the video would be essentially
equivalent to rendering the scene without the pixels betmntp the object. Our initial investigation
on structure from motion techniques suggests that a full &»mstruction from a video is still an
unsolved problem. However, with the use of some informatiointeraction, reconstruction can be
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achieved. We would like to explore ways in which simple usgeraction can provide good deal of
3D information about the scene which can be used in the cdiopleA combination of geometry and
optical flow interpolation would have the advantage of bejageric and more accurate.The recent work
of Shiratoriet al [69], where they demonstrate the combination of exemplaedanethod with motion
vector interpolation techniques, further motivates itigedion in this direction.

An area still left unexplored by the research community ifdfief video completion is the use of
custom setup to make the problem easier. Most of the currerk hias been focusing on making the
video completion work on more and more general videos. Espee from the work in the field of video
matting suggests that much better mattes are obtainedefithieonment can be setup in a particular way.
Defocus matting [53] proposed use of three camera placeiffetest view points. Video completion
problem can similarly be benefited by an appropriate setupe Use of multiple cameras to capture
same scene from different view points provide equivalefurination as that of view registration across
multiple frames. The special application of this technigames from its use in creating special effects.
The technique will also be usable in the case where the bagkdrof the scene is difficult to customize
according to the needs.
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