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Abstract

The rapid expansion of the Internet is receiving a great deal of attention world-wide. The technologi-

cal developments and the increase in online communications have played a vital role in revolutionalizing

the Information Age. There is a tremendous growth of online applications to manipulate the user’s per-

sonal data, which has resulted in the widespread availability of the user’s personal data in the digital

form. This raises the issue of privacy protection against potential misuse of this data by legitimate ser-

vice providers or intruders. Without proper countermeasures to thwart the attacks, security problems

become a major threat and a serious impediment to further development of business applications on

communication systems.

Many of the current solutions provides information security by assuming a level of trust among the

parties. The leakage of the critical data to third parties is prevented by applying cryptographic primitives

as a secure layer over the standard algorithm. On the other hand, privacy preservation computation is

more closely related to Secure Multiparty Computation (SMC). SMC enables two parties; one with the

function f() and the other with the input x; to compute f(x) without revealing them to each other.

However, the solutions based on the general protocol of SMC requires enormous computational and

communication overhead, thus limiting the practical deployment of the secure algorithms.

In this dissertation, we focus on development of ‘highly-secure’, ‘comunication and computation-

ally efficient’ algorithms to problems with ‘immediate impact’ in the domain of computer vision and

related areas. Security issues in computer vision primarily originates from the storage, distribution and

processing of the personal data, whereas privacy concerns with tracking down of the users activity. The

primary challenge is in providing the ability to perform generic computations on the visual data, while

ensuring provable security. In this thesis, we propose lightweight encryptions for visual data, such that

the server should be able to carry out the computations on the encrypted data and also store the stream

if required, without being able to decipher the actual contents of the image. Moreover, the protocols are

designed such that the interaction and the data communication among the servers is kept to a minimum.

It has been proven before that the best way to achieve secure computation on a remote server is by us-

ing the cryptographic protocol of SMC. Thus, a method that provides provable security, while allowing

efficient computations without incurring either significant computation or communication overhead has

remained elusive till now. We show that, for designing secure visual algorithms one can exploit certain
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properties such as scalability, limited range etc, inherent to visual data to break this impenetrable barrier.

We study and propose secure solutions for applications such as Blind Authentication, i.e. blindly au-

thenticating a remote-user using his biometric. Subsequently, we present a highly secure framework for

carrying out visual surveillance on random looking video streams at remote servers. We then propose a

simple and an efficient cloud-computing based solution using the paradigm of secret sharing to privately

cluster an arbitrary partitioned data among N users. The solutions we propose are accurate, efficient

and scalable and has potential to extend over to even more diverse applications.

In our first work, blind authentication, we propose private biometric authentication protocol which is

extreamly secure under a variety of attacks and can be used with a wide variety of biometric traits. The

protocol is blind in the sense that it reveals only the identity, and no additional information about the

user or the biometric to the authenticating server or vice-versa. The primary advantage of the proposed

approach is the ability to achieve classification of a strongly encrypted feature vector using generic

classifiers such as Neural Networks and SVMs. Our proposed solution addresses the concerns of user’s

privacy, template protection, and trust issues. And captures the advantages of biometric authentication

as well as the security of public key cryptography.

We then present an efficient, practical and highly secure framework for implementing visual surveil-

lance on untrusted remote computers. To achieve this we demonstrate that the properties of visual data

can be exploited to break the bottleneck of computational and communication overheads. The issues in

practical implementation of certain algorithms including change detection, optical flow, and face detec-

tion are addressed. Our method enables distributed secure processing and storage, while retaining the

ability to reconstruct the original data in case of a legal requirement. Such an architecture provides us

both security as well as computation and communication efficiency.

We next extend our proposed paradigm to achieve the ability to do un-supervised learning using

K-means in the encrypted domain. Traditional approaches uses primitives such as SMC or PKC, thus

compromising the efficiency of the solutions and in return provide very high level of privacy which

is usually an overkill in practice. We use the paradigm of secret sharing, which allows the data to

be divided into multiple shares and processed separately at different servers. Our method shows that

privacy need not be always at the cost of efficiency. Our proposed solution is not only computationally

efficient but also secure independent of whether or not P 6= NP.
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Chapter 1

Introduction to Privacy Preserving Methods

In the past few years, the world has become increasingly connected over the Internet. Business over

the Internet has become a standard practice, leading to a tremendous growth of online applications to

manipulate digital data. The advances in information processing and data sharing over the transmis-

sion media such as the Internet, has paved way to new sort of services, whereby an organization lends

their processing ability and algorithms to the customers. However, many of these applications work on

sensitive (personal) data of the client.

To maintain proprietary rights, the organization may not wish to make their algorithms public, but

would still like to maximize their profits. On the other hand, a potential client may not be willing to

reveal his private data even to the processing server. Thus, what we want is an ability for the server to

obliviously compute his private function f(x), without learning any meaningful information about the

user’s input x. An example for this would be a search engine that returns related pages without learning

anything about the searched query or the related pages. Moreover, to ensure trustworthiness, computing

and storage services over untrusted remote servers require security assurances against malicious attacks

and faulty behavior.

To achieve this, security and cryptography are important enablers. Many of the current solutions

provides information security by assuming a level of trust among the parties. The leakage of the critical

data to third parties is prevented by applying cryptographic primitives as a secure layer over the standard

algorithm. On the other hand, privacy preservation computation is more closely related to Secure Mul-

tiparty Computation (SMC) [143]. SMC enables two parties; one with the function f() and the other

with the input x; to compute f(x) without revealing them to each other. In SMC based solutions every

function is represented as a boolean circuit. A secure computation is then performed for each gate of the

circuit. However, the solutions based on the general protocol of SMC requires enormous computational

and communication overhead. The complexity of the protocol is linear in the size of the circuit, making

it theoretically efficient, however for real-world applications this method is not practical and is much

slower than the corresponding non secure computation [21].
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In this work, we explore methods to design efficient privacy-preserving protocols with provable

security and privacy guarantees.

1.1 Broad Objective

This thesis focus on development of secure computational algorithms in computer vision and related

areas. Some of the specific sub-tasks associated with this work include:

• To develop “highly-secure” solutions; the proposed algorithms should offer a provable and se-

mantically secure privacy rather than one on an ad hoc basis. Defining security based on formal

mathematical proofs, allows us to do a theoretical analysis of the privacy achieved by our pro-

posed solutions.

• To develop “communication and computationally efficient” solutions; any secure solution re-

quires more processing over an insecure one ( eg. http vs https ). For a practical acceptance

of a secured application, the proposed solution should keep the communication and computation

overheads within acceptable limits.

• To develop solutions to problems with immediate impact; we study and propose solutions to

enhance privacy for various popular web-based applications, wide-spread use of which are cur-

rently limited because of the privacy concerns they raise. For example, user authentication using

a fingerprint over an untrusted web-server.

1.2 Problem Background

With a rapid development and acceptability of computer vision based systems in ones daily life,

securing of the visual data has become imperative. Security issues in computer vision primarily origi-

nates from the storage, distribution and processing of the personal data, whereas privacy concerns with

tracking down of the user’s activity.

The ideal solution to overcoming all privacy and security concerns is to apply strong cryptographic

encryptions, thus destroying any pattern that would be present in that data. Pattern recognition, which

is inherent to computer vision algorithms, however exploits the strong structure (pattern) present in the

data. It seems that there exists a contradiction in the objectives of these two disciplines. For example,

Figure 1.1(a) shows the data pattern in the original feature space. Applying a strong encryption to this

would destroy the structure, thus making any pattern recognition task on the encrypted data difficult

( see Figure 1.1(c) ). In order to overcome this limitation, solutions have been proposed that make a
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Figure 1.1 Dilemma of Privacy Vs Accuracy: Ideally we would like to adopt transformation functions

such that they provide privacy as in (c), while retaining the ability to match patterns as in (a). Functions

such as in (b) provide partial privacy.

compromise between privacy and accuracy. Transformation functions are applied to the data, such that

they retain the pattern, while providing partial privacy ( see Figure 1.1(b) ).

The current methods of securing an online protocol is to apply a cryptographic layer on top of an

existing processing module, thus securing the data against unauthorized third party access. However,

this is often not enough to ensure the complete security of the user’s privileged information.

In the world of Internet, a new service sector has emerged, where a service provider gives the user

with access to a server running a particular vision algorithm. In some scenarios, the client may be

reluctant to reveal the content of the image to the processing server, yet would like to fully utilize the

service, while at the same time the service provider would like to protect his own interests, i.e. the

algorithm from being made public. How can the service provider and the user achieve these objectives?

Over the years, these questions were raised and addressed in two different scenarios as follows:

Avidan and Butman [22] raised and addressed the privacy concerns in a camera surveillance scenario,

“A service provider has a proprietary face detection algorithm that he does not want to be made public,

and a client wishes to use this algorithm as long as, even the service provider, does not learn anything

about the data (images).”

Shashank et al. [119] raised and addressed the privacy issues in content based image retrieval systems

(CBIR). The proposed system Private-CBIR (PCBIR) deals with the retrieval of similar content without

revealing the content of the query image to the database.

These problems are similar to the Secure Multiparty Computation (SMC) [143] problem in cryptog-

raphy. A straight forward solution would be to apply the secure multi-party techniques to image related

algorithms. However, multi-party techniques are computationally very expensive [65]. And, applying
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the generic SMC protocols to computer vision algorithms, which works on low level data such as pixel

values, would make the solution impractical and non-real time.

Through this work we address the security and privacy concerns of the visual data. We propose

application specific, computationally efficient and provably secure computer vision algorithms for the

encrypted domain. More specifically we address the following issues:

• Efficacy: Security should not be at the cost of accuracy. The classification performance of the

secured implementation should be similar to that of the non-secured implementation.

• Efficiency: Encryption/Decryption is computationally expensive. For an application, the secure

algorithms should be practical and keep the computation and communication overheads within

acceptable limits.

• Domain Knowledge: Domain specific algorithms will be more efficient than generic solutions

such as SMC. We exploit the data properties to design application specific, computationally effi-

cient, non-interactive secure solutions.

• Security: Algorithms need to be provably-secure and meet futuristic requirements.

1.3 Technical Background

In this section, we discuss the general notations and definitions that are used throughout the disser-

tation. All chapter specific definitions will be provided at the appropriate place within the subsequent

chapters.

1.3.1 What is meant by Privacy?

Privacy in the cryptographic community is defined so as to limit the information that is leaked

(learned) by the distributed computations over the information that can be learned from the designated

output of the computations [103]. In order to compute the information leaked, we compare the infor-

mation learned from the result of the actual computations to that learned in an “ideal” computations

involving a trusted party.

A party is said to be trusted if it does not deviate from a pre-defined behavior and does not attempt to

cheat. In the ideal scenario, all parties send their respective data to the trusted party, who then computes

the functions and sends the appropriate results to the other parties. Thus, a distributed protocol is private,

if and only if, an adversary learns no additional meaningful information other than its input and the out-

put it receives from the trusted party. However, finding a trusted third party is in general infeasible [65].

Privacy preserving protocols are introduced to address this specific problem. The objective is to design

(efficient) protocols that do not reveal any information except for their designated output [17] [88].

4



In order to analyze the security and privacy of the system, we will formalize the notion [65] of

security as follows:

Let f : 0, 1∗ × 0, 1∗− > 0, 1∗ × 0, 1∗ be a function. A two-party protocol is defined by a pair

of probabilistic polynomial-time interactive algorithms π = (πA, πB). Consider the probability space

induced by the computing execution of π on input x = (a, b) (induced by the independent choices of

the random input rA, rB). Let viewπ
A(x) (resp., viewπ

B(x)) denote the entire view of Alice (resp., Bob)

in this execution, including her input, random input, and all messages she has received. Let outputπA(x)

(resp., outputπB(x)) denote Alice’s (resp., Bob’s) output. We say that π privately computes a function f

if there exist probabilistic, polynomial-time algorithms SA and SB such that:

{(SA(a, fA(x)), fB(x))}x=(a,b)∈X ≡ {(V IEW π
A(x), OUTPUT π

B(x))}x∈X (1.1)

{(fA(x), SB(b, fB(x)))}x=(a,b)∈X ≡ {(OUTPUT π
A(x), V IEW π

B(x)}x∈X (1.2)

where ≡ denotes computationally indistinguishability, which means that there is no probabilistic poly-

nomial algorithm A which can distinguish the probability distribution over two random string.

1.3.2 Adversary Model

Two types of adversaries, a) a semi-honest adversary, and b) a malicious adversary are commonly

considered in cryptographic community. A semi-honest adversary (also known as a passive, or honest

but curious adversary) is a party that correctly follows the protocol specification, yet is curious and

attempts to learn additional information by analyzing the messages received during the protocol execu-

tion. On the other hand, a malicious adversary may arbitrarily deviate from the protocol specifications.

For example, consider a step in the protocol where one of the parties is required to choose a random

number and broadcast it. If the party is semi-honest then we can assume that this number is indeed

random. On the other hand, if the party is malicious, then he might choose the number in a sophisticated

way that enables him to gain additional information.

Privacy preserving protocols are designed in order to preserve privacy even in the presence of ad-

versarial participants that attempt to gather information about the inputs of their peers. In practice,

a semi-honest adversarial model is a realistic one [103]. Moreover, a protocol that is secure against

a semi-honest adversary can be transformed, using cryptographic techniques such as zero-knowledge

proofs [65], into a protocol that is secure against malicious adversaries. Thus, we design secure proto-

cols for the semi-honest case. Note that, we do not consider adversaries that change their inputs in order

to gain more information about the inputs of the other parties.

The network as such is assumed to be insecure and susceptible to snooping attacks. The servers are

assumed to be non-colluding in nature, that is they are independent and would not share information to

extract any additional knowledge.
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1.3.3 Our Security Goal

As stated in Section 1.2, we aim to strengthen the security and privacy of the visual algorithms

without making a compromise on the efficiency and efficacy of the solutions. The three primary issues

in designing the privacy preserving protocols are i) security and privacy, ii) efficacy, and iii) efficiency.

Hence, we analyze the secure algorithms for the security, correctness and complexity.

• Correctness is measured by comparing the proposed protocol to the ideal protocol where the

parties transfer their data to a trusted third party that performs the computations. If the secure

protocol is identical to the ideal protocol then the protocol is declared correct.

• In security one needs to show what can and cannot be learned from the data exchange between the

parties. One often assumes that the parties are honest but curious, meaning that they will follow

the agreed upon protocol but will try to learn as much as possible from the data flow between the

two parties.

• In complexity, one shows the computational and communication complexity of the secure algo-

rithm. For practical applications, the overheads of the proposed solution should be minimal as

compared to the ideal solution.

We use the semi-honest adversary model, that is the parties follow the protocol but they want to reveal

the other party’s privacy. Our goal is to design protocols for preserving the party’s privacy against such

adversaries during the execution of the protocol. Each party learns nothing about the others data, except

the output results. Both privacy and correctness are needed to be preserved.

1.4 Thesis Outline

Private distributed protocols have been considered extensively for data mining, pioneered by Lin-

dell and Pinkas [88], who presented a privacy-preserving data-mining algorithms for ID3 decision-tree

learning. The work on privacy-preserving algorithms is motivated by the need both to protect privileged

information and to enable its use for research or other purposes. The problem is a specific example of

secure multi-party computations and, as such, can be solved using generic protocols. However, for the

applications working on massive datasets, applying the generic protocols as such are of no practical use

and therefore more efficient protocols are required.

Avidan and Butman raised and addressed the privacy concerns through their work Blind Vision [22],

which is about applying secure multi-party techniques to vision algorithms. In blind vision there are

two parties, A with a private program π(I), and B with an input I to that program; the joint goal is

to let B know the output of π(I) whilst maintaining the privacy of π with respect to B and privacy
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of I with respect to A. Their solution, which is based on SMC techniques, is found to be extremely

expensive in terms of communication overheads. In order to design practical protocols, considerable

research effort has been made over the recent years. Modifications have been made to improve the

efficiency of the solutions, such as, by restricting the usage of Yao’s protocol [143] to only a few limited

computations/operations. For example, Avidan et al. [23] speed-ed up their blind vision protocol [22]

at the cost of a controlled leakage of information. Shashank et al. [119] on the other hand, exploited the

clustered nature of image databases to improve upon the efficiency of SMC for example-based image

retrieval.

In general, the SMC based protocols are found to be inefficient for any practical online application.

The reason for this is mainly due to the way SMC works. In SMC, every single trusted CPU instruction is

securely simulated via a corresponding network protocol. As of today, communication is the bottleneck.

Factually, the round-trip time in a LAN is of the order of a few milliseconds, whereas several floating

operations take no more than few nanoseconds. Thus the paradigm of SMC which converts the trusted

computation into secure network protocol can not avoid a slowdown by a factor of one million, with the

current technology. Moreover, communication is likely to remain a bottleneck in the foreseeable future.

The communication overheads can be avoided if we can obtain a system where a server can execute a

function on the encrypted data without having to decrypt it. Thus, we want encryptions such that the

resulting transformation allows non-interactive computations at remote server(s).

The natural way to overcome the (communication) complexity is to design algorithms for computing

in encrypted domain. Solutions with minimal distribution, using the paradigm of encrypt-communicate-

compute-decrypt require the usage of algebraic homomorpic encryption schemes [93]. However, an

efficient implementation of it is not yet known. Our method for blindly authenticating a user using

his biometric uses multiplicative, additive homomorphism and a specific distribution of work between

client and server, coupled with a novel randomization scheme to simulate the algebraic homomorphism

in the encrypted domain.

As compared to SMC, we optimally reduce the communication overheads for the solution proposed.

However, we find that building completely non-interactive protocols is not feasible using the additive

and multiplicative homomorphism. Moreover, these schemes themselves are based on computationally

expensive protocols such as public key cryptography (PKC).

In order to achieve computational efficiency the encryption should be lightweight, thus we have to

avoid the usage of PKC. The inadequacy of solutions with minimal or no distribution, necessitates non-

minimal distribution, in other words some sort of SMC. Unconditionally or information theoretic secure

multi-party computations are closely related to the problem of secret sharing [118]. We next show that

visual data has certain desirable properties that allows us to use the paradigm of secret sharing to achieve

complete privacy and efficient computation of visual algorithms. We present an efficient, practical
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and highly secure framework for implementing visual surveillance on untrusted remote computers. To

achieve this we demonstrate that the properties of visual data can be exploited to break the bottleneck

of computational and communication overheads.

The paradigm we have proposed is accurate, efficient and scalable. We next explore as to whether

the paradigm can be made generic and be used to address the privacy concerns in more related areas.

The algorithms we have proposed so far dealt with pattern matching using a classifier in the encrypted

domain. The natural extension to the work is to find methods for doing the classifier training itself in

the encrypted domain. With these objectives in mind, we explore methods to privately do un-supervised

learning using K-means in the encrypted domain. K-means clustering is one of the most widely used

techniques for statistical data analysis. We show that the paradigm of secret sharing is generic and

unlike the traditional methods using primitives such as SMC, the privacy need not be always at the cost

of efficiency.

1.4.1 Scope of the Thesis

We now give a brief description of the problems we have addressed. A detailed description of these

are given in the following chapters.

Blind Authentication using a biometric: Concerns on widespread use of biometric authentication

systems are primarily centered around template security, revocability and privacy. We have proposed,

for the first time, a completely blind biometric authentication protocol, which takes care of concerns

on user privacy, template protection, and trust issues in biometric authentication system. The protocol

is blind in the sense that it reveals only the identity, and no additional information about the user or

the biometric to the authenticating server or vice-versa. Biometrics are ideal to be deployed in both

high security as well as remote authentication applications. However, the assertions on security and

non-repudiation are valid only if the integrity of the overall system is maintained. Blind authentication

provides a mechanism to do non-repudiable authentication over an insecure network, while ensuring the

privacy of the user.

Privacy Preserving Video Surveillance: We have presented an efficient, practical and highly secure

framework for implementing visual surveillance on untrusted remote computers. The main contribution

of the work is in introducing a paradigm shift in looking at private visual surveillance problems from the

traditional SMC based approaches. This change in view allows us to have a simplified capture device,

an efficient unidirectional data flow, and surveillance operations performed directly on the shattered

streams. The issues in practical implementation of certain algorithms including change detection, optical

flow, and face detection are addressed. The framework provides a generic setting to carry out an arbitrary
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vision task. This work opens up a new avenue for practical and provably secure implementations of

vision algorithms, that are based on distribution of data over multiple computers.

Unsupervised learning using K-means: Clustering is one of the fundamental algorithms used in the

field of data mining. The simplicity and effectiveness of the algorithm have made its usage conducive in

various applications. However, the collected data may contain sensitive or private information about the

customers, thus heightening the privacy concerns. We propose a novel cloud computing based solution

using the paradigm of secret sharing to privately cluster an arbitrary partitioned data among N users.

Our proposed solution is not only computationally efficient but also secure independent of whether or

not P 6= NP. Our paradigm is generic and has potential to extend over to even more diverse data mining

applications.

1.4.2 Blind Authentication: A Crypto-Biometric Verification Protocol

As a first step, we addressed the problem of Blind Authentication i.e., design and implementation of

a Secure Crypto-Biometric Verification Protocol.

We have proposed, for the first time, a completely blind biometric authentication protocol, which

takes care of concerns on user privacy, template protection, and trust issues. We propose a secure

biometric authentication protocol over public networks using asymmetric encryption, which captures

the advantages of biometric authentication as well as the security of public key cryptography. Biometric

authentication provides a secure, non-repudiable and convenient method for identity verification, while

not revealing any additional information about the user to the server or vice versa.

The encryption provides template protection, the ability to revoke enrolled templates, and alleviates

the concerns on privacy in widespread use of biometrics. The proposed approach does not make any

assumption on the nature of the data and is hence applicable to any biometric. Such a protocol has

significant advantages over existing biometric cryptosystems, which use a biometric to secure a secret

key, which in turn is used for authentication.

Biometrics are ideal to be deployed in both high security as well as remote authentication appli-

cations. However, the assertions on security and non-repudiation are valid only if the integrity of the

overall system is maintained. Blind authentication provides a mechanism to do non-repudiable authen-

tication over an insecure network, while ensuring the privacy of the user.

The primary concerns to be addressed for any biometric authentication system are:

1. Template protection: As a biometric do not change over time, one cannot revoke an enrolled

plain biometric. Hence, critical information could be revealed if the server’s biometric template

database is compromised.
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2. User’s privacy: i) The activities of a person could be tracked, as the biometric is unique to a

person, and ii) Certain biometrics may reveal personal information about a user (e.g., medical or

food habits), in addition to identity.

3. Trust between user and server: In widespread use, all authenticating servers may not be com-

petent or trustworthy to securely handle a user’s plain biometric, while a remote user cannot be

reliably identified without biometric information.

4. Network security: As the authentication is done over an insecure network, anyone snooping the

network could gain access to the biometric information being transmitted.

The previous work in this area tends to build a classifier in encrypted domain, thus making a com-

promise in security and accuracy. A.K. Jain et al [73] does an extensive literature review and concludes

‘a template protection scheme with provable security and acceptable recognition performance has thus

far remained elusive.’

In our proposed method, we build a classifier in the plain feature space, which allows us to main-

tain the performance of the biometric itself, while carrying out the authentication on data with strong

encryption, which provides high security/privacy. We design protocols for simulating Support Vector

Machine and Neural network in an encrypted domain.

Approach in brief: Let ω be the parameters of the linear classifier. The server accepts the claimed

identity of a user, if ω · x < τ , where τ is a threshold. As we do not want to reveal the parameter vector

(ω) or the test sample (x) to the server, we need to carry out the computations in the encrypted domain.

Computation of the above equation in encrypted domain would require an algebraic homomorphic en-

cryption, which is not known to exist. Our method uses multiplicative, additive homomorphism and a

specific distribution of work between client and server, coupled with a novel randomization scheme to

simulate the above equation in the encrypted domain.

Several experiments are performed to evaluate the efficiency and accuracy of the proposed approach.

An authentication protocol was implemented based on a client-server model that can perform verifica-

tion over an insecure channel such as the Internet. Evaluation is carried out on various public domain

datasets and biometric modalities to verify for efficiency and applicability. Analysis are also carried out

for security/privacy and computational overhead of the proposed method.

Blind authentication addresses all of the concerns mentioned above, and provides the ability to clas-

sify any feature vector, and hence is applicable to multiple biometrics. This work opens a new direction

of research to look at privacy preserving biometric authentication.
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1.4.3 Efficient Privacy Preserving Video Surveillance

In this work we focus on development of secure computational algorithms for computer vision,

specifically in the area of surveillance. The generic goals of the work are to develop solutions that are

secure and computationally efficient, leading to practical systems.

Video Surveillance is a critical tool for tasks such as law enforcement, personal safety, traffic control,

etc. This raises privacy concerns such as, watching you in your private moments, spying on you or

even implicitly controlling some of your actions. The challenge of introducing privacy and security in

such a practical surveillance system has been stifled by the enormous computation and communication

overhead required by the solutions. The objective is to allow the general surveillance to continue,

without disrupting the privacy of an individual in an efficient and cost-effective way.

Provable security/privacy can be guaranteed if the surveillance algorithms can directly run on (cryp-

tographically strong) encrypted video streams. This ensures that the original video stream is hidden at

all times and the observer learns only the final output of the surveillance algorithm.

We use the paradigm of secret sharing to achieve private and efficient surveillance. We exploit the

properties, such as the scale invariance and a fixed range of the image data to define vision specific

secret sharing scheme. Our method enables distributed secure processing and storage, while retaining

the ability to reconstruct the original data in case of legal requirement. The computational requirement

at the data source (camera) is very limited, enabling inexpensive monitoring equipment, and the only

communication between the camera and the surveillance servers is a compact and encrypted video

stream. Privacy preserving surveillance address the contrasting needs of confidentiality and utility,

making the system practical.

The primary contributions of our work are:

• Circumvent theoretical bounds: Our method is extremely efficient compared to SMC.

• Provably Secure: We do not assume any trust or security at the servers.

• No compromise in accuracy: Faithful image encoding with PSNR of around 50.

• Practical system: It is both scalable and inexpensive, making privacy preservation affordable.

Approach in brief: In our method, a frame, F , of the surveillance video is transformed into a set of

seemingly random images, Ii, on which a surveillance operation is successfully carried out. Our solution

utilizes the services of r, (r > 2) non-colluding computation servers. Each of the r transformed images

Ii, is sent to a different server for processing. This ensures that the original video is not revealed to any

of the servers, while together they retain the complete video content. Furthermore, accurate surveillance
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results are obtained since the servers jointly run the original plain-domain algorithm. The solution is not

only provably secure but also computationally efficient. The interaction and the data communication

among the servers is kept to a minimum and the only processing required of the camera is to generate

the transformed images.

A detailed account of the implementation and analysis of a certain surveillance algorithms including

change detection, optical flow and face detection, using the proposed framework are discussed. We

describe the mapping of these problems to the framework and show the steps involved in carrying out

the computations. The experiments have conducted to understand the computational and communication

overheads at each stage, any loss in accuracy incurred by the computation, as well as the effectiveness

of the data obfuscation for privacy.

1.4.4 Private Yet Efficient K-Means Clustering

In Section 1.4.3, we demonstrated that the properties of the data can be exploited to break the com-

munication and computation bottlenecks for privacy preserving methods. In this work, we extend the

proposed paradigm to address the similar privacy concerns in the related areas. We make the approach

generic and propose secure protocols for doing un-supervised learning using K-means on the union of

databases held by two or more parties.

Un-supervised learning deals with designing classifiers from a set of unlabeled samples. A common

approach for unsupervised learning is to cluster or group unlabeled samples into sets of samples that

are ‘similar’ to each other. K-means clustering is a powerful and frequently used technique in data

mining. It is widely used to group data with similar characteristics or features together. In this work, we

consider the problem of clustering on the union of confidential data that is not supposed to be revealed

even to the party running the algorithm. The main challenge in designing such a protocol is to prevent

the intermediate values from being leaked. Due to sheer volume of the inputs that are involved, the

algorithms should be efficient, while still providing the privacy to the parties.

In this work we propose an efficient method for distributed K-means clustering with arbitrary parti-

tion. This means that there is no assumption on how the attributes of the data are distributed among the

parties (and in particular, this subsumes the case of vertically and horizontally partitioned data). While

this problem has been addressed before, we propose an approach other than the data perturbation, SMC

and TTP. We propose a novel solution based on secret sharing such that the actual clustering is done by

non-colluding servers, and the results merged by the participants.

Approach in brief: The idea is to use secret sharing and each party will send one share of its data to

one of the several cloud computing servers. Since each server only knows one share of the data, without

collusion they can not discover the original data. Then a protocol is proposed to securely compute K-
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means clustering between these servers, largely using the addition and multiplication properties of secret

sharing. We compare and analyze the computation and communication overhead of our protocol against

a zero-privacy protocol, under which each user sends his data (in plain) to a third party for clustering.

We use the following techniques to achieve the goals of privacy, efficiency and accuracy.

• Efficiency over SMC by working in modulo domain.

• Add random noise to ensure privacy.

• Scaling the axis (values) before adding noise to ensure accuracy.

• Limiting interaction between servers by making operations independent.

In this work, we achieve the security at the level of SMC while keeping the communication costs

extremely low. We achieve this using the paradigm of the Secret Sharing [20] over a mesh of processing

servers. Our solution is first of its type, and is both efficient and mathematically simple. In the process

we also side-step the communication bottlenecks posed by the usage of SMC and asymmetric encryption

schemes. Our proposed solution is not only computationally efficient but also secure independent of

whether or not P 6= NP. The ability to do secure computation using limited interaction has the potential

to extend over to more diverse data mining applications.

1.5 Organization of the Thesis

The work and the contributions in this dissertation are subdivided into the following chapters:

We discuss the security preliminaries in Chapter 2. The chapter also provides an overview to the

state of the art methods in privacy, security and visual algorithms.

In Chapter 3, we propose, for the first time, a completely blind biometric authentication protocol,

which takes care of concerns on user privacy, template protection, and trust issues in biometric authen-

tication system. Our proposed protocol has signicant advantages over existing biometric cryptosystems,

which uses a biometric to secure a secret key, which in turn is used for authentication.

A method that provides provable security, while allowing efficient computations for generic vision

algorithms have remained elusive till now. In fact, it has been proven that one cannot achieve secure

computation on a remote machine without incurring either significant computation or communication

overhead. In Chapter 4, we show that, for designing secure visual algorithms one can exploit certain

properties such as scalability, limited range etc, inherent to image data to break this seemingly impene-

trable barrier. In the process, we develop a generic approach to achieve efficient and secure computation

for any data that satisfies these properties, which could have potential applications in domains beyond
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visual surveillance. In Chapter 5, we propose an efficient method for distributed K-means clustering

with arbitrary partition. While this problem has been addressed before, we propose an approach other

than the data perturbation, SMC and TTP. Our proposed solution is not only computationally efficient

but also secure independent of whether or not P 6= NP. We show that our paradigm is generic and there-

fore opens up a new direction of research to look at privacy preserving methods. Chapter 6 summarizes

the thesis. For completeness, the Appendix provides a brief description of some of the theorems and

proofs that are used in the work here.
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Chapter 2

Background and the Preliminaries

In early stages of research and development in many fields of computer science security was not an

issue from the beginning. This is well true for the development of operating systems, email transmission

or wireless network. As the amount of visual data increases, automatic methods for visual analysis are

gaining popularity, both for accuracy and economic purpose. It becomes absolutely critical that the

visual data be secured before transmission or storage, so that leakage of the data does not pose a risk in

security or privacy.

Traditional encryption based methods for securing visual data are good for video storage and trans-

mission. However, they do not allow one to carry out computations on the data, which is essential for

online visual applications. Encryption and decryption as such are expensive protocols and results in sig-

nificant data expansion. The communication and computation overheads become critical when dealing

with voluminous data such as images and videos. Thus, what we need is lightweight encryption’s, such

that the server should be able to carry out the computations on the encrypted data and also store the

stream if required, without being able to decipher the actual contents of the image.

The primary challenge is in providing the ability to perform generic computations on the data, while

ensuring provable security. As long as one can recreate any coarse approximation of the image from

the secured version, which reveals any of its contents, the image can not be considered as secured.

Moreover, the neighboring pixels of an image tends to have similar values. This is a challenge to image

encryption as it can be used to guess the exact value of a pixel, even if only a few LSBs or MSBs are

known. Security based on public key encryption such as RSA is high, but it creates very high com-

putational and communication overheads in order to be able to do general purpose computations. For

example, approaches such as Blind vision [22] requires significant communication overhead between

the two parties to achieve a specific goal of face detection.

Most people accept an insecure solution for an application, since security is often associated with

significant computation overheads. However, we always prefer a secure solution over an insecure one,

if the apparent overhead in resources is not significant, as evidenced by the adoption of the secure http
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protocol (https). We believe that a practical solution to a secure visual algorithm would have a similar

impact if it is provided without any apparent additional cost.

In the following sections we provide a brief introduction to the background details which are used

in the subsequent chapters. First, we introduce some basic concepts of cryptography with particular

emphasis on their suitability for visual algorithms. We then discuss the approaches traditionally taken

to ensure security and privacy in visual data.

2.1 Security Preliminaries

The relevance of carrying out the algorithm directly on encrypted data is entirely dependent on the

security requirements of the application scenario under consideration. On the other hand, the particu-

lar implementation of the signal processing algorithm will be determined strongly by the possibilities

and impossibilities of the cryptosystem employed. Finally, it is very likely that new requirements for

cryptosystems will emerge from secure signal processing operations and applications.

In this section we present a brief overview of the cryptographic primitives that have been used for the

privacy preserving methods. We discuss the concepts of securing the data using methods such as PKC

and perturbation techniques. Protocols for securely computing on private data using techniques such as

SMC, homomorphic encryption are also discussed.

2.1.1 Public Key Encryption (PKC)

The process of converting the plaintext (P ) to ciphertext (C) using an algorithm is called encryption

(E). On the otherhand, restoring the plaintext from the ciphertext is called decryption (D). Public

key Encryption (PKC), also known as asymmetric cryptography, is a form of cryptography in which

key used to encrypt a message differs from the key used to decrypt it. Private key is kept secret, while

the public key can be widely distributed. The message that needs to be conveyed to the recipient is

encrypted using his public key. It can only be decrypted by the corresponding private key. These keys

are related mathematically, but the private key cannot be practically derived from the public key.

In practice, PKC can be used to ensure confidentiality of the data. The messages encrypted with

a recipients public key can only be decrypted using the corresponding private key. The private key of

which is known only to the intended receiver. Asymmetric key algorithms are generally found to be

computationally expensive. Some of the popular PKC algorithms include RSA [111], Pailliers [102],

El-Gamal’s [55] etc.

16



2.1.2 Data Perturbation Techniques

Data perturbation techniques tend to secure the data by adding randomness to it. The idea is to alter

the data so that the actual original data values cannot be recovered, while preserving the utility of the

data for statistical analysis. Privacy is preserved since the noisy version of the data does not reveal the

real data values. However, carrying out analysis on the perturbed data results in approximately correct

analysis. Privacy is enhanced by adding more and more noise, however, this leads to a rapid degradation

of the results. Visual data is inherently noisy and this must be taken care of. Moreover, certain operations

such as comparison of noisy data requires special treatment.

2.1.3 Secure Multi-party Computation (SMC)

Secure multi-party computation (SMC) is a problem in cryptography that was initially suggested by

Andrew C. Yao [143]. Yao introduced the millionaire problem, in which two millionaire’s Alice and

Bob want to find out who is richer without revealing the precise amount of their wealth to anyone.

Generalization of the Yao’s protocol gave way to secure multi-party computation. In SMC, a given

number of participants p1, p2, ..., pN each have a private data, respectively d1, d2, ..., dN . The partic-

ipants want to compute the value of a public function F () on N variables at the point (d1, d2, ..., dN ).

An SMC protocol is said to be secure if no participant can learn more than the description of the public

function and the result of the global calculation than what s/he can learn from his/her own entry.

The computation and communication complexity of the protocol proposed by Ioannis et al. [71] is

O(d2), where 2d is the upper bound on their numbers which they want to compare. An important prim-

itive in SMC is oblivious transfer (OT). An OT is a protocol by which a sender sends some information

to the receiver, but remains oblivious as to what is received.

2.1.3.1 Oblivious Transfer (OT)

Oblivious Transfer (OT) allows Alice to choose one element from a database of elements that Bob

holds without revealing to Bob which element was chosen and without learning anything about the rest

of the elements. The notion of OT was suggested by Even, Goldreich and Lempal [57] as a generaliza-

tion of Rabin’s OT [12]. 1-2 oblivious transfer or ”1 out of 2 oblivious transfer’ is a critical problem in

cryptography and is used in building protocols for secure multi-party computation. In particular, it is

‘complete’ for secure multiparty computation: that is given an implementation of oblivious transfer it is

possible to securely evaluate any polynomial time computable function without any additional primitive.

1-2 OT was generalized to 1-n OT by Brassard et al. [36], such that Bob has an array of size n

and Alice wants to obliviously choose the ith element. The communication complexity of the OT

protocol [90] is O(log2(n)) and the computation complexity is O(n).
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Formally oblivious transfer can be formulated as follows: Bob privately owns two elements M0 and

M1 and Alice wants to receive one of them without letting Bob know which one. Bob is willing to let

her do so provided that she will not learn anything about the other element. The following protocol (see

Algorithm 1), based on RSA encryption can be used to solve the problem in a semi-honest setting. Alice

has σ ∈ {0, 1}, Bob has data M0, M1 and Alice learns Mσ.

Algorithm 1 1-2 Oblivious Transfer

1: Bob sends Alice two different public encryption keys K0 and K1.

2: Alice generates a key K and encrypts it with K0 or K1. For the sake of argument, let’s

say she chooses K0. She sends Bob E(K, K0); that is, she encrypts K with one of Bob’s

public keys.

3: Bob does not know which public key Alice used, so he decrypts with both of his private

keys. He thus obtains both the real key K, and a bogus one K ′.

4: Bob sends Alice E(M0, K) and E(M1, K
′), in the same order he sent the keys K0and K1

in step 1. Alice decrypts the first of these messages with the key K and obtains M0.

2.1.4 Homomorphic Encryption

Homomorphic encryption is a form of encryption where one can perform a specific algebraic opera-

tion on the plaintext by performing a corresponding algebraic operation on the ciphertext. That is, it is

a way of encoding data x into E(x) such that one can compute a function f(x, y) easily knowing only

E(x) and E(y). Here f() is a function composed of either addition only or multiplication only but not

a combination of both. For example, E(x ∗ y) = E(x) ∗ E(y).

There are several efficient homomorphic cryptosystems such as RSA cryptosystems [111], ElGamal

cryptosystem [55], Paillier cryptosystem [102] etc.

In the year 2009, the first fully homomorphic cryptosystem was constructed by Craig Gentry [63].

The scheme can potentially support an unbounded number of additions and multiplications. However,

the computation time and ciphertext size increase sharply as one increases the security level. To obtain

2k security against known attacks, the computation time and ciphertext size are high-degree polynomials

in k. This makes the scheme impractical for many applications.

2.1.5 Secret Sharing

Unconditionally or information-theoretically secure SMC is closely related to the problem of secret

sharing. Secret sharing refers to method for distributing a secret amongst a group of participants, each of

which is allocated a share of the secret. The secret can be reconstructed only when a sufficient number

of shares are combined together; individual shares are of no use on their own. Secret sharing schemes

was invented by Adi Shamir [118] in the year 1979.
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More formally, in a secret sharing scheme there is one dealer and n players. The dealer gives a

secret to the players, but only when specific conditions are fulfilled. The dealer accomplishes this by

giving each player a share in such a way that any group of t (for threshold) or more players can together

reconstruct the secret but no group of fewer than t players can. Such a system is called a (t, n)-threshold

scheme.

There are several variants of secret sharing schemes known in literature. For example Shamir’s [118]

scheme uses polynomial interpolation, while the Blakley’s scheme [31] represents the secrets as the

planes in the n-dimensional space.

2.1.6 Pseudo-Random Number Generators

A random number is a number that cannot be predicted by an observer before it is generated. If the

number is to be in the range 0, ... , 2n − 1, and an observer cannot predict that number with probability

any better than 1/2n. If an algorithm generates m random numbers, and m − 1 of these are revealed to

an observer. The numbers are said to be truly random, if even with this information an observer cannot

predict the mth with any better probability than 1/2n.

Pseudo-random generators are fundamental to many theoretical and applied aspects of computing.

A pseudo-random number generator (PRNG) is an algorithm for generating a sequence of numbers that

approximates the properties of random numbers. The sequence even though is not truly random but, is

completely determined by a relatively small set of initial values, called the PRNGs state.

An arbitrary seed state can initialize a PRNG sequence, whose maximum period is determined by

the number of bits in the size of the seed state. Increasing the size of the seed state by a single bit will

double the length of the maximum period. For example if a PRNGs internal state contains p bits, its

period can be no longer than 2p results. Therefore, it is easy to build PRNGs with long periods for many

practical applications.

2.2 Traditional Methods to Privacy and Security in Visual Data

The problem of introducing privacy and security in visual data processing was addressed with consid-

erable success in different domains. The work in secure algorithms for image analysis and recognition

have primarily been in two directions. The first group attempts to provide custom solutions to specific

algorithms for biometric authentication [108], video surveillance [99], etc. These approaches take ad-

vantage of the properties of the algorithms, the data or the application setting to come up with specific

data transformations [144] or even capture the data in a fashion that alleviates security concerns [40].

However these approaches do not provide any guarantee of privacy as they rely on the success of certain

computer vision tasks, such as face detection.
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A second class of algorithms try to provide more general purpose computation ability along with

security, and are closer in spirit to our work. Approaches such as secure multi-party computation and

oblivious transfer [65], which are well known in the security community, are often adopted to incor-

porate security into vision computing tasks. Avidan et al. [22] proposed the use of secure multi-party

computation to achieve a secure system for face detection. Shansank et al. [119] addressed the privacy

concerns about the user’s query to a content based image retrieval system. Barni et al. [101] and Nagia

et al. [97] on the other hand uses the homomorphic encryption techniques to achieve oblivious neural

network computation.

Strong encryption based approaches that rely of multiple round of communication are popular in data

mining from textual data. However, image and video data are extremely bulky in comparison to text

data, and the computational and communication overhead of these approaches make their application to

visual data, prohibitively expensive to be practical. In short, the existing approaches that are efficient

are extremely limited in their scope, while algorithms that provide general computation ability rely on

public key cryptography or heavy interaction, making them less acceptable to the users.

Hence, solutions based on these cryptographic primitives would be impractical for our desired appli-

cations. In this thesis we propose solutions that are not only provably secure but also computationally

efficient. Protocols are designed such that the interaction and the data communication among the servers

is kept to a minimum.

For the completeness sake, in the following sub-sections, we first give a brief introduction to the

traditional methods used for video encryption. We then discuss the light-weight algorithms used for

hiding the region of interest in the videos. We also provide an insight into the recent advances in visual

data security.

2.2.1 Video Encryption Methods

Multimedia data encryption is used for addressing the Digital Rights Management (DRM) for Multi-

media. The methods attempts to prevent unauthorized disclosure of confidential multimedia information

in transit or storage. In the past, many algorithms have been proposed by which multimedia data can be

protected. The key factors to consider in choosing one method over the other is i) suitable security level

for an application, and ii) cost effectiveness for the specific application.

In general, the technique for multimedia encryption is to treat the video as a traditional digital data,

such as text. This data is then secured using a classical encryption scheme such as PKC. At the recievers

end, the entire cipher data stream is decrypted and playback can be performed at the client device.

However, applying this method alone is not enough to secure multimedia data that is broadcast on

wireless or satellite networks. A variety of constraints like time, security, compression rate, etc restricts

the usage of many popular encryption methods for securing the multimedia data.
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Multimedia data streams has many different characteristics from traditional digital data streams.

They are larger in size, compressed for transmission and storage, and are coded in a different way

for different applications. From an end-user’s point of view, low decryption and re-encryption cost

overhead is critical. So is the additional hardware required, if any. Thus, selecting an application

adequate encryption is gaining popularity.

The cryptographic encryption methods such as DES (Data Encryption Standard) [48], RC5 (Rivest

Cipher) [112], AES (Advanced Encryption Standard) [110] etc have been used in securing the multime-

dia stream. However, even on modern hardware, these schemes are computationally very expensive for

many real-time video applications.

In order to reduce the large volumes of the data to be encrypted, selective encryption methods have

been proposed. For a given video stream, not all parts of the video are important and thus need not be

encrypted. Selective encryption [15, 80, 92, 104] intends to encrypt only some parts (region of interest)

of the entire data stream, like MPEG headers, thus reducing the overall computational requirements.

Partial encryption methods does not strive for maximum security. In general, for a given application it

trades off security for computational complexity.

For real-time video applications, selective cum light-weight encryption algorithms are preferred than

encryption of the complete video data. In these types of encryption methods, selected data of video are

encrypted based on the video properties.

2.2.2 Light-Weight Algorithms

For many practical applications such as video-on-demand, the adversary is not interested in exploring

expensive (cost and time) attacks to breach the security. Thus, for such practical applications, encryp-

tion schems ensuring even partial privacy are sufficient. Thus, light-weight encryption and decryption

methods are suitable for securing certain multimedia data.

There are several light-weight encryption algorithms [18, 19, 34, 87] proposed for protection of the

video data. Many of these algorithms are based on the XOR and scrambling based operations. For

example Shi et al. [120] uses the XOR on the sign bits of the DCT co-efficients to encrypt an MPEG

video. Where as, Choon et al. [42] proposes an encryption scheme based on the Shannon principle of

confusion and diffusion. A scramble based approach is suggested by L. Tang [125], who uses a random

permutation of the DCT co-efficients. A major limitation of such schemes is the weak security provided

by such schemes and hence can not be used in applications such as military and video conferencing.

Problem specific approaches have also been proposed to address the specific concerns in videos and

images. The idea is to identify and obnubilate the region of interest (such as human face) from the video

stream before transmitting it over to the network. Senior et al. [116] presented a model to define video

privacy and re-render the video in a privacy-preserving manner. In today’s age of video surveillance,
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surveillance cameras are being increasingly used to monitor the public places such as shopping centers,

airports etc. This raises the privacy concerns for the individuals, and for many practical scenarios, action

identification is sufficient to ensure security. De-identification is the technique to protect the privacy

of the individuals by hiding/removing all personal identification information from the videos. The

objective is to render videos in a privacy preserving manner, while retaining sufficient information about

the human activity. For example, face swapping [30] and face de-identification [99, 122] try to modify

face images such that they can be automatically detected, but yet cannot be correctly recongnised. These

approaches do not provide any gurantee of privacy as they rely on the success of certain computer vision

tasks, such as face detection.

Steganography techniques are used for concealing information in other, seemingly innocent media.

For example, concealing messages within the lowest bits of noisy images and videos. On the other

hand, digital watermarking is the process of embedding information into a digital signal in a way that

is difficult to remove. Watermarking schemes usually rely on a symmetric key for both embedding and

detection, which is critical to both the robustness and security of the watermark and thus needs to be

protected. One application of watermarking is in copyright protection systems, which are intended to

prevent or deter unauthorized copying of digital media. The framework proposed by Zhang et al. [145]

stores the privacy information in surveillance video as a watermark and monitors an invalid person in a

restricted area while protecting the privacy of the valid persons.

2.2.3 Recent Advances

Treating the digital content as a binary data and securing it using the cryptographic primitives is not

realistic and eliminates the possibility of further processing. In several application scenarios, however,

it is desirable to carry out signal processing operations directly on encrypted signals. The possibility

of processing encrypted data has been advanced several years ago. The peculiarities of the visual data

with respect to other classes of data more commonly encountered in the cryptographic literature poses

many challanges. The general cryptographic tools that allow to process encrypted signals are SMC and

homomorphic cryptosystems. The limitations of these general protocols is that they are infeasible for

situations where the parties own huge quantities of data or the functions to be evaluated are complex, as

it happens in signal processing applications.

Blind Vision proposed by Shai Avidan and Moshe Butman [22] applies secure multi-party computa-

tion techniques to vision algorithms. They propose a method for securely evaluating a Viola-Jones type

face detector [134]. In their application scenario, Bob offers a face-detection web service where clients

can submit their images for analysis. Alice would very much like to use the service, but is reluctant to

reveal the content of her images to Bob. Bob, for his part, is reluctant to release his face detector to
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anyone. Blind Vision uses the standard cryptographic tools to solve this problem without leaking any

information. Unfortunately, these methods are too slow to compute, taking hours to scan a single image.

The authors, improved upon the efficiency by proposing a couple of machine learning techniques

that allow the parties to solve the problem while leaking a controlled amount of information [23]. The

first method is an information-bottleneck variant of AdaBoost that lets Bob find a subset of features that

are enough for classying an image patch, but not enough to actually reconstruct it. The second machine

learning technique is active learning that allows Alice to construct an online classifier, based on a small

number of calls to Bob’s face detector. She can then use her online classifier as a fast rejector before

using a cryptographically secure classifier on the remaining image patches.

Blind Vision addresses the problem at the expense of heavy computation. The authors extended their

approach for privacy preserving pattern classification [21]. The authors propose SMC based protocols

to generic pattern classification for classifiers such as threshold function, polynomial function, gaussian

function etc. They adopt a lookup table approach to a kernel function evaluation, where a lookup table

approximates the range of values taken by the feature vectors. However, SMC is used as the building

block in all these methods. There is a need to accelerate the protocols either by relying on different

cryptographic primitives or by taking advantage of domain specific knowledge.

Private Content Based Image Retrieval (PCBIR) deals with retrieving similar images from an im-

age database without revealing the content of the query image, not even to the database server. Shashank

et al. [119] proposed algorithms for PCBIR, when the database is indexed using hierarchical index struc-

ture or hash based indexing scheme. PCBIR is achieved by exchange of messages between the user and

the database. These messages collectively help the user in inferring the required information from the

database but prohibit the database from knowing the user’s interest.

PCBIR is similar to private information retrieval (PIR) schemes [43, 139] that allow a user to obtain

the data stored at a specific address in a database whilst keeping the database oblivious of the address.

However, in practice, the address corresponding to the correct answer is typically unknown a priori to

the user. PIR is concerned about point queries, that is the value at a particular position, while PCBIR

deals with a similarity search. PCBIR is also different from blind vision since it requires privacy in

only one direction. The whole database is often public while query is private. PCBIR is concerned with

efficient retrieval under the privacy constraint without trading the recall and precision.

The general SMC based solution to PCBIR is usually quite inefficient when compared to tailor-made

solution for the same. The authors showed that, since image retrieval is fundamentally a similarity

search, PCBIR can be more efficiently solved than PIR. They improved upon the efficiency of SMC by

exploiting the clustered nature of image databases. They showed that the image databases are amenable

to significant faster private retrieval on reasonably large databases using a variety of state of the art

indexing schemes.
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Chapter 3

Blind Authentication: A Secure-Crypto Biometric Verification Protocol

Concerns on widespread use of biometric authentication systems are primarily centered around tem-

plate security, revocability and privacy. The use of cryptographic primitives to bolster the authentication

process can alleviate some of these concerns as shown by biometric cryptosystems. In this work, we

propose a provably secure and blind biometric authentication protocol, which addresses the concerns of

user’s privacy, template protection, and trust issues. The protocol is blind in the sense that it reveals only

the identity, and no additional information about the user or the biometric to the authenticating server

or vice-versa. As the protocol is based on asymmetric encryption of the biometric data, it captures the

advantages of biometric authentication as well as the security of public key cryptography. The authen-

tication protocol can run over public networks and provide non-repudiable identity verification. The

encryption also provides template protection, the ability to revoke enrolled templates, and alleviates the

concerns on privacy in widespread use of biometrics.

The proposed approach makes no restrictive assumptions on the biometric data and is hence ap-

plicable to multiple biometrics. Such a protocol has significant advantages over existing biometric

cryptosystems, which use a biometric to secure a secret key, which in turn is used for authentication.

We analyze the security of the protocol under various attack scenarios. Experimental results on four

biometric datasets (face, iris, hand geometry and fingerprint) show that carrying out the authentication

in the encrypted domain does not affect the accuracy, while the encryption key acts as an additional

layer of security.

3.1 Biometrics-based Authentication Systems

Reliable user authentication is a critical task in the web-enabled world. Surrogate representations

of identity such as passwords and ID cards are not sufficient for reliable identity determination, as they

can be easily misplaced, shared or stolen. Once an intruder acquires the user ID and the password, the

intruder has total access to the user’s resources. In addition, there is no way to positively link the usage

of the system or service to the actual user. That is, there is no protection against repudiation by the user
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ID owner. Thus, in the modern distributed systems environment, traditional authentication protocols

based on a simple combination of user ID and password has become inadequate.

Biometric authentication is the task of verifying the claimed identity of someone, by using their

anatomical and behavioral traits. A biometric system provides automatic recognition of an individ-

ual based on some unique features or characteristics possessed by the individual. Biometric systems

have been developed based on common biometric traits such as fingerprint, facial features, iris, hand

geometry, voice, handwriting, etc. (see Figure 3.1).

Figure 3.1 Some of the commonly used biometric modalities used for recognition.

A good biometric is characterized by use of a feature that is; highly unique - so that the chance of

any two people having the same characteristic will be minimal, stable - so that the feature does not

change over time, and be easily acquired - in order to provide convenience to the user, and prevent

misrepresentation of the feature.

A biometric authentication system (see Figure: 3.2) consists of two phases, i) Enrollment phase and,

ii) Authentication phase. During the enrollment phase, a user (say, Alice) scans her biometric data,

from which features template is created and stored, either in a central database, or on a mobile device.

The biometric template provides a normalized, efficient and highly discriminating representation of the

features. During the authentication phase, a user who claims to be Alice would scan his/her biometric

data again, and the same feature extraction algorithm is applied to the biometric. The resulting template

is then compared with the stored template of the user Alice. If they are sufficiently similar according to

some similarity measure, the matching algorithm outputs a yes, which indicates that the user is authentic,

or a no when the user is not authentic.
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Figure 3.2 Biometric Authentication System.

A typical biometric system is compromised of five integrated components (see Figure 3.3):

1. A sensor is used to collect and convert the information to a digital form.

2. Feature extractor performs the quality control activities and computes a biometric template.

3. Template storage keeps information that new biometric templates will be compared to, along

with the user’s identity.

4. A matching algorithm to compare a new template to one or more templates kept in data storage.

5. A decision module uses the result from the matching algorithm to make the authentication deci-

sion and initiates a response to the query.

Due to the rapid growth in sensing and computing technologies, biometric systems have become

affordable and are easily embedded in a variety of consumer devices (e.g. mobile phones), making this

technology vulnerable to the malicious designs of criminals. It is important that such biometrics-based

authentication systems be designed to withstand attacks when employed in security-critical applications,

especially in unattended remote applications such as e-commerce.

One of the greatest strength of biometrics is that the biometrics does not change over time. This at

the same time is its greatest liability. Once a biometric data has been compromised, it is compromised

forever. Since it is difficult to replace or revoke biometric data, it it important to securely keep the user’s
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Figure 3.3 Points of Attack in a generic biometric system.

biometric data and template when they are used in authentication systems. Thus, template security is

one of the most crucial issues in designing a secure biometric system.

Adversary attacks generally exploit the system vulnerabilities at one or more modules or interfaces.

Ratha et al. [108] identified eight points of attack in a biometric system (see Figure 3.3). Among these

vulnerabilities, an attack against stored biometric templates is a major concern due to the strong linkage

between a user’s template and his identity and the irrevocable nature of biometric templates.

One advantage of passwords over biometrics is that they can be re-issued. If a token or a password

is lost or stolen, it can be cancelled and replaced by a newer version. This is not naturally available

in biometrics. If someone’s fingerprint is compromised from a database, they cannot cancel or reissue

it. Cancelable biometrics is a way in which to incorporate protection and the replacement features into

biometrics. It was first proposed by Ratha et al. [108]

3.2 Introduction to Blind Authentication

Biometric authentication systems are gaining wide-spread popularity in recent years due to the ad-

vances in sensor technologies as well as improvements in the matching algorithms [75] that make the

systems both secure and cost-effective. They are ideally suited for both high security and remote authen-

tication applications due to the non-repudiable nature and user convenience. Most biometric systems

assume that the template in the system is secure due to human supervision (e.g., immigration checks

and criminal database search) or physical protection (e.g., laptop locks and door locks). However, a

variety of applications of authentication need to work over a partially secure or insecure networks such
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as an ATM networks or the Internet. Authentication over insecure public networks or with untrusted

servers raises more concerns in privacy and security. The primary concern is related to the security of

the plain biometric templates, which cannot be replaced, once they are compromised [108]. The privacy

concerns arise from the fact that the biometric samples reveal more information about its owner (medi-

cal, food habits, etc.) in addition to the identity. Widespread use of biometric authentication also raises

concerns of tracking a person, as every activity that requires authentication can be uniquely assigned to

an individual (see Table 3.1).

To clarify our problem let us consider the following usage scenario: “Alice wants to create an

account in Bobmail, that requires biometrics based authentication. However, she neither trusts Bob to

handle her biometric data securely, nor trusts the network to send her plain biometric.”

The primary problem here is that, for Alice, Bob could either be incompetent to secure her biometric

or even curious to try and gain access to her biometric data, while the authentication is going on. So

Alice does not want to give her biometric data in plain to Bob. On the other hand, Bob does not trust

the client as she could be an impostor. She could also repudiate her access to the service at a later

time. For both parties, the network is insecure. A biometric system that can work securely and reliably

under such circumstances can have a multitude of applications varying from accessing remote servers

to e-shopping over the Internet. Table 3.1 summarizes the primary concerns that needs to be addressed

for widespread adoption of biometrics. For civilian applications, these concerns are often more serious

than the accuracy of the biometric [13].

a) Template protection: As a biometric do not change over time, one cannot revoke

an enrolled plain biometric. Hence, critical information could be revealed if the server’s

biometric template database is compromised.

b) User’s privacy: i) The activities of a person could be tracked, as the biometric is unique

to a person, and ii) Certain biometrics may reveal personal information about a user (e.g.,

medical or food habits), in addition to identity.

c) Trust between user and server: In widespread use, all authenticating servers may not

be competent or trustworthy to securely handle a user’s plain biometric, while a remote

user cannot be reliably identified without biometric information.

d) Network security: As the authentication is done over an insecure network, anyone

snooping the network could gain access to the biometric information being transmitted.

Table 3.1 Primary concerns in widespread adoption of biometrics for remote authentication.
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If the user is able to authenticate himself using a strongly encrypted version of his biometric (say

using RSA [111]), then many of the concerns on privacy and security are addressed. However, this

would require the server to carry out all the computations in the encrypted domain itself. Unfortunately,

encryption algorithms are designed to remove any similarity that exist within the data to defeat attacks,

while pattern classification algorithms require the similarity of data to be preserved to achieve high

accuracy. In other words, security/privacy and accuracy seems to be opposing objectives. Different

secure authentication solutions try to make reasonable trade-offs between the security and accuracy, in

addition to making specific assumptions about the representation or biometric being used.

We overcome this seemingly unavoidable compromise by designing the classifier in the plain feature

space, which allows us to maintain the performance of the biometric. We would then like to carry out the

computations required for authentication using this trained classifier, completely in the encrypted do-

main. However, such a solution would require an algebraic homomorphic encryption scheme [61]. The

only known doubly homomorphic scheme has recently been proposed by Craig Gentry [63] and would

mostly lead to a computationally intensive theoretical solution. We show that it is possible to achieve a

practical solution using distribution of work between the client (sensor) and the server (authenticator),

using our proposed randomization scheme.

3.2.1 Previous Work

The previous work in the area of encryption based security of biometric templates tend to model the

problem as that of building a classification system that separates the genuine and impostor samples in

the encrypted domain [58] [126] [73]. However a strong encryption mechanism destroys any pattern

in the data, which adversely affects the accuracy of verification. Hence, any such matching mechanism

necessarily makes a compromise between template security (strong encryption) and accuracy (retaining

patterns in the data). The primary difference in our approach is that we are able to design the classifier

in the plain feature space, which allows us to maintain the performance of the biometric itself, while

carrying out the authentication on data with strong encryption, which provides high security/privacy.

Over the years a number of attempts have been made to address the problem of template protection

and privacy concerns and despite all efforts, as A.K. Jain et al. puts it, a template protection scheme

with provable security and acceptable recognition performance has thus far remained elusive. [73]. In

this section, we will look at the existing work in light of this security-accuracy dilemma, and understand

how this can be overcome by communication between the authenticating server and the client. Detailed

reviews of the work on template protection can be found in Jain et al. [73], Uludag et al. [130], and

Ratha et al. [109]. We will adopt the classification of existing works provided by Jain et al. [73] (see

Fig 3.4), and show that each class of approaches makes the security-accuracy compromise.

Let us now analyze each of the four category of solutions in terms of their strengths and weaknesses:
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Figure 3.4 Categorization of template protection schemes by Jain et al. [73].

The first class of feature transformation approaches known as Salting offers security using a trans-

formation function seeded by a user specific key. The strength of the approach lies in the strength of

the key. A classifier is then designed in the encrypted space. Although the standard cryptographic en-

cryption such as AES or RSA offers secure transformation functions, they cannot be used in this case.

The inherent property of dissimilarity between two instances of the biometric trait from the same person,

leads to large differences in their encrypted versions. This leads to a restriction on the possible functions

that can be used and in salting, resulting in a compromise made between security and the performance.

Some of the popular salting based approaches are biohashing [127] [126] and salting for face template

protection [114]. Moreover, salting based solutions are usually specific to a biometric trait, and in gen-

eral do not offer well defined security. Kong et al. do a detailed analysis of the current biohashing based

biometric approaches [84]. They conclude that the zero EER reported by many papers is obtained in

carefully set experimental conditions and unrealistic under assumptions from a practical view point.

The second category of approaches identified as Non-invertible transform applies a trait specific non-

invertible function on the biometric template so as to secure it. The parameters of the transformation

function are defined by a key which must be available at the time of authentication to transform the

query feature set. Some of the popular approaches that fall into this category are Robust Hashing and

Cancelable Templates. Cancelable templates [45, 109] allows one to replace a leaked template, while

reducing the amount of information revealed through the leak, thus addressing some of the privacy

concerns. However, such methods are often biometric specific and do not make any guarantees on

preservation of privacy [35], especially when the server is not trusted. Methods to detect tampering of

the enrolled templates [76] help in improving the security of the overall system.
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Boult et al. [35] extended the above approach to stronger encryption, and proposed an encrypted

minutia representation and matching scheme of fingerprints. The position information of a minutia is

divided into a stable integer part and a variable increment. A Biotoken consists of the encrypted integer

part and the increment information in plain. A specific matching algorithm was proposed to match the

biotokens for verification. The approach provides provable template security as a strong encryption

is used. Moreover, the matching is efficient, and is shown to even improve the matching accuracy.

However, the primary fact that encryption is applied to part of the data, which itself is quantized, may

mean some amount of compromise between security and accuracy. An extension to the above work

based on re-encoding methodology for revocable biotokens is proposed by the authors in [115]. In this

method, the computed biotoken is re-encoded using a series of unique new transformation functions to

generate a Bipartite Biotoken. For every authentication, the server computes a new bipartite biotoken,

which is to be matched by the client against the biotoken generated by him. The method significantly

enhances the template security as compared to the original protocol. Moreover, as bipartite biotoken is

different for each authentication request, replay attacks are not possible. However, in the current form,

the base biotoken is available (in plain) with the server, and if the biotoken database is compromised, a

hacker can gain access to all the users’ accounts until the biotokens are replaced. The method aims at

securing the actual biometric template, which cannot be recovered from a secure biotoken.

The third and fourth classes, shown in Fig 3.4, are both variations of Biometric cryptosystems. They

try to integrate the advantages of both biometrics and cryptography to enhance the overall security

and privacy of an authentication system. Such systems are primarily aimed at using the biometric as

a protection for a secret key (Key Binding approach [79]) or use the biometric data to directly gener-

ate a secret key (Key Generation approach [50]). The authentication is done using the key, which is

unlocked/generated by the biometric. Such systems can operate in two modes in the case of remote au-

thentication. In the first case, the key is unlocked/generated at the client end, which is sent to the server

for authentication, which will ensure security of the template, and provide user privacy. However, this

would become a key based authentication scheme and would lose the primary advantage of biometric

authentication, which is its non-repudiable nature. In the second case, the plain biometric needs to be

transmitted from the user to the server, both during enrollment and during authentication. This inher-

ently leaks more information about the user than just the identity, and the users need to trust the server to

maintain their privacy (concerns Table 3.1: b and c). Moreover, authenticating over an insecure network

makes the plain biometric vulnerable to spoofing attacks (concerns Table 3.1: d).

Biometric cryptosystem based approaches such as Fuzzy Vault and Fuzzy extractor in their true form

lack diversity and revocability. According to Jain et al. [73], a performance degradation usually takes

place as the matching is done using error correction schemes. This precludes the use of sophisticated

matchers developed specifically for matching the original biometric template. Biometric cryptosystems,

32



along with salting based approaches introduce diversity and revocability in them. Moreover, Walter

et al. [135] demonstrated a method for recovering the plain biometric from two or more independent

secrets secured using the same biometric. A detailed review of the previous work in this area can be

found in Uludag et al. [130] and Jain et al. [73].

Nagai et al. [97] proposed the use of client side computation for part of the verification function.

Their approach, termed ZeroBio, models the verification problem as classification of a biometric fea-

ture vector using a 3-layer neural network. The client computes the outputs of the hidden layer, which

is transferred to the server. The client then proves to the server that the computation was carried out

correctly, using the method of zero-knowledge proofs. The server completes the authentication by

computing the output values of the neural network. The method is both efficient and generic as it only

requires computation of weighted sums and does not make any assumption on the biometric used. It also

provides provable privacy to the user, as the original biometric is never revealed to the server. However,

the system requires that the hidden layer weights be transferred to the server without encryption. This

allows the server to estimate the weights at the hidden layer from multiple observations over authentica-

tions. Once the weights are known, the server can also compute the feature vector of the biometric, thus

compromising both security and privacy. The system could also be compromised if an attacker gains

access to the client computer, where the weight information is available in plain.

Blind authentication, proposed by us, is able to achieve both strong encryption based security as

well as accuracy of a powerful classifiers such as support vector machines (SVM [14]) and Neural

Networks [29]. While the proposed approach has similarities to the Blind Vision [22] scheme for image

retrieval, it is far more efficient for the verification task.

Blind Authentication addresses all the concerns mentioned in Table 3.1: -

1. The ability to use strong encryption addresses template protection as well as privacy concerns.

2. Non-repudiable authentication can be carried out even between non-trusting client and server

using a trusted third party solution.

3. It provides provable protection against replay and client-side attacks even if the keys of the user

are compromised.

4. As the enrolled templates are encrypted using a key, one can replace any compromised template,

providing revocability, while allaying concerns of being tracked.

In addition, the framework is generic in the sense that it can classify any feature vector, making it

applicable to multiple biometrics. Moreover, as the authentication process requires someone to send an

encrypted version of the biometric, the non-repudiable nature of the authentication is fully preserved,

assuming that spoof attacks are prevented. Note that the proposed approach does not fall into any of the
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categories given in Figure 3.4. This work opens a new direction of research to look at privacy preserving

biometric authentication.

3.3 Blind Authentication

We define Blind Authentication as “A biometric authentication protocol that does not reveal any

information about the biometric samples to the authenticating server. It also does not reveal any infor-

mation regarding the classifier, employed by the server, to the user or client”. Note that such a protocol

can satisfy the conditions presented in our initial scenario, where Alice wanted to create an account with

Bobmail that required biometric authentication, whom she did not trust. We now present the authenti-

cation framework that achieves this goal using any biometric, and prove that the information exchanged

between the client and the server does not reveal anything other than the identity of the client.

For the sake of simplicity, we initially assume that authentication is done through a generic linear

classifier. We later describe, how the protocol can be extended to more generic and powerful clas-

sifiers, like the Support Vector Machine (SVM [14]) and the Neural Networks [69] [29]. One could

use any biometric in this framework as long as each test sample is represented using a feature vector

x of length n. Note that even for biometrics such as fingerprints, one can define fixed length feature

representations [58].

Let ω be the parameters of the linear classifier (perceptron). The server accepts the claimed iden-

tity of a user, if ω · x < τ , where τ is a threshold. As we do not want to reveal the template feature

vector (ω) or the test sample (x) to the server, we need to carry out the perceptron function compu-

tation directly in the encrypted domain. Computing ω · x involves both multiplication and addition

operations, thus computing it in the encrypted domain requires the usage of a doubly homomorphic

encryption scheme [93]. In the absence of a practical doubly homomorphic encryption scheme (both

additive and multiplicative homomorphic), our protocol uses a class of encryption that are multiplica-

tive homomorphic, and we simulate addition using a clever randomization scheme over one-round of

interaction between the server and the client. An encryption scheme, E(x) is said to be multiplica-

tive homomorphic, if E(x)E(y) = E(xy) for any two numbers x and y. We use the popular RSA

encryption scheme [111], which satisfies this property.

An overview of the authentication process is presented in Fig 3.5. We assume that the server has

the parameter vector ω in the encrypted form, i.e., E(ω), which it receives during the enrollment phase.

The authentication happens over two rounds of communication between the client and the server.

To perform authentication, the client locks the biometric test sample using her public key and sends

the locked ID to the server. The server computes the products of the locked ID with the locked classifier

parameters and randomizes the results. These randomized products are sent back to the client. During

the second round, the client unlocks the randomized results and computes the sum of the products. The
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Figure 3.5 Blind Authentication Process: Linear kernel computation for encrypted feature vectors. At

no point, the identity vectors x, ω or the intermediate results xi · ωi is revealed to anyone.

resulting randomized sum is sent to the server. The server de-randomizes the sum to obtain the final

result, which is compared with a threshold for authentication.

As we described before, both the user (or client) and the server do not trust each other with the

biometric and the claimed identity. While the enrollment is done by a trusted third party, the authentica-

tions can be done between the client and the server directly. The client has a biometric sensor and some

amount of computing power. The client also possesses an RSA private-public key pair, E and D. We

will now describe the authentication and enrollment protocols in detail.

3.3.1 Authentication

We note that the computation of: ω · x requires a set of scalar multiplications, followed by a

set of additions. As the encryption used (RSA) is homomorphic to multiplication, we can compute,

E(ωixi) = E(ωi)E(xi), at the server side. However, we cannot add the results to compute the authen-

tication function. Unfortunately, sending the products to the client for addition will reveal the classifier

parameters to the user, which is not desirable. We use a clever randomization mechanism that achieves

this computation without revealing any information to the user. The randomization makes sure that the

client can do the summation, while not being able to decipher any information from the products. The
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randomization is done in such a way that the server can compute the final sum to be compared with the

threshold. The overall algorithm of the authentication process is given in Algorithm 2. Note that all

the arithmetic operations that we mention in the encrypted domain will be modulo− operations, i.e. all

the computations such as (a op b) will be done as (a op b) mod p, where p is defined by the encryption

scheme employed.

Algorithm 2 Authentication

1: Client computes feature vector, x1..n, from test data

2: Each feature xi is encrypted (E(xi)) and sent to server

3: Server computes kn + k random numbers, rji and λj , such that, ∀i,

k
∑

j=1

λj rji = 1

4: Server computes E(ωi xi rji) = E(ωi) E(xi) E(rji)
5: The kn products thus generated are sent to the client

6: The client decrypts the products to obtain: ωi xi rji

7: Client returns Sj =

n
∑

i=1

ωi xi rji to the server

8: Server computes S =
k

∑

j=1

λj Sj

9: if S > τ then

10: return Accepted to the client

11: else

12: return Rejected to the client

13: end if

In the algorithm, the server carries out all its computation in the encrypted domain, and hence does

not get any information about the biometric data (x) or the classifier parameters (ω). A malicious

client also cannot guess the classifier parameters from the products returned as they are randomized

by multiplication with rji. The reason why the server is able to compute the final sum S in Step 8 of

Algorithm 2 is because we impose the following condition on rjis and λjs during its generation:

∀i,

k
∑

j=1

λj rji = 1 (3.1)

The privacy is based on the ability of the server to generate random numbers using a random number

generator (PRNG). The λj and rji are generated using PRNG while ensuring that the Equation: 3.1

holds. This means that all but the last row of the rji and the corresponding λj are truly random. The

last row of rji and λj are generated so as to satisfy the Equation: 3.1.

Substituting the above equality in the expansion of the final sum (S) in Algorithm 2, we get:
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S =
k

∑

j=1

λj Sj =
k

∑

j=1

λj

n
∑

i=1

ωi xi rji (3.2)

=
n

∑

i=1

k
∑

j=1

λj ωi xi rji (3.3)

=
n

∑

i=1

ωi xi

k
∑

j=1

λj rji =
n

∑

i=1

ωi xi

We note that the server is unable to decipher any information about the original products, and directly

obtains the final sum-of-products expression. This quantity measures the confidence that the test bio-

metric belongs to the claimed identity, and does not reveal any information about the actual biometric

itself. The authentication process thus maintains a clear separation of information between the client

and the server and hence provides complete privacy to the user, and security to the biometric. Moreover,

the clear biometric or parameters are never stored at any place, thus avoiding serious losses if the server

or the client computer is compromised. We will take a detailed look at the related security aspects in

Section 3.4. The extension of this approach to compute more complex functions such as the kernelized

inner products are given in Section 3.5. One can also deal with variable length features and warping

based matching techniques using a similar approach. However, a complete treatment of such solutions

are beyond the scope of this thesis. We now look at the enrollment phase of the protocol.

3.3.2 Enrollment

Figure 3.6 Enrollment based on a trusted third party(TTP): At the time of registering with a website,

the encrypted version of the user’s biometric template is made available to the website. The one-time

classifier training is done on the plain biometrics, and hence requires a trusted server to handle training.

In the previous section, we assumed that server has copies of the clients public key, E, as well as the

classifier parameters that are encrypted using that key, E(ωi). These were sent during the enrollment
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phase by a trusted enrollment server. Assuming a third party as the enrollment server gives us a flexible

model, where the enrollment could also be done by the client or the server if the trust allows.

During the enrollment, the client sends samples of her biometric to the enrollment server, who trains

a classifier for the user. The trained parameters are encrypted and sent to the authentication server, and a

notification is sent back to the client. Fig 3.6 gives an overview of the enrollment process. The biometric

samples sent by the client to the enrollment server could be digitally signed by the client and encrypted

using the servers public key to protect it.

The use of a third party for enrollment also allows for long-term learning by the enrollment server

over a large number of enrollments, thus improving the quality of the trained classifier. Algorithm 3

gives a step-by-step description of the enrollment process. Note that the only information that is passed

from the enrollment server to the authentication server is the users identity, her public key, the encrypted

versions of the parameters, and a threshold value.

Algorithm 3 Enrollment

1: Client collects multiple sample of her biometric, B1..k

2: Feature vectors, xi, are computed from each sample

3: Client sends xi, along with her identity and public key, E, to the enrollment server

4: Enrollment server uses xi and the information from other users to compute an authenticat-

ing classifier (ω, τ ) for the user

5: The classifier parameters are encrypted using the users public key: E(ωi)
6: E(ωi)s, along with the user’s identity, the encryption key (E), and the threshold (τ ), are

sent to the authentication server for registration

7: The client is then notified about success

3.3.3 Applicability

We have not made any assumptions on the specific biometric being used in the framework. One

could use any biometric as long as the feature vector embeds the samples in a Euclidean space. The

classifier itself was assumed to be a linear classifier. However, one can extend it to work with kernel

based methods (explained in Section 3.5) and hence any verification problem that can be carried out

using a generic SVM-based classifier can be modeled by this protocol. We also sketch an extension of

the protocol that works with the Neural Networks in Section 3.5.

3.4 Security, Privacy, and Trust in Blind Authentication

Security of the system refers to the ability of the system to withstand attacks from outside to gain

illegal access or deny access to legitimate users. Since we are dealing with insecure networks, we are

primarily concerned with the former. Security is hence a function of the specific biometric used as well
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as the overall design of the system. In terms of information revealed, security is related to the amount

of information that is revealed to an attacker that would enable him to gain illegal access.

Privacy on the other hand is related to the amount of user information that is revealed. Ideally, one

would like to reveal only the identity and no additional information. Most of the current systems provide

very little privacy, and hence demands trust between the user and the server. An ideal biometric system

would ensure privacy and hence need not demand any trust, thus making it applicable in a large set of

applications. We now take a closer look at the security and privacy aspects of the proposed system.

3.4.1 System Security

Biometric systems are known to be more secure as compared to passwords or tokens, as they are dif-

ficult to reproduce. As the authentication process in the proposed system is directly based on biometrics

we gain all the advantages of a generic biometric system. The security is further enhanced by the fact

that an attacker needs to get access to both the user’s biometric as well as her private key to be able to

pose as an enrolled user.

3.4.1.1 Server Security

We analyze the security at the server end using two possible attacks on the server:

Case 1: Hacker gains access to the template database. In this case, all the templates (or classifier

parameters) in the server are encrypted using the public key of the respective clients. Hence gaining

access to each template is as hard as cracking the public key encryption algorithm. Moreover, if by any

chance a template is suspected to be broken, one could create another one from a new public-private

key pair. As the encryption’s are different, the templates would also be different. Brute-force cracking

is practically impossible if one uses a probabilistic encryption scheme, even for limited-range data.

Case 2: Hacker is in the database server during the authentication. In such a situation, the hacker

can try to extract information from his entire “view” of the protocol. Specifically, the view consists of

the following five components:

1. Encrypted values of all ωi’s, that is E(ωi), i ∈ [1, n];

2. Encrypted values of all xi’s, that is E(xi), i ∈ [1, n];

3. All the random values used in the protocol, that is all the rji’s, i ∈ [1, n] and j ∈ [1, k];

4. All the λj’s, j ∈ [1, k]; and

5. All intermediate sums: Sj = (
∑n

i=1 ωixirji) %N for all j ∈ [1, k].
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We ask, what can the hacker learn about the critical data, viz., ωi’s and xi’s? Note that the hacker

only obtains k linear congruences over the n variables y1, y2, . . . , yn, namely, Sj = (
∑n

i=1 rjiyi)%N

for all j ∈ [1, k], where yi = ωixi. Even though this may reveal some information about yis, it is

impossible to recover the original biometric, as it requires |Y|n−k authentication trials (|Y| is domain of

yi’s), each involving the help of the client and his private key. We now show that the amount of effort

required in doing this is at least as much as randomly guessing the original biometric, and hence no

additional information is revealed in principle.

Let X be the domain of xi’s and let D be the domain of rji’s. Without loss of generality, we assume

that D ⊃ Y ⊃ X, and all computations in the authentication protocol are done over the finite domain D.

The number of authentication trials required in a brute-force attack of xis is O(|X|n), which is

transformed to O(|Y|n−k) when the k linear congruences are revealed. We want to ensure that |Y|n−k ≥

|X|n. That is, ln(|Y|) ≥ n
n−k

ln(|X|). Solving this, we get:

k ≤ n

(

1 −
ln(|X|)

ln(|Y|)

)

, or
ln(|X|)

ln(|Y|)
≤ 1 −

k

n
. (3.4)

We note that |Y| is around |X|2 as yi = xiωi, which results in k ≤ n/2 for complete privacy. As the

minimum value of k that is required by the protocol is 2, we find that 2 ≤ k ≤ n/2. Choosing a lower

value of k will enhance security further, but increase the required |D|.

Case 2.1: If the hacker is in the server over multiple authentication trials of the same user, then he

will have multiple sets of k linear congruences to infer the values of yi. However, note that the values of

xi will change slightly over multiple authentications, which gets reflected in the values of yi. Now the

hacker’s problem is to compute an approximate estimate of yi from his view of congruences over noisy

yis, which we call y′i. Let εi ∈ E be the noise between the two instances of xi. From linear algebra, we

know that every additional set of k linear congruences will reduce the brute-force attack complexity by

O|Y|k. Thus, it seems like after a certain number of authentication trials, a hacker will have sufficient

congruences to uniquely solve for the n variables. However, we now show that even this is not possible,

as during each authentication trial, the hacker not just obtains k additional equations but also ends up

adding n new variables.

The hacker obtains k new equations in y′i. As y′i = ωi(xi + εi) = yi + ωiεi, this can be thought

of as k new equations in yi along with n new unknowns ωiεi. The domain of these new variables is

|E|.|X| ≥ |X|. To ensure complete privacy, one has to make sure that the information gained by the

additional k equations is less than the uncertainty introduced by the new n variables. That is, we need

to ensure that |Y|k ≤ |X|n. We also know, |Y| is around |X|2, thus we have to ensure that |X|2k ≤ |X|n.

This condition holds when k ≤ n
2 , which is true for any choice of k from the previous case. Thus, in

spite of the view of multiple authentication trials, the hacker gets no additional information about the

biometric.
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Our scheme assumes that the server runs the delegated code faithfully. If the server is malicious, it

can try to learn additional information about the client’s biometric by using a selected vector (say unit

vector in a direction) instead of the template for the product. However, the client can detect this using

an input, whose result is known. For example, the client can randomly send a vector, which is known

to be authentic (not authentic), and check if the the server accepts (rejects) it. Another option would be

to use a probabilistic encryption scheme for the template, and keep the randomness in the encryption, a

secret, as the server never needs to decrypt any data. In this case, the server will not be able to use any

data other than the temple provided for computations.

Case 3: Impostor trying blind attacks from a remote machine. It is clear that a brute force attack

will have a complexity of the product of that of the plain biometric and the private key. However, note

that in the final step, the computed confidence score S is a linear combination, and is compared with

a threshold. Hence, if the impostor replaces the partial sums Sjs with random numbers, he might be

able to pass the confidence test without knowing anything about the biometric or the private key. Also

note that the probability of success in this case could be very high. However, a simple modification of

the protocol at the server side could thwart this attack. The server could multiply all the sums with a

random scale factor, sf , and check if the returned sum is a multiple of sf or not. From his view, the

impostor cannot learn sf as GCD is not defined for congruences.

In short, we see that the server is secure against any active or passive attack, and will not reveal any

information about the classifier or the user’s biometric.

3.4.1.2 Client Security

Case 4: Hacker gains access to the user’s biometric or private key. Our protocol captures the

advantages of both the biometric authentication as well as the security of the PKC. If the attacker gets

hold of the user’s biometric from external sources, he would also need the private key of the user to be

able to use it. If only the private key of a user is revealed, the security for the effected individual falls

back to that of using the plain biometric. Note that in practice, the private key is secured by storing it in

a smart card, or in the computer using a fuzzy vault. In short, an impostor need to gain access to both

the private key and the biometric to pose as a user. Even in this case, only a single user will be affected,

and replacing the lost key would prevent any further damages. In practice, periodic replacement of the

private key is advisable as in any PKC-based system.

Case 5: Passive attack at the user’s computer. In this case, the hacker is present in the user’s com-

puter during the login process. As the private key can be secured in a hardware which performs the

encryption, the hacker will not have direct access to the private key. In other words, he will only learn

the intermediate values of the computations. The hackers view will consist of kn quadratic congru-
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ences: yirji, i ∈ [1, n], j ∈ [1, k] He further knows that there exists k λis that satisfy n congruences:
∑

j λjrji%N = 1. Thus he has kn + n quadratic congruences in kn + n + k variables. This, as in

case 2, results in an effort equivalent to a brute force attack. However if the hacker can stay in the user’s

computer over multiple authentications, then at some point of time, he will have sufficient number of

congruences to solve for yis (see case 2). Note that yis does not reveal any useful information about

the classifier. Moreover, any partial information gained is of no use as an authentication cannot be

performed without access to the private key.

Note that an active attack in this case is identical to that of case 3, and the hacker does not know the

private key.

3.4.1.3 Network Security

An insecure network is susceptible to snooping attacks. We consider the following attack scenarios:

Case 6: Attacker gains access to the network. An attacker who may have control over the insecure

network can watch the traffic on the network, as well as modify it. The confidentiality of the data flow

over the network can be ensured using the standard cryptographic methods like symmetric ciphers and

digital signatures. Furthermore, all the traffic on the network are encrypted either using the clients public

key or using the random numbers generated by the server. Hence, even if successfully snooped upon,

the attacker will not be able to decipher any information. A replay attack is also not possible as the

data communicated during the second round of communication is dependent on the random numbers

generated by the server.

3.4.2 Privacy

Privacy, as noted before deals with the amount of user information that is revealed to the server,

during the process of enrollment and authentication. We noted that there are two aspects of privacy to

be dealt with:

1. Concern of revealing personal information: As the template or test biometric sample is never re-

vealed to the server, the user need not worry that the use of biometrics might divulge any personal

information other than her identity.

2. Concern of being tracked: One can use different keys for different applications (servers) and

hence avoid being tracked across uses. In fact, even the choice biometric or real identity of the

user itself is known only to the enrolling server. The authenticating server knows only the user ID

communicated by the enrollment server and the biometric is obtained in the form of an encrypted

feature vector.
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As the user and server need not trust each other, the framework is applicable to a variety of remote

and on-site identity verification tasks. Moreover, we note that there is no delegation of trust by the server

to a program or hardware at the user’s end, thus making it applicable to a variety of usage scenarios.

3.5 Extension to Kernels and other Variations

Even though the linear classifier model can support some of the simple template matching ap-

proaches, it does not generalize to other model based classifiers. In the following subsections we will

show the extensions for the proposed approach to deal with a) the kernel form of the linear classifier,

the support vector machine (SVM), b) the neural networks, and c) the possible usability and the security

extensions.

3.5.1 Kernel-based classification:

In the linear case, we described a procedure, secureProduct, to compute the inner product of two

encrypted vectors without revealing its contents. However, in order to use a kernel based classifier at

the server for verification, one needs to compute a discriminating function of the form:

S =
N

∑

i=1

αidiκ(vi
T x) = α · κ(v, x), (3.5)

where the rows of v are the support vectors and κ() is referred to as the kernel function.

We first describe a simple extension of the secureProduct procedure to deal with kernel based

classification. We note that the parameter of the kernel function is a set of inner products of vectors.

This could be calculated in a similar fashion as the regular blind authentication (using secureProduct).

Once we obtain the individual inner products, we can compute the kernel functions, κ, at the server side.

The discriminant function to be computed is once again the dot product of the vector of κ values and the

α vector. This could again be computed, securely using the secureProduct procedure. We note that

this procedure allows us to compute any kernel function at the server side.

The above approach is more generic and secure than any of the secure authentication protocols in the

literature. Moreover, it does not reveal any information about the classifier to the client. However, as the

results of the intermediate inner products are known to the server, this simple extension is not completely

blind in the information theoretic sense. This can be solved using another round of communication with

the client and define a completely blind kernel-based verification protocol (as explained below).

Let the kernel function be κ(v, x). Without loss of generality, we can model κ() as an arithmetic cir-

cuit consisting of add and multiplication gates over a finite domain. Consider two encryption functions:

E∗ and E+, which are multiplicative and additive homomorphic [55, 102, 111], respectively. The client
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Algorithm 4 E+(µ) to E∗(µ)

1: Initial State: The server has E+(µ), and client has the corresponding private key.

2: The server chooses a random prime number r, and computes E+(µr) using repeated ad-

dition. This can be efficiently done in O(log(r)) additions using the well-known doubling

technique.

3: The server sends E+(µr) to the client, who decrypts it to obtain µr, which reveals nothing

about µ.

4: The client then computes E∗(µr) and sends this back to the server.

5: The server computes E∗(µ) by multiplying E∗(µr) with E∗(r−1).

has the private keys of both, while the public keys are available to the server also. We show that one

can securely execute such a circuit using interaction between the server and the client. One can perform

addition operations using E+() encrypted operands and multiplication operations using E∗() encrypted

operands, securely. The only cases of concern are when the operands of multiplication are in E+() and

vice-versa. We show that if the server has E+(µ) (encrypted using the public key of the client), it can

convert it into E∗(µ) using one round of interaction with the client, without revealing µ to the client or

the server. The details of the process are given in Algorithm 4.

Similarly, one may also want to convert E∗(µ) to E+(µ). This is possible as explained in Algorithm

5. The above conversion procedures (described by Algorithms 4, 5) along with the secure product

protocol (Algorithm 2) is sufficient for blind computation of any kernel based function such as radial

basis function networks(RBFs). The computed confidence score S, is then compared by the server

against the threshold τ to authenticate a user.

Algorithm 5 E∗(µ) to E+(µ)

1: Initial State: The server has E∗(µ), and client has the corresponding private key.

2: The server chooses a random prime number r, and computes E∗(µr).
3: The server sends E∗(µr) to the client, who decrypts it to obtain µr, which reveals nothing

about µ.

4: The client then computes E+(µr) and sends this back to the server.

5: The server computes E+(µ) by repeatedly adding E+(µr), r−1 times. This can be effi-

ciently done in O(log(r−1)) additions using the well known doubling technique.

For example, consider a polynomial kernel, κ(v, x) = (vi
T · x)p , that is to be securely computed in

our setting. Initially, the server has access to the encrypted feature vector ~x and the encrypted support

vectors ~svk. The initial . encryption scheme is assumed to be multiplicative homomorphic. Now,

computing the kernel value requires both addition and multiplication operations among the support

vectors and the feature vector. Utilizing the switch encryption protocols 4 and 5, the polynomial kernel

can be computed by using two rounds of switch operations per support vector. The final confidence score
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S is computed using the secure dot product protocol 2. The complete protocol to securely compute a

polynomial kernel is shown in Figure 3.7.

Figure 3.7 Blind authentication process for a polynomial kernel.

In general, the computed confidence score may be considered as an input to a new classifier. For

example, in neural networks, the output at one layer is passed as input to the next layer. In such scenarios,

one may wish to keep the server oblivious of the computed score S. Thus, we define a Blind Secure

Product Protocol, Algorithm 6, that computes only the encryption of the score S.
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Algorithm 6 Blind Secure Product Protocol

1: Initial State: The server has E∗(ω), E∗(x) received from the client.

2: Server computes kn + k random numbers, rji and λj , such that, ∀i,

k
∑

j=1

λj rji = 1

3: Server computes E(ωi xi rji) = E(ωi) E(xi) E(rji)
4: The kn products thus generated are sent to the client

5: The client decrypts the products to obtain: ωi xi rji

6: Client computes Sj =

n
∑

i=1

ωi xi rji

7: Sj is encrypted using E+ and E+(Sj) is send over to the server.

8: Server computes E+(S) =

k
∑

j=1

λj
∑

i=1

E+(Sj), this can be efficiently computed using the

well known doubling technique.

3.5.2 Neural Network based classification

The generalization and approximation provided by Neural Networks have presented them as a prac-

tical method for learning real-valued, discrete-valued and vector-valued functions. ANN learning is

well-suited to problems in which the training data corresponds to noisy, complex sensor data, such as

inputs from cameras [95], thus making them ideal candidate for applications in biometric classifica-

tion/verification.

Over the years a large number of methods based on Neural Networks has been proposed for biometric

verification [39, 54, 59, 97]. In this section, we show how our proposed protocol is generic enough to

blindly and securely evaluate a neural network.

(a) (b)

Figure 3.8 a) A typical processing unit used as a node in ANN. A weighted summation of the input

is computed, result of which is then used to computed the output function f(), b) A Typical Multilayer

Neural Network.
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Threshold and Sigmoid are the two most popular type of basic units used in ANN. A perceptron is

same as the linear classifier discussed in Section 3.3. It takes a vector of real-valued inputs, calculates

a weighted summation of these inputs and outputs a 1 if result is greater than the threshold and -1

otherwise. Algorithm 7 describes the completely blind perceptron computation.

S = sgn(y) =

{

1 if y ≥ 0

−1 otherwise
(3.6)

Algorithm 7 Blind Threshold Function Computation

1: Initial State: The server has E∗(µ), E∗(x) received from the client. Server to compute

E∗(t), where t = 0/1 depending on threshold.

2: After a round of Blind Secure Product Protocol [Algo: 6], the server obtains E+(µT .x−α)
3: Server generates a random number r and computes E∗(r(µT .x − α) and sends over to the

client.

4: Client decrypts the obtained cipher and returns back the encrypted equivalent of sign bit

i.e. returns E∗(d) = E∗(sign(r(µT .x − α)
5: Server computes E∗(S) = E∗(d).E∗(sign(r))

Another important/popular basic unit in ANN is the Sigmoid Unit. It is based on a smoothed, dif-

ferential threshold function. The sigmoid unit first computes a linear combination of its inputs, then

applies a threshold to the result. The threshold output is a continuous function of its input, Equation 3.7.

S = σ(y) =
1

1 + e−α.y
(3.7)

The α, in the above equation, is some positive constant that determines the steepness of the threshold.

A completely blind Sigmoid function computation is explained in Algorithm 8.

With the solutions already sketched for securely computing both sigmoid and perceptron based neu-

rons, the solution can be easily extended to securely compute multilayer neural networks. A typical

multilayer neural network is shown in Fig 3.8 (b).

Every neuron in each of the layers is securely computed using the above algorithms. In the process,

the client doesn’t learn anything and all that the server gets is the encrypted output of the neuron. This

encrypted output of a particular layer of neurons acts as an input to the next layer in the network. The

output of the last layer is decrypted and compared against the threshold to authenticate the user.

The above process is completely secure and blind in that at no point does the server or client learns the

weights or intermediate results. All computations are done in encrypted domain, and given an encrypted

input vector E∗(x) the client learns nothing but the authentication result. A somewhat similar solution

was proposed by Orlandi et al [101], however, their solution uses only additive homomorphic encryption
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Algorithm 8 Blind Sigmoid Function Computation

1: Initial State: The server has E∗(µ), E∗(x) received from the client. Server to compute

E∗( 1
1+e−α.y ).

2: After a round of Blind Secure Product Protocol [Algo: 6], the server obtains E+(y)
3: E+(α.y) is computed using repeated additions.

4: Server chooses a random r and sends to client E+(r + α.y) = E+(r).E+(α.y).
5: Client decrypts the obtained cipher to get r + α.y, which is used to compute E∗(er+α.y)

and is sent back to the server.

6: Server multiplies the obtained result with E∗(e−r) to get E∗(eα.y).
7: Switch encryption and add E+(1) to obtain E+(1 + eα.y)
8: Server chooses a random r = r1

r2

, such that r−1 exists. Use repeated additions to obtain,

E+(r1.e
α.y) and E+(r2.e

α.y+1). These are then send over to the client.

9: Client decrypts the received ciphers and computes r. eα.y

1+eα.y . This is encrypted using E∗

and send over to server.

10: Server obtains E∗( 1
1+e−α.y ) by multiplying E∗(r. 1

1+e−α.y ) and E∗(r−1).

schemes and is therefore not as generic as the one proposed by us. Moreover, their solution assumes

the hidden layer weights are available in plain with the server, thus compromising both the security and

privacy of the system.

3.5.3 Usability and Security Extensions

One could extend the proposed protocol in a variety of ways to improve the usability and security.

Client side security: The users client module (computer) contains the public and private keys for

encryption and decryption. Moreover the client end also contains the biometric acquisition device. To

ensure complete security of the system, one needs to consider the security at the client end also. This

is especially true, if one is using a public terminal to access any service. The first step in securing the

private key is to move it to a card so that the private key is not lost if the client computer is compromised.

As a second step one could carry out the decryption operation, completely in a smart card. Revealing

the secret keys to an attacker can reduce the overall security of the system to that of a plain biometric

authentication system.

One could also secure the secret keys at the client end using a fuzzy vault [79], either in the client’s

computer or on a card. The biometric that is provided for authentication can also be used to unlock the

vault to get the key. The released private key is used for decryption of results in the protocol. The fuzzy

vault construct precisely suits this purpose as one could blindly use the keys generated by unlocking the

vault for encryption. If the biometric presented is wrong, the encryption will not match the server’s keys

and hence the authentication will fail. Hence we have a double layer of security through the biometric

provided by the user.
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Avoiding client-side computation and communication: Another possible extension to the framework

is to use the paradigms from secure computing to package the intermediate operations done at the client

side into an applet. This applet can now be run securely on the server itself, thus avoiding the overhead

of communication, and reducing the computing requirements of the client.

Using different encryption schemes: Note that the RSA is one of the many homomorphic encryption

schemes. We could replace this with any of the other similar encryption mechanisms. One could analyze

the computation cost and security issues for each encryption method.

Since the information content in each feature (or weight) is expected to be limited and the public

key of the client is known, it may be possible for an attacker to decode the encrypted features (weights)

using a direct plain-text attack. Similarly in the blind threshold function computation, output of the

neuron is either zero or one. To combat this attack, public key encryption schemes must incorporate

an element of randomness, ensuring that each plaintext maps into one of a large number of possible

ciphertexts. Thus, the encryption scheme E() has to be a function of both the secret x and a random

parameter r. Such a scheme is known as probabilistic encryption. However, for our purpose, we also

need to carry out the computations in the encrypted space, thus the encryption scheme should also be

homomorphic. ElGamal [55] and Pailler Encryption [102] are two popular probabilistic homomorphic

encryption schemes.

Improving speed of SVM-based classifiers: As described in Section 3.5, the kernel based classifiers

need to compute the discriminating function given by Equation 3.5. As can be noticed, the computa-

tional costs of computing this is directly proportional to the number of support vectors used. In practice,

the number of support vectors that are returned from the training step could be quite large. However,

a variety of approaches to reduce the number of support vectors used (without loss in accuracy) for

classification has been proposed [14].

3.6 Implementation and Analysis

We have performed several experiments to evaluate the efficiency and accuracy of the proposed ap-

proach. An authentication protocol was implemented based on a client-server model that can perform

verification over an insecure channel such as the Internet. A variety of public domain datasets are eval-

uated using an SVM classifier to demonstrate the effectiveness of our proposed protocol. The following

experiments and analysis evaluates the accuracy and performance of our method.

3.6.1 Implementation

For the evaluation purpose ans SVM based verifier based on a client-server architecture was imple-

mented in GNU/C. RSA keys were generated using the implementation available through XySSL [10]
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and keys for the Paillier cryptosystem were generated using the Paillier Library [28] . All computa-

tions were done using the GNU Multiple Precision Arithmetic Library (GMP) [5]. All experiments are

conducted on AMD X2 Dual Core 4000+ processor, 750MB DDR2 RAM and 100Mbps Intranet.

Both RSA and Paillier cryptosystem have exponentiation based encryption and decryption. Their

implementation assumes that the data consists of positive integers. For the homomorphism to hold, we

need to map the floating point numbers to positive integers. Hence we scale the feature vectors and the

SVM parameters to retain the precision and round off to the nearest integral value. Efficiently handling

negative numbers is important to achieve efficiency. The representation chosen should ensure a single

representation of zero, obviating the subtleties associated with negative zero. In our implementation, the

mathematical library operates at the binary representation level. We use an implicit sign representation

to handle negative numbers. If the range of numbers used is (0,M), then we use the numbers in the

range (0,M/2) to represent positive numbers, and for the remaining numbers negative. For example:

let M = 256, then to represent −95 we store −95 modulo 256 which is equivalent to 161 since:

−95 + 256 = −95 + 255 + 1 = 160 + 1 = 161

If xi is to be encrypted, the forward mapping is defined as: x′

i = fwdMap(⌊s.xi + 0.5⌋), where s

is a scale factor, depending on the range of values for xis, and fwdMap() maps the integral numbers

to the implicit sign representation. The server does the reverse mapping on the obtained results.

In the following sub-sections, we will validate the generality of the protocol by validating classi-

fication of various publicly available datasets. We will also analyze how the various parameters i.e.

key-size, precision affect the classification accuracy and the verification time. Finally we’ll show the

validity of SVM’s as a classification model for various biometric problems.

3.6.2 Classification Accuracy

As the protocol implements a generic classifier, without making any simplification assumptions, the

accuracy of the classifier should be identical to that of the original classifier. One could expect small

variations in accuracy due to the round off errors used in the mapping function described above. To

verify the effect we compared the classification results using linear and SVM classifiers of 8 different

public domain datasets: the Iris, Liver Disorder, Sonar, Diabetes, and Breast Cancer datasets from

the UCI repository and the Heart and Australian datasets from the Statlog repository. The datasets

were selected to cover a variety of feature types and feature vector lengths. Table 3.2 describes the

datasets and the accuracy obtained using a polynomial kernel with precision set as 4. On these datasets,

the classification results remained identical even though there were minor variations in the computed

discriminant values.

The above accuracies were cross checked by re-classifying the datasets with the same parameters by

the well known SVM classification library SV M light [78]. Figure 3.9 shows the verification time for a
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Dataset Number of Number of Accuracy

Features Instances (%)

Iris [UCI] 4 150 100
Heart [Statlog] 13 270 90
Liver Disorder [UCI] 6 345 68
Sonar [UCI] 60 208 51.47
Australian [Statlog] 14 690 86.49
Diabetes [UCI] 8 768 76.37
FourClass [Tin Kam Ho] 2 862 69.20
Breast Cancer [UCI] 10 683 89.80

Table 3.2 Classification results on various datasets using a SVM classifier. The accuracies were com-

pared to the corresponding plain domain classifier and was found to be identical.

linear classifier w.r.t. various RSA key-sizes and feature vector lengths. A more detailed analysis of the

computational time for the protocol is given in Section 3.6.4.

Figure 3.10 shows how the overall accuracy is affected by changing the precision. For the considered

datasets, the feature vectors were first normalized to range -1 to 1 and then scaled to retain a certain

precision. When precision is set to less than 2, a lot of feature vectors having feature values of the order

of 10−3 or less, mapped to a value of zero, thus affecting the accuracy. For the above datasets, we note

that a precision of 3 or more results in stable results and the accuracies do not change with any further

increase in precision. Thus for our experiments we set precision as 4. Note: precision doesn’t affect the

computational time, as all the numbers are represented using a fixed length bit representation.

The above set of experiments demonstrate the applicability of our protocol to the SVM based clas-

sification problems. We showed that one can achieve the accuracies of SVM’s even in an encrypted

domain and at the same time obtain heightened security at some computational expense.

3.6.3 Biometric Verification

We have presented a protocol to securely classify data using Support Vector Machines and Neural

Networks (Section 3.5). The primary limitation of the protocol in its current form is its restriction to

fixed length feature vector representation of the data (Section 3.3). This might raise a concern as to how

efficient are fixed length feature vector representation with respect to biometric verification problems.

To address the above concern, we conducted a case-study of the state of art results obtained for

various biometric modalities using both fixed length and variable length feature vector representations.

Table 3.3 summarizes the primary findings of the literature survey. As can be seen from the comparison,

the accuracies of the fixed length feature vector based biometric verification approaches are comparable

to those using variable length feature vectors and matching techniques such as dynamic warping.
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Paper Feature Set Matching Method F.D. DataSet GAR/FAR EER

Finger Print

Xu et

al. [141]

Invariant spectral

minutiae set

Spectral minutiae

matching

F MCYT Biomet-

ric DB [56]

- 3.21%

Yang et al.

[142]

7 invariant moment

features

LVQ Neural Net-

work

F FVC2002

DB1 [3]

95.1% / 0.5% -

Sha et al.

[117]

Minutiae representa-

tion based on ridge

pattern

Ridge count match-

ing and minutiae sub-

set combination.

V NIST-4 [6] 97% / 0.1% -

Kisel et al.

[83]

Graph based local

structure representa-

tion of minutiae

Correspondence set

construction and

similarity score

computation

V FVC2002

DB1 [3]

96.71% /

0.01%
-

Zsolt [85] Minutiae set Triangular matching

and DTW.

V NIST-4 [6] 85% / 0.05% -

Hand Geometry

Kumar et al.

[86]

23 hand-geometry

features, discretized

using entropy based

heuristics

SVM,

Neural Network

F 100ppl, 10

images per user

- 1.9%

Marcos et

al. [?]

10 hand-geometry

features

Neural Networks F 50ppl, 10

images per user

99% (avg

perf)

1%∗

Vit et al.

[107]

Time series repr of

hand geometry

DTW similarity mea-

sure.

V 22 ppl, 6-7

images per user

98.25%(TSR) 1.75%∗

Face

Guo et

al. [66]

Eigenfaces Support Vector

Machine (SVM)

F ORL face db [7] - 3.0%

Heisele et

al. [67]

Gray values of facial

components

Support Vector

Machine (SVM)

F Internal 95% / 5% -

Wiskott et

al. [140]

Face Bunch Graph Elastic Bunch Graph

Matching (EBGM)

V FERET [2] 98% (frontal

faces)

2%∗

Blanz et

al. [32]

3-D morphable face

model

Similarity measure

between model

coefficients

F FERET [2] 87.9% / 1% -

Iris

Roy et

al. [113]

Gabor wavelet tech-

nique used to extract

features

Support Vector

Machine (SVM) s

F CASIA

Iris Dataset [1]

97.34% (acc) 2.66%∗

Monro et

al. [96]

Iris code represented

using DCT coeffi-

cients

Hamming distance F CASIA

Iris Dataset [1]

100% (acc) 0%∗

Neagoe [98] Binary templates Hamming Self orga-

nizing map (HSOM)

F CASIA

Iris Dataset [1]

99.08% (acc) 0.9%∗

Table 3.3 Biometric Verification: An overview of fixed (F) and variable (V) length representations.
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To verify the effectiveness of using SVMs as a classification model for biometric verification prob-

lems, we tested it on four different modalities. The verification accuracies after 3-fold cross validation

on each of the datasets is presented in Table 3.4.

• The first set of experiments used Eigen face representation as features on the Yale face dataset [11],

consisting of 10 users, with 11 samples for each user. For each experiment 4 samples were used

for training and the remaining 7 samples were used for testing.

• For the second set of experiments, we used a hand-geometry data-set that was collected in-house.

The data-set consisted of 149 users with 10 hand images each. The features consists of the 14

finger length and width features described by Jain et al. [74]. For each experiment 4 images per

user were used for training purpose and the remaining 6 were used for testing.

• The third were on the CASIA IRIS database [1]. The Version 1 of the data-set consists of 108

users with 7 images per user (the seven images are collected over two separate imaging sessions).

The iris code consists of 9600 binary features. 3 samples per user were used for training and 4

sample per user were used for testing purpose in each experiment.

• The forth and the final data-set used was Fingerprint Verification Contest 2004 (FVC2004 data-

set [4]. The DB2 A data-set consists of 100 users with 8 images per user. 7 invariant moment

features are used as the feature vector. 3 images per user are used for training purpose and the

remaining 5 used for testing for each experiment.

Dataset # of Features Avg num of Support

Vectors

Accuracy

Hand Geometry 20 310 98.38%
Yale Face 102 88 96.91%
CASIA Iris 9600 127 98.24%
FVC 2004 7 440 84.45%

Table 3.4 Verification accuracy on biometric datasets.

Figure 3.11 shows the receiver operating characteristic (ROC) [60] plots for the biometrics using

fixed length representation1 . The primary objective of the experiments is to demonstrate that making

the authentication secure does not decrease the accuracy. Hence, one can apply the technique to secure

any fixed-length representation of a biometric trait, which is classified using an SVM or Neural Network.

1* Yang et al [142], **Wang et al. [137]
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Figure 3.11 ROC Curves for verification

3.6.4 Computation and Communication Overheads

The additional computation that needs to be carried out can be divided into two parts: i) Modulo mul-

tiplications to be done for encryption/decryption and inner product, and ii) the additional time spent in

the computation of random numbers, products and sums. As the modulo multiplications and encryption

decryption operations can be done efficiently using dedicated hardware available [33], we analyze the

time required for both, separately. Consider a biometric with feature vector of length n. In the protocol,

the client needs to do n encryptions for the test vector x.

For the linear classifier, the server needs to do kn encryptions of the random numbers and 2kn

multiplications, so as to compute E(ωixirji), where k≤n. The client needs to do kn decryptions.

Additional computations at the server includes n + kn modulo multiplications of encrypted numbers at

the server end, and kn non-encrypted additions at the client end. In addition, the server generates kn

random numbers. For most practical biometrics, the total run time required for all these (non-encrypted)

computations together on current desktop machines is less than 10 milliseconds. The communication

overhead, in addition to regular authentication, includes sending kn numbers from the server to the

client and sending k numbers from the client back to the server for evaluation of the final result.

Extending the analysis to a direct kernel based classifier with nv support vectors (SV), one need to

repeat the secure product nv times, once for every SV. Another round of secure product computes the

final result. Hence the time required will be nv+1 times that required for the linear classifier. In practice

the total time taken (other than those implemented in hardware) is less than one second.
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For the completely blind kernel-based protocol, the first phase is the same as the direct kernel exten-

sion. However, to achieve complete blindness, we need to do one round of communication to switch

encryptions, that will include a knv length vector to be sent from the server to the client and back. In the

third phase, the computation and communication is identical to that required for a single secure product.

Hence the total time required will be nv + 2 times that required for the linear classifier.

One could achieve further computational efficiency through support-vector reductions, as well as

employing other more computationally fast homomorphic encryption schemes.

3.7 Discussion

The primary advantage of the proposed approach is the ability to achieve classification of a strongly

encrypted feature vector using generic classifiers such as Neural Networks and SVMs. In fact, the

authentication server need not know the specific biometric trait that is used by a particular user, which

can even vary across users. Once a trusted enrollment server encrypts the classifier parameters for a

specific biometric of a person, the authentication server is verifying the identity of a user with respect to

that encryption. The real identity of the person is hence not revealed to the server, making the protocol,

completely blind. This allows one to revoke enrolled templates by changing the encryption key, as well

as use multiple keys across different servers to avoid being tracked, thus leading to better privacy.

The proposed blind authentication is extremely secure under a variety of attacks and can be used with

a wide variety of biometric traits. Protocols are designed to keep the interaction between the user and

the server to a minimum with no resort to computationally expensive protocols such as SMC [143]. As

the verification can be done in real-time with the help of available hardware, the approach is practical

in many applications. The use of smart cards to hold encryption keys enables applications such as

biometric ATMs and access of services from public terminals. Possible extensions to this work includes

secure enrollment protocols and encryption methods to reduce computations. Efficient methods to do

dynamic warping based matching of variable length feature vectors can further enhance the utility.
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Chapter 4

Efficient Privacy Preserving Video Surveillance

Widespread use of surveillance cameras in offices and other business establishments, pose a sig-

nificant threat to the privacy of the employees and visitors. The challenge of introducing privacy and

security in such a practical surveillance system has been stifled by the enormous computational and

communication overhead required by the solutions. In this work, we propose an efficient framework to

carry out privacy preserving surveillance. In our proposed protocol, we split each frame into a set of

random images, each of which is sent to a different non-colluding server for processing. Each image

by itself does not convey any meaningful information about the original frame, while collectively, they

retain all the information. Our solution is derived from a secret sharing scheme based on the Chinese

Remainder Theorem, suitably adapted to image data. Our method enables distributed secure processing

and storage, while retaining the ability to reconstruct the original data in case of a legal requirement. The

computational requirement at the data source (camera) is very limited, enabling inexpensive monitoring

equipment, and the only communication between the camera and the surveillance servers is a compact

and encrypted video stream. The system installed in an office or similar environment can effectively

detect and track people, or solve similar surveillance tasks. Our proposed paradigm is highly secure and

extreamly fast over the traditional SMC, making privacy preserving surveillance practical.

4.1 Introduction

Video surveillance is a critical tool for a variety of tasks such as law enforcement, personal safety,

traffic control, resource planning, and security of assets, to name a few. Rapid development/deployment

of closed circuit television (CCTV) technology is playing a key role in observing suspicious behavior.

However, the proliferation in the use of cameras for surveillance has introduced severe concerns of

privacy. Everyone is constantly being watched on the roads, offices, supermarkets, parking lots, airports,

or any other commercial establishment. This raises concerns such as, watching you in your private

moments, locating you at a specific place and time or with a person, spying on your everyday activities,

or even implicitly controlling some of your actions.
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Tramsformed Images (I )
i

Captured Frame (F) Tracking Results

Figure 4.1 Privacy preserving surveillance: Tracking a vehicle in obfuscated surveillance video. Each

captured frame (F) is uniquely converted into a set of transformed images I, each sent to a seperate

computational server. Tracking algorithm is now jointly executed by all the servers, such that, at no

point, any information of the original video is revealed to any of the servers. At the end of the protocol,

all that the observer learns is the final tracking result.

Privacy, therefore, happens to be a serious concern in the Age of Video Surveillance [116]. Widespread

usage of surveillance cameras raises the specter of an invasive ‘Big Brother’ society. In this regards,

certain privacy laws have been introduced to guard an individuals privacy/rights. Despite these, video

surveillance remains vulnerable to abuse by unscrupulous operators with criminal or voyeuristic aims

and to institutional abuse for discriminatory purposes. These legitimate concerns frequently slow the

deployment of surveillance systems.

Privacy preserving video surveillance addresses these contrasting requirements of confidentiality

and utility. The objective is to allow the general surveillance to continue, without disrupting the privacy

of an individual. This novel technology addresses the critical issue of privacy invasion in an efficient and

cost-effective way. In practice, for online surveillance to remain meaningful, the protocols are required

to be real-time. Furthermore, given the existing and pervasive surveillance infrastruture, the additional

costs incurred to accomodate privacy protection in the system needs to be affordable [38].

Ideally, one would like the cameras to generate video streams, which do not convey any useful in-

formation by themselves, while providing the ability to run the required surveillance algorithms without

any deterioration in performance. For instance, in Figure 4.1 a frame, F , of the surveillance video is

transformed into a set of seemingly random images, Ii, on which a tracking operation is successfully

carried out. In this work we propose a “cloud computing” based solution, that utilizes the services of

r, (r > 2) non-colluding computational servers. Each of the r transformed images Ii is sent to a dif-

ferent server for processing. This ensures that the original video is not revealed to any of the servers,

while together they retain the complete video content. Furthermore, accurate tracking results are ob-

tained since the servers jointly run the original plain-domain tracking algorithm. The solution is not

only provably secure but also computationally efficient. The interaction and the data communication
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among the servers is kept to a minimum and the only processing required of the camera is to generate

the transformed images.

A practical and an efficient solution fits into the business model of ‘surveillance as a service’. A

company can monitor houses, streets, stores, etc and alert the clients of suspicious incidents, without

intruding into their privacy. The client just installs a shatter-cam and sends the feeds for surveillance.

Our proposed solution works well with current trends of computing/storing on remote server clouds.

This is both economically viable, scalable and provably private, while allowing recovery of original

video in case of a crime.

Traditionally, confidentiality of the data is achieved through encryption. However, by definition,

encryption destroys any structure present in the data, thus negating the ability to perform any meaningful

video processing tasks. Therefore, such solution prevents only eavesdropping, while offering little or

no protection against misuse of CCTV video by the authorised personal [38]. Realizing this, recent

privacy preserving vision algorithms are build on cryptographic protocols such as Secure Multiparty

Computation (SMC) [22, 119]. SMC uses interactions between multiple parties to achieve a specific

task, while keeping everyone oblivious of other’s data.

The problem of introducing privacy and security in visual data processing was addressed with consid-

erable success in different domains. Smart Cameras [68] are surveillance cameras equipped with inbuild

processing power. In privacy preserving surveillance, smart cameras can be programmed so as to iden-

tify and obnubilate the region of interest (such as human face) from the captured video stream before

transmitting it over the network (to the observer). Problem specific approaches try to address specific

concerns in images and videos. Senior et al. [116] presented a model to define video privacy and re-

render the video in a privacy-preserving manner. Face swapping [30] and face de-identification [99,122]

try to modify face images such that they can be automatically detected, but yet cannot be correctly rec-

ognized. Framework proposed by Zhang et al. [145] stores the privacy information in surveillance video

as a watermark and monitors an invalid person in a restricted area while protecting the privacy of the

valid persons. Boult et al. [41] has presented a complete surveillance camera with built in processing

power that can do tasks such as detection and masking of the regions of interest in the images. Chan

et al. [40] attempted a related problem of extraction of features from a surveillance video that do not

reveal identity of people, while being able to achieve crowd counting and tracking.

In general, smart cameras are designed so as to detect and track suspicious behavior. However these

approaches do not provide any guarantee of privacy as they rely on the success of certain computer vision

tasks, such as face detection. Furthermore, there are a wide range of possible behavior which may not be

part of the suspicious behavior database; in this case smart camera fails to preserve privacy. Moreover,

there are also behavioral patterns that may be hard to classify. Alternately smart cameras can be designed
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to do surveillance in the camera itself. However, this would require expensive programmable cameras

and is restricted to single camera algorithms. Changing the algorithms is also tedious and costly.

Provable security/privacy can be guaranteed if the surveillance algorithms can directly run on (cryp-

tographically strong) encrypted video streams. This ensures that the original video stream is hidden at

all times and the observer learns only the final output of the surveillance algorithm. The recent research

work in this direction uses either of the cryptographic protocols such as SMC [65] or homomorphic

encryption schemes [93] [61] or both. The primary goal of Blind Vision [22] [23]; whose security is

built upon SMC; is to allow someone to run their classifier on another person’s data without revealing

the algorithm or gaining knowledge of the data. Shashank et al. [119] exploited the clustered nature

of image databases to improve the efficiency of SMC for example based image retrieval by processing

multiple queries together. As describted in Chapter 3, we utilize the homomorphic encryption schemes

to blindly authenticate a biometric sample over the internet.

Perfect privacy can be achieved through approaches based on the generic framework of SMC [22] [119]

[136] and homomorphic encryptions [101]. However, such solutions would be highly communication

intensive. And for the videos, the sheer volume of the data involved makes the protocols infeasible in

terms of computation and inter-processor communication costs. For example, computing the dot prod-

uct of two vectors (length n) using a SMC based protocol would have O(n2) communication overhead,

which requires several milliseconds on a LAN. Clearly, these delays are too high, while dealing with vo-

luminous data like surveillance videos. Hence, solutions based on these cryptographic primitives would

be impractical for our desired (real-time) applications.

In this work, we use the paradigm of Secret Sharing [118] to achieve privacy and efficient compu-

tation of surveillance algorithms. Secret sharing (SS) methods [27] [94] [118] try to split any data into

multiple shares such that no share by itself has any meaningful information, but together they retain the

complete information of the original data. We exploit certain desirable properties of visual data such

as fixed range and insensitivity to data-scale, to achieve distributed, efficient and secure computation of

surveillance algorithms in the above framework. Using this approach, one can do change detection on

a typical surveillance video at 10 frames/second on generic hardware. Our approach also address the

concerns related to video surveillance, presented in Table 4.1.

4.2 Alleviating the Complexity: Our Paradigm

In the last section we gave an overview of the various paradigms explored for privacy preservation.

In this section, we reason as to why a paradigm shift is needed to achieve practical privacy preserving

surveillance. The traditional methods of securing data is of using strong encryption schemes to secure

(lock) the visual data. However, this fails to preserve privacy, since one needs to decrypt (un-lock)

the data before processing. In practice, this implies that the server is to be trusted to handle the data
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a) Preserves Privacy: Ensure that the person doing surveillance learns nothing but the final output.

b) Computationally Efficient: The encoding process at the sensor should be light weight. And the

image representation should allow efficient computations of algorithms in the encrypted domain itself.

c) Efficient to Transmit: The encoding process should not blow up the size of the video data.

d) Secure Storage: One should be able to store the surveillance data in a secure fashion, so that

breaking into a storage server do not compromise the privacy of the data.

e) Addresses Legal Issues: For legal or investigative purposes, someone with authorization should

be able to recover the plain video without the client’s help.

f) Fault Tolerance: Ability to avoid the denial of service(DOS) and single point of failures.

Table 4.1 Mandatory and desirable characteristics of a secure, privacy-preserving surveillance system.

securely, thus making the complete system vulnerable to mis-use by authorized personal in addition to

exploitation by hackers.

Selective privacy can be provided with the use of smart cameras. The region of interest (eg: car

number plate) can be identified and obfuscated by the camera before streaming the captured CCTV

video, over an (un-secure) network, to an observer. However, as already discussed in Section 4.1 these

methods do not guarantee complete privacy. Furthermore, defining privacy can be rather subjective, for

example, one could de-identify a face but could possibly still identify a person by observing the gait or

the characteristics of his/her walk [9].

The primary limitation of the traditional methods was the inablity to carry out meaningful image

processing on the encrypted video streams. In order to overcome this, solutions have been proposed

using the cryptographic techniques based on secure multiparty computation (SMC) [65]. SMC based

solutions allow one to have provable data privacy and at the same time retain the accuracy. SMC

originated from the work of Yao [143], who gave a generic solution to privately evaluate ‘any’ given

function (Boolean circuit) that takes private information of 2-parties as input. In other words, SMC

facilitates a group of people, each with its own private data, to perform some common computation task

on the aggregate of their data without actually revealing, to anyone else, any personal information of

their owned data [89].

However, the SMC based protocols are found to be extreamly computationally expensive [21]. For

video surveillance task, the sheer volume of the data involved makes the protocols infeasible in terms

of computation and inter-processor communication costs. In order to design practical protocols, consid-

erable research effort has been made over the recent years. Modifications have been made to improve

the efficiency of the solutions, such as, by restricting the usage of Yao’s protocol to only a few limited
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computations/operations. For example, Avidan et al. [23] speeded up their blind vision protocol [22] at

the cost of a controlled leakage of information. Shashank et al. [119] on the otherhand, exploited the

clustered nature of image databases to improve upon the efficiency for example-based image retrieval.

Limitation of SMC: In general, for any practical online surveillance systems, the protocols are re-

quired to be realtime. However, with the current limits on the bandwidth, the proposed SMC-based

protocols are not well suited for the task. In SMC based solutions every function is represented as a

boolean circuit. The complexity of the protocol is linear in the size of the circuit, making it theoritically

efficient, however for real-world applications this method is not practical and is much slower than the

correponding non secure computation [21]. For example, [23] takes few minutes to do face-detection

on a single image window, thus limiting the practical deployment.

The reason for this is mainly due to the way SMC works: in SMC, every single trusted CPU in-

struction is securely simulated via a corresponding network protocol. Most efficient SMC protocol is

based on Oblivious Transfer (OT) [65]. For instance, a single multiplication is carried out via complex

distributed protocol involving OT, which is a highly communication intensive subroutine in SMC. OT is

a protocol by which a sender sends some information to the receiver but remains oblivious as to what is

received. In fact, OT on its own is a fundamental and important problem in cryptography. In particular,

it is ‘complete’ for SMC: that is given an implementation of OT it is possible to securely evaluate any

polynomial time computable function without any additional primitive [82].

Typically a task as elementary as a dot product of two n-vectors involves O(n) multiplications, how-

ever if OT is used (as in [22]) the resulting algorithm for dot product will have an O(n2) communication

overhead, even with the best known OT algorithm [65]. Furthermore, the best known OT itself is based

on public-key-cryptography (PKC) (eg: RSA) [123] which is not only computationally expensive but

also results into data expansion, thus affecting the computation and communication costs. As on today,

communication is the bottleneck. Factually, the round-trip time in a LAN is of the order of a few mil-

liseconds, whereas several floating operations take no more than few nanoseconds. Thus the paradigm

of SMC which converts the trusted computation into secure network protocol can not avoid a slowdown

by a factor of one million, with the current technology. Moreover, communication is likely to remain

the bottleneck in the foreseeable future. Hence, a paradigm shift is inexorable.

Natural ways to overcome the (communication) complexity include:

1. Avoid distributed computing, and achieve zero communication overhead,

2. Design algorithms for computing in encrypted domain,

3. Design SMC solutions without OT, or

4. Improve the OT protocol.
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Unfortunately, cryptographic literature is not in favor of any of the above. Specifically,

1. Retaining privacy without distribution, necessitates code obfuscation. However, obfuscation of

a general program is impossible [24]. Barak et al. [24] showed that one can always find a non-

learnable program such that every obfuscator fails completely for it. Although, certain simple

programs such as point functions are known to be obfuscated [138], the current vision algorithms

are unlikely to have this property.

2. Solutions with minimal distribution, using the paradigm of encrypt-communicate-compute-decrypt

require the existence of an efficient doubly homomorphic encryption scheme, which scientists have

been searching for over 30 years [93]! Without such a scheme, one can only design secure im-

age processing algorithms using either additive or multiplicative homomorphic scheme which

involves either addition or multiplication (but not both) respectively. Furthermore, the known

(additive/multipicative) homomorphic encryption schemes are themselves based on computation-

ally expensive protocols such as public key cryptography. The only known doubly homomorphic

scheme is the one recently proposed by Craig Gentry [63] and would most likely lead to a com-

putationally intensive theoretical solution.

3. The inadequacy of solutions with minimal or no distribution, necessitates non-minimal distribu-

tion, in other words some sort of SMC. It has been proven that the best way to do SMC is with

OT [82], though there are more communication intensive solutions based on information the-

ory [26]. The general research direction now is to find computationally efficient solutions under

weaker security assumptions than general SMC (Eg: [23]).

4. The only alternative left out is to improve upon OT protocols. Even with the best possible OT

protocols [65], a slowdown factor of one million (as mentioned in the previous paragraph) will

remain. Further, OT is based on public key cryptography, which is known to be computationally

intensive. Therefore the extant approach to secure vision is unlikely to yield practical solutions to

visual surveillance, even if communication becomes cheaper than computation.

Thus, we conclude that solutions based on SMC are impractical for our real-time task. And hence a

paradigm shift is required to address such critical problems. An efficient solution can be designed using

a trusted third party (TTP). Under such a solution, one of the servers is trusted with all the private data

(available in plain) to faithfully run a surveillance algorithm. Unfortunately, in practice we don’t have

the luxury of a trusted entity. In fact, such a trusted entity could become a vulnerability in the system.

That is, if the trusted entity is compromised (such as by hackers) then the secret could be disclosed.

Unconditionally or information theoretic secure multi-party computations are closely related to the

problem of secret sharing [118]. Secret sharing (SS) methods [118] [25] [121] try to split any data into
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multiple shares such that no share by itself has any information about the data, but they together retain

all the information of the original data. However, the standard SS methods do not allow efficient compu-

tation (as they require some sort of SMC). We show that visual data has certain desirable properties that

allows us to use the paradigm of secret sharing to achieve complete privacy and efficient computation of

surveillance algorithms. More specifically, in this work we use a variant of the secret sharing schemes

based on the Chinese Remainder Theorem (CRT) [94] [27].

4.3 The Proposed Approach

The privacy of our surveillance system is based on splitting the information present in an image into

multiple parts or shares. Each share is sent to an independent server for processing. The protocol in a

nutshell is as follows:

1. The camera splits each captured frame, F , into k (> 2), shares using a Shatter function (defined in

Sec 4.5): φ(F ) = [I1, I2, . . . , Ik]. Each share is then sent to an independent server for processing.

Note that no share by itself reveals any meaningful information about the original image.

2. To carry out a basic operation f on the input image, each computation server blindly carries out

the equivalent basic operations (as described in Sec 4.5), f ′ on its own share. This is equivalent

to the corresponding basic operation being carried out on the original image: f ′(Ij) ≡ φ(f(F ))).

3. The results of operations on the shares are then integrated by the observer using a Merge function

(defined in Sec 4.5), to obtain the final result: f(F ) = µ(f ′(I1), f
′(I2), . . . , f

′(Ik)).

Figure 4.2 shows a schematic diagram of the complete process. The privacy of the overall system

relies on the fact that neither the independent shares, nor the results of computations on them, reveal

any information about the original image. The integration of results from the independent servers reveal

only the final result of the algorithm to the observer.

In order to analyze the security and privacy of the system, we will formalize the notion of security

as follows:

1. Information Revealed: We use the term information in the strictest information theoretic sense.

That is, an observable quantity I is said not to reveal any information about another quantity F

(in our case, the original image), if: ∀aPr(F = a|I) is same as Pr(F = a).

2. Preservation of Privacy: A surveillance system is said to preserve privacy, if it reveals nothing

more that the final output of the surveillance algorithm to any party in the system, outside the

camera.
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Figure 4.2 Secure computation of f(F ) by a set of compute servers. Every frame F is shattered into

shares, Ii by the camera. Each server receives and does computation on its (private) share Ii. The

observer receives only the ’final’ output of the algorithm.

3. Assumption: The servers are assumed to be honest, but curious in nature. i.e., they will carry out

the expected computations faithfully, but may try to learn about the original image from their view

of the data. They are independent in the sense that they will not collude to extract any additional

information.

The functions φ() and µ() that form the basis of our protocol are adapted from the popular secret

sharing scheme using the Chinese Remainder Theorem (CRT).

4.4 Cryptographic Primitives

This work contributes at the interoperation of security and computer vision in surveillance applica-

tions. We now discuss the cryptographic primitives on which the proposed protocol is build upon.

4.4.1 Secret Sharing (SS)

Secret Sharing [25, 118, 121] refers to a method for distributing a secret among a group of servers

each of which is allocated a share of the secret. The secret can be reconstructed only when the shares

are combined together; on their own, the individual shares gives no information of the secret. Several

types of secret sharing schemes have been proposed in literature. Shamir’s secret sharing scheme [118]

represents the secret as the y-intercept of an n-degree polynomial, and shares correspond to points on
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the polynomial. In contrast, Blakley’s scheme [31] specifies the secret as a point in n-dimensional

space, and gives out shares that correspond to hyperplanes that intersect the secret point. The primary

motivation behind SS is of securing a secret over multiple servers. However, computing functions on

the input secretly shared among n-servers, requires highly communication intensive protocols (which

relies on some sort of SMC). Furthermore, such schemes result in huge data expansion, which becomes

in-efficient for large secrets, such as live-videos (as in our case). For example, Shamir’s shares are each

as large as the original secret, whereas Blakley’s scheme is even less space-efficient than Shamir’s.

Figure 4.3 Example of Secret Sharing [8]: Each secret share is a plane, and the secret is the point at

which three shares intersect. Two shares yield only a line intersection.

The primary limitation of the above schemes was the inability to do efficient computations on secret

shares. Asmuth-Bloom [20] overcomes this limitation by working in a residue number system [124].

They achieve this by using a special sequence of integers for encoding while CRT is used for recon-

struction.

4.4.1.1 SS using the CRT

There are many different versions of the CRT based Secret Sharing Schemes in literature. Mignotte [94]

and Asumth et al. [20] used co-prime numbers p′is while Goldreich et al. [64] focused only on prime

numbers. We now describe the SS using CRT as presented by Goldreich et al. [64]. In the remainder of

this section, x ∈R S means that x is selected from S with an uniform probability.

4.4.1.1.1 Initialization Let t + 1 ≤ l, where l is the number of shares and t + 1 is the minimum

number of shares needed to recover the secret. l primes, each uniquely associated with a server, are

selected such that p0 < p1 < p2 < ... < pl. The primes pi, which play a key role in computing the
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secret shares, are assumed to be public. The security of the system is based on the non-colluding nature

of the servers.

4.4.1.1.2 Sharing Consider a secret r0 ≡ s ∈ Zp0
that is to be securely shared among the l servers.

The data owner generates and distributes the secret shares as follows:

1. Choose t uniform random numbers satisfying the constrain, r1 ∈R Zp1
, · · · , rt ∈R Zpt

2. Determines Y ∈ ZP , where P ≡
∏t

i=0 pi such that Y ≡ ri mod pi for i = 0, 1, · · · , t. This can

be efficiently computed using CRT.

3. The secret is encoded in the resulting Y . We now wish to securely share the new secret Y . The

secret shares are computed as, si = Y mod pi for i = 0, 1, · · · , l.

The share, si, is then sent over to a corresponding, non-colluding server for storage and processing.

4.4.1.1.3 Reconstruction To reconstruct the secret s, a user needs to recollect atleast t + 1 of the l

shares held by different servers. Given a set of t + 1 shares {si : i ∈ I}, the secret s is recovered as

follows:

1. Compute X ∈ Z
Q

i∈I
pi, such that X ≡ si mod pi for i ∈ I . This is efficiently computatable

using CRT.

2. The actual secret s is given by s = X mod p0.

In the above reconstruction, note that the recovered X was nothing but the encoded Y . The secret

s which was constrained to be ∈ Zp0
is correctly (uniquely) recovered by taking modulo p0 of the

recovered X.

4.4.1.2 Limitation of Standard SS

In the above scheme, each share is of size |pi| bits. The total share size is therefore given by
∑i<l

i=1 |pi|

> l · |p0|. Choosing an optimal p0 becomes curcial since it determines both the range of numbers we can

correctly represent as well as the total size of the shares. To understand the data expansion, consider VJ

face detector [134] as the algorithm we want to securely execute on a 320*240 input frame. In the input

video frame, each pixel is in range [0, 255], as an 8 bit integer. Now, during the execusion of the VJ,

the maximum intermediate value we can expect is 320*240*255, a 21 bit integer. Hence our p0 has to

be atleast 21 bits long. Therefore, every 8 bit pixel is expanded into shares with the total size of atleast

21 · l bits. This is significant, since the camera needs to communicate the shares over to the servers, thus

becoming the bottleneck for the complete system.
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The primary motivation is proposing a paradigm shift for our real-time tasks was to reduce commu-

nication. We next show that visual-data has certain characteristic properties, which can be exploited to

define a tailor made SS scheme exclusively for visual data. Compared to the standard CRT based SS

schmes, our scheme significantly reduces the data expansion by atleast a factor of l, where l is the num-

ber of servers/shares. Such reduction is prominent for huge data such as live-video feeds, thus making

privacy preserving video surveillance practical.

4.4.2 Role of Visual Data

While general purpose secure computation appears to be inherently complex and oftentimes imprac-

tical, we show that due to certain “suitable” properties of visual information, efficiency and security

can co-exist in the domain of computer vision! We exploit the following facts, which are valid for

most of the computer vision tasks, and in particular for surveillance problem. Meaningful images from

real-world have the following properties that are of interest to us:

• Limited and Fixed Range: The values that a pixel can take is finite and is from a limited fixed range.

And more importantly, the range is known apriori. Therefore, algorithms that have multiple possible

answers, but only one of them within this range, are as valid as solutions that have only one answer.

Such algorithms need not be useful (or correct) for a general purpose (non-vision) tasks. In this work,

we exploit this by designing an efficient, secure surveillance solutions that has infinite answers, but

only one of them in the valid range. Interestingly, in this process, we also circumvent OT, thereby

gaining in efficiency.

• Scale Invariance: The information in the image remains practically unchanged even if we change the

units of measurement or scale the whole data. This is not true for most non-image information. We

exploit this to design a wrapper algorithm which converts a partially secure algorithm to a completely

secure one. For example, consider a partially secure algorithm that may reveal the LSB of all the

pixels. Suppose this algorithm is run on an input which is scaled (at least by a factor of two) with

all the LSBs randomized. Then note that with practically no change in the output, the original input

(before scaling) is completely secure.

• Approximate Nature: The image captured by a camera is an approximate representation of the

scene. In practice, the camera sensor that is used to capture an image, is itself noisy. That is, the

probability that the camera would generate exactly same images of the scene captured at two different

instances, under identical conditions (lighting etc) is negligible. In practice, this implies that the pixel

value of 100 ≡ 101, for the captured image. Thus adding negligible ‘hetrogeneous’ noise to an image

doesn’t effect the information retained by the image. Furthermore, as already analysed, chosing an
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appropriate scale factor can completely overcome any possible accuracy loss incurred due to the

added noise.

• Non-General Operands: A typical vision algorithm has several operators and operands. However

there is no need to expect that all possible pairs could exist in any execution. While it is important

to have the ability to implement all operators, it is not practically necessary to allow all possible

operands. For example, if an algorithm forbids division by a specific number (say 23), one can still

use this scheme as long as you know that your task does not demand division by 23. We exploit

this as follows. Traditionally, secure algorithms are designed over finite fields so that the operands

as well as operators could be general. Reader may recall from [44] that in the absence of public

key cryptography (PKC) and OT, general secure two party solutions are impossible over finite fields.

Since we wish to avoid OT and PKC, we design our algorithm over a set which is a finite field with

very few exceptions (division by some specific apriori known numbers is forbidden). Fortunately,

our approach allows one to choose these “forbidden” numbers. Therefore in principle as well as in

practice, it is as powerful as having general operands.

Keeping in mind the above properties, we design a vision specific, distributed framework for surveil-

lance tasks that preserves privacy. The emphasis is on performing this efficiently, thus faciliating proac-

tive surveillance. In our framework, we shatter each video into shares and send each one to a different

site in such a way that each site has no information about the scene (data-specific secret sharing). The

complete algorithm runs in this distributed setup, such that at the end of the protocol, all that the ob-

server recovers is the final output from the results obtained at each of the site. In summary, our approach

does not contradict the theoretical results, but circumvents the problem by exploiting the properties of

the data and the problem, without any compromise on the privacy and accuracy.

4.5 Shattering and Merging

An outline of the proposed solution was sketched in Sec 4.3. The three step protocol can be suma-

rized as 1) Shattering, 2) Computing on the secret shares, 3) Merging the shares to obtain final results.

In this section we formalize the subroutines used by our proposed protocol. The Shatter function φ()

is used for computing the secret shares, while the Merge function µ() is used for combining the secret

shares to retreive the final result.

4.5.1 Shatter Function: φ()

In our problem, we secure each pixel, d of an image, F , independently using a pixel level shatter:

φp(). The direct CRT based transformation would compute each share as d mod pi for different primes
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(a) Original Image (b) Res: I%89

(c) Res: (I · 44 + η)%89 (d) Res: (I · 109 + η)%89

Figure 4.4 Data Obfuscation: Information retained in the residue image for various scale factors and

corresponding η distributions.

(pi). However, given the correlation between the neighboring pixels in an image, the modulo remain-

der reveals significant information about the secret (image) (see Figure 4.4(b)). To overcome this, we

introduce the following modification to obtain the shatter function φp():

di = φp(d, pi) = (d · s + η) mod pi, (4.1)

where d is a single pixel in the image, s is a constant, positive scale factor, and η is a uniform random

number: U(0, rmax), rmax ≤ s. Note that the first part of φp(), effectively makes the LSBs of the

resulting number, random. For example, if s = 2k and rmax = s, then k random bits are appended

to the right of d. Intuitively, if pi < s, then di would essentially be random, and would not reveal any

information about d (see Sec 4.6 for analysis).

To shatter an image, we apply the above transformation to each pixel in the image independently,

while keeping the set of pis and s constant. However, we vary the random number, η for every pixel and

every image that we encode, and hence the result of modular division is essentially random. Note that

without scaling and randomization, the modulo image will reveal considerable amount of information

about the original image (see Figure 4.4(b)). Choosing an arbitrary range of randomization, results

in partially secure shares (see Figure 4.4(c)). As explained in section 4.6.1, it is possible to choose a

range for η that will generate secret shares that are completely obfuscated (see Figure 4.4(d)). In this
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example, the second-order entropy of image 4.4(d) is identical to that of a pure random noise image.

The computed secret shares are then sent over to the respective servers for future storage/processing.

4.5.2 Computing on the Shares

The operations of addition and multiplication are well defined in modular arithmetic, hence making

the transformed data appropriate for computations. For example, if f is defined as: f(x, y) = x+y, then

one can compute xi + yi at each compute server and recover x + y at the observer using CRT. In other

words, modular arithmetic is homomorphic to both addition and multiplication (doubly homomorphic),

within the modulo base. i.e.,

(a + b) mod p = ( (a mod p) + (b mod p) ) mod p

(a · b) mod p = ( (a mod p) · (b mod p) ) mod p

As mentioned before, given the value of the rhs of the above equations for multiple values of p, one

can exactly recover (a + b) or (a · b) using CRT. Thus, every computational server executes a modular

implementation of the plain-domain surveillance algorithm, with its private share as input. The resulting

outputs at each of the server is then sent over to an observer, who uses the Merge function µ() to recover

the final results.

Question: What operations are forbidden in RNS?

Notice that the domain of RNS in not a finite field. Recall that any finite field has a cardinality of px

for some x, where p is a prime, where as we are working in a domain of cardinality M = p1 · p2 · · · pk.

Hence in our domain, ZM , not all divisions are possible. Specifically, division by any number v, where

some pi divides v is not defined in ZM . However, we can get around this problem in our application due

to the following facts:

• The number of forbidden divisors is small. For instance in the example given in line number 426,

out of the 1813 number, only 85 numbers are forbidden as divisors (less than 5%).

• The forbidden numbers are known in advance, and in most algorithms the divisors are independent

of the data. Hence, we can choose a RNS system that allows all divisors required in the algorithm.

In our implementation, we take a simpler route: assume that all divisions are forbidden, and im-

plement the division operation using yet another untrusted server. The randomization and shuffling as

mentioned in Sec 4.7 secures the intermediate results from all parties.
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4.5.3 Merge Function: µ()

Given, di = φp(d, pi) for different prime pis, the secret d can be recovered by CRT by solving a

system of congruence. The merge function µp():

d = µp(di, pi) =
CRT (di, pi)

s
(4.2)

CRT recovers (d · s + η), which is appropriately scaled down (integer division by the scale factor) to

get the actual value of d. The solution is unique if all the intermediate values (di, f
′(di)) are less than

the product of the primes (pis). Note that η, which was randomly chosen for each pixel is not used for

recovering the secret. The CRT hence forms our recovery transformation µp(), at the pixel level. Thus,

provided all the shares are made available, the secret (the original video) can be correctly regenerated by

the merge function. In our case, the results of the surveillance algorithm running at each of the servers

are made available to an observer, who applies the merge function to retrieve the final result. Note that

the only information learned by the observer is the final output and nothing else.

Question: How is CRT being applied to get output? RNS is doubly-homomorphic within modulo

domain, i.e. both addition and multiplication can be correctly carried out independently on the residues.

Therefore, an algorithm that can be computed as a function f() made up of addition and multiplication

operations can be implemented in the RNS. During the design, every addition and multiplication opera-

tion in f() is executed in the RNS. Thus, at the end of the protocol, what we have is the shattered shares

of the final output. Merging the modular outputs will correctly recover the final result of f(). To clarify

the process, Section 4.5.3 provides some numeric examples of secure computation a set of functions.

Note that:

• We achieve efficiency by working in the modulo domain, thus avoiding communication overheads

of solutions such as SMC.

• Working in modular domain does not ensure privacy (since residue is revealed). This is more

serious for visual data, since modular image would retain most of the information of the original

image. We achieve privacy by adding random numbers to every pixel before taking the mod.

• Evidently, directly adding random noise is a poor solution, since accuracy is traded off. We scale

pixel values before adding random numbers to maintain accuracy. Section 4.6.1 shows that we

can select the scale factor, the random numbers and the prime divisors to achieve perfect accuracy

while maintaining complete privacy.
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• The surveillance algorithm runs independently on each of the servers. Interaction is limited and

for evaluation of functions which require merging of results, eg: thresholding. This is again

secured by randomization/shuffle and use of another untrusted server.

• CRT is used to recover the result from the output of each server.

In this model, the only communication required from the client is that of sending the shattered data

to the compute servers. Each compute server can perform most of the computations independently, and

hence the communication overhead is very limited. In order to boost the understanding of the complete

process, we next consider a few trivial examples.

Examples of Modular Arithmetic

The modular transformation that forms the basis of our protocol is based on RNS and CRT. Therefore

the operations that are defined in the RNS are also well defined for us. To verify the computational

capacity of our protocol, let us consider the following set of examples.

For the first example, consider the processing of the image patch shown in Figure 4.5. As each pixel

is processed independently, consider the pixel with value 68. Let the scale factor s be 33 and the random

number η, be 10, the resulting d · s + η would be 2254. If the image is shattered into three shares, with

primes 19, 29, and 31, the corresponding shattered shares would be: {12, 21, 22}.
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2817 860

2580
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Pixel
values

Transformed
Shares

Shattered
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5 5

12 15

21 28
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f(d) = 2.d+5
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Scale
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78

Computation Servers

f’(di) = (2.di+5.s) mod pi

pi=19

pi=29

pi=31

Figure 4.5 Affine intensity transform in modular domain.

If the algorithm applies the affine transformation f(d) = 2 · d + 5 to each pixel d, then each compute

server will carry out f ′(di) = 2 · di + 5 · s%pi independently on its share, and obtain {18, 4, 23}. The
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observer will integrate these numbers using CRT to obtain 4673, which when divided by the scale factor

33 gives 141 (2 · 68 + 5 = 141).

The above computations are valid only for integer values of operands and results. As the pixel values

of an image has a limited and finite range, these conditions are easily satisfied. Moreover, any non-

integer operation can be correctly simulated by appropriately scaling the entire data/algorithm before

the shattering operation. One can exactly reconstruct the ideal output by scaling down the results as

long as all the intermediate value in the entire computation are correctly represented in the Residue

Number System(RNS), i.e. the product of the primes pi is greater than any intermediate value in the

entire computation.

Next we consider an example of ‘Overflow’. Overflow occurs when the numbers being represented

are beyond the range of the employed RNS. This leads to errors in the recoverd results using CRT. Let

us now consider doing a summation of pixels in a patch. Every pixel in the image has a value in the

range [0 - 255]. For a 2 × 2 patch, the output will be in the range [0-1020]. Figure 4.6 summarises the

complete process. As one can notice CRT in this case recovers the sum as 588, whereas the expected

correct output is 553.
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11723 15877

13530 8741
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f’() = (Summation of pixesl) Mod (pi)

Computation Servers

Figure 4.6 Overflow: The correct output is beyond the range of RNS, thus results in error in the recov-

ered result using CRT.

The reason for this is chosing an inappropriate RNS. In the above example, we employ 3 primes,

p1 = 53, p2 = 59, p3 = 31 and the scale factor, s = 90. This RNS correctly represents numbers in the
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range [−(53 ∗ 59 ∗ 31)/(90 ∗ 2), (53 ∗ 59 ∗ 31)/(90 ∗ 2)], i.e. [−538, 538]. Now since the expected

result of 553 is beyond the range of RNS, recovery using CRT leads to errors.

On the otherhand, suppose we just wanted to add the first two pixels. In this case the maximum sum

can be (255 ∗ 2 = 510), which is less than upper-bound of the RNS. In this case the pixel values 150 and

97 are shattered and sent to the servers. The servers do the summation and sends over to the observer 11,

28, 13 respectively. CRT now recovers 22271, which when scaled down by 90 gives 247 (i.e. 150+97).

Next example considers the task of computing a polynomial function f(d) = d · d/100. The

maximum intermediate value we need to represent in this case is 255 ∗ 255. A RNS comprising of

4 servers with primes p1 = 587, p2 = 593, p3 = 383 and p4 = 193. The scale factor choosen is

s = 600. Figure 4.7 shows processing a pixel array using the function f(d). The original image pixels

are scaled by s and shattered into 4 components. The shattered components are independently squared

at the remote servers. The results recovered by CRT are then scaled down by s2 to get the expected

results. For a polynomial function of order t, the appropriate scaling is given by s−t. The intuitive

reason behind this, is that every pixel is scaled by s, therefore, f(d) gets scaled by st and we need to

scale it down by s−t to get the correct output.
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Figure 4.7 Polynomial function: Every pixel is modified using a polynomial f(d) = (d · d)/100.
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4.6 Theoritical Analysis

Parameter selection is a pivotal step for achieving efficiency and privacy in the proposed protocol.

We now take a closer look at the optimal parameter selection and the associated computational and

communication overheads. We also take a closer look at the amount and the nature of information

revealed by the residue images and the related security and privacy concerns of the proposed system.

4.6.1 Selection of the Primes and the Scaling Factor

Let the number of computation servers employed by the sytem be k. Given the value of k, we

select p1, . . . , pk such that their product, P , is greater than any number that one would want to represent

correctly during the running of the algorithm. Typically, one could just choose the smallest k consecutive

primes satisfying the above property. The scaling factor chosen should be higher than the largest prime,

so as to obfuscate each share (see Figure 4.4). Note that the range of the intermediate values is a function

of the scale factor. So this process might have to be iterated a couple of times during the design phase.

Let M denote the maximum intermediate value that is to be represented in the surveillance algorithm,

when run in the plain domain. Assume that we require a scale factor of s to achieve complete privacy.

Let c be the constant such that M.sc is the maximum intermediate value to be represented after scaling.

Note that c depends on the algorithm and is usually small (≈ 2) in most vision algorithms, for example

if the operations being performed are linear then c is 1, for quadratic functions c would be 2 and so on.

In other words, the primes p1, . . . , pk are chosen such that:

s ≥ max
i

pi, and s <

(∏

i pi

M

)
1

c

(4.3)

Simplifying the above, we find that, if

M <

(

max
i

pi

)k−c

(4.4)

then the original image is hidden from the individual servers. At the same time, we can guarantee that

the reconstruction by CRT is unique. The above inequality is a sufficient condition and our experiments

show that it is usually not necessary.

4.6.2 Computation and Communication Overhead

In our process, the only computation expected of the camera is of generating the secret shares, i.e.

applying the shatter function to every pixel of the captured image. For a system with k servers, this

involves choosing a random number and k additions and multiplications per pixel. As shown by our

experimental results, this can be done on the fly with generic hardware. Each server now independently
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runs the surveillance algorithm on its secret share. The complexity of the algorithm is same as the orig-

inal plain-domain implementation. The only computational overhead is for division and thresholding

operations, for which the merge function has to be executed. This involves an additional k + 1 multipli-

cations per operation. A final merge function has to be executed by the observer to reconstruct the final

output.

The communication overheads involves sending the residue images from camera to the servers. Each

residue image is made up of pixels of size |pi| bits. The total shatter size is therefore the summantion

of k residue images and is equal to |P | bits per pixel. Thus, for an original 8 bits CCTV stream, an

overhead of |P | − 8 bits per pixel takes place. All servers now execute the algorithms independently,

with the communication limited to division and thresholding operations. For each of these operations,

each server, i, sends a |pi| bits share to a common server, who merges the received shares and sends

back the |pi| bits shares of the result of the operation.

4.6.2.0.1 Comparision with Standard CRT based Secret Sharing In the standard CRT based SS

scheme, the size of the each share is atleast |P | bits. Thus for k servers, the total share size will be

atleast k · |P | bits. On the otherhand, in our scheme, the total share size is kept to |P | bits, therefore

reducing the data expansion, thus communication, by a factor of k. The division and thresholding are

performed in a similar manner in both the schemes, however in our scheme the communication overhead

is minimized, since each share is of size |pi| bits, while in standard it is alteast |P | bits, thus reducing

the communication costs by a factor of k.

4.6.3 Analysis of Privacy

Privacy of the system refers to the amount of information of the CCTV video that is revealed to the

server. An ideal and perfect zero-knowledge scheme requires the shares to be of equal size (as in Shamir

scheme). However, in the CRT based SS schemes, the sizes of the share space and secret space are not

equal. Quisquater et al. [105] showed that CRT based SS schemes are asymptotically optimal both from

an information theoretic and complexity theoretic viewpoint when the parameters satisfy a simplified

relationship. We now show that our modified scheme is also asymptotically optimal for visual data and

thus satisfies the same notion of security as in [105].

Note that the privacy of the system is based on splitting the information present in an image into

multiple shares. The parameters used for shattering i.e. the primes pi and scale factor s are constant for

each shattering operation and are in general assumed to be public. The only possible information leakage

of the secret is that retained by each share. We now analytically show that with an optimal parameter

selection, the information retained by a share is negligible. Consider a pixel with value d ∈ [0, 255],

which is scaled by s, followed by addition of a random number, η. Note that, if η follows the uniform
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distribution, U(0, rmax − 1), the distribution of ri = η%pi would be:

Pr(ri = x) =

{

(k + 1)/rmax, x < rmax%pi

k/rmax, otherwise,
(4.5)

where k is ⌊rmax/pi⌋. The above distribution will be uniform, leading to perfect security if rmax is a

multiple of pi. On the other hand, if rmax is not a multiple of pi, there is a slight step of size 1/rmax (see

figure 4.8) in the resulting distribution at xk = rmax mod pi, where rmax known only to the camera.

p_i

1

At x= r_max    mod    p_i

Pr(r_i=x)

x

Figure 4.8 Remainder Distribution: Ideal (dotted) and practical (solid) distributions of the shatter for

d = 0.

If the pixel value is d, and in the worst case remains exactly d across a very large number of frames,

the ith server might be able to estimate a distribution with a kink at s · d + rmax mod pi. Even in the

worst case, if the server is able to exactly detect the kink, it only knows the value of s · d + rmax mod

pi. Therefore, the amount of information about d is exactly same as the amount of information as rmax.

If we take a naive approach of choosing rmax: i.e., choose is randomly from a range [q, q + R], then

rmax mod pi will not be uniformly distributed for all pi – however, it will be very close to uniformly

distributed, with a step at R mod pi. That is, for a particular pixel value d, the share di, is marginally

more likely to be within a certain range of pixel values.

In short, we see that the method of shattering is statistically impossible to break for images, and

unlike encryption based methods, even if it is broken, nothing useful can be learned from the information

that is revealed. The advantage of our method is that such a high level of security can be achieved, while

allowing computations to be carried out efficiently on the shattered videos.
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4.7 Implementation Challenges

As described above, the process of carrying out integer addition and multiplication in the modulo

domain is relatively straight forward. We might feel that one can achieve any operation that can be

modeled as a combinatorial network of AND and XOR gates, which makes it equal in power to a general

purpose computer. However, there are many practical challenges to be overcome to implement the

functionalities.

4.7.0.0.2 Representing Negative Numbers Modulo arithmetic is carried out using positive integers

only. Hence one has to map the range of numbers used in an algorithm to an appropriate range of

positive integers. Signed numbers in the residue form are represented with an implicit sign. If the range

of numbers used is (0, M), we used the numbers in the range (0, M/2) to represent positive numbers,

and for the remaining numbers it is negative. The change in sign of |Z|M is performed by the operation

of additive inversion of Z, i.e. -Z = M - Z, which is equivalent to (m1 − z1,m2 − z2, ...mk − zk).

4.7.0.0.3 Overflow and Underflow The employed RNS, correctly represents integers in the range

(-M/2, M/2). Use of numbers beyond this range will result in errors in the recovered results using CRT,

which we refer to as overflow or underflow. Overflow and underflow are safely avoided by working in a

domain large enough to correctly represent all intermediate values encountered. However, the net data

size of the shattered video streams is directly proportional to the domain-size that we work with. An

efficient domain can be chosen by precomputing the upper bound on the possible intermediate values,

and then appropriately deciding on the RNS.

4.7.0.0.4 Integer Division and Thresholding Operations such as divisions and thresholding are

difficult to achieve in RNS. Division of an integer A by B is defined as A/B = (ai.bi
−1) mod mi in the

RNS. This is valid if B is co-prime with M and B divides A. For this to always hold, one would have to

take into account B, in choosing the RNS. Though this looks practical (since the original algorithm is

known beforehand), it might not always be efficient since the shattered data size (# of bits) is directly

proportional to the chosen domain-size (consider the case where multiple division operations are to be

performed using different divisors, validating the division for every divisor would result in a blowup of

the domain size, thus affecting efficiency).

An alternate solution for division and thresholding can be designed using an additional computational

server. Every independent computation server (ICS) sends over their respective residues to the additional

server, where the merge function is applied and the division/comparison is performed in plain domain.

However, simply doing this would end up revealing the intermediate results to the additional server. To

secure against such information leakage, every ICS does a reversible randomization (multiplying by a
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constant) of their respective residues before sending them over to the additional server. The additional

server does the division/comparison on the randomized data(post merging) it received. The computed

result is shattered by it and sent back to the respective ICS where it is de-randomized to retrieve the

actual(expected) modulo result.

4.7.0.0.5 Defining Equivalent operations Finally, the primary challenge remains in defining the

implementations over the modular domain for any algorithm. For every function f(d) we need to define

f ′(di) such that merging f ′(di) would give back f(d). In general, one can imagine building a compiler

that converts a given function f() into the equivalent function f ′(). However, the complete treatment

of the generic solution is beyond the scope of this thesis. In the next section we will describe the

implementation and analysis of a few standard operations used in video surveillance.

4.8 Implementation and Analysis

We now provide a detailed account of the implementation and analysis of a common surveillance

task, tracking of moving objects, using the proposed framework. We describe the mapping of this

problem to the framework and show the steps involved in carrying out the computations. We also

describe in brief, the results of face detection in the proposed framework.

The process of tracking is carried out in two steps, that of change detection by background subtrac-

tion, followed by tracking of points of change.

4.8.1 Background Image Subtraction

We first consider the problem of background removal. Specifically, our problem is: given a static

background image (in shattered form), subtract it from each captured image, such that at any point of

time, the original image or the background image is not revealed to anyone. At the end of the protocol,

all that is learned by the observer is the final output (the difference image). The complete process can

be sub-divided into:

1: Deciding the RNS: Every pixel in the image has a value in the range [0 − 255]. In background

subtraction, the range of numbers in the result is Y = [−255, 255], or Y = [0, 511] (using an implicit

sign). Shattering involves scaling every pixel by s. Therefore in the RNS we need to correctly represent

the range R = [0, s.Y ]. The optimal number of servers and the prime numbers defining the RNS is

chosen as described in Section 4.6.1. In our example, we have number of servers k = 3, the scale factor

s = 33, and the primes are 19, 29, and 31. These set of parameters form our RNS, which is made public.
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2: Defining the Algorithm: Next step is to map the original algorithm into modulo domain. In our

case it is pixel-wise subtraction of a fixed background image (B) from the captured image frame (F ),

both in the shattered form. As the only operation that needs to be performed is subtraction between

two scaled quantities, the equivalent operation in the modulo domain would be the subtraction of the

corresponding shattered pixel values as described in Section 4.5.2.

3: Capture Image and Shatter: The image captured by the camera (Figure 4.9(a)) is shattered

using the modular transformation described in Section 4.5.1. In our example, the parameters used in

the shatter function are the ones as obtained above. Input frame F is scaled by s = 33 and its lower

order bits randomized to obtain an image I ′. The image I ′ is then shattered using the primes pis and the

shattered shares are sent to the corresponding servers.

4: Apply the algorithm on shattered components: The shattered components received by the

servers are now independently processed at each of the servers. As defined in step 2, the background

image B′ is subtracted from the each of the input frames. At the server i, the arithmetic operations are

done modulo prime pi. For example if the difference of two pixels is computed as D = 100, and the

corresponding prime for the server is pi = 29, then the difference is stored as 100%29 = 13.

5: Merge the outputs at the observer: The computed results are sent over to the observer who uses

the merge function (see Section 4.5.1) to obtain the final output. In our example, the observer obtains the

3 shattered images. Now the observer uses the Chinese remainder theorem(CRT) to reconstruct every

pixel of the output image from the corresponding pixel values of the shattered images it receives. For

example if the components of a particular pixel after subtraction are {12, 0, 11} corresponding to the

primes {19, 29, 31}, CRT would reconstruct −1508 from these values. The result is then scaled down

by the initial scale factor 33 to obtain the final result as −45.

4.8.2 Change Detection

The detection of change involves subtraction of a frame from a background frame, which is carried

out as explained before. We also update the background image by replacing pixels in the background

where change is detected with the corresponding ones from the foreground. This is done directly in the

RNS. The difference values are integrated by a thresholding server, using CRT, which then compares

the result against the pre-defined threshold to detect motion.

However, sending the shattered differences to a threshold server reveals the difference image. To

avoid this, we apply a reversible pixel shuffle that would remove any structure in the image, before

sending it to the threshold server as explained in Section 4.7
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(a) Input Frame (b) Shattered Frame (c) Shattered Background

(d) Shuffled Difference (e) Change Detection (f) Output+Original Image

Figure 4.9 Change Detection: (b,c) are the shattered shares seen by one of the compute servers, (d)

is the obfuscated difference image obtained after a pixel shuffle, (e) is the output as available with the

observer, and (f) comparison with original image.

Image # of Comp. Time Commn.

Resol. Servers Serv. Merge Data Time

PITS’00 3 0.367 1.294 324 0.025

768x576 5 0.362 1.433 270 0.017

7 0.377 1.316 162 0.013

CAVIAR 3 0.110 0.292 81 0.006

384x288 5 0.122 0.310 67.5 0.005

7 0.137 0.338 40.5 0.003

Towers 3 0.071 0.189 56.25 0.004

320x240 5 0.074 0.201 46.87 0.004

7 0.073 0.217 28.12 0.002

Table 4.2 Average computation and communication times for change detection.
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The additional (untrusted) server thresholds the received image to get a shuffled binary image. This

is sent back to each of the ICS, where it is de-shuffled to obtained the final binary image. As the result is

now in plain domain, one can also apply any post-processing operations such as erosion, merging, etc.

to remove any noise. Moreover, the background learning can work in the transformed domain as the

pixels with no change are known to the compute servers in each frame. We also note that the accuracy

of the algorithm is not affected by the obfuscation process, as indicated by the comparison with plain

domain result. Figure 4.9 shows a sample frame that is being processed in the framework.

Table 4.2 shows the exact time (in seconds) spent by the individual compute servers as well as the

thresholding server (usually the observer). We note that even with a non-optimized implementation on

a desktop class machine, one can achieve a computation speed of upto 14 (QVGA) frames per second

at each server. The total data to be transmitted in the process (in Kilobytes) and the corresponding

communication time, assuming a 100Mbps connection between the two servers, are also given. We note

that most operations are carried out in sub-second times.

4.8.3 Optical Flow and Tracking

The above algorithm can be further extended to compute the optical flow. We use the change de-

tection results as guidelines, and compare a patch around each motion pixel against its neighbors. The

comparison is done using correlation, which is similar to the affine transformation operation described

in example in Figure 4.5. The optical flow estimates thus derived, along with the motion segmenta-

tion results from the previous section can be used to build a complete system that detects and tracks

people/objects.

Figure 4.10 shows the results of optical flow being computed using the secret shares and the results

superimposed on original frame.

(a) Original Frame (b) Tracking (c) Tracking in Plain

Figure 4.10 Computation of Optical Flow: (a) Frame from input sequence, (b) optical flow computed,

and (d) results superimposed on original frame. Note that the shattered images are omitted here.
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4.8.4 Face Detection

For the next experiment we implement a more complex classifier, the popular face detection algo-

rithm by Viola and Jones(VJ) [134] that uses a cascade of classifiers. Each classifier is dependent on a set

of Haar-like features. We note that all the features can be computed by addition or subtraction of pixel

values within a rectangular neighborhood. As the pixel additions and subtractions can be implemented

directly in the RNS, the mapping of feature computation into our framework is straight-forward.

Note that we do not attempt to learn the classifiers from the shattered images, but use those which

are learned from plain domain images. In a nutshell, VJ adopts a rejection cascade, where every image-

window is passed through the cascade to detect faces. An integral image representation(which is sum-

mation of pixels) is computed for the input image. For every stage of the cascade, the rectangular

features are computed from the integral image (this involves addition and subtraction operations). The

computed feature values are securely merged and compared against the cascade threshold to decide

upon the acceptance/rejection of the window.

Considering that the only operations involved in VJ are addition, subtraction and thresholding, it is

fairly straight forward to define the equivalent functions for modular domain. Each computation server

computes the integral representation of its own secret share (this is equivalent to ’shatter’ of the integral

image computed in plain domain). The cascade (which is trained in plain domain) is then applied

independently at each server. Every window of the image is then passed through the cascade, for which

the feature value is computed for every weak classifier. In our setup, every server can independently

compute its share of the feature value (computed from the integral representation on its secret share).

Thresholding is done (as described before) with the help of a pixel shuffle and an additional server. The

location of the windows that pass through the complete cascade are made known to the observer as final

output. Figure 4.8.4 shows the result of face detection on an input image as obtained by the observer as

well as the plain domain result for comparison. Once again we note that the outputs are identical. One

(a) (b) (c)

Figure 4.11 Face detection (a): Captured input image, (b): Result as received by observer, and (c)

Detection result, if run on the plain image. The detected faces are shown in white boxes and the current

window being processed is shown in gray.
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can also notice that the plain image as well as the feature values computed are hidden from all parties

involved, thus securing against any possible information leakage, and in the process only knowledge

gained by the observer is the final output.

Image Parallelization

Resolution 3 5 7 10 12

200x 200 463.0 289.4 231.5 173.6 173.6

320x240 994.8 621.7 497.4 373.0 373.0

400x320 1777.1 1110.7 888.5 666.4 666.4

512x512 3908.4 2442.7 1954.2 1465.6 1465.6

Table 4.3 Data transferred between thresholder and servers (in KB).

Table 4.3 shows the variations in the amount of communication between the compute servers and

the observer as the size of the image and the number of servers vary. The amount of data is shown in

Kilobytes, and can be communicated over high speed connections to the observer for thresholding.

4.8.5 Overheads of Parallelization

To estimate the effects of encoding in terms of computation and communication overheads as well

as accuracy, we study three different aspects. In the first experiment, we compute the average number

of bits in an encoded frame and the total image size. An interesting observation from Table 4.4 is that

as the number of compute servers (or primes) increases, the average bits in the resultant image first

decreases, and then increases. The increase in the later part is due to the need of using larger primes,

which drives up the size of the resulting image. One can always choose an optimal number of servers,

as already explained in Section 4.6.1.

Avg Data Size

# primes Scale Avg bits Size/Frame Total Size

3 17 6 56.25 168.75

4 31 5 46.87 187.48

5 19 4 37.50 187.50

10 13 3 28.13 281.30

20 11 5 46.87 937.40

50 31 6 56.25 2812.5

100 37 7 65.23 6523

Table 4.4 Average data size (without compression) vs. amount of parallelization

Figure 4.12 shows the time required for shattering and merging a frame. We note that the time

required for merging is considerably higher due to the use of large-number arithmetic when dealing

with scaled numbers. Even then, the system is able to do these operations in well under a second.
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(a) Shattering Time
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(b) Merging Time

Figure 4.12 Time required to shatter/merge a frame with increasing number of servers.

4.8.6 Comparision with SMC

Clearly, any secure solution needs more processing over an insecure one (eg. http vs https). For

an application, if overheads are within acceptable limits, a provably secure method is always preferred.

Our method compares with crypto solutions (SMC based) in terms of privacy, which are extreamly

inefficient. Our main achievement is an approach that achieves information theoretic privacy, while

being extreamly efficient over SMC. Our cameras can be inexpensive as the in-camera operations are

simple and fixed. For example, VJ based FD on a QVGA frame requires evaluation of 92636 windows

(Wo = 24, Ho = 24, S = 1.25). As per [22], each window takes a few seconds for a non-face and

several minutes for a face. Even at 2 secs per window, this translates to 185272 secs (51 Hrs) per frame,

which we reduce to 2-3 secs per frame. The processing time can further be improved by processing

several windows simultaneously.

4.8.7 Data Transformation and Accuracy

An image is encoded as the residue images computed from a scaled noisy version of the input image.

To study the quality of the restored image, we conducted an experiment to encode a set of varied images

over a range of parameters and computed the PSNR scores (Table 4.5 of the recomputed image. We see

that all the images have PSNR in the fifties. Note that for image compression purposes, a PSNR value

of above 35 is considered very good, and our transformation is practically loss-less.

As the images are represented faithfully by the transformation, and the algorithms are exactly mapped

from the plain domain, the performance of the algorithms in the proposed framework would be the same

as that of their plain domain equivalents. Furthermore, we note that the noise η, that we add to a scaled

pixel is conditioned to be always less than the scale factor s. This is equivalent to adding a noise of less
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Image Scaling Factor

Resolution 11 31 80 120

320×240 51.552 51.309 51.138 51.134

512×512 51.598 51.345 51.176 51.161

640×480 51.568 51.301 51.141 51.138

800×600 51.567 51.307 51.142 51.134

Table 4.5 Peak Signal-to-Noise Ratio(PSNR), for k = 5

than 1 unit to the original image. This noise is often far less than that present naturally in surveillance

videos and does not affect the results of the algorithms.

We have presented experimental results on a range of tasks and data (change detection, optical flow

tracking, face detection). The results presented were aimed at understanding the computational and

communication overheads at each stage, any loss of accuracy incurred by computation in the proposed

framework, as well as the effectiveness of data obfuscation for privacy. We consolidate the experimental

evaluation by providing a few more visual results.

(a) Input Frame (b) Shattered Share 1 (c) Shattered Share 2

(d) Shattered Share 3 (e) Result of Merging

Figure 4.13 Shatter and Merge: The input Frame is shattered into 3 components. The reconstruction is

done by the merge operation. The high quality reconstruction is validated by the PSNR score of 51.34.
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(a) Input Frame (b) Shattered Share (c) Convolution of Shattered Share

(d) Merged Image (e) Convolution in Plain

Figure 4.14 Image Convolution: (a) Input Image, (b) Shattered Frame obtained by a server, (c) Pro-

cessed shattered Frame, (d) Final Result obtained after merging, (e) Equivalent result obtained by pro-

cessing in plain domain.

(a) Input Frame (b) Shattered Frame (c) Shuffled Result

(d) Final Result Obtained (e) Expected Result

Figure 4.15 Change Detection: (a) Image Frame as captured by Camera, (b) Secret share, as received by

one of the servers, (c) Shuffled result available with the thresholding server, (d) Detection Result, post

merging, as obtained by observer, (e) Corresponding detection results as computed in plain domain.
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(a) Input Frame (b) Shattered Share (c) Motion Detection

(d) Merged Result (e) Expected Result

Figure 4.16 Optical Flow. (a) Input Frame captured from camera, (b) Shattered share, (c) Change de-

tection history, (d) Results obtained post merging by observer, (e) Result on computing in plain domain.

(a) Input Image (b) Shattered Share (c) Change Detection

(d) Tracking Result

Figure 4.17 Object Tracking: (a) Input image as captured by camera (b) shattered share available at one

of the servers, (c) privately performing change detection performed, (d) tracking result as obtained by

the observer. Change detection is performed as described before. The patch matching is done by finding

maximal correlation.
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(a) Input Image (b) Shattered Share (c) Merged Image

(d) Expected Result

Figure 4.18 Face Detection using VJ: (a) Input image, shattered and sent to servers, (b) shattered share

at one of the servers, (c) result as available with the observer, (d) result in plain domain. Detected

faces are shown in white, while the current window being processed is given in gray. Note: The exact

detection results are computed, (same positive/negative window detection takes place)

4.9 Discussion

The main contribution of the work is in introducing a paradigm shift in looking at private visual

surveillance problems from the traditional SMC based approaches. This change in view allows us

to have a simplified capture device, an efficient unidirectional data flow, and surveillance operations

performed directly on the shattered streams. One could imagine a simple modification to the surveillance

camera with modulo division implemented in hardware, producing, say 3 randomized video streams.

The streams will be connected to three different service providers, ensuring that none of the servers gain

any information about the image. Whenever a thresholding operation needs to be performed, they can

communicate with a common server, through high speed networks to achieve the functionality. Such an

architecture provides us both security as well as computation and communication efficiency.

Note that only the surveillance results will be available to the observer (law enforcement, govern-

ment, or security provider). The plain video stream will be revealed only if all the service providers

collude, which is easy to avoid. The fact that each video stream, arriving at the individual servers,
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lack any information of the original video, provides us with a simple mechanism for secure archival of

surveillance data. Essentially, each of the servers can store their streams independently. Note that if one

needs access to the plain data, one can make the service providers release their respective data under a

court order for legal or investigative purposes. The overall architecture is thus designed to address all

the concerns mentioned in Table 4.1. One could also build dedicated hardware based solutions for each

in a much more efficient manner, essentially making private video surveillance, practical.

As noted from Figure 4.12, the shattering and merging operations are extremely efficient. Using

an approach that avoids encryption or cryptographic protocols such as SMC enable us to achieve real-

time performance on video surveillance tasks. For example, one can carry out change detection at each

of the servers at 15 frames per second even with a non-optimized implementation on a desktop class

machine. One could build dedicated hardware based solutions for each in a much more efficient manner,

essentially making private video surveillance, practical.

In addition to the above advantages, our approach is also easily scalable, as the computations carried

out be each server is identical. One could design a single specialized hardware for a compute server,

and replicate it to achieve larger scale operations. This also provides fault-tolerant properties, when

combined with the use of CRT. One can recover the results of computations even if one server stops

working, as long as the product of primes from the remaining servers are more than the largest number

used in computation.

Above all, the framework provides a generic setting to carry out an arbitrary vision task. As the basic

operations of addition and multiplication can be realized in the transformed domain, one could imagine

building a compiler that transforms any existing non-secure implementation of a surveillance algorithm

into a secure/privacy preserving one. However, one might need to define more generic procedures for

operations such as sorting and memory indexing to achieve this. In short, the approach has the potential

to extend to other areas of visual data processing as well.

One of the disadvantages of the shattering algorithm is the reduction in our ability to compress the

resulting video schemes. One might note again that ability to compress, and ability to hide information

are opposing goals for a representation. Possible approaches to overcome this include working with

compressed video sequences as input, or the use of number theoretic compression schemes.

In short, we have presented an efficient, practical and highly secure framework for implementing

visual surveillance on untrusted remote computers. To achieve this we demonstrate that the properties

of visual data can be exploited to break the bottleneck of computational and communication overheads.

The issues in practical implementation of certain algorithms including change detection, optical flow,

and face detection are addressed. This work opens up a new avenue for practical and provably secure

implementations of vision algorithms, that are based on distribution of data over multiple computers.
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Chapter 5

Private Yet Efficient K-Means Clustering

In this work we introduce an efficient privacy-preserving protocol for distributed K-means clustering

over an arbitrary partitioned data, shared among N parties. Clustering is one of the fundamental algo-

rithms used in the field of data mining. Advances in data acquisition methodologies have resulted in

collection and storage of vast quantities of user’s personal data. For mutual benefit, organizations tend

to share with each other, their data for analysis purposes, thus raising privacy concerns for the users.

Over the years, numerous attempts have been made to introduce privacy and security at the expense

of massive additional communication costs. The approaches suggested in the literature make use of the

cryptographic protocols such as Secure Multiparty Computation (SMC) and/or homomorphic encryption

schemes like Paillier’s encryption. Methods using such schemes have proven communication overheads.

And in practice are found to be slower by a factor of more than 106.

In light of the practical limitations posed by privacy using the traditional approaches, we extend the

idea of computing on secret shares to enable unsupervised learning algorithms such as clustering. Secret

sharing allows the data to be divided into multiple shares and processed separately at different servers.

Using the paradigm of secret sharing, allows us to design a provably-secure, cloud computing based

solution which has negligible communication overhead compared to SMC and is hence over a million

times faster than similar SMC based protocols.

5.1 Introduction

K-means clustering [51, 62] is one of the most widely used techniques for statistical data analysis.

The simplicity and effectiveness of the algorithm have made its usage conducive in various applications

ranging from machine learning, pattern recognition and data mining. Researchers use cluster analysis

to partition the general population of consumers into market segments and to better understand the

relationships between different groups of consumers/potential customers. However, the collected data

may contain sensitive or private information about the customers, thus heightening the related privacy

concerns [47, 128].
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To clarify our problem setting, let us consider a scenario where several companies have collected

certain information of their clients. Having such large collections of data provides them with an ideal

opportunity to gather knowledge that could improve the performance of the organizations. However,

privacy and secrecy considerations can prohibit them from sharing their sensitive data with each other.

The widespread applicability of the problem setting makes it imperative to find a secure and an efficient

solution to such a significant problem. Addressing the problem requires many practical challenges to be

overcome before a possible wide-scale deployment. The solution should not just be provably secure i.e.

it leaks no additional useful information, but should also minimize the additional overheads in terms of

communication and computation costs required to introduce privacy. Vaidya et al. [131] summarize the

state of art methods available for privacy preserving data mining. They adequately answer the questions

of ‘when’, ‘why’, and ‘how’ privacy preserving data mining solutions becomes the need of the hour.

More detailed reviews of the previous work can be found in Verykios et al. [133].

A simple solution to gain maximum knowledge is to make all the organizations to share their data.

However, this results in zero privacy. On the other hand, a trusted third party (TTP) based solution,

alleviates all privacy concerns. Under these solutions, the aggregate data is made available to a TTP,

who runs the clustering algorithm and answers to clients queries [49,52,53]. However, finding a trusted

third party is in general infeasible in real world [65]. Moreover, as the data is available in plain, TTP is

susceptible to be compromised. Privacy preserving data mining was introduced to address this specific

problem. Solutions were sketched to extract knowledge by making the participating parties to compute

common functions, without having to actually reveal their individual data to any other party [17, 88].

Previous solutions can be primarily categorized as, i) those using Data Perturbation techniques, and

ii) those employing Secure Multiparty Computation (SMC). The first category of approaches introduces

noise and data transformations to achieve partial privacy [81] [37] [91]. The clustering is then done of

the noisy version of the data, resulting in approximately correct clusters [17] [100]. Such approaches

compromise privacy for practicality, however the key advantage is the negligible communication over-

head needed by such approaches.

The second category of approaches aims to achieve complete privacy. This is done using the well

known cryptographic protocol of SMC [65]. SMC facilitates a group of people, each with its own private

data, to perform some common computation task on the aggregate of their data. SMC ensures that, in

the process, no any personal information of data is revealed to any one [89]. However, the SMC based

protocols are found to be extremely computationally expensive [65]. In other words, an operation which

requires a single round of communication in a non-secure implementation, would require hundreds of

thousands of rounds of communication (depending on the domain size) to achieve the same operation

in a secure implementation using SMC. For data mining applications, the sheer volume of the data

involved makes the protocol infeasible in terms of the communication cost. For example, Vaidya et
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al. [132], İnan et al. [70] and Wright et al. [72] use SMC as a subroutine to propose privacy preserving

clustering. However, the huge computational costs makes these solution impractical. Considerable

modifications have been made to improve the computational efficiency, such as, by restricting the usage

of Yao’s protocol to only a few limited computations/operations [16].

Another set of proposed approaches uses the semantically secure additive or multiplicative homo-

morphic encryption schemes [101]. In such a protocol, one party encrypts its data using its public

key, and share the encrypted data with the other party for computation. Interactive protocols are then

designed to carry out the clustering algorithm [77] [37]. The overheads of encryption and the com-

munication costs needed to carry out clustering limits the scope of such algorithms. Interaction can

be reduced with the usage of a doubly homomorphic scheme [106]. However, the only known doubly

homomorphic scheme is the one recently proposed by Craig Gentry [63] and would most likely lead to

a computationally intensive theoretical solution.

Most of the recent works specific to privacy preserving K-means clustering have concentrated on

building interactive protocols. Vaidya et al [132] proposed a solution to K-means clustering over verti-

cally partitioned data. They used a clever randomization and permutation algorithm to privately achieve

cooperation among the parties. Thresholding is done using a secure circuit evaluation. However, the

computational costs makes the solution impractical for large data-sets. Jha et al [77] proposed solutions

for horizontally partitioned data. The first of their protocol is based on oblivious polynomial evaluation,

and the second one uses homomorphic encryption. The proposed protocols provide provable security of

the private data, however in the current form reveals the intermediate cluster locations to each party and

is restricted to horizontally partitioned data. İnan et al [70] proposed another protocol for horizontally

partitioned data. Their provably secure solution is again based on the secure multiparty computation

of dissimilarity matrix over the data. Wright et al [72] introduced the concept of arbitrarily partitioned

data. Their solution too uses SMC as a subroutine. As Bunn et al [37] points out, in [72] the interpreta-

tion of division as multiplication by the inverse does not satisfy correctness. Bunn et al [37] proposed

solution is also based on homomorphic encryption schemes.

In this work, we achieve the security at the level of SMC while keeping the communication costs

to a level similar to that of the first category. We achieve this using the paradigm of the Secret Shar-

ing [20] over a mesh of processing servers. Our solution is first of its type, and is both efficient and

mathematically simple. In the process we also side-step the communication bottlenecks posed by the

usage of SMC and asymmetric encryption schemes. Our proposed solution is not only computationally

efficient but also secure independent of whether or not P 6= NP. We however do assume the servers to

be non-colluding and having the ability to generate random numbers.

95



5.2 The Problem Setting

We address scenarios of N parties, each with its own private data, wishing to privately collaborate

for doing cluster analysis on their aggregate data. Practicality of the solutions to this critical problem

faces many challenges. The solution needs to not only be efficient and provably secure, but should also

avoid any trade-offs between accuracy and privacy. Table 5.2 summarizes the primary concerns that

needs to be addressed for widespread adoption of the protocol. We now look at the architecture of our

proposed solution.

We propose a ‘cloud computing’ based solution that utilizes the services of R, (R > 2), non-

colluding servers. Each of the N users, is required to compute the R secret shares of its private data

using a shatter function (see the algorithm, defined in Section 5.3). Each share is then sent over to a

specific server for processing. Note that the shatter function ensures that the computed secret shares on

its own reveal no information about the original private data. The cloud of employed servers, now runs

the K-means algorithm using just the secret shares. The protocol ensures that none of the users/servers

have sufficient information to reconstruct the original data, thus ensuring privacy.

a) Data Security: Secure storage of sensitive data is important. Every organization wants to

secure itself against a possible data theft by either an insider or a hacker.

b) Accuracy: Introduction of privacy should not compromise the accuracy or the results of

the algorithm.

c) Privacy Preservation: The participating parties would like to keep their sensitive data

private during computations. No information, other than non-sensitive data mining results

are allowed to be learned by others.

d) Efficient Computation & Communication: Large overheads are to be avoided. Ob-

fuscation should not blow up the data-size. Moreover, every user wishes to minimize the

communication costs at its end.

e) Facile deployment: Collaboration between two parties should not be hindered by practi-

cal issues in deploying PPDM. A dedicated mesh of computation servers implementing the

PPDM protocol makes it viable.

f) Reconstruction of data: Organization should have an efficient method to reconstruct the

private data. Obfuscated data, with each server, should not reveal any information of the

original data.

g) Fault tolerance: Ability to avoid the denial of service (DOS) attacks and single point of

failures.

Table 5.1 Primary challenges in practical privacy preserving data mining (PPDM)
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Figure 5.1 Sample Mesh of servers. Each of the N users shatters their private data (Sec: 5.3) and

sends over the components to the pre-selected R servers for computation. The final result is obtained by

merging (Sec: 5.3) the outputs of the computational servers. In above example, N is 2 and R is 3.

The shatter function that we choose allows efficient computations using just the shares. That is,

unlike SMC, the number of rounds of communication to implement an operation on secret shares is

equivalent to that required in a non-secure implementation of the same operation. The advantage of

this is that it significantly reduces the communication costs over the similar SMC based protocols, thus

making privacy preserving clustering practical. Figure 5.1 shows a pictorial description of the proposed

architecture, while the algorithm is discussed in detail in Section 5.4.

Figure 5.2 shows the notion of arbitrary partitioned data as described by Wright et al [72]. Note: it

is a generalization of both horizontally and vertically partitioned data. We borrow the same notion and

extend it to N users. In our setting, the attribute names form the public information. Each of the entity

is either completely owned by one of the users, or the attributes are shared among the N users, where

the share of some users can also be φ. If a record is ‘completely’ owned by anyone, then its existence

remains hidden from other users. If any of the attributes for an entity are with more than one user, in

that case a weighted average of the attribute values is considered for the computational purpose. Entities

are indexed using a mutually agreed upon indexing scheme. The indexing scheme addresses the two

concerns of i) hiding the entity’s identity from the servers, and ii) a common index for accessing the

vertically partitioned data.
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Figure 5.2 Arbitrarily partitioned data (among 2 parties) as described by Wright et al

The only computation required of the users is to shatter their respective data and merge to get the

final result. Communication costs for them are of transferring the shattered data to the servers and

downloading the outputs. The actual algorithm is being run on the cloud of servers owned and operated

by (untrusted) service providers. The expected outcome of the protocol is to correctly classify the data

points without revealing any information. That is, the cluster assignment should be identical to when

no privacy protection is employed. Every user should only learn the cluster assignment of its own data.

The actual cluster locations can be made known to the users, if agreed upon.

Our proposed framework provides the ability to efficiently cluster the private data partitioned among

various users. We compare and analyze the computation and communication overhead of our protocol

against a zero-privacy protocol, under which each user sends his data (in plain) to a third party for

clustering. In our process, all concerns mentioned in Table 5.2 are addressed. Note that our proposed

approach does not fall into any of the three categories discussed in Section 5.1. This work therefore

opens up a new direction of research to look at privacy preserving data mining.
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5.3 The Building Blocks of Security

We use the paradigm of Secret Sharing (SS) to achieve privacy and efficiency. Secret Sharing

(SS) [118] [25] [20] refers to the methods for distributing a secret among a group of servers, each

of which is allocated a share of the secret. The secret can be reconstructed only when the shares are

combined together; on their own, they have no meaningful information. In our problem setting, we ask

each of the collaborating users to compute the secret shares of their private data, and send them over

to the processing servers. The processing servers then privately collaborate (without reconstructing the

actual data) to run the K-means algorithm over the secret shares. Note that, not all SS methods allows

computation on the secret shares. In order to achieve this, we adopt the Chinese Remainder Theorem

(CRT) based secret sharing schemes [20] [64].

However, in the SS schemes of Asmuth et al. [20], and Goldreich et al. [64], the size (the number of

bits) to represent each share is greater than the size of the original data. In other words, for R servers,

using these schemes results in a minimum of R fold storage increase. Data expansion is important since

it results in cost overheads in terms of storage and interaction among the servers. It becomes even more

critical for applications such as data mining that deals with voluminous data.

Understanding the similar limitations, in Chapter 4 we proposed an efficient method to do privacy

preserving surveillance on videos (voluminous data). In this work, we extend the method and propose

secure protocols to privately carry our collaborative clustering. The data to be clustered using K-means

can be thought of as points in a D dimensional Cartesian space. The data is bounded, i.e. it has a

fixed range, and its scale invariant, i.e. even if we scale the axis, the cluster assignment will still be

the same. These two are the required desirable properties of the data, that are sufficient for one to

adopt the secret sharing scheme as proposed by us in Chapter 4. We therefore, adopt the Shatter (to

compute the secret shares) and Merge (to reconstruct the secret) functions for the Cartesian data and

design a communication and computationally efficient solution to achieve privacy preserving K-means

clustering.

Our proposed solution can be summarized as a three step protocol, 1) each user computes the secret

shares of his private data, 2) shares are then sent over to a cloud of servers and clustering is privately

carried out over the shares, and 3) the users reconstructs the cluster assignment and the cluster centers

using the Merge function. Before we jump into describing the K-means protocol in Sec: 5.4, for the

sake of completeness we briefly describe the Shatter and Merge functions as defined in Chapter 4. The

Shatter and Merge functions as defined in Chapter 4 are as follows:

Shatter Function φ(x) - Compute and store the secret shares of the private data : is defined as the

one that splits the data x into R parts, x1, x2, ..., xR, such that each share, xi, by itself does not reveal
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any information about x. The participating users pre-decide a set of R primes P1, · · · , PR and a scale

factor S. The Shatter function is defined as:

xi = φ(x, Pi) = (x · S + η) mod Pi, (5.1)

where xi is ith secret share, and η is an independent random number for each secret x, such that

0 ≤ η ≤ S/2. The secret share xi is stored with the ith server and on its own gives little meaningful

information of x.

In our scenario, each user can shatter his data (each attribute of a record is shattered independently,

η is random for each attribute) and sends over the shares to the specific servers for storage. The size of

each share is given by log(Pi) per attribute.

Merge Function µ() - Reconstruct the secret : given, xi = φ(x, Pi) for different prime Pis, the secret

x can be recovered using CRT [46] by solving a system of congruence. The merge function µ() is

defined as:

x = µ(xi, Pi) =
CRT (xi, Pi)

S
(5.2)

CRT recovers (x · S + η), which is appropriately scaled down (integer division by the scale factor)

to get the actual value of x. Note that η, which was randomly chosen for each attribute value is not used

for recovering the secret. The CRT hence forms our recovery transformation µ(). In our scenario, µ()

is used for reconstructing the cluster centers as computed by the clustering algorithm.

5.4 The Proposed Algorithm

Following notations are used for describing the protocol. Let L be the number of entities, each made

up of D attributes. K be the number of clusters required, and ~Ci, 1 ≤ i ≤ K , denotes the cluster

locations. The data is arbitrary partitioned among N users. R (R > 2) is the number of computation

servers employed. Each server is associated with a unique prime Pi, therefore the number of primes

is also R. Each entity is represented in a D dimensional space. The common distance metrics; such

a Euclidean, Manhattan or Minkowski; are used for finding the distances. To explain the algorithm

we will consider a Euclidean space. As the final output of the privacy-preserving K-means (PPKM)

algorithm, each user learns the cluster assignment of the entities owned by them, i.e. which of their

entities belong to each clusters. If agreed upon, the location of the K-clusters is also revealed to the

users.
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The complete protocol can be divided into two phases. The first phase deals with i) choosing the

appropriate primes and the scale factor, ii) shattering the data, and iii) secure aggregation of the data at

the servers. The second phase of the protocol deals with the clustering algorithm on the aggregate of

the shattered data available with the R computational servers. The basic algorithm follows directly from

the standard K-means algorithm [95], which consists of three steps, i) Initialization, ii) Lloyd Step, and

iii) Stopping Criterion. The complete protocol is as follows:

5.4.1 Phase One: Secure Storage

The first step is the selection of an appropriate residue number system (RNS) for secure storage. We

extend the analytical method to compute the parameters required for ensuring the security and privacy

in our problem setting. For a value of R we select P1, · · · , PR, such that their product, P , is larger

than any intermediate value we have to represent in our algorithm. This range can be easily computed

from the range of values we expect in the computations. Scaling the axis and translating the origin of

an Euclidean space does not change the final cluster assignment. Hence we represent negative numbers

with an implicit sign [129], i.e. −x ≡ 2M − x. Floating point data is taken care of by appropriately

scaling the dataset to retain a certain decimal precision.

Let [−U,U ] be the range of numbers we expect in the computations on secret shares. We choose

Pj’s such that P =

R
∏

j=1

Pj ≥ 2U . Typically, one could just choose the smallest of the R consecutive

primes satisfying the above property. For complete obfuscation of the data, the scaling factor chosen

should be higher than the largest prime. We now analytically choose the optimal set of parameters for

our problem setting.

5.4.1.0.6 Parameter Selection: Let [−M,M ] be the attributes domain. Then the points can be

represented in a D − dimensional Euclidean space, R
D
2M . Let W1 be the square of the maximum

possible Euclidean distance between two points, i.e. the distance between the two extreme points, thus

we get W1 = 4M2D. Also let W2 be the maximum sum of the coordinates we can get for a cluster

(needed for computing the cluster’s mean). This is easily computable as W2 = 2ML (entire database

belong to a single cluster). Let W be the upper range of number we expect in K-means, therefore we

have W = max(W1,W2).

Let us now assume, S to be the required scale factor to get complete privacy. The input data is

scaled using this factor. This can be viewed as scaling the axis of the Euclidean space by S, i.e. a

point x in the old coordinate system is mapped to S · x in the new scaled space. Therefore, we get

U = max(W1 · S
2,W2 · S). The primes now need to be chosen such that:

S ≥ max
j

Pj, and P ≥ 2U. (5.3)
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Simplifying the above, we find that if:

S ≈ (2W )
1

R−2 (5.4)

then the individual servers will have little meaningful information.

Each of the N-parties uses the shatter function (Eqn: 5.1), to compute secret shares of their respective

data. The shares are then sent over to the servers for processing. Note that we make no assumptions

on how the attributes of various data points are partitioned among the N -parties. If D is the (virtual)

database arbitrarily shared among the N parties. Each server j basically then stores the shatter of D

w.r.t. Pj .

5.4.1.0.7 Privacy: Each server stores only the shattered share of the data. As long as the servers do

not collude, little meaningful information of the entities is learned by any of the servers. This follows

directly from the security of the shattering scheme. In this entire phase the only information learned is

of how the data is actually being partitioned among the users, i.e., for each entity which all attributes

are being held by which user. However we note that, in practice this information gain is not significant,

and known a prior [132]. The indexing scheme employed ensures that the identity of the entity remains

unknown to the servers.

5.4.2 Phase Two: Secure K-means

At the end of the phase one, each computation server stores the secret shares (w.r.t. prime Pj) of the

database D. Since the scaling factor S was kept positive, the distance comparison in the original space

will be equivalent to distance comparison in the new scaled space. Thus, the cluster assignment of the

entities in the scaled space would be identical to what we would have expected in the original space.

The final cluster locations are obtained from the cluster centers that are learned in the transformed space

after appropriately scaling down and removing the introduced randomness.

Our algorithm will follow the same iterative structure as that of the standard K-means algorithm [95].

The objective is to cluster the data (available as secret shares), without leaking any information to any

of the servers. RNS being doubly homomorphic, the operations of addition and multiplication can be

independently carried out at each server. However division and comparison (both used in K-means)

are difficult to do privately in the RNS. We overcome these difficulties by designing communicationlly

efficient, privacy preserving protocols for them over one round of communication.

We now give a step by step description of the protocol used for phase two. Note here, that the N

users are oblivious of algorithm and the data involved in phase two. The contribution of this work is not

to improve upon the K-means algorithm as such but to propose an efficient protocol to privately carry

out the clustering.
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5.4.2.1 Step one: Initialization

Let ~C1, ~C2, · · · , ~CK be the K cluster centers, where each Ck is a D dimensional vector. The clusters

are initialized as the K entities from the database D chosen in a pseudo-random fashion. Since, we want

to keep the actual cluster locations also private, we thus store only their secret share components. i.e.

for a cluster location ~Ck, 1 ≤ k ≤ K , the computational server j, 1 ≤ j ≤ R, stores the vector ~Ckj ,

where, ~Ckj is the secret share of ~Ck w.r.t. Pj .

The servers commonly choose the indices of K entities as the initial cluster centers. The secret

shares of the chosen K entities, present with the servers, are used as the secret shares of the initial

cluster centers Ck. That is, at server j, Ckj initialized to the secret share of the chosen entity. The

pseudo-code of the algorithm is given in Algorithm 9.

Algorithm 9 PPKM: Initialization

1: for each cluster, k = 1 to K do

2: Choose a random entity index l, l ≤ L

3: We want to initialize ~Ck = ~Xl, where ~Xl be the D dimensional vector of entity l.
4: for each server, j = 1 to R do

5: Let ~Xlj be the data corresponding to entity l available with the server. We know ~Xlj

is shatter of ~Xl with mod Pj , and was stored with the server during phase one.

6: Initialize, ~Ckj to ~Xlj, where Ckj is the shatter share of Ck with mod Pj.

7: end for

8: end for

Privacy: Servers do not learn any additional information of the data. The initialization is done,

directly using the secret shares. This is done independently at each server, thus resulting in zero com-

putation and communication overheads over TTP.

5.4.2.2 Step two: Lloyd Step

In an attempt to minimize the objective function, each iteration reclassifies and recomputes the new

cluster locations. The algorithm terminates when it detects ‘no change’ (defined by the termination

criterion) in the cluster locations. Every iteration can be represented as a sequence of three steps as

described below.

5.4.2.2.1 Finding Closest Cluster Centers: As stated before, since the scaling factor was set to

a positive number, finding the closest point is equivalent to finding the one with the minimum of the

distances squared in the scaled space. Thus, for every data entity ~Xl, 1 ≤ l ≤ L, we find the square of

the Euclidean distance to each of the cluster centers ~Ck. The distance square between two D dimensional
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vectors ~X and ~Y , is defined as
D

∑

d=1

(X2
d + Y 2

d + 2.Xd.Yd) (5.5)

which is a set of additions and multiplications. Now, RNS being doubly homomorphic, the above equa-

tion can be directly computed using the secret shares. Hence, every server can independently compute

the respective secret shares of the distances between the L data points and the K cluster locations. For

every data point ~Xl, let ~Tl be the K length vector, whose share Tlk denotes the distance square between

data point ~Xl and cluster center ~Ck. The task is to, without actually reconstructing, compute Tlk from

the shatter shares of ~Xl and to assign the point ~Xl to a closest cluster k.

Tlk is represented in the RNS such that Tlkj denotes the secret share of Tlk (w.r.t. Pj) available at

server j. Now, each of the server j can use the Equation 5.5 to compute the share (Tlkj) using its locally

available secret shares of ~Xlj and ~Ckj .

Next, for each data point l, we need to find the cluster k such that Tlk is minimum. This would

require reconstructing and comparing Tlk’s. However, to maintain privacy, the actual distances, Tlk’s

should be kept private. We overcome this dilemma by applying a clever permutation and randomization

scheme. ~Tlk is secured by applying another layer of randomization on the secret shares before sending

them over for comparison to another untrusted server (thresholder). Finding the minimum of the K

numbers is an O(K) algorithm, i.e. the current minimum has to be compared against the next potential

candidate. We next describe the protocol to find the minimum of two numbers, Z1 and Z2. This can

then be repeated K − 1 times to find the minimum of K numbers.

Finding the minimum: (Z1 − Z2) ≤ 0 implies Z1 ≤ Z2 else otherwise. In-order to check for

this, at each server, we can compute the difference Z1j − Z2j and send over the difference shares to

an untrusted server for reconstruction and comparison. However, this naive approach reveals to the

thresholder the distance between the two data points. We secure this by randomizing the secret shares

of the differences before sending it over for comparison. We can even keep the random number itself

unknown to any of the servers by the following protocol.

Each of the R servers chooses a random number ri and sends over ri mod Pj to server j. Thus,

each server j, has
∑i=R

i=1 ri % Pj or r % Pj , where r =
∑R

1 ri (Algorithm 10: steps 5-12). The servers

uses this to randomize its share of difference. The randomized difference shares are then sent over to an

un-trusted server who reconstructs the randomized difference and returns the comparison against zero

for finding the minimum of the two. The smaller number is then compared against the next potential

candidate. After a series of K − 1 comparisons a data point is confidently and privately assigned to a

nearest cluster center. Note that the communication costs can further be reduced by choosing the random

numbers offline, i.e. when the systems are idle. Each server maintains the list of the secret shares of the

random numbers, r’s used in the final protocol.
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Algorithm 10 Find Minimum of K Numbers Protocol

1: Let Z1, Z2, ... ZK be the K numbers we want to find minimum of

2: R is the number of computational servers, each knowing Zkj, for 1 ≤ k ≤ K and 1 ≤ j ≤
R, where Zkj is the shatter share of Zk with mod Pj . Note that the actual value of Zk is

kept secret from all the servers.

3: Initialize minIndex = 1

4: for every index, k = 2 to K do

5: for every server, j = 1 to R do

6: Select a positive random number rj and share the modulo of rj with every other server

(step 7).

7: for every other server: i = 1 to R do

8: Send rji = rj mod Pi to the server i.
9: end for

10: end for

11: for every server, j = 1 to R do

12: Let r′j be the summation of the R random numbers received at each server j.

13: Compute the difference of the secret shares of ZminIndex and Zk. Randomize the

difference by multiplying with r′j .

14: The randomized difference share is sent over to the thresholder.

15: end for

16: Thresholder applies the merge function to obtain R′.(ZminIndex − Zk), where R′ is the

summation of R positive random numbers rj. The randomized difference is compared

with 0 and the result sent back to the servers.

17: if Threshold Result > 0 then

18: minIndex = k

19: end if

20: For next iteration, the role of the thresholder is switched to another pseudo-randomly

chosen server.

21: end for

22: Return min index

Correctness: Consider a point ~X , for which we want to find which is closer ~Y or ~Z. Let the points

be shattered with scale S and randomization ~a, ~b and ~c respectively. Thus, we have:

(X1, X2, · · · , XD) → (S · X1 + a1, · · · , S · XD + aD) (5.6)

(Y1, Y2, · · · , YD) → (S · Y1 + b1, · · · , S · YD + bD) (5.7)

(Z1, Z2, · · · , ZD) → (S · Z1 + c1, · · · , S · ZD + cD) (5.8)

Let us assume Y is closer than Z , then following holds:
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∑

(Xi − Yi)
2 ≤

∑

(Xi − Zi)
2 (5.9)

Using the secret shares, the corresponding distances in the scaled space are computed as:

Dist1 =
∑

(S(Xi − Yi) + (ai − bi))
2 (5.10)

Dist2 =
∑

(S(Xi − Zi) + (ai − ci))
2 (5.11)

Given that Equation 5.9 holds, the protocol is correct if Dist1 ≤ Dist2. From the constraints given

in Section 5.4.1, we know 0 ≤ ai, bi, ci ≤ S/2, thus we get −S/2 ≤ (ai − bi) ≤ S/2.

∑

(S(Xi − Yi − 1/2))2 ≤ Dist1 ≤
∑

(S(Xi − Yi + 1/2))2 (5.12)

∑

(S(Xi − Zi − 1/2))2 ≤ Dist2 ≤
∑

(S(Xi − Zi + 1/2))2 (5.13)

Thus, the protocol satisfies correctness if Equation 5.14 is true whenever Equation 5.9 is true.

∑

(S(Xi − Yi + 1/2))2 ≤
∑

(S(Xi − Zi − 1/2))2 (5.14)

This will hold if the Cartesian System is designed so as to nullify the effect of the additional ±1/2

in Equation 5.14. This is achieved by having the step-size in the Cartesian system as 2, i.e. the data is

scaled by 2 before choosing the parameters (Section 5.4.1).

Privacy: The protocol is secure against both the GCD and factorization based attacks. The servers

are made to jointly choose the randomization, which is different for every threshold operation. This

ensures security against the factorization based attacks. The role of the thresholder is also switched

among the R servers in an random order, thus ensuring security against the GCD based attacks.

5.4.2.2.2 Updating Cluster Locations: Once each of the L data points has been assigned to one of

the K clusters, the next step is to recompute the cluster locations. For every cluster k, the cluster center

is updated to the center of mass of the newly assigned points to the cluster. Thus, the new coordinate

of the cluster k is a (weighted) mean of the corresponding coordinates of the nk points assigned to the

cluster k. Let nk be the number of data points assigned to cluster k. For any cluster k, each server stores

the secret shares of the data points. Each server j, can thus independently compute the sum (Sumkdj)

using the secret shares of the nk data points. The updated cluster location is then obtained by dividing

the sum of co-ordinates by nk. However as we know that the generic division is not defined in the

RNS, therefore we cannot directly divide the sum’s shares. Furthermore, so as to maintain complete
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privacy, we will like to keep the updated cluster locations unknown from all the servers. Therefore, an

interactive protocol, similar to the one used for thresholding is employed for the job. We now describe

the privacy-preserving division protocol (PPDP).

PPDP: Consider a number X, secret shares of which are stored at the R servers. The task is to

privately divide X by n, such that the secret X and the quotient q = ⌊X
n
⌋ is kept private from all of the

servers. At the end of the protocol, all that the server j gets is the secret share of q w.r.t. Pj . PPDP is

achieved through a single round of interaction, and the secret data, X, is secured using a permutation

and a randomization method.

Just as in previous protocol (Algorithm 10, steps 5-12), the R servers jointly computes two random

numbers r and r′, such that server j knows only the shares of them. Each server now randomizes its

share of X according to Equation 5.15, before sending it over to an un-trusted server. As in the previous

protocol, this server is switched among the R servers in a pseudo-permutation fashion. The randomized

shares are then reconstructed using the merge function to compute X ′ (Equation 5.15).

Division is then performed to compute the randomized quotient q′, as given by Equation 5.17, where

q is the actual quotient that we wish to compute (Equation 5.16). We next compute the secret shares of

q′ and sends them over to the specific servers for de-randomization. Each server computes its share of

quotient, qj , from q′j using Equation 5.18. The secret share of the cluster center is then updated to the

computed share of the quotient. The pseudo-code of the protocol is given in Algorithm 11.

Algorithm 11 Privacy Preserving Division Protocol (PPDP)

1: R computational servers, stores i) Xj = shatter of X with mod Pj, ii) n

2: Randomly select r, r′, in the manner similar to as described in steps(5-12) of algorithm ??.

3: Let at each server j, rj, r′j be the shatter shares of the two chosen random numbers r and

r′.
4: for each server, j = 1 to R do

5: Compute X ′

j = rj · (Xj + r′j · n) mod Pj

6: Send X ′

j to the thresholder (switched among servers in a pseudo random order).

7: end for

8: Thresholder uses the merge function to compute X ′

9: Compute q′ = ⌊X′

n
⌋

10: Send over the q′j to server j, where q′ is the shatter share of q′ with mod Pj.

11: for each server, j = 1 to R do

12: De-randomize the received quotient to get qj = (q′j ∗ r−1
j − r′j) mod Pj

13: end for

14: Now, qj is the required shatter share of the quotient, q, with prime Pj.

X → X ′ = r · (X + r′ · n) (5.15)
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q =
X

n
(5.16)

q′ =
X ′

n
= r · (q + r′) (5.17)

qj = (q′j ∗ r−1
j − r′j) mod Pj (5.18)

Privacy: The PPDP method provides high level of privacy for the secret data. The randomization

parameters r and r′ are jointly chosen and remains unknown to all. The randomization of the secret data,

X, is itself done using the secret shares. The randomization function (Equation: 5.15) is designed so as

to safeguard against the potential attacks such as factorization and GCD based. In the entire process, no

additional meaningful information is leaked to any one. The method not only provides provable privacy

but is also efficient with communication cost limited to one round of interaction.

5.4.2.2.3 Checking Termination Criterion: At the end of every iteration, we check for the close-

ness of the new clusters. The ‘closeness’ is defined as i) minimizing the total energy of the clusters, the

energy of a cluster k is given as Ek =
∑nk

1 (‖~xl −~cl‖), ii) the new clusters locations are close to the old

ones. i.e
∑K

1 (‖~ck − ~c′k‖), or iii) the number of points making transition across clusters is small.

If the closeness is below the threshold, then we go to step three otherwise continue with next iteration.

Any of these definitions can be privately implemented using the approaches like already described.

5.4.2.3 Step three: Knowledge Revelation

At the termination of the Lloyd step, the cluster centers are stored as the secret shares at the R serves.

The cluster assignment of the anonymized entities is also available. To learn the cluster locations, the

servers are made to collude under legal agreements. The identity of the entities is known only to the

data owner, and hence he is the only one who learns the final cluster assignment. The cluster locations

can be revealed, only if agreed upon.

5.5 Cost Analysis

We analyze the overheads of one iteration of the algorithm. The total cost depends on the number

of iterations required to converge, which is dependent on the termination criterion. The overheads are

108



computed against the naive TTP based protocol(i.e. sending the data in plain to a trusted server). A

comparison is also drawn against those using the primitives such as homomorphic encryption or SMC.

5.5.1 Communication Cost

The overheads incurred are a result of the interaction among the servers needed for the operations of

division and comparison during the Lloyd step. In our solution, every comparison and division requires

just one round of communication. For L entities in a D dimensional space and K clusters this translates

to (K−1)·L comparisons and K ·D division operations per iteration. Thus requiring (K−1)·L+K ·D

rounds of communication per iteration.

We now compare against the traditional protocols. The approaches suggested in literature uses

computationally intensive interactive protocols to implement secure multiplication and comparison. The

common basic tool used is Oblivious Transfer (OT), which in turn is used for secure circuit evaluation.

The communication cost is linear in the number of multiplication gates in the circuit. In K-means,

the number of gates for an operation of multiplication, division and comparison is linear in number of

bits. Moreover, each round of OT is also computationally expensive as it involves O(log(W )) PKC

encryption/decryption subroutines.

Compared to this, our shattering based solution, which is defined in RNS, is doubly homomorphic.

Thus, enabling secure multiplication without any communication overhead. In practice this is a huge

gain over SMC. Further, the interaction is limited to just one round of communication for both division

and comparison operations. Thus, introducing the paradigm of shattering and merging significantly

reduces the overhead costs over the traditional privacy preserving clustering solutions.

5.5.2 Data Expansion

Securing the data as secret shares results in a data expansion. An optimal selection of the parameters

is discussed in Section 5.4.1. Each attribute which requires log(W ) bits of storage in the plain domain

is shattered to a total size of R
R−2 · log(W ) bits. On the other-hand, using the standard SS scheme

would lead to a total size of R · log(W ) bits. Thus, shattering operation gains by a factor of R − 2 over

the standard scheme. The data expansion is critical not only due to the storage costs but also because

it determines the number of bits required per round of communication. For example, a 32 bits data

shattered into 5 shares requires 54 bits, while using the standard scheme would requires 160 bits of

storage. Another advantage is in the performance gain as faster computations are possible for attributes

represented using less number of bits.
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5.6 Discussion

We propose a novel ‘cloud computing’ based solution using the paradigm of Secret Sharing to pri-

vately cluster an arbitrary partitioned data among N users. Traditional approaches uses primitives such

as SMC or PKC, thus compromising the efficiency of the solutions and in return provide very high level

of privacy which is usually an overkill in practice. This work contributes at ways of looking at things

differently. We show that privacy need not be always at the cost of efficiency.

We exploit the properties of the data and the problem to circumvent the limitations faced by tradi-

tional methods (that are general-purpose). Our solution does not demand any trust among the servers or

users. Security is based on the standard assumptions of honest-but-curious, non-colluding servers hav-

ing ability to generate random numbers. As expected, the protocol is costly compared to the one with

zero-security. However, the additional costs are kept to a minimum and are negligible compared to those

of SMC. Unlike SMC, in our method interaction is limited to one round per division and comparision

and is reasonable for a practical deployment.

With the RNS being doubly homomorphic, the paradigm of shattering and merging is generic and

has potential to extend over to even more diverse data mining applications.
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Chapter 6

Conclusions

In this thesis, we introduced efficient privacy preserving protocols for processing visual data. Tradi-

tionally, generic cryptographic primitives such as TTP, PKC, SMC etc., have been employed for ensur-

ing the security and privacy of sensitive data. However, we show that the associated computation and

communication overhead are significantly high, making such approaches of limited practical interest. In

light of this, a few solutions have recently been proposed to improve the efficiency by making a tradeoff

in privacy and accuracy.

The work in this thesis opens up a new avenue for practical and provable secure implementations

of vision algorithms, that rely on distribution of data over multiple computers. Broadly, we address

the scenarios, where a service provider Bob, lends the processing power and algorithms to clients.

However, for many practical applications, Bob may not wish to make his proprietary algorithms public,

while a client himself may not be willing to reveal his private data to anyone, including the processing

server. This is closely related to secure multi-party computation (SMC) problem in cryptography. In this

work, we propose application specific, computationally efficient and provably secure computer vision

algorithms for the encrypted domain. In designing the algorithms, we addresses the issues of efficacy

and efficiency by utilizing the domain specific knowledge.

In our first work, blind authentication, we propose private biometric authentication protocol which

is extremely secure under a variety of attacks and can be used with a wide variety of biometric traits.

The primary advantage of the proposed approach is the ability to achieve classification of a strongly

encrypted feature vector using generic classifiers such as Neural Networks and SVMs. In fact, the

authentication server need not know the specific biometric trait that is used by a particular user, which

can even vary across users. Once a trusted enrollment server encrypts the classifier parameters for a

specific biometric of a person, the authentication server is verifying the identity of a user with respect to

that encryption. The real identity of the person is hence not revealed to the server, making the protocol,

completely blind. This allows one to revoke enrolled templates by changing the encryption key, as well

as use multiple keys across different servers to avoid being tracked, thus leading to better privacy.
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We then present an efficient, practical and highly secure framework for implementing visual surveil-

lance on untrusted remote computers. The challenge of introducing privacy and security in such a

practical surveillance system has been stifled by the enormous computational and communication over-

head required by the solutions. To achieve this, we demonstrate that the properties of visual data can

be exploited to break the bottleneck of computational and communication overheads. This change in

view allows us to have a simplified capture device, an efficient unidirectional data flow, and surveillance

operations performed directly on the shattered streams. Only the surveillance results will be available to

the observer. Our method enables distributed secure processing and storage, while retaining the ability

to reconstruct the original data in case of a legal requirement. Such an architecture provides us both

security as well as computation and communication efficiency.

We next extend our proposed paradigm to achieve the ability to do un-supervised learning using K-

means in the encrypted domain. We use the paradigm of secret sharing, which allows the data to be

divided into multiple shares and processed separately at different servers. Using the paradigm of secret

sharing, allows us to design a provably-secure, cloud computing based solution, which has negligible

communication overhead compared to SMC and is hence over a million times faster than similar SMC

based protocols. Our proposed solution is not only computationally efficient but also secure independent

of whether or not P 6= NP. Our paradigm is generic and has the potential to extend over to even more

diverse data mining applications.

In future, one could further extent the approach to make it capable of implementing generic vision al-

gorithms. We need to explore the possible extensions of the work to other domains and design solutions

addressing issues mentioned in Section 1.1.
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Appendex

6.1 Negative number representation and homomorphic property

A two’s-complement system is a system in which negative numbers are represented by the two’s

complement of the absolute value. An N-bit two’s-complement numeral system can represent every

integer in the range −2N−1 to +2N−1 − 1.

Basically, we use the implicit sign representation of the numbers. If the range of numbers used is (0,

M), then we use the numbers in the range (0, M/2) to represent positive numbers, and the remaining to

represent negative numbers. The representation is chosen to ensure a single representation of zero, ob-

viating the subtleties associated with negative zero. In our system, a negative number: -x is represented

as x’ = M-x. Efficiently handling the negative numbers is an implementation issue. We note that once

the numbers are encoded using the implicit sign representation, we can carry out the regular arithmetic

operations on it to get the correct result.

Fundamentally, the two’s complement system represents negative integers by counting backward and

wrapping around. For example: -95 modulo 256 is equivalent to 161 since: −95 + 256 = −95 + 255 +

1 = 160 + 1 = 161

To understand the homomorphic property of the representations, consider the following examples.

For the purpose of explanation, let us consider M to be 101, a simple encryption function to be expo-

nentiation and the corresponding decryption function would be logarithmic. The example encryption

function we have used is additive homomorphic.

In short, given a number x, we normalize it and then scale to maintain an acceptable decimal pre-

cision. We then compute the corresponding representation x’ in our system. It is then encrypted to

w = ex′

. This when decrypted gives us z = (ln(w) + M)%M . x is recovered from z as follows, if

z > M/2, then z = z − M , else z.

Let us now consider a few numerical examples to compute y = x1 + x2 in encrypted domain. The

examples are considered to cover all possible sign combinations of x1 and x2.

1) Let x1 = 20 and x2 = 22, we compute x′

1 = 20, x′

2 = 22. These are then encrypted using the

encryption function to get: y1 = ex′

1 = e20, and y2 = ex′

2 = e22. The sum is computed in the encrypted
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domain as: y′ = y1 ·y2 = e20 ·e22 = e42. The final sum is recovered post decryption to y = ln(y′) = 42.

2) Let x1 = 20, x2 = −12, we compute x′

1 = 20, x′

2 = 101 − 12 = 89. These are then encrypted

using the encryption function to get: y1 = ex′

1 = e20, and y2 = ex′

2 = e89. The sum is computed in the

encrypted domain as: y′ = y1 · y2 = e20 · e89 = e109. The final sum is recovered post decryption to

y = ln(y′) = 109 > 50, therefore y = 109 − 101 = 8.

3) Let x1 = 12, x2 = −25, we compute x′

1 = 12, x′

2 = 101 − 25 = 76. These are then encrypted

using the encryption function to get: y1 = ex′

1 = e12, and y2 = ex′

2 = e76. The sum is computed in

the encrypted domain as: y′ = y1 · y2 = e12 · e76 = e88. The final sum is recovered post decryption to

y = ln(y′) = 88 > 50, therefore y = 88 − 101 = −13.

4) Let x1 = -13, x2 = −23, we compute x′

1 = 101 − 13 = 88, x′

2 = 101 − 23 = 78. These are

then encrypted using the encryption function to get: y1 = ex′

1 = e88, and y2 = ex′

2 = e78. The sum is

computed in the encrypted domain as: y′ = y1 · y2 = e88 · e76 = e166. The final sum is recovered post

decryption to y = ln(y′) = 166%101 = 65 > 50, therefore y = 65 − 101 = −36.

5) Let x1 = -28, x2 = 28, we compute x′

1 = 101 − 28 = 73, x′

2 = 28. These are then encrypted

using the encryption function to get y1 = ex′

1 = e73, and y2 = ex′

2 = e28. The sum is computed in the

encrypted domain as: y′ = y1 · y2 = e73 · e28 = e101. The final sum is recovered post decryption to

y = ln(y′) = 101 > 50, therefore y = 101 − 101 = 0.

The number representation, is basically an implementation issue. The data can be imagined as points

in an n-dimensional space. The classifier is a hyperplane in this space, while the confidence score is the

distance of the data point from this plane. Now, one can employ any efficient translation, rotation and

scaling as long as it is made sure that the distance comparision in the original space is equivalent to the

corresponding distance comparision in the transformed space.
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6.2 Residue Number System (RNS)

A residue number system (RNS) [124] represents a large integer using a set of smaller integers, so

that computation may be performed more efficiently. It relies on the chinese remainder theorem (CRT)

[124] of modular arithmetic for its operation.

A residue number system is defined by a set of k integer constants,

{m1,m2,m3, ...,mk}, (6.1)

referred to as the moduli. Let M be the least common multiple of all the mi.

Any arbitrary integer X smaller than M can be represented in the defined residue number system as

a set of k smaller integers

{x1, x2, x3, ..., xk}, (6.2)

with xi = X modulo mi representing the residue class of X to that modulus.

6.2.1 Chinese Remainder Theorem (CRT)

The CRT is the method to reconstruct integers in a certain range from their residues modulo a set of

pairwise relatively prime moduli. We denote

Zn = {1, ..., n} (6.3)

Let M = m1m2. Suppose x ∈ ZM . An equation of the form

ax ≡ b mod n (6.4)

is called a linear congruence. Consider the numbers

a1 ≡ x mod m1 (6.5)

a2 ≡ x mod m2

The CRT considers the question of recombining a1, a2 back to get x. CRT tells us, when the system

will have a solution, and if does have a solution, it provides an algorithm for finding one. We will want

to solve this equation for x.

6.2.1.0.1 Theorem 1 The linear congruence ax ≡ b mod n has a solution if and only if d | b, where

d = gcd(a, n). If d does not divide b, then there are d mutually incongruent solutions modulo n.

If gcd(a, n) = 1, then the linear congruence ax ≡ b mod n has a unique solution modulo n.
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6.2.1.0.2 Theorem 2 Let m1,m2, ...,mk be pairwise relatively prime integers. That is, gcd(mi,mj) =

1 for 1 ≤ i < j ≤ k. Let ai ∈ Zmi
for 1 ≤ i ≤ k and set M = m1m2m3...mk . Then there exists

a unique y ∈ ZM such that y ≡ ai mod mi, for i = 1, ..., k. Furthermore there is an O(k2) time

algorithm to compute y given a1, a2,m1,m2, where k = max(|m1|, |m2|).

6.2.1.0.3 Proof For each i, let

ni = (M/mi) ∈ Z (6.6)

By hypothesis, gcd(mi, ni) = 1 and hence ∃ bi in Zmi
such that

nibi ≡ 1 mod mi (6.7)

Let ci = bini. Then

ci ≡ 1 mod mi ≡ 0 mod mj; for : j 6= i (6.8)

Set

y ≡
∑

i

ciai mod M (6.9)

Then for each i

y ≡ ai mod mi (6.10)

Further, if y′ ≡ ai mod mi for each i then y′ ≡ y mod mi for each i and since mis are pairwise

relatively prime, it follows that y ≡ y′ mod M , proving uniqueness.

6.2.1.0.4 Algorithm Let,

M =

k
∏

i=1

mi (6.11)

where mi are pairwise relatively prime. We can represent any integer in ZM by a k − tuple whose

elements are in Zmi
using the following correspondence:

A ↔ (a1, a2, ..., ak) (6.12)

where A ∈ ZM , ai ∈ Zmi
, and ai = A mod mi, for 1 ≤ i ≤ k.

For every integer A such that 0 ≤ A < M there is a unique k-tuple (a1, a2, ..., ak) with

0 ≤ ai < mi that represents it, and for every such k-tuple (a1, a2, ..., ak) there is a unique A in

ZM . Computing A from (a1, a2, ..., ak) can be done as follows:

Let Mi = M/mi for 1 ≤ i ≤ k. Note that Mi = m1 ×m2 × ...×mi−1 × mi+1 × ...×mk so

that Mi ≡ 0 mod mj ∀ j 6= i.
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Then for : 1 ≤ i ≤ k let

ci = Mi × (M−1
i mod mi) (6.13)

By the definition of Mi, it is relatively prime to mi and therefore has a unique multiplicative inverse

mod mi. Thus the above equation is well defined and produces a unique value ci. We can now compute

A ≡ (
k

∑

i=1

aici) mod M (6.14)

6.2.1.0.5 Example [123] To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define

m1 = 37, m2 = 49, M = 1813, and A = 973. We also have M1 = 49 and M2 = 37. Using the

extended Euclid’s algorithm, we compute M−1
1 = 34 mod m1 and M−1

2 = 4 mod m2. (Note that

we only need to compute each Mi and each M−1
i once for all.) Taking residues modulo 37 and 49, our

representation of 973 is (11,42), because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11,42)? First we compute (678) ↔

(678 mod 37, 678 mod 49) = (12, 41). Then we add the tuples element-wise and reduce (11+12 mod

37, 42+41 mod 49) = (23, 34). To verify that this has the correct effect, we compute:

(23, 34) ↔ a1M1M
−1
1 + a2M2M

−1
2 mod M (6.15)

= [(23)(49)(34) + (34)(37)(4)] mod 1813

= 43350 mod 1813

= 1651

and check that it is equal to (973+678) mod 1813 = 1651.

Suppose we want to multiply 1651 (mod 1813) by 73. we multiply (23, 24) by 73 and reduce to get

(23x73 mod 37, 34x73 mod 49) = (14, 32). It is easily verified that

(14, 32) ↔ a1M1M
−1
1 + a2M2M

−1
2 mod M (6.16)

= [(14)(49)(34) + (32)(37)(4)] mod 1813

= 28060 mod 1813

= 865

= 1651 × 73 mod 1813
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