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Abstract

Motion can be defined as change in position of an object of interest with respect to time. This thesis
explores the methods of analyzing motion using time frequency analysis. In this thesis, we address two
problems: (i) Small Motion Magnification in Videos and (ii) Motion Detection in Perfusion Weighted
Imaging (PWI).

Human eye and its brain interface can visualize or detect the motion within a certain range of spatial
and temporal frequencies. But in most of the cases, it might be possible that frequencies which are be-
low this range also can have useful information. We can simplify this by saying that there can be small
motions which are not visible to the naked eye. Even though these small motions are difficult to detect,
they may contain useful information. In first part of thesis, we present a semi-automated method to mag-
nify small motions in videos. This method amplifies invisible or hidden motions in videos. To achieve
motion magnification, we process the spatial and temporal information obtained from the video itself.
Advantage of this work is that it is application independent. Proposed technique estimates required pa-
rameters to get desirable results. We demonstrate performance on a few videos. Motion magnification
performance is equivalent to existing manual methods.

In second part of thesis, we present a novel automated method to detect motion in perfusion weighted
images (PWI), which is a type of magnetic resonance imaging (MRI). In PWI, blood perfusion is mea-
sured by injecting an exogenous tracer called bolus into the blood flow of a patient and then tracking
it in the brain. PWI requires a long data acquisition time to form a time series of volumes. Hence,
motion occurs due to patient’s unavoidable movements during a scan, which in turn results into motion
corrupted data. There is a necessity of detection of these motion artifacts on captured data for correct
disease diagnosis. In PWI, intensity profile gets disturbed due to occurrence of motion and/or bolus
passage through the blood vessels. In this work, we propose an efficient time-frequency analysis based
motion detection method. We show that proposed method is computationally inexpensive and fast. This
method is evaluated on a DSC-MRI sequence with simulated motion of different degrees. We show that
our approach detects motion in a few seconds.
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Chapter 1

Introduction

Motion can be defined as change in position of an object of interest with respect to time. It can be
described in terms of velocity, acceleration, displacement and time. In this thesis, we attempt to analyze
motion using time-frequency representation.

Need for Time-Frequency Analysis

In general, a signal is represented in two forms, i.e., one is in time domain h(t) and other in frequency
domain H(f). In both forms, time (t) and frequency (f ) variables are treated as mutually exclusive
to obtain representation in terms of one variable by integrating over other variable. This means one
variable is getting excluded. Hence, each of these representations of the signal are non-localized with
respect to the excluded variable. In other terms, time domain representation is obtained by averaging the
values of the frequency domain representation at all frequencies and frequency domain representation
is obtained by averaging the values of the frequency domain representation at all time instances. Time
domain representation hides information about frequency while frequency domain representation hides
information about time. Therefore, we need a representation of a signal as two variable function whose
domain is the two-dimensional space (t, f ). Its constant-t cross section shows the frequencies present
at time t while its constant-f cross section shows the time instances present at frequency f . Such a
representation is called as ‘Time-Frequency Representation’ [8]. In this representation, variables t and
f are not mutually exclusive but are present together. Some uses of time-frequency representation are
listed below:

• Analyze the raw signal in (t, f ) domain to identify its characteristics like time variation, frequency
variation, number of components, relative amplitude etc.

• Separate the components from each other and even from background noise by filtering in (t, f )
domain.

• Analyze specific components separately such as,

– Track instantaneous amplitude,
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– Track instantaneous frequency,

– Track instantaneous bandwidth etc.

. . . 

. . . 

T

ttI 1}{ 

k

iil 1}{ 

k

ii th 1)}({ 

. . . 

Figure 1.1 Extraction of time series. A video {It}Tt=1 with ‘k’ landmarks ({hi(t)}ki=1) is shown. Time
series ({hi(t)}ki=1) at these ‘k’ landmark pixels are extracted. Landmarks and corresponding time series
are shown in same colour.

Any image data collected over time such as video I(m,n; t), (m ∈ [1,M ], n ∈ [1, N ], t ∈ [1, T ])

can be projected as several one dimensional time series. Let us consider a video of ‘T ’ frames (images),
{It}Tt=1. Each frame is of size M ×N . Therefore, M ×N × T voxels should be considered to process
the video. If a set of voxels follow a specific property, we can detect those voxels, i.e., landmarks,
{li}ki=1 and process those voxels only. Here, k ≤ M × N . Since motion is change in position of an
object of interest with respect to time, we extract time series ({hi(t)}ki=1) at all these landmarks. Thus,
only ‘k’ time series of length ‘T ’ are processed instead of M × N × T voxels. Thus, processing in
one dimension is computationally effective compared to that in three dimensions. This motivated us to
analyze motion in one dimension due to the fact that motion is a change in position of an object with
respect to time. In this thesis, we utilized time-frequency representation for two applications:

• Small Motion Magnification in Videos

• Motion Detection in Perfusion Weighted Imaging (PWI)

Small Motion Magnification in Videos

Human eye and its brain interface can visualize or detect the motion within a certain range of spatial
and temporal frequencies. But in most of the cases, it might be possible that frequencies which are
below this range also can have useful information. We can simplify this by saying that there can be
small motions which are not visible to the naked eye. Even though these small motions are difficult to
detect, they may contain useful information. In this thesis, we utilized time-frequency representation to
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track instantaneous frequencies and thus estimate desirable parameters automatically to magnify small
motions.

There are several applications for motion magnification, for example, visualization, physical diagno-
sis, pre-measurement planning for precise physical measurements, and surveillance etc. [42]. Therefore,
there is a large scope for research to develop a system to amplify or magnify small motions.

Motion Detection in PWI

In perfusion weighted magnetic resonance imaging (PWI), blood perfusion is measured by injecting
an exogenous tracer called bolus into the blood flow of a patient and then tracking it in the brain. PWI
requires a long data acquisition time to form a time series of volumes, I(m,n, l; t). Hence, motion often
occurs between volumes due to a patient’s unavoidable movements during a scan, which in turn results
into motion corrupted data. There is a necessity of detection and subsequent correction of these motion
artifacts on captured data for correct disease diagnosis. In PWI, intensity profile gets disturbed due to
occurrence of motion and/or bolus passage through the blood vessels. Even though PWI scans consist
of volumes of two dimensional images, they are acquired over the time. Therefore, we can extract one
dimensional time series from volumes. Here, we used time-frequency representation to process these
extracted one dimensional time series in order to detect the motion.

1.1 Problem Overview

In this work, we have proposed how time frequency analysis can be used for different types of motion
analysis. It is shown on two problems, i.e., (i) Estimation of Parameters for Automated Magnification
of Small Motions in Videos and (ii) Motion detection in perfusion weighted MRI.

In [75] , an attempt is made to magnify small motions in videos which otherwise will be invisible.
In this, videos are projected as one dimensional time series for processing. To magnify small motions,
given video is decomposed spatially. Then user has to set parameters for filtering and magnification. In
our work, we estimate these parameters automatically using time-frequency analysis. Main contribution
is to magnify the small motions in video automatically. It consists of the following two contributions:
(1) Estimate bandwidth for temporal filter and (2) Estimate the magnification parameters, automatically.

As explained above, PWI volume series can be converted into one dimensional series. Motion detec-
tion using one dimensional time series is obviously faster compared to that of two dimensional scans.
These facts motivated us to analyze the PWI data in terms of one dimensional time sequences because
we believe that frequency of time series will vary when there are motion artifacts. An efficient time-
frequency analysis based motion detection method is proposed and it is computationally inexpensive
and fast.
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1.2 Contribution

In this research work, we focus on analyzing motion using time-frequency representation. Main
contributions are the following:

• Proposed a semi-automated method to magnify small motions in videos. This method amplifies
invisible or hidden motions in videos. To achieve motion magnification, we process the spatial and
temporal information obtained from the video itself. Main contribution lies in temporal analysis.
Here, we used a time-frequency representation for temporal analysis and from which we estimate
the required parameters. Advantage of this work is that it is application independent. Proposed
technique estimates required parameters to get desirable results.

• Proposed a novel automated method to detect motion corrupted volumes in PWI using time-
frequency analysis. This is more efficient than an existing method which uses phase correla-
tion [26]. In [26], given PWI data is divided into 3 sets according to bolus status: (i) pre-wash-in,
(ii) transit and, (iii) post-wash-out sets. Intensity correction is applied to transit set volumes.
Then, phase correlation is performed to detect motion. In our work, we detect motion without
any explicit intensity correction. We show that proposed time-frequency analysis based motion
detection method outperforms compared to that of [26] in terms of accuracy and computational
efficiency.

1.3 Thesis Organization

This thesis is organized in five chapters. Chapter 1 provides an overview of the general background
and the problem setting. Motivation behind the present work and the major contributions are also briefly
described. In Chapter 2, we present the state of the art in small motion magnification in videos and
motion detection in PWI.

An efficient technique for magnifying small motions in videos is presented in Chapter 3. We have
presented motion magnification based on time-frequency analysis. We demonstrate performance on 9
different videos. Motion magnification performance is equivalent to existing manual methods.

Motion detection and subsequent detection in perfusion weighted MRI is presented in Chapter 4.
We show that proposed method is computationally inexpensive and fast. This method is evaluated on a
PWI sequence with simulated motion of different degrees. We show that our approach detects motion
in a few seconds.

Finally, Chapter 5 contains the conclusions of this thesis and future work.
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Chapter 2

Background and Previous Work

This chapter provides sufficient background related to this thesis. It contains discussions on (i) dif-
ferent time-frequency representations of a signal and show how Stockwell transform outperforms other
time-frequency distributions, (ii) video magnification, i.e., how small motions have been magnified in
previous works and, (iii) fundamentals of perfusion weighted magnetic resonance imaging and different
techniques used to detect motion artifacts occurred due to patient’s motion in MRI scanner.

2.1 Stockwell Transform and its Applications

2.1.1 Evolution of Stockwell Transform

Stockwell Transform (ST) is a time-frequency representation which has been shown as significant
improvement over existing techniques for localizing spectral information. In this section, an overview
of ST is presented in terms of its efficiency in time-frequency localization. First, we start with the
most popular temporal analysis, i.e., Fourier transform and discuss various time-frequency representa-
tions. Since discussing reverse transformation will be beyond the scope of this thesis, we explain every
transform in terms of forward transformation only.

2.1.1.1 Fourier Transform

Fourier transform (FT) [23] [9] is one of the most popular frequency analysis technique. It transforms
time domain signal to frequency domain signals by using a complex sinusoid ei2πft as a basis.

For a given signal h(t), continuous Fourier transform is given as,

(2.1)

H(f) = 〈h(t), ei2πft〉

=

∞∫
−∞

h(t)e−i2πftdt

5
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Figure 2.1 Chirp Signal.

where f is frequency and 〈., .〉 denotes inner product. This inner product notation is used later also
in this chapter. Even though FT is a popular frequency domain representation, it has the following
disadvantages [27]:

• FT fails to estimate fractional frequencies. For a signal with fractional frequencies, FT spreads
the spectrum to other frequencies which are not actually present in the given signal.

• FT can not help to estimate which frequency exists at which time, i.e., it fails to the frequency
content in the temporal dimension.

• FT of a signal consisting of a particular frequency for short duration, i.e., a non stationary signal,
can not give information about that particular frequency.

To overcome these disadvantages, a combined time-frequency representation was proposed.

2.1.1.2 Short Time Fourier Transform

Short time Fourier transform (STFT) [2] is the first joint time-frequency representation. Basic idea
of STFT is to break up the signal into small time segments and apply Fourier transform (FT) to analyze
each segment so that summation of such spectra gives information about how frequency is varying with
respect to time.
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For a given signal h(t), short time Fourier Transform is given as,

(2.2)

HST (τ, f) = 〈h(t), w(t− τ)ei2πft〉

=

∞∫
−∞

h(t)w(t− τ)e−i2πftdt

where τ is time shift parameter, f is frequency and w(t) is window. Window width is chosen such
that the windowed signal segment can be assumed to be stationary so that it makes the signal more or
less unaltered around time τ but surpasses the signal for times distant from the time of interest.

The time-frequency distribution obtained from STFT is called a spectrogram. The spectrogram of
signal h(t) is given as,

SP (τ, f) = |STFT (τ, f)|2 (2.3)

where |.| denotes the absolute value.
Time localization refers how well signal variations can be represented in time domain whereas fre-

quency localization refers how well variations in frequencies of signal can be represented in frequency
domain. We achieve good time localization with a narrow window in time domain, i.e., wide window
in frequency domain and similarly, we achieve good frequency localization with a wide window in time
domain, i.e., narrow window in frequency domain. Since the window can not be made arbitrarily nar-
row, there is a trade-off between time and frequency localization in the spectrogram for a given window.
For a given window w(t), trade-off between time and frequency resolution can be explained by the un-
certainty principle [14] which is as given below,

σ2t σ
2
f ≥

1

4
(2.4)

where, σt is standard deviation of w(t) in time domain, σf is standard deviation of w(t) in frequency
domain (i.e., W (f) Fourier transform of w(t)). σt is defined as,

σt =
√
E[(t− µt)2] =

√√√√√ ∞∫
−∞

(t− µt)2w(t)dt (2.5)

where, E[.] represents expectation and µt =
∞∫
−∞

tw(t)dt represents mean value.

σf is defined as,

σf =
√
E[(f − µf )2] =

√√√√√ ∞∫
−∞

(f − µf )2W (f)df (2.6)
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where, E[.] represents expectation and µf =
∞∫
−∞

fW (f)df represents mean value.

2.1.1.3 Gabor Transform

Gabor transform is a special case of STFT with Gaussian window. Gaussian window satisfies lower
bound of uncertainty principle, thus giving optimal resolution in both time and frequency domains.

For a given signal h(t), Gabor transform [25] is given as,

(2.7)

HG(τ, f) = 〈h(t), e−π(t−τ)
2
ei2πft〉

=

∞∫
−∞

h(t)e−π(t−τ)
2
e−i2πftdt

where τ is time shift parameter and f is frequency.

2.1.1.4 Wigner Ville Distribution

The Wigner-Ville distribution (WVD) is one in which signal itself is used to define the window. For
a given signal h(t), WVD [72] [67] [7] is given as,

(2.8)

HWV (τ, f) = 〈h(τ − 1

2
t), h(τ +

1

2
t)ei2πft〉

=

∞∫
−∞

h(τ − 1

2
t)h(τ +

1

2
t)e−i2πftdt

where τ is time shift parameter and f is frequency.
Advantage of Wigner-Ville distribution (WVD) over the spectrogram is that we do not have to choose

a window. WVD is better than any spectrogram with a particular window. But it has disadvantage that it
produces cross terms in time-frequency distribution which are unavoidable in case of a signal consisting
of summation of several signals.

2.1.1.5 Continuous Wavelet Transform

A wavelet is a continuous time signal which satisfies the following properties.

∞∫
−∞

ψ(t)dt = 0 (2.9)

∞∫
−∞

|ψ(t)|2dt <∞ (2.10)
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∞∫
−∞

|Ψ(ω)|2

|ω|
dw = C <∞ (2.11)

where ψ(t) is called as mother wavelet and Ψ(ω) is Fourier transform of ψ(t). Equation 2.11 is called
admissibilty condition which should be satisfied by mother wavelet in order to reconstruct the signal.
Continuous wavelet transform (CWT) [29] of a square integrable signal h(t) is defined as,

(2.12)

HCW (a, b) = 〈h(t), ψa,b(t)〉

=

∞∫
−∞

h(t)ψ∗a,b(t)dt

where a is dilation parameter, b is translation parameter, ∗ denotes complex conjugation and ψ∗a,b(t)
is a family of wavelets generated by dilating and translating mother wavelet as below,

ψa,b(t) =
1√
|a|
ψ(
t− b
a

) (2.13)

As shown above, CWT is obtained by the inner product of the signal and dilations and translations of
the mother wavelet. CWT is represented as a time scale plot, where scale is the inverse of frequency.
At a low scale (high frequency), CWT offers high time resolution whereas at higher scales (lower
frequencies) it shows high frequency resolution.

2.1.1.6 Stockwell Transform

Stockwell transform [63] was introduced as an extension of CWT. It is based on a moving and scal-
able Gaussian window. It has some desirable characteristics over CWT as it is unique in providing
frequency dependent resolution. It is due to the fact that the modulating sinusoids are fixed w.r.t. time
axis, whereas the localizing scalable Gaussian window dilates and translates. For a given signal h(t),
Stockwell transform (ST) is given as,

(2.14)
S(τ, f) = 〈h(t), w(τ − t, f)ei2πft〉

=

∫ ∞
−∞

h(t)w(τ − t, f)e−i2πftdt

where w(t, f) is defined as,

w(t, f) =
|f |√
2π
e−t

2f2/2, (2.15)

w(t, f) denotes the window, f denotes the frequency, τ denotes time shift parameter, and |.| denotes
absolute value.
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2.1.1.7 Discussion

To distinguish between different time-frequency representations mentioned above, let us consider an
example of synthetic signal as shown in Figure 2.1. This synthetic signal consists of two cross chirps
and two frequency bursts.

h(t)

=


cos(2π(10 + t/7) ∗ t/256) + cos(2π(256/2.8− t/6) ∗ t/256) if 0 ≤ t < 114 and 142 < t ≤ 255

cos(2π(10 + t/7) ∗ t/256) + cos(2π(256/2.8− t/6) ∗ t/256) + cos(2πt ∗ 0.42) if 114 ≤ t ≤ 122

cos(2π(10 + t/7) ∗ t/256) + cos(2π(256/2.8− t/6) ∗ t/256) + cos(2πt ∗ 0.42) + cos(2πt ∗ 0.42) if 134 ≤ t ≤ 142

(2.16)

Different time frequency representations for the above synthesized signal are shown in Figure 2.2.
All these are generated in MATLAB. Figure 2.2(b) shows spectrogram of signal (Figure 2.1) with
boxcar window of length 20 units. Here, both chirps are detected but the two high frequency bursts
are not detected. The effect is similar in case of Gabor transform with window of length 20 units (See
Figure 2.2(c)). Both STFT and Gabor transform do not have sufficient time resolution to resolve the two
signals. Wigner-Ville distribution detected both chirps with very good resolution but failed to detect
high frequency bursts and one can see cross terms effect (See Figure 2.2(d)). Even in case of CWT, both
chirps are detected but high frequency bursts could not be detected (See Figure 2.2(e)). Here, Morlet
wavelet is used as mother wavelet as shown in Figure. Stockwell transform is shown in Figure 2.2(f). In
this case, both chirps are detected along with two high-frequency bursts. Hence, we can say Stockwell
transform is better for time-frequency localization compared to other time-frequency representations.
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(a) Chirp Signal.
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(b) STFT with boxcar window.
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(c) STFT with Gaussian window (Gabor Transform).
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(d) WVD.
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(e) CWT with Morlet wavelet as mother wavelet.
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(f) Stockwell Transform.

Figure 2.2 Different Time Frequency Representations for a Chirp Signal.
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2.1.2 Applications of ST

Stockwell transform has been used in various fields [69]. A few of them will be discussed in this
section.

Stockwell transform was initially developed for analyzing geophysics data [62]. In Geophysics, S
transform has extensively been used. For example, In [49], S transform is used for analyzing polarization
and filtering of three component signals.

[44] presents functional MRI (fMRI) cluster analysis using Stockwell ransform. In this, Stockwell
transform is used studying time-frequency characteristics of wavelet based functional clutters. It shows
the application of the Stockwell transform to the characterization of voxel-type signals obtained by the
application of the wavelet packet algorithm. These results showed that the dynamic behavior of the
average signal for each cluster can be defined by a time-frequency map. Moreover, a measure of the
interdependence of the instantaneous phase between clusters is obtained from the cross ST spectrum.

In the recent past, ST has been used for the analysis of MRI data. In [28] [46], ST is used to remove
artifacts in functional MRI (fMRI) time courses due to which brain activity detection is improved.
In this work, one dimensional Fourier transforms (FTs) are performed on raw image data to obtain
phase profiles. The time series of phase magnitude for each and every point in the phase profile is
then subjected to the ST to obtain a time-frequency spectrum. The temporal location of an artifact
is identified based on the magnitude of a frequency component relative to the median magnitude of
that frequency occurrence over all time points. After each artifact, frequency is removed by replacing
its magnitude with the median magnitude, an inverse ST is applied to regain the MR signal. Brain
activity detection within fMRI datasets is improved by significantly reducing image artifacts that overlap
anatomical regions of interest. The major advantage of ST-filtering is that artifact frequencies may be
removed within a narrow time-window, while preserving the frequency information at all other time
points.

In [15], an approach for power quality analysis using Stockwell transform is proposed. The local
spectral information of the wavelet transform can, with slight modification, be used to perform local
cross spectral analysis with very good time resolution. The phase correction absolutely references the
phase of the wavelet transform to the zero time point, thus assuring that the amplitude peaks are regions
of stationary phase. The excellent timefrequency resolution characteristic of the S transform makes it an
attractive candidate for analysis of power system disturbance signals. Several power quality problems
are analyzed using both the S transform and discrete wavelet transform, showing clearly the advantage
of the S transform in detecting, localizing, and classifying the power quality problems. In [60] also,
Stockwell transform is used for power quality analysis.

In [4], a technique to extract palm-print features for recognition is proposed. Here, features are
extracted based on instantaneous-phase difference obtained using Stockwell transform of overlapping
circular-strips. [37] presents a technique for image compression using S transform. It shows that S
transform offers better image compression compared to wavelet transforms. [19] presents a method for
characterizing image texture based on two dimensional Stockwell transform. It describes an approach
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to obtain local spatial frequency information for an image and show that this information can be used
to characterize the horizontal and vertical frequency patterns in synthetic images. This method provides
the computational efficiency and multi-scale information of wavelet transforms, while providing texture
features in terms of Fourier frequencies. It outperforms leading wavelet based texture analysis methods.

In [76], polar version of ST is used to analyze the texture patterns in MRI for the diagnosis of multiple
sclerosis. [77] discusses the effectiveness of ST for medical imaging and shows how to enhance fMRI
time courses by removing frequency artifacts which are introduced due to patient’s quick breathing.

Stockwell transform is used even in seismogram analysis [18] [17] [47], analysis of engine induction
noise in acceleration [30] and for analysis of EEG signals [58] [51] [1] [50].

2.2 Small Motion Magnification in Videos

In this section, we describe the hidden motions in videos and previous methods which attempt to
magnify those motions.

Human eye and its brain interface can visualize or detect the motion within a certain range of spatial
and temporal frequencies. But in most of the cases, it might be possible that frequencies which are
below this range also can have useful information. We can simplify this by saying that there can be
small motions which are not visible to the naked eye. Even though these small motions are difficult to
detect, they may contain useful information.

There are several applications for motion magnification, for example, visualization, physical diagno-
sis, pre-measurement planning for precise physical measurements, and surveillance etc. [42]. Therefore,
there is a large scope for research to develop a system to amplify or magnify small motions.

There are previous works in this direction which attempted to reveal invisible motions in videos. [42]
analyzes and amplifies subtle motions and visualize deformations that would otherwise be invisible. [68]
propose using the cartoon animation filter to create perceptually appealing motion exaggeration. As
such, they rely on accurate motion estimation, which is computationally expensive and difficult to make
artifact-free, especially at regions of occlusion boundaries and complicated motions.

Temporal processing has been used previously to extract invisible signals [52] and to smooth mo-
tions [24]. In [52], a heart rate is extracted from a video of a face based on the temporal variation of
the skin color, which is normally invisible to the human eye. They focus on extracting a single number,
whereas we use localized spatial pooling and bandpass filtering to extract and reveal visually the sig-
nal corresponding to the pulse. This primal domain analysis allows to amplify and visualize the pulse
signal at each location on the face. This has important potential monitoring and diagnostic applica-
tions to medicine, where, for example, the asymmetry in facial blood flow can be a symptom of arterial
problems. In [24] per-pixel temporal filters are used to dampen temporal aliasing of motion in videos.

In [3, 39], human motions are generated by reusing the captured motion to create new motions.
In [75], small motion is magnified without tracking motion. However, this approach needs users to
provide a set of parameters as input for every video in order to magnify motion. For unknown video,
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this consumes time to find desirable parameters. While all these techniques require user interaction
in some or the other way, we are not aware of any previous work addressing automated approach to
magnify small motions.

2.3 Motion Detection in Perfusion Weighted MRI for Brain

In this section, we give brief description on perfusion weighted MRI and its types. Then we explain
the necessity to detect motion artifacts prior to motion correction.

2.3.1 Perfusion Weighted MRI

Magnetic resonance imaging (MRI) has been emerging as an efficient tool in clinical practice for the
analysis of brain functions through several metabolic parameters. There are two types of MRI, namely,
diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI). PWI has been used exten-
sively for the evaluation of tissue after acute stroke, non-invasive histologic assessment of tumors and
evaluation of neurodegenerative conditions such as Alzheimers disease [48]. Diffusion weighted images
are obtained by incorporating strong agnetic field gradient pulses into an imaging pulse sequence. In
DWI, structures with fast diffusion are dark due to the fact that these structures are subject to greater
signal attenuation, whereas structures with slow diffusion are bright. In PWI, an exogenous tracer is
introduced into the blood circulation and its concentration in a tissue is monitored in a tissue over time.
Blood flow to the corresponding tissue can be determined by obtaining the rate of delivery of the tracer.
In clinical practice, Gadolinium-DTPA is used as the exogenous tracer. This tracer induces a differ-
ence in magnetic susceptibility between the blood compartment and the brain tissue, when it reaches
the brain capillaries. Here, difference in magnetic susceptibility occurs because the tracer can not pen-
etrate the blood-brain barrier. Diffusion of water through the internal gradients produce a low signal
attenuation [16].

There are two types of PWI: (i) dynamic susceptibility contrast (DSC) imaging, and (ii) dynamic
contrast enhanced (DCE) T1 weighted imaging. DSC is most widely used for the brain, while DCE is
most widely used in the rest of the body though its experimental and research use is increasing in brain.
Here, we present these types of PWI from a review paper [53].

2.3.1.1 Dynamic Susceptibility Contrast Imaging (DSC)

This imaging is called as T2∗ imaging, which refers to gradient echo sequences. At high concen-
trations, exogenous tracer induces substantial T2∗ shortening, resulting first in loss and then recovering
of the signal as the tracer is distributed or diluted. DSC MR imaging can be performed by using either
a gradient-echo or a spin-echo pulse sequence [12]. Gradient-echo DSC sequences tend to be more
sensitive to larger vessels, such as veins, in the imaged region. Spin-echo DSC techniques tend to
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show greater sensitivity to smaller vessels (and therefore are more representative of capillary density)
or abnormal (for example, tumor specific) vessels.

It should be noted that T2∗ effects extend beyond the borders of the blood vessels into the sur-
rounding tissues; this characteristic is important when there is little leakage of contrast agent into the
surrounding tissue, such as with an intact blood-brain barrier [5]. These methods can be safely used
when the rate of vascular leakage is low. However, when the rate of leakage is high, relative cerebral
blood volume (rCBV) mapping results can be underestimated for two reasons: (a) The T2∗ susceptibil-
ity effect is reduced as the gradient of contrast agent is reduced, and (b) there is also signal enhancement
due to T1 shortening effects of contrast material in the extravascular extracellular space (EES) [73]. For
this purpose, T1-insensitive sequences, small flip angle, or dual-echo approaches [20] are used, as is
presaturation of the EES with administration of a preinjection dose of contrast material [33]. Postpro-
cessing mathematic corrections are also frequently used [12].

Although at this point a relatively large number of studies in which rCBV was measured have been
performed, no single standard technique for rCBV measurement has been established. A number of
rCBV measurement methods exist, including placement of a single region of interest and calculation of
the mean of repeated rCBV measurements, but few studies have been performed on the reproducibility
of rCBV measurements [71]. Although reproducibility with some of these techniques appears to be ac-
ceptable for present clinical purposes, it remains to be seen how well suited these measurements are for
the assessment of moderate changes in rCBV after such interventions as antiangiogenesis therapy, i.e.,
how the biologic variation in these measurements compares with changes due to therapy. Permeability
can also be assessed with the use of DSC images, which would allow one to obtain both permeability
and rCBV measurements from the same infusion of contrast material [54]. However, the technique is
not considered to be valid under conditions in which a very high degree of contrast material leakage is
present, which is a limitation in many cases [70].

2.3.1.2 Dynamic Contrast Enhanced Imaging (DCE)

Dynamic contrast-enhanced MR imaging approaches are based on T1 shortening produced by an
infusion of paramagnetic contrast material [65]. T1-based changes are primarily a result of contrast
material diffusion into the EES. Dynamic imaging is typically performed during an interval of approx-
imately 510 minutes rather than during the first pass of the bolus. However, a T1-based first pass
approach has also been proposed and tested [41][40][31]. In addition, the actual T1 values of the tis-
sues at baseline (before contrast material infusion) are required for most analysis algorithms in order to
perform the pharmacokinetic analysis [22]. This calculation can be performed by using a series of T1-
weighted images obtained at different flip angles. To maintain the required temporal resolution, three-
dimensional imaging schemes are usually used (which have the drawback of a longer acquisition time
than two-dimensional schemes), and arterial input functions are generally obtained in the center of the
acquisition volumes to reduce end-section effects. Because dynamic contrast-enhanced approaches rely
on T1 shortening of the EES to develop signal intensity and image contrast, these methods are less opti-
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mal than T2∗-weighted methods, in which the rate of leakage into the EES is low. As might be expected,
data acquisition parameters can influence data analysis and need to be optimized [22]. Quantification
of absolute cerebral blood volume (rather than rCBV) can be obtained with perfusion CT (Computed
Tomography) through use of venous and arterial input functions [34]; however, the exact method by
which quantification of absolute cerebral blood volume can be obtained using perfusion MR imaging is
still a matter of active investigation.

PWI has been used for the evaluation of functioning of brain through assessment of several metabolic
parameters. In PWI, cerebral perfusion is used as a metabolic parameter, which explains the blood
passage through the vascular system of the brain. An exogenous tracer called bolus is injected into
the blood flow of a patient and then cerebral perfusion is measured by the analysis of hemodynamic
time-to-signal intensity curve generated when bolus passes through the brain.

2.3.2 Motion Detection

In PWI, a time series of volumes are formed in a long acquisition time. Patient often has difficulty
in staying still during this period. Therefore, it is more likely that patient may move unavoidably during
scanning which in turn results into motion artifacts in scans. There is a need of detection and subsequent
correction of these motion artifacts. There are works in medical imaging, for example [10], [32], [61]
addressed this problem in terms of registration of whole time series to a reference volume. Motion cor-
rection of the 4D data can be seen as alignment of motion corrupted volumes to “stationary” volumes.
The standard approach to motion correction of 4D perfusion MRI data perform is via an alignment of
motion corrupted volumes. Thus, there is no explicit detection and subsequent correction of motion. For
DSC-MRI, motion correction techniques include registering the time series to either a single volume or
the mean volume of the entire time-series data [32]. [10] includes a model of dynamic contrast in an
iterative registration process for tracking tumour motion. 3D rigid registration via cylindrical phase
correlation has been proposed in [6] which is capable of handling highly misaligned volumes and is
noise resilient. In DCE-MRI, motion correction has been done via registration techniques including a
rigid body model [36], nonrigid B-spline [66], maximization of a special Gibbs energy function using
a gradient descent algorithm [21], mutual information with a spatial transformation model [56], an
intensity correction model [38], group-wise registration [35] or progressive principal component regis-
tration [45]. In general, motion correction has been found to be a time-limiting step ( 90% of processing
time) in a PWI analysis pipeline [64]. Since 3D registration is computationally intensive [59] it would
be more efficient if only a subset of volumes need to be aligned instead of every volume in the entire
time-series data. In general, if a time-series has N phases (or volumes), all the phases are not corrupted
by motion. Hence, it is worthwhile to first detect the subset≤ N volumes that is affected by motion and
subsequently correct this subset.

All the above methods do not detect motion. Hence, non-corrupted volumes are also registered
which makes the process computationally expensive and it is obvious that these volumes do not need any
correction [55]. Therefore, it is preferable to have a prior knowledge about motion corrupted volumes.

16



To the best of our knowledge, only [26] and [55] have detected motion prior to correction. Motion
correction is typically the rate limiting step in processing as each volume has to be registered to a ref-
erence volume. This is compounded by the dynamically varying contrast in the volume series due to
passage of an injected contrast agent. This work presents a two stage motion correction method, consist-
ing of motion detection and a 2-pass registration method for aligning the motion-corrupted volumes. A
2D block-wise phase correlation in central slices is used for the first stage. Alignment employs a strat-
egy which is sensitive to the status of the bolus in the volume and is based on gamma-variate function
fitting for intensity correction to handle dynamic contrast in DSC MRI.

2.4 Summary and Comments

In this thesis, we analyze motion using time frequency analysis. For this purpose, we have used
Stockwell transform. To the best of our knowledge, any time-frequency analysis or to be specific,
Stockwell transform is not used before to magnify small motions in videos and detect motion arti-
facts in perfusion weighted MRI. Even though data handled in this work is three dimensional, it varies
changed with respect to time in case of both videos and perfusion MRI data. Therefore, we project three
dimensional data into one dimensional time signals and process the data temporally and then achieve
desirable results. Due to reduction in dimensions, proposed approaches are obviously computationally
effective and fast.
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Chapter 3

Estimation of Parameters for Automated Magnification of Small Motions

in Videos using ST

3.1 Introduction

Human eye and its brain interface can visualize or detect the motion within a certain range of spatial
and temporal frequencies. But in most of the cases, it might be possible that frequencies which are
below this range also can have useful information. We can simplify this by saying that there can be
small motions which are not visible to the naked eye. Even though these small motions are difficult to
detect, they may contain useful information.

There are several applications for motion magnification, for example, visualization, physical diagno-
sis, pre-measurement planning for precise physical measurements, and surveillance etc. [42]. Therefore,
there is a large scope for research to develop a system to amplify or magnify small motions.

There are previous works in this direction. In [3, 39], human motions are generated by reusing the
captured motion to create new motions. In this paper, we propose to process the data obtained from the
video and reconstruct the video from the modified data such that new video shows magnified motion.
In [75], small motion is magnified without tracking motion. However, this approach needs users to
provide a set of parameters as input for every video in order to magnify motion. For unknown video, this
consumes time to find desirable parameters. While all these techniques require user interaction in some
or the other way, we are not aware of any previous work addressing automated approach to magnify
small motions. This motivated us to develop a mechanism to estimate these parameters automatically
from the given data. We use a time frequency representation called Stockwell transform for this purpose.
We introduce computationally inexpensive techniques to estimate parameters. We illustrate the utility
of the proposed method on examples in which small motions were made visible.
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Figure 3.1 Overview of the Eulerian video magnification method. This Figure is adapted from [75].
The input video sequence is decomposed into different spatial frequency bands, and the same temporal
filter is applied to all bands. The filtered spatial bands are then amplified by a given factor α, added
back to the original signal, and collapsed to generate the output video.

3.2 Background

In this section, we describe Eulerian video magnification [75] [57] as it forms the basis of our work.
This method is illustrated in Figure 3.1. Spatial and temporal processing are combined to emphasize
subtle temporal changes in a video. Firstly, the video sequence is decomposed into different spatial
frequency bands. These bands might be magnified differently because (a) they might exhibit different
signal-to-noise ratios, or (b) they might contain spatial frequencies for which the linear approximation
used in motion magnification does not hold (Section 3.2.1). In the latter case, the amplification is
reduced for these bands to suppress artifacts. Spatial processing is used to increase temporal signal-
to-noise ratio by pooling multiple pixels, by which the frames of the video are spatially low-pass filter
and downsampled for computational efficiency. A full Laplacian pyramid [11] is constructed for this
purpose. Then, temporal processing is performed on each spatial band. The time series corresponding
to the value of a pixel is considered in a frequency band and a bandpass filter is applied to extract the
frequency bands of interest. The temporal processing is uniform for all spatial levels, and for all pixels
within each level. Then the extracted bandpassed signal is multiplied by a magnification factor α. This
factor can be specified by the user. Next, the magnified signal is added to the original the spatial pyramid
is collapsed to obtain the final output.

3.2.1 Eulerian Video Magnification

Eulerian video magnification depends on the first-order Taylor series expansions. Here, it is shown
how temporal processing produces motion magnification.

19



x (Space) 

In
te

n
si

ty
 

0 

),( txB

),( txB





Figure 3.2 Approximation of spatial translation using temporal filtering. This Figure is adapted
from [75].

3.2.1.1 First Order Motion

A one dimensional signal undergoing translational motion is considered to describe the relationship
between temporal processing and motion magnification. This analysis generalizes directly to locally-
translational motion in two dimensional signals. Let I(x, t) denote the image intensity at position x and
time t. Since the image undergoes translational motion, the observed intensities can be expressed with
respect to a displacement function δ(t), such that I(x, t) = f(x + δ(t)) and I(x, 0) = f(x). The goal
of motion magnification is to synthesize the signal

Î(x, t) = f(x+ (1 + α)δ(t)) (3.1)

for amplification factor α.

Here, the image is approximated by a first-order Taylor series expansion. Then, the image at time t,
f(x+ δ(t)) in a first-order Taylor expansion about x is expressed as

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
(3.2)

After applying a broadband temporal bandpass filter to I(x, t), the output will be B(x, t). If the
motion signal (displacement function, δ(t)) lies within the passband of this temporal bandpass filter,
then B(x, t) can be expressed as
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B(x, t) = δ(t)
∂f(x)

∂x
(3.3)

This bandpass signal is amplified by a factor α and added to original signal, I(x, t). The recon-
structed signal can be represented as

Ĩ(x, t) = I(x, t) + αB(x, t) (3.4)

From Equations 3.2, 3.3 and 3.4, reconstructed signal Î(x, t) can be approximated as

(3.5)

Ĩ(x, t) = I(x, t) + αB(x, t)

≈
[
f(x) + δ(t)

∂f(x)

∂x

]
+ αB(x, t)

≈
[
f(x) + δ(t)

∂f(x)

∂x

]
+ α

[
δ(t)

∂f(x)

∂x

]
≈ f(x) + (1 + α)δ(t)

∂f(x)

∂x

Here, it is assumed that first-order Taylor expansion holds for the amplified larger perturbation,
(1 + α)δ(t). Thus, reconstructed signal Î(x, t) (from Equation 3.5) can be approximated as

Ĩ(x, t) ≈ f(x) + (1 + α)δ(t) (3.6)

From Equation 3.6, it can be observed that spatial displacement (δ(t)) of the image (f(x)) is am-
plified by a magnitude of ‘1 + α’ at time ‘t’. This is shown in Figure 3.2 with a single sinusoid and
a relatively small displacement, δ. Here, first-order Taylor series expansion is used to approximate the
translated signal at time t + 1. Therefore, signal is assumed to be translated by (1 + α)δ while adding
the amplified signal (by a factor, α) to the original signal I(x, t).

3.2.1.2 Bounds

If an image contains sudden changes, i.e., high spatial frequencies, the first-order Taylor series ap-
proximation will be inaccurate for large values of perturbation ((1 + α)δ(t)). This is due to the fact
that perturbation, (1 + α)δ(t), increases with larger magnification (α) and motion (δ(t)). To overcome
this, bounds for magnification factor, α, are derived in terms of spatial frequency, ω. For this purpose,
it is assumed that the reconstructed signal, Ĩ(x, t), is approximately equal to the true magnified signal,
Î(x, t), as below

Ĩ(x, t) ≈ Î(x, t) (3.7)

Substituting Equations 3.5 and 3.1 in the above Equation 3.7,

f(x) + (1 + α)δ(t)
∂f(x)

∂x
≈ f(x+ (1 + α)δ(t)) (3.8)
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Here, it is assumed that f(x) = cosω(x) for spatial frequency ω and 1 + α is denoted as β. Then,
Equation 3.8 becomes

cos(ωx) + βδ(t)
∂ cos(ωx)

∂x
≈ cos[ω(x+ βδ(t))] (3.9)

⇒ cos(ωx)− βωδ(t) sin(ωx) ≈ cos(ωx+ βωδ(t)) (3.10)

⇒ cos(ωx)− βωδ(t) sin(ωx) ≈ cos(ωx) cos(βωδ(t))− sin(ωx) sin(βωδ(t))

(∵ cos(A+B) = cosA cosB − sinA sinB)
(3.11)

The Equation 3.11 holds only when

cos(βωδ(t)) ≈ 1 (3.12)

sin(βωδ(t)) ≈ βωδ(t) (3.13)

which hold within 10% for βωδ(t) ≤ π
4 (the sine term is the leading approximation and sin(π4 ) =

0.9π4 ).

∴ βωδ(t) ≤ π

4
(3.14)

In terms of spatial frequency, ω = 2π
λ , Equation 3.14 becomes

βδ(t) ≤ λ

8
(3.15)

Re-substituting β = 1 + α in Equation 3.15,

(1 + α)δ(t) ≤ λ

8
(3.16)

The above Equation 3.16 provides the required largest motion magnification factor, α for a given
motion, δ(t) and image spatial wavelength, λ.

3.2.1.3 Multiscale Analysis

The above analysis (Section 3.2.1.2 suggests a scale-varying process. Here, a specified magnification
factor, α, is used for some desired band of spatial frequencies. Then, magnification factor, α, is scaled
back for the high spatial frequencies where amplification would give undesirable artifacts. Figure 3.3
shows such a modulation scheme for magnification factor, α. The spatial frequency content of the
different levels can be estimated using corresponding levels of the Laplacian pyramid.
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Amplification 

Desired amplification Linear 
falloff 

Figure 3.3 Motion magnification factor, α, as function of spatial wavelength λ. This Figure is adapted
from [75]. Magnification factor is fixed to α for spatial bands that are within derived bound (Equa-
tion 3.16), and is attenuated linearly for higher spatial frequencies.

3.2.2 Discussion

The above explained Eulerian video magnification requires the following.

• Motion type present in video should be known to find the suitable filter, which is used in temporal
analysis.

• Band of frequencies present in video should be known to find the filter parameters.

• User has to specify the magnification parameters (cut-off wavelength, λc and magnification factor,
α).

In our work, we attempted to estimate filter parameters and magnification parameters automatically
based on time-frequency analysis. We explain the proposed small motion video magnification.

3.3 Proposed Method for Estimating Parameters for Automated Magni-

fication of Small Motions in Videos

To magnify small motions, in [75], given video is decomposed spatially. Then user has to set pa-
rameters for filtering and magnification. In our work, we estimate these parameters automatically. Main
contribution of this work is to magnify the small motions in video automatically. It consists of the fol-
lowing two contributions: (1) Estimate bandwidth for temporal filter and (2) Estimate the magnification
parameters, automatically. We call proposed method as semi-automated due to the fact that temporal
filters used are from [75].

Overview of the proposed framework is given in Figure 3.4. Given an input video of N frames,
{It}Nt=1, the proposed method consists of the following steps: (1) Estimation of parameters: (i) Ex-
tract first two frames, {It}2t=1; (ii) Estimate landmark pixels, {li}ki=1; (iii) Extract time series at these ‘k’
pixels from N frames; (iv) Apply time frequency representation; (v) Estimate parameters for bandpass
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Figure 3.4 Overview of the proposed framework. Initially, parameters (ωl, ωh, α, λc) are estimated from
the landmark pixels ({li}ki=1) determined from the first two frames of input video ({It}2t=1). Then input
video ({It}Nt=1) is divided into spatial bands, which are pixel-wise filtered with same temporal filter and
amplified by magnification factor, α. Reconstruction ({Ĩt}Nt=1) is done by adding these amplified bands
along with original spatial bands.

filter (ωl, ωh) and magnification (α, λc); (2) Magnification: (i) Decompose the given video spatially
into different spatial bands; (ii) Apply pixel-wise bandpass filter with ωl and ωh as lower and higher
cut-off frequencies; (iii) Multiply with magnification factor, α for wavelengths less than λc; (3) Recon-
struction: (i) Reconstruct the video, {Ĩt}Nt=1 by adding magnified signal to original signal.

3.3.1 Landmark Detection

To get the landmark pixels, it was observed that considering all pixels for determining bandwidth and
magnification factor is not efficient due to the fact that (1) the whole process will be time consuming due
to the computationally intensive time-frequency analysis and (2) videos, considered for this work, have
small motions in few regions and hence, all pixel locations do not necessarily undergo motion. There-
fore, we adapted a mechanism to find landmark pixels. These pixels are obtained from the difference of
edge maps of first two frames of a given video because the pixels at edges definitely experience motion
from one frame to another frame. This is shown in Figure 3.5. Time signals at these landmark pixels
are used to determine the parameters (See Figure 3.6).
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Figure 3.5 Estimation of landmark pixels.
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Figure 3.6 Extraction of time series.

3.3.2 Time-Frequency Analysis

3.3.2.1 Stockwell Transform

Even though Fourier transform gives the information about the spectral components in a signal, it
fails to locate where those frequencies occur in that signal. So, it is preferable to consider time frequency
representation (TFR). Different techniques for time frequency representation have been proposed. A
few of them are short time Fourier transform (STFT), Gabor transform, continuous wavelet transform
(CWT) and Wigner ville distribution etc. In [63], it was proven that Stockwell transform outperforms
all these TFR techniques in localizing time and frequency because it has frequency dependent resolution
whereas other transforms have windows of fixed width.

For a given time signal h(t), its Stockwell transform is defined as,

25



k

ii th 1)}({ 

. . . 

Time Frequency 
Analysis 

k

ii fS 1)},({ 

Extract dominant 
frequencies at 
each location, t 

k

ii t 1)}({ 

Figure 3.7 Applying Stockwell transform on time series.

S(τ, f) =

∫ ∞
−∞

h(t)
|f |√
2π
e−(τ−t)

2f2/2e−i2πftdt (3.17)

where h(t) is the time signal, f denotes the frequency and τ denotes time shift parameter. An exam-
ple is shown for a synthetic signal in Fig 4.3. Previous works, for example [52] has shown that temporal
processing is done generally to extract invisible information from the signal. In general, spectral band
is determined either empirically or assumed depending on application but such approaches fail to find
the dominant frequency components automatically. We eliminate such dependency. In this work, we
consider time signals from a video sequence, only at the locations of landmark pixels.

3.3.3 Parameter Estimation

We find bandwidth for bandpass filtering the time signals automatically. These limits of frequency
are determined using Stockwell transform (See Figure 3.7). It is observed that the minimum and max-
imum frequencies of mean of frequencies obtained from each time series of a pixel can give useful
information for temporal processing. We carried out this processing on time series data in Y space of
YIQ colour space.

Lower (ωl) and higher (ωh) cut off frequencies are given by,

ωl = min
i

(mean
t

({ωi(t)}ki=1)) (3.18)

ωh = max
i

(mean
t

({ωi(t)}ki=1)) (3.19)

From Stockwell transform, we estimate the magnification factor α. It is determined as follows,

(1 + α)h(t) <
λc
8

(3.20)
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Figure 3.8 An example of Stockwell transform. Time signal shown in left is h[0 : 63] = cos(2πt ∗
6/128), h[64 : 127] = cos(2πt ∗ 25/128), h[20 : 30] = h[20 : 30] + 0.5 ∗ cos(2πt ∗ 52/128). It
contains a low-frequency signal for the first half, a middle-frequency signal for the second half and a
high-frequency burst at t = 20. All these frequencies are clearly visible along with time location in
Stockwell transform as shown in right (bright pixels indicate high strength of transform).

where h(t) is time signal and λc is cut-off wavelength beyond which magnification factor, α is zero.
Eq. (3.20) provides the largest magnification factor.

Eq. (3.20) is modified as,

(1 + αi(t))hi(t) <
λi(t)

8
∀i = 1→ k (3.21)

where hi(t) is time signal at ith landmark pixel, αi(t) provides magnification factors for hi(t) and λi(t)
is cut-off wavelength corresponding to hi(t) beyond which magnification factor, αi(t) is zero.

As explained in Section 4.4, Stockwell transform gives time frequency representation. We utilize this
time frequency representation to find desirable magnification factor α. From Stockwell transform, we
obtain information about which wavelengths (or frequencies) are occurring at what times. Thus we get
λi(t) from Stockwell transform. These {λi(t)}ki=1 are substituted in Eq. 3.21 to get {αi(t)}ki=1. Since
videos involve small motion, we need to consider landmark pixels at which time signals can be used
to determine magnification factor. A few of these time signals may contain noise and hence, may give
incorrect α and λc values. To overcome this problem, we have considered median of all magnification
factors and maximum of all wavelengths obtained from Eq. (3.20). This can be shown mathematically
as,

λc = max
i

(max
t

({λi(t)}ki=1)) (3.22)

α = median
i

(max
t

({αi(t)}ki=1)) (3.23)

27



(c) 

(e) 

(d) 

(a) 

(b) 

(f) 

(g) 

(h) 

(i) 

Figure 3.9 Sample frames from videos used in experimentation (a)baby (b)guitar (c) shadow (d)face2
(e)wrist (f)baby2 (g)face (h)camera (i)subway. All these are shown in proportion with the size of the
corresponding video.

3.3.4 Motion Magnification

Spatial decomposition of videos into different spatial frequency bands is done to increase the signal-
to- noise ratio using Laplacian pyramid [11]. These frequency bands are filtered and magnified pixel-
wise differently according to the level in pyramid [75] using estimated parameters. Reconstruction is
done by adding original signal from spatial decomposition and magnified signal.

3.4 Experiments and Results

3.4.1 Experimental Setup

We use data given in [74] for our experiments. This data consists of 9 videos, namely baby, baby2,
camera, face, face2, guitar, shadow, subway and wrist as mentioned in Table 3.1. Sample frames from
these videos are shown in Figure 3.9. All experiments are implemented using MATLAB on a system
with 4GB RAM and Intelr core i5 CPU with 2.5 GHz processor. Every video takes time in the order of
a few minutes to compute.
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Video
Frame Rate Length

(Hz) (seconds)
baby 30 10
baby2 30 29

camera 300 33
face 30 10
face2 30 10
guitar 600 10

shadow 30 6
subway 30 8
wrist 30 29

Table 3.1 Video Clips used in Testing.

Video α λc ωl(Hz) ωh(Hz)
baby 32 30 0.5 3
baby2 30 30 0.6 2.8

camera 7 29 1.5 16.9
face 55 30 0.6 5.6
face2 17 30 1.02 10.56
guitar 101 29 0.77 8.16

shadow 13 30 0.92 5.8
subway 42 29 0.52 4.05
wrist 11 30 0.5 4

Table 3.2 Estimated parameters for magnification factor α, cut-off wavelength λc, lower cut-off fre-
quency for temporal filter ωh, higher cut-off frequency for temporal filter ωh.

Video
ωl(Hz) ωh(Hz)

Proposed [75] Proposed [75]
baby 0.5 0.4 3 3

baby2 0.6 2.33 2.8 2.67
camera 1.5 45 16.9 100

face 0.6 0.83 5.6 1
face2 1.02 0.83 10.56 1
guitar 0.77 72 8.16 92

shadow 0.92 0.5 5.8 10
subway 0.52 3.6 4.05 6.2
wrist 0.5 0.4 4 3

Table 3.3 Temporal bandwidth parameters (lower cut-off frequency ωh and higher cut-off frequency
ωh) with proposed method and [75].
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Video
α λc

Proposed [75] Proposed [75]
baby 32 10 30 16

baby2 30 150 30 200
camera 7 120 29 20

face 55 100 30 1000
face2 17 20 30 80
guitar 101 100 29 40

shadow 13 5 30 48
subway 42 60 29 90
wrist 11 10 30 80

Table 3.4 Magnification parameters (magnification parameter α and cut-off wavelength λc) with pro-
posed method and [75].

3.4.2 Results

Filter parameters, magnification factor and cut-off wavelength are determined from Stockwell trans-
form by considering only landmark pixels. Obtained magnification factors α and cut-off wavelengths λc
for each video are listed in Table 3.2. Comparison of temporal parameters and magnification parameters
with that of [75] are shown in Table 3.3 and Table 3.4 respectively. Here, evaluation of our method
is not in terms of getting exact parameters as in [75], but in terms of qualitative results. Even though
estimated parameters are not close to the values mentioned in [75], reconstructed videos are comparable
to those of [75]. These results are available on http://researchweb.iiit.ac.in/˜sushma.
m/premiResults.

3.5 Summary

In this chapter, we discussed magnification of small motions in videos automatically by estimating
parameters. We used a time frequency representation called Stockwell transform for this purpose. We
introduced computationally inexpensive techniques to estimate parameters. We illustrated the utility of
the proposed method on examples in which small motions were made visible.
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Chapter 4

Motion Detection in Perfusion Weighted MRI using ST

Magnetic resonance imaging (MRI) has been emerging as an efficient tool in clinical practice for the
analysis of brain functions through several metabolic parameters. There are two types of MRI, namely,
diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI). PWI has been used exten-
sively for the evaluation of tissue after acute stroke, non-invasive histologic assessment of tumors and
evaluation of neurodegenerative conditions such as Alzheimers disease [48]. Diffusion weighted images
are obtained by incorporating strong agnetic field gradient pulses into an imaging pulse sequence. In
DWI, structures with fast diffusion are dark due to the fact that these structures are subject to greater
signal attenuation, whereas structures with slow diffusion are bright. In PWI, an exogenous tracer is
introduced into the blood circulation and its concentration in a tissue is monitored in a tissue over time.
Blood flow to the corresponding tissue can be determined by obtaining the rate of delivery of the tracer.
There are two types of PWI: (i) dynamic susceptibility contrast (DSC) imaging, and (ii) dynamic con-
trast enhanced (DCE) T1 weighted imaging. DSC is most widely used for the brain, while DCE is most
widely used in the rest of the body though its experimental and research use is increasing in brain. In
this work, we address the motion detection problem using DSC-MRI.

4.1 Introduction

In PWI, blood perfusion is measured by injecting an exogenous tracer called bolus into the blood
flow of a patient and then tracking it in the brain. PWI requires a long data acquisition time to form a
time series of volumes. Hence, motion occurs due to patient’s unavoidable movements during a scan,
which in turn results into motion corrupted data. There is a necessity of detection of these motion
artifacts on captured data for correct disease diagnosis. In PWI, intensity profile gets disturbed due to
occurrence of motion and/or bolus passage through the blood vessels. There is no way to distinguish
between motion occurrence and bolus passage. In this paper, we propose an efficient time-frequency
analysis based motion detection method. We show that proposed method is computationally inexpensive
and fast. This method is evaluated on a DSC-MRI sequence with simulated motion of different degrees.
We show that our approach detects motion in a few seconds.
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Figure 4.1 Motion Detection Scheme for a DSC-MRI time-series. This Figure is adapted from [55].

In PWI, a time series of volumes are formed in a long acquisition time. Patient often has difficulty
in staying still during this period. Therefore, it is more likely that patient may move unavoidably during
scanning which in turn results into motion artifacts in scans. There is a need of detection and subsequent
correction of these motion artifacts. There are works in medical imaging, for example [10], [32], [61]
addressed this problem in terms of registration of whole time series to a reference volume. These
methods do not detect motion. Hence, non-corrupted volumes are also registered which makes the
process computationally expensive and it is obvious that these volumes do not need any correction [55]
. Therefore, it is preferable to have a prior knowledge about motion corrupted volumes.

In DSC-MRI, intensity profile over time should be flat. If there are any disturbances in intensity
profile, it can be due to two reasons: (i) passage of bolus through the blood vessels and (ii) motion
of the patient during scanning. Therefore, while detecting motion, bolus passage should also be taken
care of. However, traditional motion detection methods consider non-uniform intensity variations due
to bolus passage as motion corruption. Hence, they may fail to detect motion in perfusion MRI. In [55]
and [26], motion is detected by bolus dependent approach. Here, perfusion MRI data is divided into
three sets as (i) pre wash-in, (ii) transit and (iii) post wash-out sets. Intensity correction is applied to
transit set and then motion is detected in each set differently. In next section, we explain the phase
correlatio based motion detection method used in [55] and [26].

4.2 Phase Correlation based Motion Detection

Phase correlation based motion detection in PWI is shown in Figure 4.1. Initially, gamma variate
function (GVF) is used to divide the PWI series into 3 sets according to the bolus status as explained
below.
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Figure 4.2 Gamma-variate-function (GVF) fitting on the mean-intensity curve of a DSC-MRI time-
series. This Figure is adapted from [55].

Gamma-variate function [13] [43] describes the transverse relaxation rate of magnetization with the
passage of the bolus. This function is given as:

4R∗2(t) = A(t− t0)αe−
t−t0
β , t > t0 (4.1)

where,4R∗2(t) is the transverse relaxation rate, t0 is the wash-in time-point of bolus, andA, α and β
are parameters which describe the shape of function. The mean intensity of each volume is computed to
derive a curve Ia(t). The wash-in time-point (t0) is set at time point where mean intensity falls abruptly.
Gamma-variate function (GVF) is then fit to Ia(t) to accurately determine the wash-in (nwash−in) and
wash-out time points (nwash−out) (see Figure 4.2). These are the time-points of abrupt change in signal
intensities (due to bolus passage) in the GVF-fit-mean intensity curve (Ga(t)). Then given PWI series
is divided into three sets: (i) pre-wash-in ([0nwash−in]) (ii) transit ([nwash−innwash−out]) and (iii) post-
wash-out ([nwash−innwash−out]) sets.

After dividing PWI time series into the above said stages, intensity correction is applied to the transit
set of volumes. Fuzzy c-means clustering is used to segment a volume (T ) in the transit set as normal
(Ta) and bolus affected regions (Tb). Then GVF fitting is used to obtain the intensity changes across
time points. The intensity correction is applied to only bolus affected regions. The intensity corrected
volume, (T cn) is generated as follows,

T cb (n) = Tb
Ga(nc)

Ga(n)
(4.2)

T c(n) = Ta(n) ∪ T cb (n) (4.3)
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where nc is the center of time-points from nwash−in to nwash−out, i.e., nc =
nwash−in+nwash−out

2 .

After intensity correction to bolus affected volumes, motion corrupted volumes are detected using
phase correlation. Since, there is only inter volume motion is present in PWI series, central slices of all
volumes are considered to detect motion. (In, In+1) denote the central slices of pair of adjacent volumes
(Tn, Tn+1) in a series of N volumes, {Ti}Ni=1. Motion field between these adjacent volumes, (Un, Vn)
is computed using (In, In+1). This motion field will be non-zero, if there is any motion present between
them. This motion field is computed by considering a block of pixels bn(i, j) and bn+1(i, j) around
every pixel at location (i, j) in In and In+1. Inter slice intensity variation is compensated by normalizing
the blocks by shifting the mean pixel value of every block to zero. Then phase correlation is applied to
normalized blocks (b̃n(i, j), b̃n+1(i, j)). Locations of maxima of cross power spectrum Gb̃n ˜bn+1

give
the flow vector ~r(i, j) = (u(i, j), v(i, j)). Then flow maps Un = [u(i, j)] and Vn = [v(i, j)] for (In,
In+1) are given by,

(u, v) = argmax(i, j)εbi,j

(
F−1

{
G
b̃nb̃n+1

})
(4.4)

where F−1 denotes the inverse Fourier transform, G
b̃nb̃n+1

=
B̃nB̃

∗
n+1

|B̃n||B̃∗n+1|
and B̃ = F{b̃}.

Motion corrupted volumes are detected by using total entropy by adding entropies in Un and Vn.
Here, non-zero entropy indicates presence of motion.

In implementation, given 128×128 was downsampled by a factor of 4 to obtain a slice size of 32×32

and block size was chosen as 8× 8 for computational efficiency.

4.3 Challenges in Motion Detection in PWI

The following are the challenges in motion detection in PWI.

• Traditional motion correction methods do not detect motion before correction (see Section 4.1).

• [26] detects motion prior to motion correction. However, it has the following disadvantages.

– It requires identification of bolus stages so that intensity correction can be applied to bolus
affected regions. This intensity correction is based on GVF and Fuzzy c-means clustering .

– There is a trade-off between block size and the computation time. It means that higher the
block size, the computation time is more. It can not distinguish no motion case with the
motion below 30. Sensitivity to detect motion is dependent on slice resolution and block
size. Sensitivity is more, if the slice resolution is kept unchanged, i.e., 128 × 128. But, it
increases the computation time.

Even though MRI scans consist of volumes of two dimensional images, they are acquired over the
time. Therefore, we can extract one dimensional time series from volumes. Motion detection using
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Figure 4.3 Stockwell transform for an impulse function. Impulse function shown in left is h[0 : 39] =
0, h[20] = 1. Stockwell transform is shown in right. Note that bright pixels indicate high strength of
transform. Here, bright pixels are at t = 20.

one dimensional time series is obviously faster compared to that of two dimensional scans. These facts
motivated us to analyze the MRI data in terms of one dimensional time sequences because we believe
that frequency of time series will vary when there are motion artifacts. Most popular approach for
temporal analysis is Fourier transform. Even though Fourier transform gives the information about the
spectral components in a signal, it fails to locate where those frequencies occur in that signal. So, it
is preferable to consider time frequency representation (TFR). Different techniques for time frequency
representation have been proposed. A few of them are short time Fourier transform (STFT), Gabor
transform, continuous wavelet transform (CWT) and Wigner ville distribution etc. In [63], it was proven
that Stockwell transform (ST) outperforms all these TFR techniques in localizing time and frequency
because it has frequency dependent resolution whereas other transforms have windows of fixed width.
ST provides useful phase of the spectrum which is not available from CWT.

In the recent past, ST has been used for the analysis of MRI data. In [28], ST is used to remove
artifacts in functional MRI (fMRI) time courses due to which brain activity detection is improved.
In [76], polar version of ST is used to analyze the texture patterns in MRI for the diagnosis of multiple
sclerosis. [77] discusses the effectiveness of ST for medical imaging and shows how to enhance fMRI
time courses by removing frequency artifacts which are introduced due to patient’s quick breathing.

In this chapter, we demonstrate how one dimensional ST based framework can be used to detect
motion without identifying bolus stages. Given a MRI sequence of volumes, we consider specific key
points which are generated by an automated method. Time series are extracted at these key points and
ST is applied on them. The process is computationally inexpensive due to the facts that (i) there is no
explicit intensity correction for bolus stages, which means proposed method works well regardless of
bolus stages, (ii) motion is detected by one dimensional time series instead of two dimensional scans
and, (iii) these time series are extracted only at a few key points. Mean time taken for motion detection
is around 3 seconds. In next section, we explain Stockwell transform (ST).
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4.4 Stockwell Transform

In this section, we discuss details of Stockwell transform (ST) and its suitability for analyzing MRI
times sequences. For a given time signal h(t), its Stockwell transform is defined as,

S(τ, f) =

∫ ∞
−∞

h(t)w(τ − t, f)e−i2πftdt (4.5)

where w(t, f) is defined as

w(t, f) =
|f |√
2π
e−t

2f2/2, (4.6)

h(t) is the time signal, w(t, f) denotes the window, f denotes the frequency, τ denotes time shift param-
eter, and |.| denotes absolute value. Since window (w(t, f)) is frequency dependent, narrower windows
are applied at higher frequencies and broader windows are applied at lower frequencies. Hence, ST is a
suitable time-frequency representation for current work.

In our work, intensity profiles over time are obtained from DSC-MRI sequence. There are strong
disturbances in these one dimensional time series (intensity profiles) corresponding to motion corrupted
volumes. In general, there will be many disturbances in time series with respect to number of continuous
corrupted slices in MRI sequence. Since ST is a linear function, we explain it with one single intensity
disturbance for simplicity. To show that these intensity variations are well represented by Stockwell
transform, we modelled single disturbance in time series as an impulse, h(t) as shown in Eq. 4.7.

h(t) = δ(t− a) (4.7)

ST of h(t) is given as

S(τ, f) =
|f |√
2π
e−(τ−a)

2f2/2e−i2πfa (4.8)

Absolute value of S(τ, f) is given as

|S(τ, f)|= f√
2π
e−(τ−a)

2f2/2 (4.9)

On taking first and second derivatives of Eq. 4.9 w.r.t. τ , we obtain

∂|S(τ, f)|
∂τ

= − f3√
2π

(τ − a)e−(τ−a)
2f2/2 (4.10)

∂2|S(τ, f)|
∂τ2

=
f3√
2π
e−(τ−a)

2f2/2[−1 + f2(τ − a)2] (4.11)

In Eq. 4.9, |f | is replaced with f because f > 0. It can be easily observed that maximum of
|S(τ, f)| occurs at t = a because ∂|S(τ,f)|

∂τ

∣∣∣
τ=a

= 0 and ∂2|S(τ,f)|
∂τ2

∣∣∣
τ=a

< 0. Stockwell transform for
h(t) = δ(t− a) with a = 20 is shown in Figure 4.3. There is bright region around t = 20 in ST. Even
though there is some noise present in the time series, it does not affect ST much because the region
around t = 20 will still be bright relative to other regions.
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Algorithm 1 Motion Detection in PWI.
Input: Central slices, {Ct(i, j)}Nt=1 where i = 1→ A, j = 1→ B

1. Pre-processing:

• Pre-process all central slices for removing the noise regions at edge regions to get
{C̃t(i, j)}Nt=1

for t = 1 to N do
C̃t = Ct
M = mean(Ct)
C̃t = 0 | C̃t < M ∀ i, j

end for

2. Find locations of landmark pixels:

• Find difference of consecutive slices, {Dt,t+1}N−1t=1

Dt,t+1 = |C̃t − C̃t+1| ∀ t = 1→ N − 1

• Sum all {Dt,t+1}N−1t=1 , i.e., D =
N−1∑
t=1
{Dt,t+1}N−1t=1

• Find landmark pixels, {pl}Ll=1 = {(xl, yl)}Ll=1 | D(xl, yl) 6= 0

3. Divide landmark pixels into two sets:

• Landmarks set-1: {pl1}
L1
l1=1 = {(xl1 , yl1)}L1

l1=1

{(xl1 , yl1)}L1
l1=1 =

[
arg min
(xl,yl)

d((xl, yl), (xl, 1))

]
∪

[
arg min
(xl,yl)

d((xl, yl), (xl, B))

]
∪[

arg min
(xl,yl)

d((xl, yl), (1, yl))

]
∪

[
arg min
(xl,yl)

d((xl, yl), (A, yl))

]
• Landmarks set-2: {pl2}

L2
l2=1 = {(xl2 , yl2)}L2

l2=1 = {(xl, yl)}Ll=1 3 {(xl1 , yl1)}L1
l1=1

4. Extract time series:

• Extract time series {hl1(t)}L1
l1=1 and {hl2(t)}L2

l2=1 at locations {pl1}
L1
l1=1 and {pl2}

L2
l2=1 re-

spectively, from {Dt,t+1}N−1t=1

for l1 = 1 to L1 do
for t = 1 to N − 1 do

hl1(t) = Dt,t+1(xl1 , yl1)
end for

end for
for l2 = 1 to L2 do

for t = 1 to N − 1 do
hl2(t) = Dt,t+1(xl2 , yl2)

end for
end for
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5. Determine whether motion is present or not (see Algorithm 2)

If there is motion present, then follow steps 6 and 7.

6. Determine Stockwell transform:

• Find Stockwell transform of each time series of {hl1(t)}L1
l1=1, {Sl1(τ, f)}L1

l1=1

for l1 = 1 to L1 do
Sl1(τ, f) =

∫∞
−∞ hl1(t)w(τ − t, f)e−i2πftdt

end for

7. Estimation of locations of corrupted slices:

• Sum all STs, S(τ, f) =
L1∑
l1=1

Sj(τ, f)

• Find locations of bright regions, lc and lc+M−1

Output: Locations of corrupted volumes, {lm}c+M−1m=c

4.5 Proposed Motion Detection Method

We propose a novel automated method to detect motion corrupted volumes in perfusion weighted
MRI using Stockwell transform. We assume that there is no intra-volume motion in this MRI time
series because it takes a few seconds time to scan. Therefore, whole volume is corrupted by same
motion. Instead of considering whole volumes to detect motion, we consider only central slice of each
volume. Motion can be identified through two ways, i.e., (i) intensity of voxel gets changed and (ii) a
voxel comes into the location of another voxel. In this work, we detect motion using first category.

Intensity profile extracted from entire volume series can contain disturbances which maybe due to
three reasons: (i) Presence of motion, (ii) Presence of bolus and (iii) Presence of both motion and bolus.
We extract two intensity profiles from different sets of landmark pixels to distinguish these three cases.
After this, we need to detect motion in cases (i) and (iii).

Overview of the proposed method to detect motion is shown in Fig. 4.4. For a given PWI volume
series, we consider central slices to detect the motion in corresponding volumes. The proposed method
consists of the following steps: (i) Pre-processing, (ii) Estimation of landmark pixels, (iii) Detection
of presence of motion, (iv) Time-frequency analysis of time series extracted at these landmark pixels,
and (v) Detection of locations of corrupted slices from time frequency representation along with the
extracted time series. Steps (iv) and (v) are used only if there is presence of motion, which can be
determined by step-(iii).

Algorithm for proposed motion detection method can be seen in Algorithm 1. If given MRI series
contains N volumes, there will be corresponding N central slices, {Ct}Nt=1. Each central slice is of size
A×B.
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Figure 4.4 Motion Detection in both bolus and non-bolus stages. Central slices
(
{Ct}Nt=1

)
of a PWI

MRI series are pre-processed to get noise-free images
(
{It}Nt=1

)
. Then, two sets of one dimensional

time series {hl1(t)}L1
l1=1 and {hl2(t)}L2

l2=1 at two sets of landmark pixels {pl1}
L1
l1=1 and {pl2}

L2
l2=1 are

extracted from difference of consecutive pre-processed slices
(
{Dt,t+1}N−1t=1

)
. These two time series

are analyzed to know whether there is motion present or not. if motion is present, time-frequency
analysis ({Sl1(τ, f)}L1

l1=1) is used to determine the locations of corrupted slices
(
{lm}c+M−1m=c

)
.

4.5.1 Pre-processing

We first process all N central slices using intensity based thresholding technique such that the noise
regions are discarded while preserving the edges. Here, intensities which are less than mean of all
intensities present in slice are discarded to zero. These pre-processed images, {C̃t}Nt=1, are then used to
detect the motion.

4.5.2 Estimation of Landmark Pixels

To determine the landmark pixels, it was observed that considering all pixels for detecting the motion
corrupted slices is not efficient due to the fact that (i) the whole process will be time consuming and
(ii) all pixels may not contain information about the corruption. Therefore, we adopted a mechanism
to find landmark pixels. These pixels are obtained from the difference of consecutive central slices(
{Dt,t+1}N−1t=1

)
of all given volumes because the pixels at edges definitely experience motion from
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one to another slice. All these difference maps are summed up
(
D =

N−1∑
t=1
{Dt,t+1}N−1t=1

)
and then

landmark pixels, {pl}Ll=1, are selected such that every non-zero pixel can be considered from D.
Here, two sets of landmark pixels, {pl1}

L1
l1=1 and {pl2}

L2
l2=1, are obtained to differentiate between

presence of motion and presence of bolus. First set of landmark pixels ({pl1}
L1
l1=1) are selected such

that every edge pixel can be considered and second set of landmark pixels ({pl2}
L2
l2=1) are selected such

that they do not contain edge pixels but contain pixels from bolus affected regions. This can be shown
mathematically as, {pl2}

L2
l2=1 = {pl}Ll=1 − {pl1}

L1
l1=1. Then, one dimensional time series, {hl1(t)}L1

l1=1

and {hl2(t)}L2
l2=1, at respective L1 and L2 landmark pixels are extracted from {Dt,t+1}N−1t=1 .

4.5.3 Detection of Presence of Motion

For ‘N ’ number of volumes, there will be N corresponding central slices and thus number of differ-
ence of consecutive slices will be N − 1 . Therefore, time series extracted at any landmark pixel is of
length N − 1. As explained before, there are two sets of landmark pixels, denoted as LM1 = {pl1}

L1
l1=1

and LM2 = {pl2}
L2
l2=1. For set LM1, there are L1 number of time series extracted from {Dt,t+1}N−1t=1 .

To reduce the effect of a few insignificant landmark pixels, mean of all these time series is considered.
Mathematically, it can be denoted as,

h1(t) =
1

N − 1

L1∑
l1=1

hl1(t) (4.12)

Similarly for second set of landmark pixels,

h2(t) =
1

N − 1

L2∑
l2=1

hl2(t) (4.13)

Now, these two time series, i.e., h1(t) and h2(t) are analyzed to determine whether the given sequence
of volumes is motion corrupted or not. Algorithm for this analysis is given in Algorithm 2. h1(t) and
h2(t) are pre-processed so that disturbances due to noise can be eliminated to some extent. Since h1(t)
contains information from edges, it gives information about motion. Similarly, h2(t) contains more
information from bolus regions and thus it gives information about presence of bolus. As explained in
Algorithm 2, presence of motion is determined from a set of conditions as shown below.

Condition-1 : If h1(t) > h2(t) and h2(t) = 0, then there is presence of noise.

Condition-2 : If h2(t) > h1(t), then there is presence of bolus.

Condition-3 : If h1(t) ≥ h2(t) and h2(t) > 0, then there is presence of motion.

Sample cases for these three conditions are shown in Figures 4.5, 4.6 and 4.7.
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(a) Central slices with no motion. (b) h1 and h2 for no motion case. h1 and h2 are shown
in red and blue colors respectively.

Figure 4.5 Central slices with no motion corruption and corresponding time series h1(t) and h2(t).
h1(t) and h2(t) are shown in red and blue colors respectively. Here, conditions involved are, (i) h1(t) >
h2(t) and h2(t) = 0; (ii) h2(t) > h1(t).

In Figure 4.5(b), there are two conditions present. (i) h1(t) > h2(t) and h2(t) = 0 at few time
instances which indicates there is presence of noise (Condition-1) and (ii) h2(t) > h1(t) at remaining
time instances which indicates there is presence of bolus (Condition-2). Therefore there is no motion
corruption in corresponding PWI series. Corresponding central slices are shown in Figure 4.5(a).

(a) Central slices with motion in bolus affected slices. (b) h1 and h2 for motion in bolus affected slices case. h1

and h2 are shown in red and blue colors respectively.

Figure 4.6 Central slices with for motion in bolus affected slices and corresponding time series h1(t)
and h2(t). Here, conditions involved are, (i) h1(t) ≥ h2(t) and h2(t) > 0; (ii) h2(t) > h1(t).

In Figure 4.6(b), (i) h1(t) ≥ h2(t) and h2(t) > 0 at few time instances which indicates there is
motion (Condition-3) and (ii) h2(t) > h1(t) at same time instances and other time instances which
indicates bolus is present (Condition-2). This means there is motion present in only bolus region of
PWI series. Corresponding slices are shown in in Figure 4.6(a).
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(a) Central slices with motion in both bolus affected and non-
affected slices.

(b) h1 and h2 for motion in both bolus affected and non-
affected slices case. h1 and h2 are shown in red and blue
colors respectively.

Figure 4.7 Central slices with motion in both bolus affected and non-affected slices and corresponding
time series h1(t) and h2(t). Here, conditions involved are, (i) h1(t) ≥ h2(t) and h2(t) > 0; (ii)h2(t) >
h1(t).

In Figure 4.7(b), (i) h1(t) ≥ h2(t) and h2(t) > 0 at few instances which indicates there is motion
(Condition-3) and (ii) h2(t) > h1(t) at some instances (Condition-2) other than instances in (i). This
means, there is motion present in both bolus and non-bolus phases of PWI series. Corresponding slices
are shown in in Figure 4.7(a).

4.5.4 Time-Frequency Analysis

If motion is present (information obtained from Algorithm 2), we detect where motion is present.
For this purpose, we use Stockwell transform

(
{Sl1(τ, f)}L1

l1=1

)
at all L1 extracted time series. We used

first set of landmark pixels LM1, because it contains more information about presence of motion. There
might be still a few of landmark pixels which may not represent the pixels that undergo motion. To take
care of this, Stockwell transforms at all landmark pixels can be added to get proper representation so
that non-significant landmarks can play negligible role in detecting motion. This summed up Stockwell

transform can be denoted as, S(τ, f) =
L1∑
l1=1

Sl1(τ, f).

4.5.5 Motion Detection

As explained in Section 4.4, there will be bright region at locations of corrupted slices. If there are
M consecutive corrupted volumes, bright region will be around corresponding M locations in ST. We
extract those bright regions and locations where those bright regions occur. If there is a bright region
from location lc to lc+M−1, then we can categorize the slices at locations, {lm}c+M−1m=c , as corrupted
slices and corresponding volumes are motion corrupted.
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Figure 4.8 DSC-MRI time series. It shows central slices of 40 volumes from top to bottom and left to
right. Here, central slices corresponding to non-bolus phase are from 1 to 9 and from 21 to 40. −150

rotation is added to volumes 3, 4, 5, 6, 7, 12, 13, 14, 15, 27, 28, 29, 30, 31 and 32 respectively and their
corresponding central slices are shown in boxes. Motion in non-bolus phases (3, 4, 5, 6, 7, 27, 28, 29,
30, 31 and 32) and bolus phases (12, 13, 14 and 15) are shown in red and blue boxes respectively.

4.6 Experiments and Results

We have conducted experiments to validate the performance of the proposed framework with a DSC-
MRI data obtained from a 1.5T GE MRI scanner. The data details are: number of volumes = 40
(1s/phase), number of slices = 20, dimensions of slice = 128x128 and thickness of slice = 5mm. All
experiments are implemented on a system with 4GB RAM and Intelr core i5 CPU with 2.5 GHz
processor.

There are 29 non-bolus volumes out of 40 volumes. Here, non-bolus volumes means volumes in
which bolus is not present in brain. For our experiments, we introduced 3D rotation to DSC-MRI
volumes to simulate motion in transverse plane in the range [−200 200] in random number of volumes.
We first determine whether motion is present or not by using one dimensional time series extracted
from central slices. If there is motion, we detect motion as explained in Section 4.5. Table 4.1 and
Table 4.2 show the performance of our motion detection method with number of corrupted volumes as
5, 10 and 20, 25 respectively. These corrupted volumes are chosen randomly and they are not always
consecutive volumes. This randomness reflects the worst possible scenarios during scanning. Here, we
considered only rotation because translation inside the scanner is almost impossible due to the structure
of MRI scanner. A specific case is shown in Fig. 4.8 where central slices of 15 volumes (3, 4, 5, 6,
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Table 4.1 Evaluation of Proposed Motion Detection Method.
# Total Volumes 40

# Corrupted Volumes 5 10

Simulated Rotation
# Detected Time # Detected Time
Volumes Taken (in sec) Volumes Taken (in sec)

[−10 10] 3 2.71 8 2.73
[−50 50] 5 2.73 10 2.742

[−100 100] 5 2.751 10 2.76
[−150 150] 5 2.77 10 2.78
[−200 200] 5 2.79 10 2.83

Table 4.2 Evaluation of Proposed Motion Detection Method.
# Total Volumes 40

# Corrupted Volumes 20 25

Simulated Rotation
# Detected Time # Detected Time
Volumes Taken (in sec) Volumes Taken (in sec)

[−10 10] 11 2.74 13 2.75
[−50 50] 20 2.77 25 2.91

[−100 100] 20 2.78 25 2.93
[−150 150] 20 3.12 25 3.14
[−200 200] 20 3.17 25 3.45

7, 12, 13, 14, 15, 27, 28, 29, 30, 31 and 32) are corrupted by a rotation of −150. In general, different
amount of rotation can be possible at different sets of consecutive volumes according to patient’s typical
movements. For example, as shown in Fig. 4.8, 3rd, 4th, 5th, 6th and 7th volumes can be corrupted by
a rotation of −150 while 12th, 13th, 14th, 15th, 27th, 28th, 29th, 30th, 31st and 32nd volumes can be
corrupted by a different amount of rotation other than −150. We have experimented with many such
scenarios also and we are still able to achieve similar performance. It can be observed from Table 4.1
and Table 4.2 that except for the range [−10 10], our method is able to detect all corrupted volumes
correctly. Even in practical cases, there is less probability that patient can move only 10. In case of
25 corrupted volumes, we are able to detect all 25 for [−100 100], [−150 150] and [−200 200], while
in [26], 21, 24 and 22 volumes are detected for respective motions (See Table 4.3). Here, slice resolution
128 × 128 and block size 32 × 32 are used in [26] to get more accuracy. Average of time taken for all
experiments for each case are shown in Table 4.1 and Table 4.2. Time taken to detect motion is from
7.68 to 132.21 seconds (depending on block size) in [55]. In [55], time taken is reported only for phase
correlation. Thus, it does not include the computation time for intensity correction of transit set. Time
taken for detecting motion using proposed method is around 3 seconds (see Table 4.4). This reduction
in time is due to the facts that proposed method detects motion (i) without explicit bolus handling, thus
no intensity correction and, (ii) using one dimensional time series instead of two dimensional images.
Hence, proposed method outperforms in terms of detection accuracy and computation time.
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Table 4.3 Evaluation of Proposed Motion Detection Method in terms of Detection Accuracy. Here, slice
resolution 128× 128 and block size 32× 32 are used in [26] to get more accuracy.

# Total # Corrupted Simulated # Volumes Detected
Volumes Volumes Rotation [26] Proposed

40 25 [−10 10] NA 13
40 25 [−50 50] NA 25
40 25 [−100 100] 21 25
40 25 [−150 150] 24 25
40 25 [−200 200] 22 25

Table 4.4 Evaluation of Proposed Motion Detection Method in terms of Time Taken. Here, time taken
for [55] is shown according to slice resolution and block size. Minimum time taken is 7.68 sec with slice
resolution 32× 32 and block size 8× 8, while maximum time taken is 132.21 sec with slice resolution
128× 128 and block size 32× 32. This time taken is reported only for phase correlation. Thus, it does
not include the computation time for intensity correction of transit set.

# Total # Corrupted Simulated Time Taken (sec)
Volumes Volumes Rotation [55] Proposed

40 25 [−10 10] 7.68-132.21 2.75
40 25 [−50 50] 7.68-132.21 2.91
40 25 [−100 100] 7.68-132.21 2.93
40 25 [−150 150] 7.68-132.21 3.14
40 25 [−200 200] 7.68-132.21 3.45

4.7 Summary

We presented an efficient method to detect motion in perfusion weighted MRI series using time-
frequency analysis. Since proposed method detects motion considering one dimensional time series
instead of whole 3D volumes, it takes very less time. We used time-frequency analysis called Stockwell
transform to extract motion information from one dimensional time series. We provided comparison
between proposed method and the existing methods. Proposed method has the advantages: (i) No
explicit bolus handling, thus no intensity correction is required, (ii) No use of phase correlation, thus
no compromise between block size and speed, (iii) Detection accuracy is more and, (iv) Computational
efficiency.
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Algorithm 2 Presence of Motion.
Input: Two time series, h1(t) and h2(t), where t = 1→ N − 1

1. Pre-processing:

• M1 = (max(h1(t))/2

• M2 = (max(h2(t))/2

• for t = 1 to N − 1 do
if h1(t) < M1 then

h1(t) = 0
end if
if h2(t) < M2 then

h2(t) = 0
end if

end for

2. Find strong disturbances in both h1(t) and h2(t) and they are located at {ni}pPi=p1
3. Determine presence of motion:

• flag = 0

• for i = p1 to pP do
if h1(ni) > h2(ni) and h2(ni) = 0 then

Disturbance is not due to motion but due to noise.
else if h2(ni) > h1(ni) and h1(ni) = 0 then

Disturbance is not due to motion due to presence of bolus.
else if h1(ni) ≥ h2(ni) and h2(ni) > 0 then

Disturbance is due to motion.
flag ← flag + 1

end if
end for

• if flag > 0 then
Motion is present.

else
Motion is absent.

end if

Output: Information about presence of motion.

46



Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusion

In this thesis, we addressed two different problems in motion analysis: (i) Small motion magnifi-
cation in videos and (ii) Motion detection in perfusion weighted MRI. For analyzing motion in both
problems, we used time frequency representation called Stockwell transform.

We proposed semi automated magnification of small motions in videos. Main contribution involves
estimation of parameters, namely, bandwidth parameters and magnification parameters. In contrast to
earlier methods where parameters are specified by user, we estimated the parameters using Stockwell
transform. Video is a collection of time series. A few of these time series are extracted from videos at
landmark pixels which represent the pixels that undergo motion. Parameters are estimated from these
one dimensional time series. These parameters are incorporated to reconstruct videos with magnified
motions. We demonstrated the proposed method on a few videos. However it is observed that noise is
introduced in some reconstructed videos.

We have proposed a novel automated approach for motion detection in DSC-MRI perfusion data us-
ing time-frequency analysis. Instead of considering all three dimensional volumes or two dimensional
images for the process, we used one dimensional time series due to the fact that these scans are acquired
over time. For this, three dimensional PWI volume sequences are converted into one dimensional time
series. It is observed that central slice of particular volume represents the motion present in the corre-
sponding volume. Hence, all central slices of volumes are considered to form a one dimensional time
series. Further, this time series is analyzed to detect motion. This made the proposed method com-
putationally inexpensive. We have demonstrated that motion detection can be performed in automated
fashion by using Stockwell transform. We demonstrated our method using 40 volumes of perfusion
MRI sequences.
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5.2 Future Work

We have presented a semi-automated method for magnifying small motions in videos. We have
demonstrated that the parameters required to magnify the motion can be generated in an automated
fashion by using the time frequency representation called Stockwell transform. However, it is observed
that noise is introduced in some reconstructed videos. Therefore, this work can be extended to reduce
this noise. Another future direction of this work is to make this process fully automatic by estimating
temporal filters. We believe that this method can have potential applications in medical imaging

We have proposed a novel automated approach for motion detection in DSC-MRI perfusion data
using time-frequency analysis. This method detects motion in transverse plane only. Therefore, there is
a large scope to detect motion in all other possible directions.
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