
Efficient Image Retrieval Methods For Large Scale
Dynamic Image Databases

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science (by Research)

in

Computer Science

by

Suman Karthik

200407013

sumankarthik@research.iiit.ac.in

International Institute of Information Technology

Hyderabad, India

May 2009





INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Efficient Image Retrieval Methods

For Large Scale Dynamic Image Databases” by Mr. Suman Karthik, has been carried out

under my supervision and is not submitted elsewhere for a degree.

Date Advisor: Dr. C. V. Jawahar





To my Family

And

Friends



ii



Acknowledgements

I would like to thank Dr. C. V. Jawahar for his role as a guide and mentor to me in the past

five years. I was fortunate enough to have him as my advisor. He has been a great influence

on me in academic and more importantly in non academic pursuits. His clarity of thought

and work ethic have been instrumental in inspiring me in my academic endeavors.

I would also like to thank Dr. P. J. Narayanan, for his support in both my academic and

non academic endeavors and Dr. A. Namboodiri and Dr. J Sivaswamy for various references

and guidance in different subjects related to the stream.

I would like to thank my dear friend Balu without whom I wouldn’t be at IIIT Hyderabad.

Its been my pleasure to actively collaborate and work with both pradhee tandon and chan-

drika pulla. The best thing about my time at IIIT hyderabad has been CVIT and CVITians, i

would like to acknowledge some of them and apologize to all those i have missed. People from

the old CVIT Sesh, MNSSK, Vakiba and Somu have been great influences on me. Other

contemporaries have been Visesh, Pramod, Ranjith, Booty, Vardhaman, Paresh, Tarun,

Jagmohan, Jyotirmoy, Avinash and juniors like Skp, Shiben, pramodp, Suman, praveen,

sanjeev, Ranta, pooja, rakesh, sreekanth, chetan, Narsimharaju, naveen and rasagna. Being

surrounded by so many intelligent and creative lab mates, always ready to talk, argue, and

shoot down ideas, was certainly the best thing about my entire graduate degree. I would

also like to express my gratitude to other IIITians like Rishi, Srirarm and Prashant.

Finally, I would like to appreciate the patience and support from my Family and friends.

I owe deep gratitude to all my friends and family members. Without their blessings and

support, throughout, this thesis would not be a reality.





Abstract

The commoditization of imaging hardware has led to an exponential growth in image and

video data, making it difficult to access relevant data when it is required. This has led

to a great amount of research into multimedia retrieval and Content Based Image Retrieval

(CBIR) in particular. Yet, CBIR has not found widespread acceptance in real world systems.

One of the primary reasons for this is the inability of traditional CBIR systems to scale

effectively to Large Scale image databases. The introduction of the Bag of Words model for

image retrieval has changed some of these issues for the better, yet bottlenecks remain and

their utility is limited when it comes to Highly Dynamic image databases (image databases

where the set of images is constantly changing). In this thesis, we focus on developing

methods that address the scalability issues of traditional CBIR systems and adaptability

issues of Bag of Words based image retrieval systems.

Traditional CBIR systems find relevant images by finding nearest neighbors in a high

dimensional feature space. This is computationally expensive, and does not scale as the

number of images in the database grow. We address this problem by posing the image

retrieval problem as a text retrieval task. We do this by transforming the images into

text documents called the Virtual Textual Description (VTD). Once this transformation is

done, we further enhance the performance of the system by incorporating a novel relevance

feedback algorithm called discriminative relevance feedback. Then we use the virtual textual

description of images to index and retrieve images efficiently using a data structure called

the Elastic Bucket Trie(EBT).

Contemporary bag of visual words approaches to image retrieval perform one-time offline
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vector quantization to create the visual vocabulary. However, these methods do not adapt

well to dynamic image databases whose nature constantly changes as new data is added. In

this thesis, we design, present and examine with experiments a novel method for incremental

vector quantization(IVQ) to be used in image and video retrieval systems with dynamic

databases.

Semantic indexing has been invaluable in improving the performance of bag of words based

image retrieval systems. However, contemporary approaches to semantic indexing for bag

of words image retrieval do not adapt well to dynamic image databases. We introduce and

examine with experiments a bipartite graph model (BGM), which is a scalable datastruc-

ture that aids in on-line semantic indexing and a cash flow algorithm that works on the

BGM to retrieve semantically relevant images from the database. We also demonstrate how

traditional text search engines can be used to build scalable image retrieval systems.
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Chapter 1

Introduction

The advent of digital cameras and cheap commodity hardware, has paved the way for an

exponential growth in the amount of image and video content generated. This growth,

coupled with the rapid distribution and dissemination capabilities of world wide web means

large scale dynamic image/video databases. Some prominent examples of this growth are

sites like Flickr and Youtube. These sites are essentially very large repositories of community

generated image and video content that are growing at an ever increasing pace. As was

discovered for textual data before it, information retrieval is a viable way of dealing with

such information overload. In case of images the information retrieval paradigm used is

content based image retrieval. Such retrieval based on content is significantly challenging

when it comes to visual data. Even text retrieval systems still rely on keywords and their

context to retrieve and do not actually understand the content. This problem is aggravated

when it comes to retrieval of visual content which by its very nature is subjective and hence

is not limited to interpretation as text content is. For example in Figure 1.1 one can see

how the content of two very simple images can have many different interpretations. Some

of the interpretations of Figure 1.1 like dogs, wild dogs, predators, teens, boys and girls, are

classes which can be discerned from the visual content of the image. Other interpretations

like Africa, wild, friends, happy are a result of apriori human knowledge applied to the

visual content. We can only hope to model and achieve the former, which by itself is a very

1



(a) (b)

Figure 1.1: Two images taken from flickr with their tags (a)dogs, wild dogs, Africa, predators,

wild. (b)teens, boys and girls, friends, students, happy, huddle

challenging task.

It is important to appreciate the distinction between current methods of wide spread image

retrieval (circa. April 2009) in the real world which use textual cues to retrieve images and

content based image retrieval which uses the image content to retrieve images. For example,

querying google’s image search with the term sr71 retrieves images as shown in Figure 1.2,

one can clearly notice the bold text below the retrieved image that highlights the text SR-71

and the context of its occurrence in the relevant webpage. Even the recently launched google

similar images(GSI) which take visual similarity into consideration still relies predominantly

on textual cues. Figure 1.3 shows retrieval results for GSI using the top image given as an

exemplar, the relevant images contain both black birds and the blackbird which is an informal

name of the SR71.

1.1 Problem

Figure 1.4 shows a rudimentary content based image retrieval system. Here images are

first gathered from different data sources and stored in a database which forms the content

storage of the CBIR system. Then feature extraction is done from all the images using

features like color, shape, texture etc. These features are designed to mimic low level human

2



Figure 1.2: Is the retrieval result for the query SR71 using google image search. The text

SR71 used to retrieve the relevant images is highlighted below each of the retrieved images,

showing how text cues are used to retrieve relevant images.

vision, this helps the computer to associate images at the lowest level as humans do. Once

features are extracted they are represented by a feature vector, which is a point within the

high dimensional feature space. Finally when the user gives the CBIR system a query image,

the given query is first interpreted using feature extraction and indexing, then the relevant

images are retrieved using a nearest neighbors query in the index. The K nearest neighbors

methods choose the K nearest feature vectors to the given feature vector within the feature

space. Once the nearest neighbors are retrieved the corresponding images are presented to

the user.

The two critical bottlenecks for performance and quality in a CBIR system are the se-

mantic gap and scalability. The semantic gap is the difference between machine and human

perception of visual data. The semantic gap can be tackled by coming up with better feature

vectors that mimic high level human vision, building machine learning modules that model

human visual perception better, etc. The scalability and adaptability of a CBIR system is

effected by the indexing and searching modules of the system. The naive CBIR system that
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Figure 1.3: Is the retrieval result when the top image is given as exemplar to google similar

images(GSI). The retrieval results clearly show the predominance of textual cues over visual

cues, as black birds and the airplane blackbird are retrieved for the given query

retrieves images based on nearest neighbor search in a high dimensional feature space is in-

herently not scalable. The K nearest neighbors approach is very computationally expensive

due to its high complexity. This algorithm, works for small databases but quickly becomes

intractable as either the size or the dimensionality of the feature space becomes large. If S is

the feature space, nearest neighbor search has a complexity of O(Nd) where N is the number

of images in the database and d is the number of dimensions in S. When millions of images

are involved in a high dimensional feature space of hundreds or thousands of dimensions

traditional CBIR systems become impractical.

Content based image and video retrieval is a viable methodology for many applications.

However, traditional CBIR systems are neither scalable nor adaptable enough to be a viable
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Figure 1.4: The figure shows the block diagram of a naive CBIR system. The features being

lowlevel color, texture and shape features and the indexing being feature vector represen-

tation within the feature space. For retrieval K nearest neighbors is used in the feature

space.

solution for largescale dynamic image databases. This lack of scalability and adaptability is

one of the primary reasons why visual content based retrieval have not been adopted more

widely. These are pertinent problems to solve. In this thesis we address the scalability

problem of CBIR systems.

1.2 Objective

Our goal is to develop methods to retrieve images and videos based on their content in large

scale and highly dynamic image and video collections. These large scale and dynamically

changing (i.e. image and video collections where the visual nature of data is constantly

changing with the addition of new content) collections resemble image/video databases that

are created by active data sources like user generated content, crawling the internet, im-

age and video feeds. Although, reasonably successful attempts have been made for certain

aspects and applications, a holistic approach to the afore mentioned objective is missing.
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1.3 Motivation

Achieving the afore mentioned objectives would ensure the viability of Content based re-

trieval as a solution for a whole slew of applications.

• Image Search: Image search of-course is the most obvious application of the methods

and frame work. As of now (circa April 2009) regular image search engines only use

text and hyperlink cues to retrieve images. Although the quality of their results have

significantly improved over the years they are still agnostic to the content within the

images. CBIR has not been a viable alternative or augmentation due to its inability

to scale to millions of images. If these search engines are augmented with the ability

to use content for retrieval the results will be massively improved.

• Multimedia Search: Video search is also akin to the image search. Right now videos

have to be annotated by hand to show up in retrieval results which is neither fool proof

nor a realistic way of scaling. For example, processing a 2 hour movie consisting of

10,000 keyframes, each comprising an average of 100 descriptors of 128 dimensions for

a 20,000 word vocabulary using K-means would require around 72 hours. The methods

developed in this thesis can be applied to video search to achieved far better results.

• Multimedia Archives: Searching multimedia archives is another prime example of

where these methods can be used. Usually multimedia archives are annotated, filed

and categorized manually. It would save a lot of money and effort while at the same

time increasing the retrieval performance if this process can be effectively automated.

A scalable and efficient retrieval scheme would also allow the capture the flood of

multimedia at a much higher rate.

• Copyright Infringement: With the dawn of Web2.0 and UGC(User Generated Con-

tent) violation of copyright laws of multimedia have become rampant in their availabil-

ity to the public yet are difficult to screen for and identify. The constant struggle to

identify and remove such content has been evident on popular video sites like youtube.
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Copyright violation of stock images over the net is yet another domain to look at.

A scalable and adaptable system will be able to deal effectively with the millions of

images that are crawled and indexed.

• Satellite Imagery: Classification and recognition of satellite imagery and surveillance

imagery from reconnaissance aircraft is an application that has uses from defense to

remote sensing. Automating processing and retrieval of such huge amounts of data

could be a real cost saver.

• Autonomous Navigation: Autonomous navigation has become important for ev-

erything from vehicles to robots to cruise missiles. The ability to quickly query and

retrieve information from large image databases is very important to such tasks.

While these are only some of the applications for real world image retrieval systems,

their widespread use has not been possible due to various challenges one has to face in

implementing such systems. In this thesis we develop methods that address the problem of

content based retrieval in large scale dynamic databases. The emphasis of these methods is

to make content based retrieval as scalable and adaptable as possible without much loss in

the retrieval performance.

1.4 Contributions

The main contributions of this thesis are:

1. We developed and discussed methods for efficient, scalable and adaptable image re-

trieval from large scale and dynamic databases. These methods include transforma-

tion of color images into documents using Virtual Textual Description(VTD) with the

help of grid based vector quantization for CBIR. The usage of ‘Discriminative Rele-

vance Feedback based on VTD improved the retrieval performance of the system by

incorporating a learning element to better model the query when compared to another
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relevance feedback scheme called region based importance. We also proposed and new

indexing scheme for this CBIR system called an Elastic Bucket Trie(EBT) that had

better performance characteristics than spatial indexing for CBIR.

2. We designed and presented a novel method called incremental vector quantization(IVQ)

for use in image and video retrieval systems with dynamic databases. We demonstrated

the quality of the codebooks as well as their adaptability and speed of creation by using

various standard and generic datasets. We look at this work as a promising develop-

ment towards building effective codebooks for large scale user generated databases

where huge volumes of new visual data is continuously added.

We then proposed a method and a data structure that tackle representation of the

term document matrix and on-line semantic indexing where the database changes. We

introduced a bipartite graph model (BGM) which is a scalable data structure that aids

in on-line semantic indexing, which can be incrementally updated. We also introduced

a cash flow algorithm that works on the BGM to retrieve semantically relevant images

from the database. We examined the properties of both BGM and cash flow algorithm

through a series of experiments. Finally, we demonstrated how they can be effectively

implemented to build large scale image retrieval systems in an incremental manner.

1.5 Outline of the thesis

The structure of the thesis is as follows: In chapter 2 we broadly review existing work in

the field of CBIR, Spatial Indexing, Relevance feedback, Bag of words model, Vector quan-

tization for image retrieval and Semantic indexing for image retrieval, chapter 3 introduces

VTD based CBIR for color images, discriminative relevance feedback for improving retrieval

performance and elastic bucket trie for efficient image retrieval. In chapter 4 we tackle the

problem of scalable retrieval with Bag of Words model in a highly dynamic database. We

develop and discuss the incremental vector quantization (IVQ) algorithm and show how it

can be implemented in tandem with text retrieval engines. In chapter 5 we discuss BGM and
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cash flow algorithm and show how they can be used for scalable and incremental semantic

indexing over a large scale and highly dynamic database.
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Chapter 2

Background

2.1 Introduction

This thesis has a wide context as far as domains are concerned. They range from Content

Based Image Retrieval(CBIR) to Bag of Words (BoW) model. This chapter is meant to

familiarize the reader with most of the relevant concepts and their state of the art when

it comes to the issues this thesis addresses. The reader should note that going through

[2, 3, 4, 5, 6] would be beneficial to gain a better understanding of some of the domains we

deal with.

2.2 CBIR

Early research into image retrieval had begun, as far back as four decades ago. Both the

database management systems and computer vision communities started working on image

retrieval in the early 70’s [2]. In the early days, the popular frame work for image retrieval

was one that was built around manual annotation of images. Though significant advances

were made ranging from query evaluation to multimodal indexing[7, 8], the systems were

still primarily dependent on manual annotation for their retrieval. This kind of framework

uncovered two significant problems.
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• Manual annotation was not scalable for large image collections.

• Annotation of subjective content was inexact and dependent on the annotator and

hence is inadequate in its scope.

Though further developments in the field have rendered the first problem irrelevant, the

solution to the second problem however still eludes. This second problem was an early

incarnation of what is referred to in the modern image retrieval literature as “The Semantic

Gap”. The 1990’s saw the emergence of CBIR as a separate field of work in its own right. This

was a direct result of the scalability issues with manual annotation. For the first time, images

were being retrieved based on the very content they contain rather than the annotations

provided by a subjective observer. They made use of visual features like color, texture and

shape, which they extracted from the image in a process termed feature extraction. With

the basic design of a CBIR system set, researchers started working in three primary areas[2].

They were visual feature extraction, multi-dimensional indexing and retrieval system design.

2.2.1 Features

In the early days of content based image retrieval, global feature based image retrieval was

prolific. These schemes used primitive features of color, shape and texture over the entire

image to retrieve relevant images. Global features view the image as a whole and calculate

its features. Some of the predominantly used features are color histograms, color moments,

color sets, gabor filters, co-occurrence matrix, shape context, etc. The shortcomings of such

global schemes in effectively being used to retrieve images, is mentioned in detail in [9].

Later, spatial layout based schemes, sampled images in finer detail by dividing them into

many small, usually equal sized parts. They then continued to extract the local features

from each part. This evolved into the paradigm of region based image retrieval [3, 4, 5]. In

this general framework, the image is segmented into different homogeneous regions based

on either colour, texture, shape or all three of them. These schemes range from segmenting

the image into objects to segmenting them into homogeneous color patches. These schemes
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model the way in which humans perceive visual content better and there by obtaining better

performance. However, accurate object segmentation, in general, is very costly in terms

of computational resources. On the other hand, inaccurate segmentation leads to drop in

precision of retrieval.

Research along this direction came into its own with pioneering work done by Carson et

al. in their blobworld system [3]. Since then many improvements have been suggested to the

general approach of region based image retrieval, the most notable of which was the work

done by Wang et al. [4, 5]. Visual features and feature extraction are still active fields

of research within the CBIR community. Visual features ultimately are used to retrieve

similar images. The word “similar”, however, must be disambiguated by mentioning that it

only means similar in a feature space. The similarity of two images in the physical world

however, is not constrained by their visual similarity. This gap between human perception

of similarity and the machine perception of similarity is called the semantic gap.

2.2.2 Semantic Gap

The term semantic gap refers to the differences in perception and representation of the same

information between two different entities. In the context of humans and computers this

refers to the gap in the way each of them perceive, understand and describe the same data.

For example in the Figure 2.1 the human reader sees a military jet flying while the computer

is only able to understand a bit representation of that data. The machine is not aware that it

is an aircraft, it has no context of what an aircraft is and how to understand what an aircraft

looks like from binary data. This mismatch in human and computer ability to transcend the

data and understand the true content underlying it is the essence of the semantic gap and

the problems it creates. This semantic gap between man and machine can be attributed to

three primary discrepancies between man and machine. They are

• Visual perception: The computer sees RGB values while the human sees objects and

scenes.

13



Figure 2.1: A Sukhoi30 aircraft

• Training data: The computer is not aware of other images with the same higher level

concepts, while the human has apriori data of almost all visual information he comes

across.

• Learning model: The computer has no way of associating, grouping or categorizing

images over time. The human brain achieves that seamlessly.

The primary purpose of any CBIR system is to bridge the semantic gap by tackling the dis-

crepancies in these three areas and ultimately try to model how humans see and understand

images.

Visual Perception

Human vision is a product of millions of years of evolution. It is an incredibly complex system

from the eye to the visual cortex. Human vision has been an active area of research for

researchers from varied fields from medicine, neuroscience, cognitive sciences and computer

scientists, yet a consistent model of human vision still remains elusive. [10]. The way in which

humans see the world has been consistently redefined as more and more studies are done
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Figure 2.2: How an image is interpreted by a computer using color texture and shape features

on the topic. However when concerning CBIR one needs to take some primary attributes of

human vision into consideration.

• Our ability to sense color

• Our ability to sense shape

• Our ability to sense brightness

• Our ability to sense depth

In order to replicate a model of human vision on a computer one must take these factors

into consideration. Early CBIR systems and most current CBIR systems still use low level

Color, Texture and Shape features [2] to model human vision. With these feature vectors

the computer tries to replicate rudimentary visual perception that is somewhat similar to

human visual perception as seen in Figure2.2

Training Data

From the moment we are born the human eye senses an enormous amount of visual input.

Along with this we also experience a wealth of other sensory input. When all these are

combined together in both simple and complex ways over time it forms our knowledge of
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Figure 2.3: A mosaic created from more than 53,000 categories of more than 7 million images.

Courtesy 80 million tiny images project Torollba et al[1]

the physical world. With this enormous amount of knowledge it is a trivial task for humans

to recognize, interpret, associate and categorize things by their visual appearance alone. A

computer however does not have either the inbuilt mechanism to understand the data nor

that amount of data available to it. In CBIR the usual approach of providing this training

data to the computer is by using relevance feedback mechanisms over a large number of im-

ages(refer to Figure2.3) to allow the users to group images into classes. Hence a rudimentary

mechanism of collecting data and aggregating knowledge by grouping or association is setup

along with their relevance to visual features.

Learning Model

The learning model in a CBIR system is system that tries to replicate human knowledge

of visual classes by trying to learn what visual features correspond to what concepts. For

example, in Figure 2.4, each of the images represents an apple yet they vary vastly in

color, shape and texture. Even with the vast amount of variation the human brain is able to

recognize all of them as apples. This is due to some abstract model of apples that the human

brain has constructed from all its past experiences. The objective of a learning CBIR system
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Figure 2.4: A set of images containing an apple each
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is to construct a model as similar to the user’s abstract model as possible in an arbitrary

feature space with the given training data [11]. These learning algorithms can be grouped

into generative, hierarchical [12, 13], discriminative or hybrid [14, 15] algorithms. These

models along with the models for visual perception and training data are an oversimplification

of the way humans understand the world visually. As a consequence though significant steps

have been taken in bridging the semantic gap, the divide however still remains too wide for

large scale application of CBIR.

2.2.3 Relevance Feedback

Early CBIR systems were only able to retrieve images based on the nearest neighbors in

a feature space. Though the human operating the system was able to provide a wealth of

knowledge to the system these systems were not able to leverage it. What was needed was

a viable way for CBIR systems to learn from the interactions by getting the human into

the loop. This lead to the widespread adoption of relevance feedback in CBIR systems.

Relevance feedback [16] is a technique adopted by Image Retrieval researchers from text

retrieval to improve performance of CBIR systems. The typical process of relevance feedback

is as follows. For a given initial query the CBIR system fetches the N-nearest neighbors of

the query in an arbitrary feature space using arbitrary distance metric. Once presented with

the retrieved images the user critiques on them by choosing the relevant images. All the

relevant images and in some cases non-relevant images are used by the relevance feedback

algorithm to either refine the query or other variables that effect image retrieval. Having

changed it’s internal model to be more inline with the user’s model of the concept the next

set of nearest neighbors are retrieved and presented to the user. This process is reiterated

over time.There are a large number of varied algorithms for relevance feedback yet they

fall into three main classes namely, statistical relevance feedback algorithms, kernel based

relevance feedback algorithms and entropy based relevance feedback algorithms.
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Statistical Algorithms These were the earliest methods of heuristic weight adjustments.

They used the nature of the distribution of relevant data in the features space to effectively

cluster relevant examples. Most of these methods try to take advantage of the fact that

under certain transformations the image database can be clustered into relevant and irrele-

vant images Or where the relevant images become clustered and the irrelevant ones become

sparsely dispersed. The relevance feedback data is used to achieve this transformation.

Kernel Based Algorithms These methods use some kind of kernels to achieve relevance

feedback. SVM (support vector machine) based algorithms primarily dominate in this class

and have become even more prominent in recent years [17].

Entropy Based Algorithms Entropy is an estimation of the deviation of a random

variable from pure randomness. They have also grown to incorporate algorithms using infor-

mation gain, mutual information, active learning and other information theoretic methods.

Other Algorithms Relevance feedback has been a very active field of research in the

CBIR community for more than a decade. New algorithms are constantly being suggested,

some of which do not fall into any of the above classes. These include SOM (self organizing

maps) algorithms, neural networks, decision trees and other approaches.

Shortcomings

For a CBIR system to work well many subsystems must come together successfully and many

variables must be set right. A detailed study of this can be seen in [11]. However there

are two important factors whose mismatch limits the effectiveness of a relevance feedback

systems.

• Feature Space: The feature space is a constrained by the low level feature vectors

extracted from the images. If the feature space is not appropriate then learning by

relevance feedback will not be able to improve the retrieval performance.
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• Learning Algorithm: The learning algorithm must be capable of appropriately mod-

eling the user behavior over the feature space. If it cannot do that, even a good feature

space is of little consequence when it comes to performance.

Often one finds the relevance feedback is far less effective in CBIR than in text retrieval.

The primary reason being that low level image features fail to capture the semantics of an

image as effectively as words do in text documents.

2.2.4 Indexing

Multimedia data is hard to index using regular database management systems. Tradition-

ally the CBIR community widely preferred spatial data structures for deploying multimedia

databases. These were predominantly R-Trees [18], X-Trees [19], S-Trees, Variants of S-trees

and R-Trees like R*-Trees [20], S*-trees and later there were also TV-trees [21]. All of these

tried to efficiently index spatial data or multi dimensional data like image, video and audio

for building efficient retrieval systems. These data structures are better suited for global

feature based image retrieval schemes than region based methods. Yet some have adapted

them to work for region based image retrieval as done by Carson et al. [3]. However, with

the advent of relevance feedback techniques in image retrieval, spatial data structures have

become inefficient. Once relevance feedback is used the traditional “spherical” or “window”

queries in the feature space are transformed into highly elliptical and other shapes mak-

ing the usual spatial data structures very inefficient. Since relevance feedback changes the

query continuously in shape and dimension the spatial data structures have been found to

be inefficient.

2.3 CBIR and Bag of Words

In recent years CBIR has been incorporating methods from the object recognition, object

classification and text retrieval communities. These include better local detectors and de-

scriptors from the object classification community, better image modeling, retrieval methods
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and document indexing adapted from text retrieval community and better semantic analysis

methodologies borrowed again from the text retrieval.

2.3.1 Local Descriptors

The new wave of local photometric descriptors are undoubtedly the base on which the modern

object classification research is built upon. They have been heavily used in all kinds of

scenarios like object recognition [22, 23, 24, 25], object classification [26, 27], image retrieval

[28, 29], robot localization [30]. Most of these modern descriptors are scale and rotation

invariant, they are also robust to affine lighting change and are very distinctive. These

attributes have caused a paradigm shift in whatever fields they have been effectively used.

Region Detectors Usually the first step towards computing local descriptors is detecting

regions within the image for whom the descriptors will be calculated. For this task, region

detectors are used. There are a multitude of region detectors belonging to many classes but

all of them have to meet some common criteria to be considered good region detectors.

• They must be scale invariant to cope with the same content being projected at different

scales/distances.

• They must be rotation invariant to cope with in the plane rotation of the camera/scene.

• They must be robust to affine photometric changes to cope with out of plane rotations

of the camera/scene.

• They must have high recall for robust matching of corresponding local descriptors.

These detectors include scale and affine invariant detectors, blob detectors, affine covariant

detectors. These include DoG(Difference of Gaussian), LoG(Laplacian of Gaussian), MSER,

Harris Affine, Hessian Affine and many such detectors. A detailed study of the performance

of many such detectors was carried out by Mikolajczyk et al. [31].
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Figure 2.5: Original image of an artist’s graffiti and the corresponding affine covariant regions

detected using Harris affine detector

Descriptors Local descriptors are used to encode image point or patch data from the

interest point or region detectors. The aim of local descriptors is to encode the image patch

into a representation that has the following qualities.

• They are highly distinctive: chances of false positives and false negatives are low.

• Invariant to affine photometric changes: robust to changes in lighting and brightness.

• Invariant to rotation and scaling: able to cope with rotation and scale changes.

In recent years, distribution based descriptors have found great success both in research and

commercial applications. These include SIFT[32], PCA-SIFT[33], GLOH[34], SURF[35],

LESH[36]. SIFT (Scale Invariant Feature Transform) is however the one that stands out

as the first and is the most widely used local descriptor both for research and commercial

purposes.

Bag of Words The Bag of words model is a text retrieval technique that simplifies model

of a text document to be just an unordered set or collection of words or terms. Most

text search engines use this model to deal with documents. More recently the BoW or

Bag of Words model has been adapted to computer vision applications(See Figure 2.7 )

like object categorization and object recognition [37]. Here the image is represented as
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Figure 2.6: SIFT matches for Toyota Corolla
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Image Bag of Words

Figure 2.7: The above diagram shows an example of the bag of words model in computer

vision. Here the image is sampled and image patches are extracted using local detectors.

These patches are further encoded into a feature vector using local descriptors. Each of

these image patches is a visual word. Finally the image is represented as a collection of

image patches using the bag of words model. The important thing to note is that the spatial

consistency among the words/patches is not maintained in the BoW model

a distinct set of visual words or a visual word histogram. The visual words are usually

arrived at by vector quantization in an arbitrary feature space. This model has been used to

tackle many vision problems[38, 39, 6, 40, 41, 42, 43, 44, 45, 46, 47] with very good results.

These approaches are shown to be well suited for tasks such as object categorization, object

recognition, object retrieval and scene classification. The success of these approaches, in

large part, is due to the model’s ability to accommodate natural scene variance in the form

of pose changes and occlusion. The quantization of a very high dimensional feature space

(using an algorithm like Kmeans)[48, 49] to build a compact codebook that encodes the

similarity between descriptors, paves the way for efficient retrieval systems. The power of

bag of words model to create efficient image and video retrieval systems has been explored

by Sivic and Zisserman[6] as well as Nister and Stewenius[50]. The problem of building

large scale image retrieval systems has also been looked into by Torralba et al.[1], though
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not utilizing the bag of words model. State of the art retrieval systems describe the images

by sparse or dense descriptors and index them in an offline phase to build highly scalable

retrieval systems.

In text retrieval the bag of words model is intuitive and simple. However, when it comes

to images the application of this model is not immediately apparent. The model architecture

as seen in Figure 2.8 shows how images are transformed and used as documents in a bag of

words model. First the data acquired from multiple sources is stored in the content database,

then feature extraction is done on each image. Typically, interest point detectors are first

used to identify interesting regions within the image. Figure 2.7 shows the detected regions

in the corresponding image.The detected regions are then encoded with a high dimensional

visual descriptor like SIFT[32]. Once the feature vectors are extracted they are quantized

using vector quantization. Vector quantization converts feature vectors into symbols or words

by quantizing the feature space into discrete cells. The resulting words are all considered

independent of each other. These words are then used to index the image and retrieve

relevant images when appropriate.

Internet

Feature
Extraction

Query

QuantizationDatabase Index Search

Relevant Images

Figure 2.8: The above block diagram shows the architecture of a BoW based image retrieval

system. After data acquisition from various sources the features are extracted and vector

quantization is done. Vector quantization converts feature vectors into symbols or words.

These words are then indexed in the index and are used for retrieval as and when required

by the search module.
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2.3.2 Vector Quantization

Vector quantization or feature space quantization is used to discretize a feature space into

visual words. The discretization of image features allows the problem of image retrieval

through nearest neighbor search in high dimensional spaces to be posed as a search and

retrieval problem in a document collection[6]. This transformation makes large scale image

retrieval systems viable. A good quantization algorithm for large scale highly dynamic image

retrieval systems should be highly adaptable to new data, be able to accurately represent

underlying data and build compact codebooks(vocabularies created by quantization of the

feature space) that are robust to new data. Vector quantization is an integral part of image

retrieval using the bag of words model.

Figure 2.9: The above vornoi diagram is a graphical representation of vector quantization

using K-means on two dimensional data. Here the vornoi cells represent the visual words in

the feature space and the dots represent the means. Each vornoi cell is associated with an

identifier or a symbol and all the feature vectors in the feature space are labeled with the

symbol of their relevant cell. The cells form the vocabulary of the bag of words model

The most dominant feature space quantization or perceptual coding algorithm in use is k-
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means clustering algorithm [51, 52, 48, 49]. k-means aims to partition n observations (feature

vectors) into k clusters in which each observation belongs to the cluster with the nearest

mean. It is similar to the expectation-maximization algorithm for mixtures of Gaussians in

that they both attempt to find the centers of natural clusters in the data iteratively[53, 54,

55]. At every iteration the observations are reassigned to the relevant means until the means

converge with respect to a given criteria (maximum iterations, no change in means, etc).

Agglomerative and online quantization techniques have also been explored [56]. Agglom-

erative methods usually begin with each element as a separate cluster and merge clusters

using some criteria. Agglomerative clustering algorithms are a good candidates for hier-

archical clustering too. Hierarchical clustering algorithms [50, 57] coupled with supervised

learning of randomized decision trees and forests [58, 59] have gained prominence for ob-

ject categorization, image classification and image segmentation. More recently adaptive

vocabulary forests[60] and discriminative visual vocabularies have also been used [61, 62].

2.3.3 Semantic Analysis

Latent semantic analysis is a text retrieval concept which is used to analyze a set of doc-

uments so that the latent concepts and their relationships to the documents and words in

the documents can be uncovered. The quality of the retrieval using bag of words model is

further enhanced with the help of semantic indexing techniques like probabilistic Latent Se-

mantic Analysis(pLSA)[63] and Latent Dirichlet Allocation(LDA)[64]. Semantic analysis of

a document corpus can be viewed as unsupervised clustering of constituent words and doc-

uments around hidden or latent concepts in the corpus. Adaptation of PLSA and LDA to

visual bag of words has provided promising results for static image databases[65, 66, 67, 68].

More recently semantic analysis is also being used in conjunction with spatial constraints

for object segmentation [69, 67, 70], scene classification [47] and model learning [71, 72, 73].

Initially LSA or LSI was done by decomposing the co-occurrence matrix generated from the

document-term vectors of a document set using SVD. This however did not have a solid

statistical accurate which was achieved to some degree by pLSA [74], or probabilistic latent
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semantic analysis. Both pLSA and LDA (latent Dirichlet allocation) found success in the

text retrieval community. With the introduction of Bag Of Words models for images, in

recent years both pLSA and LDA have been successfully used in Object Recognition [75]

and Scene Analysis [64]. Though pLSA and LDA are very good at achieving what they are

meant for scalability is a very serious concern.

2.3.4 Indexing

The Bag Of Words model lends itself well to implementing text based indexing methods

and thereby improving efficiency of the system. Yet this has been a very sparsely explored

area in object recognition and image retrieval. Few notable examples are the Video Google

system [6] which used an inverted filesystem to retrieve relevant images and a voting based

indexing system by Mikolajczyk et al. [76]. An inverted index is an index that stores a

mapping from words to the documents in which those words occur. The inverted index is

usually used to carry out text search[77]. TF or term frequency is the number of times a

term ti appears in a given document dx and IDF or inverse document frequency is inversely

proportional to the number of documents a term ti occurs in the document corpus Dx. TF,

IDF values are used for ranking retrieved results. Here the intuition is that the greater the

TF and IDF values the more important the term is in the document.

2.3.5 Largescale Databases

CBIR has traditionally not been able to scale effectively to image collections beyond thou-

sands of images. As the size of the database grows so does the need to represent it more

distinctively. However as the dimensions of the feature space grows we run into the curse

of dimensionality. The curse of dimensionality hints at the problems caused by the expo-

nential increase in the volume of the feature space with a linear increase in the number of

dimensions. The curse of dimensionality is also the primary cause for concern when dealing

with the scalability of CBIR. Since CBIR either uses nearest neighbor search[78] or spatial

indexing to retrieve relevant images one sees the decline in performance as the number of
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dimensions grow. Spatial indexing datastructures like R-Trees [18], X-Trees [19], S-Trees,

Variants of S-trees and R-Trees like R*-Trees [20] ,S*-trees, TV-trees [21] were used to index

the feature space. All of these tried to efficiently index spatial data or multi dimensional data

like image, video and audio for building efficient retrieval systems. However the situation has

changed with the incorporation of relevance feedback into mainstream image retrieval. Once

relevance feedback is used the traditional “spherical” or “window” queries in the feature

space are transformed into highly elliptical and other shapes making the usual spatial data

structures very inefficient. Since relevance feedback changes the query continuously in shape

and dimension the spatial data structures have been found to be inefficient. There have also

been attempts to accelerate nearest neighbor search in high dimensions using LSH(locality

sensitive hashing) [1, 79, 80, 81] however these schemes do not take into account the skewing

effect relevance feedback has on the feature space. The inability to accommodate this skew

degrades the CBIR system’s retrieval performance.

2.3.6 Dynamic Databases

With the introduction of bag of words based image retrieval a new problem has come up

when dealing with dynamic image databases. Dynamic image databases are databases whose

nature(defined by kind of visual concepts the images contain) is constantly changing with

the constant addition of new images. However, two important parts of contemporary bag

of words based image retrieval are not good at dealing with a dynamic database of images.

State of the art BoW retrieval systems describe the images by sparse or dense descriptors and

index them in an offline phase to build highly scalable retrieval systems. As the database

dynamically evolves, the codebook is unable to accurately represent the underlying data.

This necessitates the re-computation of the codebook at regular intervals. As the number

of images and associated visual concepts increase, the computation becomes prohibitively

expensive even for thousands of images on commodity hardware, often taking days or months

to compute. To scale offline quantization to large scale databases the data is usually sam-

pled and a small percentage of the images are used to compute the codebook. Even, in
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these cases traditional vector quantization methods cannot scale effectively[57]. This has re-

sulted in the development and application of new methods like hierarchical and approximate

Kmeans algorithms for building codebooks [50, 57]. Agglomerative and on-line quantization

techniques have also been explored [56]. Quality of the model has also been optimized using

discriminative visual codebooks [61]. However, any such database specific offline approaches

are not extendable to the situations where the database is constantly evolving. Semantic

indexing in a dynamic image collection also poses a considerable challenge. As new images

are constantly added to an image collection the semantic index is unable to accurately repre-

sent the changing database. This necessitates updation of the semantic model and indexing

it at regular intervals which is time consuming and not scalable for large databases with

millions of latent concepts. As the number of images and associated concepts increases,

these computations become expensive. Traditional semantic indexing methods range from

statistical methods like Latent Semantic Indexing [63] to probabilistic generative models like

Probabilistic Latent Semantic Analysis(pLSA)[63] and Latent Dirichlet allocation(LDA)[64]

and their incremental variants like incremental pLSA proposed by Wu, et al.[82]. One of the

factors that make these methods challenging to adopt in a dynamic setting is their compu-

tational complexity. The other factor that makes the adopion of these methods challenging

is the selection of number of global semantic topics. Even for incremental pLSA selecting

the number of latent topics in a changing database of millions of images is difficult.

2.4 Challenges for the work

One faces a significant number of challenges when trying to build such a system.

• Vector quantization is an important step in efficiently handling high dimensional

data if one wants to avoid costly nearest neighbor calculations in high dimensions.

When the amount of data and feature space becomes huge vector quantization and

its relevant parameters are not so straight forward and are dependent on many issues.

Getting their balance right is very hard and at the same time highly relevant to the
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performance of an image retrieval system.

• Semantic Indexing Algorithms like LSA and PLSA that have been known to improve

retrieval performance are not scalable when it comes to huge datasets. Suitable alterna-

tives must be found that are both scalable while providing a meaningful improvement

in retrieval performance.

• Relevance Feedback Relevance feedback is a technique by which the systems un-

derstanding of a query is continuously updated hopefully for the better. Traditional

relevance feedback methods are not that computationally efficient in high dimensional

spaces.

• Indexing Indexing is one of the primary factors that affect’s the speed and scalability

of a retrieval system. Traditional CBIR indexing and retrieval from spatial indexes is

inefficient for data in high dimensional spaces.

2.5 Vocabulary

In this thesis much of the vocabulary pertaining to CBIR and image retrieval is used inter-

changeably, following are some terms that you might encounter in the rest of the thesis and

their meaning and context.

• The phrase Image retrieval often means content based image retrieval and is not in-

dicative of image retrieval using textual cues

• The phrase Bag of Words is most widely used to indicate bag of visual words rather

than the text retrieval model, unless it is explicitly specified.

• The phrases semantic indexing and semantic analysis are used interchangeably.

• The phrase dynamic database or highly dynamic database is used to refer to multimedia

databases where the visual nature of the multimedia in the database constantly changes

due to the addition of new data to the system.
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Chapter 3

CBIR for largescale databases

Traditional CBIR systems find relevant images by finding nearest neighbors in a high dimen-

sional feature space. This is computationally expensive, and does not scale as the number

of images in the database grow. We address this problem by posing the image retrieval

problem as a text retrieval task. We do this by transforming the images into text documents

using grid based quantization of the feature space. This text description of image is called

a Virtual Textual Description (VTD). Once this transformation is done, we further enhance

the performance of the system by incorporating a novel relevance feedback algorithm called

discriminative relevance feedback. Lastly we use the virtual textual description of images to

index and retrieve images efficiently using a novel datastructure called the Elastic Bucket

Trie (EBT). We show how EBT compares to traditional spatial indexing methods and discuss

its adaptability to adapt effectively to relevance feedback algorithms.

3.0.1 Structure of Chapter

We propose a novel general representation where images are treated as documents, and seg-

ments are treated as keywords. The virtual textual representation transforms the CBIR

problem into a modified text retrieval problem, thereby allowing us to use the wealth of

knowledge to tackle the general problems in CBIR (Section 3.1). We demonstrate the use,
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practicality and performance of our virtual textual representation scheme with an example

implementation and a pictorial example. Using this representation, we develop a discrimi-

native relevance feedback scheme creating a unique blend to improve both performance and

flexibility. The proposed relevance feedback scheme, tries to find the discriminative regions

instead of the salient regions to improve the retrieval (Section 3.2). These regions are dis-

covered in a way that can aid long term learning and at the same time refine the results

at each iteration. We validate our scheme under different conditions through a series of

experiments (Section 3.3). We also show that our scheme can be extended to achieve better

performance without trading it for flexibility. We then introduce a modified elastic bucket

trie for indexing and retrieval scheme for image databases (Section 3.4). It is much more

efficient than the traditional spatial data structures used to access multimedia data and is

at least one order better than these schemes. Our scheme is also able to work without any

modification with relevance feedback schemes as is required by spatial indexing and retrieval

schemes.

3.1 Virtual Textual Description

Images by their nature are subjective. Their content cannot be effectively described in a

quantitative manner. When humans describe an image they do so by extracting objective

features or concepts like sky, clouds, flowers, cars, bikes, people etc. This however cannot be

done by a contemporary CBIR system as it is not capable of comprehending these concepts.

Instead the image can be seen or interpreted by these systems in the form of primitive

features. These low level features are computed from pixels or patches. There is a gap

between these low-level representations and the high-level concepts, popularly known as

the semantic gap. In order to bridge this gap of subjective visual features and objective

high level concepts, Carson et al. [3] and Wang et al [5] developed an objective low level

feature representation and retrieval framework called region based image retrieval. In these

methods generally the image is divided into objective segments such that each segment is
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homogeneous in nature in some visual characteristics, which means that the image is a

collection of segments that are visually coherent concepts in themselves. The aim of region

based image retrieval is to find some mapping of the concept that the user is looking for on

to a set of segments [83]. If this can be successfully done the concept can be deduced as a

set of segments by the system, thereby being able to bridge the semantic gap to some extent.

We take region based retrieval one step further by proposing that a set of visual segments

representing a visual concept is much like a set of words representing a subjective intention,

or like a set of words making a coherent essay with a central theme. Drawing such parallels

to text documents we further try to quantize the visual concepts by converting the segments

into words and the image into a text document comprising of these words.

In our virtual textual representation an image is referred to as a document and its seg-

ments are referred to as keywords. Such a transformation is advantageous as one can now

solve the CBIR problem as a modified or a special case of text document retrieval problem.

Once the image has been divided or partitioned into visually coherent and compact units or

segments, each segment is transformed into a string called a keyword. These keywords are

obtained by binning visual features and applying a linear or nonlinear transformation. The

segments are transformed into words such that segments that are visually similar to each

other have the least hamming distance in their strings. Such a transformation may at first

seem lossy however such a transformation actually improves the generalization capabilities

of the system. Once the segments have been transformed to keywords and the images con-

verted to documents we cannot directly use cosine distance to find the distance between two

images as done in text retrieval. This is because in text documents each word is an atomic

unit where changing even a character would mean the meaning of the word is lost. However

in our virtual textual representation each character is an atomic unit and these atomic units

put together to form a keyword. Hence we need to solve the problem differently.

A sunset described visually in terms of color by a human would be something as follows.

sunset → (Orangish or Reddish) Hue on Top AND (Yellow or Bright Yellow) Hue in the

middle.
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Figure 3.1: Images of sunsets with a lot of variation can accommodate the afore mentioned

visual description of (Orangish or Reddish) Hue on Top AND (Yellow or Bright Yellow) Hue

in the middle.

Human beings tend to describe visual content as a group of visually coherent regions.

Hence we can see that the sky is expressed as orangish or reddish hued region on top. Such a

general description of a sunset allows for a lot of variation as does the human recognition of

a generic sunset. The concept of ‘Sunset’ is, by definition, visually and conceptually broad

and inexact in nature. This broad description allows us and the scheme to accommodate

other visually different concepts like clouds and buildings in the sunset image.

An image can be described and distinguished as a collection of regions or segments in

order to better handle the content. Here the image becomes a collection of discrete visual

concepts that are put together to form one visually coherent concept. This is like a bunch of

words put together to form a coherent essay or document or description. We hence draw the

parallels between the logical compactness of words and segments in images and documents.

For example we see that for a concept sunset orangish, reddish, yellow, bright yellow are

keywords in textual form. This is carried on into the image domain where images are modeled

as text documents and segments are keywords of these documents. Such a modeling tries to

mimic human visual interaction or description rather than human visual perception. Hence

visual concepts can be communicated effectively between the user and the system.

In our scheme, an image is treated as a visual document akin to a text document and the

major or the important segments of the image are treated as keywords in the text document

as seen in Figure 3.2. Once the image is segmented each segment is visually described in the

form of a word where the word is a 6 character string(specific to our implementation) in-
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stead of linguistic representation like “Orange” or “Blue”. This word is the result of binning

visual features of the image and applying a linear transformation to obtain a 6 character

string in the text domain. This six character string is called a “keyword” and each image is

called a “Document”. The nature of these Keywords is such that they are inherently broad

or inexact representations of their respective segments unlike numerical representations. In

our scheme, the distance between two documents cannot be calculated by cosine distance

as in document retrieval. This is because the keywords themselves have a distance between

them which incorporate more fuzziness into the scheme and as a consequence robustness.

We use hamming distance to calculate distance between two keywords and hence two seg-

ments. Consequently least cumulative hamming distance between two images produced by

any configuration is used as the “Inter Document” or “Inter Image” distance(Section 3.1.1).

A representation of an image as a document and segments as keywords, allows us to pose

the CBIR problem as a special “Text Document Retrieval” problem. Such a transformation

has the promise to improve the ability to index and retrieve images based on content us-

ing accumulated knowledge and practices in the text document retrieval domain. Existing

proprietary or open source database systems can be used to store and index the images and

also to efficiently retrieve these images. This would not be possible using the conventional

feature based representation and spatial databases would have to evolve. Our representation

can become translation and transformation independent as and when required automatically

by dropping the importance associated with positions of the segments. Our scheme can also

handle occlusion as the segments are independently modelled, and occlusion of one or more

of the segments will be handled gracefully.

3.1.1 Grid Based Quantization and Image Retrieval

The image is initially mapped into an appropriate color space which represents human visual

perception much more accurately. This image is then quantized into a discrete number of

uniform bins in the feature space. The image is then segmented based on the color and

spatial constaints. The segmentation algorithm is a heuristic algorithm designed to be much
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Figure 3.2: An example of an image being converted into virtual textual representation. First

the image is segmented into different parts or visual words, then these parts are transformed

into words by quantizing the individual colour, texture and shape features within each visual

word. Finally we have a virtual textual representation of the image

more robust and handle occlusion or collection of similar objects. The segmentation is

very efficient when compared to other contemporary implementations[4, 5] of region based

retrieval. It can afford this efficiency because of the concept refinement features built in to

the scheme through relevance feedback that make up for the loss of segmentation accuracy.

Once segmented, each segment is treated as a visual word. This visual word is converted

into text by a linear transformation as shown in the Figure 3.3.

When an exemplar image is given as a query, its representation (collection of all the

keywords) Q is extracted by the feature extraction module, where Qi is the ith keyword in

the document. Every other image document Kj is compared with Q to obtain a similarity

score Sj for image documents Q and Kj.

Sj =
n∏

i=1

max(Hm
k=1(Qi, Kjk)) (3.1)

H = (6− hammingdistance + 1) (3.2)

Where n is the number of keywords in Q and m are the number of keywords in Kj. Once

we get all the Sj we have. (
S1S2S3 . . . Sm−1Sm

)
(3.3)

We then sort the Sj and take the top N images or documents as the most relevant. Here

the hammingdistance is subtracted from 6 to convert the distance metric into a dissimi-
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Figure 3.3: The above figure demonstrates how a visual word is converted into a text or

symbol representation in the example implementation. Here X1, X2, X3 are the symbols

assigned to quantized bins in the colorspace. X4 and X5 are the quantized x and y offset of

the segment from a reference and X6 is the shape context of that particular image.

larity measure. This scheme is also very efficient as the problem has been modeled into a

partial string matching problem, where earlier floating point calculations were heavily used.

Now the calculations can be made with simple bit operations instead of costly floating point

operations. The above described linear transformation is but an example of a way in which

an image can be transformed into a symbolic or textual representation. This however might

not be suitable for all situations, for example situations where there are really dense clusters

separated by sparse spaces in the feature space. In such cases the sparse areas are over

sampled and the dense areas are undersampled. Hence different situations would require dif-

ferent quantization schemes but the general framework of the scheme will remain consistent.

Usually in a normal region based image retrieval, if 50 to 70 segments are produced and

each segment is described by 6 to 7 floating point numbers as features. In our case we use
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6 to 7 symbols to represent each feature vector, or a 6 character string. Already space effi-

ciency is achieved by our representation. Further, each floating point distance computation

(Minkowski) involves several complex arithmetic operations like square root, cube root, ad-

dition and subtraction. This makes floating point based region based image retrieval 502 to

702 times more inefficient when compared to global feature based methods. Our method on

the other hand uses bit operations and text indexing to achieve almost quasi linear execution

performance, making it atleast 10 times more efficient than the traditional schemes.

3.2 Discriminative Relevance Feedback

Recent years have seen the development of many relevance feedback strategies for region

based image retrieval as in the work done by Jing et al. [84]. But most of the existing

systems still use relevance feedback techniques built for global feature based image retrieval.

Other region based relevance feedback algorithms make use of region weighting to achieve

retrieval. Such techniques do not effectively distinguish a class of images in the presence

of other classes in the database. Rather they tend to cluster images based on the nature

of the relevant class which may lead to accidental biases toward unimportant features or

regions, like the concept of ‘road’ when one is looking for the concept of ‘car’ because

the visual concept ‘road’ commonly occurs with that of the concept ‘car’. At the same

time not much work or attention has been given to the efficiency and indexing of region

based image retrieval schemes. Our relevance feedback scheme differs from contemporary

relevance feedback schemes. Most of the schemes try to either obtain a region weighting or

try to extract the regions of these images based on which regions are most dominant in the

relevant images. Such schemes have a tendency to become biased toward features that do

not actually represent the concept. Other schemes finding the most salient regions in an

image which can also lead to similar bias. For example a couple of “Red Buses” will lead the

system to deduce that the regions with red are the important regions for the concept “Bus”

which is clearly not the case(the correlation between the color red and the concept bus is
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incidental and not true in all cases).

Figure 3.4: The different words or image patches that make up the car are further refined

during discriminative relevance feedback and a only the most discriminating words are re-

tained. This improves both the classification performance and the efficiency of the scheme.

In our relevance feedback scheme we obtain the most discriminative regions or keywords

instead of the important keywords of a particular class of images. Given a set of retrieved

images R and once the user marks all the relevant images P and the rest are the set of

irrelevant images N we calculate the most discriminative keywords. This is done by defining

a “Segment To Image” or “Keyword To Document” distance Dsi which represents how close

a segment or keywords is to an image. If SEG is the set of all the segments of P , then a

pseudo-image of top num keywords whose cumulative distance to images in P is the least

and the cumulative distance to images in N is the highest. This is quantitatively represented

by a discriminability measure for each keyword in P calculated as discussed(Section 3.2.1).

Hence we make a new pseudo-image with the most discriminative keywords of image class

represented by R, allowing us to pick the representative segments dependent on the other

classes in the database. This is done over many iterations.

As the relevance feedback scheme used tries to pick what makes each class unique, this

uniqueness can be easily captured to aid in learning the concepts in the long term across

multiple relevance feedback sessions. As the scheme is flexible, with slight modifications

anything from spatial constraints to optimal segment grouping can be incorporated to achieve

better results. Such a scheme will aid in distinguishing visually similar looking concepts.

Once these keywords are obtained we make a pseudo-image or document out of the most
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discriminative keywords. This pseudo-document is refined over further relevance feedback

iterations. Hence in the end we have keywords or segments that are able to represent very

specifically the concept they represent.

3.2.1 Algorithm

1. Obtain query image Q.

2. Obtain the image document (Collection of Keywords).

3. Image set R is retrieved from the database by the nearest neighbor retrieval algorithm.

4. Obtain feedback from user on R as P set of relevant image documents and N set of

irrelevant image documents.

5. Calculate the most discriminative keywords from P and N

• Calculate the Relevance score rp among P for each keyword in P .

• Calculate the Relevance score rn among N for each keyword in P .

• Obtain discriminative score dr for all the keywords in P as rp

rn
.

• Sort the keywords in descending order of discriminative score ds.

6. Pick top num keywords from the set of keywords such that all of them are mutually

dissimilar by a minimum Hamming distance of x.

7. Collect these num keywords and construct a new pseudo image document and loop to

step 2 until the user quits.

In the above algorithm we can see that only the keywords from P are used to estimate the

new image or the pseudo image document of the concept at hand. Here we try to find the

regions or keywords that are exclusive to a particular concept rather than keywords that are

important to a particular concept. We also provide a threshold for discriminative capability
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of two regions or keywords using x as the minimum hamming distance because of the need

to eliminate redundant regions and at the same time allowing the pseudo image document to

be as expressive as possible. Our algorithm can be termed as a hybrid bag of words approach

as we are starting out with a generative model of what a particular concept is, then this

model is modified by a discriminative learning model that refines the generative model to

achieve discriminability from other concepts in the dataset.

3.3 Results and Analysis

We tested two methods or algorithms: discriminative relevance feedback (DRF) and rele-

vance feedback based on region importance (Bayesian). First we converted all the images

into pseudo images with the help of VTD. In the Bayesian or generative method we ignored

the negative feedback images and boost the importance of words from the positive images.

The methods were tested on two image sets D1 with 225 images and 7 categories and D2

with 1162 images and 15 categories. All the images in the two databases were taken from

the corel image database [85]. D1 was used to confirm the methods ability to perform under

well defined and visually disparate concepts and D2 was used to test the robustness of the

schemes under conceptually different categories that are visually very similar.The retrieval

set was of size 20 and this was used to calculate precision over a number of iterations.

Precision =
NumberofRelevantImagesRetrieved

SizeofRetrievedSet
(3.4)

Here we find that our method DRF clearly outperforms the Bayesian probability based

salient region retrieval method. We also observed that our scheme was able to distinguish

very well between even hard to distinguish categories like “Surfers” and “Waves” or “Flowers”

and “Roses”, and this is more prominent when one considers that the only features of

significance here are 3 color features (Figure 3.3). Another important observation is that

the DRF’s precision fluctuates, Bayesian however shows a stable increase in precision in the

majority of the cases. Also as the number of distinct concepts grows DRF tends to browse

through a wide variety of these classes based on the discriminability. So DRF requires some
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Concept Images DRF Bayesian

Bus 30 82 58

Car 34 98 62

Flower 30 63 42

Rocks 29 60 29

Sunset 35 92 56

Surfers 28 56 31

Train 30 74 54

Table 3.1: The above table contains 4 columns for dataset D1 as follows. Column 1 contains

the class of images. Column 2 contains the number of images from each class Column 3 con-

tains the precision(percentage) of Discriminative relevance feedback (DRF) Column 4 con-

tains the precision(percentage) of a simple Bayesian relevance feedback approach (Bayesian)

iterations to get its bearing in the concept space. The performance of DRF on visually

coherent concepts is outstanding. This can be clearly seen in the tables of D1 and D2

above. In both cases the user critiques on wether the given images are relevant or irrelevant.

It was assumed the user critiques are consistent and deterministic regarding the relevance of

an image to a concept.

3.4 Elastic Bucket Tries

Tries are ordered tree data structures that are used as associative retrieval entities that

retrieve a record for the given string. Bucket tries and elastic bucket tries(EBT) [86] are

variants that have the ability to pool various records with common key prefixes of a certain

length into one bucket or block until the bucket overflows when more than N records are

inserted into the bucket or block. Here, N is the maximum number of records allowed in a

block. It is advisable to have each block of size 4096 bytes or one page for the x86 architecture
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based systems. This ensures that any block is loaded into the main memory with the least

amount of disk access which is the evident bottle neck. Here we have a special situation

where all the possible strings or all the keywords of the document image are of the same

length. So the maximum depth of the trie is (m+1) where m is the length of all the strings.

The root node is a null character that acts as an entry point to all the other strings. Each

level also has an extra Null character node to accommodate for partial string matching in

other than a prefix sense(for example using suffix trees for string matching).

Root(Null)

A B

C

D E

F

ACD ACE

Bucket1

BA

AC AF

Bucket 2

Bucket 3Bucket 4

Figure 3.5: A Simple Bucket Trie

Buckets This data structure is designed to a cater to image databases of varying size from

only a few hundred images to millions of images. Since this is for a dynamically scalable data

structure and is designed to be deployed on anything from a workstation to a server it needs

to allocate buckets or blocks on a demand basis. Though the entire trie can be populated

with the leaves pointing to blocks right at the time of initialization, as the alphabet at each

level is already known we do not do that because of efficiency and storage considerations.

It is also due to the fact that a fully realized trie in the form of keys could be very sparsely

populated as far as records go. This is the reason why new buckets are created or allocated

only when existing buckets overflow.

45



Records Each record is a representative of a segment from an image in the database. It

has the image name, handle or id. It has one string representative of the segment called the

keyword of the segment. This keyword is used to decide which bucket this record falls into.

Insertion When a record r is to be inserted into a modified EBT (Elastic Bucket Trie)

T the keyword of the record or the string representative of the segment within the record

is obtained. From the root node rn which is a null string the record descends through the

trie until it reaches a bucket B at some level L such that L ≤ (m + 1) where m is the size

of all keywords or strings of the trie. Once the bucket is reached the record is inserted. If

an overflow occurs the bucket is split into numb new buckets where numb is the size of the

alphabet of the next character in the string. All the new buckets are placed one level lower

than the original bucket after adding one character to the prefix of each bucket(this is where

our modified EBT is different from an EBT, in a traditional EBT the buckets do not descend

to reveal new leaf nodes). This splitting though costly is used to dynamically allocate space

to the records on demand rather than allocating all the space at once, and this splitting only

continues till the level (m+1) where an overflow will result in another bucket or block being

appended to the original bucket to contain the overflow. Hence buckets at the bottom level

are not split. Hence limiting the total number of splits to a constant number.

The modified EBT does not have any deletion mechanism for the records. This is in

harmony with the cheap secondary storage and dynamically increasing multimedia databases

of today where deletion is treated as an unnecessary overhead. We hence avoid all the costs

of merging buckets or blocks.

Retrieval Retrieval in our modified EBT is very efficient and is designed for and incor-

porated into a region based image retrieval framework in such a way that the trie need not

change to accommodate for the change in the query due to relevance feedback. Hence re-

trieval is made independent of the dynamic nature of the interactions between the user and

the system. When an image I is given as a query and I is a set of all the segments repre-

senting the image then for each segment Si. T = T ∪ Retrieve(Si, EBT ) where i = 1 → n.
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Where n is the total number of segments in I and T is the set of all the records retrieved

by querying for all the segments. The images whose handle occur the most are retrieved

from storage in descending order ensuring that the image with the highest number of similar

segments is first retrieved. Here partial segment matching is also taken care of due to the

multiple levels at which buckets can occur. And every time there is relevance feedback from

the user and the system is adapted a new pseudo image is given as a query and the same

process continues over again.

3.4.1 Analysis

It can be shown that the modified EBT is far superior to standard spatial data structures for

indexing and retrieval in a region based framework with a simple comparative scenario. We

analyze the costs associated with insertion and retrieval in an R-tree and our modified EBT

by comparing the worst case scenario complexities in both R-tree and the EBT. A record

r is inserted into both the R-tree Rt and the EBT Tr. Then this record must be retrieved

from the data structure. We calculate the standard costs of these operations while ignoring

their variable costs. Lets assume the number of dimensions of the feature space is the same

as the string length of all the keywords in the trie which is m, this is true because here

each character represents one dimension. We also assume that an equally variable number

of node ni exist at every level i of the structures as one needs equal ground to compare both

the data structures. Splitting is not accounted for while counting the cost.

R-tree Following is the cost associated with insertion and retrieval in an R-tree for a given

image I.

1. Obtain record ri from image. –constant time C

2. Start at root node of the R-tree.

• Compare lower bound for m dimensions using floating point comparison ni times.

– cost of operation m ∗ ni ∗ C
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• Compare upper bound for m dimensions using floating point comparison ni times.

– cost of operation m ∗ ni ∗ C

3. If the target block is at level l repeat above l times. - cost of operation 2(m ∗ni ∗C)∗ l

4. If target block reached insert record or retrieve block. – constant cost C

5. Repeat from 2 t times where t is the number of segments in I. – Total cost 2(m ∗ ni ∗
C) ∗ l ∗ t

EBT Following is the cost associated with insertion and retrieval in a modified EBT.

1. Obtain record ri from image. –constant time C

2. Start at root node of the R-tree.

• Compare single character using EXOR ni times – cost of operation ni ∗ C

3. If the target block is at level l repeat above l times. - cost of operation (ni ∗ C) ∗ l

4. If target block reached insert record or retrieve block. – constant cost C

5. Repeat from 2 t times where t is the number of segments in I. – Total cost (ni∗C)∗ l∗t

From the Table 3.3 we see that the modified EBT clearly outperforms the R-tree by an

order. That is the EBT performs one order better than the R-Tree. Such performance

improvement was made possible due to the transformation of images into documents and

segments into keywords. Hence by converting the spatial indexing and retrieval with rele-

vance feedback into a problem that can be solved by EBT we have overcome inefficiencies.

This data structure is both scalable and adaptable with minimum change to other modules

in the system. Its inherent capability to merge well with relevance feedback of any type

makes it an ideal data structure in dynamic CBIR systems.
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3.5 Summary

We developed and discussed methods for efficient, scalable and adaptable image retrieval

from large scale and dynamic databases. These methods include transformation of color

images into documents using Virtual Textual Description (VTD) with the help of grid based

vector quantization for CBIR. The usage of ‘Discriminative Relevance Feedback based on

VTD improved the retrieval performance of the system by incorporating a learning element

to better model the query. We also proposed and new indexing scheme for this CBIR system

called an Elastic Bucket Trie (EBT) that had better performance characteristics than spatial

indexing for CBIR. In recent years the advent of high performance photometric detectors

and descriptors has opened up a new front for image retrieval based on the bag of words

model. Even the Bag of Words model is more scalable than traditional CBIR it has some

drawbacks when dealing with Dynamic Image Databases. The next chapter deals with vector

quantization for dynamic image databases using bag of words model.
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Concept Images DRF Bayesian

Bus 91 88 63

Car 39 85 54

Flower 74 60 48

Cat 58 22 15

Sunset 135 85 40

Surfers 89 54 28

Train 82 66 52

Skiers 65 13 9

Sailboat 64 34 32

Tools 79 81 66

Waterfall 86 30 27

Wave 74 23 2

Bicycle art 78 54 52

Birds 82 34 26

Roses 101 87 56

Table 3.2: The above table contains 4 columns for dataset D2 as follows. Column 1 contains

the class of images. Column 2 contains the number of images from each class Column 3

contains the precision of Discriminative relevance feedback (DRF) Column 4 contains the

precision of a simple Bayesian relevance feedback approach (Bayesian)
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Data

Structure

R-Tree EBT

Complexity 2(m ∗ ni ∗ C) ∗ l ∗ t (ni ∗ C) ∗ l ∗ t

Operations Arithmetic Logical

No. Of

Splits

Indefinite Fixed

RF Sup-

port

NO YES

Efficiency Low High

Table 3.3: Comparison of R-tree and EBT
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Figure 3.6: A Small Selection Of Retrieved Results after 5 iterations of Discriminative Rel-

evance Feedback. The label below each row indicates the class of the image the user was

looking for. One can see qualitatively the high precision of the system
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Chapter 4

Incremental Vector Quantization For

Dynamic Databases

4.1 Introduction

Dynamic databases are becoming ubiquitous with the emergence of large public and private

visual databases that are growing at an unprecedented rate. We are interested in address-

ing the issue of efficient creation and maintenance of quality codebooks in large scale and

highly dynamic image and video retrieval systems. That is, given a dataset of images to

which new images are being constantly added, we want to update the codebook efficiently

without effecting the retrieval performance. This implies that the required method must be

incremental in nature and does not require the re-computation of the codebook when new

images are added to the system.

In recent years, the bag of visual words model has been adapted to vision problems with

great success [38, 39, 6, 40, 41, 42, 43, 44, 45, 46, 47, 87, 88, 89, 90, 91]. These approaches

are shown to be well suited for tasks such as object categorization, object recognition, object

retrieval and scene classification. The success of these approaches, in large part, is due to

the model’s ability to accommodate natural scene variance in the form of pose changes and

occlusion. The quantization of a very high dimensional feature space (using an algorithm like

53



Kmeans)[48, 49] to build a compact codebook that encodes the similarity between descrip-

tors, paves the way for efficient retrieval systems. The power of bag of words model to create

efficient image and video retrieval systems has been explored by Sivic and Zisserman[6] as

well as Nister and Stewenius[50]. The problem of building large scale image retrieval systems

has also been looked into by Torralba et al.[1], though not utilizing the bag of words model.

State of the art retrieval systems describe the images by sparse or dense descriptors and

index them in an offline phase to build highly scalable retrieval systems. As the database

dynamically evolves, the codebook is unable to accurately represent the underlying data.

This necessitates the re-computation of the codebook at regular intervals. As the number

of images and associated visual concepts increase, these computations become prohibitively

expensive even for thousands of images on commodity hardware, often taking days or months

to compute. To scale offline quantization to large scale databases the data is usually sam-

pled and a small percentage of the images are used to compute the codebook. Even, in

these cases traditional vector quantization methods cannot scale effectively[57]. This has re-

sulted in the development and application of new methods like hierarchical and approximate

Kmeans algorithms for building codebooks[50, 57]. Agglomerative and on-line quantization

techniques have also been explored[56]. Quality of the model has also been optimized using

discriminative visual codebooks[61]. However, any such database specific offline approaches

are not extendable to the situations where the database is constantly evolving.

On the other hand, there are data independent quantizations like dividing the feature

space into a regular grid. Even for a modest number of dimensions the vocabulary size of

such schemes would be too large for effective use, making them impractical. Most feature

spaces used in tandem with bag of words model are highly sparse and a grid based quantiza-

tion algorithm will needlessly represent empty grid elements that are a majority [56, 78, 92].

Further, not all feature distributions correspond to images that are likely to appear in a given

database. Usually only a minuscule fraction of possible images are ever seen. These consid-

erations make grid quantization in higher dimensional spaces very expensive. A quantization

algorithm that is fast, incremental and one that creates quality codebooks is needed.
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In this thesis, we design and propose the Incremental Vector Quantization (IVQ) al-

gorithm. It is designed to incrementally quantize the featurespace while meeting quality

constraints. Further we compare the quality of codebooks created by our algorithm to that

of K-means using the holiday [93] dataset and a generic dataset. We show that quantization

is speeded up by a factor of 100 to a 1000. We also compare the incremental efficiency of

IVQ vs K-means in creating and maintaining codebooks using a large dataset of more than

a 100,000 images. Finally we show real world examples of the speed of IVQ’s incremental

quantization as well as it’s retrieval performance as the database evolves.

K-means is the popular algorithm of choice for bag of words applications, owing to its

simplicity and effectiveness. It is however, unsuitable for large scale, highly dynamic image

retrieval. One of the major concerns is high computation time, which is aggravated by

the inability to accelerate nearest neighbor search in high dimensional feature spaces. For

example, quantizing a 2 hour movie consisting of 10,000 keyframes, each comprising an

average of 100 descriptors of 128 dimensions for a 20,000 word vocabulary using kmeans

would require around 72 hours. The time complexity of K-means is of the order O(NKI),

where N is number of feature vectors in the feature space and K is the number of means

and I is the number of iterations. This time consuming quantization is viable for one time

training on small datasets but cannot scale to very large datasets that are continuously

growing. Running K-means every time new images are added and propagating the changes

to the index and other systems downstream would be prohibitively costly. For instance,

quantizing a second 2 hour movie one has already been quantized would require around 144

hours, or twice the time taken to quantize the first movie. K-means is also not aware of

the perceptual nature of the underlying data. The means are drawn towards dense regions

in the feature space. This, often leads to bias in the system towards high density regions

present in feature space during offline quantization, resulting in an inconsistent codebook as

new data is added to the system.
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Figure 4.1: Image retrieval system for a dynamic database using IVQ for quantization and

Ferret text search for indexing. The dynamic database is updated with images from data

sources like the internet, movies and videos, sensors or camera feeds. The quantization time

per new image is on average 0.44 seconds using IVQ. The indexing and retrieval speeds using

the Ferret index is around 0.2 seconds per image. At such pace without considering feature

extraction a one hour movie can be quantized and indexed in less than 50 minutes.

4.2 Vector Quantization

Kmeans is the most used algorithm for vector quantization in bag of words model. But as

alluded to above kmeans is not ideal for use in evolving databases. Hierarchical kmeans is

an obvious alternative to Kmeans that is much faster when compared to K-means. However,

the partitioning imperfections at each level of the hierarchy add up, sometimes leading to a

reduction in the quality of quantization[57]. Approximate K-means also has similar quality

problems due to imperfections in distance calculation. As one tries to accelerate K-means,

quality usually suffers. An alternative would be to use density based clustering algorithms,

like DBSCAN [94]. DBSCAN is better suited for perceptual coding because unlike Kmeans

it uses a global dissimilarity constant to cluster the data. Other alternatives like spectral

clustering and Mean shift clustering cannot even be considered due to their prohibitive
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computational cost.

Quantization of the feature space results in a definite loss of information, primarily in the

form of perceptual loss and binning loss. After quantization, each distinct word in the code

book is assumed independent of every other word in the codebook. Such an assumption al-

lows for compact modeling of documents (word histograms) and for building learning systems

that are independent of the underlying feature space unlike K-nearest neighbor methods[78].

This loss of descriptive and discriminative power through quantization is compensated for,

to some degree, in most bag of words applications by the use of learning algorithms. Quality

of quantization determines how well image retrieval system performs.

4.3 Incremental Vector Quantization

A good quantization algorithm, designed for retrieval in evolving image collections, should

have the ability to adapt to new images as and when they appear. Working in an incremen-

tal manner, minimally effecting the current quantization and codebook would be desirable

trait. The ability to build codebooks representing the underlying data without bias would

be required. Other important factors to consider when trying improve the quality of the

quantization for retrieval are, perceptual loss and binning loss. Mismanagement of these

losses may eventually lead to under discretization or over discretization as explained below.

Perceptual Loss: Quantization in the context of a visual feature space is perceptual coding.

Quantization here is an approximation or encoding of the underlying feature space. The

similarity within feature space is encoded by dividing the feature space into independent

perceptual bins. In these bins the more dissimilar a point is from the representative point

(for example the mean in Kmeans) the greater the perceptual loss of the encoding with

regards to that particular point. If µ1, µ2, . . . µk are bin centers and C is a set of bins or

concepts in the feature space, n is the number of feature vectors in the feature space and
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(a)

(b)

(c)

Figure 4.2: The image shows retrieval results for quantization under varying conditions.

The blue boundary indicates accurate retrievals and the red boundary indicates an error in

retrieval. (a) shows that when perceptual loss high it leads to underquantization and low

precision. (b) shows that when binning loss is high it leads to overquantization and low

recall. (c)shows high precision and recall for an optimal quantization

dist(a, b) is a distance function then Perceptual Loss PL is given by Equation 4.1

PL =
k∑

i=1

n∑
j=1

dist(pj ∈ ci, µ
i) (4.1)

Binning Loss: The assumption of independence of each bin in the feature space after

quantization results in the loss of perceptual information between feature vectors belonging

to different bins. If two feature vectors are perceptually very similar or have low dissimilarity

but belong to different bins, the information of their similarity is lost in quantization[49]. If

x1, x2, . . . xn are feature vectors and C is the set of concepts or bins in the feature space then
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Binning Loss BL is given by 4.2

BL =
n∑

a=1

n∑
b=1

{δ : xa ∈ cz, xb /∈ cz}
1

dist(xa, xb)
(4.2)

Under discretization and over discretization occur when these losses are mismanaged.

Under discretization occurs when the number of bins the feature space is quantized into are

not adequate to accurately represent the underlying data. The characteristics of this are

high perceptual loss and high amount of polysemy in the words generated in the code book.

High polysemy leads to poor precision as seen in Fig. 4.2(a). Over discretization, on the

other hand, occurs when the number of bins are more than the number required to represent

the underlying data. This leads to high Binning Loss and high amount of synonymy among

the words generated in the code book leading to poor recall as seen in Fig. 4.2(b). As the

feature space is more finely binned, the cardinality of the bins tends to follow the power law

[56].

4.3.1 IVQ Algorithm

The design criteria for our algorithm are (i)the ability to limit perceptual loss, (ii)minimize

binning loss and (iii)ability to create compact codebooks. We limit the perceptual loss

with the help of a hard upper limit r(distance in the feature space). In order to meet the

constraint of minimizing binloss we must accommodate all points possible in a bin that meet

the constraint of perceptual loss being less than r. To minimize binloss, we allow multiple

bin assignments for feature vectors where the perceptual loss is less than r. Hence, a single

point in the feature space can generate multiple words in the index. We eliminate bins in the

feature space and consequently words in the codebook that are not upto the quality desired,

by using a density measure L. This ensures that outliers, and noise usually occurring in

sparse regions of the feature space are discarded. Therefore, the maximum perceptual loss

r and the minimum bin density L along with multiple bin assignments remain as the only

parameters.

Algorithm: The algorithm has r and L as parameters and maintains a codebook C and
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vector list V . When a new feature vector is introduced into the feature space, IVQ verifies

to see wether the feature vector can belong to all bins within the codebook by calculating

distance from the center of each bin and allocating the feature vector to any bin where the

distance is less than r. If the feature vector is not assigned to any of the bins, we check

the viability of it being used as a seed for creating a new bin. When the feature vector is

used as the seed to create a new bin it must meet the criteria of the distance between bin

center and feature vector being less than r. Further, from the list of feature vectors V the

number of feature vectors that are closer to the bin center than r must be L for the bin to

be added to the codebook. In other words the bin cardinality must be greater than L. If

these conditions are not met, the new bin is not created and the codebook stays as it is.

Irrespective of whether a new bin is created the feature vector is added to the vector list.

The bins do not move in the feature space and remain where they are. This makes the

codebook robust to temporal factors, reducing index changes. This also ensures that all

feature vectors in the feature space are represented with a perceptual loss of less than r. As

mentioned earlier, each point can belong to multiple bins, and a point can belong multiple

bins if and only if the distance between the bin centers is less than 2r. This eliminates

binning loss in dense areas where more descriptiveness is desired. Whenever a feature vector

is associated with a new bin, only the index entry for that particular bin needs to be added

to the index. Other index entries need not be modified. The membership criterion L ensures

that the codebook is compact by eliminating outliers and noise from being included. Only

bins whose cardinality is greater than a predetermined value L will be indexed, this is the

membership criterion for being indexed. This keeps the codebook compact by not including

outliers and random noise thereby improving the quality of the codebook. The choice of r

needs to be made only once and does not need to be changed with the size of the image

database as seen in Fig. 4.3. The factors that determine the choice or r are feature space and

application. For example, a near duplicate image search engine using SIFT features would

require a low r as it is essential to keep the perceptual loss to a minimum. On the other hand,

a generic relevant image search of high level visual concepts would require higher value of r.
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Figure 4.3: (a)The performance of Kmeans quantization is very sensitive to the parameter

selection (K) when different feature distributions or databases are involved(Number of K’s

for one dataset doesn’t perform in the same way for another dataset) (b)The performance

of IVQ is not as sensitive to the parameter r even for different databases, this is due to the

data independent nature of r, which is more feature space and application specific. The

above experiment was carried out on two randomly generated point databases with different

number of gaussians

Finally the quantization is accelerated by using locality sensitive hashing(LSH) for accessing

the nearest bins in the feature space. Hence IVQ limits perceptual loss, minimizes binning

loss and has the ability to control the compactness of codebooks.

4.3.2 Retrieval with IVQ

IVQ is an online quantization algorithm that runs as and when new data is introduced into

the system. As seen in Fig. 4.1 the applications that require such quantization are varied

and many. First, all visual data that is introduced to the retrieval system goes through

a feature extraction phase. Usually high dimensional features like SIFT(128 dimensions)

are extracted. These features are then fed into the IVQ quantizer, which then incrementally

updates the current quantization to accommodate the new image. This incremental updation

and the construction of the word histogram for the given image(single frame from a movie)
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on average takes 0.44 seconds.

The next important phase in the process is the indexing of the image word histogram

for retrieval. Usually this kind of indexing is done in memory. However, we chose on disk

indexing using text search library called Ferret. This is due to its ability to scale indefinitely

as well as being readily able to shard the index, unlike in memory indexing schemes. The

indexing time(into and index of a million images) per image using ferret is less than 0.2

seconds. Once the images are indexed they are available to the user to be retrieved when

relevant. The user retrieves relevant images from the index by sending a query to the search

module. Relevant image retrieval from the index is consistently achieved under 0.2 seconds

per query.

4.4 Experiments

4.4.1 Retrieval

A database comprising of a million images, each containing 10 descriptors in a two dimen-

sional feature space is used. These images are categorized into 100 categories of 1000 images

each. A concept in the feature space is described by a normal distribution where µ and

σ are randomly picked, the feature space contains a 1000 such concepts. On this dataset

we first ran the Kmeans algorithm with K = 1000 which according to the afore mentioned

distribution of concepts in the dataset is viewed as an ideal initialization. The feature space

is incrementally quantized and the time taken is measured. After quantization, the retrieval

performance of the quantization for the bag of words model is calculated using precision

and recall values . Then IVQ was used to quantize the feature space incrementally while

measuring the time and subsequently the precision and recall. IVQ outperformed Kmeans

in the amount of time taken to quantize the feature space. IVQ quantized the entire feature

space in a single go in less than a second while Kmeans took over 16 minutes to do the same

as seen in Fig. 4.4.

However one expects such a trade off to come at the price of reduced retrieval performance
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Figure 4.4: (a)Time taken by IVQ to quantize the feature space of different sizes, notice

that the time scale is in 100ths of a second and IVQ takes nearly 0.1 seconds to quantize

the entire feature space.(b)Time taken by Kmeans to quantize the feature space of different

sizes, notice that the time scale is in seconds and it takes nearly 16 minutes to quantize the

entire feature space. (c) Shows precision recall curves for both Kmeans and IVQ, IVQ has

slightly better precision and recall characteristics than Kmeans. The precision and recall

curves were calculated for all the classes and averaged to get average precision recall curves

on the part of IVQ considering the ideal initialization for Kmeans. Yet the results showed

that IVQ outperformed Kmeans while creating a vocabulary that was only 10% larger,

this performance improvement can be attributed to the reduction in binning loss due to

multiple bin assignments in IVQ. The precision recall curve of IVQ shows better performance

characteristics than that of Kmeans. IVQ’s better performance was due to its soft bin

assignment while the hard bin assignment of K-means and overlapping concepts in the feature

space made it more susceptible to binning loss.

We then compared retrieval performance of IVQ to K-means on a standard dataset [93].

The dataset contains 500 image categories, each representing a different scene or object. The

first image of each group is the query image and the relevant images are other images of

the same group, in total the dataset contains 1491 images. We made extensive use of local

detectors like Laplacian of Gaussian and the SIFT descriptors. Initially all the images from

the dataset were downsampled to reduce the total number of descriptors, after which feature

detection and feature extraction was done. Once the features were extracted the cumulative
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feature space was vector quantized using both K-means and IVQ. After the quantization the

vocabulary size of IVQ was truncated and retrieval performance of each quantization was

measured by computing their respective mAP(Mean Average Precision) values. The results

are shown in the Table 4.2. Tweaking the parameters of IVQ like r and L improved the

mAP but this had to be also balanced with the vocabulary size. Very large vocabularies

tend to effect the performance of the retrieval system.

4.4.2 Efficiency and Vocabulary

We use the ALOI image dataset[95] to compare the efficiency of both IVQ and K-means in

an on-line quantization mode. We used a simple Locality Sensitive Hashing [80] scheme to

accelerate and optimize IVQ without significant binning or perceptual loss. We quantize the

entire dataset one image at a time simulating a dynamic image collection. We record the

time it takes for each insertion. We also performed batch wise quantization using K-means

and On-line K-means1 where the positions of the existing means are re-calibrated in light

of new data, rather than initializing them anew for every batch. In each session a batch

of 100 images were added to the system using IVQ, K-means and On-line Kmeans. The

recorded and projected times for quantization of some batches are shown in Fig. 4.5. IVQ

outperforms Kmeans and On-line Kmeans by 4000 times and 400 times in case of the last

batch.

Density Sensitivity: We plot the perceptual loss of feature vectors against their density.

The density of the space around each feature vector is calculated by taking a window of size S

and calculating the percentage of the points in the feature space that fall within this window.

For this experiment we used custom image dataset and SIFT descriptors. We quantized the

feature space using different K. We plot of perceptual loss of points in the feature space

against the density of the points in the feature space, under different quantizations as seen in

Fig. 4.5 (a). Kmeans quantizations have a bias for high perceptual loss of low and medium

1There are other,efficient variants of Kmeans [49, 96]. However none of them are aimed at online quan-

tization required for dynamic databases
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Figure 4.5: (a)Time taken by IVQ to incrementally quantize the feature space, notice that

the time scale is in seconds and IVQ takes less than 200 seconds to quantize the last batch

and time taken by Kmeans and Online Kmeans to incrementally quantize the feature space

, notice that the time scale for both is in days and it takes 10 days and 1 day respectively

to quantize the last batch.(b)Perceptual Loss with varying density in the feature space for

Kmeans and IVQ, The graph shows large Perceptual loss bias in Kmeans towards feature

vectors in sparse regions of the feature space

density regions, when compared to high density regions. IVQ on the other hand ensures that

the perceptual loss is always below r.

Vocabulary Size: Here we intend to examine how the two parameters r and L effect

the size and quality of the codebook. The size of the codebook is the number of bins in the

feature space. The bigger the size of the codebook as seen in Fig. 4.6(a), the greater the

chance of over discretization and the smaller the size of the codebook the the greater the

chance of under discretization. The quality of the codebook is calculated as the percentage of

images retrieved. As r increases at a given L both the size of the vocabulary and the quality

of the codebook increases because the probability of bin cardinality exceeding L increases .

The increase in r improves the quality of the codebook due to the reduction of binning loss

as similar feature vectors are binned together. At a given r as L increases the size of the

codebook and the quality decreases as the number of qualified bins tend do decrease. This

results in large parts of the feature space not being represented in the codebook there by
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Figure 4.6: (a)Codebook size under varying r and varying L. (b) Percentage of total images

retrieved under varying r and varying L

degrading it as seen in Fig. 4.6(b).

4.4.3 Incremental Indexing and Retrieval of Videos

Here we demonstrate IVQ’s ability to incrementally quantize at a fast pace while maintaining

retrieval quality. We do this by indexing movies for retrieval. Each keyframe is processed

by interest point detectors and subsequently these points are represented using the SIFT de-

scriptor. Once each frame is processed the frame is inserted into the content server while the

descriptors are processed by an incremental on-line vector quantization scheme that converts

the descriptors into text based visual words. These collections of words or documents each

having a relevant image in the content server are then indexed using a text search library
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Ferret. When a new query frame is submitted to the system the ferret index is used to re-

trieve the results. The average quantization time for each image is of the order 0.44 seconds.

Indexing into a TF-IDF on disk index is also extremely fast with an average rate of 5 images

per second. Once the image is indexed using a search library like Ferret the searching and

retrieval becomes extremely efficient returning results consistently below 0.2 seconds. IVQ

without bottle necks of Disk I/O and Feature extraction can easily incrementally quantize

more than 1 movie per hour(Key Frames).

Figure 4.7: The first row image shows retrieval results for a given query Only for “Father

of the bride”, while the second row shows the retrieval results for the same query after

“Father of the bride Part II” is added to the system through incremental quantization.

The Blue boundaries indicate relevant images and the red ones indicate irrelevant images.

The incremental quantization increases the precision for the concept “house exterior” as the

second movie is being added

To show the quality of incremental quantization we sequentially quantized movie franchises

like “Father of the Bride” and “Superman”. We examined to see if IVQ could improve the

precision of similar concepts from different movies through incremental quantization. This

would qualitatively validate the quality and adaptability of quantization through IVQ. As

seen in both Fig. 4.7 and Fig. 4.8 the precision improves with incremental quantization of

the sequels.
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Figure 4.8: The first row image shows retrieval results for a given query Only for “Superman

The Movie”, while the second row shows the retrieval results for the same query after “Su-

perman II” is added to the system through incremental quantization. The Blue boundaries

indicate relevant images and the red ones indicate irrelevant images. The incremental quan-

tization increases the precision for the concept “Superman Emblem” as the second movie is

being added

4.5 Summary

We designed and presented a novel method called incremental vector quantization(IVQ) for

use in image and video retrieval systems with dynamic databases. We demonstrated the

quality of the codebooks as well as their adaptability and speed of creation by using various

standard and generic datasets. We look at this work as a promising development towards

building effective codebooks for large scale user generated databases where huge volumes

of new visual data is continuously added. Semantic indexing for dynamic databases is also

a hard problem to tackle, one has to content with large space complexities of traditional

methods while being able to handle large and dynamic databases. The next chapter deals

with semantic indexing in dynamic databases
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def IVQ(V, r)

foreach vi in V do

vectorAssigned = false

foreach bi in B do

if dist(vi,bi) < r then

AddToHash(H[bi],vi)

vectorAssigned = true

if BinCardinality(bi) > L then

UpdateIndex(bi)

end

end

end

if vectorAssigned == false then

CreateNewBin(vi)

InsertBinInList(bvi
)

AddAllPointsWithin(r,bvi
)

if BinCardinality(bi) > L then

UpdateIndex(bi)

end

end

end

end

Table 4.1: Sample implementation of Incremental Vector Quantization, This is only one way

IVQ can be implemented
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IVQ Kmeans

mAP parameters time mAP parameters time

0.32 r=0.0514 783s 0.32 k=1000 5hrs

0.34 r=0.0823 717s 0.39 k=6000 25hrs

0.38 r=0.1153 656s 0.41 k=20000 82hrs

Table 4.2: Mean Average Precision Values with parameter values and time taken for both

IVQ and Kmeans for the Holiday Dataset comprising of 1491 images. L=2 for IVQ. Notice

that IVQ takes seconds to quantize the feature space while Kmeans takes hours to do the

same
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Chapter 5

Bipartite Graph Model For Semantic

Indexing In Dynamic Databases

5.1 Introduction

We are interested in building scalable semantic indexing schemes for largescale, dynamic,

image collections. That is, given a query, we want to retrieve the relevant images from a

constantly changing database that could range in size from millions to billions of images.

This implies the presence of millions of concepts and subconcepts, over which the system

is required to perform efficient retrieval of relevant images without any apriori knowledge

of the concepts present in the data. Any solution to this problem must be computationally

viable without sacrificing the quality of the retrieval.

In recent years, the bag of visual words model has been adapted to vision problems [38, 39,

6, 40, 41, 42, 43, 44, 45, 46, 47] with great success. These approaches are shown to be well

suited for tasks such as object categorization, object recognition, object retrieval and scene

classification. The power of bag of words model to create efficient image and video retrieval

systems has been explored by Sivic and Zisserman[6]. The success of bag of words model lies

in its ability to quantize a very high dimensional feature space (using an algorithm like K-

means)[48, 49] to build a compact codebook that encodes the similarity between descriptors
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Figure 5.1: Image retrieval system for a dynamic database using BGM for indexing. The

dynamic database is updated with images from data sources like the internet, movies and

videos, sensors or camera feeds. The indexing time per new image is on average 0.2 seconds

using a BGM index. At such pace without considering feature extraction and quantization

a two hour movie with a 100,000 frames can be indexed in less than 80 seconds

and paves the way for efficient retrieval systems.

The quality of the retrieval is further enhanced with the help of semantic indexing tech-

niques like Probabilistic Latent Semantic Analysis(pLSA)[63] and Latent Dirichlet Allocation

(LDA)[64]. Semantic analysis of a document corpus can be viewed as unsupervised cluster-

ing of constituent words and documents around hidden or latent concepts in the corpus.

Adaptation of PLSA and LDA to visual bag of words has provided promising results for

static image databases[65, 66, 67, 68]. More recently semantic analysis is also being used in

conjunction with spatial constraints for object segmentation [69, 67, 70], scene classification

[47] and model learning [71, 72, 73].

Semantic indexing in a dynamic image collection poses a considerable challenge. As new

images are constantly added to an image collection the semantic index is unable to accurately

represent the changing database. This necessitates updation of the semantic model and

indexing it at regular intervals which is time consuming and not scalable for large databases
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with millions of latent concepts. As the number of images and associated concepts increases,

these computations become expensive.

In this paper, we propose a Bipartite Graph Model (BGM) for semantic indexing that con-

verts the vector space model into a bipartite graph which can be incrementally updated with

just in time semantic indexing. We further propose a CashFlow Algorithm that traverses the

BGM to retrieve relevant images at runtime. We compare the retrieval performance of BGM

and pLSA using the holiday dataset[93]. We show that semantic indexing is speeded up by a

factor of 100 when comparing BGM to pLSA. We, qualitatively and quantitatively compare

the retrieval performance of BGM with naive retrieval(TF-IDF retrieval with no semantic

indexing) and show its superiority. Finally we demonstrate the scalability, efficiency and real

world retrieval capability of BGM in a near duplicate image retrieval application for more

than a 1,000,000 images.

Traditional semantic indexing methods range from statistical methods like Latent Se-

mantic Indexing [63] to probabilistic generative models like Probabilistic Latent Semantic

Analysis(pLSA)[63] and Latent Dirichlet allocation(LDA)[64] and their incremental variants

like incremental pLSA proposed by Wu, et al.[82]. One of the factors that make these

methods challenging to adopt in a dynamic setting is their computational complexity. For

instance, indexing a 2 hour movie comprising of 100,000 frames for near duplicate detection

on off the shelf hardware(8gb memory) would require less than 80 seconds (Figure 5.7) for

BGM while semantic indexing with LSI or pLSA is not possible due to their space complex-

ity. The other factor that makes the adoption of these methods challenging is the selection

of the number of global semantic topics. Even for incremental pLSA, selecting the number

of latent topics in a changing database of millions of images is difficult. In such a setting

where the database changes constantly a local concept threshold is appropriate due to its

limited global impact on retrieval.

LSI uses Singular Value Decomposition(SVD) to factorize the term document matrix and

create the semantic indexing model that identifies the relationships between the terms and

concepts present in the database. LSI is based on the principle that words that occur in the
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same contexts tend to have similar meanings. A key feature of LSI is its ability to extract

the conceptual content of a body of text by establishing associations between those terms

that occur in similar contexts. However, LSI is not scalable due to its resource intensive

matrix operations and is sensitive to the number of dimensions over which SVD is carried

out. pLSA and LDA have a more principled approach to semantic indexing with better

grounding in statistics than LSI[63].

pLSA and LDA use Expectation Maximization(EM) to estimate a generative model to

explain the observed data of words and documents, in context of the underlying latent data

or concepts. These models have been applied successfully to various problems[65, 66, 67, 68,

46, 47]. However, these methods do not scale well for retrieval in large scale, highly dynamic

image databases. LSI, pLSA and LDA are prohibitively costly to scale when dealing with

very large datasets due to the resource intensive matrix computations needed. They can

process a document corpus offline and cannot be updated in an incremental manner as is

desirable in a dynamic environment where new data is constantly being added.

Incremental pLSA: there are many incremental variants of pLSA [82]. The performance

of some of these methods both in terms of computation efficiency and retrieval performance

are quite good. Yet they don’t effectively address the issue of updating the number of global

latent concepts as the database grows.

5.2 Bipartite Graph Model for Semantic Indexing

We suggest a semantic indexing model called Bipartite Graph Model (BGM) (Figure 5.2),

that intuitively models and indexes the term document data in a scalable and incremental

manner. BGM is designed to enhance the performance of large scale and highly dynamic

image retrieval systems while at the same time providing an incremental concept centric

indexing scheme with sublinear insertion and look-up performance.
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Figure 5.2: Graphical representation of the Bipartite Graph Model(BGM). The images or

documents present in the corpus and are the collection of quantized feature vectors or visual

words Present in the corpus. The edges connect visual words or image patches to images

or documents in which they are present. You can notice that some patches are connected

to more than one image, this is how co-occurrence is encoded in BGM. The greater the

co-occurrence the more semantically relevant two images are. Here the two zebras are more

semantically similar than the elephant and the bear

5.2.1 Semantic Similarity

Traditional semantic indexing methods calculate semantic similarity between two documents

in a database by projecting the entire database into a latent concept space where the distance

can be calculated. This projection encodes the co-occurrence data of terms and documents in

the term document matrix. The intuition behind BGM and CashFlow algorithm is to retrieve

semantically similar documents by using the afore mentioned co-occurrence information from

the term document matrix rather than calculate the projection which is computationally

expensive and sensitive to global parameter selection(number of latent concepts). Here we

present a simple method for calculating semantic similarity. A document di from the global

document collection D is assumed to have set of visual concepts Ci drawn from a global set

of visual concepts C. The distribution BWi
formed by the set of words Wi drawn from global

set of words W within the document are generated by a mixture of these concepts PCi
. Now
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the basic retrieval problem is to retrieve documents from the database that resemble the

mixture of concepts PCi
in di as closely as possible. The intuition is that a document dj with

a word distribution BWj
that is highly similar to BWi

is likely to have been produced by

mixture of concepts PCj
that is highly similar to PCi

. Here if fdis is a function that calculates

dissimilarity between two entities then

fd
dis(di, dj) ≈ fB

dis(di, dj) (5.1)

However a mixture of concepts PCk
could be very similar to PCi

, yet could generate BWk
,

where Wk is disjoint from Wi yet has a good amount of overlap with Wj. Then from Equation

5.1 it follows that

fd
dis(di, dk) ≈ fB

dis(di, dj) + fB
dis(dj, dk) (5.2)

If there are m documents in the corpus the general form of Equation 5.2 could be written as

m∑
x=1

fB
dis(di, dx) +

m∑
x=1

fB
dis(dx, dk) + fB

dis(di, dk) (5.3)

However this kind of approximation would require a transitive closure on the term docu-

ment matrix, which would be prohibitively costly.

5.2.2 Term-Document Bipartite Graph

The central idea behind the bipartite graph model is that the vector space model is encoded

as a bipartite graph of words and documents. The idea of converting the term document

matrix into a bipartite graph is not novel and is used extensively in literature for a wide

variety of tasks from semantic association of annotations to image retrieval. However, in

BGM the edges are weighted with term frequencies of words in the documents as is relevant

between each term and document. Each term is also associated with an inverse document

frequency value.G is the bipartite graph such that

G = (W, D, E)
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W = {w1, w2 . . . , wn}

D = {d1, d2 . . . , dm}

E = {ed1
w1

, ed2
w7

. . . , edm
wn
}

w1 = IDF (w1)

ed1
w1

= TF (w1, d1)

TF and IDF: In this model, the term and inverse document frequencies represent the

word distribution within the document and in the corpus as a whole. These values together

help in determining the importance of a word to a particular document. The term frequency

representation of a document can be seen as a generative model of a document or histogram

representation of a document and can be used to compute KL-divergence like dissimilar-

ity. The IDF can be treated as a discriminative model of the document where the most

discriminative words within a given document are given greater importance. The bipartite

graph model combines both TF and IDF to be used in tandem like a hybrid generative-

discriminative model. In essence the BGM encodes the co-occurrence data in the term

document matrix without the need to project the database into a latent topic space.

5.2.3 Cash Flow Algorithm

We propose a Cash Flow Algorithm to find the semantically relevant documents in a docu-

ment corpus in sublinear time using the Bipartite Graph Model. The main idea behind the

cash flow algorithm is that, a query document(node) in the index is given cash to distribute

among nodes that are relevant to it and they in turn propagate this cash distribution until

the cash runs out. The higher the amount of cash flowing through a node the higher the

relevance of the document(node) to the query. The cash flow algorithm is designed such

that, at the time of querying, a single node or a set of nodes in the bipartite graph are

infused with cash. If a node is a document node the cash is distributed among its edges in

a quantity that is proportional to their flow capacity that is calculated by the normalized

Term Frequency (TF) value. If the node is a word node it takes a portion of the cash it
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receives(Table 5.2.3) as a service fee and distributes the rest like the document node based

on the flow capacity of its edges. The service fee at each word node is calculated by using

the Inverse Document Frequency (IDF) value of the word. Hence the cash is propagated

through the system until a point when the cash flowing through a node is considered too

little to justify the overhead, this is judged at each node with a cutoff value that is the least

amount of cash needed for a node to forward the cash. At the start of every initialization

each node that receives cash maintains a record of its cashflow. The end of a session is when

there is no more cash flowing through the system due to the residual cashflow falling below

the cutoff value. At this point the nodes that received cash are sorted based on the amount

of cash that flowed through them. Total cashflow Cashtotalfor node N is

cashN
total = cashN

previous + cashN
current

The two sorted node lists generated are the semantically most relevant documents and words

to the given query according to the bipartite graph model.

The cutoff value along with service fee ensures that the cash flowing through the system

decays over time and especially distance from point of initialization and that the algorithm

eventually converges. Documents are inserted into the Bipartite Graph Model by creating a

new document node and creating edges to the relevant words based on their term frequency

(TF) values and updating the IDF values of the relevant word nodes. Insertions and deletions

are linear in complexity to the number of words within a document. The system can be

parallelized easily. The graph is thread safe allowing simultaneous reading and only requires

conflict resolution when more than one thread is trying to update the IDF value of a word

node. The cash flow algorithm essentially is a graph cut algorithm that divides the nodes in

the bipartite graph into relevant and nonrelevant sets.

5.2.4 BGM for Retrieval

BGM is a an online semantic indexing data structure that inserts new data into itself as and

when new data is presented to it. Unlike other semantic indexing methods there is no model
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def cashFlow(G, N, cash)

cashFlow[N ] += cash

if N.type == WORD

cash = cash * N.idf

end

if cash < cutoff

exit

end

foreach node in G.connectedNodes (N)

cashFlow(G, node, cash ∗G.tf(N, node))

end

end

Table 5.1: Cash Flow Algorithm for Bipartite Graph Model. Here both TF and IDF are

normalized(less than 1)

updation required. As seen in Figure 5.1 the applications that require such quantization are

varied and many. First, all visual data that is introduced to the retrieval system goes through

a feature extraction phase. Usually high di- mensional features like SIFT(128 dimensions) are

extracted. These features are then fed into the quantizer, which then incrementally updates

the semantic index(BGM) to accommodate the new image. This incremental updation of

the BGM index for the given image on average takes 0.2 seconds.

Usually this kind of indexing is done in memory. However, we chose on disk indexing using

text search library called Ferret(stores TF-IDF values that are processed during search).

This is due to its ability to scale indefinitely as well as being readily able to shard the index,

unlike in memory indexing schemes. The indexing time per image using ferret is less than

0.2 seconds. Once the images are indexed they are available to the user to be retrieved when

relevant. The user retrieves relevant images from the index by sending a query to the search
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Figure 5.3: Number of nodes, relevant nodes and irrelevant nodes visited under varying

cutoff

module. Relevant image retrieval from the index is consistently achieved under 2.5 seconds

per query.

5.3 Experiments

5.3.1 Naive Retrieval vs BGM

First we study the retrieval performance of BGM and its variants when compared to simple

retrieval without any semantic indexing involved. We make use of a Flickr sports dataset

with 9 categories and a Flickr animal dataset with 5 categories both of which combined have

more than nine thousand images. We extracted SIFT vectors from the images and quantize

the feature space using Kmeans quantization with a vocabulary size of 10,000 and 5,000

respectively for sports and animals datasets and build a BGM as well as a simple inverted

index for comparison of retrieval performance. We used four different variants of the cashflow

algorithm to traverse the BGM. We measure the retrieval performance of an algorithm by

calculating its F-score.

From Figure 5.4 we see that the performance of BGM algorithm compared to naive re-

trieval. BGM performs significantly better than simple retrieval which forms the baseline

with an F-score of 0.05. As the number of cutoff nodes increases the performance increase

of BGM begins to taper, this is due to the fall in recall as more and more noise from non
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Figure 5.4: F-Score curves for BGM variants and Naive Retrieval, BGM clearly outperforms

naive retrieval.

relevant image enters the system in successive iterations. Figure 5.4 and Figure 5.5 show

how BGM is able to retrieve images that cannot be retrieved by simple retrieval.

Tweaking the edge flow capacities and node service fee leads to different variants of BGM.

Naive BGM or NBGM does not have edge flow capacities. BGMTF has edge flow capacities

and no service fee. BGMIDF has service fee and no edge flow capacities. BGMTFIDF or

BGM has both edge flow capacities and service fee. Since the number of nodes traversed

by the different cashflow algorithms for the same cutoff varies drastically as seen in Figure

5.3, we used number of nodes traversed as the cutoff condition to compare the different

algorithms.
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5.3.2 pLSA vs BGM

The objective of this experiment is to compare the offline retrieval performance of pLSA with

that of the on-line retrieval performance of BGM. For this experiment we have used holiday

dataset[93] , it contains 500 image groups, each representing a different scene or object. The

first image of each group is the query image and the correct retrieval is the other images of

the same group, in total the dataset contains 1491 images. We made extensive use of local

detectors like Laplacian of Gaussian(LoG) and the SIFT descriptors[97]. Initially all the

images from the dataset were downsampled to reduce number of interest points, after which

feature detection and SIFT feature extraction was done. Once the features were extracted

the cumulative feature space was vector quantized using K-means. With the aid of this

quantization the images were converted into documents or collection of visual words.

For pLSA each image was represented as a histogram of visual words. Aggregating these

histograms the term document matrix was represented by A of the order M ×N where M is

the vocabulary size and N is the document corpus size. Here A(wi, dj) is the term frequency

of the term wi pertaining to the document dj. This term document matrix is used for pLSA

where a hidden aspect variable Zk is associated with each occurrence of a visual word wi in

an image dj. The conditional probability P (w|d) is

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk)

where P (zk|dj) is the probability of the topic zk occurring in the document dj and P (wi|zk)

is the probability of the word wi occurring in a particular topic zk. The pLSA(EM) model

generates P (z),P (z|d),P (w|z). The EM model was initialized with latent 500 topics which

is similar to the number of categories in the dataset. Once the model converges all the topic

probabilities for all the documents in the corpus are generated. For retrieval the Euclidean

distance of the documents over topic probabilities was used to retrieve the 10 most similar

images.

For BGM each image was represented as a document comprising of visual words. Then

a term document matrix was created where each row representing mi representing the term
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frequencies of the relevant document was normalized. Then all the terms in the matrix were

updated with their inverse document frequency values. This term-document matrix was then

converted into a bipartite graph between the set of terms and documents as described by

the BGM model. For each of the 500 query images the cash flow algorithm was used over

this graph to retrieve the 10 most similar images.

Retrieval results for the both BGM and pLSA were aggregated and the evaluation code

provided for the holiday dataset was used to calculate the Mean Average Precision(mAP)

in both cases. The mAP results show that BGM performs very comparably to pLSA. How-

ever, when one looks at the memory usage and time taken for creating the semantic in-

dexes(training) in both cases one can clearly notice the difference. Here, BGM outperforms

pLSA by the order of 100. However, the real advantage of BGM is noticed when adding

another image to the index only takes a few milliseconds while for pLSA the computation

of the entire semantic index needs to be done again incurring high time and memory costs.

Model mAP time space

Probabilistic LSA 0.642 5473s 3267Mb

BGM + CashFlow 0.594 42s 57Mb

Table 5.2: Mean Average Precision for both BGM and pLSA for the holiday dataset, along

with time taken to perform semantic indexing and memory space used during indexing

5.3.3 Retrieval Performance

Text retrieval systems and search engines have become a commodity with large numbers of

off the shelf and opensource systems available. These can be easily scaled to handle billions

of documents and millions of queries with ease. This kind of scalability has always been

a challenge for image retrieval systems, but bag of words model enables one to build such

image retrieval systems[57]. Can this gap be eliminated by using text retrieval systems for

image retrieval. We explore this possibility by building a full scale image retrieval system
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by using a text search engine. Accomplishing this means access to proven technology from

basic text indexing schemes to advanced crawling, index sharding, index optimization and

ranking algorithms and implementations. In order to accomplish this we must first convert

image documents to text documents. We achieve this using a simple hash function that

converts codebook bins into text strings and subsequently images into text documents. We

build our image retrieval engine using the Ferret search library which is a ruby port of the

Apache Lucene project.

BGM was used in conjunction with the Ferret index(Which indexed and stored the relevant

TF and IDF values) to achieve semantic indexing. The space complexity of PLSA is of the

orderO(TNz) where Nz is the number of nonzero elements in the document term matrix and

T is the number of topics. Thus 10 million non zero elements in the document term matrix

would necessitate a memory requirement of no less than 10GB. At this scale pLSA takes a few

hours to compute. Both space and time complexity of PLSA make it an impractical choice in

a dynamic environment. BGM, on the other hand is a data structure that is resident on disk,

which makes updating BGM highly efficient due to absence of any significant computation. In

order to put BGM and the Ferret index through their paces we adjusted vector quantization

parameters to create a large and descriptive vocabulary of more than 6 million words. Each

image in the dataset on average has 110 visual words across 100,000 images. The average

time taken to insert an image into BGM is of the order 0.0134 seconds the same as the time

it takes for an image to be inserted into the ferret index. The average response time for a

query for Ferret is 0.29 seconds while the average response time for a BGM query is 2.42

seconds. The discrepancy in response times can be attributed to the multiple levels of graph

traversal by the Cashflow algorithm in case of BGM. Even though BGM improves retrieval

performance (Figure 5.3 and Figure 5.4) by a large margin, the discrepancy in retrieval time

is very low as clearly seen in Figure 5.6. The response time of BGM and Ferret can be

improved by sharding the index across multiple machines while at the same time providing

high scalability.
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5.4 Near Duplicate Detection

Near duplicate detection in videos and images involves finding images that are almost sim-

ilar to the query image with only slight changes, like successive frames in a video. It is a

challenging problem for bag of words based image retrieval methods. Some of the interest-

ing problems that need to be tackled involve scalable and efficient vector quantization and

semantic learning. Here we discuss the application of BGM over a large dataset.

The data for the application comes from frames of various motion pictures. Each frame is

processed by interest point detectors and subsequently these points are represented using the

SIFT descriptor. Once each frame is processed the frame is inserted into the content server

while the descriptors are processed by an incremental on-line vector quantization scheme

that converts the descriptors into text based visual words. These collections of words or

documents each having a relevant image in the content server are then indexed using a text

search library Ferret. When a new query frame is submitted to the system first the new

document is treated as the node initiating the flow in BGM and the TF-IDF index is used to

boost the terms and submitted as a query to the Ferret index. This same process continues

at every subsequent document node until sufficient number of duplicates with the relevant

scores are retrieved. Even with such massive amounts of data like movie frames the system is

able to scale very effectively. The indexing time for 1000 images after nearly a million images

are already present in the index is of the order of 100s of seconds. Similarly the retrieval

time is on average less than 2 seconds over the entire index(Figure 5.6). BGM significantly

outperforms naive retrieval by discovering and retrieving a varied range of near duplicate

frames than Naive retrieval(Figure 5.8 and Figure 5.9).

5.5 Summary

We proposed a method and a datastructure that tackle representation of the term document

matrix and on-line semantic indexing where the database changes. We introduced a bipartite

graph model (BGM) which is a scalable datastructure that aids in on-line semantic indexing,
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which can be incrementally updated. We also introduced a cash flow algorithm that works

on the BGM to retrieve semantically relevant images from the database. We examined the

properties of both BGM and cash flow algorithm through a series of experiments. Finally,

we demonstrated how they can be effectively implemented to build large scale image re-

trieval systems in an incremental manner. In the final chapter, the thesis is summarized and

concluded with a look at what the future directions of the work could be.
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(a)

(b)

Figure 5.5: Relevant images retrieved(a) with an inverted index of bag of words model for a

zebra image query and additional relevant images(b) retrieved by BGM for the same query.

BGM significantly outperforms Naive retrieval
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Figure 5.6: Query response times across 10 queries for Ferret and BGM, One can clearly

notice that the retrieval times are very comparable to one another
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Figure 5.7: indexing time vs size of the index in 1000’s of images, even at a million images

the time taken for inserting a batch into the semantic index is under 200 seconds
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(a)

(b)

Figure 5.8: Near duplicates detected for a frame in the movie Fight Club(a) and Harry

Potter(b) respectively, one can notice that the frames only differ slightly from each other.
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Figure 5.9: Near duplicates detected for a frame from the movie The Fastest Indian, BGM

is able to retrieve a larger number of near duplicate frames than Naive retrieval.
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Chapter 6

Conclusion

The growth of multimedia content and the maturing social web are leading to emergent

needs from multimedia content. Our lives are becoming more and more multimedia driven

from IPTV to the ubiquitous always on devices like camera cell phones. The need to or-

ganize, streamline and present the relevant information from the mountains of data both

multimedia and otherwise is more pertinent than ever. Towards this end one must first

eliminate roadblocks that stand in the way of deploying innovative solutions like CBIR and

multimedia retrieval. We have made contributions in addressing the roadblocks of scalability

over large amounts of data(large scale databases) as well as adaptability over ever changing

data (dynamic databases).

In case of CBIR we have studies the nature of traditional systems and their shortcomings

when it comes to real world deployability. We have proposed methods that address the

scalability concerns, without being agnostic to retrival performance of the system through

relevance feedback. We have also proposed a datastructure and relevance feedback scheme

to improve the scalability and retrieval performance of the system.

Though bag of words model based image retrieval has better scalability charatechteristics

than traditional CBIR we have found that contemporary bag of words methods do not

adapt well to dynamic image databases. Vector quantization is one such bottle neck, which

we propose to mitigate with incremental vector quantization. We show the performance
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charecteristics of IVQ when compared with Kmeans and demonstrate how effective image

search engines can be built using off the shelf text search libraries.

Another important problem to adress with respect to Bag of words based image retrieval is

semantic indexing. In our survey of traditional semantic indexing methods like LSI, PLSA,

LDA and Incremental PLSA we have found various shortcomings. We propose a new just

in time semantic indexing method which works on the Bipartite Graph Model datastructure

constructed from terms and documents.

6.1 Future Work

The goal of effective information retrieval is always a moving target and work is constantly

needed to keep up with it. Image retrieval is no exception. Following are some challenging

and promising areas where the work in this thesis leads to.

Multimodal Retrieval BGM and Cash Flow algorithm can be readily used with image

as well as textual cues. However the prominence of Text vs Image features for a given query

must be adjuged at runtime. Should text search be used to retrieve images and image search

to filter them or the other way around are some the questions that need to be asked and

explored.

Multiple Vocabularies As there are innumberable subjective visual concepts each with

a wide range of visual representation, effective large scale image understanding and retrieval

would require many specialized vocabularies and not just one. For example a vocabulary

for understanding and representing faces, a vocabulary for vehicles, a vocabulary for back-

grounds, etc. Feature engineering, feature fusion and feature diversity are valid concerns to

be addressed here.
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2. Suman Karthik, C.V. Jawahar, Virtual Textual Representation for Efficient Image
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