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Production Rendering

• Visual fidelity over responsiveness.

• Complex geometry.

• Complex lighting.

• Complex materials.

• Complex simulations.

Pacific Rim (2013)
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Rising Costs?
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• Cost of making visual 
effects/animation has grown 
very rapidly.

• Artists as well as technical 
costs.

• Rendering done in large 
render farms.

• Hardware prices has gone 
down.

• As technology advances, 
rendering time remains 
constant (Blinn’s law)
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• Traditionally production rendering 

was REYES based.

• Now moving towards fully ray 

traced pipeline.

• Commercial renderers were purely 

CPU based.

• Certain parts of the renderer use 

the GPU.

• Very few fully GPU based renderers.

Commercial Renderers
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Why GPU Raytracing ?

NVIDIA Maxwell Architecture

• Large parallel computation engines.

• Thousands of threads in flight.

• Very high bandwidth memory.

• Raytracing is embarrassingly 

parallel.

• Naïve approach – Each ray handled 

by one thread.

• Very effective cost/performance 

factors.
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Raytracing 101

Raytracing in work (Courtesy: Wikipedia)
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Raytracing Pipeline
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Our Work

Parallel DACRT CIS - LBDPT
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Acceleration Structures
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Why Acceleration Structures?

N objects M Rays

Brute Force 

N x M 

computations

Acceleration Structure
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Acceleration Structures (AS)

• Spatial Partitioning
– K-d trees [Bentley 1975]

– Octrees [Glassner 1984]

– BSP trees [Fuchs et al. 1980]

– Grids [Fujimoto et al. 1988]

• Object Partitioning
– BVH [Rubin and Whitten 1980]

K-d tree

BVH

Grid
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• Two basic steps of ray tracing

– Construct an acceleration structure(AS) 

– Trace rays using it.

• Get away with one step instead of two?

– Construct and Trace together?

– Don’t construct any explicit acceleration structure?

• Divide and Conquer Ray Tracing

– First presented by Mora et al in 2011.

– Similar to quicksort.

– Simple serial CPU algorithm requiring very little memory.

Divide and Conquer Ray Tracing (DACRT)
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Serial DACRT - Working

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scene 

Bound

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ray Pivot
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Child 
Bound 2

Element Pivot

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ray Pivot

Child 
Bound 1

• Split Parent Bound into 
two children

Serial DACRT - Working
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Child 
Bound 2

Element Pivot

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ray Pivot

Child 
Bound 1

• Split Parent Bound into 
two children

• Filter rays and 
elements for child 
bounds

Serial DACRT - Working
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1 10 11 12 5 6 7 8 9 2 3 4 13 14

Child 
Bound 2

Element Pivot

1 2 10 11 5 6 7 8 9 3 4 12 13 14

Ray Pivot

Child 
Bound 1

New Element Pivot

New Ray Pivot

• Split Parent Bound into 
two children

• Filter rays and 
elements for child 
bounds

• Calculate new pivots 
and reorder lists.

Serial DACRT - Working
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1 10 11 12 5 6 7 8 9 2 3 4 13 14

Child 
Bound 2

Element Pivot

1 2 10 11 5 6 7 8 9 3 4 12 13 14

Ray Pivot

Child 
Bound 1

New Element Pivot

New Ray Pivot

• Split Parent Bound into 

two children

• Filter rays and 
elements for child 
bounds

• Calculate new pivots 
and reorder lists.

• Recurse on child 
node.

Serial DACRT - Working
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• DACRT(Space S, Set of Rays R, Set of Elements E)

If number of rays/elements are small

Compute brute force intersections

Else

Split S into ‘N’ children

Perform filtering for each child

Recursive DACRT on each child

Serial DACRT - Overview
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Root

E = 1,…,14

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree



IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

Split and Filter

Recursion with
new range

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree
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Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

Split and Filter

Recursion with
new range

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree
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Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

Satisfies threshold
criterion.

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree
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Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

Perform naïve intersection
between all rays and triangles

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree
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Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

L1R

E = 1,…,5

R = 1,2

R1

E = 1,…,10

R = 1,…,5

R1L

E = 1,…,10

R = 1,2,3

R1R

E = 1,…,5

R ={}

An implicit hierarchy is 
constructed and traversed 
at the same time.

Pivot range indicates 
implicit node contents

L0

L1

L2

DACRT – Entire Recursion Tree
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Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

L1R

E = 1,…,5

R = 1,2

R1

E = 1,…,10

R = 1,…,5

R1L

E = 1,…,10

R = 1,2,3

R1R

E = 1,…,5

R ={}

Filtering: Ray/Triangle intersection 
with a bounding box L0

L1

L2

DACRT – Source of Parallelism
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Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

L1R

E = 1,…,5

R = 1,2

R1

E = 1,…,10

R = 1,…,5

R1L

E = 1,…,10

R = 1,2,3

R1R

E = 1,…,5

R ={}

Intersections parallel for each node

Intra node parallelism

L0

L1

L2

Filtering: Ray/Triangle intersection 
with a bounding box

DACRT – Source of Parallelism
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Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

L1R

E = 1,…,5

R = 1,2

R1

E = 1,…,10

R = 1,…,5

R1L

E = 1,…,10

R = 1,2,3

R1R

E = 1,…,5

R ={}

Nodes at each level
independent

Intra node parallelism

Inter node parallelism

L0

L1

L2

Filtering: Ray/Triangle intersection 
with a bounding box

Intersections parallel for each node

DACRT – Source of Parallelism
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Parallel DACRT

• Pivots

• Node

• Level

• Implicit 

Hierarchy

Element Ids
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Parallel DACRT

• Pivots

• Node

• Level

• Implicit 

Hierarchy

• Terminal 

Nodes

Element Ids
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Parallel DACRT

• Pivots

• Node

• Level

• Implicit 

Hierarchy

• Terminal 

Nodes

• Terminal 

Node Bufer

Element Ids
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Root AABB

Split Plane

Level 0

Triangle Ids

Ray Ids

PDACRT - Visualized
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node AABB

Split Plane
L R R L B B N L R R B L N N

Parallel Intersection Tests

• Pivot property requires elements of same node to 

be in contiguous range.

• Achieved by a segmented sort-by-key operation.

– Segment – node

– Key – intersection value (Left,Right,Both,None)

– Value – element index

• Rays processed in same way.

PDACRT Filtering



IIIT
 H

y
d

erab
ad

• 4 possible values for intersection result.

• Status code computed from node id 

and intersection test result.

• Pack both in a 32 bit unsigned integer

• Sorting status code ensures proper 

arrangement of elements intersecting 

both child nodes.

Type Code

L 00

B 01

R 10

N 11

1011 0110 0111 1111 1001 1100 1010 11XX

Node id (30 bits)

Result (2 bits)

Status code
(32 bits)

PDACRT – Status Codes
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node 0 
AABB

Node 1 
AABB

0 1 0 0 1 2 2 1 1 0 1 1 0 0

Triangle Ids

Ray Ids

0 0 1 2 3 3 1 2 2 0 1 1 2 3

Status Codes

Status Codes

PDACRT – Node Computation
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1 3 4 10 14 6 2 5 8 9 11 12 6 7

1 2 10 3 7 11 12 4 8 9 13 5 6 14

Node 0 
AABB

Node 1 
AABB

0 0 0 0 0 0 1 1 1 1 1 1 2 2

Triangle Ids

Ray Ids

0 0 0 1 1 1 1 2 2 2 2 3 3 3

Status Codes

Status Codes

PDACRT- Node Computation



IIIT
 H

y
d

erab
ad

4 4 4 5 5 5 6 6 7 7 7 8 8 8

4 4 4 5 5 5 6 6 7 7 7 8 8 8

Keys

Values

4 5 6 7 8

12 15 12 21 24

4 5 6 7 8

3 3 2 3 3

Keys

Values

Keys

Count

Parallel Reduce By Key

Values[i]/Keys[i]

PDACRT – Parallel Size Computation
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0 1 2 16 18 22 44 90 11 12 2 11 89 90 91 56 55 32 33 34

4 5 6 11 67 68 13 14 23 24 25 26 78 89 90 91 92 45 46 47

0 0 1 1 2 2 4 4 4 5 6 6 8 8 9 10 10 10 10 10

0 1 1 1 2 3 4 4 5 5 6 7 8 8 9 10 10 10 11 11

Triangle Ids

Ray Ids

Node 0 
AABB

Node 1 
AABB

Node ‘N’ 
AABB

Level N

PDACRT – State at level ‘N’
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1 1 1 1 1 1 2 2 2 2 2 2 3 3 3

0 1 78 22 33 44 23 24 25 90 91 92 77 76 75

1 1 1 1 2 2 2 2 3 3 3 3 3 3 3

1 2 33 22 89 78 56 45 67 68 69 70 71 72 73

Node ids

Node ids

Triangle ids

Ray ids

Buffer

Triangles stored in fast shared memory

PDACRT – Naïve Intersections
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PDACRT (Set of Rays R, Set of Triangles T, Scene AABB B)

while(true)

• Split current level AABBs in parallel

• Perform ray & triangle filtering in parallel

• Compute child nodes and terminal nodes in parallel.

• Fill and process terminal node buffer in parallel.

• Compute next level node data in parallel.

• Repeat till no nodes present

PDACRT – Algorithm
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Results

• Tests run on a machine with Intel core i7 CPU and 

Nvidia GTX 580 GPU.

• All scenes rendered at 1024x1024 resolution.
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Model #Tris CPU DACRT 
(ms)

PDACRT (ms) Speedup

Bunny 69K 105 87 1.2x

Conference 282K 99 148 0.66x

Angel 474K n/a 143 n/a

Dragon 871K n/a 155 n/a

Buddha 1M 238 165 1.44x

Turbine 1.7M 285 223 1.27x

• PDACRT is faster than CPU DACRT for all the scenes except the conference scene.

PDACRT – Primary Rays
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Model #Tris CPU DACRT 
(ms)

PDACRT (ms) Speedup

Bunny 69K 105 87 1.2x

Conference 282K 99 148 0.66x

Angel 474K n/a 143 n/a

Dragon 871K n/a 155 n/a

Buddha 1M 238 165 1.44x

Turbine 1.7M 285 223 1.27x

• PDACRT is faster than CPU DACRT for all the scenes except the conference 

scene.

• Internal scenes have rays reach deep levels of hierarchy before being filtered.

• Early ray termination not possible due to breadth first processing of rays.

PDACRT – Primary Rays
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Scene #Tris Shadow Rays 
(ms)

Specular Rays 
(ms)

AO Rays
(ms)

Bunny 69K 67 96 149

Conference 282K 197 222 240

Angel 474K 102 163 182

Dragon 871K 128 177 192

Buddha 1M 150 190 204

Turbine 1.7M 213 252 287

• Shadow rays were generated with one point light source.

• Shadow rays perform generally better due to some degree of coherence among them.

• 8 AO rays generated per primary ray intersection. 

• PDACRT performance doesn’t fall off rapidly with increase in ray count.

PDACRT – Secondary Rays
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Scene #Tris GPU SAH k-D Tree 
(MB)

PDACRT
(MB)

Bunny 69K 33.96 47.66

Fairy 174K 80.33 82.25

Exploding 252K 86.58 82.68

Conference 331K 159.98 85.82

Angel 474K 218.26 82

Dragon 871K 417.33 96.87

Buddha 1M 512.65 107.89

• PDACRT values include memory required for buffer, ray and triangle data also.

• GPU SAH k-D Tree data includes memory only for triangles.

• Considerable ray id duplication for internal scenes.

PDACRT – Memory Requirements
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GPU Light Transport
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Image Formation Model

Light

Scene Objects

Virtual Camera/
Eye

Rendered Image
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Virtual Camera/Eye Scene Objects Light

1. Camera Position
2. Resolution
3. Lens Configuration
4. Aperture, etc.

1. Geometry
2. Material type

1. Light Position
2. Light Geometry
3. Emission Profile

Image Formation Model - Data
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𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥,𝑤𝑜 +  

Ω

𝐿𝑖 𝑥, 𝜔𝑖 𝑓𝑠 𝑥, 𝜔𝑖, 𝜔𝑜 ⅆ𝜎
⊥
(𝜔𝑖)

Outgoing 
radiance

Emitted 
radiance

Incoming 
radiance

BSDF Projected Solid Angle 
Measure

Rendering Equation
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𝐿𝑜 𝑥, 𝜔𝑜

𝜔𝑜

x

𝐿𝑖 𝑥, 𝜔𝑖

Ω

Outgoing Radiance (Lo) 
= 

Sum of scaled incident radiance (Li) 
+ 

Self Emitted Radiance (Le)

Rendering Equation - Visualized

Light
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Monte Carlo Integration

• Evaluate an integral f(x) in domain Ω.

• Standard quadrature rules work good for 1 dimension.

• As dimension increases, convergence rate is very bad.

• Monte Carlo methods are oblivious to dimensions. Just take lot of samples.

• Convergence rate is O(√𝑁)

𝐼 =
1

𝑁
 

𝑖=1

𝑁
𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

Monte Carlo Estimator

 
Ω

𝑓 𝑥 ⅆ𝜇(𝑥)𝐸 𝐼 =  𝑓 𝑥 𝑝 𝑥 ⅆ𝑥 =
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BSDF Models

Diffuse Glass Mirror Microfacet

• BSDF models indicate how for a given point on the surface, light in an 
incoming direction is scattered in a particular outgoing direction.

• BSDF provides the scaling factor in the rendering equation.
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Materials

• Materials determine the 
appearance of objects.

• Complex materials can be 
composed of arbitrary layers.

• Each layer can indicate a 
particular BSDF.

• Monte Carlo methods samples 
each layer separately to capture 
effects.

• Rich effects are produced by 
complex materials.

3 Layers

2 Layers – Shiny Metal 2 Layers – Glossy Paint
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Unidirectional Light Transport

• Start from either the camera or the light

• Stochastically terminate path.

• Camera –> Path Tracing

– Estimate radiance at each scene point

• Light -> Light Tracing

– Estimate importance at each scene point.

LightCamera

Objects

1
2

Path Tracing

LightCamera

Objects

1

2

Light Tracing
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• Start random walk from both light and camera.

• Proceed till termination (some criteria).

• Connect both paths to form a valid light path.

• Handles complicated lighting scenarios effectively.

Random walk phase

LightCamera

Objects2

1

1

LightCamera

Objects2

Connect Phase

1

1

Bidirectional Path Tracing
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PT vs BDPT 

Path Tracing Bidirectional Path Tracing
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GPU Performance Basics

GPU Cores

Threads

Code Data

1. GPU SIMT execution engine.
2. Each SMM consists of compute cores
3. Grids -> Blocks -> Warps -> Threads
4. Performance = Warp Execution Coherency 

+
Warp Coalasced Data Access
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• Preallocate memory for all subpaths in case of BDPT 

algorithms.

• Keep GPU occupancy high (stochastic termination of samples)

• Code execution divergence (different materials – different 

code paths)

• Large kernels or small kernels?

– Large kernels – Register Pressure – Occupancy Low

– Small kernels – Too many small kernels – kernel launch overhead

GPU Light Transport Challenges
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Solutions for Memory Preallocation

• A problem only in BDPT.
– Entire light and camera subpaths required 

for final evaluation

• Employ a Light Vertex Cache (LVC) in 
first light pass
– Stores only light subpath vertices

• Camera pass done next after LVC is full
– Connect each camera vertex to some 

vertices in LVC

– Compute valid paths and compute 
contribution

– Camera vertices not required to be stored

Light

Scene objects

Camera

V1

V2

V3

Store V1, V2, V3 in Buffer
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LVC – BDPT Visualized

Light Source

Camera

Initial Scene Configuration Light Pass Camera Pass

Light Vertex Camera 
Vertex

Traversal Ray Connection Ray
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Coherent and Importance Sampled LVC 

BDPT (CIS – LBDPT)
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• Streaming Path Tracing
– Large stream of samples to keep GPU 

busy.

• Stream compaction – Remove dead 
samples from stream
– Don’t let cores do wasteful work or be 

idle.

• Sample regeneration – Generate new 
samples in dead samples’ place.
– Keep all the cores of the GPU busy.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 3 4 5 8

0 1 3 4 5 8 A B C D

Input Sample Stream

Compacted Stream

Sample Regeneration

Solutions – For Occupancy
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Solutions – For Coherence and Kernel size

• Employ queues for each 
different type of material 
handled.

– Coherent work for each 
queue

• Employ different kernels 
for different materials. 

– Smaller kernels ensure 
less register pressure

0 1 2 3 4 5 6 7 8 9

Input Sample Stream

0 1 2 3

4 5 6

7 8 9

Q1

Q2

Q3

Kernel 1

Kernel 2

Kernel 3
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Solutions – For Coherence and Kernel size

• Cons

– Separate queues for each 
coherent work load

– Parallel Queue 
management very 
cumbersome

– Preallocation of memory

– Poor memory usage

– Overflow

0 1 2 3 4 5 6 7 8 9

Input Sample Stream

0 1 2 3

4 5 6

7 8 9

Q1

Q2

Q3

Kernel 1

Kernel 2

Kernel 3
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Solutions – For Coherence and Kernel size

• Implicit queues to the 

rescue

– Employ sorting within 

sample stream to form 

implicit queues

– Each segment of 

coherent work load is the 

range of queue elements

0 1 2 3 4 5 6 7 8 9

Input Sample Stream

0 1 2 3

4 5 6

7 8 9

Q1

Q2

Q3

Kernel 1

Kernel 2

Kernel 3
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Coherent Material Evaluation
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Contribution Function

LightCamera

Le

G(v3, v4)G(v2, v3)G(v1, v2)G(v0,v1)

fs(v0,v1,v2)

fs(v1,v2,v3)

fs(v2,v3,v4)

v0

v1

v2

v3

v4We

Final Contribution = We x G(v0,v1) x fs(v0,v1,v2) x G(v1,v2) x fs(v1,v2,v3) x 
G(v2,v3) x fs(v2,v3,v4) x G(v3,v4) x Le
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BDPT Transport Path

LightCamera

Le

G(v3, v4)G(v2, v3)G(v1, v2)G(v0,v1)

fs(v0,v1,v2)

fs(v1,v2,v3)

fs(v2,v3,v4)

v0

v1

v2

v3

v4We

Camera path segment Light path segment Connection segment
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Connection Segment

LightCamera

Le

G(v3, v4)G(v2, v3)G(v1, v2)G(v0,v1)

fs(v0,v1,v2)

fs(v1,v2,v3)

fs(v2,v3,v4)

v0

v1

v2

v3

v4We

Connection Segment = fs(v1,v2,v3) x G(v2,v3) x fs(v2,v3,v4) x V(v2,v3)
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Poor Sampling of LVC vertices

Poor choice of light vertices which are occluded Poor choice of light vertices with low BSDF contribution
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Key Idea – Importance Sampling 

LVC vertices

Camera Pass

• LVC – BDPT uniformly samples light 
vertices

• Might not choose the best pair of 
vertices

• Importance sample light vertices based 
on contribution
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• For each camera vertex
• Choose ‘N’ light vertices from 

LVC vertex at random.
• Compute a distribution from 

them using the contribution 
term.

• Importance sample ‘M’ vertices 
from this distribution.

CIS – LBDPT Importance Sampling

Camera Pass
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Results

Scene 1 : Bedroom – Direct Lighting only
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Results



IIIT
 H

y
d

erab
ad Scene 2 : White room – Direct Lighting only

Results
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Scene 2 : White room – Fully lit

Results
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Results - Runtime

• Results obtained by progressive 
rendering.

• Each iteration had 4 or 8 spp.
• Results indicate the performance 

benefits due sorting material 
evaluation requests.

• Code execution coherence 
enforced in same material type
evaluation.

• Data execution coherence 
enforced in same material 
evaluation.
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Results - Quality

• RMSE values computed using ground truth computed using naïve BDPT algorithm.
• Ground truth images consisted of very little noise.
• Our importance sampled connection scheme results in faster RMSE drop as time 

increases when compared against LVC-BDPTmk method.
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Results - Quality

• Results indicate RMSE error drop across iterations.
• Both methods have similar RMSE as iterations increase due to image getting 

progressively refined better.
• Importance sampled connections yield better results in earlier iterations
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Conclusion

• Presented two methods for GPU raytracing.
• Our PDACRT scheme very GPU friendly.

• Simple algorithm – Easier adoption
• Very less memory requirements – GPU friendly

• Our CIS – LBDPT method improves light transport on GPU.
• Coherent evaluation scheme using sorting.
• Importance sampled connections for better convergence.

• GPUs present a powerful parallel solution for accelerating rendering pipeline.
• GPU memory has been increasing and will be adopted by production rendering 

industry.
• Future commercial renderers both CPU and GPU based.
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Publications

• Parallel Divide and Conquer Raytracing (PDACRT) 
Srinath Ravichandran and P.J.Narayanan
Siggraph Asia 2013 – Technical Briefs

• Coherent and Importance Sampled LVC BDPT
Srinath Ravichandran and P.J.Narayanan
Siggraph Asia 2015 – Technical Briefs (under review)
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Thank You

Questions?


