
IIIT
 H

y
d

erab
ad

Two GPU Algorithms for

Raytracing

Srinath.R
Prof.P.J.Narayanan

Centre for Visual Information Technology

IIIT Hyderabad

IIIT
 H

y
d

erab
ad

Production Rendering

• Visual fidelity over responsiveness.

• Complex geometry.

• Complex lighting.

• Complex materials.

• Complex simulations.

Pacific Rim (2013)

IIIT
 H

y
d

erab
ad

Rising Costs?

0

50

100

150

200

250

Toy Story
(1995)

Toy Story 2
(1999)

King Kong
(2005)

Avatar (2009) Toy Story 3
(2010)

The Hobbit 2
(2013)

Production Cost (Million $)

Production Cost (Million $)

• Cost of making visual
effects/animation has grown
very rapidly.

• Artists as well as technical
costs.

• Rendering done in large
render farms.

• Hardware prices has gone
down.

• As technology advances,
rendering time remains
constant (Blinn’s law)

IIIT
 H

y
d

erab
ad

• Traditionally production rendering

was REYES based.

• Now moving towards fully ray

traced pipeline.

• Commercial renderers were purely

CPU based.

• Certain parts of the renderer use

the GPU.

• Very few fully GPU based renderers.

Commercial Renderers

IIIT
 H

y
d

erab
ad

Why GPU Raytracing ?

NVIDIA Maxwell Architecture

• Large parallel computation engines.

• Thousands of threads in flight.

• Very high bandwidth memory.

• Raytracing is embarrassingly

parallel.

• Naïve approach – Each ray handled

by one thread.

• Very effective cost/performance

factors.

IIIT
 H

y
d

erab
ad

Raytracing 101

Raytracing in work (Courtesy: Wikipedia)

IIIT
 H

y
d

erab
ad

Raytracing Pipeline

IIIT
 H

y
d

erab
ad

Our Work

Parallel DACRT CIS - LBDPT

IIIT
 H

y
d

erab
ad

Acceleration Structures

IIIT
 H

y
d

erab
ad

Why Acceleration Structures?

N objects M Rays

Brute Force

N x M

computations

Acceleration Structure

IIIT
 H

y
d

erab
ad

Acceleration Structures (AS)

• Spatial Partitioning
– K-d trees [Bentley 1975]

– Octrees [Glassner 1984]

– BSP trees [Fuchs et al. 1980]

– Grids [Fujimoto et al. 1988]

• Object Partitioning
– BVH [Rubin and Whitten 1980]

K-d tree

BVH

Grid

IIIT
 H

y
d

erab
ad

• Two basic steps of ray tracing

– Construct an acceleration structure(AS)

– Trace rays using it.

• Get away with one step instead of two?

– Construct and Trace together?

– Don’t construct any explicit acceleration structure?

• Divide and Conquer Ray Tracing

– First presented by Mora et al in 2011.

– Similar to quicksort.

– Simple serial CPU algorithm requiring very little memory.

Divide and Conquer Ray Tracing (DACRT)

IIIT
 H

y
d

erab
ad

Serial DACRT - Working

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scene

Bound

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ray Pivot

IIIT
 H

y
d

erab
ad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Child
Bound 2

Element Pivot

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ray Pivot

Child
Bound 1

• Split Parent Bound into
two children

Serial DACRT - Working

IIIT
 H

y
d

erab
ad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Child
Bound 2

Element Pivot

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ray Pivot

Child
Bound 1

• Split Parent Bound into
two children

• Filter rays and
elements for child
bounds

Serial DACRT - Working

IIIT
 H

y
d

erab
ad

1 10 11 12 5 6 7 8 9 2 3 4 13 14

Child
Bound 2

Element Pivot

1 2 10 11 5 6 7 8 9 3 4 12 13 14

Ray Pivot

Child
Bound 1

New Element Pivot

New Ray Pivot

• Split Parent Bound into
two children

• Filter rays and
elements for child
bounds

• Calculate new pivots
and reorder lists.

Serial DACRT - Working

IIIT
 H

y
d

erab
ad

1 10 11 12 5 6 7 8 9 2 3 4 13 14

Child
Bound 2

Element Pivot

1 2 10 11 5 6 7 8 9 3 4 12 13 14

Ray Pivot

Child
Bound 1

New Element Pivot

New Ray Pivot

• Split Parent Bound into

two children

• Filter rays and
elements for child
bounds

• Calculate new pivots
and reorder lists.

• Recurse on child
node.

Serial DACRT - Working

IIIT
 H

y
d

erab
ad

• DACRT(Space S, Set of Rays R, Set of Elements E)

If number of rays/elements are small

Compute brute force intersections

Else

Split S into ‘N’ children

Perform filtering for each child

Recursive DACRT on each child

Serial DACRT - Overview

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

Split and Filter

Recursion with
new range

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

Split and Filter

Recursion with
new range

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

Satisfies threshold
criterion.

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

Perform naïve intersection
between all rays and triangles

Assume THRESHOLD = 3 for

both rays and elements

DACRT – Recursion Tree

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

L1R

E = 1,…,5

R = 1,2

R1

E = 1,…,10

R = 1,…,5

R1L

E = 1,…,10

R = 1,2,3

R1R

E = 1,…,5

R ={}

An implicit hierarchy is
constructed and traversed
at the same time.

Pivot range indicates
implicit node contents

L0

L1

L2

DACRT – Entire Recursion Tree

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

L1R

E = 1,…,5

R = 1,2

R1

E = 1,…,10

R = 1,…,5

R1L

E = 1,…,10

R = 1,2,3

R1R

E = 1,…,5

R ={}

Filtering: Ray/Triangle intersection
with a bounding box L0

L1

L2

DACRT – Source of Parallelism

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

L1R

E = 1,…,5

R = 1,2

R1

E = 1,…,10

R = 1,…,5

R1L

E = 1,…,10

R = 1,2,3

R1R

E = 1,…,5

R ={}

Intersections parallel for each node

Intra node parallelism

L0

L1

L2

Filtering: Ray/Triangle intersection
with a bounding box

DACRT – Source of Parallelism

IIIT
 H

y
d

erab
ad

Root

E = 1,…,14

L1

E = 1,…,5

R = 1,…,7

L1L

E = 1,2,3

R = 1,…,7

L1R

E = 1,…,5

R = 1,2

R1

E = 1,…,10

R = 1,…,5

R1L

E = 1,…,10

R = 1,2,3

R1R

E = 1,…,5

R ={}

Nodes at each level
independent

Intra node parallelism

Inter node parallelism

L0

L1

L2

Filtering: Ray/Triangle intersection
with a bounding box

Intersections parallel for each node

DACRT – Source of Parallelism

IIIT
 H

y
d

erab
ad

Parallel DACRT

• Pivots

• Node

• Level

• Implicit

Hierarchy

Element Ids

IIIT
 H

y
d

erab
ad

Parallel DACRT

• Pivots

• Node

• Level

• Implicit

Hierarchy

• Terminal

Nodes

Element Ids

IIIT
 H

y
d

erab
ad

Parallel DACRT

• Pivots

• Node

• Level

• Implicit

Hierarchy

• Terminal

Nodes

• Terminal

Node Bufer

Element Ids

IIIT
 H

y
d

erab
ad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Root AABB

Split Plane

Level 0

Triangle Ids

Ray Ids

PDACRT - Visualized

IIIT
 H

y
d

erab
ad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node AABB

Split Plane
L R R L B B N L R R B L N N

Parallel Intersection Tests

• Pivot property requires elements of same node to

be in contiguous range.

• Achieved by a segmented sort-by-key operation.

– Segment – node

– Key – intersection value (Left,Right,Both,None)

– Value – element index

• Rays processed in same way.

PDACRT Filtering

IIIT
 H

y
d

erab
ad

• 4 possible values for intersection result.

• Status code computed from node id

and intersection test result.

• Pack both in a 32 bit unsigned integer

• Sorting status code ensures proper

arrangement of elements intersecting

both child nodes.

Type Code

L 00

B 01

R 10

N 11

1011 0110 0111 1111 1001 1100 1010 11XX

Node id (30 bits)

Result (2 bits)

Status code
(32 bits)

PDACRT – Status Codes

IIIT
 H

y
d

erab
ad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node 0
AABB

Node 1
AABB

0 1 0 0 1 2 2 1 1 0 1 1 0 0

Triangle Ids

Ray Ids

0 0 1 2 3 3 1 2 2 0 1 1 2 3

Status Codes

Status Codes

PDACRT – Node Computation

IIIT
 H

y
d

erab
ad

1 3 4 10 14 6 2 5 8 9 11 12 6 7

1 2 10 3 7 11 12 4 8 9 13 5 6 14

Node 0
AABB

Node 1
AABB

0 0 0 0 0 0 1 1 1 1 1 1 2 2

Triangle Ids

Ray Ids

0 0 0 1 1 1 1 2 2 2 2 3 3 3

Status Codes

Status Codes

PDACRT- Node Computation

IIIT
 H

y
d

erab
ad

4 4 4 5 5 5 6 6 7 7 7 8 8 8

4 4 4 5 5 5 6 6 7 7 7 8 8 8

Keys

Values

4 5 6 7 8

12 15 12 21 24

4 5 6 7 8

3 3 2 3 3

Keys

Values

Keys

Count

Parallel Reduce By Key

Values[i]/Keys[i]

PDACRT – Parallel Size Computation

IIIT
 H

y
d

erab
ad

0 1 2 16 18 22 44 90 11 12 2 11 89 90 91 56 55 32 33 34

4 5 6 11 67 68 13 14 23 24 25 26 78 89 90 91 92 45 46 47

0 0 1 1 2 2 4 4 4 5 6 6 8 8 9 10 10 10 10 10

0 1 1 1 2 3 4 4 5 5 6 7 8 8 9 10 10 10 11 11

Triangle Ids

Ray Ids

Node 0
AABB

Node 1
AABB

Node ‘N’
AABB

Level N

PDACRT – State at level ‘N’

IIIT
 H

y
d

erab
ad

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3

0 1 78 22 33 44 23 24 25 90 91 92 77 76 75

1 1 1 1 2 2 2 2 3 3 3 3 3 3 3

1 2 33 22 89 78 56 45 67 68 69 70 71 72 73

Node ids

Node ids

Triangle ids

Ray ids

Buffer

Triangles stored in fast shared memory

PDACRT – Naïve Intersections

IIIT
 H

y
d

erab
ad

PDACRT (Set of Rays R, Set of Triangles T, Scene AABB B)

while(true)

• Split current level AABBs in parallel

• Perform ray & triangle filtering in parallel

• Compute child nodes and terminal nodes in parallel.

• Fill and process terminal node buffer in parallel.

• Compute next level node data in parallel.

• Repeat till no nodes present

PDACRT – Algorithm

IIIT
 H

y
d

erab
ad

Results

• Tests run on a machine with Intel core i7 CPU and

Nvidia GTX 580 GPU.

• All scenes rendered at 1024x1024 resolution.

IIIT
 H

y
d

erab
ad

Model #Tris CPU DACRT
(ms)

PDACRT (ms) Speedup

Bunny 69K 105 87 1.2x

Conference 282K 99 148 0.66x

Angel 474K n/a 143 n/a

Dragon 871K n/a 155 n/a

Buddha 1M 238 165 1.44x

Turbine 1.7M 285 223 1.27x

• PDACRT is faster than CPU DACRT for all the scenes except the conference scene.

PDACRT – Primary Rays

IIIT
 H

y
d

erab
ad

Model #Tris CPU DACRT
(ms)

PDACRT (ms) Speedup

Bunny 69K 105 87 1.2x

Conference 282K 99 148 0.66x

Angel 474K n/a 143 n/a

Dragon 871K n/a 155 n/a

Buddha 1M 238 165 1.44x

Turbine 1.7M 285 223 1.27x

• PDACRT is faster than CPU DACRT for all the scenes except the conference

scene.

• Internal scenes have rays reach deep levels of hierarchy before being filtered.

• Early ray termination not possible due to breadth first processing of rays.

PDACRT – Primary Rays

IIIT
 H

y
d

erab
ad

Scene #Tris Shadow Rays
(ms)

Specular Rays
(ms)

AO Rays
(ms)

Bunny 69K 67 96 149

Conference 282K 197 222 240

Angel 474K 102 163 182

Dragon 871K 128 177 192

Buddha 1M 150 190 204

Turbine 1.7M 213 252 287

• Shadow rays were generated with one point light source.

• Shadow rays perform generally better due to some degree of coherence among them.

• 8 AO rays generated per primary ray intersection.

• PDACRT performance doesn’t fall off rapidly with increase in ray count.

PDACRT – Secondary Rays

IIIT
 H

y
d

erab
ad

Scene #Tris GPU SAH k-D Tree
(MB)

PDACRT
(MB)

Bunny 69K 33.96 47.66

Fairy 174K 80.33 82.25

Exploding 252K 86.58 82.68

Conference 331K 159.98 85.82

Angel 474K 218.26 82

Dragon 871K 417.33 96.87

Buddha 1M 512.65 107.89

• PDACRT values include memory required for buffer, ray and triangle data also.

• GPU SAH k-D Tree data includes memory only for triangles.

• Considerable ray id duplication for internal scenes.

PDACRT – Memory Requirements

IIIT
 H

y
d

erab
ad

GPU Light Transport

IIIT
 H

y
d

erab
ad

Image Formation Model

Light

Scene Objects

Virtual Camera/
Eye

Rendered Image

IIIT
 H

y
d

erab
ad

Virtual Camera/Eye Scene Objects Light

1. Camera Position
2. Resolution
3. Lens Configuration
4. Aperture, etc.

1. Geometry
2. Material type

1. Light Position
2. Light Geometry
3. Emission Profile

Image Formation Model - Data

IIIT
 H

y
d

erab
ad

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥,𝑤𝑜 +

Ω

𝐿𝑖 𝑥, 𝜔𝑖 𝑓𝑠 𝑥, 𝜔𝑖, 𝜔𝑜 ⅆ𝜎
⊥
(𝜔𝑖)

Outgoing
radiance

Emitted
radiance

Incoming
radiance

BSDF Projected Solid Angle
Measure

Rendering Equation

IIIT
 H

y
d

erab
ad

𝐿𝑜 𝑥, 𝜔𝑜

𝜔𝑜

x

𝐿𝑖 𝑥, 𝜔𝑖

Ω

Outgoing Radiance (Lo)
=

Sum of scaled incident radiance (Li)
+

Self Emitted Radiance (Le)

Rendering Equation - Visualized

Light

IIIT
 H

y
d

erab
ad

Monte Carlo Integration

• Evaluate an integral f(x) in domain Ω.

• Standard quadrature rules work good for 1 dimension.

• As dimension increases, convergence rate is very bad.

• Monte Carlo methods are oblivious to dimensions. Just take lot of samples.

• Convergence rate is O(√𝑁)

𝐼 =
1

𝑁

𝑖=1

𝑁
𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

Monte Carlo Estimator

Ω

𝑓 𝑥 ⅆ𝜇(𝑥)𝐸 𝐼 = 𝑓 𝑥 𝑝 𝑥 ⅆ𝑥 =

IIIT
 H

y
d

erab
ad

BSDF Models

Diffuse Glass Mirror Microfacet

• BSDF models indicate how for a given point on the surface, light in an
incoming direction is scattered in a particular outgoing direction.

• BSDF provides the scaling factor in the rendering equation.

IIIT
 H

y
d

erab
ad

Materials

• Materials determine the
appearance of objects.

• Complex materials can be
composed of arbitrary layers.

• Each layer can indicate a
particular BSDF.

• Monte Carlo methods samples
each layer separately to capture
effects.

• Rich effects are produced by
complex materials.

3 Layers

2 Layers – Shiny Metal 2 Layers – Glossy Paint

IIIT
 H

y
d

erab
ad

Unidirectional Light Transport

• Start from either the camera or the light

• Stochastically terminate path.

• Camera –> Path Tracing

– Estimate radiance at each scene point

• Light -> Light Tracing

– Estimate importance at each scene point.

LightCamera

Objects

1
2

Path Tracing

LightCamera

Objects

1

2

Light Tracing

IIIT
 H

y
d

erab
ad

• Start random walk from both light and camera.

• Proceed till termination (some criteria).

• Connect both paths to form a valid light path.

• Handles complicated lighting scenarios effectively.

Random walk phase

LightCamera

Objects2

1

1

LightCamera

Objects2

Connect Phase

1

1

Bidirectional Path Tracing

IIIT
 H

y
d

erab
ad

PT vs BDPT

Path Tracing Bidirectional Path Tracing

IIIT
 H

y
d

erab
ad

GPU Performance Basics

GPU Cores

Threads

Code Data

1. GPU SIMT execution engine.
2. Each SMM consists of compute cores
3. Grids -> Blocks -> Warps -> Threads
4. Performance = Warp Execution Coherency

+
Warp Coalasced Data Access

IIIT
 H

y
d

erab
ad

• Preallocate memory for all subpaths in case of BDPT

algorithms.

• Keep GPU occupancy high (stochastic termination of samples)

• Code execution divergence (different materials – different

code paths)

• Large kernels or small kernels?

– Large kernels – Register Pressure – Occupancy Low

– Small kernels – Too many small kernels – kernel launch overhead

GPU Light Transport Challenges

IIIT
 H

y
d

erab
ad

Solutions for Memory Preallocation

• A problem only in BDPT.
– Entire light and camera subpaths required

for final evaluation

• Employ a Light Vertex Cache (LVC) in
first light pass
– Stores only light subpath vertices

• Camera pass done next after LVC is full
– Connect each camera vertex to some

vertices in LVC

– Compute valid paths and compute
contribution

– Camera vertices not required to be stored

Light

Scene objects

Camera

V1

V2

V3

Store V1, V2, V3 in Buffer

IIIT
 H

y
d

erab
ad

LVC – BDPT Visualized

Light Source

Camera

Initial Scene Configuration Light Pass Camera Pass

Light Vertex Camera
Vertex

Traversal Ray Connection Ray

IIIT
 H

y
d

erab
ad

Coherent and Importance Sampled LVC

BDPT (CIS – LBDPT)

IIIT
 H

y
d

erab
ad

• Streaming Path Tracing
– Large stream of samples to keep GPU

busy.

• Stream compaction – Remove dead
samples from stream
– Don’t let cores do wasteful work or be

idle.

• Sample regeneration – Generate new
samples in dead samples’ place.
– Keep all the cores of the GPU busy.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 3 4 5 8

0 1 3 4 5 8 A B C D

Input Sample Stream

Compacted Stream

Sample Regeneration

Solutions – For Occupancy

IIIT
 H

y
d

erab
ad

Solutions – For Coherence and Kernel size

• Employ queues for each
different type of material
handled.

– Coherent work for each
queue

• Employ different kernels
for different materials.

– Smaller kernels ensure
less register pressure

0 1 2 3 4 5 6 7 8 9

Input Sample Stream

0 1 2 3

4 5 6

7 8 9

Q1

Q2

Q3

Kernel 1

Kernel 2

Kernel 3

IIIT
 H

y
d

erab
ad

Solutions – For Coherence and Kernel size

• Cons

– Separate queues for each
coherent work load

– Parallel Queue
management very
cumbersome

– Preallocation of memory

– Poor memory usage

– Overflow

0 1 2 3 4 5 6 7 8 9

Input Sample Stream

0 1 2 3

4 5 6

7 8 9

Q1

Q2

Q3

Kernel 1

Kernel 2

Kernel 3

IIIT
 H

y
d

erab
ad

Solutions – For Coherence and Kernel size

• Implicit queues to the

rescue

– Employ sorting within

sample stream to form

implicit queues

– Each segment of

coherent work load is the

range of queue elements

0 1 2 3 4 5 6 7 8 9

Input Sample Stream

0 1 2 3

4 5 6

7 8 9

Q1

Q2

Q3

Kernel 1

Kernel 2

Kernel 3

IIIT
 H

y
d

erab
ad

Coherent Material Evaluation

IIIT
 H

y
d

erab
ad

Contribution Function

LightCamera

Le

G(v3, v4)G(v2, v3)G(v1, v2)G(v0,v1)

fs(v0,v1,v2)

fs(v1,v2,v3)

fs(v2,v3,v4)

v0

v1

v2

v3

v4We

Final Contribution = We x G(v0,v1) x fs(v0,v1,v2) x G(v1,v2) x fs(v1,v2,v3) x
G(v2,v3) x fs(v2,v3,v4) x G(v3,v4) x Le

IIIT
 H

y
d

erab
ad

BDPT Transport Path

LightCamera

Le

G(v3, v4)G(v2, v3)G(v1, v2)G(v0,v1)

fs(v0,v1,v2)

fs(v1,v2,v3)

fs(v2,v3,v4)

v0

v1

v2

v3

v4We

Camera path segment Light path segment Connection segment

IIIT
 H

y
d

erab
ad

Connection Segment

LightCamera

Le

G(v3, v4)G(v2, v3)G(v1, v2)G(v0,v1)

fs(v0,v1,v2)

fs(v1,v2,v3)

fs(v2,v3,v4)

v0

v1

v2

v3

v4We

Connection Segment = fs(v1,v2,v3) x G(v2,v3) x fs(v2,v3,v4) x V(v2,v3)

IIIT
 H

y
d

erab
ad

Poor Sampling of LVC vertices

Poor choice of light vertices which are occluded Poor choice of light vertices with low BSDF contribution

IIIT
 H

y
d

erab
ad

Key Idea – Importance Sampling

LVC vertices

Camera Pass

• LVC – BDPT uniformly samples light
vertices

• Might not choose the best pair of
vertices

• Importance sample light vertices based
on contribution

IIIT
 H

y
d

erab
ad

• For each camera vertex
• Choose ‘N’ light vertices from

LVC vertex at random.
• Compute a distribution from

them using the contribution
term.

• Importance sample ‘M’ vertices
from this distribution.

CIS – LBDPT Importance Sampling

Camera Pass

IIIT
 H

y
d

erab
ad

Results

Scene 1 : Bedroom – Direct Lighting only

IIIT
 H

y
d

erab
ad Scene 1 : Bedroom – Fully lit

Results

IIIT
 H

y
d

erab
ad Scene 2 : White room – Direct Lighting only

Results

IIIT
 H

y
d

erab
ad

Scene 2 : White room – Fully lit

Results

IIIT
 H

y
d

erab
ad

Results - Runtime

• Results obtained by progressive
rendering.

• Each iteration had 4 or 8 spp.
• Results indicate the performance

benefits due sorting material
evaluation requests.

• Code execution coherence
enforced in same material type
evaluation.

• Data execution coherence
enforced in same material
evaluation.

IIIT
 H

y
d

erab
ad

Results - Quality

• RMSE values computed using ground truth computed using naïve BDPT algorithm.
• Ground truth images consisted of very little noise.
• Our importance sampled connection scheme results in faster RMSE drop as time

increases when compared against LVC-BDPTmk method.

IIIT
 H

y
d

erab
ad

Results - Quality

• Results indicate RMSE error drop across iterations.
• Both methods have similar RMSE as iterations increase due to image getting

progressively refined better.
• Importance sampled connections yield better results in earlier iterations

IIIT
 H

y
d

erab
ad

Conclusion

• Presented two methods for GPU raytracing.
• Our PDACRT scheme very GPU friendly.

• Simple algorithm – Easier adoption
• Very less memory requirements – GPU friendly

• Our CIS – LBDPT method improves light transport on GPU.
• Coherent evaluation scheme using sorting.
• Importance sampled connections for better convergence.

• GPUs present a powerful parallel solution for accelerating rendering pipeline.
• GPU memory has been increasing and will be adopted by production rendering

industry.
• Future commercial renderers both CPU and GPU based.

IIIT
 H

y
d

erab
ad

Publications

• Parallel Divide and Conquer Raytracing (PDACRT)
Srinath Ravichandran and P.J.Narayanan
Siggraph Asia 2013 – Technical Briefs

• Coherent and Importance Sampled LVC BDPT
Srinath Ravichandran and P.J.Narayanan
Siggraph Asia 2015 – Technical Briefs (under review)

IIIT
 H

y
d

erab
ad

Thank You

Questions?

