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Abstract

Diabetesis occuring in an ever increasing percentage of the human population. Though generally non-
fatal, it can lead to diseases of other vital organs of the human body. Diabetic Retinopathy (DR) isone
such disease which affectsthe human retina. If not treated in time, the affected patient can lose his/ her
sight. With agrowing number of patientsaffected with diabetes, the need isfor fast and automatic com-
puter aided toolswhich can aid in the diagnosisof DR. Currently, DR isdiagnosed by a manual analysis
of retinal angiogram images (RAIS). Thisprocessistediousand depends on the subjective perception of
the doctorsand technicians. In thisthesis, we propose amodular framework for computer aided analysis
of RAIswhich can be used to build analysissystemswhich can automatically detect diseaseslikethe DR
and assign an objective measure to the extent of the disease. The framework consistsfour independent
modules: 1) The Pre-processing Module - For rectification of the problemsand defectsaffecting a RAI;
2) The Structure AnalysisModule - For extraction of the structure of the reting; 3) The Disease Analy-
sisModule - For extracting the candidate regions affected by a particular disease; 4) The Classification
Module - For classifying the candidate * disease-regions’ into true positives and fal se positives. Depend-
ing on the desired output, one can choose to incorporate some or all of these modulesinto the analysis
system.

Non-uniform illumination isacommon problem affecting RAIsand needsto be addressed. A technique
for correcting non-uniform illumination forms a part of the pre-processing module. In this thesis,
a technique for illumination correction, which models the illumination effect as a multiplicative
degradation, is presented.

The most important of the structural features of the retina are the blood vessels. Blood vessels can
be detected by modeling them as topographic ridges. In this thesis, a hovel curvature estimation
technique is presented, using which aridge detection algorithm isformulated for single scaleaswell as
multiple scales.

DR leads to two different kinds of pathologies in the human retina. These are: a.) Microaneurysms,
(MAs) and b.) Capillary Non-Perfusion (CNP). In this thesis, a novel curvature based technique for
detection of MAsis presented. Likewise, a novel technique for segmentation of regions of CNP, from
RAIsobtained using a laser camera, is presented. This segmentation technique uses a special property
of theimagesobtained using alaser camera.

To showcase the proposed framework, atool called the CNP Analyser’ that wasdevel oped is presented.
This tool can detect the regions of CNP from RAIs obtained using a laser camera. The proposed
illumination correction technique and the CNP segmentation technique are incorporated into thistool.
A measure of the extent of CNP isderived using the percentage area of the regionsof CNP.
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Chapter 1. Introduction

1.1. Diabetic retinopathy

Thefast pervading corporate culture hasled to increased occurance of diabetesin the human population.
It is estimated that there are 18.2 million people in the United States, or 6.3% of the population, who
have diabetes[]]. India hasthe dubiousdistinction of having thelargest number of diabetic patientswith
morethan 30 million people diagnosed with diabetes[6]. Diabetes, though generally non-fatal, can affect
other vital organs of the human body. If not treated in the early stages, the organs affected by diabetes
can malfunction or completely stop functioning.

Diabetic retinopathy (DR), asthe name suggests, isa disease of the human retina caused by diabetes. It
isdiagnosed by observing the extent of two different kindsof defectson theretina: (1) Micro-aneurysms,
and (2) regions of capillary non-perfusion. Microaneurysms are ‘ sprouts’ of newly developing blood
vessels in the retina. On the other hand, regions of capillary non-perfusion are regions where the
capillary network in the retina stops supplying blood to the corresponding areas. If not treated in time,
regions of CNP can spread acrossthe areas of the retina. When such a spread entersthe central region
of the retina (which isresponsible for most of human vision, see Section 2.1), the patient can go blind.
Microaneurysms are defects occuring in the early stages of DR, while CNP isa defect occuring in the
later stagesof DR.

1.2. The need for computer aided analysis of retinal angiogram images

The treatment for DR varies from simple drug based cures to laser surgeries depending on the stage
at which the disease isfirst detected and the manner in which it progressesin a patient. Clinically, the
diseaseisdiagnosed manually by visually analysing theangiogram images of theretina. Becauseof this,
the diagnosisand treatment of the di sease become dependent on the subjective perception of the doctors
and technicians involved. With a growing humber of patients affected with diabetes, efficient disease
management has also become an important issue that needsto be tackled. The need isfor fast computer
aided diagnostic tools for detection of the disease. Not only should such tools help in detection and
diagnosis, but should also be ableto removethe operator subjectivity and assign an objective measureto
the extent of the disease. A computer aided system can also help in tracking the progress of the disease,
under treatment or otherwise. Accurate tracking will help in developing a better understanding of the
disease and devel op precise treatment procedures. Disease tracking is beyond the scope of thisthesis.



2 Chapter 1. Introduction

Inthisthesis, we present a general framework for computer aided analysisof retinal angiogram images.
Theframework can be used to build image anal ysissystemswhich can automatically detect and quantify
pathologies of the retinalike DR from angiogram images. The image analysis system is broken down
into anumber of moduleswhich sequentially processtheinput imageto extract information at different
levels. A detailed description of the framework is presented in Chapter 3.

1.3. Organisation of the thesis

In the next Chapter (Chapter 2), we present detailed descriptions of the retinal imaging systems and
the corresponding clinical procedures for the detection of CNP in the human retina. In Chapter 3, the
proposed framework for the analysisof retinal angiogram imagesis presented. The framework consists
of four modules. Specific instances of these modules are presented in Chapters 4 to 7. To showcase
the framework, a tool called the ‘CNP Analyser’ has been developed. Thisis presented in Chapter 8.
The thesis ends with a summary, and list of directions (Chapter 9) for continuing the work on retinal
angiogram image analysis.



Chapter 2. Background

2.1. The human retina

A cross-sectional diagram showing the various partsof ahuman eyeisshownin Figure2.1. Retinaisthe
sensory membrane that lines most of the large posterior chamber of the vertebrate eye [7]. A diagram
of theretinain particular isshown in Figure 2.2. Thisfigure showstwo main ‘land-marks’, namely the
Macula and the Optic-Disk, of aretina. The maculaisacircular region in the center of theretinawith
the Fovea asits central core [16]. It is generally a dark/dull region devoid of any vasculature and is
responsible for most of human vision. In particular, it isresponsible for the central vision and houses
the photo-receptive cells called the cones [23].

The optic-disk (OD) is a bright disk like structure through which the blood vessels and the neural
network enter the retina. For a human eye, there exist two sides:. i) Nasal side, which isthe side closeto
the nose; ii) Temporal side, which isthe side close to the temple. OD islocated on the nasal side of the
macula. In aretinal image of aleft eye, the OD appearsto the left of the macula, and in aretinal image
of theright eye, OD appearsto theright of the macula. The distance between the center of the optic-disk
and the maculais normally two-and-a-half timesthe diameter of the optic-disk.

The tentacular structure in Figure 2.2 represents the prominent vasculature in the retina. Below the
retinal layer isa *‘Choroidal’ layer (shown in Figure 2.1), which hasits own vasculature. Most of this
thesislimitsitself to the retinal layer except in few rare instances when attention is drawn to choroidal
layer explicitly.

2.2. The basic retinal imaging procedure

The human eye has a circular opening called the pupil (see Figure 2.1) through which light entersthe
eye and reachesthe retina. Retinal imaging systems use this opening to capture the image of the retina.
The diameter of the pupil adjustsitself so asto let an optimum amount of light enter the eye. However,
the pupil can be ‘dilated’ using drugsin order to obtain a large diameter, irrespective of the amount of
light entering the eye. Often, in order to facilitate better illumination of theretina, the patient’'seyesare
dilated before capturing the images.

Ascanbeseenin Figure 2.1, thehuman retinahasthe shape of aninner surfaceof ahemishpere. Because
of this, it is not possible to capture the entire retina in a single image. Different parts are imaged by
making the patient look in different directions, or by aiming the camerain different directions. Typically,
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Choroid

Sclera

Ciliary body

Figure 2.1. Anatomy of a human eye.

Human retina

Figure 2.2. A human retinal image.
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depending on the field of view of the camera, a number of images are obtained so that the part of the
retinathat isof interest iscaptured in at |east oneimage.

2.3. Retinal angiography

Diagnosis of many diseases of the retina, like the diabetic retinopathy, require the study of perfusion
of blood through the different parts of the retina. The images obtained using the procedure outlined in
Section 2.2 are insufficient for such a study as the path of the blood flow cannot be traced using such
images. A different classof images, called theretinal angiogram imagesare used to understand the flow
of blood in the retina.

Angiogramimagesare obtained by aprocedurecalled Angiography. Itisaclinical procedureperformed
to study the perfusion (or the flow) of blood through the vasculaturein a particular organ or region of a
human body. In short, it isatechnique used to trace the path of the blood. An angiography of theretina
isperformed asfollows. First, the patient’s pupils are dilated. Next, a flourescent dye isinjected into the
circulatory system of the patient’s body. The patient’s blood acts as a carrier for this dye, carrying the
dye to only those regions of the retina which are recieving the blood supply. Normally, it takes around
15 seconds, from the time of injection, for the dye to reach the retinaif it isinjected into the hand. Af-
ter this short duration, images of the retina are obtained using a particular wavelength of light. These
images are called retinal angiogram images. The technical name for aretinal angiogram is Fundus
Flourescene Angiogram (FFA). For therest of thethesis, we shall refer to aretinal angiogram image as
an FFA image. All FFA images are gray-scale images. An example of an FFA imageisshown in Figure
2.3. Regionsreceiving normal blood supply appear as bright white regionsand regionslacking in blood
(due to abnormal supply of blood) appear asdark regions.

Each region of the retina has its own characteristic manifestation in an angiogram image. Figure 2.3
shows an angiogram image with the different regions of the retina marked. Below is a list of these
regionsand a brief description of their manifestationsin an FFA image.

. Macula

Macula is the physical center of the retina. It appears as a dark circular region with increasing
brightness towards the periphery. The ‘thinness’ of the vascular network in the macular region
causesthe dark texture. The center of the macula, called the fovea, isdevoid of vasculature.

e Optic-disk

Optic-disk (OD) is the opening through which the blood vessels and the neural network enter
and leave the retina. It typically appears as a bright circular disk like object on the nasal side of
the macula.
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Blood clot

Optic Disk

Macula

A region of CHP

Prominent wasculature

Mormal capillary Metwork

hdicro-aneurysms

Figure 2.3. Retinal artifactsasseenin a FFA image.

Blood vessels

The large blood vessels appear as bright, hose like structures in an FFA image. In most central
images of the retina, one can observe two prominent vessels emerging out of the optic-disk in a
parabolic shape. These are called the *arcades'.

Capillary Network

A normal, healthy capillary network in theretina appearsasgrey/whiteregion with awoolly texture
in an FFA image.

Regions of CNP

Regionsof CNP appear asdull/dark lesionsbounded by healthy vascul ature and capillary network.
They appear dark because of the fact that the dye does not perfuse into such regions. They fail to
exhibit flourescence of a healthy region and are called regions of hypo-flourescence.

Regions of hyper-flourescence

Sometimes, dueto diabetes or other diseases, the blood vesselsweaken or rupture (hemmerhages).
Blood constantly effuses out of such weak or ruptured vessels. Asthe effusing blood containsthe
injected dye, such regions appear as excessively bright, white regions and are called as regions
of hyper-flourescence.
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. Blood Clots

When blood effusing out of a ruptured vessel clots, the region of the retina under such clotsis
blocked from the view of the camera. Such regionsappear asdark regionsand are called asregions
of blocked-flourescence.

e Microaneurysms

To compensate for the occurance of a CNP, the body grows new capillaries. The early stage of
such neo-vascularisation is a spherical microscopic balooning from the old vessels caled a
microaneurysm. Such a structure has a permeable membrane from which the dye effuses out.
Microaneurysmsoccur astiny spherical objectsin an FFA image.

2.4. Retinal imaging systems

There are various kinds of retinal imaging systems manufactured by different companies. Images
obtained from a particular system have their own characteristic properties. The work presented in this
thesis usesimages obtained from two different imaging systems. One imaging system is manufactured
by the Carl Zeiss company [35] and uses an optical camera to capture retinal images. We shall refer
to FFA images captured using this system as Zeiss images. The other system is manufactured by the
Heidelberg Engineering company [14] and uses a laser camera to capture images. We shall refer to
images captured using thissystem asHRA images (HRA for Heidelberg Retinal Angiogram). Zeissand
HRA images differ with respect to size and quality, which is discussed next.

(b)

Figure 2.4. (a) A typica Zeissimage. (b) A typical HRA image.

2.4.1. HRA images

HRA images are of size 512 x 512 pixels and are commonly corrupted by sandy/grainy noise. The
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laser camera of the HRA system can penerate through the retinal layer and image the choroidal layer.
Because of this, the choroidal capillary network can also be seen through regions of CNP in the image.
A sub-sampled example of an HRA imageisshown if Figure 2.4(b).

2.4.2. Zeiss images

TheZeissimagesareof size 1280 x 1024 pixels. They aremuch lessnoisy ascompared to HRA images,
and have asmooth texture. A sub-sampled version of aZeissimageisshownin Figure2.4(a). Theretina
regions are captured within a circular region as can be seen in the image. Thiscircle correspondsto the
aperture of thecameraof the Zeisstheimaging system. The choroidal capillary network, whichisvisible
through regions of CNP in the HRA images, is not visible in Zeissimages as the Zeiss system uses an
optical camera.

2.5. Problems in retinal angiogram image analysis

Most retinal images suffer from defects which are patient dependent. In a few rare cases, the defects
are also caused due to the limitations of the imaging system. Apart from these defects, there are many
other problems which an FFA image analysis system has to tackle in order to deliver reliable results
over a wide variety of images. Such problems, which are relevant to this thesis, are discussed in the
following sub-sections.

2.5.1. Non-uniform illumination

There are many practical issues, such asthe amount of dilation of the patient’seye, patient’s eye move-
ment etc., which can lead to images having spatially varying illumination. Apart from practical difficul-
ties, there isafundamental problem which can lead to non-uniform illumination, namely, the curvature
of theretina. Because of thisinherent curvature, theimages capturing the peripheral regionsof theretina
are poorly illuminated. Likewise, images of the central regions of the retina are poorly illuminated at
the peripheries. A detailed treatment of the problem of non-uniform illumination, including solutions, is
presented in Chapter 4.

2.5.2. Variation in image appearance across patients

Each patient’s eyes are different and hence, the maximum achievable dilation varies from patient to
patient. Different degreesof dilation leadsto different levelsof illumination of theretinaacrosspatients.
Moreover, few patientshave diseaseslike the cataract which obstructsthe path of thelight intotheretina.
Such an obstruction leadsto dullness and poor illumination of the captured image even if the degree of
dilation of the pupil isadequate.
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2.5.3. Different pathological regions have similar appearance

Blood clots and regions of CNP, both appear as dull/dark regions. They differ in a very subtle fashion
and in most casesdo not differ in appearance at al. The distinction in such casesis made based on not
just the intensity values and texture, but also on the surroundings of these regions. Another example of
two different pathol ogies having same appearance are microaneurysms and small hemmerhages. They
both appear as small, excessively bright, disk like objects.

2.5.4. Dependence of the quality of the image on the time elapsed after the injection of the dye

Asmentioned earlier in Section 2.3, theinjected dyeleaks(or effuses) out through the rupturesand weak
vesselsin the retina. This leaking dye creates a bright white blot on the image. The size of the blot is
dependent on the amount of dye effused, which in-turn depends on the time elapsed since the injection
of the dye. Apart from leakage from ruptures, the dye also effuses out from the microaneurysms and
the normal vasculature. Hence, a late image (late in the sense that the image was captured after along
time after the injection of the dye) appears cloudy with bright white regions around ruptures and
weak vessels.

2.5.5. Corruption by noise

Most imaging systems are not ideal and the images obtained from them are commonly corrupted by
noise. The amount of noise added depends on the imaging technique used. In case of FFA images, the
laser camera of the HRA system adds much more noise than the optical camera of the Zeiss system.
Noise affectsthe textural appearance of the various parts of the retina and can lead to wrong diagnosis
by both computer based systemsaswell asretina experts.

2.6. Summary

A retinal image is captured through the pupil in the human eye. A raw retinal image is not sufficient to
trace the blood path and one requires an retinal angiogram image for this purpose. Angiogram images
of the retina are obtained after injecting a flourescent dye into the patients body. Though the imaging
conditions are clinically controlled, retinal angiogram images (or FFA images) suffer from many
problems. These problemsinduce defectsinto theimagesand pose various challengesfor an FFA image
analysis system. The system needs to solve these problems and incorporate analysis techniques which
areinsensitive to the induced defects. In the next chapter, we propose such aframework for FFA image
analysis, using which robust disease detection systems can be built.



Chapter 3. Framework for Retinal Angiogram
Image Analysis

3.1. Introduction

An image analysis system is typically broken down into many modules with each module processing
the image sequentially at different levels. The role and design of the modules depends on the particular
domain of interest (which in thisthesisisretinal angiogram images) and the desired output. Ideally, the
system should be designed such that the processing and analysisin each moduleisdonein aprogressive
manner, with the last module in the sequence yielding the desired information. With such a design, the
specifications and role of the modules can be crisply defined, leading to independent and focussed
design of each module. In this chapter, we propose such a modular framework for retinal angiogram
image (FFA image) analysis.

3.2. Framework

Commonly, aretinal angiogram image analysissystem aimsto extract an objective measure of theextent
and severity of aparticular disease of interest. Such systems are built to serve as diagnostic aids. They
can either be automatic systems which perform a complete diagnosis without the help of an expert, or
can be semi-automatic systemswhich have a provision to let an expert correct their results.

An analysis system will have to deal with the externa problems mentioned in Section 2.5. These
problems can be solved in three ways:

1. Theincorporated analysistechniques are designed in such way that they are insensitive
to variations caused by these problems. Thisisan ideal case which ishard to achievein
practice. However, if one can come up with such analysi stechniques, then the system can
be made completely automatic.

2.  The analysis techniques have an inbuilt parameter which deals with these problems.
Example of such a parameter isthe size of the mask in mask-based analysis techniques
which can be varied to result in the desired amount of noise rejection. A system incor-
porating such techniques should be made semi-automatic so that an expert can set the
desired values of the parameters.

10
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Figure 3.1. A block diagram of atypical retinal angiogram image analysis system.

A separate pre-processing module should be incorporated into the analysis system. This
module should solve some or all of the problems, independent of the kind of analysis
technique used. A system incorporating such a module can either be made completely

automatic or can be made semi-automatic.

In general, image analysistechniques are developed using a certain model (heuristic or analytical) for
the features of interest. An efficient analysis technique will have to be insensitive to variations in the
features, such as shape, size, etc. Adding the external variations, induced by the problems mentioned in
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Section 2.5, will further compound the problem making the design of the analysistechniquesharder. If
a system isdesigned such that the external problemsare solved in a separate module before an analysis
of the images, then the design of the analysis techniques need not take the external variations into
account. Hence, we propose such aframewaork for retinal image analysiswherein there existsa separate
pre-processing module before an analysisof theimage. The block diagram of the complete framework
isshownin Figure 3.1. Addition of a pre-processing module issame asfollowing the option 3from the
above list. Moreover, it allowsthe analysis system to incorporate options 1and 2, if possible/required.

An FFA image can be considered to have two different kinds of features namely, a) Retinal Structure
Features and b) Disease Features. Retinal Structure features refer to sub structures of the retina.
Examples of such features are optic disk, blood vessels, macula etc. Disease features are those which
occur due to the damage caused by a retinal disease. Examples of such features are regions of CNP,
microaneurysmsetc. An analysisof FFA imageswill either extract the retinal structure features, or the
disease features (or disease regions). Hence, following the pre-processing step is a structure analysis
modul e or a disease analysismodule (see Figure 3.1). Optionally, adisease analysismodul e can use the
information extracted by the structure analysismodule. Thisisindicated by an arrow from the structure
analysismodul e to the disease analysismodulein Figure 3.1. I deally, the di sease analysismodul e shoul d
aim to detect all candidate disease regions (in the rest of the thesis, the phrases ‘ disease features and
‘disease regions' will be used interchangeably).

Animage analysistechniqueisbased on an analytic property of the feature of interest. It generally does
not make use of higher level knowledge. Hence, the features detected after an analysis step need not all
bethedesired features. Theanaysisstep should befollowed by another step which validatesthe detected
features. Specifically, this step should classify the detected featuresinto two sets, true positives or false
positives. Thisclassification step isindicated asthe last step in Figure 3.1.

In the following subsections, we discuss few of the possible contituents of the various modules in
context of thework presented in thisthesis.

3.2.1. Pre-processing module

The pre-processing module typically consists of operations such a noise removal, illumination
correction etc. In the case of Zeissimages, there existsanother important pre-processing operation. The
retinal regions in these images are captured within a circular aperture. In order to confine operations
tothiscircular area, the first processing step isto calculate the center and radius of thisaperture. In this
thesis, we present two different pre-processing operations. 1) Extraction of the center and radius of the
circular aperture in Zeiss images (addressed in Appendix B); 2) An Illumination correction technique
for any FFA image (addressed in Chapter 4).
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3.2.2. Retinal structure and disease analysis modules

Retinal structuresof interest in an FFA image are the optic disk, blood vessels, maculaetc. Inthisthesis,
detection of blood vesselsis addressed in Chapter 5. Diseased regions of interest in an FFA image are
regionsof CNP, microaneurysmsetc. In thisthesis, detection of microaneurysmsisaddressed in Chapter
6, and detection of regionsof CNP isaddressed in Chapter 7.

3.2.3. Classification module

The regions extracted by the disease analysis module are candidate regions affected by a particular
disease. As mentioned earlier, these regions need not all be true diseased regions. The classification
modul e classifiesthese regionsinto true diseased regionsand hon-diseased regions. Thetechniquesused
in this module are typically formulated using principles from fields like pattern recognition, machine
learning, and artificial intelligence. The work presented in this thesis pertains only to image analysis
techniques. Classification of candidate regionsisbeyond the scope of thisthesis.

3.3. Building an FFA analysis system

Based on the various needs of an FFA analysis system, a modular framework was proposed in the
previous section. Often, a system need not make use of all the modules. Depending on the formulation
of the analysistechniquesand the desired output, one can opt not to use one or more of the modulesin
Figure 3.1. Onthe other hand, every system will haveto incorporate a pre-processing moduleto perform
illumination correction or noise filtering. In this section, we present few examples of construction of
FFA analysis systems using the proposed framework to illustrate when and how one would use the
different modules.

3.3.1. System for detection of microaneurysms

Asmentioned in Section 2.3, microaneurysmsappear astiny disk like objectsin an FFA image. Hence,
locating disk like objects will detect all candidate microaneurysms in an FFA image. An analysis
technique which detects disks will form a part of the disease analysis module. However, the detected
disks will have to be validated as true microaneurysms and false microaneurysms. This validation has
to be done by a classification module. These stepsdo not require the structural information of theretina,
and hence, a structural analysismoduleisnot required. Only three modul es: the pre-processing module,
disease analysis module and the classification module will form the complete analysis system.

3.3.2. System for detection of regions of CNP

A CNP detection system should first identify the candidate regions of CNP. Thisis a function of the
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disease analysismodule. Next, these candidate regions have to be validated by the classification module
as true diseased regions and false diseased regions. The classification can be done using the guiding
principlethat aregion of CNP hasto be bounded by prominent vasculature on at least one side. Hence,
the classification module can make use of the structural information of the retina, which in thiscaseis
thelocation of blood vessels. Therefore, the analysis system hasto incorporate al the four blocksof the
proposed framework.



Chapter 4. Hllumination Correction

4.1. Introduction

Most retinal images suffer from non-uniform illumination despite the controlled conditions under
which imaging takes place. Some of the reasonsfor thiswere briefly mentioned in Section 2.5. They are
repeated here for convenience.

a Theretinais a curved surface and hence all the retinal regions cannot be illuminated
uniformly. The pupil through which theretinaisilluminated isat the center of the eyeball
and hence, the amount of light illuminating the peripheral regions of the retinais much
less compared to the the central regions.

b. Theimaging isdone with the patient’s pupil dilated and the degree of dilation is highly
variable acrosspatients. A wider pupil will allow morelight to enter the patient’seyeand
hence illuminate the retina better.

c. The bright flash-light used to illuminate the retina makes the patient move his’her eye
away from the veiw of the camerainvoluntarily.

d. Presenceof other diseasessuch ascataract can block the light from reaching the retina.

Most computer based image analysistechniques require tuning of parametersto suit a particular appli-
cation and feature of interest. If the image appearance/propertiesvary widely across different images,
thetuning of these parameterswill haveto be donefor every image leading to alossin robustness of the
analysis system. Correcting the effects of non-uniform illumination before performing an analysis will
aleviate the problem of parameter tuning and increase the robustness of the analysissystem. Similarly,
removing the effectsof non-uniform illumination can also improve disease diagnosisby human experts.
Hence, correcting the effects of non-uniform illumination isimportant for the analysis of FFA images
by both human experts aswell as computers.

The desirable characteristicsfor an illumination correction (IC) technique are asfollows.

1. ICisalow-level technigue and should not depend on high-level information such as
the knowledge of the location of the sub-structures of the retina. Thisis because, the
extraction of sub-structuresisgenerally a higher level processing step and isinfluenced

15
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by the variation in illumination.
2. 1C should be performed without any manual intervention for parameter tuning.

3. ICshould not affect the fidelity of theimage asthiscan adversely influence diagnosisby
human experts.

In thischapter, we present an | C technigue which isbased on modelling the illumination asamultiplica-
tive effect on the original image and hasthe desired characteristicslisted above. Before presenting this
technique, we shall present a brief review of common techniquesfor IC.

4.2. Background

I magessuffering from non-uniform illumination have regionswhich are poorly illuminated having adull
appearance. Contrast stretching [ 10] techniquesare commonly used to remove the dullnessfrom images.
However, to remove the effect of non-uniform illumination, a contrast stretching technique cannot be
applied to the entire image as the histogram of such images already spansthe entire range of intensity
values. A stretchin contrast would brighten the regionshaving good illumination and darken the regions
with poor illumination, degrading the image further. To overcome this problem, the effect of non-uni-
form illumination is removed using adaptive contrast stretching techniques [10] [36]. An example of
such atechniqueisadaptive histogram equalisation [10]. It isamoving window operation which replaces
the center pixel valuewith the correspondingintensity after ahistogram equalisation applied tothepixels
within thewindow. Using awindow of the optimum size, one can use thistechniqueto removethe effect
of non-uniform illumination. However, the resulting image hasan artificial appearancewitha‘halo’ arti-
fact inroduced around large objects. Hence, an adaptive contrast stretching techniqueisunsuitablewhen
the target image isto be used for diagnostic purposes. An example of applying histogram equalisation
and adaptive histogram equalisation to a sampleimageisshown in figure 4.1.

Another popular technique to remove the effect of non-uniform illumination is homomorphic filtering
[10]. Here, the effect of illumination ismodelled asa multiplicative degradation:

I =1,xL 4.2.1)

wherel jistheimagewithout illumination degradation, L isthe degradation function, and | isthe degrad-
ed image. To convert the multiplicative effect into an additive effect, logarithm is applied on both sides
of the above equation. Assuming L to be a slowing varying phenomenon, its effect is removed by su-
pressing the low frequency content in the obtained |og-transformed image. Theimage with illumination
variation supressed isthen obained by taking an anti-logarithm. Thistechniqueistypically implemented
in the frequency domain. However, in the case of Zeissimages, the black boundariesoutsidethe circular
aperture will corrupt the spectral information. In order to avoid this, homomorphic filtering needsto be
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implemented in the spatial-domain.

An dternative approach to estimate the slowly varying function L isto blur the corrupted image. The
blurring operation should blur the corrupted image so as to retain only the illumination variation. Ihe
corrected image can be obtained by dividing the corrupted image with this estimate. This obtained
result iscalled the * Self-Quotient Image’ and has been proposed as a robust technique for illumination
correction of faceimages [36] [32] [33].

Though homomorphic filtering and self-quotient image remove the effect of non-uniform illumination,
thereisno control onthelevel of illumination (or the brightness) in the resultingimage. They commonly
have to be followed by brightness and contrast operations in order to achieve an optimum level of
illumination and contrast [36]. Moreover, they affect the fidelity of the original image as they reduce
theillumination of large and bright objects. Thisis because, alarge bright object will be considered as
aregion of excessiveillumination and will be corrected so asto reduce the illumination. In the case of
FFA images, the optic-disc and hemmerhages would be the compromised structures.

Successfull illumination correction of FFA imageshasbeen proposed in [5] where a parametric bi-cubic
model for the illumination function is proposed. The Parameters are estimated using 25 sample points
on the FFA image. These points cannot lie on regions of the retina which are inherently dark (like the
macula), or are inherently bright (like the blood vessels). To avoid this, the IC operation is preceded
by detection of macula and blood vessels. Another technique which uses the vasculature in retinal
imagesto perform an |C has been proposed in [13]. The assumption here isthat the illumination along
the prominant vasculature should ideally be uniform throughout the image. However, both the above
techniques ([5] and [13]) use the locations of the vessels and/or macula, which is undesirable as stated
in Section4.1.

The effect of illumination can alternatively be modeled as an additive degradation asfollows.

l =1 +L (4.2.2)

Here again, L can be estimated in the similar fashion, asin the case of self-quotient image, by blurring
the corrupted image. The corrected image can then be obtained by subtracting the blurred image from
the original image (Theintensity values of obtained result will have to be rescaled to span the standard
range of integer values from 0 to 255). However, the resulting image generally suffers from poor
brightness and contrast, asin the case of results obtained with self quotient image based technique and
homomorphic filtering.

In the next section, we present an improved technique for 1C of retinal angiogram images which is
based on the self-quotient image technique. It does not involve any parameter setting and has al the
charateristicsof anideal |C techniquelisted in Section 4.1.
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(d)

Figure 4.1. Examples of Histogram Equalisation and Homomorphic Filtering. (a) Original Image (b) After Histogram
Equalisation (c) After Adaptive Histogram Equalisation with a25 x 25 moving window (d) After Homomorphic Filtering

4.3. Modified quotient-image based illumination correction

Thetechnique we propose assumesthat the illumination degradation can be modeled asa multiplicative
effect (equation 4.2.1). The illumination variation is estimated, as in the case of self-quotient image
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based technique, by blurring the corrupted image. However, the degradation function is estimated in a
slightly different fashion so asto achieveideal illumination and optimum contrast.

Let | denote the corrupted-image function, I, the blurred-image function, 1, the corrected image
function, and L the degradation function. Let the location of a pixel be (x,y) and |, be theideal desired
level of illumination. The degradation function is a measure of the degree by which the illumination
level at pixel location islower than theideal illumination level. Hence, it is estimated asfollows.

SCY) it 1 y) < I,
Ly) = { o (43.1)

1 if 1,(x,y) = |,

Using the this estimate, the corrected intensity value of apixel at (X, y) isobtained as:

I(x,y)><I )I(O if 1,(x,y) < |
Ly, Y) = s(X,Y) (4.32)

1(X,y) if 1,(x,y) = |,

As can be observed from equation 4.3.2, a pixel where the estimated illumination is greater than the
ideal illumination value is not corrected. This ensures that the regions which are inherently bright,
like the optic-disk, hemmerhages, etc., are not wrongly classified as regions of excessive illumination

and corrected accordingly. When the estimated illumination value is less than the ideal illumination
IO
IS(Xa y)

illumination value. Moreover, contrast at such a pixel is‘improved’ by afactor of

value, scaling by

ensuresthat regionswith illumination lessthan the | | are elevated to the ideal

|
9 Hence, the

SX7

propsed |C technique removes the need for subsequent brightness and contrast operations, as required
in the case of quotient-image based technique and homomorphic filtering.

4.4. Results and discussion

The proposed technique wasimplemented using a value of 120 for | (see equations4.3.1and 4.3.2). It
was sel ected based on the observation of thewell illuminated regions over a number of images. Owing
to the large size of the images, the blurring operation was performed on a subsampled version of the
original image to achieve faster processing. The images were reduced to one-fourth their dimensions
and blurred using a Gaussian-mask of size 30 x 30. The resulting image was upsampled, onelevel at a
time, while blurring the image using a Gaussian mask of size5 x 5 at each upsampled level.

The results of applying the self-quotient image technique, and the proposed technique using the above
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(hj

abellaliaH

Figure 4.2. Resultsof applying the self-quotient imagetechniqueand the proposed technique. (8) Anoriginal Zeiss image. (b)
Anoriginal HRA image. (c) Zeissimage corrected by self-quotient imagetechnique. (d) HRA image corrected by self-quotient
image technique. (€) Zeissimage corrected by the proposed technique. (f) HRA image corrected by the proposed technique.

mentioned parameters, are shown in Figure 4.2. Though the self-quotient image technique removed the
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variationinillumination, theimageshave adull appearance. Moreover, theintensity of the hemmerhage
in the HRA image has been reduced by the self-quotient image technique. Both these drawbacks are
absent in the results obtained using the proposed technique.

Thevaluefor | and the sizesof the masksfor blurring theimage are fixed for all imagesobtained using
aparticular system (in our implementation, we have used the same set of parametersfor Zeissaswell
as HRA images). They need not be tuned for every image, and hence, the technique does not need any
manual intervention for successfull IC of FFA images. Moreover, it does not use the location of other
partsof theretinaand doesnot affect thefidelity of theimage. Hence, we can concludethat the proposed
technique satisfiesall the characteristicsof anideal IC techniquelisted in Section 4.1.

Though the proposed technigue and discussion in this chapter pertained only to FFA images, the
techniquescan also be applied to illumination correction of colour retinal images. For this, the | C should
be performed on the green channel of the colour images, and the corrections should be carried over to
the red channel. We do not discussthe IC of colour retinal imagesin detail asit isbeyond the scope of
thisthesis.
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5.1. Introduction

Every part of the human body requires a healthy supply of blood for proper functioning. Blood is the
transport system by which oxygen and nutrients reach the body’s cells, and waste materials are carried
away. Lungs purify the blood by removing the waste materials and through re-oxygenation. Pure and
oxygenated blood ispumped to various partsof thebody by the heart. At one end, blood |eavesthe heart
through large vessels called the arteries, and at the other end, it reaches body cells through a network
of microscopic vessels called the capillaries. Impure blood is carried back to the heart by another
set of vessels called the veins. The heart, lungs, arteries, veins and the capillaries, together with blood
constitute the circulatory system of the human body. The arrangement of the blood vessels - arteries,
veins and capillaries, is called vasculature. In this chapter, we focus our attention on the detection of
prominant vasculature from FFA images. We shall usetheterm ‘ Blood Vessels' to refer to the prominent
vasculature visiblein an FFA image.

In general, the health of the retinal vasculature provides a vital cue to the patient’s health. Diseases of
theretina, likethe DR, affect the structure and functionality of the blood vesselsin theretina. Thedegree
of change in the structure and functionality directly indicates the extent of the disease. Typically, the
vessel calibre[26], tortuosity [31] and * beadyness [29] areindicatorsof the extent of the damage caused
by any particular disease.

Information about the blood vesselsisalso of usefor imageanalysis. It can be hypothesized that regions
of CNP (see Section 1.1 and Chapter 7) are bounded on at least one ‘side’ by prominant vasculature.
Hence, an image analysis system designed to detect CNP can use the location of the vasculature to
validate the detected regions. Blood vessel s can a so be used in constructing of retinal montagesasthey
serve asefficient landmarksfor image matching [22] [8]. Hence, detection of blood vesselsisimportant
for both disease diagnosisaswell ascomputer aided image analysisof FFAS.

5.2. Background and related work

When an FFA image is visualised as a surface in 3D space, blood vessels form topographical ridges.
Hence, the problem of blood vessel detection can be formulated as an image analysis problem of ridge
detection. Most techniquesin literature use such aformulation to detect blood vessel sfrom FFA images.
One of the first attempts to detect blood vessels assumes that the ridges (or the blood vessels) have a

22
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Gaussian profile, and detectsthem using matched filters[30]. The matched filtering is performed using
1D Gaussian templates of |length fifteen pixels along six different orientations (twelve different direc-
tions). The maximum response from these six filtersisthreshol ded to obtain the blood vessels. Hoover
et al. [24] modified thistechnique, using an improved thresholding scheme, to increasethe detection rate.
However, both these techniques detect the entire thickness of the vesselsand not the medial lines. The
techniques which detect the entire thickness will have be followed by a another operation to locate the
medial lines.

Medial lines are more useful than the entire thickness as they assign a unique location, and define a
unique orientation, of the blood vessels. Can et al. [26] proposed an automated vessel tracing algorithm
to detect the media lines of blood vessels. The medial lines are traced by traversing along the local
orientation. Initial seeds for the tracing procedure are obtained by locating intensity maxima along
the horizontal and vertical directions. The orientation of the vessel at a given seed pixel is determined
using eight different oriented 1D Gaussian templates, similar to the procedure in [30]. Though this
technique can detect awide range of ridge profiles, the template matching operationsfor eight different
orientations make it computationally expensive.

Apart from the above techniques, the general problem of ridge detection has been approached in the
past using geometric properties of image surfaces[12] [19] [27] [9] [18]. To note specifically, curvature
of the ‘image surface’ has been used to detect ridge like features from digital images. Jana and Klein
[15] use such an approach, together with morphological techniques, to detect blood vesselsin retinal
images. Maintz et al. [19], Eberly et al.[9], and Lopez et al. [18] use examplesof different ridge profiles
toillustrate the superiority of the curvature based techniquesfor ridge detection over other techniques.
The complete scope of these techniques can be determined theoretically and is presented in Appendix
D. Because of their superiority, in this chapter we discuss curvature based ridge detection techniques
in detail and present a novel technique for the estimation of surface curvature. An algorithm based
on this estimate, for the detection of blood vessels at a single scale as well as at multiple scales is
a so devel oped.

5.3. Ridge detection from curvature of the image surface.

Curvature based ridge detection techniques are based on the fact that medial lines of ridgesare charac-
terised by high magnitudesof curvature along thedirection perpendicular totheridge. A techniqueusing
the curvature information will require an efficient algorithm to estimate the surface curvature. Monga
et al. [21] proposed a computational algorithm based on the differential geomtery of image surfacesto
detect ridges. Here, medial linesof ridgesarelocated asthe pointsof directional maximaof themaximum
principle curvature (MPC) of the image surface [25]. Calculation of MPC requires techniques which
estimate the first and second directional derivatives of the image function and is a computationally an
expensive operation. I n thissection, we propose a novel technique for curvature estimation and develop
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an algorithm for ridge detection using this estimate. Computationally, thistechniqueis equivalent to the
derivative estimation step of theMongaet al. algorithm. However, it doesnot involve any further calcula-
tions, unlike in the case of Mongaet al.’s algorithm where one hasto cal culate MPC using the estimated
derivatives. Thismakes our agorithm computationally more efficient than the Monga et al. algorithm.

5.3.1. Surface Tangent Derivative: A novel ppproach to curvature estimation

The curvature at some point on the image surface (see Appendix A) isa measure of the ‘bend’ in the
surface along a particular direction. Because of this direction specific nature of curvature, one can
estimate the curvature along a particular direction by estimating the curvature of the 1D profile of the
image intensity valuesalong that direction. In this section, we present a technique for estimation of the
surface curvature of 2D digital imagesusing such an approach. Before presenting the technique, we shall
first review the definition for curvature of a 1D function.

Let y =f(x) bealD function. Let the tangent at a point P : x on thisfunction make an angle 6 with
the x-axisasshown in Figure 5.1. If dl isthe differential arc length at the point P, then the curvature of
thefunction f(x) at thispoint isdefined as:

de
d
K(X) = d—? - _do X (5.3.1)
di ydx® + dy? \/ (dy )2
1+ =2
dx
Since 0 isthe angle made by the tangent with the x-axis, it can be computed as:
dy
— tan- ! 22
6 = tan (dx) (5.3.2
Hence, % can be computed as
dy
40 _ d | g )] - 9
o -~ dx |:tan (dx):| = (5.3.3)

Substituting the above expression in equation 5.3.1, we get:
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(5.3.4)

The feature specificity of the curvature measure can be understood by considering the properties of
the derivatives of the profile function at the media points. According to Haralick [12], media lines
of ridgesareloci of pointswhere the second directional-derivative of the image function is a negative
minimum (which in other wordsisto say a magnitude maximum with a negative value). Moreover, the
first derivative of the profile function vanishes at the medial points. These two properties are captured
simultaneously by the curvature expression in equation 5.3.4. At amedial point, the numerator of this
expression attains a magnitude maximum while the denominator attains a magnitude minimum. Hence,
the curvature measure will peak sharply at the medial pointsof ridge profiles.

The expression for ?j—e in equation 5.3.3 will also peak sharply at the medial points of ridge profiles

X
for the same reasons as mentioned above. However, because of the lower power of the denominator in

this expression, the feature specificity of this measure will be slightly lower as compared to that of the
curvature measure. However, for most image processing/analysisapplications, an accurate eval uation of
the curvature is not neccessary and an estimate which directly followsthe correct value of curvatureis
sufficient. To detect ridgesfor example, it isenough if an estimate is approximately as feature specific
asthe curvature measure. Hence, the technique we propose cal cul atesthe val ue of de asan estimate of

dx
the curvature measure and not ?T? .Aswe shall seelater in thissection, thisexpression lendsitself for a

simple and a computationally efficient implementation.
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% is the derivative of the angle made by a tangent with the x-axis. In the case of 2D images, this

corresponds to a derivative of the angle made by a surface tangent line with the base-plane, in some
direction. Since our estimate isnot the true curvature, and sinceit isthe derivative of the angle made by
atangent, we call it asthe Surface Tangent Derivative (STD). At any given point on the surface, an
STD measure can be obtained for every possible direction, measuring the bend in the surface along that
particular direction. However, for a function defined over a discrete grid (asisthe case with 2D digital
images), it ispossible to evaluate the STD measure only along a finite number of directions. In general,
it issufficient if the a curvature measure is obtained for the four different directions corresponding to
the 8 neighbours of a pixel. These four directionsare specified intheset Q = { - 45°,0°,45°,90" | (see
equation C.1in Appendix C).

The proposed scheme calculates the STD measure using mask operations on the image intensities.
Incorporating the mask size and direction information into the notation, the STD measure at a pixel
location (n, m), along a direction o, estimated using a mask of sizen x n, is denoted by Ig(n, m) in the
rest of thisthesis.

Using equation 5.3.3, the angle made by the surface tangent with the base-plane at a pixel (n, m), dong
thedirection o in the base-plane, is calcul ated as:

¥(n,m) = tan™! [g(n, m)] (5.3.5)

where %5 (n, m) isthefirst directional-derivative (gradient) of the image function along the direction o
in the base-plane. Thisis calculated using the generalised Sobel masks (Appendix C) asfollows:

W W

2 _2{!\54(],i)|(n+j,m+i)}
G(n,m) = mowEow - (5.3.6)
N

whereN x N isthe size of the generalised Sobel mask, w = % and o, isthe sum of the positive

N
elements of the mask IXI The STD value is nothing but the derivative of the angle \g which can be
calculated asfollows:

k k 2k+1 . i i

\ > {Mu,n)wnﬂ,mﬂ)}
i=—k j=—k L © o

K(n,m) =

(5.3.7)
Ook+1

The directional-derivativeisequation 5.3.7 iscalculated using amask of size (2k + 1) x (2k + 1). Since
the derivative in equation 5.3.6 can be performed using a mask of variable length, once can keep the
value of k fixed and achieve the desired amount noise filtering by choosing an appropriate value for N.
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Hence, the overall operation to calculate STD can be considered to involve only one parameter N. For
ease of reference, thisparameter iscalled asthe ‘mask size' for calculating STD.

Next we show how STD can be used to perform ridge detection.

5.3.2. Ridge detection using STD

The curvature measure at aridge pixel isamaximum in somedirection. Hence, ridgescan be detected by
locating pixel swherethe magnitude of STD isamaximum aong somedirection. Themagnitudeof STD
at aridge pixel isthe strength or measure of ridge-nessat that pixel. Local magnitude maximaof STD
can aso occur at locationsof valley pixels. However, aridgeischaracterised by negative valuesof STD,
whileavalley ischaracterised by positive valuesof STD. The complete algorithm for ridge detectionis
asfollows.

Ridge Detection Algorithm

N
Let 1(n, m) be the image function. Calculate the STD for four different directions as K(n, m),
a € Q (equation C.1) with a mask of size N as in equation 5.3.6. Let t, be the threshold for
ridge strength. For every pixel location (n, m), do the following:
N
K
o

1. Evaluate | Ko ‘ = max{ oe Q}and the corresponding orientation o, .

N
2. |If ‘Kmax | >t and OcIgax(n,m) < 0,then:

i. Check if | K o | is greater than fé of the neighbouring pixels
corresponding to the direction o, . If yes,ithen mark the pixel (n, m) as
a ridge pixel. Else, do nothing.
For example, if o, , = — 45, then check if

amax

N
|Kmax| > | KM-1,m+1)
and

N
|Kmax| > Kh+1,m-1)

amax

If yes,then mark the pixel (n, m) as a ridge pixel. Else, do nothing.

Else: Do nothing.
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By selecting theright value of the threshold t, , one can put alower limit on the strength of the detected
ridges. Thisthreshold also ensuresthat noise does not wrongly classify non-ridge pixelsasridge pixels.
In order to obtain better continuity in the detected ridge lines, one can use two different threshold values
and perform hysteresis thresholding [3]. For ease of reference, the mask width N, used to calculate the
STD values, will be called asmask size of the blood vessel detection algorithm.

5.3.3. Multiscale ridge detection

In practice, it can be observed that blood vessels occur with varying cross-sectional widths. Hence,
applying the algorithm proposed in the previous section with a fixed mask size will be unable to detect
all ridges (of different widths). In order to detect vesselswith different widths, the algorithm should be
applied repeatedly, using masks of different sizes, and the obtained results should be collated to obtain
the final result. In this section, we present an efficient scheme for such a collation operation.

Thecollation schemeisbased on thefact that in an FFA image, thin vessel sbranch out of thicker vessels.
When the ridge detection algorithm is applied with a small mask, these vessels are detected along with
many other noisy structures. However, when alarger mask is used to detect ridges, noise is suppressed
and only thick vessels are detected. Using these observations, the collation scheme can be formulated
asfollows.

Multiscale Collation Scheme

Let A, denote the set of ridge pixels detected using a mask of size n x n.Let A be the complete
set of ridge pixels after collation of results obtained using different mask sizes. Let A, an,
1

. .,knk be the ridge pixels obtained with different mask sizessuchthat n, < n, < ... <n,.
Then, A is obtained as follows.

1. A=A

Mg
2. Fori = k- 1to1,do the following.

I. A = Auv,wherevisthe set of pixelsin A, 8-connected to at least one pixel in
A.

ii. Repeat step (i) until no further pixel is added to A.
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The requirement for multiscale detection of ridgesisindependent of underlying single scale ridge de-
tection scheme. Ridgeswill have to be detected at multiple scalesif oneisdesirousof detecting vessels
of all possible cross-sectional widths. The above technique collates medial lines of ridges obtained at
different scalesand doesnot make use of the curvature measure. Hence, it can a so be applied to results
obtained using other techniques of ridge detection which do not depend on the curvature measure.

5.4. Results and discussion

The proposed ridge detection algorithm and collation scheme were applied on a test image using the
STD valuescalculated along four directions specified in the set Q = { — 45,07, 45", 9()"} (seeequation
C.1). Thevalue of k in equation 5.3.7 wasfixed at 1. The ridge detection was performed using masks
of sizesvarying from 5 x 5to 11 x 11. The obtained results were collated using the proposed collation
scheme. The results with masksof sizes5 x 5 and 11 x 11, and the result after collation are shown in
Figures 5.2 to 5.5. These figures illustrate the effect of the mask size on the quality of the results. For
instance, when ridges are detected using a mask of size 5 x 5, many noisy structures are also detected
aong with the blood vessels (Figure 5.3). On the other hand, when ridges are detected using a mask of
size 11 x 11, the thin ridges/blood vesselsare not detected (Figure 5.4). However, the problems of noise
and missing out thin vesselsis solved by using the multiscale collation scheme asseenin Figure 5.5.

Though the scheme proposed in Section 5.3.3 can perform efficient collation, it misses out few of the
thin blood vessels. This happens because, the collation scheme only accumulatesthin vesselswhich are
connected to the vessels detected using the largest mask. Hence, thin vessels for which the branching
point from thicker vesselsis not present in the image, are not accumulated. This can be observed in
Figure5.5.

The proposed ridge detection algorithm requires calculation of STD aong four directions. Calculation
of STD aong adirection in turn involves of calculation of two directional derivatives. Hence, calcula
tion of STD iscomputationally equivalent to calculation of a second directional-derivative. Monga et
al’’s algorithm also requires cal cul ation of second directional-derivatives[21]. However, their algorithm
requiresa further calculation of the maximum principle curvature using these directional-derivates. As
the proposed ridge detection algorithm does not involve any cal culations beyond the calculation of the
STD, it iscomputationally superior to the Mongaet al. algorithm.

The presentation in this chapter pertained to detection of blood vesselsfrom FFA images. Since blood
vessels can be modeled as topographic ridges, ridge detection algorithms was formulated. By making
suitable changes, the scope of these algorithms can be extended to detection of valleys/trenchesfrom
digital images.
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Figure 5.2. An FFA test image.

5.5. Summary

Blood vessel detectionisafunction of theretinal struture analysismoduleof theframework proposedin
Chapter 3. In thischapter, detection of blood vesselsfrom FFA imageswasaddressed by formulating the
problem asa problem of ridge detection from 2D digital images. Because of their superiority over other
techniques, curvature based ridge detection techniques were used to detect blood vessels. Techniques
using the curvature measure will require an estimate of the curvaturevalue. A novel curvature estimation
technique was proposed, using which aridge detection detection al gorithm was devel oped. Detection of
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Figure 5.3. Result of detecting ridgesin the test image using amask of size5 x 5.

ridgesat a single scale cannot detect blood vesselsof all cross-sectional widths. Hence, anovel scheme
was proposed, using which vessels detected at different scales can be collated efficiently.
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Figure 5.4. Result of detecting ridgesin the test image using amask of size 11 x 11.
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Figure 5.5. Result of detecting ridgesin the test image using masks of sizesfrom 5 x 5to 11 x 11 and collating the results
using the proposed scheme.



Chapter 6. Detection of Microaneurysms

6.1. Introduction

Most diseases of theretina alter the structure and the functionality of the vasculature in the retina. One
such disease, the Diabetic Retinopathy (DR), leads to the occurance of capillary non-perfusion (CNP)
and neo-vascularisation. CNP is a disease due to which the capillary network in parts of the retina
‘drops out’ and stops supplying blood. Neo-vascularisation on the other hand, is the growth of new
blood vessels branching out of the existing vessels. The early ‘ sprouts’ of these new vessels are called
microaneurysms (MA). They are bulb-like microscopic structuresoccuring assmall and bright circular
disksin FFA images. A microscopic image of MAs, and an FFA image with MAsare shown in Figure
6.1.

()

Figure 6.1. (8) A microscopic image of MAs. The larger of the MAs is marked by the letter M, while the smaller oneis
indicated by an arrow. (b) An FFA image with MAs. Few of the MAsare indicated by an arrow.

The number of MAsin theretinais considered to be an indicator of the extent of damage done by DR.
Owing to the large size of FFA images, and to the huge number of MAs occuring in atypical patient
with DR, it isnot possible for a human expert to get an accurate and complete count of MAs. However,
thisproblem can be solved by using computer aided analysisof FFA images. In this chapter, we present
such an analysistechnique for detection of MAsfrom FFA images. Detection of MAsisafunction of
the disease analysismodul e of the framework proposed in Chapter 3.

34
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6.2. Background

Most MA detection techniques in literature start by performing pre-processing and retina structure
analysis operations. Pre-processing is either used for illumination correction, or for feature (which are
MAsfor our current discussion) enhancement. Retinal structure analysisis commonly used in an MA
detection system for detection and supression of blood vesselsin order to avoid misclassification of a
vessel pixel asan MA pixel.

Regions of MAs exhibit many properties. A general procedure to detect MAs makes use of these
propertiesin two steps as shown in Figure 6.2. These steps are:

1. Candidateregionsare detected using one of the propertiesof MAs.

2. The candidate regions are then classified as MA or non-MA using another set of
propertiesof MAs.

With respest to the framework proposed in Chapter 3, step 1is a function performed by the disease
analysismodule, and step 2 performed by classification module.

Locations of
FFAImMmane I —— Classification of Microaneurysms
7 Candidate regions Candidate regions z
STEF 1 STEP 2

Figure 6.2. Thetwo stage procedure to detect microaneurysms

Spencer et al.[28] and Creeet al.[4] usethefact that theintensity profileof MAscan be modeled asa2D
Gaussian function to detect the candidate M As. Accordingly, amatched filtering operation is performed
on an FFA image using a Gaussian template. Thefiltered imageisthresholded to obtain al the candidate
MA regions. Mendoncaet al.[20] detect the candidate MA pixelsby locating thelocal intensity maxima.
The candidate M A regionsare then obtained by aregion growing operation at theselocations. Theseare
classified using measures such asthe area, perimeter, aspect ratio, circularity, gray value statistics, etc.,
of the candidate regions.

Azeem et al. [2], and Hafeez and Azeem [11] use a different approach to detect candidate MAs. They
first detect the edgesin FFA imagesusing a Canny [3] edge detector. Then, the edgesof blood vesselsare
rejected using the length of the edge asa constraint. The gradientsal ong the remaining edgesare further
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thresholded to retain only the strong edges. Since MAsare circular disk-like structures, Azeem et al.[2]
usethe circular Hough transform to classify the obtained strong edges. To avoid the high computational
cost involved in the computation of the Hough transform, Hafeez and Azeem used measures like the
aspect ratio, perimeter, total energy, mean energy etc., for similar classification [11].

In the next section, we present a novel technique for detection of MAsas part of thefirst block of the
Figure 6.2. This technigue has a strong theoretical grounding unlike the other techniquesin literature
which arebased on heuristics. A classification of the detected candidate MAsisnot presented. However,
any technique from one of the above references should serve asa good classifier.

6.3. Detection of microaneurysms from curvature of the image surface

When an FFA imageisvisualised as a surfacein 3D space, MAsform hill like topographical features.
Hence, a hill detection algorithm can also detect MAs. In this Section, we present a hill detection
agorithm which uses curvature of the image surface to detect MAs (details of image surface can be
found in Appendix A and Section 5.3). A typical cross-sectional profileof ahill likefeature along some
direction, is shown in Figure 6.3. The medial point of such a profileisaso called asa*hill point’ or a
“hill pixel’. In Chapter 5, we have seen that medial linesof blood vesselsare characterised by maximum
curvature along a direction perpendicular to the orientation of vessel. Hill points are characterised by
maximum curvature along all directions.

Hill Pixel

Figure 6.3. Typical cross-sectional profile of ahill like feature.

The algorithm we present detects local maxima of the curvature estimate STD, presented in Section
N

5.3.1. We shall use the same notation I§(n, m) to denote the STD measure at apixel (n, m), along the di-

rection o, calculated using a Sobel mask of sizeN x N (see Appendix C and Section 5.3.1for details).

The hill detection algorithm isasfollows.
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Hill Detection Algorithm

Let I (n, m) be the image function. Calculate the STD for the four different orientations
o € Q (equation C.1) as Iz((n, m) with a mask of size N using equation 5.3.7.Let t, > 0 be
the threshold for the curvature strength at the hill pixel. For every pixel location (n, m), do
the following:

1. Initialise a Boolean variable isHill = true.

2. Foreach a € Q,do the following while updating the variable isHill accordingly.

N N
i. Check if I§(n, m) is greater in magnitude than the I§ values of its two neigh-
bours along the direction o, and greater in magnitude than t, . If yes,do noth-
ing. If no, then update the value of the variable isHill as isHill =false.

3. If isHill = true, then mark the pixel (n,m) as a hill pixel. Else, do nothing.

The above algorithm uses a threshold t, for the strength of the *hillness’ of a pixel so that the hills
detected have a certain minimum strength. This helpsin filtering out noise pixels which are otherwise
proneto detection ashill pixels. For ease of reference, thewidth N of the mask used for calculating the
STD valueswill be called asthe mask size of the MA detection agorithm.

6.4. Results and discussion

Though MAsare small structures, they can occur in varioussizes. In order to detect MAsof all sizes, one
hasto perform MA detection at different scalesand combinethe resultsobtained at each scale. However,
the collation of results from different scales is a simple accumulation task and does not require any
special care/scheme asin the case of detection of blood vessels (see Chapter 5). Detection at different
scal es, using the algorithm presented in Section 6.3, can be done by using masksof different sizes. Most
FFA images are corrupted by noise. Hence, a mild noise filtering of the images may need to be done
before applying the MA detection algorithm.

In the implementation of the proposed algorithm athreshold value of t, = 0.95r wasused. Thisvalue
is the minimum allowed change in the surface tangent angle at a medial point. The STD values were
calculated using a fixed value of 1for the variable k in equation 5.3.7. The initial noise filtering was
doneusing a Gaussian filter with mask size 3 x 3 and astandard deviation 2. The original image and the
corresponding filtered image are shown in Figures 6.4 and 6.5, respectively. The resultsof applying the
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MA detection algorithm with mask sizes5 x 5 and 9 x 9 are shown in Figures 6.6 and 6.7, respectively
(the detected MAs are marked by a cross). As expected, the detection algorithm missesthe larger MAs
in the image when a5 x 5 mask is used. On the other hand, when the detection algorithm is applied
with a9 x 9 mask, only the large MAsin the image are detected. Hence, to overcome this problem, one
hasto collate the results obtained at multiple scales. This can be seen in the collated result, obtained by
collating the resultsof MA detection with masksof sizesfrom 5 x 5t09 x 9, in Figure 6.8.

The proposed algorithm was applied on 62 HRA images and 20 Zeiss images and was found to yield
good results. Because of the high number of MAsin a given image, the obtained resultswere validated
visually by retina experts. Hence, we can conclude that the proposed algorithm is a good techngiue
for detection of candidate MAs. However, as can be seen in Figure 6.6, there are a few vessel pixels
which arewrongly classified as MA pixels. Hence, the algorithm hasto be followed by a classification
algorithm to weed out the false detections.

6.5. Summary

Microaneurysmsare early sproutsof new blood vesselsintheretinaand occur astiny disk like structures
in an FFA image. Detection of MAs is a function of the disease analysis module of the framework
proposed in Chapter 3. In this chapter, a novel curvature based technique for detection of MAs was
proposed by modelling them as topographic hills. The MA pixels were located at points where the
curvature value wasamaximum in all directions. Such atechnique hasatheoretically strong grounding
in comparison to other techniquesin literature which are based on heuristics. The proposed agorithm
was found to yield good resultsin the sense that al MAsin an image were detected. The results were
visually validated by retina experts.



Figure 6.4. An FFA test image.
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Figure 6.5. Resultsof applying a Gaussian filter with mask of size3 x 3 and astandard deviation 2.
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Detected by a 93X 5 mask but missed by a 9% 9 mask
Missed by a 5 ¥ 8 mask but detected by 2 9 X 9 mask

Figure 6.6. MA detection using amask of size5 x 5.
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Missed by a 39X 9 mask hut detected by a 9% 5 mask
Detected by a 9 9 mask but missed by a 5 X 5 mask

Figure 6.7. MA detection using amask of size9 x 9.



Figure 6.8. Collation of resultsof MA detection obtained using mask of sizesfrom5 x 5t09 x 9.
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In this chapter, we present a technique for extracting regions of Capillary Non-Perfusion (CNP) from
HRA images. The technique exploitsa special property of the HRA images and takesa novel approach
to image segmentation. Before we present the technique, we begin with a brief description of regionsof
CNP and discussthe importance of their detection from FFA images.

7.1. Capillary non-perfusion

Capillaries are microscopic vessels which supply blood to the body tissue. The act of pumping of
blood into the body cells by the capillariesis called perfusion. Capillary Non-Perfusion (CNP) isa
disease wherein the capillary network in aregion of the human retina (see Chapter 2) stops perfusing
blood. CNP can occur due to various reasons but most commonly due to diabetes. If not treated in
time, such diseased regions can grow and spread acrossthe entire retina. When such a growth entersthe
central part of theretina, which isresponsible for most of the human vision (see Chapter 2), it can lead
to blindness.

The clinical procedure to detect CNP isa visual scan of an FFA image to estimate the amount of area
damaged. However, such a procedure suffers from subjectivity and is sensitive to the quality of the im-
ages obtained. A computer based analysis system can remove such drawbacks and assign an objective
measure to the extent of the disease using well defined quantification procedures. In this chapter, we
present a technique to extract and quantify regions of CNP from HRA images using computer aided
image analysis. To our knowledge, there isno work reported in literature which addressesthis problem.

7.2. Properties of HRA FFA images

The laser camera of the HRA system can penetrate through the retinal layer and capture the capillary
network of the choroidal layer. Consequently, one can observe a fine-grain wooly texture, similar to the
healthy capillary network, evenin regionsof CNP. However, dueto lack of flourescencein thoseregions,
they appear much darker than the healthy capillary network.

A small part of an FFA image, and its intensity profile along a horizontal line, are shown in Figure
7.1. As can be observed, the prominent vasculature in the image become ‘hills’, and the rest of the
areas become bumpy ‘valleys or ‘plains’, of the intensity profile. Hence, one can conclude that the
prominent vasculature are devoid of local intensity minimaunlike the rest of the regions. Furthermore,
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it can be concluded that the prominent vasculature isdevoid of any local extrema except on the medial
pointswhich are maximum points. The reasonsfor the presence of extremaare thefineretinal capillary
network in healthy regions, and the choroidal capillary network in the CNP regions (see Sections 2.1,
2.2, 2.4 for more details). This property of HRA images is illustrated in Figures 7.1 and 7.2 where
sub-partsof FFA imagesand their extrema maps are shown. As expected, the blood vesselsare lacking
in extrema except on their medial axes.

Blood Weszsel
Healthy Capillary Wetaark

\Elln:u:ld Wessel

CHP

CHP

Sub-partof an
FFAiImMage

Extrerma hap

Intensity Prafile

Figure 7.1. Intensity profile of asub-part of an FFA image and the corresponding extrema map. The prominent peaksin the
intensity profile are marked by circles. The white pixelsin the extrema map correspond to the extremum pixels. The extrema
map clearly illustrates higher density of extremain the regionsof CNP.

Asmentioned in Chapter 2, the injected flourescene dye effuses out on to the retinal surface over time
and clouds the neighbouring regions. Regions of CNP do not receive the blood that carriesthe dye, and
hence are not clouded. In FFA images, the clouding of retinal regionsis equivalent to smoothening of
such regions. Smoothening causes a reduction in the density of extrema in the corresponding region.
Hence, regionsof CNP have ahigher density of extremaascompared to regionswith ahealthy capillary
network. An illustrative example, showing such a difference in density of extrema, is shown in Figure
7.3. The difference can also be observed in the sub-part shown in Figure 7.1. In general, the difference
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~(b)

Figure 7.2. Sample extremamap of an FFA image. (a) Sub-part of an FFA image. (b) Extremamap of the sub-part in (3).

Healthy Capillary MNetwork

Region of CHNP

Lower density of extrema
compared to the density of
extrema herg.

Figure 7.3. Thedensity of extremain the extremamap of healthy capillary region and a region of CNP.

in the density of extremain the CNP regions and healthy capillary network is visually noticeable only
on carefull observation. Though the difference is visually subtle, it can be exploited quantitatively to
formulate CNP segmentation a gorithms. Such an approach to segmentation of CNPispresented in the
next section. An example where the difference in density of extremaisvisually noticeableis shownin
Figure 7.5.
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7.3. Segmentation of HRA images

The CNP segmentation algorithm we propose is based on the properties of HRA images discussed
in Section 7.2. It exploits the fact that density of the extrema in the regions of CNP is higher than the
density of extremain other retinal regions. The segmentationisachieved by extracting regionswherethe
density of extremaishigher than acertain threshold. A block diagram, of the variousprocessesinvolved,
isshown in Figure 7.4. Most HRA images are corrupted by noise. Hence, the segmentation algorithm
should typically be preceded with a noise filtering operation as shown in the figure.

The various steps of the algorithm, in the order of operation, are asfollows.

Extracting the extrema map

The first step, after the optional noise filtering operation, is to extract the extrema-map from the
FFA image. Thisis done my extracting all the local minima and maxima in the image. A pixel is
defined as an extremum pixel if it isgreater than or equal to all of its 8-connected neighbours, or
if it islessthan or equal to all of its 8-connected neighbours.

Cardinality filtering

In the next step, extremum pixels lying in regions of low density of extrema are filtered out.
Thisisdone by a procedure called the ‘ Cardinality Filtering’ which is performed as follows. The
number of extremain a certain neighbourhood around an extremum pixel isfound. If thisnumber
isgreater than a threshold valuen, than the extremum pixel isretained, elseit isremoved from the
set of extrema. Performing this operation for all the extrema extracted in the first step will retain
only those extrema which lie in regions where there is a high density of extrema These regions
correspond to the regionsof CNPin the image.

Dilation

After cardinality filtering, the resultant extrema map has only those extrema which are in the re-
gionsof high density of extrema. A region of CNP can be formed from aregion of extrema'*dots
by filling in the ‘gaps’ between the dots. Thisis done by performing a binary morphological di-
lation.

Median Filtering

The dilation operation of the previous step moves the boundaries of adjacent regions closer than
the actual perceptual boundaries. Moreover, there are few small black ‘islands’ within the regions
formed after dilation. To move the boundaries apart, and fill-up the islands simultaneaoudly, a
median filtering is performed on the result of dilation.

Region growing and boundary extraction
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Step 1 Step 2 Step 3
llumination _ Extraction of
corrected  —— Moise local extrema Cardinality
HRA image Filtering fram 3 % 3 filtering
neighbourhoods.

Region extraction

Segmented using a Wadian
Ca— ..
Image region-growing Filtering Dilation
operation
Step b Step 5 Step 4

Figure 7.4. Processing stepsin the proposed HRA-image segmentation.

Thefinal step extractsthe regions of CNP and their boundaries from the result obtained after the
median filtering operation. The regionsare extracted by a simple region-growing operation follow-
ing which the boundaries can be extracted using a gradient operation. The area of the CNP regions
is obtained from the size of the regions grown during the region-growing step. The percentage of
the area of CNP regions can be used as a quantitative measure of the extent of CNP.

Toillustrate the working of the various steps, the above a gorithm was applied to a sub-part of an FFA
image. The image was selected such that the difference in the density of extrema can be noticeable
visually. The results obtained after each step are shown in Figures 7.5(a)-(f). The result of extracting
the extrema-map is shown in Figure 7.5(b). One can clearly see that the healthy capillary network has
alower density of extrema. The extremum pixelsin such a region are filtered out by the cardinality
filtering operation as see in Figure 7.5(c). The result of dilation and subsequent median filtering are
shown in Figures 7.5(d)-(e). Thefinal result, after extracting the boundaries of the regionsformed after
median filtering, is shown in Figure 7.5(f).

7.4. Results and discussion

The proposed algorithm was implemented as follows. First, all local extrema were extracted using a
3 x 3 window. Next, cardinality filtering was performed using a 11 x 11 window and with a cardinality
number of 25. The dilation was performed using a 3 x 3 rectangular structural element. The median
filtering operation, using a3 x 3 window, was performed before the final region growing and boundary
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Figure 7.5. Resultsat different stagesof the HRA segmentation a gorithm.

extraction operations. The resultsof thison two HRA FFA imagesare shownin Figures7.6to 7.11. For
each FFA test image, a ground truth image, and an image with the result of segmentation are shown
in order. The ground truth was marked by a retina expert to indicate the different regions of CNPin an
image. To avoid tedious boundary marking, the different regions of CNP were marked by a white dot.
Each white dot in these images correspondsto a region of CNP around it. The white linesin the result
images correspond to the boundaries of the segmented CNP regions.

As can be observed from the results, the segmentation algorithm detects most of the regions of CNP.
However, one can observe that CNP regions of small size are missed. This happens because of the
following reason. As mentioned earlier in the chapter, the injected dye continuously effuses out the
retinal membranes. This phenomenon is absent in the regions of CNP as the dye does not reach such
regions. However, dye from the surrounding regions can cloud small regions of CNP. Consequently, the
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density of extrema in such regionswill be lower than the density of extremain larger regions of CNP
and hence, are not detected.

The proposed algorithm is based on a hypothesis that the regions of CNP have a higher density of
extrema as compared to other regions. However, such a hypothesis need not hold always. Onereason is
that if the dye effusing over a healthy capillary network is negligible, then such regionswill also have
a high density of extrema. Another important reason for the failure of this hypothesisisthat the HRA
images are corrupted with noise and this noise corrupts even the vascular regions, leading to a high
density of extrema on the blood vessels. In such extrema maps, it will be hard for even ahuman oberver
tovisually distinguish between avascul ature region and other regions. To overcome corruption by noise,
one could start by filtering out the noise as shown in Figure 7.4. This noise filtering will also smoothen
the minute choroidal capillary texture of regionsof CNP. However, even in such cases, the extrema-map
of a CNP region and that of aregion of healthy capillary network will differ in the similar fashion as
claimed in the hypothesis. This happens because the minute texture of the CNP regionsis transformed
into flat regions which, by our definition of extrema from Section 7.3, form huge chunks of minima,
while the texture of a healthy capillary network istransformed into a very gradually varying, ‘ bumpy’
terrain with very sparse minima and extrema. Hence, one can expect that the hypothesis can be used in
case of both noisy aswell as noise free images.

The algorithm was tested on 62 HRA FFA images. Of these, 12 were provided to us initially for
understanding and algorithm development. These images were either noise free or corrupted with a
small amount of noise. The algorithm yielded good results on these 12 images. This can be observed in
case of two thetest images1and 2 shown in Figures 7.6 to 7.11. However, the rest 50 were provided to
uson amuch later date and were corrupted by large amountsof noise. The performance of thealgorithm
degraded heavily on theseimageseven after Gaussian noisefiltering. An example of anoisy image (test
image 3) and the corresponding result of segmentation isshown in Figures7.12 and 7.14. The detected
regionsof CNP do not match the ground truth asthe boundariesof the segmented regionscut acrossthe
blood vessels. This happens because of high density of extrema even over the blood vessels.

7.5. Conclusion

Extraction of regions of CNP from FFA images is a function of the disease analysis module of the
framework proposed in Chapter 3. In this chapter, a novel technique for such an extraction from HRA
FFA images was proposed. Though this technique yields good results on noise-free HRA FFA images,
the performance degrades in the presence of noise. In order to use the technique on a wide variety of
images, one will have to develop an efficient noise removal technigue which does not swamp the fine
capillary texture while removing the noise. Design of such atechniqueisnot atrivial task. Alternatively,
the approach to the CNP segmentation problem can be formulated using a stochastic model for CNP
regions. Both of these approacheswere considered to be out of the scope of thisthesis.



7.5. Conclusion 51

Figure 7.6. FFA testimagel.

The proposed technique exploits the fact that the choroidal capillary network is also seen through
regionsof CNPinan HRA image. Hence, it cannot be used in case of the Zeissimageswherethe optical
camera cannot capture the choroidal capillary network. However, thereis scope to apply thistechnique
for segmentation in other domains (non FFA images) where images have fine wooly textural patterns
similar to the texture of capillary network in an HRA FFA image.
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Figure 7.7. Ground truth marking of the test image 1.



Figure 7.8. Result of segmentation of the test image 1.

53



54

Chapter 7. Segmentation of Regions of CNP

Figure 7.9. FFA testimage2.



Figure 7.10. Ground truth marking of the test image 2.
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Figure 7.11. Result of segmentation of the test image 2.
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Figure 7.12. FFA image 3.
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Figure 7.13. Ground truth marking of the test image 3.
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Chapter 8. CNP Analyser - A tool for extraction
of regions of CNP

8.1. Introduction

A framework for retinal angiogram image (or FFA image) analysis was proposed in Chapter 3. As
mentioned in chapter 1, the most common aim of FFA image analysisisto detect diabetic retinopathy
(DR). Though DR causestwo different kinds of defects namely, Microaneurysmsand CNPs, detection
of CNP from FFA imagesformsa more important problem. Thisis because of two reasons: (i) Regions
of CNP can be distinguished from other regionsonly in FFA images. (ii) CNP occursin the later stages
of DR and needs immediate attention. Hence, to provide a diagnostic aid to the retina experts a tool
caled ‘CNP Analyser’ was built which aids in the detection of CNP and showcases the framework
proposed in Chapter 3. In this chapter, we present a description of the design of thistool.

8.2. CNP Analyser

As mentioned in Chapter 2, FFA images suffer from many problems. A disease extraction tool should
solve these problems before detecting the diseased regions. A modular framework, developed with such
a principle, was proposed in Chapter 3. The ‘ CNP Analyser’ tool was built using this framework. The
various operations which have to be incorporated into a CNP extraction tool are asfollows.

1. Illumination Correction
Most FFA images suffer from poor/non-uniform illumination. This problem hasto be rectified by
asuitableillumination correction step in the pre-processing module.

2. Noise Filtering

Noise filtering is also a function of the pre-processing module. Noise changes the textural
appearance of the retinal regions and can lead to wrong diagnosis. Hence, it has to be removed
before a CNP extraction step.

3.  CNP Extraction

Themain task of a CNP detection tool isthe CNP extraction operation. CNP extraction should be
performed after the illumination correction and noise fitering steps.
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© CHP Analyzer - E:\Research\M5\Data_Setz\HRA_Images\Raw_Images\5.bmp
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Figure 8.1. A screen-shot of the ' CNP Analyser’ tool.

4. Interactive Add-Remove facility

CNP extraction is typically performed by using an image analysis step which does not make use
of any higher level knowledge about the regions of CNP. Hence, few regions of CNP may not be
picked while other non-CNP regions may be classified asregionsof CNP. Asthetool isdevel oped
withaimthat it hasto aid in thediagnosisof CNP, afacility to add/remove misclassificationsshould
be provided.

5. Quantification

The extent of the damage due to CNP should be quantified using some measure and displayed on
the main window after the CNP detection operation. This measure should relect the changes made
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with the add/remove facility.

The screen-shot of the CNP Analyser isshown in Figure 8.1. It wasdevel oped in the C++ programming
language using the wxWidgets 2.4.2 GUI library [34]. All the above features have been incorporated.
The illumination correction step is performed using the algorithm proposed in Chapter 4. The noise
filtering step isperformed using a 15 x 15 Gaussian mask with astandard deviation of 5. CNP extraction
is performed using the segmentation algorithm proposed in Chapter 7. The extraction step marks the
candidate regionsof CNP with a magentatint. A retina expert can add and remove regions by clicking.
Regions removed by clicking get marked by a yellow tint, while the regions added by clicking get
marked by ared tint. The extent of CNP isquantified using the percentage of the area of the regions of
CNP and isdisplayed on atext label on the main window of thetool.

8.3. Performance

Thetool wastested using 50 noisy images. A quantitative study of the resultswas not performed asthis
tool was partly interactive. As expected, it falsely detects few regions and misses out detection of few
other regions of CNP. Though the number of clicksto arrive at the final result was high, retina experts
who tested the tool found that the interactive add and remove facilities were useful in removing the
shortcomingsof the CNP segmentation algorithm.

The operationsincorporated into the tool are implemented in a modular fashion. Hence, one can plug
in different algorithms for illumination correction, noise filtering, and CNP extraction, depending on
their choice.



Chapter 9. Summary and Future Work

Summary

In thisthesis, a modular framework for a generic retinal angiogram (FFA) image analysis system was
proposed (Chapter 3). The frame work consists of four modules, namely 1) Pre-processing module, 2)
Retinal structure analysis module, 3) Disease analysis module and 4) Classification module. Specific
instances of these modules as illumination correction (Chapter 4), blood vessel Detection (Chapter
5), microaneurysm detection (Chapter 6) and CNP segmentation from HRA images (Chapter 7), were
presented. A tool to detect regions of CNP was devel oped to showcase the proposed framework.

Most FFA images suffer from poor/non-uniform illumination. Illumination correction is a function
of the pre-processing module. In this thesis, a solution to the problem of non-uniform illumination
was proposed by modelling the degradation function as a multiplicative effect. It was shown that this
technique removes the effect of non-uniform illumination and adjusts the image to the right levels of
brightness and contrast, hence not requiring any high level information about the retinal structure.

Blood vessels form the most important structure features of a retina. Detection of blood vesselsis
a function of the struture analysis module. In this thesis, the blood vessel detection algorithm was
formulated by modelling them as topographical ridges. Due to its ability to detect a wide range of
ridge profiles, a curvature based ridge detection algorithm was choosen to detect the blood vessels. An
efficient and elegant technique, called the surface tangent derivative (STD), was proposed to estimate
the curvature of the image surface. Single scale as well as multiscale ridge detection algorithms were
formulated using thisnovel estimate.

Microaneurysmsare baloon shaped sprouts of new capillariesin theretina. They occur astiny disk-like
structuresin an FFA image. Detection of MAsisafunction of the disease analysismodule. Inthisthess,
the MA detection algorithm wasformulated by modelling MAsashill-like topographical featuresof the
image surface. MAswerelocated at pointswere the curvature of theimage surfaceisamaximum in all
directions. The STD value was again used as an estimate of the surface curvature.

Regionsof CNP are areasin the retina where the capillary network has stopped supplying blood. They
occur as dark lesionsin an FFA image. In this thesis, a novel CNP segmentation algorithm using an
interesting property of the HRA images was developed. This technique was found to perform well on
noise free HRA images. However, it suffersfrom high sensitivity to presence of noisein theimages.

Future Work

Handling Montages
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In thisthesis, the framework and the analysis techniques were proposed only for a single FFA image.
However, asmentioned in Section 2.2, the entireretina cannot be captured in one singleimage. Different
parts of the retina are captured in different images. These different images are then ‘Montaged’ or
‘stitched’ together to let a human expert see the big picture. Likewise, the framework and analysis
techniques should be extended to handle these montages.

One possible way to handle multiple images is as follows. The individual images have to be analysed
using the proposed single-image framework. The results obtained should then collated efficiently to
arrive at one single measure for the extent of a diseasein the entire retina. For this, efficient techniques
have to be formulated to collate results obtained from analysis of individual images.

Classification of Candidate Regions

Aswe have seen in the previous chapters, image analysis techniques can only detect candidate regions
affected by a particular disease. These candidate regions will have to be classified into true positives
and false positives. Hence, efficient classification techniques which use higher level charaterics of the
disease regions should be formulated for this purpose.

Incorporating Time-Stamp Information
It was mentioned earlier that the injected dye continuously effusesout of the vascular membranes. This

effusing dye degrades the quality of the image with increase in time from when the dye was injected
into the patient’s body. Hence, it will be usefull to incorpotate the time-stamp information of the
image filesinto the classification schemesasit will help in assigning a measure of truth to the detected
diseaseregions.

Disease Tracking

It is important to track the progress of a disease, under treatment or otherwise, in order to devise
efficient treatment procedures. Tracking a disease involves detecting changes in the images obtained
over anumber of visits. Theimageshaveto befirst aligned, along the retinal structure, before detecting
changes. Hence, efficient change detection and image registration schemes shoul d be devel oped in order
to facilitate disease tracking.

Publications

To date, there have been three accepted/under review publicationsusing thework presented inthisthesis.
Their detailsare listed below.

1. Taraprasad Das, Jayanthi Sivaswamy, B. R. Siva Chandra, Alka Rani, Vindhya Vunnum. ‘ Computer
aided quantification of capillary non-perfusion and drusen’. National Retina Congress, LV Prasad Eye
Insititute, Hyderabad, India 26th - 28th August 2005.

2. B. R. Siva Chandra and Jayanthi Sivaswamy. ‘lllumination correction of Colour Retinal Images'.
Proceedings of the SPIE Symposium of Medical Imaging, San Diego, 2006. (To appear)
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Appendix A. Image Surface

A 2D digital image is a function of two independent and discrete variables. It can be visualised as a
surfacein 3D space. In this appendix, we shall formalise these notionsand present definitionsfor a‘2D
digital image’, an ‘image pixel’ and an ‘image surface’ . The notations and conventions presented here
are followed throughout thisthesis.

The discrete grid over which a 2D digital imageisdefined is called the base-plane (see Figure A.1) and
isdefined by the cross product

r =4012,...N-1}x{0,1,2,...M-1} (A1)

whereM and N arethe height and width of theimagerespectively. Anordered pair (n,m) e T iscalled
animage pixel. Animageisdefined asafuntion | : T — R . Theintensity at apixel (n, m) isgiven by
z = I(n, m). Theimage surface is defined as the set

g={(nmz2) [nmer. z=1(n,m} (A.2)

A triplet (n,m, z) e ¢ iscalled a point on the surface ¢ . The intuitive notion of a base-plane and an
image surfaceisformed by visualising ¢ asa surface hanging over theplane T .

ez

#h, m I

|_5\“] I Tven r=In ml

Base Plane T

Figure A.1. Geometry of theimage function
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Appendix B. Locating the Circular Aperture in
Zeiss Images

Images obtained using the Zeiss system have a circular aperture within which the retinal regions are
captured. To processor analyse such images, thelocation of the center of thisapertureand itsradiushave
to be extracted asa pre-processing step so that the analysi sprocedurescan be confined to thisaperture. In
thisappendix, we will present a procedure to extract the center and radius of such an aperture. A typical
example of an image captured using Zeiss systemsisshown in figure B.1(a).

A property of Zeissimageswhich isused in the aperture location technique is asfollows; The circular
partsof interest are bounded by dark regions. Theseregions can be seenin both figure B.1. The property
of these dark regionsis that they are of uniform intensity. For example, if the intensity value of the
top-left-corner-pixel is 10, then the entire dark region, on both left and the right sides of the image, is
guaranteed to be of intensity 10.

Using the above property, we can reasonably expect that by thresholding the entireimage by athreshold
valueof T = I, + 1 (wherel istheintensity value of the top-left-corner-pixel) we obtain an image with
the circular part of the image extracted as a white disk. However, a closer observation of these images
reveals that the transition from the dark boundaries to the disk of interest is not abrupt but is a steep
gradient. We have found that the disk obtained by thresholdingiscloser to the perceptual disk of interest
if we useathreshold valueof T = I, + 3.1nthe following discussion, T should be understood to have
been defined in thisway.

The result of the threshold operation should ideally be a circular disk. But most often, it has been
found that few white specks show up around the boundary of this expected circular disk. These can
be attributed to some kind of noise creeping up during the imaging process and can be removed by a
median-filtering operation. In the resultswe have presented here, we have performed a median-filtering
usinga3 x 3 mask.

Thresholding followed by median filtering extractsacircular disk from araw Ziessimage. An example
of such extractionisshown in figure B.2. The center and radius of the circular aperture are the same as
the center and radiusof thiscircular disk. Hence, the next task isto extract center and radiusinformation
from the ‘ disk-image' . The next section discussesthis procedure.
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Figure B.1. (a) A sample ZeissImages. (b) Theresult of |ocating the camera aperture.

Raw Image Circular Disk
Figure B.2. Example of extraction of the circular disk from araw Ziessimage.

B.1. Locating the center and radius of the circular disk

A point to note before attempting to find the center and radius of the circular disk isthat the center of
the disk is not the center of the image and is considerably off the center of the image. This happens
because of thefact that the center of the apertureisitself off the center of theimage. Moreover, parts of
the aperture can be clipped off from either the top or bottom or left or right side of the image or from
someor all of these sides. Thisisseen in the disk-image being clipped.

A typical disk-image and the neccesary geometry is shown in figure B.3. Let us traverse along a
horizonta line, h pixelsfrom the top, from the left of the imageto the right. Then, while traversing, we
will reach thedisk at acertain distance. Let uscall thisdistance a and the coordinatesof the point where
thishappensasA(x,, y,)- Similarly, if we traverse along this horizontal line from the right of the image
to the left, we will reach the disk again after a certain distance at B(x,, y,). Let uscall thisdistancec. If
W isthe width of the image, then let us define another quantity b = W — c. Then, by the symmetry of
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)

l: Hcenter ! Elr-*:»5*::1?»5-."

Figure B.3. Geometry for extraction of the center and radiusof the circular disk.

the points A and B about the center of the circle, we can conclude that the x-coordinate of the center of
the disk isgiven by:

Xcenter -

a+b
=== B.1.1
! (B.1.)

They-coordinate of the center of thedisky_, .. isfound similarly by traversing along vertical line at a
certain distance from the left of theimage. Oncethe coordinatesof the center of the disk (x
are known, we can find the radius of the disk as:

center’ ycenter)

r.= \/(X1 — Xeenter) + v, - ycemer)z (B.1.2)

Thisr, and the point (X, .. Yeenter) &€ the radiusand center of the circular disk respectively and hence,

are aso the radiusand center of the aperturein the Zeissimage resptectively.

The result of locating the circular aperture using the approach presented above is the shown in figure
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B.1(b). The aperture and its center are marked in thisimage.

B.2. Notes

There are a few points that should be noted with respect to the above procedure. Most optical imaging
systemsadd anotch artifact tothecircul ar aperture. Thisartifact can alsobeseeninfigureB.2. It isadded
to help a viewer decide the right-side up when using a printed copy. In Zeissimagesit is added to the
bottom right part of the aperture. Dueto this, we could successfully traverse a horizontal line which was
alittle distance away from the top of the image, and a vertical line which was a distance awvay from the
left edge of theimage, to locatethe center of the circular disk . However, imaging systemsmanufactured
by other companies might add the notch at a different place. In such cases we should select the right
lines, which avoid this notch, to traverse along, and locate the center if the circular disk.

In rare instances, the boundary of the circular aperture might not be clearly defined because of severe
illumination problem withinit. In such instances, the disk extracted from theimagewill not align exactly
with the aperture. Hence, the radius and center calculated from the image will be offset from the true
radius and center. But this occuranceisvery rare and can be ignored.



Appendix C. Generalised Sobel Masks

The standard Sobel masks (see [10]) of size 3 x 3 are as shown below (Figure C.1).

110 11-2|-1
210 0
110 112 1
0° mask 90° mask
21 -1 0|1
110 -1
0 1 2| -1
45° mask — 45° mask

Figure C.1. Standard Sobel masks.

In this appendix we present a generalisation of the above masks to generate Sobel masks of size
n x n where n can be any odd, positive integer. As with the standard Sobel masks, we shall define the
generalised masksfor four different orientations: 0°, 90°, 45 and, — 45"

The notation used in this thesis to refer to a Sobel mask and its elementsis as follows. A mask with
orientation o, and size n x n isdenoted as:

n o o o o
M, o e Q={0,90,45, - 45} (C1)

A mask element is referred by hzl(x,y) where x and y areit'sindicesin therange — nT—l to %1

(nisan odd, positive integer). The reference coordinate system for indexing the mask elementsis as
shown below (Figure C.2). The sign of the orientation anglesis decided using the right-handed system
as shown.
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—vey

—VEX - —= +Ve X

ve

Figure C.2. Reference coordinate system for masks.

The generaisation for generating masksof larger sizesisbased on the following points.

i.  When animageis convolved with a standard Sobel mask, intensity variations along the
orientation of the mask are enhanced. Similarly, the generalised masks should a so have
directional preferencefor intensity variations along the orientation of the masks.

ii. Thereexistsa‘line inthe standard Sobel masks, entriesalong which are zero. Similarly,
the central column of the 0° mask, the central row of the 90° mask, the — 45" diagonal of
the 45” mask, and the 45’ diagonal of the — 45° mask should befilled with zeroes.

iii. Thestandard Sobel masksaredivided into two halvesby the zero entry line. Thevaluesin
the negative half are negativereflectionsof the valuesin the positive half, about the zero
entry line. Accordingly, the generalised Sobel masks should also have similar divisions
into positive and negative halves.

Using the points (i) and (iii) asguidelines, valuesin the positive half of a mask arefilled asfollows (the
side of the positive half isdetermined by the orientation of the mask):

VIR P—— (C2)

where 6 isthe angle made by the mask element (x, y) with the x-axisof the reference coordinate system,
0, isaconstant less than 90°, and k is a positive even integer. The corresponding zero entry line should
befilled with zeroesto satisfy the point (ii). The valuesin the negative half arethenfilled using negative
reflections of the valuesin the positive half, as prescribed by point (iii).
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In our implementation for thisthesis, we have used avalue of 60° for 6, and valueof 6for k. Theangular
profile of thevaluesin a0’ mask generated using using these valuesis shown in Figure C.3. One should
take care of thefact that an angle of theform (180° + B) isequivalentto (B — 180"), for some B, while
implementing equation C.2.

1.0

maskvalue —s

120

=
=

.90 0° a0’ angle —> 270

-1.0

Figure C.3. Angular profile of a0” mask using values 60" for 6, and 6 for k in equation C.2.



Appendix D. Scope of Curvature Based Ridge
and Valleys Detection Techniques

Curvature of animage function isa measure of the ‘bend’ in the cross-section profile along a particular
direction of theimage intensity values. Hence, analysis of curvature based feature detection technique
can be done using just 1D functions which represent the (cross-section) profiles of the features of
interest. In thisappendix, we present an analysisof the curvature based ridge/valley detection techniques
using 1D profilesof ridgesand valleys.

A ridge/valley detection technique detectsmedial lines of such structures. Such medial linesareloci of
‘medial points’ of the cross-section profilesof ridges/valleys. Therefore, in order to use 1D profile func-
tionsto perform an analysisof curvature based ridge/valley detection, the original 2D technique hasto
be reformulated to detect medial pointsof 1D profilefunctions. Before presenting such areformulation,
we shall define afew termsfor ease of presentation later in thispaper and state a Lemma.

Definition D.1 (Point of Magnitude Maximum): Letf : ® — R bealD function. If apointx = ais
apoint of local maximum of thefunctiony = |f (x)|, thenitisapoint of magnitude maximum of the
functiony = f (x). For brevity, we shal refer to such a point of magnitude maximum of afunction asa
PMMAX of the function.

Definition D.2 (Point of Magnitude Minimum): Letf : ® — R be a 1D function. If apoint x = a
isapoint of local minimum of thefunctiony = |f(x)|, thenitisapoint of magnitude minimum of the
functiony = f (x). For brevity, we shall refer to such a point of magnitude minimum of afunction asa
PMMIN of the function.

LemmaD.1l: Letf : ® — R bealD function for which derivatives upto the second order exist. If

€) [%] = 0 and, (b) [yj—z] <0
x=a =2
then,x = aisaPMMAX of thefunctiony = f (x).
Proof:

fr@=0, f@f”’@)<0

= f(@)<0, f'(@=0,f"@>0
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or

f(a>0,f@=0,f"@<0

= f(@)<0, f(a)<f(b),b € (a-0,a+d)—4{a} forsomed>0.(Since f’'(a)=0, f”’(@)>0
impliesthat x = aisapoint of minimum of f (x))
or

fay>0, f(@ay>f(b), b € (a-d,a+d6)—{a} for somed >0.(Since f'(@y=0, f”"(@) <0
impliesthat x = aisapoint of maximum, of f (x))

= |f(a)|> |f(b)|, b e (a-5,a+d)—{alforsomed > 0.
= X = aisapoint of maximum of thefunctiony = |f(x)|.

Hence, LemmaD.1lisproved. O

The curvature of a 1D functiony = f(x) isgiven as[17]:

d
dx?

We shall now state the criterion for curvature based medial point detection using Definition D.1.

K(X) = (D.1)

Definition D.3 (Curvature based criterion for medial points of 1D profile functions): Let
f : R — RbealD functionfor which derivativesupto the second order exist. A point X = aisamedial
point of the profilefunctiony = f(x) if itisaPMMAX of k(X).

The PMMAX of the curvature is where the derivative of the curvature vanishes. The derivative of the
curvature isfound, by differentiating the expression in equation D.1:

2
ﬂ 1 dy2 —3d—y @
o | {dx dx \ dx?
dx

&= (D.2)
2
{H(g_z) }

Considering equation D.2, it is clear that the first derivative of the curvature can vanish under four

N[
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different conditions. These are:

2 3
ClL :: d—y:O, d—y;tO, d—y:O
dx dx? dx?
dy d?y dy
c2 .. ==0,—=0,—==
ax = dx? 0 dx® 0
2 3
C3 :: d—y;tO, d—y:O, d—y:O
dx dx? dx®
dy d?y d’y .
C4 :: —#0, —=20, # 0 but the numerator as a whole, of the expression on the

dx dx? a
right hand side of equation D.2, goesto zero.

The second derivative of the profilefunctioniszeroin C2 and C3. Hence, by equation D.1, the curvature
of the profile function also goesto zero at such points. Therefore, a point satisfying C2 or C3 cannot be
aPMMAX of the curvature function. A medial point is either the top of aridge profile, or the bottom
of avalley profile. In other words, the medial points are points of extremal image intensities. Hence, a
PMMAX which satisfies C4 cannot be amedial point of aridge/valey profile. Such PMMAX occur as
‘knee/elbow’ points of edge profiles, asshown in Figure D.1. In practice, it iseither rejected by setting
athreshold or in few rare cases, iswrongly classified as a ridge/valley pixel. Therefore, medial points
which satisfy the criterion in Definition D.3 should satisfy only C1. However, a point satisfying C1lneed
not satisfy the criterion in Definition D.3. The following theorem gives us a condition under which a
point satisfying ClisalsoaPMMAX of the curvature function.

m - Medial point
k- Knee point
e - Elbow point

=l - — — — — —
La1]

1
I
I
I
I
|
|
1
ek m
Figure D.1. Cross-section of aridge and the various points of extremal curvature.

Theorem D.1: Letf : R — R bealD function for which derivatives upto the fourth order exist. If for

2 3
somepoint X = a, we have d_y =0, d_y #0, d_y = 0,and
dx dx? dx®
X=a = x=a
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3
dy Jdy | [d%

X=a
then, x = aisaPMMAX of the curvature of functiony = f (x).

Proof: Followstrivialy by applying LemmaD.1to the curvature expression in equation D.1 O

If at some point on the profile, the fourth-derivative is non-zero; the curvature function hasa PMMAX;
and C1is satisfied; then, the profile function has to satisfy an inequality. Thisis stated in the following
theorem.

Theorem D.2: Letf : R — R bea 1D function for which derivatives upto fourth order exist. If some

point x = a isa PMMAX of the curvature of the function y = f (x) while satisfying [d_y] =0,
X=a

dx

2 3 4

[3—)2/} :&O,Ij—q = 0 and [%] # 0,then
X X=a X X=a X X=a

3
2 4 2
dyjdy 4 (9 <0 (D.4)
dx” | dx* dx?
X=a
2
Proof: The Taylor's series approximation of the function %’ upto the second derivative, in a
X
neighbourhood of the point x = a, under the conditionsof the theoremiis:
2 d2 ] _a\2 d4
dy | ecady (D5)
dx? dx 2 |dx
dx=a X=a
3
d 212
Similar approximation for thefunction{1+ 5{) },under the conditionsof the threorem, is:

3
o\ 3 ay\
{1+(&) } =1+ E(X—a)zl(@) (D.6)

Hence, the curvature expression from equation D.1 can be approximated, in the neighbourhood of
X =a,as
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dy| |, x-ap)dy
dx? 2 |axt
X=a X=a

|+ 3 (x—ay dy 2
2 dx?

d? , . : : :
Let [ y} > 0.Sincex = aisaPMMAX of the curvature function, for an x in a small neighbour-
X=

K(X) = (D.7)

<

dx
a

hood of x = a, we must have:

K(X) < k() (D.8)

Substituting for the expression of «(x) from equation D.7 into the inequality D.8 and re-arranging,

4 2 3
[371’} —3[(%)] <0 (D.9)

we get:

d4y} (dzy )3

St Y e >0 (D.10)
4 2

[dx . dx

Combining inequalities D.9 and D.10, by taking into consideration the sign of the second-derivative at
X = a, we get:

2 4 20\°
a7y} dy 3(d_y) <0 (D.12)
Hence, Theorem D.2 is proved. O

Clrequiresthe third-derivative to be zero while the second-derivative is non-zero. Let x = a be a point
where Cloccurs. Then, wewill havethefollowing possible propertiesfor the second-derivativefunction
at that point.

A. X =aisaPMMAX of the second-derivative function:
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Sincethedenominator of the curvature expression (equation D.1) isalwayspositive, thepointx = a
isa PMMIN of the denominator of the curvature expression. Furthermore, given that the point
X =aisaPMMAX of the second-derivative implies that it isalso a PMMAX of the numerator
of the curvature expression. Therefore, we can concludethat x = aisa PMMAX of the curvature
expression asawhole.

X = ais a point of inflection of the second-derivative function which is non-zero at this
point:
. dty
In thiscase, we must have | — = 0.Hence, we have
X

dx*
=a

dx® | dx dx?

d2y4
= _3F <0
X

Therefore, by Theorem D.1, the point X = a is dso a PMMAX of the curvature function. An
example of a profile function with such a PMMAX is f(x) = x>+ 10x*, x € [ - 1, 1] and its
second derivativeisf”’(x) = 20x>. x = 0 isapoint of inflection of the second-derivative, which is
alsoaPMMAX of itscurvature function.

3
d’y d4y_3(d_2y)

The second-derivative is a non-zero constant function:
4

In thiscase again, the fourth derivative must vanish, i.e., d—Z] = 0. Hence, asin case B above,
X

X=a
the point x = aisaPMMAX of the curvature function. Examples of such profiles are quadratic
polynomialswhich have a unique point of minimum or maximum.

X = ais a PMMIN of the second-derivative function which is non-zero here; the fourth
derivative vanishes at this point:

Using Theorem D.1again, aswith casesB and C above, it can beconcluded that x = aisaPMMAX
of the curvature function.

x=aisaPMMIN of the second-derivative function and the fourth and the second derivatives
are non-zero at this point:

Using TheoremsD.1and D.2,x = aisaPMMAX of the curvature function only if the derivatives
of the profile function satisfy the inequality D.4.
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Appendix D. Scope of Curvature Based Ridge and Valleys Detection Techniques

Thefivedifferent casesdiscussed above correspond tofive classesof profilesfor which apoint satisfying
ClisasoaPMMAX of the curvature function. Hence, we conclude that there are five different classes
of ridge and valley profiles which can be detected by techniques using the curvature based criterionin
Definition D.3. These classesare summarised bel ow for easy reference, in termsof the characteristicsof
the function at the medial point.

Class 1

Class 2

Class 3

Class 4

Class 5

Functionsfor which there exisssa PMMAX of the second-derivative at a point wherethefirst
derivative vanishes.

Functionsfor which there existsa point of inflection of the second-derivativeat apoint where
the first-derivative vani shes and the second-derivative has a non-zero value.

Functions for which the second-derivative is a non-zero constant function and there exists a
point wherethe first derivative vanishes.

Functionsfor which there exisssa PMMIN of the second-derivative at a point where thefirst
and fourth derivatives vanish, and the second-derivative has a non-zero value.

Functions for which there exists a PMMIN of the second-derivative at a point where
the fourth-derivative is non-zero, and condition C1 and the inequality D.4 are satisfied at
that point.
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