
For what it’s worth, I hope it was worth all the while…



Analysis of Retinal Angiogram Images

A Thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science (by Research)
in

Computer Science

by

B. R. Siva Chandra
200307001

sivachandra_br@students.iiit.ac.in

International Institute of Information Technology

Hyderabad, INDIA

November, 2005



This thesis document is submitted to the International Institute of Information Technology,

Hyderabad, INDIA as a partial fulfillment of the requirements for the degree of Master of Science by

Research in Computer Science.

The work presented here was supervised by Dr. Jayanthi Sivaswamy. This work was done at the

Center for Visual Information Technology of the International Institute of Information Technology,

Hyderabad, INIDA in collaboration with the LV Prasad Eye Institute, Hyderabad, INDIA.

Images of the retina, presented in this thesis, have been acquired from the LV Prasad Eye Institute,

Hyderabad, INDIA, with prior permission to use, present and make multiple copies (electronic

and paper).

Copyright ©B. R. Siva Chandra 2005 - All Rights Reserved



INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

Hyderabad, INDIA

CERTIFICATE

I certify that the work presented in this thesis was done by B. R. Siva Chandra under my supervision as

partial fulfillment of the requirements for a degree of MS by Research in Computer Science. This work

is original and has not been submitted anywhere else as thesis.

Dr. Jayanthi Sivaswamy

Associate Professor

International Institute of Information Technology

Hyderabad, INDIA

Date:



Acknowledgements

There are a number of individuals who had to guide me for the two years I spent over my thesis. Firstly,

I thank my supervisor, Dr. Jayanthi Sivaswamy, for being patient and understanding. The freedom she

gave me, and the confidence and trust which she bestowed on me, made the two years a comfortable

experience. I thank Dr. Tara Prasad Das of the LV Prasad Eye institute for his trust and ever positive

reviews which kept my confidence levels high. I would also like to thank Dr. C. V. Jawahar, under whom

I worked as a teaching assistant during the my first semester. He showed me as to what one means by

‘Worshiping Work’. I thank Mr. Mohan Ram of the LV Prasad Eye Institute who had to put up with my

tendancy to ‘gate-crash’into his office and demand attention.He had the patience to teach opthalmology

to a technologist.

Lastly, but in the most superior way, I thank my parents, my brother, and my ailing grandmother, for

always believing that I was working on something worth-while.



Abstract

Diabetes is occuring in an ever increasing percentage of the human population. Though generally non-

fatal, it can lead to diseases of other vital organs of the human body. Diabetic Retinopathy (DR) is one

such disease which affects the human retina. If not treated in time, the affected patient can lose his/ her

sight. With a growing number of patients affected with diabetes, the need is for fast and automatic com-

puter aided tools which can aid in the diagnosis of DR. Currently, DR is diagnosed by a manual analysis

of retinal angiogram images (RAIs).This process is tedious and depends on the subjective perception of

the doctors and technicians. In this thesis, we propose a modular framework for computer aided analysis

of RAIs which can be used to build analysis systems which can automatically detect diseases like the DR

and assign an objective measure to the extent of the disease. The framework consists four independent

modules: 1) The Pre-processing Module - For rectification of the problems and defects affecting a RAI;

2) The Structure Analysis Module - For extraction of the structure of the retina; 3) The Disease Analy-

sis Module - For extracting the candidate regions affected by a particular disease; 4) The Classification

Module - For classifying the candidate ‘disease-regions’ into true positives and false positives. Depend-

ing on the desired output, one can choose to incorporate some or all of these modules into the analysis

system.

Non-uniform illumination is a common problem affecting RAIs and needs to be addressed.A technique

for correcting non-uniform illumination forms a part of the pre-processing module. In this thesis,

a technique for illumination correction, which models the illumination effect as a multiplicative

degradation, is presented.

The most important of the structural features of the retina are the blood vessels. Blood vessels can

be detected by modeling them as topographic ridges. In this thesis, a novel curvature estimation

technique is presented, using which a ridge detection algorithm is formulated for single scale as well as

multiple scales.

DR leads to two different kinds of pathologies in the human retina. These are: a.) Microaneurysms,

(MAs) and b.) Capillary Non-Perfusion (CNP). In this thesis, a novel curvature based technique for

detection of MAs is presented. Likewise, a novel technique for segmentation of regions of CNP, from

RAIs obtained using a laser camera, is presented. This segmentation technique uses a special property

of the images obtained using a laser camera.

To showcase the proposed framework, a tool called the ‘CNP Analyser’that was developed is presented.

This tool can detect the regions of CNP from RAIs obtained using a laser camera. The proposed

illumination correction technique and the CNP segmentation technique are incorporated into this tool.

A measure of the extent of CNP is derived using the percentage area of the regions of CNP.
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Chapter 1. Introduction

1.1. Diabetic retinopathy

The fast pervading corporate culture has led to increased occurance of diabetes in the human population.

It is estimated that there are 18.2 million people in the United States, or 6.3% of the population, who

have diabetes [1]. India has the dubious distinction of having the largest number of diabetic patients with

more than 30 million people diagnosed with diabetes [6].Diabetes, though generally non-fatal, can affect

other vital organs of the human body. If not treated in the early stages, the organs affected by diabetes

can malfunction or completely stop functioning.

Diabetic retinopathy (DR), as the name suggests, is a disease of the human retina caused by diabetes. It

is diagnosed by observing the extent of two different kinds of defects on the retina: (1) Micro-aneurysms,

and (2) regions of capillary non-perfusion. Microaneurysms are ‘sprouts’ of newly developing blood

vessels in the retina. On the other hand, regions of capillary non-perfusion are regions where the

capillary network in the retina stops supplying blood to the corresponding areas. If not treated in time,

regions of CNP can spread across the areas of the retina. When such a spread enters the central region

of the retina (which is responsible for most of human vision, see Section 2.1), the patient can go blind.

Microaneurysms are defects occuring in the early stages of DR, while CNP is a defect occuring in the

later stages of DR.

1.2. The need for computer aided analysis of retinal angiogram images

The treatment for DR varies from simple drug based cures to laser surgeries depending on the stage

at which the disease is first detected and the manner in which it progresses in a patient. Clinically, the

disease is diagnosed manually by visually analysing the angiogram images of the retina.Because of this,

the diagnosis and treatment of the disease become dependent on the subjective perception of the doctors

and technicians involved. With a growing number of patients affected with diabetes, efficient disease

management has also become an important issue that needs to be tackled. The need is for fast computer

aided diagnostic tools for detection of the disease. Not only should such tools help in detection and

diagnosis, but should also be able to remove the operator subjectivity and assign an objective measure to

the extent of the disease. A computer aided system can also help in tracking the progress of the disease,

under treatment or otherwise. Accurate tracking will help in developing a better understanding of the

disease and develop precise treatment procedures. Disease tracking is beyond the scope of this thesis.

1



2 Chapter 1. Introduction

In this thesis, we present a general framework for computer aided analysis of retinal angiogram images.

The framework can be used to build image analysis systems which can automatically detect and quantify

pathologies of the retina like DR from angiogram images. The image analysis system is broken down

into a number of modules which sequentially process the input image to extract information at different

levels. A detailed description of the framework is presented in Chapter 3.

1.3. Organisation of the thesis

In the next Chapter (Chapter 2), we present detailed descriptions of the retinal imaging systems and

the corresponding clinical procedures for the detection of CNP in the human retina. In Chapter 3, the

proposed framework for the analysis of retinal angiogram images is presented. The framework consists

of four modules. Specific instances of these modules are presented in Chapters 4 to 7. To showcase

the framework, a tool called the ‘CNP Analyser’ has been developed. This is presented in Chapter 8.

The thesis ends with a summary, and list of directions (Chapter 9) for continuing the work on retinal

angiogram image analysis.



Chapter 2. Background

2.1. The human retina

A cross-sectional diagram showing the various parts of a human eye is shown in Figure 2.1. Retina is the

sensory membrane that lines most of the large posterior chamber of the vertebrate eye [7]. A diagram

of the retina in particular is shown in Figure 2.2. This figure shows two main ‘land-marks’, namely the

Macula and the Optic-Disk, of a retina. The macula is a circular region in the center of the retina with

the Fovea as its central core [16]. It is generally a dark/dull region devoid of any vasculature and is

responsible for most of human vision. In particular, it is responsible for the central vision and houses

the photo-receptive cells called the cones [23].

The optic-disk (OD) is a bright disk like structure through which the blood vessels and the neural

network enter the retina. For a human eye, there exist two sides: i) Nasal side, which is the side close to

the nose; ii) Temporal side, which is the side close to the temple. OD is located on the nasal side of the

macula. In a retinal image of a left eye, the OD appears to the left of the macula, and in a retinal image

of the right eye, OD appears to the right of the macula.The distance between the center of the optic-disk

and the macula is normally two-and-a-half times the diameter of the optic-disk.

The tentacular structure in Figure 2.2 represents the prominent vasculature in the retina. Below the

retinal layer is a ‘Choroidal’ layer (shown in Figure 2.1), which has its own vasculature. Most of this

thesis limits itself to the retinal layer except in few rare instances when attention is drawn to choroidal

layer explicitly.

2.2. The basic retinal imaging procedure

The human eye has a circular opening called the pupil (see Figure 2.1) through which light enters the

eye and reaches the retina. Retinal imaging systems use this opening to capture the image of the retina.

The diameter of the pupil adjusts itself so as to let an optimum amount of light enter the eye. However,

the pupil can be ‘dilated’ using drugs in order to obtain a large diameter, irrespective of the amount of

light entering the eye. Often, in order to facilitate better illumination of the retina, the patient’s eyes are

dilated before capturing the images.

As can be seen in Figure 2.1, the human retina has the shape of an inner surface of a hemishpere.Because

of this, it is not possible to capture the entire retina in a single image. Different parts are imaged by

making the patient look in different directions, or by aiming the camera in different directions.Typically,

3



4 Chapter 2. Background

Figure 2.1. Anatomy of a human eye.

Figure 2.2. A human retinal image.
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depending on the field of view of the camera, a number of images are obtained so that the part of the

retina that is of interest is captured in at least one image.

2.3. Retinal angiography

Diagnosis of many diseases of the retina, like the diabetic retinopathy, require the study of perfusion

of blood through the different parts of the retina. The images obtained using the procedure outlined in

Section 2.2 are insufficient for such a study as the path of the blood flow cannot be traced using such

images. A different class of images, called the retinal angiogram images are used to understand the flow

of blood in the retina.

Angiogram imagesare obtained by a procedure called Angiography. It is a clinical procedure performed

to study the perfusion (or the flow) of blood through the vasculature in a particular organ or region of a

human body. In short, it is a technique used to trace the path of the blood. An angiography of the retina

is performed as follows. First, the patient’s pupils are dilated. Next, a flourescent dye is injected into the

circulatory system of the patient’s body. The patient’s blood acts as a carrier for this dye, carrying the

dye to only those regions of the retina which are recieving the blood supply. Normally, it takes around

15 seconds, from the time of injection, for the dye to reach the retina if it is injected into the hand. Af-

ter this short duration, images of the retina are obtained using a particular wavelength of light. These

images are called retinal angiogram images. The technical name for a retinal angiogram is Fundus

Flourescene Angiogram (FFA).For the rest of the thesis, we shall refer to a retinal angiogram image as

an FFA image. All FFA images are gray-scale images. An example of an FFA image is shown in Figure

2.3. Regions receiving normal blood supply appear as bright white regions and regions lacking in blood

(due to abnormal supply of blood) appear as dark regions.

Each region of the retina has its own characteristic manifestation in an angiogram image. Figure 2.3

shows an angiogram image with the different regions of the retina marked. Below is a list of these

regions and a brief description of their manifestations in an FFA image.

• Macula

Macula is the physical center of the retina. It appears as a dark circular region with increasing

brightness towards the periphery. The ‘thinness’ of the vascular network in the macular region

causes the dark texture. The center of the macula, called the fovea, is devoid of vasculature.

• Optic-disk

Optic-disk (OD) is the opening through which the blood vessels and the neural network enter

and leave the retina. It typically appears as a bright circular disk like object on the nasal side of

the macula.
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Figure 2.3. Retinal artifacts as seen in a FFA image.

• Blood vessels

The large blood vessels appear as bright, hose like structures in an FFA image. In most central

images of the retina, one can observe two prominent vessels emerging out of the optic-disk in a

parabolic shape. These are called the ‘arcades’.

• Capillary Network

A normal, healthy capillary network in the retina appears as grey/white region with a woolly texture

in an FFA image.

• Regions of CNP

Regions of CNP appear as dull/dark lesions bounded by healthy vasculature and capillary network.

They appear dark because of the fact that the dye does not perfuse into such regions. They fail to

exhibit flourescence of a healthy region and are called regions of hypo-flourescence.

• Regions of hyper-flourescence

Sometimes, due to diabetes or other diseases, the blood vessels weaken or rupture (hemmerhages).

Blood constantly effuses out of such weak or ruptured vessels. As the effusing blood contains the

injected dye, such regions appear as excessively bright, white regions and are called as regions

of hyper-flourescence.
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• Blood Clots

When blood effusing out of a ruptured vessel clots, the region of the retina under such clots is

blocked from the view of the camera. Such regions appear as dark regions and are called as regions

of blocked-flourescence.

• Microaneurysms

To compensate for the occurance of a CNP, the body grows new capillaries. The early stage of

such neo-vascularisation is a spherical microscopic balooning from the old vessels called a

microaneurysm. Such a structure has a permeable membrane from which the dye effuses out.

Microaneurysms occur as tiny spherical objects in an FFA image.

2.4. Retinal imaging systems

There are various kinds of retinal imaging systems manufactured by different companies. Images

obtained from a particular system have their own characteristic properties. The work presented in this

thesis uses images obtained from two different imaging systems. One imaging system is manufactured

by the Carl Zeiss company [35] and uses an optical camera to capture retinal images. We shall refer

to FFA images captured using this system as Zeiss images. The other system is manufactured by the

Heidelberg Engineering company [14] and uses a laser camera to capture images. We shall refer to

images captured using this system as HRA images (HRA for Heidelberg Retinal Angiogram). Zeiss and

HRA images differ with respect to size and quality, which is discussed next.

(a) (b) 

Figure 2.4. (a) A typical Zeiss image. (b) A typical HRA image.

2.4.1. HRA images

HRA images are of size 512 × 512 pixels and are commonly corrupted by sandy/grainy noise. The
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laser camera of the HRA system can penerate through the retinal layer and image the choroidal layer.

Because of this, the choroidal capillary network can also be seen through regions of CNP in the image.

A sub-sampled example of an HRA image is shown if Figure 2.4(b).

2.4.2. Zeiss images

The Zeiss images are of size 1280 × 1024 pixels.They are much less noisy as compared to HRA images,

and have a smooth texture.A sub-sampled version of a Zeiss image is shown in Figure 2.4(a).The retinal

regions are captured within a circular region as can be seen in the image. This circle corresponds to the

aperture of the camera of the Zeiss the imaging system.The choroidal capillary network,which is visible

through regions of CNP in the HRA images, is not visible in Zeiss images as the Zeiss system uses an

optical camera.

2.5. Problems in retinal angiogram image analysis

Most retinal images suffer from defects which are patient dependent. In a few rare cases, the defects

are also caused due to the limitations of the imaging system. Apart from these defects, there are many

other problems which an FFA image analysis system has to tackle in order to deliver reliable results

over a wide variety of images. Such problems, which are relevant to this thesis, are discussed in the

following sub-sections.

2.5.1. Non-uniform illumination

There are many practical issues, such as the amount of dilation of the patient’s eye, patient’s eye move-

ment etc., which can lead to images having spatially varying illumination. Apart from practical difficul-

ties, there is a fundamental problem which can lead to non-uniform illumination, namely, the curvature

of the retina.Because of this inherent curvature, the images capturing the peripheral regions of the retina

are poorly illuminated. Likewise, images of the central regions of the retina are poorly illuminated at

the peripheries.A detailed treatment of the problem of non-uniform illumination, including solutions, is

presented in Chapter 4.

2.5.2. Variation in image appearance across patients

Each patient’s eyes are different and hence, the maximum achievable dilation varies from patient to

patient.Different degrees of dilation leads to different levels of illumination of the retina across patients.

Moreover, few patients have diseases like the cataract which obstructs the path of the light into the retina.

Such an obstruction leads to dullness and poor illumination of the captured image even if the degree of

dilation of the pupil is adequate.
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2.5.3. Different pathological regions have similar appearance

Blood clots and regions of CNP, both appear as dull/dark regions. They differ in a very subtle fashion

and in most cases do not differ in appearance at all. The distinction in such cases is made based on not

just the intensity values and texture, but also on the surroundings of these regions. Another example of

two different pathologies having same appearance are microaneurysms and small hemmerhages. They

both appear as small, excessively bright, disk like objects.

2.5.4. Dependence of the quality of the image on the time elapsed after the injection of the dye

As mentioned earlier in Section 2.3, the injected dye leaks (or effuses) out through the ruptures and weak

vessels in the retina. This leaking dye creates a bright white blot on the image. The size of the blot is

dependent on the amount of dye effused, which in-turn depends on the time elapsed since the injection

of the dye. Apart from leakage from ruptures, the dye also effuses out from the microaneurysms and

the normal vasculature. Hence, a late image (late in the sense that the image was captured after a long

time after the injection of the dye) appears cloudy with bright white regions around ruptures and

weak vessels.

2.5.5. Corruption by noise

Most imaging systems are not ideal and the images obtained from them are commonly corrupted by

noise. The amount of noise added depends on the imaging technique used. In case of FFA images, the

laser camera of the HRA system adds much more noise than the optical camera of the Zeiss system.

Noise affects the textural appearance of the various parts of the retina and can lead to wrong diagnosis

by both computer based systems as well as retina experts.

2.6. Summary

A retinal image is captured through the pupil in the human eye. A raw retinal image is not sufficient to

trace the blood path and one requires an retinal angiogram image for this purpose. Angiogram images

of the retina are obtained after injecting a flourescent dye into the patients body. Though the imaging

conditions are clinically controlled, retinal angiogram images (or FFA images) suffer from many

problems. These problems induce defects into the images and pose various challenges for an FFA image

analysis system. The system needs to solve these problems and incorporate analysis techniques which

are insensitive to the induced defects. In the next chapter, we propose such a framework for FFA image

analysis, using which robust disease detection systems can be built.
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3.1. Introduction

An image analysis system is typically broken down into many modules with each module processing

the image sequentially at different levels. The role and design of the modules depends on the particular

domain of interest (which in this thesis is retinal angiogram images) and the desired output. Ideally, the

system should be designed such that the processing and analysis in each module is done in a progressive

manner, with the last module in the sequence yielding the desired information. With such a design, the

specifications and role of the modules can be crisply defined, leading to independent and focussed

design of each module. In this chapter, we propose such a modular framework for retinal angiogram

image (FFA image) analysis.

3.2. Framework

Commonly, a retinal angiogram image analysis system aims to extract an objective measure of the extent

and severity of a particular disease of interest. Such systems are built to serve as diagnostic aids. They

can either be automatic systems which perform a complete diagnosis without the help of an expert, or

can be semi-automatic systems which have a provision to let an expert correct their results.

An analysis system will have to deal with the external problems mentioned in Section 2.5. These

problems can be solved in three ways:

1. The incorporated analysis techniques are designed in such way that they are insensitive

to variations caused by these problems. This is an ideal case which is hard to achieve in

practice.However, if one can come up with such analysis techniques, then the system can

be made completely automatic.

2. The analysis techniques have an inbuilt parameter which deals with these problems.

Example of such a parameter is the size of the mask in mask-based analysis techniques

which can be varied to result in the desired amount of noise rejection. A system incor-

porating such techniques should be made semi-automatic so that an expert can set the

desired values of the parameters.

10
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Raw FFA image

Pre-Processing

1. Illumination Correction
2. Noise Filtering

Retinal Structure Analysis

1. Detection of Optic Disk

2. Detection of Macula
3. Detection of Vasculature

Disease Analysis

1. Detection of MAs
2. Detection of CNP

Classification

1. Artificial Intelligence

2. Pattern Recognition

3. Machine Learning

Quantified measure of the

extent of a disease

Figure 3.1. A block diagram of a typical retinal angiogram image analysis system.

3. A separate pre-processing module should be incorporated into the analysis system. This

module should solve some or all of the problems, independent of the kind of analysis

technique used. A system incorporating such a module can either be made completely

automatic or can be made semi-automatic.

In general, image analysis techniques are developed using a certain model (heuristic or analytical) for

the features of interest. An efficient analysis technique will have to be insensitive to variations in the

features, such as shape, size, etc. Adding the external variations, induced by the problems mentioned in
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Section 2.5, will further compound the problem making the design of the analysis techniques harder. If

a system is designed such that the external problems are solved in a separate module before an analysis

of the images, then the design of the analysis techniques need not take the external variations into

account. Hence, we propose such a framework for retinal image analysis wherein there exists a separate

pre-processing module before an analysis of the image. The block diagram of the complete framework

is shown in Figure 3.1. Addition of a pre-processing module is same as following the option 3 from the

above list. Moreover, it allows the analysis system to incorporate options 1 and 2, if possible/required.

An FFA image can be considered to have two different kinds of features namely, a) Retinal Structure

Features and b) Disease Features. Retinal Structure features refer to sub structures of the retina.

Examples of such features are optic disk, blood vessels, macula etc. Disease features are those which

occur due to the damage caused by a retinal disease. Examples of such features are regions of CNP,

microaneurysms etc. An analysis of FFA images will either extract the retinal structure features, or the

disease features (or disease regions). Hence, following the pre-processing step is a structure analysis

module or a disease analysis module (see Figure 3.1). Optionally, a disease analysis module can use the

information extracted by the structure analysis module. This is indicated by an arrow from the structure

analysis module to the disease analysis module in Figure 3.1. Ideally, the disease analysis module should

aim to detect all candidate disease regions (in the rest of the thesis, the phrases ‘disease features’ and

‘disease regions’will be used interchangeably).

An image analysis technique is based on an analytic property of the feature of interest. It generally does

not make use of higher level knowledge. Hence, the features detected after an analysis step need not all

be the desired features.The analysis step should be followed by another step which validates the detected

features. Specifically, this step should classify the detected features into two sets, true positives or false

positives. This classification step is indicated as the last step in Figure 3.1.

In the following subsections, we discuss few of the possible contituents of the various modules in

context of the work presented in this thesis.

3.2.1. Pre-processing module

The pre-processing module typically consists of operations such a noise removal, illumination

correction etc. In the case of Zeiss images, there exists another important pre-processing operation. The

retinal regions in these images are captured within a circular aperture. In order to confine operations

to this circular area, the first processing step is to calculate the center and radius of this aperture. In this

thesis, we present two different pre-processing operations: 1) Extraction of the center and radius of the

circular aperture in Zeiss images (addressed in Appendix B); 2) An Illumination correction technique

for any FFA image (addressed in Chapter 4).
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3.2.2. Retinal structure and disease analysis modules

Retinal structures of interest in an FFA image are the optic disk, blood vessels, macula etc. In this thesis,

detection of blood vessels is addressed in Chapter 5. Diseased regions of interest in an FFA image are

regions of CNP,microaneurysms etc. In this thesis, detection of microaneurysms is addressed in Chapter

6, and detection of regions of CNP is addressed in Chapter 7.

3.2.3. Classification module

The regions extracted by the disease analysis module are candidate regions affected by a particular

disease. As mentioned earlier, these regions need not all be true diseased regions. The classification

module classifies these regions into true diseased regions and non-diseased regions.The techniques used

in this module are typically formulated using principles from fields like pattern recognition, machine

learning, and artificial intelligence. The work presented in this thesis pertains only to image analysis

techniques. Classification of candidate regions is beyond the scope of this thesis.

3.3. Building an FFA analysis system

Based on the various needs of an FFA analysis system, a modular framework was proposed in the

previous section. Often, a system need not make use of all the modules. Depending on the formulation

of the analysis techniques and the desired output, one can opt not to use one or more of the modules in

Figure 3.1.On the other hand, every system will have to incorporate a pre-processing module to perform

illumination correction or noise filtering. In this section, we present few examples of construction of

FFA analysis systems using the proposed framework to illustrate when and how one would use the

different modules.

3.3.1. System for detection of microaneurysms

As mentioned in Section 2.3, microaneurysms appear as tiny disk like objects in an FFA image. Hence,

locating disk like objects will detect all candidate microaneurysms in an FFA image. An analysis

technique which detects disks will form a part of the disease analysis module. However, the detected

disks will have to be validated as true microaneurysms and false microaneurysms. This validation has

to be done by a classification module. These steps do not require the structural information of the retina,

and hence, a structural analysis module is not required. Only three modules: the pre-processing module,

disease analysis module and the classification module will form the complete analysis system.

3.3.2. System for detection of regions of CNP

A CNP detection system should first identify the candidate regions of CNP. This is a function of the
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disease analysis module. Next, these candidate regions have to be validated by the classification module

as true diseased regions and false diseased regions. The classification can be done using the guiding

principle that a region of CNP has to be bounded by prominent vasculature on at least one side. Hence,

the classification module can make use of the structural information of the retina, which in this case is

the location of blood vessels. Therefore, the analysis system has to incorporate all the four blocks of the

proposed framework.
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4.1. Introduction

Most retinal images suffer from non-uniform illumination despite the controlled conditions under

which imaging takes place. Some of the reasons for this were briefly mentioned in Section 2.5. They are

repeated here for convenience.

a. The retina is a curved surface and hence all the retinal regions cannot be illuminated

uniformly.The pupil through which the retina is illuminated is at the center of the eyeball

and hence, the amount of light illuminating the peripheral regions of the retina is much

less compared to the the central regions.

b. The imaging is done with the patient’s pupil dilated and the degree of dilation is highly

variable across patients.A wider pupil will allow more light to enter the patient’s eye and

hence illuminate the retina better.

c. The bright flash-light used to illuminate the retina makes the patient move his/her eye

away from the veiw of the camera involuntarily.

d. Presence of other diseases such as cataract can block the light from reaching the retina.

Most computer based image analysis techniques require tuning of parameters to suit a particular appli-

cation and feature of interest. If the image appearance/properties vary widely across different images,

the tuning of these parameters will have to be done for every image leading to a loss in robustness of the

analysis system. Correcting the effects of non-uniform illumination before performing an analysis will

alleviate the problem of parameter tuning and increase the robustness of the analysis system. Similarly,

removing the effects of non-uniform illumination can also improve disease diagnosis by human experts.

Hence, correcting the effects of non-uniform illumination is important for the analysis of FFA images

by both human experts as well as computers.

The desirable characteristics for an illumination correction (IC) technique are as follows.

1. IC is a low-level technique and should not depend on high-level information such as

the knowledge of the location of the sub-structures of the retina. This is because, the

extraction of sub-structures is generally a higher level processing step and is influenced

15
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by the variation in illumination.

2. IC should be performed without any manual intervention for parameter tuning.

3. IC should not affect the fidelity of the image as this can adversely influence diagnosis by

human experts.

In this chapter, we present an IC technique which is based on modelling the illumination as a multiplica-

tive effect on the original image and has the desired characteristics listed above. Before presenting this

technique, we shall present a brief review of common techniques for IC.

4.2. Background

Images suffering from non-uniform illumination have regionswhich are poorly illuminated having a dull

appearance.Contrast stretching [10] techniques are commonly used to remove the dullness from images.

However, to remove the effect of non-uniform illumination, a contrast stretching technique cannot be

applied to the entire image as the histogram of such images already spans the entire range of intensity

values.A stretch in contrast would brighten the regions having good illumination and darken the regions

with poor illumination, degrading the image further. To overcome this problem, the effect of non-uni-

form illumination is removed using adaptive contrast stretching techniques [10] [36]. An example of

such a technique is adaptive histogram equalisation [10]. It is a moving window operation which replaces

the center pixel value with the corresponding intensity after a histogram equalisation applied to the pixels

within the window.Using a window of the optimum size, one can use this technique to remove the effect

of non-uniform illumination.However, the resulting image has an artificial appearance with a ‘halo’arti-

fact inroduced around large objects.Hence, an adaptive contrast stretching technique is unsuitable when

the target image is to be used for diagnostic purposes. An example of applying histogram equalisation

and adaptive histogram equalisation to a sample image is shown in figure 4.1.

Another popular technique to remove the effect of non-uniform illumination is homomorphic filtering

[10]. Here, the effect of illumination is modelled as a multiplicative degradation:

I = I0 × L (4.2.1)

where I0 is the image without illumination degradation,L is the degradation function, and I is the degrad-

ed image. To convert the multiplicative effect into an additive effect, logarithm is applied on both sides

of the above equation. Assuming L to be a slowing varying phenomenon, its effect is removed by su-

pressing the low frequency content in the obtained log-transformed image. The image with illumination

variation supressed is then obained by taking an anti-logarithm.This technique is typically implemented

in the frequency domain. However, in the case of Zeiss images, the black boundaries outside the circular

aperture will corrupt the spectral information. In order to avoid this, homomorphic filtering needs to be
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implemented in the spatial-domain.

An alternative approach to estimate the slowly varying function L is to blur the corrupted image. The

blurring operation should blur the corrupted image so as to retain only the illumination variation. Ihe

corrected image can be obtained by dividing the corrupted image with this estimate. This obtained

result is called the ‘Self-Quotient Image’ and has been proposed as a robust technique for illumination

correction of face images [36] [32] [33].

Though homomorphic filtering and self-quotient image remove the effect of non-uniform illumination,

there is no control on the level of illumination (or the brightness) in the resulting image.They commonly

have to be followed by brightness and contrast operations in order to achieve an optimum level of

illumination and contrast [36]. Moreover, they affect the fidelity of the original image as they reduce

the illumination of large and bright objects. This is because, a large bright object will be considered as

a region of excessive illumination and will be corrected so as to reduce the illumination. In the case of

FFA images, the optic-disc and hemmerhages would be the compromised structures.

Successfull illumination correction of FFA images has been proposed in [5]where a parametric bi-cubic

model for the illumination function is proposed. The Parameters are estimated using 25 sample points

on the FFA image. These points cannot lie on regions of the retina which are inherently dark (like the

macula), or are inherently bright (like the blood vessels). To avoid this, the IC operation is preceded

by detection of macula and blood vessels. Another technique which uses the vasculature in retinal

images to perform an IC has been proposed in [13]. The assumption here is that the illumination along

the prominant vasculature should ideally be uniform throughout the image. However, both the above

techniques ([5] and [13]) use the locations of the vessels and/or macula, which is undesirable as stated

in Section 4.1.

The effect of illumination can alternatively be modeled as an additive degradation as follows.

I = I0 + L (4.2.2)

Here again, L can be estimated in the similar fashion, as in the case of self-quotient image, by blurring

the corrupted image. The corrected image can then be obtained by subtracting the blurred image from

the original image (The intensity values of obtained result will have to be rescaled to span the standard

range of integer values from 0 to 255). However, the resulting image generally suffers from poor

brightness and contrast, as in the case of results obtained with self quotient image based technique and

homomorphic filtering.

In the next section, we present an improved technique for IC of retinal angiogram images which is

based on the self-quotient image technique. It does not involve any parameter setting and has all the

charateristics of an ideal IC technique listed in Section 4.1.
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(a) 

(b) 

(c) 

(d) 

Figure 4.1. Examples of Histogram Equalisation and Homomorphic Filtering. (a) Original Image (b) After Histogram
Equalisation (c) After Adaptive Histogram Equalisation with a 25 × 25moving window (d) After Homomorphic Filtering

4.3. Modified quotient-image based illumination correction

The technique we propose assumes that the illumination degradation can be modeled as a multiplicative

effect (equation 4.2.1). The illumination variation is estimated, as in the case of self-quotient image
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based technique, by blurring the corrupted image. However, the degradation function is estimated in a

slightly different fashion so as to achieve ideal illumination and optimum contrast.

Let I denote the corrupted-image function, Is the blurred-image function, I0 the corrected image

function, and L the degradation function. Let the location of a pixel be (x, y) and l0 be the ideal desired

level of illumination. The degradation function is a measure of the degree by which the illumination

level at pixel location is lower than the ideal illumination level. Hence, it is estimated as follows.

L(x, y) = {Is(x, y)
l0

if Is(x, y) < l0

1 if Is(x, y) ≥ l0

(4.3.1)

Using the this estimate, the corrected intensity value of a pixel at (x, y) is obtained as:

I0(x, y) = {I(x, y) ×
l0

Is(x, y)
if Is(x, y) < l0

I(x, y) if Is(x, y) ≥ l0

(4.3.2)

As can be observed from equation 4.3.2, a pixel where the estimated illumination is greater than the

ideal illumination value is not corrected. This ensures that the regions which are inherently bright,

like the optic-disk, hemmerhages, etc., are not wrongly classified as regions of excessive illumination

and corrected accordingly. When the estimated illumination value is less than the ideal illumination

value, scaling by
l0

Is(x, y)
ensures that regions with illumination less than the l0 are elevated to the ideal

illumination value. Moreover, contrast at such a pixel is ‘improved’ by a factor of
l0

Is(x, y)
. Hence, the

propsed IC technique removes the need for subsequent brightness and contrast operations, as required

in the case of quotient-image based technique and homomorphic filtering.

4.4. Results and discussion

The proposed technique was implemented using a value of 120 for l0 (see equations 4.3.1 and 4.3.2). It

was selected based on the observation of the well illuminated regions over a number of images. Owing

to the large size of the images, the blurring operation was performed on a subsampled version of the

original image to achieve faster processing. The images were reduced to one-fourth their dimensions

and blurred using a Gaussian-mask of size 30 × 30. The resulting image was upsampled, one level at a

time, while blurring the image using a Gaussian mask of size 5 × 5 at each upsampled level.

The results of applying the self-quotient image technique, and the proposed technique using the above
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Figure 4.2. Results of applying the self-quotient image technique and the proposed technique. (a) An original Zeiss image. (b)
An original HRA image. (c)Zeiss image corrected by self-quotient image technique. (d) HRA image corrected by self-quotient
image technique. (e) Zeiss image corrected by the proposed technique. (f) HRA image corrected by the proposed technique.

mentioned parameters, are shown in Figure 4.2. Though the self-quotient image technique removed the
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variation in illumination, the images have a dull appearance.Moreover, the intensity of the hemmerhage

in the HRA image has been reduced by the self-quotient image technique. Both these drawbacks are

absent in the results obtained using the proposed technique.

The value for l0 and the sizes of the masks for blurring the image are fixed for all images obtained using

a particular system (in our implementation, we have used the same set of parameters for Zeiss as well

as HRA images). They need not be tuned for every image, and hence, the technique does not need any

manual intervention for successfull IC of FFA images. Moreover, it does not use the location of other

parts of the retina and does not affect the fidelity of the image.Hence,we can conclude that the proposed

technique satisfies all the characteristics of an ideal IC technique listed in Section 4.1.

Though the proposed technique and discussion in this chapter pertained only to FFA images, the

techniques can also be applied to illumination correction of colour retinal images.For this, the IC should

be performed on the green channel of the colour images, and the corrections should be carried over to

the red channel. We do not discuss the IC of colour retinal images in detail as it is beyond the scope of

this thesis.
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5.1. Introduction

Every part of the human body requires a healthy supply of blood for proper functioning. Blood is the

transport system by which oxygen and nutrients reach the body’s cells, and waste materials are carried

away. Lungs purify the blood by removing the waste materials and through re-oxygenation. Pure and

oxygenated blood is pumped to various parts of the body by the heart. At one end, blood leaves the heart

through large vessels called the arteries, and at the other end, it reaches body cells through a network

of microscopic vessels called the capillaries. Impure blood is carried back to the heart by another

set of vessels called the veins. The heart, lungs, arteries, veins and the capillaries, together with blood

constitute the circulatory system of the human body. The arrangement of the blood vessels - arteries,

veins and capillaries, is called vasculature. In this chapter, we focus our attention on the detection of

prominant vasculature from FFA images.We shall use the term ‘Blood Vessels’to refer to the prominent

vasculature visible in an FFA image.

In general, the health of the retinal vasculature provides a vital cue to the patient’s health. Diseases of

the retina, like the DR, affect the structure and functionality of the blood vessels in the retina.The degree

of change in the structure and functionality directly indicates the extent of the disease. Typically, the

vessel calibre [26], tortuosity [31] and ‘beadyness’[29] are indicators of the extent of the damage caused

by any particular disease.

Information about the blood vessels is also of use for image analysis. It can be hypothesized that regions

of CNP (see Section 1.1 and Chapter 7) are bounded on at least one ‘side’ by prominant vasculature.

Hence, an image analysis system designed to detect CNP can use the location of the vasculature to

validate the detected regions. Blood vessels can also be used in constructing of retinal montages as they

serve as efficient landmarks for image matching [22] [8]. Hence, detection of blood vessels is important

for both disease diagnosis as well as computer aided image analysis of FFAs.

5.2. Background and related work

When an FFA image is visualised as a surface in 3D space, blood vessels form topographical ridges.

Hence, the problem of blood vessel detection can be formulated as an image analysis problem of ridge

detection.Most techniques in literature use such a formulation to detect blood vessels from FFA images.

One of the first attempts to detect blood vessels assumes that the ridges (or the blood vessels) have a

22
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Gaussian profile, and detects them using matched filters [30]. The matched filtering is performed using

1D Gaussian templates of length fifteen pixels along six different orientations (twelve different direc-

tions). The maximum response from these six filters is thresholded to obtain the blood vessels. Hoover

et al.[24]modified this technique, using an improved thresholding scheme, to increase the detection rate.

However, both these techniques detect the entire thickness of the vessels and not the medial lines. The

techniques which detect the entire thickness will have be followed by a another operation to locate the

medial lines.

Medial lines are more useful than the entire thickness as they assign a unique location, and define a

unique orientation, of the blood vessels. Can et al. [26] proposed an automated vessel tracing algorithm

to detect the medial lines of blood vessels. The medial lines are traced by traversing along the local

orientation. Initial seeds for the tracing procedure are obtained by locating intensity maxima along

the horizontal and vertical directions. The orientation of the vessel at a given seed pixel is determined

using eight different oriented 1D Gaussian templates, similar to the procedure in [30]. Though this

technique can detect a wide range of ridge profiles, the template matching operations for eight different

orientations make it computationally expensive.

Apart from the above techniques, the general problem of ridge detection has been approached in the

past using geometric properties of image surfaces [12] [19] [27] [9] [18]. To note specifically, curvature

of the ‘image surface’ has been used to detect ridge like features from digital images. Jana and Klein

[15] use such an approach, together with morphological techniques, to detect blood vessels in retinal

images. Maintz et al. [19], Eberly et al. [9], and Lopez et al. [18] use examples of different ridge profiles

to illustrate the superiority of the curvature based techniques for ridge detection over other techniques.

The complete scope of these techniques can be determined theoretically and is presented in Appendix

D. Because of their superiority, in this chapter we discuss curvature based ridge detection techniques

in detail and present a novel technique for the estimation of surface curvature. An algorithm based

on this estimate, for the detection of blood vessels at a single scale as well as at multiple scales is

also developed.

5.3. Ridge detection from curvature of the image surface.

Curvature based ridge detection techniques are based on the fact that medial lines of ridges are charac-

terised by high magnitudesof curvature along the direction perpendicular to the ridge.A technique using

the curvature information will require an efficient algorithm to estimate the surface curvature. Monga

et al. [21] proposed a computational algorithm based on the differential geomtery of image surfaces to

detect ridges.Here,medial linesof ridgesare located as the points of directional maxima of the maximum

principle curvature (MPC) of the image surface [25]. Calculation of MPC requires techniques which

estimate the first and second directional derivatives of the image function and is a computationally an

expensive operation. In this section, we propose a novel technique for curvature estimation and develop
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an algorithm for ridge detection using this estimate. Computationally, this technique is equivalent to the

derivative estimation step of the Monga et al.algorithm.However, it does not involve any further calcula-

tions, unlike in the case of Monga et al.’s algorithm where one has to calculate MPC using the estimated

derivatives. This makes our algorithm computationally more efficient than the Monga et al. algorithm.

5.3.1. Surface Tangent Derivative: A novel ppproach to curvature estimation

The curvature at some point on the image surface (see Appendix A) is a measure of the ‘bend’ in the

surface along a particular direction. Because of this direction specific nature of curvature, one can

estimate the curvature along a particular direction by estimating the curvature of the 1D profile of the

image intensity values along that direction. In this section, we present a technique for estimation of the

surface curvature of 2D digital images using such an approach.Before presenting the technique,we shall

first review the definition for curvature of a 1D function.

Let y = f (x) be a 1D function. Let the tangent at a point P : x on this function make an angle θ with

the x-axis as shown in Figure 5.1. If dl is the differential arc length at the point P, then the curvature of

the function f (x) at this point is defined as:

κ(x) = dθ
dl

= dθ

√ 2dx + 2dy
=

dθ
dx

√1 +
2(dy

dx)
(5.3.1)

Since θ is the angle made by the tangent with the x-axis, it can be computed as:

θ = −1tan (dy
dx) (5.3.2)

Hence, dθ
dx

can be computed as

dθ
dx

= d
dx

⎡
⎢
⎣

−1tan (dy
dx)⎤⎥⎦ =

2d y
2dx

1 +
2(dy

dx)
(5.3.3)

Substituting the above expression in equation 5.3.1, we get:
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Figure 5.1. Illustration of curvature of a 1D function.

κ(x) =

2d y
2dx

3
2⎡

⎢
⎣
1 +

2(dy
dx) ⎤⎥⎦

(5.3.4)

The feature specificity of the curvature measure can be understood by considering the properties of

the derivatives of the profile function at the medial points. According to Haralick [12], medial lines

of ridges are loci of points where the second directional-derivative of the image function is a negative

minimum (which in other words is to say a magnitude maximum with a negative value). Moreover, the

first derivative of the profile function vanishes at the medial points. These two properties are captured

simultaneously by the curvature expression in equation 5.3.4. At a medial point, the numerator of this

expression attains a magnitude maximum while the denominator attains a magnitude minimum. Hence,

the curvature measure will peak sharply at the medial points of ridge profiles.

The expression for dθ
dx

in equation 5.3.3 will also peak sharply at the medial points of ridge profiles

for the same reasons as mentioned above. However, because of the lower power of the denominator in

this expression, the feature specificity of this measure will be slightly lower as compared to that of the

curvature measure.However, for most image processing/analysis applications, an accurate evaluation of

the curvature is not neccessary and an estimate which directly follows the correct value of curvature is

sufficient. To detect ridges for example, it is enough if an estimate is approximately as feature specific

as the curvature measure. Hence, the technique we propose calculates the value of dθ
dx

as an estimate of

the curvature measure and not dθ
dl

. As we shall see later in this section, this expression lends itself for a

simple and a computationally efficient implementation.
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dθ
dx

is the derivative of the angle made by a tangent with the x-axis. In the case of 2D images, this

corresponds to a derivative of the angle made by a surface tangent line with the base-plane, in some

direction. Since our estimate is not the true curvature, and since it is the derivative of the angle made by

a tangent, we call it as the Surface Tangent Derivative (STD). At any given point on the surface, an

STD measure can be obtained for every possible direction, measuring the bend in the surface along that

particular direction. However, for a function defined over a discrete grid (as is the case with 2D digital

images), it is possible to evaluate the STD measure only along a finite number of directions. In general,

it is sufficient if the a curvature measure is obtained for the four different directions corresponding to

the 8 neighbours of a pixel. These four directions are specified in the set Ω = ⎧⎨
⎩

°− 45 , °0 , °45 , °90 ⎫⎬
⎭

(see

equation C.1 in Appendix C).

The proposed scheme calculates the STD measure using mask operations on the image intensities.

Incorporating the mask size and direction information into the notation, the STD measure at a pixel

location (n,m), along a direction α, estimated using a mask of size n × n, is denoted by
n
Κ
α
(n,m) in the

rest of this thesis.

Using equation 5.3.3, the angle made by the surface tangent with the base-plane at a pixel (n,m), along

the direction α in the base-plane, is calculated as:

Ψ
α
(n,m) = −1tan ⎡

⎢
⎣
G
α
(n,m)⎤⎥

⎦
(5.3.5)

where G
α
(n, m) is the first directional-derivative (gradient) of the image function along the direction α

in the base-plane. This is calculated using the generalised Sobel masks (Appendix C) as follows:

G
α
(n,m) =

w

∑
i= −w

w

∑
j= −w

⎧
⎨
⎩

N
M
α
(j, i) I(n + j,m + i)

⎫
⎬
⎭

σN
(5.3.6)

where N × N is the size of the generalised Sobel mask, w = N − 1
2

, and σN is the sum of the positive

elements of the mask
N
M
α

. The STD value is nothing but the derivative of the angle Ψ
α

which can be

calculated as follows:

N
Κ
α
(n,m) =

k

∑
i= −k

k

∑
j= −k

⎧
⎨
⎩

2k+1
M
α
(j, i) Ψ

α
(n + j,m + i)

⎫
⎬
⎭

σ2k+1
(5.3.7)

The directional-derivative is equation 5.3.7 is calculated using a mask of size (2k + 1) × (2k + 1). Since

the derivative in equation 5.3.6 can be performed using a mask of variable length, once can keep the

value of k fixed and achieve the desired amount noise filtering by choosing an appropriate value for N.
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Hence, the overall operation to calculate STD can be considered to involve only one parameter N. For

ease of reference, this parameter is called as the ‘mask size’ for calculating STD.

Next we show how STD can be used to perform ridge detection.

5.3.2. Ridge detection using STD

The curvature measure at a ridge pixel is a maximum in some direction.Hence, ridges can be detected by

locating pixels where the magnitude of STD is a maximum along some direction.The magnitude of STD

at a ridge pixel is the strength or measure of ridge-ness at that pixel. Local magnitude maxima of STD

can also occur at locations of valley pixels.However, a ridge is characterised by negative values of STD,

while a valley is characterised by positive values of STD. The complete algorithm for ridge detection is

as follows.

Ridge Detection Algorithm

Let I(n,m) be the image function. Calculate the STD for four different directions as
N
Κ
α
(n,m),

α ∈Ω (equation C.1) with a mask of size N as in equation 5.3.6. Let tΚ be the threshold for

ridge strength. For every pixel location (n, m), do the following:

1. Evaluate | Κmax | = max
⎧
⎨
⎩ | N

Κ
α | | α ∈Ω

⎫
⎬
⎭

and the corresponding orientation αmax.

2. If | Κmax | > tΚ and
N
Κ
αmax

(n,m) < 0, then:

i. Check if | Κmax | is greater than | N
Κ
αmax | of the neighbouring pixels

corresponding to the direction αmax. If yes, then mark the pixel (n, m) as

a ridge pixel. Else, do nothing.

For example, if αmax =
°− 45 , then check if

| Κmax | > | N
Κ
αmax

(n − 1,m + 1) |
and

| Κmax | > | N
Κ
αmax

(n + 1,m − 1) |
If yes, then mark the pixel (n,m) as a ridge pixel. Else, do nothing.

Else: Do nothing.
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By selecting the right value of the threshold tΚ, one can put a lower limit on the strength of the detected

ridges. This threshold also ensures that noise does not wrongly classify non-ridge pixels as ridge pixels.

In order to obtain better continuity in the detected ridge lines, one can use two different threshold values

and perform hysteresis thresholding [3]. For ease of reference, the mask width N, used to calculate the

STD values, will be called as mask size of the blood vessel detection algorithm.

5.3.3. Multiscale ridge detection

In practice, it can be observed that blood vessels occur with varying cross-sectional widths. Hence,

applying the algorithm proposed in the previous section with a fixed mask size will be unable to detect

all ridges (of different widths). In order to detect vessels with different widths, the algorithm should be

applied repeatedly, using masks of different sizes, and the obtained results should be collated to obtain

the final result. In this section, we present an efficient scheme for such a collation operation.

The collation scheme is based on the fact that in an FFA image, thin vessels branch out of thicker vessels.

When the ridge detection algorithm is applied with a small mask, these vessels are detected along with

many other noisy structures. However, when a larger mask is used to detect ridges, noise is suppressed

and only thick vessels are detected. Using these observations, the collation scheme can be formulated

as follows.

Multiscale Collation Scheme

Let λn denote the set of ridge pixels detected using a mask of size n × n.Let Λ be the complete

set of ridge pixels after collation of results obtained using different mask sizes. Let λn1
, λn2

,
. . . , λnk

be the ridge pixels obtained with different mask sizes such that n1 < n2 < . . . < nk.

Then,Λ is obtained as follows.

1. Λ = λnk

2. For i = k − 1 to 1, do the following.

i. Λ = Λ ∪ ν , where ν is the set of pixels in λni
8-connected to at least one pixel in

Λ.

ii. Repeat step (i) until no further pixel is added to Λ.
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The requirement for multiscale detection of ridges is independent of underlying single scale ridge de-

tection scheme. Ridges will have to be detected at multiple scales if one is desirous of detecting vessels

of all possible cross-sectional widths. The above technique collates medial lines of ridges obtained at

different scales and does not make use of the curvature measure. Hence, it can also be applied to results

obtained using other techniques of ridge detection which do not depend on the curvature measure.

5.4. Results and discussion

The proposed ridge detection algorithm and collation scheme were applied on a test image using the

STD values calculated along four directions specified in the set Ω = ⎧⎨
⎩

°− 45 , °0 , °45 , °90 ⎫⎬
⎭

(see equation

C.1). The value of k in equation 5.3.7 was fixed at 1. The ridge detection was performed using masks

of sizes varying from 5 × 5 to 11 × 11. The obtained results were collated using the proposed collation

scheme. The results with masks of sizes 5 × 5 and 11 × 11, and the result after collation are shown in

Figures 5.2 to 5.5. These figures illustrate the effect of the mask size on the quality of the results. For

instance, when ridges are detected using a mask of size 5 × 5, many noisy structures are also detected

along with the blood vessels (Figure 5.3). On the other hand, when ridges are detected using a mask of

size 11 × 11, the thin ridges/blood vessels are not detected (Figure 5.4). However, the problems of noise

and missing out thin vessels is solved by using the multiscale collation scheme as seen in Figure 5.5.

Though the scheme proposed in Section 5.3.3 can perform efficient collation, it misses out few of the

thin blood vessels. This happens because, the collation scheme only accumulates thin vessels which are

connected to the vessels detected using the largest mask. Hence, thin vessels for which the branching

point from thicker vessels is not present in the image, are not accumulated. This can be observed in

Figure 5.5.

The proposed ridge detection algorithm requires calculation of STD along four directions. Calculation

of STD along a direction in turn involves of calculation of two directional derivatives. Hence, calcula-

tion of STD is computationally equivalent to calculation of a second directional-derivative. Monga et

al.’s algorithm also requires calculation of second directional-derivatives [21]. However, their algorithm

requires a further calculation of the maximum principle curvature using these directional-derivates. As

the proposed ridge detection algorithm does not involve any calculations beyond the calculation of the

STD, it is computationally superior to the Monga et al. algorithm.

The presentation in this chapter pertained to detection of blood vessels from FFA images. Since blood

vessels can be modeled as topographic ridges, ridge detection algorithms was formulated. By making

suitable changes, the scope of these algorithms can be extended to detection of valleys/trenches from

digital images.
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Figure 5.2. An FFA test image.

5.5. Summary

Blood vessel detection is a function of the retinal struture analysis module of the framework proposed in

Chapter 3. In this chapter, detection of blood vessels from FFA images was addressed by formulating the

problem as a problem of ridge detection from 2D digital images. Because of their superiority over other

techniques, curvature based ridge detection techniques were used to detect blood vessels. Techniques

using the curvature measure will require an estimate of the curvature value.A novel curvature estimation

technique was proposed, using which a ridge detection detection algorithm was developed.Detection of



5.5. Summary 31

Figure 5.3. Result of detecting ridges in the test image using a mask of size 5 × 5.

ridges at a single scale cannot detect blood vessels of all cross-sectional widths. Hence, a novel scheme

was proposed, using which vessels detected at different scales can be collated efficiently.
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Figure 5.4. Result of detecting ridges in the test image using a mask of size 11 × 11.
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Figure 5.5. Result of detecting ridges in the test image using masks of sizes from 5 × 5 to 11 × 11 and collating the results
using the proposed scheme.



Chapter 6. Detection of Microaneurysms

6.1. Introduction

Most diseases of the retina alter the structure and the functionality of the vasculature in the retina. One

such disease, the Diabetic Retinopathy (DR), leads to the occurance of capillary non-perfusion (CNP)

and neo-vascularisation. CNP is a disease due to which the capillary network in parts of the retina

‘drops out’ and stops supplying blood. Neo-vascularisation on the other hand, is the growth of new

blood vessels branching out of the existing vessels. The early ‘sprouts’ of these new vessels are called

microaneurysms (MA).They are bulb-like microscopic structures occuring as small and bright circular

disks in FFA images. A microscopic image of MAs, and an FFA image with MAs are shown in Figure

6.1.

Figure 6.1. (a) A microscopic image of MAs. The larger of the MAs is marked by the letter M, while the smaller one is
indicated by an arrow. (b) An FFA image with MAs. Few of the MAs are indicated by an arrow.

The number of MAs in the retina is considered to be an indicator of the extent of damage done by DR.

Owing to the large size of FFA images, and to the huge number of MAs occuring in a typical patient

with DR, it is not possible for a human expert to get an accurate and complete count of MAs. However,

this problem can be solved by using computer aided analysis of FFA images. In this chapter, we present

such an analysis technique for detection of MAs from FFA images. Detection of MAs is a function of

the disease analysis module of the framework proposed in Chapter 3.

34
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6.2. Background

Most MA detection techniques in literature start by performing pre-processing and retinal structure

analysis operations. Pre-processing is either used for illumination correction, or for feature (which are

MAs for our current discussion) enhancement. Retinal structure analysis is commonly used in an MA

detection system for detection and supression of blood vessels in order to avoid misclassification of a

vessel pixel as an MA pixel.

Regions of MAs exhibit many properties. A general procedure to detect MAs makes use of these

properties in two steps as shown in Figure 6.2. These steps are:

1. Candidate regions are detected using one of the properties of MAs.

2. The candidate regions are then classified as MA or non-MA using another set of

properties of MAs.

With respest to the framework proposed in Chapter 3, step 1 is a function performed by the disease

analysis module, and step 2 performed by classification module.

Figure 6.2. The two stage procedure to detect microaneurysms

Spencer et al.[28]and Cree et al.[4]use the fact that the intensity profile of MAs can be modeled as a 2D

Gaussian function to detect the candidate MAs. Accordingly, a matched filtering operation is performed

on an FFA image using a Gaussian template.The filtered image is thresholded to obtain all the candidate

MA regions.Mendonca et al.[20]detect the candidate MA pixels by locating the local intensity maxima.

The candidate MA regions are then obtained by a region growing operation at these locations. These are

classified using measures such as the area, perimeter, aspect ratio, circularity, gray value statistics, etc.,

of the candidate regions.

Azeem et al. [2], and Hafeez and Azeem [11] use a different approach to detect candidate MAs. They

first detect the edges in FFA images using a Canny [3]edge detector.Then, the edges of blood vessels are

rejected using the length of the edge as a constraint. The gradients along the remaining edges are further
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thresholded to retain only the strong edges. Since MAs are circular disk-like structures, Azeem et al. [2]

use the circular Hough transform to classify the obtained strong edges. To avoid the high computational

cost involved in the computation of the Hough transform, Hafeez and Azeem used measures like the

aspect ratio, perimeter, total energy, mean energy etc., for similar classification [11].

In the next section, we present a novel technique for detection of MAs as part of the first block of the

Figure 6.2. This technique has a strong theoretical grounding unlike the other techniques in literature

which are based on heuristics.A classification of the detected candidate MAs is not presented.However,

any technique from one of the above references should serve as a good classifier.

6.3. Detection of microaneurysms from curvature of the image surface

When an FFA image is visualised as a surface in 3D space, MAs form hill like topographical features.

Hence, a hill detection algorithm can also detect MAs. In this Section, we present a hill detection

algorithm which uses curvature of the image surface to detect MAs (details of image surface can be

found in Appendix A and Section 5.3). A typical cross-sectional profile of a hill like feature along some

direction, is shown in Figure 6.3. The medial point of such a profile is also called as a ‘hill point’ or a

‘hill pixel’. In Chapter 5, we have seen that medial lines of blood vessels are characterised by maximum

curvature along a direction perpendicular to the orientation of vessel. Hill points are characterised by

maximum curvature along all directions.

Figure 6.3. Typical cross-sectional profile of a hill like feature.

The algorithm we present detects local maxima of the curvature estimate STD, presented in Section

5.3.1. We shall use the same notation
N
Κ
α
(n,m) to denote the STD measure at a pixel (n,m), along the di-

rection α, calculated using a Sobel mask of size N × N (see Appendix C and Section 5.3.1 for details).

The hill detection algorithm is as follows.



6.3. Detection of microaneurysms from curvature of the image surface 37

Hill Detection Algorithm

Let I (n , m ) be the image function. Calculate the STD for the four different orientations

α ∈Ω (equation C.1) as
N
Κ
α
(n,m)with a mask of size N using equation 5.3.7. Let tΚ > 0 be

the threshold for the curvature strength at the hill pixel. For every pixel location (n,m) , do

the following:

1. Initialise a Boolean variable isHill = true.

2. For each α ∈Ω, do the following while updating the variable isHill accordingly.

i. Check if
N
Κ
α
(n, m) is greater in magnitude than the

N
Κ
α

values of its two neigh-

bours along the direction α ,and greater in magnitude than tΚ . If yes,do noth-

ing. If no, then update the value of the variable isHill as isHill = false.

3. If isHill = true, then mark the pixel (n, m) as a hill pixel. Else, do nothing.

The above algorithm uses a threshold tΚ for the strength of the ‘hillness’ of a pixel so that the hills

detected have a certain minimum strength. This helps in filtering out noise pixels which are otherwise

prone to detection as hill pixels. For ease of reference, the width N of the mask used for calculating the

STD values will be called as the mask size of the MA detection algorithm.

6.4. Results and discussion

Though MAs are small structures, they can occur in various sizes. In order to detect MAs of all sizes, one

has to perform MA detection at different scales and combine the results obtained at each scale.However,

the collation of results from different scales is a simple accumulation task and does not require any

special care/scheme as in the case of detection of blood vessels (see Chapter 5). Detection at different

scales, using the algorithm presented in Section 6.3, can be done by using masks of different sizes.Most

FFA images are corrupted by noise. Hence, a mild noise filtering of the images may need to be done

before applying the MA detection algorithm.

In the implementation of the proposed algorithm a threshold value of tΚ = 0.95πwas used. This value

is the minimum allowed change in the surface tangent angle at a medial point. The STD values were

calculated using a fixed value of 1 for the variable k in equation 5.3.7. The initial noise filtering was

done using a Gaussian filter with mask size 3 × 3 and a standard deviation 2. The original image and the

corresponding filtered image are shown in Figures 6.4 and 6.5, respectively. The results of applying the
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MA detection algorithm with mask sizes 5 × 5 and 9 × 9 are shown in Figures 6.6 and 6.7, respectively

(the detected MAs are marked by a cross). As expected, the detection algorithm misses the larger MAs

in the image when a 5 × 5 mask is used. On the other hand, when the detection algorithm is applied

with a 9 × 9mask, only the large MAs in the image are detected. Hence, to overcome this problem, one

has to collate the results obtained at multiple scales. This can be seen in the collated result, obtained by

collating the results of MA detection with masks of sizes from 5 × 5 to 9 × 9, in Figure 6.8.

The proposed algorithm was applied on 62 HRA images and 20 Zeiss images and was found to yield

good results. Because of the high number of MAs in a given image, the obtained results were validated

visually by retina experts. Hence, we can conclude that the proposed algorithm is a good technqiue

for detection of candidate MAs. However, as can be seen in Figure 6.6, there are a few vessel pixels

which are wrongly classified as MA pixels. Hence, the algorithm has to be followed by a classification

algorithm to weed out the false detections.

6.5. Summary

Microaneurysmsare early sprouts of new blood vessels in the retina and occur as tiny disk like structures

in an FFA image. Detection of MAs is a function of the disease analysis module of the framework

proposed in Chapter 3. In this chapter, a novel curvature based technique for detection of MAs was

proposed by modelling them as topographic hills. The MA pixels were located at points where the

curvature value was a maximum in all directions. Such a technique has a theoretically strong grounding

in comparison to other techniques in literature which are based on heuristics. The proposed algorithm

was found to yield good results in the sense that all MAs in an image were detected. The results were

visually validated by retina experts.
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Figure 6.4. An FFA test image.
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Figure 6.5. Results of applying a Gaussian filter with mask of size 3 × 3 and a standard deviation 2.
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Figure 6.6. MA detection using a mask of size 5 × 5.
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Figure 6.7. MA detection using a mask of size 9 × 9.
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Figure 6.8. Collation of results of MA detection obtained using mask of sizes from 5 × 5 to 9 × 9.
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In this chapter, we present a technique for extracting regions of Capillary Non-Perfusion (CNP) from

HRA images. The technique exploits a special property of the HRA images and takes a novel approach

to image segmentation. Before we present the technique, we begin with a brief description of regions of

CNP and discuss the importance of their detection from FFA images.

7.1. Capillary non-perfusion

Capillaries are microscopic vessels which supply blood to the body tissue. The act of pumping of

blood into the body cells by the capillaries is called perfusion. Capillary Non-Perfusion (CNP) is a

disease wherein the capillary network in a region of the human retina (see Chapter 2) stops perfusing

blood. CNP can occur due to various reasons but most commonly due to diabetes. If not treated in

time, such diseased regions can grow and spread across the entire retina. When such a growth enters the

central part of the retina, which is responsible for most of the human vision (see Chapter 2), it can lead

to blindness.

The clinical procedure to detect CNP is a visual scan of an FFA image to estimate the amount of area

damaged. However, such a procedure suffers from subjectivity and is sensitive to the quality of the im-

ages obtained. A computer based analysis system can remove such drawbacks and assign an objective

measure to the extent of the disease using well defined quantification procedures. In this chapter, we

present a technique to extract and quantify regions of CNP from HRA images using computer aided

image analysis. To our knowledge, there is no work reported in literature which addresses this problem.

7.2. Properties of HRA FFA images

The laser camera of the HRA system can penetrate through the retinal layer and capture the capillary

network of the choroidal layer. Consequently, one can observe a fine-grain wooly texture, similar to the

healthy capillary network, even in regions of CNP.However, due to lack of flourescence in those regions,

they appear much darker than the healthy capillary network.

A small part of an FFA image, and its intensity profile along a horizontal line, are shown in Figure

7.1. As can be observed, the prominent vasculature in the image become ‘hills’, and the rest of the

areas become bumpy ‘valleys’ or ‘plains’, of the intensity profile. Hence, one can conclude that the

prominent vasculature are devoid of local intensity minima unlike the rest of the regions. Furthermore,

44
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it can be concluded that the prominent vasculature is devoid of any local extrema except on the medial

points which are maximum points. The reasons for the presence of extrema are the fine retinal capillary

network in healthy regions, and the choroidal capillary network in the CNP regions (see Sections 2.1,

2.2, 2.4 for more details). This property of HRA images is illustrated in Figures 7.1 and 7.2 where

sub-parts of FFA images and their extrema maps are shown. As expected, the blood vessels are lacking

in extrema except on their medial axes.

Figure 7.1. Intensity profile of a sub-part of an FFA image and the corresponding extrema map. The prominent peaks in the
intensity profile are marked by circles. The white pixels in the extrema map correspond to the extremum pixels. The extrema
map clearly illustrates higher density of extrema in the regions of CNP.

As mentioned in Chapter 2, the injected flourescene dye effuses out on to the retinal surface over time

and clouds the neighbouring regions. Regions of CNP do not receive the blood that carries the dye, and

hence are not clouded. In FFA images, the clouding of retinal regions is equivalent to smoothening of

such regions. Smoothening causes a reduction in the density of extrema in the corresponding region.

Hence, regions of CNP have a higher density of extrema as compared to regions with a healthy capillary

network. An illustrative example, showing such a difference in density of extrema, is shown in Figure

7.3. The difference can also be observed in the sub-part shown in Figure 7.1. In general, the difference
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(a) (b) 

Figure 7.2. Sample extrema map of an FFA image. (a) Sub-part of an FFA image. (b) Extrema map of the sub-part in (a).

Figure 7.3. The density of extrema in the extrema map of healthy capillary region and a region of CNP.

in the density of extrema in the CNP regions and healthy capillary network is visually noticeable only

on carefull observation. Though the difference is visually subtle, it can be exploited quantitatively to

formulate CNP segmentation algorithms. Such an approach to segmentation of CNP is presented in the

next section. An example where the difference in density of extrema is visually noticeable is shown in

Figure 7.5.
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7.3. Segmentation of HRA images

The CNP segmentation algorithm we propose is based on the properties of HRA images discussed

in Section 7.2. It exploits the fact that density of the extrema in the regions of CNP is higher than the

density of extrema in other retinal regions.The segmentation is achieved by extracting regions where the

density of extrema is higher than a certain threshold.A block diagram,of the various processes involved,

is shown in Figure 7.4. Most HRA images are corrupted by noise. Hence, the segmentation algorithm

should typically be preceded with a noise filtering operation as shown in the figure.

The various steps of the algorithm, in the order of operation, are as follows.

i. Extracting the extrema map

The first step, after the optional noise filtering operation, is to extract the extrema-map from the

FFA image. This is done my extracting all the local minima and maxima in the image. A pixel is

defined as an extremum pixel if it is greater than or equal to all of its 8-connected neighbours, or

if it is less than or equal to all of its 8-connected neighbours.

ii. Cardinality filtering

In the next step, extremum pixels lying in regions of low density of extrema are filtered out.

This is done by a procedure called the ‘Cardinality Filtering’ which is performed as follows. The

number of extrema in a certain neighbourhood around an extremum pixel is found. If this number

is greater than a threshold value η, than the extremum pixel is retained, else it is removed from the

set of extrema. Performing this operation for all the extrema extracted in the first step will retain

only those extrema which lie in regions where there is a high density of extrema. These regions

correspond to the regions of CNP in the image.

iii. Dilation

After cardinality filtering, the resultant extrema map has only those extrema which are in the re-

gions of high density of extrema. A region of CNP can be formed from a region of extrema ‘dots’

by filling in the ‘gaps’ between the dots. This is done by performing a binary morphological di-

lation.

iv. Median Filtering

The dilation operation of the previous step moves the boundaries of adjacent regions closer than

the actual perceptual boundaries. Moreover, there are few small black ‘islands’ within the regions

formed after dilation. To move the boundaries apart, and fill-up the islands simultaneaously, a

median filtering is performed on the result of dilation.

v. Region growing and boundary extraction
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Figure 7.4. Processing steps in the proposed HRA-image segmentation.

The final step extracts the regions of CNP and their boundaries from the result obtained after the

median filtering operation. The regions are extracted by a simple region-growing operation follow-

ing which the boundaries can be extracted using a gradient operation. The area of the CNP regions

is obtained from the size of the regions grown during the region-growing step. The percentage of

the area of CNP regions can be used as a quantitative measure of the extent of CNP.

To illustrate the working of the various steps, the above algorithm was applied to a sub-part of an FFA

image. The image was selected such that the difference in the density of extrema can be noticeable

visually. The results obtained after each step are shown in Figures 7.5(a)-(f). The result of extracting

the extrema-map is shown in Figure 7.5(b). One can clearly see that the healthy capillary network has

a lower density of extrema. The extremum pixels in such a region are filtered out by the cardinality

filtering operation as see in Figure 7.5(c). The result of dilation and subsequent median filtering are

shown in Figures 7.5(d)-(e). The final result, after extracting the boundaries of the regions formed after

median filtering, is shown in Figure 7.5(f).

7.4. Results and discussion

The proposed algorithm was implemented as follows. First, all local extrema were extracted using a

3 × 3window. Next, cardinality filtering was performed using a 11 × 11window and with a cardinality

number of 25. The dilation was performed using a 3 × 3 rectangular structural element. The median

filtering operation, using a 3 × 3window, was performed before the final region growing and boundary
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Figure 7.5. Results at different stages of the HRA segmentation algorithm.

extraction operations. The results of this on two HRA FFA images are shown in Figures 7.6 to 7.11. For

each FFA test image, a ground truth image, and an image with the result of segmentation are shown

in order. The ground truth was marked by a retina expert to indicate the different regions of CNP in an

image. To avoid tedious boundary marking, the different regions of CNP were marked by a white dot.

Each white dot in these images corresponds to a region of CNP around it. The white lines in the result

images correspond to the boundaries of the segmented CNP regions.

As can be observed from the results, the segmentation algorithm detects most of the regions of CNP.

However, one can observe that CNP regions of small size are missed. This happens because of the

following reason. As mentioned earlier in the chapter, the injected dye continuously effuses out the

retinal membranes. This phenomenon is absent in the regions of CNP as the dye does not reach such

regions. However, dye from the surrounding regions can cloud small regions of CNP. Consequently, the
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density of extrema in such regions will be lower than the density of extrema in larger regions of CNP

and hence, are not detected.

The proposed algorithm is based on a hypothesis that the regions of CNP have a higher density of

extrema as compared to other regions. However, such a hypothesis need not hold always. One reason is

that if the dye effusing over a healthy capillary network is negligible, then such regions will also have

a high density of extrema. Another important reason for the failure of this hypothesis is that the HRA

images are corrupted with noise and this noise corrupts even the vascular regions, leading to a high

density of extrema on the blood vessels. In such extrema maps, it will be hard for even a human oberver

to visually distinguish between a vasculature region and other regions.To overcome corruption by noise,

one could start by filtering out the noise as shown in Figure 7.4. This noise filtering will also smoothen

the minute choroidal capillary texture of regions of CNP. However, even in such cases, the extrema-map

of a CNP region and that of a region of healthy capillary network will differ in the similar fashion as

claimed in the hypothesis. This happens because the minute texture of the CNP regions is transformed

into flat regions which, by our definition of extrema from Section 7.3, form huge chunks of minima,

while the texture of a healthy capillary network is transformed into a very gradually varying, ‘bumpy’

terrain with very sparse minima and extrema. Hence, one can expect that the hypothesis can be used in

case of both noisy as well as noise free images.

The algorithm was tested on 62 HRA FFA images. Of these, 12 were provided to us initially for

understanding and algorithm development. These images were either noise free or corrupted with a

small amount of noise. The algorithm yielded good results on these 12 images. This can be observed in

case of two the test images 1 and 2 shown in Figures 7.6 to 7.11. However, the rest 50 were provided to

us on a much later date and were corrupted by large amounts of noise.The performance of the algorithm

degraded heavily on these images even after Gaussian noise filtering. An example of a noisy image (test

image 3) and the corresponding result of segmentation is shown in Figures 7.12 and 7.14. The detected

regions of CNP do not match the ground truth as the boundaries of the segmented regions cut across the

blood vessels. This happens because of high density of extrema even over the blood vessels.

7.5. Conclusion

Extraction of regions of CNP from FFA images is a function of the disease analysis module of the

framework proposed in Chapter 3. In this chapter, a novel technique for such an extraction from HRA

FFA images was proposed. Though this technique yields good results on noise-free HRA FFA images,

the performance degrades in the presence of noise. In order to use the technique on a wide variety of

images, one will have to develop an efficient noise removal technique which does not swamp the fine

capillary texture while removing the noise.Design of such a technique is not a trivial task.Alternatively,

the approach to the CNP segmentation problem can be formulated using a stochastic model for CNP

regions. Both of these approaches were considered to be out of the scope of this thesis.
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Figure 7.6. FFA test image 1.

The proposed technique exploits the fact that the choroidal capillary network is also seen through

regions of CNP in an HRA image.Hence, it cannot be used in case of the Zeiss images where the optical

camera cannot capture the choroidal capillary network. However, there is scope to apply this technique

for segmentation in other domains (non FFA images) where images have fine wooly textural patterns

similar to the texture of capillary network in an HRA FFA image.



52 Chapter 7. Segmentation of Regions of CNP

Figure 7.7. Ground truth marking of the test image 1.
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Figure 7.8. Result of segmentation of the test image 1.
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Figure 7.9. FFA test image 2.



55

Figure 7.10. Ground truth marking of the test image 2.
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Figure 7.11. Result of segmentation of the test image 2.
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Figure 7.12. FFA image 3.
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Figure 7.13. Ground truth marking of the test image 3.
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Figure 7.14. Result of segmentation of the test image 3.



Chapter 8. CNP Analyser - A tool for extraction
of regions of CNP

8.1. Introduction

A framework for retinal angiogram image (or FFA image) analysis was proposed in Chapter 3. As

mentioned in chapter 1, the most common aim of FFA image analysis is to detect diabetic retinopathy

(DR). Though DR causes two different kinds of defects namely, Microaneurysms and CNPs, detection

of CNP from FFA images forms a more important problem. This is because of two reasons: (i) Regions

of CNP can be distinguished from other regions only in FFA images. (ii) CNP occurs in the later stages

of DR and needs immediate attention. Hence, to provide a diagnostic aid to the retina experts a tool

called ‘CNP Analyser’ was built which aids in the detection of CNP and showcases the framework

proposed in Chapter 3. In this chapter, we present a description of the design of this tool.

8.2. CNP Analyser

As mentioned in Chapter 2, FFA images suffer from many problems. A disease extraction tool should

solve these problems before detecting the diseased regions. A modular framework, developed with such

a principle, was proposed in Chapter 3. The ‘CNP Analyser’ tool was built using this framework. The

various operations which have to be incorporated into a CNP extraction tool are as follows.

1. Illumination Correction

Most FFA images suffer from poor/non-uniform illumination. This problem has to be rectified by

a suitable illumination correction step in the pre-processing module.

2. Noise Filtering

Noise filtering is also a function of the pre-processing module. Noise changes the textural

appearance of the retinal regions and can lead to wrong diagnosis. Hence, it has to be removed

before a CNP extraction step.

3. CNP Extraction

The main task of a CNP detection tool is the CNP extraction operation. CNP extraction should be

performed after the illumination correction and noise fitering steps.
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Figure 8.1. A screen-shot of the ‘CNP Analyser’ tool.

4. Interactive Add-Remove facility

CNP extraction is typically performed by using an image analysis step which does not make use

of any higher level knowledge about the regions of CNP. Hence, few regions of CNP may not be

picked while other non-CNP regions may be classified as regions of CNP. As the tool is developed

with aim that it has to aid in the diagnosis of CNP,a facility to add/remove misclassificationsshould

be provided.

5. Quantification

The extent of the damage due to CNP should be quantified using some measure and displayed on

the main window after the CNP detection operation. This measure should relect the changes made



62 Chapter 8. CNP Analyser - A tool for extraction of regions of CNP

with the add/remove facility.

The screen-shot of the CNP Analyser is shown in Figure 8.1. It was developed in the C++ programming

language using the wxWidgets 2.4.2 GUI library [34]. All the above features have been incorporated.

The illumination correction step is performed using the algorithm proposed in Chapter 4. The noise

filtering step is performed using a 15 × 15Gaussian mask with a standard deviation of 5. CNP extraction

is performed using the segmentation algorithm proposed in Chapter 7. The extraction step marks the

candidate regions of CNP with a magenta tint. A retina expert can add and remove regions by clicking.

Regions removed by clicking get marked by a yellow tint, while the regions added by clicking get

marked by a red tint. The extent of CNP is quantified using the percentage of the area of the regions of

CNP and is displayed on a text label on the main window of the tool.

8.3. Performance

The tool was tested using 50 noisy images. A quantitative study of the results was not performed as this

tool was partly interactive. As expected, it falsely detects few regions and misses out detection of few

other regions of CNP. Though the number of clicks to arrive at the final result was high, retina experts

who tested the tool found that the interactive add and remove facilities were useful in removing the

shortcomings of the CNP segmentation algorithm.

The operations incorporated into the tool are implemented in a modular fashion. Hence, one can plug

in different algorithms for illumination correction, noise filtering, and CNP extraction, depending on

their choice.
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Summary

In this thesis, a modular framework for a generic retinal angiogram (FFA) image analysis system was

proposed (Chapter 3). The frame work consists of four modules, namely 1) Pre-processing module, 2)

Retinal structure analysis module, 3) Disease analysis module and 4) Classification module. Specific

instances of these modules as illumination correction (Chapter 4), blood vessel Detection (Chapter

5), microaneurysm detection (Chapter 6) and CNP segmentation from HRA images (Chapter 7), were

presented. A tool to detect regions of CNP was developed to showcase the proposed framework.

Most FFA images suffer from poor/non-uniform illumination. Illumination correction is a function

of the pre-processing module. In this thesis, a solution to the problem of non-uniform illumination

was proposed by modelling the degradation function as a multiplicative effect. It was shown that this

technique removes the effect of non-uniform illumination and adjusts the image to the right levels of

brightness and contrast, hence not requiring any high level information about the retinal structure.

Blood vessels form the most important structure features of a retina. Detection of blood vessels is

a function of the struture analysis module. In this thesis, the blood vessel detection algorithm was

formulated by modelling them as topographical ridges. Due to its ability to detect a wide range of

ridge profiles, a curvature based ridge detection algorithm was choosen to detect the blood vessels. An

efficient and elegant technique, called the surface tangent derivative (STD), was proposed to estimate

the curvature of the image surface. Single scale as well as multiscale ridge detection algorithms were

formulated using this novel estimate.

Microaneurysms are baloon shaped sprouts of new capillaries in the retina. They occur as tiny disk-like

structures in an FFA image.Detection of MAs is a function of the disease analysis module. In this thesis,

the MA detection algorithm was formulated by modelling MAs as hill-like topographical features of the

image surface. MAs were located at points were the curvature of the image surface is a maximum in all

directions. The STD value was again used as an estimate of the surface curvature.

Regions of CNP are areas in the retina where the capillary network has stopped supplying blood. They

occur as dark lesions in an FFA image. In this thesis, a novel CNP segmentation algorithm using an

interesting property of the HRA images was developed. This technique was found to perform well on

noise free HRA images. However, it suffers from high sensitivity to presence of noise in the images.

Future Work

Handling Montages
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In this thesis, the framework and the analysis techniques were proposed only for a single FFA image.

However, as mentioned in Section 2.2, the entire retina cannot be captured in one single image.Different

parts of the retina are captured in different images. These different images are then ‘Montaged’ or

‘stitched’ together to let a human expert see the big picture. Likewise, the framework and analysis

techniques should be extended to handle these montages.

One possible way to handle multiple images is as follows. The individual images have to be analysed

using the proposed single-image framework. The results obtained should then collated efficiently to

arrive at one single measure for the extent of a disease in the entire retina. For this, efficient techniques

have to be formulated to collate results obtained from analysis of individual images.

Classification of Candidate Regions

As we have seen in the previous chapters, image analysis techniques can only detect candidate regions

affected by a particular disease. These candidate regions will have to be classified into true positives

and false positives. Hence, efficient classification techniques which use higher level charaterics of the

disease regions should be formulated for this purpose.

Incorporating Time-Stamp Information

It was mentioned earlier that the injected dye continuously effuses out of the vascular membranes. This

effusing dye degrades the quality of the image with increase in time from when the dye was injected

into the patient’s body. Hence, it will be usefull to incorpotate the time-stamp information of the

image files into the classification schemes as it will help in assigning a measure of truth to the detected

disease regions.

Disease Tracking

It is important to track the progress of a disease, under treatment or otherwise, in order to devise

efficient treatment procedures. Tracking a disease involves detecting changes in the images obtained

over a number of visits. The images have to be first aligned, along the retinal structure, before detecting

changes.Hence, efficient change detection and image registration schemes should be developed in order

to facilitate disease tracking.
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Appendix A. Image Surface

A 2D digital image is a function of two independent and discrete variables. It can be visualised as a

surface in 3D space. In this appendix, we shall formalise these notions and present definitions for a ‘2D

digital image’, an ‘image pixel’ and an ‘image surface’. The notations and conventions presented here

are followed throughout this thesis.

The discrete grid over which a 2D digital image is defined is called the base-plane (see Figure A.1) and

is defined by the cross product

Γ = ⎧
⎨
⎩
0, 1, 2, . . .,N − 1⎫⎬

⎭
× ⎧⎨
⎩
0, 1, 2, . . .,M − 1⎫⎬

⎭
(A.1)

where M and N are the height and width of the image respectively.An ordered pair (n,m) ∈ Γ is called

an image pixel. An image is defined as a funtion I : Γ → ℜ . The intensity at a pixel (n,m) is given by

z = I(n,m). The image surface is defined as the set

ς = ⎧⎨
⎩
(n,m, z) | (n,m) ∈Γ , z = I(n,m)⎫⎬

⎭
(A.2)

A triplet (n,m, z) ∈ς is called a point on the surface ς . The intuitive notion of a base-plane and an

image surface is formed by visualising ς as a surface hanging over the plane Γ .

Figure A.1. Geometry of the image function
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Appendix B. Locating the Circular Aperture in
Zeiss Images

Images obtained using the Zeiss system have a circular aperture within which the retinal regions are

captured.To process or analyse such images, the location of the center of this aperture and its radius have

to be extracted as a pre-processing step so that the analysis procedures can be confined to this aperture. In

this appendix, we will present a procedure to extract the center and radius of such an aperture. A typical

example of an image captured using Zeiss systems is shown in figure B.1(a).

A property of Zeiss images which is used in the aperture location technique is as follows; The circular

parts of interest are bounded by dark regions. These regions can be seen in both figure B.1. The property

of these dark regions is that they are of uniform intensity. For example, if the intensity value of the

top-left-corner-pixel is 10, then the entire dark region, on both left and the right sides of the image, is

guaranteed to be of intensity 10.

Using the above property, we can reasonably expect that by thresholding the entire image by a threshold

value of T = I0 + 1 (where I0 is the intensity value of the top-left-corner-pixel) we obtain an image with

the circular part of the image extracted as a white disk. However, a closer observation of these images

reveals that the transition from the dark boundaries to the disk of interest is not abrupt but is a steep

gradient.We have found that the disk obtained by thresholding is closer to the perceptual disk of interest

if we use a threshold value of T = I0 + 3. In the following discussion, T should be understood to have

been defined in this way.

The result of the threshold operation should ideally be a circular disk. But most often, it has been

found that few white specks show up around the boundary of this expected circular disk. These can

be attributed to some kind of noise creeping up during the imaging process and can be removed by a

median-filtering operation. In the results we have presented here, we have performed a median-filtering

using a 3 × 3mask.

Thresholding followed by median filtering extracts a circular disk from a raw Ziess image. An example

of such extraction is shown in figure B.2. The center and radius of the circular aperture are the same as

the center and radius of this circular disk.Hence, the next task is to extract center and radius information

from the ‘disk-image’. The next section discusses this procedure.
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Figure B.1. (a) A sample Zeiss Images. (b) The result of locating the camera aperture.

Raw Image Circular Disk 

Figure B.2. Example of extraction of the circular disk from a raw Ziess image.

B.1. Locating the center and radius of the circular disk

A point to note before attempting to find the center and radius of the circular disk is that the center of

the disk is not the center of the image and is considerably off the center of the image. This happens

because of the fact that the center of the aperture is itself off the center of the image. Moreover, parts of

the aperture can be clipped off from either the top or bottom or left or right side of the image or from

some or all of these sides. This is seen in the disk-image being clipped.

A typical disk-image and the neccesary geometry is shown in figure B.3. Let us traverse along a

horizontal line, h pixels from the top, from the left of the image to the right. Then, while traversing, we

will reach the disk at a certain distance.Let us call this distance a and the coordinates of the point where

this happens as A(x1, y1). Similarly, if we traverse along this horizontal line from the right of the image

to the left, we will reach the disk again after a certain distance at B(x2, y2). Let us call this distance c. If

W is the width of the image, then let us define another quantity b = W − c. Then, by the symmetry of
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Figure B.3. Geometry for extraction of the center and radius of the circular disk.

the points A and B about the center of the circle, we can conclude that the x-coordinate of the center of

the disk is given by:

xcenter =
a + b
2

(B.1.1)

The y-coordinate of the center of the disk ycenter is found similarly by traversing along vertical line at a

certain distance from the left of the image. Once the coordinates of the center of the disk (xcenter, ycenter)
are known, we can find the radius of the disk as:

rc = √ 2(x1 − xcenter) + 2(y1 − ycenter) (B.1.2)

This rc and the point (xcenter, ycenter) are the radius and center of the circular disk respectively and hence,

are also the radius and center of the aperture in the Zeiss image resptectively.

The result of locating the circular aperture using the approach presented above is the shown in figure
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B.1(b). The aperture and its center are marked in this image.

B.2. Notes

There are a few points that should be noted with respect to the above procedure. Most optical imaging

systemsadd a notch artifact to the circular aperture.This artifact can also be seen in figure B.2. It is added

to help a viewer decide the right-side up when using a printed copy. In Zeiss images it is added to the

bottom right part of the aperture.Due to this, we could successfully traverse a horizontal line which was

a little distance away from the top of the image, and a vertical line which was a distance away from the

left edge of the image, to locate the center of the circular disk .However, imaging systems manufactured

by other companies might add the notch at a different place. In such cases we should select the right

lines, which avoid this notch, to traverse along, and locate the center if the circular disk.

In rare instances, the boundary of the circular aperture might not be clearly defined because of severe

illumination problem within it. In such instances, the disk extracted from the image will not align exactly

with the aperture. Hence, the radius and center calculated from the image will be offset from the true

radius and center. But this occurance is very rare and can be ignored.



Appendix C. Generalised Sobel Masks

The standard Sobel masks (see [10]) of size 3 × 3 are as shown below (Figure C.1).

-1 0 1

-2 0 2

-1 0 1

ο0 mask

-1 -2 -1

0 0 0

1 2 1

ο90 mask

-2 -1 0

-1 0 1

0 1 2

ο45 mask

0 1 2

-1 0 1

-2 -1 0

ο− 45 mask

Figure C.1. Standard Sobel masks.

In this appendix we present a generalisation of the above masks to generate Sobel masks of size

n × n where n can be any odd, positive integer. As with the standard Sobel masks, we shall define the

generalised masks for four different orientations: °0 , °90 , °45 and, °− 45 .

The notation used in this thesis to refer to a Sobel mask and its elements is as follows. A mask with

orientation α and size n × n is denoted as:

n
M
α
, α ∈Ω = ⎧⎨

⎩
°0 , °90 , °45 , °− 45 ⎫⎬

⎭
(C.1)

A mask element is referred by
n

M
α
(x, y) where x and y are it’s indices in the range − n − 1

2
to n − 1

2
(n is an odd, positive integer). The reference coordinate system for indexing the mask elements is as

shown below (Figure C.2). The sign of the orientation angles is decided using the right-handed system

as shown.
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− ve y

− ve x + ve x

+ ve

+ ve y

Figure C.2. Reference coordinate system for masks.

The generalisation for generating masks of larger sizes is based on the following points.

i. When an image is convolved with a standard Sobel mask, intensity variations along the

orientation of the mask are enhanced. Similarly, the generalised masks should also have

directional preference for intensity variations along the orientation of the masks.

ii. There exists a ‘line’ in the standard Sobel masks, entries along which are zero. Similarly,

the central column of the °0 mask, the central row of the °90 mask, the °− 45 diagonal of

the °45 mask, and the °45 diagonal of the °− 45 mask should be filled with zeroes.

iii. The standard Sobel masks are divided into two halves by the zero entry line.The values in

the negative half are negative reflections of the values in the positive half, about the zero

entry line. Accordingly, the generalised Sobel masks should also have similar divisions

into positive and negative halves.

Using the points (i) and (iii) as guidelines, values in the positive half of a mask are filled as follows (the

side of the positive half is determined by the orientation of the mask):

n
M
α
(x, y) = 1

1 +
k(θ − αθ0 )

(C.2)

where θ is the angle made by the mask element (x,y)with the x-axis of the reference coordinate system,

θ0 is a constant less than °90 , and k is a positive even integer. The corresponding zero entry line should

be filled with zeroes to satisfy the point (ii). The values in the negative half are then filled using negative

reflections of the values in the positive half, as prescribed by point (iii).
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In our implementation for this thesis, we have used a value of °60 for θ0 and value of 6 for k. The angular

profile of the values in a °0 mask generated using using these values is shown in Figure C.3. One should

take care of the fact that an angle of the form °(180 + β) is equivalent to (β − °180 ) , for some β , while

implementing equation C.2.

Figure C.3. Angular profile of a °0 mask using values °60 for θ0 and 6 for k in equation C.2.



Appendix D. Scope of Curvature Based Ridge
and Valleys Detection Techniques

Curvature of an image function is a measure of the ‘bend’ in the cross-section profile along a particular

direction of the image intensity values. Hence, analysis of curvature based feature detection technique

can be done using just 1D functions which represent the (cross-section) profiles of the features of

interest. In this appendix,we present an analysis of the curvature based ridge/valley detection techniques

using 1D profiles of ridges and valleys.

A ridge/valley detection technique detects medial lines of such structures. Such medial lines are loci of

‘medial points’of the cross-section profiles of ridges/valleys. Therefore, in order to use 1D profile func-

tions to perform an analysis of curvature based ridge/valley detection, the original 2D technique has to

be reformulated to detect medial points of 1D profile functions. Before presenting such a reformulation,

we shall define a few terms for ease of presentation later in this paper and state a Lemma.

Definition D.1 (Point of Magnitude Maximum): Let f : ℜ → ℜ be a 1D function. If a point x = a is

a point of local maximum of the function y = |f (x) |, then it is a point of magnitude maximum of the

function y = f (x). For brevity, we shall refer to such a point of magnitude maximum of a function as a

PMMAX of the function.

Definition D.2 (Point of Magnitude Minimum): Let f : ℜ → ℜ be a 1D function. If a point x = a

is a point of local minimum of the function y = |f (x) |, then it is a point of magnitude minimum of the

function y = f (x). For brevity, we shall refer to such a point of magnitude minimum of a function as a

PMMIN of the function.

Lemma D.1: Let f : ℜ → ℜ be a 1D function for which derivatives upto the second order exist. If

(a)
⎡
⎢
⎣

dy
dx

⎤
⎥
⎦x=a

= 0 and, (b)
⎡
⎢
⎣
y

2d y
2dx

⎤
⎥
⎦x=a

< 0

then, x = a is a PMMAX of the function y = f (x).

Proof:

f ′(a) = 0, f (a) f ′′(a) < 0

⇒ f (a) < 0, f ′(a) = 0, f ′′(a) > 0
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or

f (a) > 0, f ′(a) = 0, f ′′(a) < 0

⇒ f (a) < 0, f (a) < f (b), b ∈ (a − δ, a + δ) − ⎧⎨⎩a⎫⎬
⎭ for some δ > 0 . (Since f ′(a) = 0, f ′′(a) > 0

implies that x = a is a point of minimum of f (x))
or

f (a) > 0, f (a) > f (b), b ∈ (a − δ, a + δ) − ⎧⎨⎩a⎫⎬
⎭ for some δ > 0 . (Since f ′(a) = 0, f ′′(a) < 0

implies that x = a is a point of maximum, of f (x))

⇒ |f (a) | > |f (b) |, b ∈ (a − δ, a + δ) − ⎧⎨⎩a⎫⎬
⎭ for some δ > 0.

⇒ x = a is a point of maximum of the function y = |f (x) |.
Hence, Lemma D.1 is proved.

The curvature of a 1D function y = f (x) is given as [17]:

κ(x) =

2d y
2dx

3
2⎧

⎨
⎩
1 +

2(dy
dx ) ⎫⎬⎭

(D.1)

We shall now state the criterion for curvature based medial point detection using Definition D.1.

Definition D.3 (Curvature based criterion for medial points of 1D profile functions): Let

f : ℜ → ℜ be a 1D function for which derivatives upto the second order exist.A point x = a is a medial

point of the profile function y = f (x) if it is a PMMAX of κ(x).

The PMMAX of the curvature is where the derivative of the curvature vanishes. The derivative of the

curvature is found, by differentiating the expression in equation D.1:

dκ
dx

=

3d y
3dx

⎧
⎨
⎩
1 +

2(dy
dx) ⎫⎬⎭ − 3 dy

dx

2( 2d y
2dx )

5
2⎧

⎨
⎩
1 +

2(dy
dx) ⎫⎬⎭

(D.2)

Considering equation D.2, it is clear that the first derivative of the curvature can vanish under four
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different conditions. These are:

C1 : :
dy
dx

= 0,
2d y
2dx
≠ 0,

3d y
3dx
= 0

C2 : :
dy
dx

= 0,
2d y
2dx
= 0,

3d y
3dx
= 0

C3 : :
dy
dx

≠ 0,
2d y
2dx
= 0,

3d y
3dx
= 0

C4 : :
dy
dx

≠ 0,
2d y
2dx
≠ 0,

3d y
3dx
≠ 0 but the numerator as a whole, of the expression on the

right hand side of equation D.2, goes to zero.

The second derivative of the profile function is zero in C2 and C3. Hence, by equation D.1, the curvature

of the profile function also goes to zero at such points. Therefore, a point satisfying C2 or C3 cannot be

a PMMAX of the curvature function. A medial point is either the top of a ridge profile, or the bottom

of a valley profile. In other words, the medial points are points of extremal image intensities. Hence, a

PMMAX which satisfies C4 cannot be a medial point of a ridge/valley profile. Such PMMAX occur as

‘knee/elbow’points of edge profiles, as shown in Figure D.1. In practice, it is either rejected by setting

a threshold or in few rare cases, is wrongly classified as a ridge/valley pixel. Therefore, medial points

which satisfy the criterion in Definition D.3 should satisfy only C1. However, a point satisfying C1need

not satisfy the criterion in Definition D.3. The following theorem gives us a condition under which a

point satisfying C1 is also a PMMAX of the curvature function.

Figure D.1. Cross-section of a ridge and the various points of extremal curvature.

Theorem D.1: Let f : ℜ → ℜ be a 1D function for which derivatives upto the fourth order exist. If for

some point x = a, we have
⎡
⎢
⎣

dy
dx

⎤
⎥
⎦x=a

= 0 ,
⎡
⎢
⎣

2d y
2dx

⎤
⎥
⎦x=a

≠ 0 ,
⎡
⎢
⎣

3d y
3dx

⎤
⎥
⎦x=a

= 0 , and
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⎡
⎢
⎣

2d y
2dx

⎧
⎨
⎩

4d y
4dx
− 3

3( 2d y
2dx ) ⎫⎬⎭

⎤
⎥
⎦x=a

< 0 (D.3)

then, x = a is a PMMAX of the curvature of function y = f (x).

Proof: Follows trivially by applying Lemma D.1 to the curvature expression in equation D.1

If at some point on the profile, the fourth-derivative is non-zero; the curvature function has a PMMAX;

and C1 is satisfied; then, the profile function has to satisfy an inequality. This is stated in the following

theorem.

Theorem D.2: Let f : ℜ → ℜ be a 1D function for which derivatives upto fourth order exist. If some

point x = a is a PMMAX of the curvature of the function y = f (x) while satisfying
⎡
⎢
⎣

dy
dx

⎤
⎥
⎦x=a

= 0 ,

⎡
⎢
⎣

2d y
2dx

⎤
⎥
⎦x=a

≠ 0 ,
⎡
⎢
⎣

3d y
3dx

⎤
⎥
⎦x=a

= 0 and
⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

≠ 0 , then

⎡
⎢
⎣

2d y
2dx

⎧
⎨
⎩

4d y
4dx
− 3

3( 2d y
2dx ) ⎫⎬⎭

⎤
⎥
⎦x=a

< 0 (D.4)

Proof: The Taylor’s series approximation of the function
2d y
2dx

upto the second derivative, in a

neighbourhood of the point x = a, under the conditions of the theorem is:

2d y
2dx
=
⎡
⎢
⎣

2d y
2dx

⎤
⎥
⎦x=a

+
2(x − a)

2
⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

(D.5)

Similar approximation for the function

3
2⎧

⎨
⎩

2

1 + (dy
dx) ⎫⎬⎭ , under the conditions of the threorem, is:

3
2⎧

⎨
⎩

2

1 + (dy
dx) ⎫⎬⎭ = 1 + 3

2
2(x − a)
⎡
⎢
⎣

2( 2d y
2dx ) ⎤⎥⎦x=a

(D.6)

Hence, the curvature expression from equation D.1 can be approximated, in the neighbourhood of

x = a, as:
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κ(x) =

⎡
⎢
⎣

2d y
2dx

⎤
⎥
⎦x=a

+
2(x − a)

2
⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

1 + 3
2

2(x − a)
⎡
⎢
⎣

2( 2d y
2dx ) ⎤⎥⎦x=a

(D.7)

Let
⎡
⎢
⎣

2d y
2dx

⎤
⎥
⎦x=a

> 0. Since x = a is a PMMAX of the curvature function, for an x in a small neighbour-

hood of x = a, we must have:

κ(x) < κ(a) (D.8)

Substituting for the expression of κ(x) from equation D.7 into the inequality D.8 and re-arranging,

we get:

⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

− 3
⎡
⎢
⎣

3( 2d y
2dx ) ⎤⎥⎦x=a

< 0 (D.9)

If
⎡
⎢
⎣

2d y
2dx

⎤
⎥
⎦x=a

< 0, we can arrive at similar inequality as:

⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

− 3
⎡
⎢
⎣

3( 2d y
2dx ) ⎤⎥⎦x=a

> 0 (D.10)

Combining inequalities D.9 and D.10, by taking into consideration the sign of the second-derivative at

x = a, we get:

⎡
⎢
⎣

2d y
2dx

⎧
⎨
⎩

4d y
4dx
− 3

3( 2d y
2dx ) ⎫⎬⎭

⎤
⎥
⎦x=a

< 0 (D.11)

Hence, Theorem D.2 is proved.

C1 requires the third-derivative to be zero while the second-derivative is non-zero. Let x = a be a point

where C1occurs.Then, we will have the following possible properties for the second-derivative function

at that point.

A. x = a is a PMMAX of the second-derivative function:
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Since the denominator of the curvature expression (equation D.1) is alwayspositive, the point x = a

is a PMMIN of the denominator of the curvature expression. Furthermore, given that the point

x = a is a PMMAX of the second-derivative implies that it is also a PMMAX of the numerator

of the curvature expression. Therefore, we can conclude that x = a is a PMMAX of the curvature

expression as a whole.

B. x = a is a point of inflection of the second-derivative function which is non-zero at this

point:

In this case, we must have
⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

= 0 . Hence, we have

⎡
⎢
⎣

2d y
2dx

⎧
⎨
⎩

4d y
4dx
− 3

3( 2d y
2dx ) ⎫⎬⎭

⎤
⎥
⎦x=a

=
⎡
⎢
⎣

⎧
⎨
⎩
− 3

4( 2d y
2dx ) ⎫⎬⎭

⎤
⎥
⎦x=a

< 0

Therefore, by Theorem D.1, the point x = a is also a PMMAX of the curvature function. An

example of a profile function with such a PMMAX is f (x) = 5x + 210x , x ∈[ − 1, 1] and its

second derivative is f ′′(x) = 20 3x . x = 0 is a point of inflection of the second-derivative, which is

also a PMMAX of its curvature function.

C. The second-derivative is a non-zero constant function:

In this case again, the fourth derivative must vanish, i.e.,
⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

= 0. Hence, as in case B above,

the point x = a is a PMMAX of the curvature function. Examples of such profiles are quadratic

polynomials which have a unique point of minimum or maximum.

D. x = a is a PMMIN of the second-derivative function which is non-zero here; the fourth

derivative vanishes at this point:

Using Theorem D.1again, as with cases Band C above, it can be concluded that x = a is a PMMAX

of the curvature function.

E. x = a is a PMMIN of the second-derivative function and the fourth and the second derivatives

are non-zero at this point:

Using Theorems D.1 and D.2, x = a is a PMMAX of the curvature function only if the derivatives

of the profile function satisfy the inequality D.4.
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The five different casesdiscussed above correspond to five classesof profiles for which a point satisfying

C1 is also a PMMAX of the curvature function. Hence, we conclude that there are five different classes

of ridge and valley profiles which can be detected by techniques using the curvature based criterion in

Definition D.3. These classes are summarised below for easy reference, in terms of the characteristics of

the function at the medial point.

Class 1 Functions for which there exists a PMMAX of the second-derivative at a point where the first

derivative vanishes.

Class 2 Functions for which there exists a point of inflection of the second-derivative at a point where

the first-derivative vanishes and the second-derivative has a non-zero value.

Class 3 Functions for which the second-derivative is a non-zero constant function and there exists a

point where the first derivative vanishes.

Class 4 Functions for which there exists a PMMIN of the second-derivative at a point where the first

and fourth derivatives vanish, and the second-derivative has a non-zero value.

Class 5 Functions for which there exists a PMMIN of the second-derivative at a point where

the fourth-derivative is non-zero, and condition C1 and the inequality D.4 are satisfied at

that point.
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