
Learning Representations for Computer Vision Tasks

Thesis submitted in partial fulfillment
of the requirements for the degree of

MS by Research
in

Computer Science

by

Siddhartha Chandra
200702049

siddhartha.chandra@research.iiit.ac.in

CENTER FOR VISUAL INFORMATION TECHNOLOGY
International Institute of Information Technology

Hyderabad - 500 032, INDIA
November 2012

Copyright c© Siddhartha Chandra, 2012

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Learning Representations for Computer
Vision Tasks” by Siddhartha Chandra, has been carried out under my supervision and is not submitted
elsewhere for a degree.

Date Adviser: Prof. C. V. Jawahar

To My Family.

Acknowledgments

I owe this work to the two men who mentored me through my years at CVIT. First of all I would
like to thank my research advisor Prof. C. V. Jawahar who I am indebted for life for his presence,
keen interest in my research and able guidance. He served both as an inspiration and a goading force
throughout my stay at CVIT. Secondly, I was utterly fortunate to have a very involved mentor in Dr.
Shailesh Kumar whose expertise in this field of research and valuable lessons in life kept me going
through the tough times. Dr. Kumar leads by example, and has had an overwhelming presence in my
research career.

I am thankful to my peers at CVIT who have been my friends, critics, mentors, pillars of support
in times of distress, and a constant source of inspiration - Vinay, Abhinav, Harshit, Parikshit, Mayank,
Shrikant, Yashaswi, Omkar, Srijan, Vempati, Chandrashekar, Ankit, Raman, Anand, Nagendar and
others. I am grateful to Mr. R. S. Satyanarayana whose administrative support was indispensable at
times. I would like to thank Rajan, Nandini and Phani whose presence at CVIT has helped students in
more ways than one. Many thanks to Prof. P. J. Narayan, Prof. Jayanthi and Prof. Anoop for their
encouraging presence and for providing an environment conducive to learning of the finest quality at
CVIT.

I am thankful also to my peers and mentors at the Visual Geometry Group, University of Oxford. I
am grateful to Prof. Andrew Zisserman, Dr. Marcin Marszalek, and Dr. Andrea Vedaldi for their - as
AZ would put it - hunky-dory guidance through my years of association with VGG. I am thankful to my
peers at VGG, Relja, Yusuf, Amr, Varun, Arpit, Marco, and others who have brainstormed with me on
different problems at various points in time.

I would like to thank my friends, Sankalp, Chaitanya, Gautam, Ashish, Manish, Mihir, Manan,
Pulkit, and others for always believing in me, and making my stay at IIIT worthwhile.

Finally, I would like to acknowledge the contribution of my parents and my sister to my academic
and research career. Their unconditional love, support and belief in my abilities have played a pivotal
role in shaping the course of my career, and my life. I would also like to thank all the members of my
extended family for being there whenever I needed them.

Many thanks to everyone else who affected my life in any way, and wasn’t acknowledged personally
above.

v

Preface

A picture of the sky reminds a skilled weather man of three different types of clouds. His four year
old son, who lacks the intellectual capacity and the meteoroligical insight of his father, looks at the same
picture and claims he sees the shape of a horse in the clouds. A picture is worth a thousand words. The
information in an image is limited only by the imagination of the observer.

Despite the recent advances in artificial intelligence, computers as an imaginative species remain far
inferior to their inventors. What we see as images, computers look at as arrays of numbers. Research in
computer vision is dedicated towards bridging the gap between these numbers (pixel intensity values)
and human vision.

Computer vision researchers have endeavoured for decades to accomplish this herculean task. Often
posed as a machine learning problem, solving computer vision involves the design and development of
algorithms that allow computers to evolve behaviors based on empirical data [1]. A learner takes ad-
vantage of examples (data) to capture characteristics of interest of their unknown underlying probability
distribution. It then uses this knowledge to drive decisions from the data.

In simpler terms, our solution seeks to understand patterns in the world to teach computers about
the world. The method thus involves (a) Observing the world, (b) Developing models that match ob-
servations, (c) Teaching the computer to learn these models, and (d) Applying the models learnt by the
computer to the world. Observing the world involves collecting data that we use to learn. Developing
models that match observations requires us to devise good representations of the world (the collected
data) and inventing algorithms that serve our purpose. Teaching the computer involves writing machine
readable code that executes our algorithm. Finally, we use the computer program to seek solutions to
our problem. A crucial component of the approach is how we represent the world. This happens to be
the focus of my research work.

In most computer vision tasks our world is a set of images or videos1. As stated above, a computer
sees these as arrays of numbers. A human, when presented with these numbers, may fail to make any
sense out of them. To perceive anything that appeals to his visual senses, he needs a tool that draws the
picture. Thus, all the information needed to conjure up the image is in the numbers; still, these numbers
are useful only when they are presented to the observer in a form the observer can appreciate. A good
representation scheme does just this. This principle is the theme of this thesis.

1though it is not limited to being a set of images or videos (figure 2.5)

vi

Abstract

Learning representations for computer vision tasks has been the holy grail for the vision community
for long. Research in computer vision is dedicated towards developing machines that understand image
data, which takes a variety of forms such as images, video sequences, views from multiple cameras, high
dimensional data from medical scanners and so on. Good representations of the data intend to discover
the hidden structure in it; better insights into the nature of the data can help choose or create better
features, learn better similarity measures between data points, build better predictive and descriptive
models, and ultimately drive better decisions from data. Research into this field has shown that good
representations are more often than not task specific: there is no single universal set of features that
solves all the problems in computer vision. Consequently, feature learning for computer vision tasks is
not a problem, rather a set of problems, a full fledged field of research per se.

In this thesis, we seek to learn good, semantically meaningful representations for some of the popular
computer vision tasks, such as visual classification, action recognition and so on. We study and employ
a variety of existing feature learning approaches, and devise novel strategies for learning representations
on these tasks. Additionally we compare our methods with the traditional approaches. We discuss the
design choices we make, and the effects of varying the parametric variables in our approaches. We
provide empirical evidence to show our representations are better at solving the tasks at hand than the
traditional ones.

To solve the task of action recognition, we devise a novel PLS kernel that employs Partial Least
Squares (PLS) regression to derive a scalar measure of similarity between two video sequences. We
use this similarity kernel to solve the tasks of hand gesture recognition and action classification. We
demonstrate that our approach significantly outperforms the state of the art approaches on two popular
datasets: Cambridge hand gesture dataset and UCF sports action dataset.

We use a variety of approaches to tackle the popular task of visual classification. We describe a novel
hierarchical feature learning strategy that uses low level Bag of Words visual words to create “higher
level” features by making use of the spatial context in images. Our model uses a novel Naive Bayes
Clustering algorithm to convert a 2-D symbolic image at one level to a 2-D symbolic image at the next
level with richer features. On two popular datasets, Pascal VOC 2007 and Caltech 101, we demonstrate
the superiority of our representations to the traditional BoW and deep learning representations.

Driven by the hypothesis that most data, such as images, lies in multiple non-linear manifolds, we
propose a novel non-linear subspace clustering framework that uses K Restricted Boltzmann Machines

vii

viii

(K-RBMS) to learn non-linear manifolds in the raw image space. We solve the coupled problem of
finding the right non-linear manifolds in the input space and associating image patches with those mani-
folds in an iterative Expection Maximization (EM) like algorithm to minimize the overall reconstruction
error. Our clustering framework is comparable to the state of the art clustering approaches on a variety
of synthetic and real datasets. We further employ K-RBMs for feature learning from raw images. Ex-
tensive empirical results over several popular image classification datasets show that such a framework
outperforms the traditional feature representations such as the SIFT based Bag-of-Words (BoW) and
convolutional deep belief networks.

This thesis is an account of our efforts to do our bit to contribute to this fascinating field. We admit
that research in this field will continue for a long time, for solving computer vision is still a distant
dream. We hope that we have earned the right to say one day, in retrospect, that we were on the right
track.

Contents

Chapter Page

1 Introduction . 1
1.1 Features . 1
1.2 Computer Vision Tasks . 2

1.2.1 Clustering . 2
1.2.2 Action Recognition . 3
1.2.3 Visual Classification, Object Recognition . 4

2 Representations in Computer Vision . 6
2.1 Features . 6

2.1.1 An example of a feature learning method: Restricted Boltzmann Machines . . 8
2.2 Bag of Words Model for Image Representation . 9

2.2.1 Features . 10
2.2.2 Vector quantization . 11
2.2.3 Image histogram computation . 11
2.2.4 Beyond BoW: Spatial Pyramids . 12
2.2.5 Practical Issues . 13
2.2.6 A Note on Visual Vocabularies . 13

2.3 Deep learning . 15
2.3.1 An example of deep learning models: Convolutional Neural Network 16
2.3.2 Discussion . 18

3 Partial Least Squares Kernel for computing similarities between Video Sequences 21
3.1 Introduction and Prior Work . 21
3.2 Partial Least Squares . 22
3.3 PLS Similarity Kernels for Videos . 23

3.3.1 Joint Shared Modes . 23
3.3.2 PLS Kernel . 24
3.3.3 Discussion . 25

3.4 Experiments and Results . 25
3.4.1 Hand gesture recognition on Cambridge dataset 25
3.4.2 Action classification on the UCF Sport dataset 26

3.5 Summary . 27

ix

x CONTENTS

4 Learning Hierarchical Bag of Words using Naive Bayes Clustering 28
4.1 Introduction and Prior Work . 28
4.2 Background . 30

4.2.1 Beyond Bag of Words . 30
4.2.2 Deep Learning . 31

4.3 Naive Bayes Clustering . 32
4.3.1 Mixture of Multi-variate discrete Naive Bayes 32
4.3.2 Soft vs. Hard Clustering . 33
4.3.3 Smart Initialization . 34

4.4 Learning hierarchical bag of words . 34
4.4.1 Approach . 35
4.4.2 Maximum Pooling . 35

4.5 Experiments, Results and Discussions . 36
4.5.1 Two Class Classification: Okapi vs Llama . 36
4.5.2 Caltech 101 . 38
4.5.3 Pascal VOC 2007 . 39
4.5.4 Discussion . 40

4.6 Summary . 41

5 Learning Multiple Non-linear Subspaces using K Restricted Boltzmann Machines 42
5.1 Introduction and Prior Work . 42
5.2 Training RBMs . 44
5.3 Learning Multiple Non-Linear Subspaces using K-RBMs 46

5.3.1 K-RBMs . 46
5.3.2 Clustering using K-RBMs . 47
5.3.3 Initialization and Convergence . 47
5.3.4 K-RBMs for Image Feature Learning . 48

5.4 Applications . 50
5.4.1 Clustering Synthetic Data . 50
5.4.2 K-RBMs for clustering MNIST Dataset . 51
5.4.3 K-RBMs for Visual Bag-of-Words . 52
5.4.4 Feature learning using K-RBMs . 55

5.5 Summary . 56

6 Conclusions . 57

Bibliography . 60

List of Figures

Figure Page

1.1 Toy example: Clustering of points in 2D space. The similarity between points is in-
versely proportional to the Euclidean distance between them. 3

1.2 Human Actions, represented as a sets of images for convenience here, are intended to
be seen as a set of videos/image sequences. Picture courtesy: V. Delaitre, I. Laptev and
J. Sivic . 4

1.3 Image classes (Caltech 256). In most images in Caltech, the presence of an object of
interest in the image determines the class label. Picture courtesy: Anna Bosch and
Andrew Zisserman . 5

2.1 A simple Restricted Boltzmann Machine . 8

2.2 Bag of Words. The image shows an object (a torso of a woman), and what its traditional
BoW representation would look like. 10

2.3 Spatial Pyramid Matching. Picture Courtesy: [37] . 12

2.4 Feature Hierarchies. From left to right, (a) Pixels, (b) Edges, (c) Object parts, and (d)
Objects. 15

2.5 Different types of data encountered in computer vision. Picture Courtesy: Andrew NG 16

2.6 Convolutional Neural Network . 17

2.7 Caltech 101: composite image produced by averaging images of each category. Picture
courtesy: Antonio Torralba. 20

2.8 Pascal VOC 2007 dataset. Sample images from a few categories. 20

3.1 Flattening Videos to Matrices: A 2-D matrix can be flattened to a 1-D vector by a simple
row-wise or column-wise reordering of the elements. We use a similar idea to flatten a
3-D video to 2-D matrices. For simplicity, a 3-D video can be seen as a rubic’s cube.
This cube can be cut into 2-D slices, and these slices can be stacked together in a 2-D
plane, giving a two dimensional representation of the video. There are three axes along
which we can slice the cube; Hence there are three ways of flattening a video. We call
each of these 2-D representations of a video as a joint shared mode. 24

3.2 Cambridge hand gesture dataset . 26

3.3 UCF Sports Action dataset . 26

xi

xii LIST OF FIGURES

4.1 Block diagram of our approach. SIFT features are computed on the raw image patches
and quantized using K-means to get the first level symbol image. Henceforth, keypoints
at any level of the hierarchy are collected from patches in a dense grid over the symbol
image at the previous level. These keypoints are clustered using NB clustering and
quantized to get the the symbol image at the current level. This process can be repeated
any number of times. BoW representations can be computed using the symbol image at
any level of the hierarchy and used for classification. 35

4.2 Two-Class (Llama vs Okapi) Classification. (a) Llama (top) and Okapi (bottom) (b)Variation
of accuracy with level 2 patch size and size of symbol space. (c)Classification accuracy
based on Level 2,3 features; Patch size was fixed to p=2 for these experiments. 37

4.3 (a) Plot of mean posterior probabilities per symbol per patch over epochs. Effect of the
patch size (p) and size of symbol space (K) can be seen here. (b) NB Learning for dif-
ferent sizes of symbol space (K) across hierarchical levels 2 and 3. Higher probabilities
for Level 3 show that the method is learning semantically meaningful concepts. 38

5.1 Hypothesis 1: Clustering and projection are two coupled paradigms. Clustering cannot
be done in the raw feature space because the data lies in latent manifolds. The right
manifolds cannot be discovered without clustering the data. 43

5.2 A simple Restricted Boltzmann Machine . 44
5.3 (a) Clustering convergence and RBM training convergence over epochs of the algo-

rithm. Clustering converges long before the RBM reconstruction errors stabilize. (b)
A plot of reconstruction errors vs epochs of training process for our experiments on the
VOC Pascal dataset in section 5.4.3. Reconstructions are significantly better when we
use a K-RBM as opposed to a single RBM. For the Single RBM case, we divide the
mean error by 10 to bring it to scale with the others. 48

5.4 Sample patches corresponding to the different clusters (experiments in section 5.4.4).
Each row in (a) and (b) represents a cluster. A row in (c) represents 2 clusters: the
concatenation of these 2 clusters gives the cluster in corresponding row in (b). Patches
in (a) are independent of (b) and (c). Total number of SIFT clusters in (a) was 1000, K1

for (b) was 40, K2 in (c) was 50. 50
5.5 Clustering results of K-means, Single RBM + K-means, K-RBM. C denotes the cluster

labels, R is the reconstruction in case of RBMS (R:0 is the reconstruction from the
RBM corresponding to cluster 0), mean in case of K-means. P is a positive example
(correctly classified) from the cluster, N is a negative example (incorrectly classified)
from the cluster. X is the data sample. 54

List of Tables

Table Page

3.1 Hand-gesture recognition accuracy (%) on the Cambridge-Gesture Dataset 27
3.2 Leave one out cross validation on the UCF Sports Dataset 27

4.1 Caltech 101- NB + SP . 39
4.2 Classification on Caltech . 39
4.3 Classification Results on the Pascal VOC 2007 dataset. The table shows mean classifi-

cation APs over 20 classes. 40

5.1 Running Time, Misclassification Errors and Mutual Information between cluster and
class labels of various methods on synthetic D1 and D2 datasets. 51

5.2 Comparision of coupled vs. de-coupled projection + clustering learning algorithms on
MNIST data. 53

5.3 Mean Classification AP on VOC Pascal 2007 . 55
5.4 Classification Performance on VOC Pascal 2007, 15 Scene Categories and Caltech 101 55
5.5 Caltech 101 . 56
5.6 VOC Pascal 2007 . 56

xiii

Chapter 1

Introduction

Human beings use their eyes and brains to sense and understand the world. Computer vision is the
discipline that intends to produce machines that can evolve similar behaviour. The vision community
has always wondered what it is that makes our human vision so special. Research into how the human
brain functions has given us useful clues, and it is now speculated that the way we represent/organize
the world is as crucial as how we use these representations to learn and understand. Many attempts have
been made over the years to develop rich, semantically meaningful models that represent the world.
Nevertheless, there is no clear consensus on how to portray the world. Our prior experiences have only
revealed that good representations are task specific: there are no universal features that solve all the
vision tasks. In this chapter, we introduce features, and delve into the subject of what it means for a
machine to have understood the world.

1.1 Features

Typical images / videos are huge in terms of the number of pixels. Even a small, passport sized,
photograph in a digital format typically has several hundred thousand pixels. While most modern com-
puters today can process such high dimensional data, working with raw images is undesirable because
of (a) irrelevant, redundant information, (b) no built-in invariance to external parameters (illumination
changes, orientation changes, scaling, translation and other distortions), and even (c) the lack of orga-
nization. Instead, we seek good, semantically meaningful representations of the data. We refer to these
representations as “features” and the process of computing these features is called feature extraction.
Feature extraction is a special form of dimensionality reduction [1].1 Good features are characterized by
several qualities: (a) the representation size is manageable by the learning method (the speed and mem-
ory requirements are fulfilled), (b) the representation captures all / most of the relevant information,
(c) all / most of the redundancy in data is eliminated, and (d) invariance to external parameters such as
illumination changes, orientation changes, scaling, translation and other distortions is maximal. Which

1While not all features are smaller in size than the raw data, this property holds true in most computer vision tasks.

1

information is relevant and which is not is dictated by the task at hand. Consequently, good features are
task specific. This can be regarded as the No Free Lunch theorem in the representation domain.

1.2 Computer Vision Tasks

The holy grail of computer vision is to build machines that can see in the manner humans do. After
being exposed to millions of images/videos, the hope is that such a machine vision system would be
able to understand an image/video it has never seen before. Understanding an image is a vague phrase
and can mean different things in different contexts. Before we can delve into what exactly we mean by
understanding an image, we should fix the context. In this section, we talk about a variety of computer
vision tasks and discuss what it means to have understood an image with reference to these contexts.

Computer vision, as a scientific discipline, aims to develop machines that extract information from
images. The image data may take many forms, such as video sequences, views from multiple cameras,
or high-dimensional data from a medical scanner. This information is then applied to making decisions.

Computer vision has been applied to making all sorts of decisions in the industry. Applications can
be as simple as counting automobile parts speeding by on a production line or as complex as robots
looking at and understanding the world around them. As a matter of fact, most fields that require
capturing and processing image data use computer vision as their core. Other applications of computer
vision include (a) navigation devices used in vehicles or robots, (b) visual surveillance, (c) organizing
databases of images or videos, (d) human computer interaction devices, (e) medical image analysis, (f)
modeling terrains and topographies, (g) automatic inspection in manufacturing applications and so on.
All these applications employ a range of computer vision tasks which can be solved using a variety of
methods.

Some of the popular computer vision tasks are scene reconstruction, content based image retrieval,
image segmentation, object detection, image classification, instance recognition, indexing, clustering,
image restoration, pose estimation, event detection, object tracking, motion estimation, action recogni-
tion and so on. In this thesis, I have worked specifically on few of these tasks, (a) clustering, (b) action
recognition and (c) image classification. In the rest of this section, I will describe each of these tasks in
detail.

1.2.1 Clustering

Clustering is one of the most popular and perhaps one of the most important unsupervised learning
problems. Clustering seeks to find structure in data and is driven by the hypothesis that data is not
randomly distributed across the feature space but has inherent high density regions with few outliers
and/or background noise points.

Clustering could be defined as “the process of organizing objects into groups whose members are
similar in some way”. A cluster is therefore a collection of objects which are “similar” to each other and

2

are “dissimilar” to the objects belonging to other clusters. Figure 1.1 describes a clustering of points
in the 2D space where we define similarity between points in terms of the Euclidean distance between
them. In other words, points close to each other are clustered together.

Clustering seeks to find inherent high density regions in the data distribution. In this context, under-
standing refers to gaining insights into the nature of data which equips us with means to identify these
high density regions in the space (clusters).

In computer vision, clustering has been treated both as a task and the means to solve a task. More
specifically, clustering has been used for the following:

• directly clustering features/data such as images, videos. Applications include data organization,
data analysis, segmentation, and so on. In chapter 5, we employ clustering to organize the MNIST
dataset.

• unsupervised discovery of sub-categories, which helps relax the huge intra-class variation in data
from the same category. This has been applied in visual recognition tasks [68], among others.

• learning representations such as Bag of Words models. In chapter 4, we devise a novel Naive
Bayes clustering approach to learn hierarchical Bag of Words representations.

Figure 1.1: Toy example: Clustering of points in 2D space. The similarity between points is inversely
proportional to the Euclidean distance between them.

1.2.2 Action Recognition

Action recognition is another popular computer vision task. Action recognition refers to the task of
analyzing a video sequence and identifying the activity going on. This includes hand gesture recognition
and human activity recognition, among other tasks. Hand gesture recognition refers to the task of map-
ping a sequence of (hand) images denoting a gesture to an event (or the gesture). This has applications
in human computer interation, sign language interpretation and so on.

Human activity recognition is another important area of computer vision research and applications
that falls under the broad category of action recognition tasks. Figure 1.2 shows some human activities.

3

Figure 1.2: Human Actions, represented as a sets of images for convenience here, are intended to be
seen as a set of videos/image sequences. Picture courtesy: V. Delaitre, I. Laptev and J. Sivic

Human activity recognition involves analyzing a video sequence and predicting the activity in the video.
Recognition of human actions can be seen as video interpretation. While a few human actions such as
reading, playing a guitar may be inferred from still images, some (for instance sitting down, standing
up) can only be inferred using temporal context.

Understanding in the context of activity recognition can be understood as interpretation of ongoing
events and their context from video data. Applications include surveillance systems, patient monitoring
systems, and a variety of systems that involve interactions between persons and electronic devices such
as human-computer interfaces. Action recognition is a challenging problem because videos contain not
only spatial but also temporal information, which are usually hard to capture simultaneously by the
traditional image representations. We tackle action recognition in chapter 3.

1.2.3 Visual Classification, Object Recognition

Visual (image) classification, a classical problem in computer vision, image processing, and machine
vision, involves determining whether or not the image data contains some specific object, feature, or
activity. In other terms, visual classification refers to the task of classifying an image according to its
visual content, for example whether it contains an aeroplane or not. In most visual classification settings,
we are given a set of candidate classes / categories (such as mountain, aeroplane, cityscape, and so on)

4

Figure 1.3: Image classes (Caltech 256). In most images in Caltech, the presence of an object of interest
in the image determines the class label. Picture courtesy: Anna Bosch and Andrew Zisserman

and an unseen test image and our goal is to predict the most appropriate class label for it. Figure 1.3
shows sample images for a few candidate classes in the dataset Caltech 256. A visual classification
task can be either scene classification or object recognition depending on the set of candidate classes:
it is scene classification in case all the classes are scenes (night-time, cityscape, under-water) or object
recognition in case all the classes are objects (aeroplane, bicycle, cow). A related problem, fine grained
scene classification, refers to visual classification in a setting where the classes are similar in appearance
(bedroom, kitchen, office and so on).

Content-based image retrieval is a popular application of visual classification. It refers to finding all
images in a larger set of images which have a specific content. The content can be specified in many
ways, for example in terms of queries like “show me all images similar to image X”, or “show me all
images which contain many houses, are taken during winter, and have no cars in them”, and so on.

In a visual classification setting, understanding an image would mean being able to predict the class
of an image or a video. We describe our approaches to visual classification in chapters 4 and 5.

5

Chapter 2

Representations in Computer Vision

In this chapter, we talk about the traditional representation models used ubiquitously in computer
vision tasks. We start with a discourse on popular features and feature learning methods in computer
vision literature, describe an example of a feature learning model called the Restricted Boltzmann Ma-
chine, and the rest of the chapter describes the two prominent orthogonal schools of thought in the
feature learning domain.

2.1 Features

As described in chapter 1, features are means of representing the world (images / videos) in com-
puter vision and feature extraction is the process of computing these features. Typical images / videos
are huge in terms of the number of pixels, and feature extraction is a special form of dimensionality
reduction of the image data. A good feature is (a) compact so the representation size is manageable by
the learning method, (b) captures most of the relevant information in the data, (c) eliminates most of the
redundancy in data, and (d) is invariant to external parameters such as illumination changes, orientation
changes, scaling, translation and other distortions.

Feature learning is a form of dimensionality reduction. Dimensionality reduction can be seen as
subspace projection, where we compute features by expressing them as linear combinations of the data
variables, while still describing the data with sufficient accuracy. Subspace projection can either be
linear or non-linear depending on the nature of subspace we use for projection of the data into the
feature space. Consequently, we can have both linear and non-linear feature representations. The choice
of the dimensionality reduction method rests with experts who have domain knowledge. However, in
the absence of expert knowledge, general dimensionality reduction methods come in handy. Some of
the popular dimensionality reduction methods are, (a) Principal component analysis, (b) Semidefinite
embedding, (c) Multifactor dimensionality reduction, (d) Multilinear subspace learning, (e) Nonlinear
dimensionality reduction, (f) Isomap, (g) Kernel PCA, (h) Multilinear PCA, (i) Latent semantic analysis,
(j) Partial least squares, (k) Independent component analysis.

6

In the recent years, much research has gone into designing good features for images. Feature learning
for computer vision tasks has evolved into a full fledged discipline. These new age features can be
very broadly classified into two categories:hand crafted and learnt. These categories also represent
the two orthogonal directions of research in feature learning: the former relies on domain knowledge
to craft representations by hand and the latter on the belief that richer representations can be “learnt
automatically” from the data using hierarchical models.

Hand crafted feature extraction relies on image processing methods to detect artefacts in the image
such as (a) edges, (b) corners, (c) blobs, (d) ridges, (e) curvature, (f) predefined templates, (g) known
shapes such as lines, circles, ellipses and so on, (h) parametric shapes, (i) active contours and so on. The
final feature representation is often a histogram of the distribution of these artefacts. Thus, hand crafted
features summarize the image data in terms of the distribution of the occurence of the artefacts they seek
to discover. SIFT [43], SURF[6], GIST [49], and HOG [15] are popular hand crafted features. SIFT
detects and counts artefacts by computing difference of Gaussians around points of interest, SURF uses
Haar wavelet responses around interest points to detect Hessian blobs. HOG detects and counts simple
gradients, and GIST uses gabor filters to detect artefacts.

Learnt representations employ deep learning architectures modeled after the human brain to capture
rich, semantically meaningful representations. This feature learning community believes the human
brain has a deep structure (a huge network of neurons), and humans organize their ideas hierarchically,
through composition of simpler ideas. Like hand crafted approaches, deep learning approaches also seek
to discover simple artefacts in the data. However, unlike the hand crafted feature extraction approaches,
these artefacts are learnt (are free to take any form) by looking at the data and not detected by matching
premeditated templates. Besides, deep architectures assemble the learnt simpler artefacts to learn bigger
features: pixels are assembled into edges, edges into object parts, and object parts into objects (figure
2.4).

Features of an image can also be categorized on the basis of whether or not they represent the whole
image. For instance, while GIST features represent the entire image, SIFT features are local and com-
puted around interest points in an image. Consequently, while the GIST feature is always a fixed sized
representation, SIFT representation of an image can vary in size, depending upon the number of interest
points in the image. We talk about the various interest point detection strategies in the next section.
Most popular scene or object recognition models first compute low-level (local) features such as SIFT
descriptors over interest points in an image and then transform / pool them into global representations
such as bag of words models. Thus, the current trend in feature representation [34] dictates a two step
approach to image representation: (1) a coding step, which involves computing local descriptors suited
to the task, and (2) a pooling step, which summarizes the coded features over larger neighborhoods,
often the entire image. We describe examples of this approach in detail in the following sections.

7

2.1.1 An example of a feature learning method: Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMS), first introduced by Smolensky in [66] are undirected,
energy-based graphical models that learn a non-linear subspace by minimizing reconstruction error.
The input data can then be projected onto the learnt subspace; RBMS can thus be seen as non-linear
dimensionality reduction tools or simply put, feature extractors.

Figure 2.1: A simple Restricted Boltzmann Machine

RBMS are two layered, fully connected networks that have a layer of input/visible variables and a
layer of hidden random variables. They model a distribution over visible variables by introducing a set
of stochastic features. In most computer vision applications, the visible units correspond to the pixel
values and the hidden units correspond to visual features. A learnt RBM represents a subspace in the
pixel space, and can be used to project the pixels (image) to the feature space. In chapter 5, we describe
an approach to feature learning using RBMS. The rest of this section describes the mathematical model
of an RBM.

For an RBM with I visible units vi, i = 1, . . . , I (v0 = 1 is the bias terms), J hidden units hj , j =

1, . . . , J (h0 = 1 is the bias term) and symmetric weighted connections between the visible and hidden
layers denoted by w ∈ R(I+1)×(J+1) (these include asymmetric forward and backward bias terms), the
activation probabilities of units in one layer are computed based on the states of the opposite layer:

Pr(hj |v) = σ

(
I∑

i=0

wijvi

)
(2.1)

Pr(vi|h) = σ

 J∑
j=0

wijhj

 (2.2)

σ(·) is the sigmoid activation function. The RBM energy function, defined as the negative log proba-
bility of a configuration of states (v,h) is given by:

−logPr(v,h) = E(v, h) =
∑
i,j

vihjwij (2.3)

Training the RBM thus involves learning the RBM weights and biases that minimize this energyE(v,h).
Ideally the RBM parameters would be learnt by maximizing the likelihood. This objective function is

8

called the alternative Gibbs sampling. However, computing this maximum likelihood involves an expo-
nential number of terms, which makes the training slow and unmanageable. Hinton, in [25], proposed
an objective function called contrastive divergence (CD) which is an approximation to the maximum
likelihood objective function and can be efficiently minimized. In the CD-1 forward pass (visible to
hidden), we activate the hidden units h+j from visible (input) unit activations v+i (Eq.5.1). In the back-
ward pass (hidden to visible), we recompute visible unit activations v−i from h+j (Eq.5.2). Finally we
compute the hidden unit activations h−j again from v−i . The weights are updated using the following
rule:

∆wij = η(< v+i h
+
j > − < v−i h

−
j >) (2.4)

where η is the learning rate and <·> is defined as the mean over N examples. The reconstruction error
for any sample is computed as:

ε =

I∑
i=1

(v+i − v
−
i)

2 (2.5)

The power of RBMs can be attributed to the fact that they are a generic framework for learning
non-linear subspaces, make no assumptions about the sub-spaces, use a standard energy based learning
algorithm, and can model subspaces of any degree of complexity via the number of hidden units making
them most suitable as general purpose sub-space learning machines.

2.2 Bag of Words Model for Image Representation

The bag-of-words representation for images was introduced in [65, 14], inspired by the success of
the bag-of-words (BoW) features in document classification. The text based BoW models typically
represent documents as histograms of words in the dataset and ignore the order of words. Similarities
between two documents are then approximated by computing similarities between their histograms
(BoW representations).

BoW models for images are based on the same hypothesis: images are composed of smaller artefacts
(visual words) and counting the number of different types of visual words in the image gives a reasonably
accurate description of the image. For instance, consider the task of recognizing images of cars. Cars
come in a variety of shapes and sizes: vintage, sports, convertibles, sedans, SUVs, wagons, hybrid and
so on. A good representation should thus be invariant to the variation in shapes and sizes. One way
to achieve this objective is to not look at the car itself, but to recognize smaller objects (artefacts)1 in
the car: the wheels, the steering wheel, the rearview mirrors, the doors, the head lights, the tail lights,
bumpers and so on. Counting these smaller artefacts in the image gives us a fair idea of whether the
image has a car or not. Figure 2.2 describes a BoW representation of a female torso. The good thing
about this representation is the fact that we didn’t impose any restrictions on the size, the position and
the orientation of the car in the image. In the traditional BoW model, we completely disregard the spatial

1The artefacts we name here are merely for simplicity. In most BoW representations, the actual artefacts we come across
are much smaller in size and are relief edges and patterns.

9

context of the image. Thus, BoW models are inherently invariant towards changes in scale, position and
orientation. Having said this, we must add that ignoring the spatial context can be a blessing, or a curse,
depending on the task at hand. In the rest of this section, we discuss the classification pipeline, the
implementation details and issues associated with traditional BoW models in computer vision.

Figure 2.2: Bag of Words. The image shows an object (a torso of a woman), and what its traditional
BoW representation would look like.

The traditional BoW classification pipeline involves the following steps:

• Computing local features on interest points in the image.

• Vector Quantization.

• Image histogram computation.

We now describe each of these steps.

2.2.1 Features

Computing the BoW model for images involves first computing low level features such as SIFT [43],
SURF [6], HOG [15] over interest points in the images. Interest points are points in images around
which we compute features. Classically, interest points denoted points in the image for which the signal
changed two-dimensionally. There are various strategies in literature for choosing these interest points.
Interest points could be chosen (a) by an interest point detection algorithm as in [64, 14], or (b) by
densely sampling the image in a grid as in [18, 76], (c) segmentation based sampling [5] or (d) even
randomly [70]. Densely sampled interest points have been shown to work well on a variety of computer
vision tasks [18], and are the most prevalent. The local features computed over the interest points are
referred to as keypoints.

10

SIFT features have enjoyed success on a variety of visual classification tasks. SIFT features (a) work
in a normalized intensity space, so are partially invariant to changes in illumination, and (b) are invariant
to uniform scaling, orientation, and partially invariant to affine distortion by design. Most recent BoW
representations have employed dense SIFT features which are SIFT features computed over interest
points in a dense grid.

2.2.2 Vector quantization

These keypoints / local features in the image are vectors of real values. However, a BoW repre-
sentation is a histogram of visual words. Thus, we need some sort of vector quantization method that
converts these real valued keypoints to symbolic visual words. Usually, a simple clustering method such
as K-Means or agglomerative clustering is employed for vector quantization. The most popular choice
is K-means. We use K-Means on the keypoints to getK cluster centers; we call each cluster center (also
called the centroid or cluster representative) a visual word. The set of K cluster centers is called the vo-
cabulary / dictionary / codebook of the dataset. Vector quantization involves replacing / approximating
each keypoint with its nearest visual word. Vector quantization allows us to convert a real valued image
to a symbol image (each local feature is now seen as a symbol / visual word). Subsequent processing is
done on the symbol image.

Vector quantization imparts BoW representations with several desirable attributes that make them
suitable for a variety of computer vision tasks. BoW models are efficient, reasonably discriminative and
robust to a number of nuisance parameters such as scale, translations, illumination changes, and other
deformations. This discretization of SIFT or other features to a symbol space is necessary in large scale
problems because (a) computing distances between a huge number of descriptors is inefficient, and (b)
storing all the descriptors is not feasible, instead we store only the symbol (visual word) identifier per
descriptor. After this vector quantization, the Euclidean distance between the high dimensional features
(128 in case of SIFT) is approximated by a 0 −∞ metric. It is assumed that features corresponding to
the same visual words are absolutely identical, while features corresponding to different visual words
are totally different. This computational convenience comes at the cost of discriminative power of the
representation.

2.2.3 Image histogram computation

Computing the BoW model of an image requires building a histogram of the visual words in the
image. This is done by simply counting the occurences of each visual word in the symbol image.

Histogram binning adds another dimension to BoW models. It is noteworthy that the traditional
BoW representation is always a fixed K−dimensional representation, where K is the vocabulary size,
despite the difference in image sizes/number of interest points per image. This is particularly suited for
most of the learning algorithms that assume that the input space has a fixed size. To make the represen-
tation invariant to these parameters such as number of interest points, it is customary to normalize the

11

histogram. The most common means of normalization is the L1 normalization where we simply divide
the representation by the sum of the histogram elements, so that the final representation adds to 1. A
BoW histogram thus summarizes the image as a distribution of the low level visual words in the image.
This distribution is also referred to as term-frequency in some contexts.

2.2.4 Beyond BoW: Spatial Pyramids

As described in the preceding sections, the traditional BoW model disregards the spatial context
in the image completely. While on one hand, this imparts the representation invariance to distortions,
traslations, orientation and scaling, it also discards discriminative information that is readily available.
For instance, in recognizing faces, the relative positions of the eyes, nose, lips, ears and so on can
be very informative and discriminative. Over the years, much research has gone into enhancing BoW
representations by incorporating spatial context. One of the most noted works in this direction is spatial
pyramids [37].

Figure 2.3: Spatial Pyramid Matching. Picture Courtesy: [37]

This approach computes BoW representations for image regions at different locations in various
scales. In other terms, we compute features hierarchically, dividing the image into a grid like structure at
each level and computing a BoW representation for each cell in the grid. The final image representation
is the concatenation of these smaller BoW representations.

Figure 2.3 demonstrates this approach. At level 1, we compute a BoW representation for the entire
image. This is denoted by the first histogram in the figure. At level 2, we divide the image into 4
symmetric regions and compute a BoW representation for each of these 4 parts. This is denoted by
the second histogram. At level 3, we divide the histogram symmetrically into 16 regions and the BoW
representations for each of these are denoted as the third histogram. We can further partition the image
into smaller regions if we feel the need to do so. The final image representation is the concatenation

12

of all these histograms. It should be noted that the representative power of spatial pyramids comes at a
price: the size of the representation increases manyfold per level. In figure 2.3, if the codebook size is
K, the level 1 pyramid has a representation size of K, the level 2 pyramid has a representation size of
4K and the level 3 pyramid has a representation size of 16K. The final representation will thus have a
size of 21K. It goes without saying that these grids need not be symmetric. As a matter of fact, most
recent works experiment with the grid structure. For instance [29] uses 8 spatial regions for the Pascal
VOC 2007 dataset, by dividing the image in 1 × 1 (full image), 3 × 1 (three horizontal stripes), and
2× 2 (four quadrants) grids. It should be noted that each spatial region is normalized individually prior
to stacking.

2.2.5 Practical Issues

Learning BoW representations for vision tasks involves making few design choices, like how to
generate interest points and which local features to choose. As already stated, dense SIFT features work
well for a variety of tasks. Choosing the vocabulary size is another crucial decision. It has a direct
bearing on the representation size and the representation power. Traditionally, the BoW representation
size is proportional to the codebook size. If the vocabulary is too small, the visual words are not
representative of all patches, while if the vocabulary is too large, quantization artefacts and overfitting
occur. The size of the codebook doesn’t have a closed form solution and is decided empirically.

Another issue while computing BoW representations is scalability. Conventionally, we use a subset
of the training features to compute the vocabulary. Thus, the local feature descriptors are sampled from
the training set and K-means is employed to cluster this subset. People use different sampling strategies
for this task: (a) randomly sampling the desired number of descriptors from the entire dataset, (b) sample
a fixed number of descriptors from each image, (c) sample a fixed number of descriptors from each class,
and so on.

Apart from the above parameters, proper normalization of the representation is also necessary. L1

and L2 normalizations are popular in literature. In popular computer vision tasks such as visual classi-
fication and recognition, the choice of the classifier is also crucial. SVM classifiers have been used in
most recent works; although neural networks and nearest neighbour classifiers have also been described
in literature. SVM learning is intractable in very high dimensional spaces, so fixing the representation
size becomes all the more crucial. Many attempts in this field have attempted development of distance
functions and kernel functions that enhance the accuracy of the predictions.

2.2.6 A Note on Visual Vocabularies

Visual vocabularies allow efficient indexing for local image features. There are several methods of
codebook construction in literature. The most common, and most popular method of learning a visual
vocabulary or a codebook is clustering. Typically, the vocabulary is constructed by clustering the local
image features using the K-Means algorithm [37, 29]. K-Means partitions the space well, minimizing

13

the variance between the data points and the cluster centers. However, findings in [27, 10, 54] suggest
that the most frequently occuring words are not necessarily the most discriminative. Motivated by this
hypothesis, a number of methods have attempted to build discriminative vocabularies by (a) alternative
clustering algorithms [27, 42], (b) using class label information [47, 80, 83], and (c) even creating
class-specific categories as in [51, 35, 69].

Besides the popular clustering approaches, a vocabulary may be constructed by a manual labeling
of image patches with semantic labels, as in [73, 77]. These semantic vocabulary approaches are more
intuitive because they try to express the image in terms of what the constituent visual words in it mean.

Vocabulary trees [48], where we use hierarchical K-Means by choosing a branching factor and num-
ber of levels, allow recursive division of the feature space. These enable us to efficiently reduce the
computational cost of assigning visual words to features, from linear to logarithmic in the size of the
vocabulary. This allows us use much larger codebooks. Also, experimentally, it was shown that these
visual words are more specific and are particularly suited to matching specific instances of objects.

It is worth considering what it is that a visual word captures. This depends on a variety of factors:
(a) what features were used to construct the vocabulary, (b) the size of the codebook, (c) the vector-
quantization strategy used, and (d) how the interest points in the original images were chosen. Despite
all these parameters, it is reasonable to assume that patches assigned to the same visual words have
a similar appearance in the low-level feature space. Also, in most practical solutions (where we use
unsupervised methods for codebook construction), there is usually no guarentee of correlation between
the visual words and the object parts/artefacts.

One of the major design decisions when learning the visual codebook is choosing the data used
to construct it. The most common protocol is to use a subset of the features from the training set to
build the vocabulary. Also, in most cases, the training set is compiled to contain samples similar (often
coming from the same data source) to the ones that would be present in the testing set. This often
leads to the most accurate results. Also, when we intend to learn a vocabulary for a set of categories,
it is customary to sample descriptors from training samples covering all categories, ensuring that all
categories are represented.

Choosing the feature extraction method and the interest point strategy are also crucial to the types
of visual words generated. These in turn affect that similarity measured between the visual word distri-
butions. Domain knowledge comes in handy at this point. Recent approaches have shown that a dense
grid of interest points for collecting local features works well on a recognition tasks. Usually, we collect
dense features at multiple scales [29]. Dense features are more suited to the task of category recognition
while features computed at interest points are usually preferred for recognizing instance of objects.

Thus there are many choices available when creating a visual vocabulary. Each of these choices
affects the semantics of our representation and the accuracy of our solution. However, there is still no
clear consensus on the correct means of learning a visual vocabulary. The analogies between textual and
visual data are only approximate: textual words are discrete, symbolic language defined semantic con-

14

structs, while natural images are continuous, complex entities. “Real sentences have a one-dimensional
structure, while images are 2D projections of the 3D world.” [24].

2.3 Deep learning

Although representations based on hand crafted features like SIFT and HOG have been reasonably
successful on many computer vision tasks, they are not the only means to our end. One of the major
role players behind the success of hand crafted features are the subsequent components in the model
pipeline. Use of complex models such as SVM classifiers, distance functions and kernels of different
kinds have all contributed generously to the success of methods based on hand crafted features. In a
manner of speaking, complex models are used to compensate for the simplicity of these representations.
An alternative approach is to continue to “enrich” low level features by using hierarchical feature learn-
ing paradigms such that after several levels of semantic enrichment, the features are meaningful enough
that even simple models can accomplish complex tasks.

A school of researchers believes that good internal representations of the data are learnt from the data
and are hardly hand crafted at all. The primary issues with hand-crafted features are (a) crafting features
from hand requires domain knowledge, (b) the features do not generalize well to other domains, and
(c) only capture low-level edge information. Many recent attempts in feature learning have intended to
design features that effectively capture mid-level cues (e.g. edge intersections) or high-level represen-
tation (e.g. object parts). Driven by the idea that computer vision is more than just pictures, over the
years, many researchers have asked themselves the same question, ”can we automatically learn a good
feature representation?” Figure 2.5 shows the different kinds of data that we encounter while working
on computer vision problems. Recent developments in machine learning have shown how hierarchies of
features can be learned in an unsupervised manner directly from data. These endeavours have resulted
in Deep Learning architectures.

Figure 2.4: Feature Hierarchies. From left to right, (a) Pixels, (b) Edges, (c) Object parts, and (d)
Objects.

Deep learning networks [26, 40] and convolutional networks [38] are driven by the idea that good
internal representations are hierarchical and can be learned directly from the data. These networks have

15

multiple hierarchical layers (also called feature maps) stacked together; each feature map learns artifacts
in the image by assembling smaller artifacts learnt by the preceding feature maps. As described in figure
2.4, pixels are assembled into edges, edges into object parts, object parts into objects, and objects into
a scene; deep learning thus exploits the spatial information in the images. These levels represent the
feature hierarchy.

Figure 2.5: Different types of data encountered in computer vision. Picture Courtesy: Andrew NG

Deep learning architectures, often referred to as self taught learners, draw inspiration from the human
brain which is known to learn using its network of neurons. Consequently most deep learning models are
based on neural networks. Traditionally, deep learning is performed in an unsupervised manner, which
relaxes the constraint that data needs to be labeled. This allows us to learn from the abundant unlabeled
data. Convolutional neural networks, deep belief networks and convolutional deep belief networks are
some popular examples of deep learning methods. In the next section we describe convolutional deep
belief networks (CNNs) because they best demonstrate the characteristics of a deep learner.

2.3.1 An example of deep learning models: Convolutional Neural Network

CNNs are a special type of neural networks, also trained using the back propagation algorithm. They
differ from traditional neural networks in their architecture. Like most deep learning architectures, they
are designed to recognize visual patterns directly from pixel images with minimal preprocessing. CNNs
recognize patterns with extreme variability and are robust to distortions and simple transformations.
In figure 2.6, the CNN (feature extractor) is coupled with a multilayer neural network which acts as
a classifier. This is in line with our remark that deep learning methods enrich low level features by

16

using hierarchical feature learning paradigms such that after several levels of semantic enrichment, the
features are meaningful enough that even simple classifiers do the job. Thus, CNN relies as much as
possible on learning in the feature extractor itself. Figure 2.6 describes the structure of a convolutional
neural network (CNN).

Figure 2.6: Convolutional Neural Network

CNNs combine three architectural strategies to ensure some degree of shift, scale and distortion
invariance:

• local receptive fields

• shared weights (weight replication)

• spatial or temporal sub sampling

Local receptive fields: The input layer (or a plane) in a CNN receives raw images that are approxi-
mately size normalized and centered. Each unit in a layer receives inputs from a set of units located in a
small neighbourhood of the previous plane (local receptive fields). With local receptive fields, neurons
extract elementary visual features like oriented edges, end points, corners etc. These features are then
combined by subsequent layers in order to detect higher order features.

Shared weights: Distortions or shifts of the input can cause the position of salient features to vary.
Elementary feature detectors that are useful on one part of the image are likely to be useful across the
entire image. This knowledge can be applied by forcing a set of units whose receptive fields are located
at different positions in the image to have identical weight vectors. Units in a layer are so organized
in planes within which all the units share the same set of weights. The set of outputs of the units in
such a plane is called a feature map. In figure 2.6, units in a feature map perform the same operation
on different parts of the image. Typically, we have several feature maps for the same location so we
compute multiple features. Let us suppose a unit in a feature map receives input from a 5x5 patch
(called the receptive field) in the input field, hence has 25 inputs. The receptive fields of horizontally
contiguous units overlap by 4 columns and 5 rows. In figure 2.6, at each input location 4 different types
of features are extracted by four units in identical locations in the 4 feature maps (this is denoted by
the feature maps S1). A sequential implementation of a feature map would scan the input image with

17

a single unit that has a local receptive field and store the states of this unit at corresponding locations
in the feature map. This operation is equivalent to a convolution, followed by an additive bias and an
activation function, hence the name convolutional network.

Spatial sub sampling: If the input image is shifted, the same feature is captured by a different unit
with a different receptive field. This is the basis of robustness of convolutional networks to shifts and
distortions. Once a feature has been detected, its exact location becomes less important (and harmful).
Only its approximate position relative to other features is relevant. A simple way to reduce the precision
with which the position of distinctive features are encoded in a feature map is to reduce the spatial
resolution of the feature map.

Sub-Sampling layers perform local averaging and a sub-sampling reducing the spatial resolution of
the feature maps, hence reducing the sensitivity of the output to shifts and variations. In figure 2.6,
the 2nd hidden layer (C1) is a sub-sampling layer. Since there are 4 feature maps in the 1st hidden
layer (S1), there are 4 feature maps in this sub-sampling layer too. The receptive field is a 2x2 patch
in the previous layer. Each unit here performs averaging, followed by multiplication with a trainable
coefficient, addition of a trainable bias and passing through a sigmoid function. Contiguous units have
non-overlapping receptive fields, hence half the number rows and columns with respect to previous
layer.

It is to be noted that CNNs are feature extractors per se. In figure 2.6, the feature extractor is coupled
with a neural network. Thus, while the feature extraction module is totally unsupervised, we need
class labels to train the classifier. This is in line with our earlier remark that traditional deep learning
architectures perform unsupervised feature learning.

2.3.2 Discussion

Traditional deep learning architectures are hierarchical feature learners. These deep models typically
work on overlapping patches at each level (the overlap takes care of small translations) and summarize
the features learnt in a neighbourhood by a pooling method. In case of a CNN, we described an average
pooling method where the features computed over a region (called a cell) are averaged to give the
feature representation of the cell. There is a second form of pooling called max-pooling, where the
feature representation of the cell is the maximum of the features in the cell. The choice of pooling
strategy is a crucial one. While in a generative framework, average pooling might seem to be the better
option, in a discriminative classification setting, max-pooling is generally preferred. Convolutional
networks alternate between feature maps and pooling layers to achieve invariance to small translations
and distortions.

Deep learning models learn richer, semantically meaningful representations. However, this richness
comes at a cost. These models are complex in terms of their training and architecture. Designing a deep
learner to accomplish a task involves making many policy desicions: number of layers, number of units
per layer, choosing activation functions, choosing pooling strategies and so on. Training a deep learner
usually requires us to learn many parameters iteratively in a gradient descent procedude, and as such

18

is slow. Besides, other issues associated with gradient descent methods such as deciding the objective
function, choosing the learning rate so as to avoid local optimal states, choosing momentum, preventing
over fitting, and so on futher make the training sensitive to a lot training variables.

Deeply learnt representations have enjoyed immense success on tasks such hand written and machine
printed character recognition. One of the primary reasons for the success of deeply learnt architectures
is the fact that they exploit almost all the spatial information in the image. As shown in figure 2.4,
deep architectures learn objects in the image by assembling the already learnt smaller artifacts. While
spatial context may seem like a very desirable characteristic of an image, relying too much on the
spatial information is also the main weakness of these methods. Natural images don’t usually have a
well defined object, in terms of the geometrical and positional symmetry of the objects. In fact, deep
architectures have only been moderately successful in the natural image classification domain. Datasets
such as Caltech 101 where deep representations have enjoyed any success have the objects centered in
the image with the background cropped. This is demonstrated in figure 2.7. Most images have little or
no clutter. The objects tend to be centered in each image. Most objects are presented in a stereotypical
pose. Deep learning representations have struggled on more challenging image classification datasets
such as Pascal VOC 2007. Figure 2.8 shows the Pascal VOC 2007 dataset. In this dataset, the objects
vary a lot in scale and position; even multiple objects can be present in the same image.

Image representations such as BoW models, spatial pyramids and deep learnt representations all
learn to recognize small artefacts in the image. BoW representations disregard all spatial context in
the image and hence are very robust to scale and distortions, translations, rotations. However, they
lose discriminative power in cases where spatial information is useful. Spatial pyramids are a means of
incorporating weak geometry in BoW representations. They exploit spatial context by building BoW
models for different regions in an image. Deep learnt representations are the other end of the extreme.
They rely a lot on spatial information and thus lose some of the invariance to translations, rotations.
Thus, the extent to which we rely on the spatial context is a crucial factor that affects the performance
of any method.

19

Figure 2.7: Caltech 101: composite image produced by averaging images of each category. Picture
courtesy: Antonio Torralba.

Figure 2.8: Pascal VOC 2007 dataset. Sample images from a few categories.

20

Chapter 3

Partial Least Squares Kernel for computing similarities between Video

Sequences

Computing similarities between data samples is a fundamental step in most computer vision (CV)
tasks. Better similarity measures lead to more accurate prediction of labels. Computing similarities
between video sequences has been a challenging problem for the CV community for long because
videos have both spatial and temporal context which are hard to capture. In this chapter, we describe
a novel approach that employs Partial Least Squares (PLS) regression to derive a measure of similarity
between two tensors (videos). We demonstrate the use of this tensor similarity measure along with SVM
classifiers to solve the tasks of hand gesture recognition and action classification. We also show that our
methods significantly outperform the state of the art approaches on two popular datasets: Cambridge
hand gesture dataset and UCF sports action dataset. Our method requires no parameter tuning.

3.1 Introduction and Prior Work

Many computer vision tasks involve assigning labels to unlabeled samples. Traditionally, we solve
these tasks by acquiring ground truth labels for some of the data samples. Some measure of similarity
between the seen and unseen samples is then used to predict the labels of the unseen samples. The
similarity measure used is thus a crucial component of any CV problem. A lot of similarity kernels
for real valued and symbolic data such as text can be found in literature [63]. However, there are few
similarity kernels for videos (tensors). Devising good discriminative kernels for videos is challenging
because they have both spatial and temporal context. In this chapter, we take a step forward in this
direction.

Quantitative similarity measures between videos can be applied to solve various computer vision
tasks such as hand gesture recognition and action classification. These find applications in Human
Computer Interaction (HCI) [50] and video surveillance [61]. Hand gesture recognition is also widely
used for sign language interpretation [22]. Studies have been conducted over the years to develop
systems that perform these tasks accurately.

21

Some of the earlier methods for hand gesture recognition have used neural networks to recognize
spatio-temporal actions [67]. Others describe videos using spatial [50] and temporal models [11]. Few
methods have also used Hidden Markov Models and its variants [79]. More recently, graph matching
approaches have been used for gesture recognition [62]. The most notable recent approach to hand
gesture recognition [30] combines Canonical Correlation Analysis (CCA) with discriminant functions
and SIFT features to extract discriminative pair-wise spatio temporal features (for pairs of videos) that
perform robust gesture recognition.

There has been a furore of activity in the action classification community too. Methods that use
the knowledge of the geometry of the tensor space [45] for action classication factor tensors using a
modified High Order Singular Value Decomposition (HOSVD) and each factorized space is recognized
as a Grassmann manifold; and classification is done on this manifold. Motivated by this approach,
[44] represents tensors (videos) as a tangent bundle on a Grassmann manifold and canonical distances
between these tangent spaces are then used for action classification. CCA has been extended [31] for
multidimensional data arrays to inspect joint space-time linear relationships of two videos and acquire
similarity features of the two videos that are both flexible and descriptive. This is achieved by repre-
senting third order tensors (videos) as a set of 2-D matrices and using CCA on each of these matrices.
This method further uses a discriminative feature selection scheme and a nearest neighbour classifier for
action classification.

Our method is similar to [31] in the sense that we too flatten the videos (third order tensors) to
get three matrices (second order tensors) per video (these three matrices are referred to as the three
joint shared modes of a tensor in [31]). However, unlike [31] that uses CCA, we use PLS regression
to compute similarity between the corresponding second order tensors of a video. Finally, we build
classification kernels using these similarity measures and use an SVM for classification.

3.2 Partial Least Squares

PLS [58] is a technique for modeling relations between sets of observed variables using latent vari-
ables. PLS assumes that observed data is generated by processes that use latent variables. PLS generates
orthogonal score vectors (latent vectors) using the existing correlations between two sets of random vari-
ables while preserving most of the variance of both sets. PLS assumes that observed data is generated
by processes that use latent variables and generates orthogonal score vectors (latent vectors) using the
existing correlations between two sets of random variables while preserving most of the variance of
both sets. The key difference between PLS and CCA (discussed above) is that CCA maximizes the
correlation while PLS maximizes the covariance between two sets of variables.

Although PLS can tackle sets of random variables with different dimensionalities, our demonstration
uses same sized random variables. Let X and Y be two sets of observed random variables (data). In
our case, both X and Y are matrices of size n ×m where n is the number of random variables and m
is the dimensionality of each random variable. It is to be noted that both X and Y are preprocessed to

22

ensure they are both zero mean matrices. PLS models the relations between these two data matrices by
decomposing them into:

X = TPT + E (3.1)

Y = UQT + F (3.2)

where T, U are n × p matrices containing p extracted latent vectors (also called scores), P and Q are
m× p matrices of the loadings while E and F are the n×m matrices of residuals. In PLS regression,
a linear inner relation between U and T is assumed:

U = TB + H (3.3)

where B is the p × p diagonal matrix of regression coefficients. H is the matrix of residuals. Hence,
equation (3.2) can be rewritten as:

Y = TBQT + (HQT + F) (3.4)

The sum of the regression coefficients in B serves as the quantitative measure of similarity between
sets X and Y .

The PLS method, which is most commonly implemented using the nonlinear iterative partial least
squares (NIPALS) algorithm [81], constructs a set of weight vectors W = {w1, w2, . . . , wp} such that

[cov(ti, ui)]
2 = max

|wi|=1
[cov(Xwi,Y)]2 (3.5)

where ti, ui are the ith column of matrices T and U respectively and cov(ti, ui) is the sample covariance
between latent vectors ti and ui. After the extraction of ti and ui, the matrices X and Y are deflated by
subtracting their rank-one approximations based on ti and ui. This process is repeated until convergence.

3.3 PLS Similarity Kernels for Videos

3.3.1 Joint Shared Modes

In section 3.2 we described a similarity measure between two sets of random variables. However, our
goal is to classify videos, which are third order tensors. Thus, we need a way to convert the third order
tensors to matrices (which are second order tensors). We achieve this by flattening the video tensor to a
matrix. To understand this, we first consider the 2-D case: a matrix can be flattened to a 1-D vector by a
simple row-wise (or column-wise) ordering of its elements. In the same way, a third order tensor can be
flattened to a matrix in three ways, depending on which two dimensions are reordered into a 1-D vector.

A third order tensor V ∈ Rx×y×t can be seen as a three dimensional matrix with three modes
(dimensions): axes of space (x and y) and time (t). Assuming that we have videos of uniform size
(x × y × t), as described above, there are three ways to flatten the video into a matrix: by re-ordering
x, y or x, t or y, t. Thus, for any video, there are three distinct corresponding sets of matrices or random

23

variables. These corresponding matrices have been referred to as the joint shared modes of a tensor
in [31]. We call these the xy, xt and yt joint shared modes and denote them by Vxy, Vxt and Vyt

respectively. Intuitively, by using three different joint shared modes, we are trying to encode the 3-D
spatial and temporal context into 3 sets of random variables.

Figure 3.1: Flattening Videos to Matrices: A 2-D matrix can be flattened to a 1-D vector by a simple
row-wise or column-wise reordering of the elements. We use a similar idea to flatten a 3-D video to 2-D
matrices. For simplicity, a 3-D video can be seen as a rubic’s cube. This cube can be cut into 2-D slices,
and these slices can be stacked together in a 2-D plane, giving a two dimensional representation of the
video. There are three axes along which we can slice the cube; Hence there are three ways of flattening
a video. We call each of these 2-D representations of a video as a joint shared mode.

3.3.2 PLS Kernel

The PLS Kernel κ(V,W) gives a quantitative measure of similarity between two videos V and W.
As described in section 3.2, the quantitative similarity between two matrices (sets of random variables)
is given by the sum of the regression coefficients in the diagonal matrix B. We denote this similarity
between two matrices P and Q by β(P,Q).

Each joint shared mode is treated as a set of random variables and contributes to the overall similarity
between two videos. We compute the PLS regression coefficients between the corresponding modes for
each pair of videos in the dataset. Since we have three joint shared modes corresponding to a video,
essentially we can find three similarity values between each pair of videos, one corresponding to each
joint shared mode. The PLS Kernel is given by:

κ(V,W) = β(Vxy,Wxy) + β(Vxt,Wxt) + β(Vyt,Wyt) (3.6)

24

Thus, the similarity between two videos is simply the sum of the similarities between their correspond-
ing joint shared modes.

3.3.3 Discussion

PLS regression is an extension of the multiple linear regression model on which a number of mul-
tivariate methods such as discriminant analysis, principal components regression, and CCA are based.
Multivariate methods impose two restrictions: (a) latent variables are computed using the XTX and
YTY matrices; cross-product matrices of X and Y variables are not used, and (b) the number of pre-
diction functions is always smaller than the number of X and Y variables. In contrast, PLS extracts
prediction functions from the YTXXTY matrix. The number of prediction functions may be more
than the number of X and Y variables. PLS can thus be used when the predictor variables outnumber
the observations, unlike traditional multivariate methods.

3.4 Experiments and Results

We now discuss applications of PLS kernels to two popular CV tasks: hand gesture recognition and
activity classification. Here we demonstrate the superiority of PLS similarity kernels over state-of-the
art approaches on thest two tasks.

3.4.1 Hand gesture recognition on Cambridge dataset

The popular Cambridge hand gesture data set [31] contains 900 video sequences of 9 gesture classes,
defined by 3 primitive hand shapes and 3 primitive motions (see Figure 3.2). Each class contains 100

video sequences; these 900 video sequences are partitioned into five different illumination setting sub-
sets: Set1, Set2, Set3, Set4, Set5, each containing 180 videos. As in [44], we reduce the size of the
video frames to 20 × 20 pixels and extract the middle 32 frames for classification. Thus, all the video
sequences in the dataset were resized to 20×20×32. The experimental protocol followed in [44, 31, 45]
was used. According to this protocol, Set5 was used for training while Set1, Set2, Set3, Set4 were
used for testing.

Training involved first computing the PLS Kernel Matrix containing the similarities between every
pair of training video tensors. We used this Kernel Matrix to train a one-vs-rest SVM classifier [13] per
gesture class. Testing involved computing the PLS Kernel Matrix containing the similarities between
every pair of a training sample video and a testing sample video. This kernel matrix was used to generate
SVM scores for each test sample. The test sample was assigned the class label of the classifier that gave
the maximum score.

The hand gesture recognition accuracies can be seen in Table 3.1. We compare our method with
the state-of-the-art approaches described in [44, 45, 31, 30] (section 3.1). Our method significantly
outperforms the other methods on all illumination settings.

25

Figure 3.2: Cambridge hand gesture dataset

3.4.2 Action classification on the UCF Sport dataset

The UCF sport action dataset [57] contains 150 video sequences partitioned over ten human ac-
tion categories like driving, kicking, walking, swinging golf clubs (see Figure 3.3). Each category has
a different number of videos, from 6 to 22. This dataset is challenging because of the non-uniform
backgrounds and relative motion between the camera and subject in some actions.

Figure 3.3: UCF Sports Action dataset

As in [44], we resize all the video sequences to the same size 32 × 32 × 64. We choose the 64
middle frames from each video, and apply linear interpolation between frames for videos with less than
64 frames. We use the leave-one-out cross validation protocol just like in [44, 12, 33]. The classification
setup remains the same as in our experiments on the Cambridge dataset. We trained a one-vs-rest SVM
for each action class and the test video sequence was assigned the class label of the classifier with the
maximum score. The classification results can be seen in Table 3.2. We have also compared results
with [33] and [12]. While [33] learns the most discriminative space-time feature neighbourhoods for an

26

activity using local motion and appearance features, [12] computes rich features from point trajectories,
combine local descriptors to combat background noise and use a novel feature selection scheme. Here
again, our method significantly outperforms the state-of-the-art approaches.

Table 3.1: Hand-gesture recognition accuracy (%) on the Cambridge-Gesture Dataset

Method Set1 Set2 Set3 Set4 Total
PLS 96% 92% 96% 93% 94± 2.1%

TB [44] 93% 88% 90% 91% 91± 2.4%
PM [45] 89% 86% 89% 87% 88± 2.1%

DCCA [30] - - - - 85± 2.8%
TCCA [31] 81% 81% 78% 86% 82± 3.4%

Table 3.2: Leave one out cross validation on the UCF Sports Dataset

PLS TB [44] HDN [33] OMD [12]
93.2% 88% 87.27% 86.9%

Discussion: Our PLS similarity kernel approach is superior to the previous best [44] for these tasks.
Our method is both more intuitive (based on maximizing covariance) and straight-forward, thus easily
implementable. Compared to [31], PLS is more general (sections 3.2, 3.3.3) and the use of SVM clas-
sifiers (as opposed to a nearest neighbour scheme) with our similarity kernels boosts the classification
performance.

3.5 Summary

In this chapter, we devised a method that employs PLS regression to derive a scalar similarity mea-
sure between two sets of random variables. We extended this technique to find quantitative similarity
measures between two videos. We employed discriminative kernel matrices constructed using pair-wise
similarities between the data samples to solve the tasks of hand gesture recognition and human activ-
ity classification. Our method outperforms the state-of-the-art methods on the Cambridge hand gesture
dataset and the UCF Sports dataset. Our model involves no parameter tuning.

27

Chapter 4

Learning Hierarchical Bag of Words using Naive Bayes Clustering

Image analysis tasks such as classification, clustering, detection, and retrieval are only as good as
the feature representation of images they use. Much research in computer vision is focused on finding
better or semantically richer image representations. Bag of visual Words (BoW) is a representation that
has emerged as an effective one for a variety of computer vision tasks. BoW methods traditionally use
low level features. In this chapter, we describe a novel strategy to use these low level features to create
“higher level” features by making use of the spatial context in images. In this chapter, we propose a
novel hierarchical feature learning framework that uses a Naive Bayes Clustering algorithm to convert a
2-D symbolic image at one level to a 2-D symbolic image at the next level with richer features. On two
popular datasets, Pascal VOC 2007 and Caltech 101, we empirically show that classification accuracy
obtained from the hierarchical features computed using our approach is significantly higher than the
traditional SIFT based BoW representation of images even though our image representations are more
compact.

4.1 Introduction and Prior Work

Over the years, research in computer vision has tried to narrow down the gap between raw image
pixels and what humans see when they look at the image. The efforts to do so can be very broadly
categorized into two classes. The first class of methods uses a robust representation based on relatively
low level features (e.g. SIFT based Bag of Words (BoW) representations [65, 14]). BoW representations
have received widespread success in a variety of computer vision tasks such as image classification and
object detection [65, 14, 75] owing to their invariance to scale, spatial and rotational distortions. These
methods also use domain knowledge. Over the years, much research has gone into improving the
performance of models that employ BoW representations. Non-linear SVMs, specialized kernels of
different kinds [52, 72, 78, 84], and spatial pyramids [37] have all contributed to the success of these
representations. Most of these approaches tend to increase the overall image representation size. While
these methods have been successful in capturing diversity in image patches at low levels, it is hard to

28

incorporate them into a hierarchical feature learning frameworks naturally as there is no systematic way
to create higher level symbols from combinations of lower level discrete symbols (words).

To use the analogy from text data - representing images as histograms of SIFT [43] or HoG [15]
based bag-of-words is like representing text documents as histograms of letters in the language. Seman-
tically shallow features (e.g. lines in images or letters in text) are highly “ambiguous”. A vertical line
in isolation in one image can mean something completely different (e.g. a needle on a wall clock) from
what it means in another image (e.g. spoke in a bicycle wheel). Comparing simple features such as the
number of vertical lines in images or in a corresponding image quadrants reaches cannot address the
fundamental problem of symbol ambiguity. The key to better computer vision systems is therefore in
building a hierarchy of semantically deeper features (e.g. face, wall clock, chair, etc.) preferably in an
unsupervised manner before doing various image analysis tasks. A hierarchical feature that uses neigh-
boring low level features to create a higher level feature reduces ambiguity by incorporating “context”.
The “meaning” of a higher level feature is more than the sum of its parts. It is this enrichment that
makes hierarchical feature learning paradigms more promising.

The second class of methods continue to enrich low level features by using hierarchical feature
learning paradigms. Most hierarchical feature learning approaches such as Deep Belief Networks [26],
Convolutional Neural Networks [39], Convolutional Deep Belief Networks [40] and other hierarchical
models [56] use simple building blocks such as a logistic function to learn complex overall models with
many parameters to tune. Ideas like layered incremental training have made the training of these mod-
els practical. Further they can model translation invariance well using max pooling. The limitation in
these models is that they need real-valued inputs at each layer in the hierarchy and hence the traditional
BoW approaches that generate a large number of discrete symbols at lower levels cannot be naturally
incorporated into such hierarchical feature learning frameworks. Also, these models are complex with
many parameters to tune. While the initial results on these look promising, it is prohibitively expensive
to train these models as there are many parameters to learn and many ways to fall into a local minima
(initialization, update schedule, learning rates and momentum terms, etc). Since “seeing” is the process
of translating real valued 2-D pixel maps into “discrete” objects, methods that depend on real-valued
inputs are not naturally suitable for building a hierarchy of discrete objects. While the deep learning
methods have been known to work well for a variety of simpler datasets such as ILSVRC 2010, Im-
ageNet and Hollywood 2, they haven’t enjoyed much success on more challenging datasets such as
PASCAL [20].

Research into bridging the gap between these two directions exists. Hyperfeatures [2] exploit the spa-
tial co-occurrence statistics at scales larger than their local input patches by aggregating local descriptors
using methods such as GMM and LDA. This work is intended as a step forward in this direction. We
propose to combine the strengths of both the hierarchical feature learning and the Bag-of-Words learning
paradigms. We propose a generic framework for building discrete feature hierarchies in an unsupervised
fashion starting from any first level symbol image (e.g. dense SIFT visual words). The framework has
two parts: First is a novel Naive Bayes Clustering algorithm that clusters symbolic image patches using

29

EM like updates to maximize the log likelihood of the data in terms of a mixture of naive Bayes discrete
multi-variate distributions. Second we do a maximum pooling on neighboring patches using the pos-
terior probabilities of clusters in data points to reduce the image size at the next level. Evaluations on
Caltech 101 and Pascal VOC 2007 show significant improvements in head to head comparisons between
traditional SIFT based BoW (level 1) and image representations from hierarchical features learnt by our
framework. We argue that our representation is both compact and semantically meaningful.

4.2 Background

In this section we briefly summarize the two prominent directions in computer vision both of which
endeavour to represent the visual world through features which are invariant to scale, translation, rota-
tion, illumination, occlusion, and so on. However, while the BoW approaches can improve by further
exploiting the information content in the spatial layout of images, the deep learning methods can en-
hance their utility by overcoming the training and architectural complexity for learning large scale com-
puter vision systems. We intend to learn from these two directions and take an approach that combines
their powers to achieve superior representation.

4.2.1 Beyond Bag of Words

Visual BoW draws its inspiration from the analogous BoW models for document representation
that ignore the order of words. Traditional image classification involves computing local features at
interest points in an image and pooling these local features to give a global image representation. BoW
essentially quantizes each local feature into one of the visual words using a codebook and then represents
each image as a histogram of visual words. Computing the codebook involves identifying interesting
local patches in an image, extracting features or keypoints such as SIFT from these local patches and
finally clustering (usually using K-means) to group key points from the training images into clusters;
the center of each cluster corresponds to a different visual word. Finally each SIFT vector is quantized
by assigning it the label of the nearest cluster center. We represent each image as a histogram of the
visual words, called the BOW representation.

BoW represents an image using the distribution of visual word occurrences. In doing so, it converts
images of different sizes into fixed length representations. This is especially convenient for the classi-
fication task that need fixed dimensional inputs. However, BoW relies only on the appearance of the
visual words and ignores their spatial layout. This characteristic imparts invariance to scale, translation
and deformation, at the cost of discriminative power especially when the spatial layout is important.

There have been many recent attempts to overcome the limitations of BoW [53]. These include part
generative models like [19] and frameworks that use geometric correspondence search [36]. These work
well but are computationally expensive. BoW can be enhanced [64] by extending the codebook to in-
clude doublets which are pair-wise relations between features that lie in the same local neighbourhood.

30

Spatial pyramids [37] was a major breakthrough in this direction; it incorporates spatial information by
computing bag of word representations for different image regions at different scales and concatenating
these representations and finally uses a pyramid matching kernel [23] for classification. Almost every-
thing in the book - from kernels [52, 72, 78, 84] to sparsity [82] to local codes [78] has been attempted
to enhance the power of these low level representations [29].

All these clearly indicate the recognition of raising the semantic depth of the low level features
discovered through the BoW process. Bringing context of neighboring features to define “higher level”
features is clearly recognized as the next natural step here. As described in section 4.1, hyperfeatures [2]
were devised especially to fulfil this need. In this chapter, we continue to explore this middle ground.

4.2.2 Deep Learning

Deep learning networks [26, 40] and convolutional networks [39] represent an orthogonal school
of thought. These are driven by the idea that good internal representations are hierarchical and can be
learned directly from the data. These networks have multiple hierarchical layers (also called feature
maps) stacked together; each feature map learns artifacts in the image by assembling smaller artifacts
learnt by the preceding feature maps. Pixels are assembled into edges, edges into object parts, object
parts into objects, and objects into a scene; deep learning thus exploits the spatial information in the
images. These levels represent the feature hierarchy.

Convolutional networks typically work on overlapping patches at each level (the overlap takes care
of small translations) and summarize the features learnt in a neighbourhood by a pooling method. Pop-
ular pooling methods are (a) average pooling where the features computed over a region (called a cell)
are averaged to give the feature representation of the cell and (b) max-pooling where the feature repre-
sentation of the cell is the maximum of the features in the cell. Convolutional networks usually alternate
between feature maps and pooling layers to achieve invariance to small translations and distortions.

Deep learning gives robust image representations. However insufficient depth can hurt. Also, train-
ing deep networks involves making many design decisions, huge training set, it is computationally chal-
lenging and most of the feasible training algorithms are mostly approximations of the actual objective.
(In fact, attempts at training deep networks had failed before [26].)

There have been a few attempts to bridge the gap between the two schools by taking the middle
ground and developing frameworks that exploit the advantages of both [34]. This work is another
endeavour towards this objecive. Our approach involves deep / hierarchical learning of higher level
discrete symbols from lower level discrete symbols (for instance BoW visual words) that lie in the same
spatial neighbourhood. Our approach is different from traditional deep learning in that we work with
symbols / visual words and not real valued features. A novel Naive Bayes Clustering method allows us
to cluster combinations of low level symbols.

31

4.3 Naive Bayes Clustering

In order to build hierarchy of discrete features to compose symbols at the next level using the right
juxtapositions of symbols at the previous level, we need a systematic way of dealing with the combina-
torial explosion. For example, if we use 1000 low level features obtained from BoW and create higher
level symbols from just 2 × 2 patches of SIFT visual words, the potential combinatorial space of dis-
crete symbols at next level is O(1012), clearly too prohibitive to just do traditional 2×2-gram histogram
counting. If this were real-valued data, we could use any clustering technique but since this is symbolic
data in a large vocabulary we need to use a non traditional clustering technique.

In this section we present a novel Naive Bayes clustering algorithm to cluster multi-variate discrete
data in general and discrete image patches in particular. Note that in our experiments, we start with
SIFT-BoW visual words; a discrete image patch is thus a patch of such visual words. To define a
clustering algorithm, we need to define a “cost function”, a “cluster representation” and of “update
rules” to learn the cluster centers and cluster associations with data. First some notation: Let X =

{xn = (xn1 . . . x
n
D)}Nn=1 be the set of N data points. Each feature Xd ∈ Vd comes from a discrete

feature vocabulary Vd =
{
vd1 . . . v

d
Md

}
of size Md = |Vd|. In image domain, each 2-D discrete image

patch of size P ×P is treated as a one-dimensional vector of sizeD = P 2 and each symbol comes from
the same vocabulary, (i.e. Vd = V of dense SIFT clusters.)

4.3.1 Mixture of Multi-variate discrete Naive Bayes

Mixture models [8] are commonly used to partition the data into meaningful clusters. Our patches
are in P ×P discrete space. Typically a parametric mixture model is learnt by maximizing a maximum
(log) likelihood objective over the data:

J(Θ) = log

N∏
n=1

P (xn) =

N∑
n=1

log

K∑
k=1

P (k)P (xn|k) . (4.1)

Depending on the nature of the data, the mixture density function P (x|k) takes different forms. For
example when x ∈ RD any real-valued multi-variate density function such as a full Gaussian can be
used. In our case x ∈ VD and therefore, we propose to use the simplest multi-variate discrete density
function, i.e. Naive Bayes (NB):

P (xn|k) =

D∏
d=1

P (xnd |k) (4.2)

In NB clustering, therefore we learn a “mixture-of-Naive Bayes” parametric generative model (Eq. 1)
over a multi-variate discrete data by conveniently assuming independence among the features (Eq. 2).
In general there are two constraints that are also part of the objective. The priors must add up to one and
the density functions over all possible values that each feature can take for any given mixture component

32

must also add up to one, i.e.,

K∑
k=1

P (k) = 1,

Md∑
m=1

P
(
vdm|k

)
= 1,∀d = 1 . . . D (4.3)

A total of K ×
(

1 +
∑D

d=1Md

)
parameters Θ =

{
P (k),

{
P (vdm)

}Md

m=1

}K

k=1
are learnt using an EM-

algorithm with the following update rules for the E-step (Eq. 4.4) and smoothed M-step (Eq. 4.5 and
4.6) from iteration t− 1 to iteration t.

Pt(k|xn) =
Pt−1(xn|k)Pt−1(k)∑K
k′ Pt−1(xn|k′)Pt−1(k′)

(4.4)

Pt(k) =
λ+

∑N
n=1 Pt(k|xn)

λK +N
(4.5)

Pt(v
d
m|k) =

λ′ +
∑N

n=1 δ(xn,d = vdm)Pt(k|xn)

λ′Md +NPt(k)
(4.6)

Equation 4.4 computes the posterior probability of assigning a data point to cluster k in the next iteration
(t) given the parameters at the previous iteration (t−1). Equations 4.5 and 4.6 are the parameter updates
based on the assignment of data points to the clusters in this iteration. δ is the kronecker delta. Here we
employ basic laplacian smoothing that takes affect mostly if the number of points in a cluster is small
compared to the vocabulary size.

4.3.2 Soft vs. Hard Clustering

The EM algorithm described above represents a soft clustering algorithm where each data point is
assigned to all clusters using the posterior probabilities i.e., Pt(k|xn) in each iteration. This increases
the computational complexity of the other update rules by a factor of K. In traditional (hard) clustering
in each iteration, a data point is assigned to the cluster with the highest posterior probability. The hard
clustering version of the above soft clustering algorithm alternates between the assign cluster E-step
(Eq. 4.7) and the cluster parameters M-step (Eq. 4.8 and 4.9):

κt−1(x
n) = arg max

k=1...K
{Pt−1(xn|k)Pt−1(k)} (4.7)

Pt(k) =
1

N

N∑
n=1

δ (κt−1(x
n) = k) (4.8)

Pt

(
vdm|k

)
=

∑N
n=1 δ

(
xnd = vdm

)
δ (κt−1(x

n) = k)∑N
n=1 δ (κt−1(xn) = k)

(4.9)

Hard clustering is faster since parameter updates take K times less time per iteration. Combined with
a smarter initialization strategy discussed below, we found this to be better than soft clustering in terms
of convergence and quality.

33

4.3.3 Smart Initialization

Sensitivity to initialization is a well known problem with clustering. Bad random initializations
typically result in slow convergence, poor clustering quality and require multiple runs with different
random initializations to generate the right final clusters. This randomness and uncertainty in clustering
initialization can be mitigated by a number of smart initialization strategies [3]. In this chapter, we
employ a farthest first point (FFP) initialization. The goal of this initialization is to pick the initial K
clusters such that they “cover” the entire data space well by spreading themselves as far away from each
other as possible. Representation score of a point is defined as the similarity of a data point with the
nearest cluster. The similarity between two data points xn and xn′

, sim(xn,xn′
) =

∑
k δ(x

n
d = xn

′
d)

The FFP algorithm works as follows:

1. Initialize:

• First cluster randomly: k ← 1, µ1 = xr where r =random({1 . . . N})

• Representation scores: R (xn|µ1) = sim(xn, µ1), ∀n = 1 . . . N

2. Sample least represented point as the next cluster. If there are more than one equally representative
points, pick one randomly.:

µk+1 = arg min
n=1...N

R (xn|µ1 . . . µk) (4.10)

3. Update the representation scores of all data points:

R (xn|µ1 . . . µk+1) = max {R (xn|µ1 . . . µk) , sim (xn, µk+1)} , ∀n = 1 . . . N

4. k ← k + 1, repeate steps 2 through 4 while k < K

FFP based smart initialization gives significantly better clusters and faster convergence than traditional
random initializations.

4.4 Learning hierarchical bag of words

Any form of vector quantization gives a symbolic representation to the keypoints. Kmeans as a vector
quantization framework has the limitation that it can cluster real valued keypoints only, because it has
no distance metric to compare symbols. This is the primary hurdle that has prevented the evolution
of models that learn hierarchical bags of features. As described in section 4.3.2, the NB clustering
algorithm is designed to cluster symbolic data and hence it can be used to quantize discrete symbolic
vectors. With this useful tool, we are prepared to exploit the principles of deep learning to learn features
in the BoW domain.

34

4.4.1 Approach

We start conventionally by employing K-means on features computed at local image patches to
give us symbol representations for the low level keypoints. Given these representations, we compute
BoW representations of the images: we refer to these as our first level image representations / features.
However, we do not lose the symbolic image yet, for it has spatial context. Adhering to the conventional
mode of feature extraction, we collect keypoints (vectors of symbols) from patches in a dense grid
over the level 1 symbol image. We quantize these symbolic vectors using the naive bayes clustering
approach to get another level of symbols and another symbol image in turn. The symbols at this level
are aggregations of the symbols at the previous level that lie in the same local neighbourhood. We
compute the BoW representation of these level 2 symbol images and call these the second level image
representations. We have thus devised a hierarchical feature extraction scheme that is independent of the
we get the visual words at any level: this process can be repeated any number of times to get a desired
level of image representation. Figure 4.1 describes our approach.

Figure 4.1: Block diagram of our approach. SIFT features are computed on the raw image patches and
quantized using K-means to get the first level symbol image. Henceforth, keypoints at any level of the
hierarchy are collected from patches in a dense grid over the symbol image at the previous level. These
keypoints are clustered using NB clustering and quantized to get the the symbol image at the current
level. This process can be repeated any number of times. BoW representations can be computed using
the symbol image at any level of the hierarchy and used for classification.

4.4.2 Maximum Pooling

Spatial pooling is an idea borrowed from the deep learning community that introduces compactness
in the representation and imparts invariance to distortions by reducing the spatial resolution. As de-
scribed in chapter 2 (section 2.3), deep Learning methods typically compute features over overlapping
patches in an image. This overlap takes care of small translations of artefacts in the image. Overlap-
ping causes the same information to be captured more than once, and increases the representation size.

35

Maximum pooling is a form of spatial sub sampling (section 2.3.1). Once a feature has been detected,
its exact location becomes less important (and harmful). Only its approximate position relative to other
features is relevant. A simple way to reduce the precision with which the positions of distinctive features
are encoded is to reduce the spatial resolution, thus summarizing the features learnt in a neighbourhood
by a pooling method. Pooling thus also reduces the representation size.

Conventionally, spatial pooling is done over a grid of cells where the keypoints within each cell are
summarized by a single keypoint. For a cell c spanning P ×P symbolic keypoints (xn, n = 1, . . . , P 2),
we define the cell representative αc to be the symbol with the maximum posterior probability as given
by

αc = arg max
n
{P (xn|κ(xn))P (κ(xn))} (4.11)

where κ(xn) is the cluster representative of xn. In our experiments, we follow the usual convolutional
network maxpooling protocol which uses non-overlapping patches of size 2× 2 pixels.

4.5 Experiments, Results and Discussions

In this section, we use the NB clustering to learn hierarchical feature representations and use the
learnt representations for the task of image classification. We first demonstrate our approach on a
simple two class classification problem, and later show comprehensive results on two popular object
classification datasets, namely Caltech 101 and Pascal VOC 2007. In this process, we gain insights
into the learning by studying the effect of the parameters like the patch size (p), the size of the symbol
space at each level (K) and the level of the hierarchy (l). We argue that the method learns semantically
meaningful concepts by assessing the objective we are trying to achieve. We also demonstrate that hier-
archical representations learnt through the NB clustering of visual words are better representations and
outperform the traditional BoW method of image classification.
Experimental setup: In all the following experiments, we extract SIFT features over a dense grid using
a scale of 12 and a shift of 6 pixels. Our baseline BoW representations are computed by clustering the
SIFT vectors into 1000 visual words. For classification, we use a χ2 homogeneous kernel map [75] on
the BoW histograms and use a linear pegasos SVM [74].

4.5.1 Two Class Classification: Okapi vs Llama

For the first set of experiments, the two classes we work with are llama and okapi (Figure 4.2a)
which are part of the Caltech 101 dataset. We sample 15 images randomly for training and testing each
from both these classes. This gives us training and testing sets of sizes 30 images each. These classes
are hard to differentiate because the two animals look structurally similar and are found against similar
looking backgrounds.

For these experiments, we use our baseline BoW representations to compute Level 2 features using
patch sizes p2 = 2, 3 with shifts 1 and 2 respectively and vocabulary sizeK2 = 50, 100, 150, 200, 250, 500

36

(a)

0 200 400 600 800 1000
40

45

50

55

60

65

70

75

80

85

90

Image Representation Size K

2
−

C
la

s
s
 C

la
s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Variation of Classification Performance with patch sizes and K

NB L2 p=2

NB L2 p=3

SIFT BoW

(b)

0 200 400 600 800 1000
0

20

40

60

80

100

120

Image Representation Size K

2
−

C
la

s
s
 C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Variation of Classification Performance with Hierarchy Level and K

NB L2 p=2

NB L3 p=2

SIFT BoW

(c)

Figure 4.2: Two-Class (Llama vs Okapi) Classification. (a) Llama (top) and Okapi (bottom) (b)Variation
of accuracy with level 2 patch size and size of symbol space. (c)Classification accuracy based on Level
2,3 features; Patch size was fixed to p=2 for these experiments.

(from this point on, we denote the patch size and the size of the symbol space at the nth level by pn
and Kn respectively). BoW on the level 2 features given by each combination of p2 and K2 gives us
a different level 2 representation. We compute Level 3 features using the level 2 representation given
by p2 = 2,K2 = 200. For level 3, we use p3 = 2 with shift of 1 and K3 = 50, 100, 200. We use
classification accuracy as the performance metric in our evaluations in these experiments.

Figures 4.2 (b) and (c) compare the classification performance of hierarchical representations with
the baseline BoW. In (a) we fix the representation level (l = 2) and vary K2 and p2; in (b) we fix p2 and
vary the representation level (l = 2, 3) and K2 and K3. In (a), level 2 features significantly outperform
level 1 features. Also, a patch size of 3 works gives better accuracy. At the representation size of
200, the performance gap between level 1 and level 2 features is 30%. In (b) The plots demonstrate
the improvement in classification accuracies as we build higher representations. For level 3, we hit the
100% accuracy bound at K3 = 100 while for level 1, accuracy is merely 68% for K1 = 1000. Hence
we achieve 32% higher accuracies using 1/10th representation size.

Figures 4.3 (a) and (b) investigate what goes on at the core of the NB clustering algorithm during
the vocabulary building procedure. We plot the average posterior probability per symbol per symbolic
patch over the epochs of the training procedure. This is the average probability of a symbol to assume a
particular position in a patch. This in turn determines the probability of a patch being part of a cluster of
patches. In (c), we fix the level of representation (l = 2) while varying p2 andK2; in (d) we fix patch size
and vary the representation level (l = 2, 3) and the number of clusters K2 and K3. It can be observed
that bigger patches have lower average probabilities per symbol. This can be attributed to the fact that
clustering a vector of 9 symbols is tougher than clustering a vector of 4 symbols because bigger patches
are more complex in the number of ways the symbols are aligned in a patch. Another observation is that
this probability increases as we increase the number of clusters. This can be explained by stating that
increasing the number of clusters is allowing the arrangements of symbols in a patch more states to be

37

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Iterations

A
v
e

ra
g

e
 P

o
s
te

ri
o

r
P

ro
b

a
b

ili
ty

 p
e

r
s
y
m

b
o

l
p

e
r

p
a

tc
h

NB Learning (Level 2) as a function of K and patch size

p=2,K=100

p=2,K=200

p=2,K=250

p=3,K=100

p=3,K=200

p=3,K=250

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iterations

A
v
e

ra
g

e
 P

o
s
te

ri
o

r
P

ro
b

a
b

ili
ty

 p
e

r
s
y
m

b
o

l
p

e
r

p
a

tc
h

NB Learning as a function of K and Level

L2,K=100

L2,K=200

L2,K=250

L3,K=50

L3,K=100

L3,K=200

(b)

Figure 4.3: (a) Plot of mean posterior probabilities per symbol per patch over epochs. Effect of the patch
size (p) and size of symbol space (K) can be seen here. (b) NB Learning for different sizes of symbol
space (K) across hierarchical levels 2 and 3. Higher probabilities for Level 3 show that the method is
learning semantically meaningful concepts.

in. Thus, each patch is more likely to find a state that it is most similar to. Finally, we comment on the
increase in these probabilities across levels of the hierarchy. Figure 4.3 (b) shows that the probabilities
are higher for level 3 (for a fixed K). This shows that patches at this level are more likely (than patches
at level 2) to find states / configuration of symbols that describe them. This has a direct bearing on the
purity of the representations in terms of what they mean semantically. Referring back to the comment
we made about the needle and the spoke in the bicycle wheel, the confusion between the two is resolved
once we learn the difference between a clock and a bicycle.

4.5.2 Caltech 101

Caltech 101 contains a total of 9146 images, split among 101 distinct object categories. In these
experiments, we sampled 30 random images for training from each of the 101 categories, getting a total
of 3030 training images; the rest of the images were treated as testing images; however, as in [37], we
limited the number of testing images per category to 50. These experiments were repeated 5 times with
random subsampling and the mean classification accuracies over the five experiments are reported. To
compute the BoW codebook, we sampled 5 training images from each category (505 images in all). We
trained a one-vs-rest SVM for each class and the test image was assigned the label of the classifier with
the highest score and report the accuracy of the classification.

For level 2, we use patches of sizes 2 × 2 and 3 × 3 with shifts of 1 and 2 pixels respectively. To
compute the level 2 vocabulary, we sample 5 images randomly from each class and further sample each
of these images to collect 25% of the total keypoints per image; we use K2 = 100, 250. For the third

38

Table 1: Classification accuracies on Caltech 101 for combinations of Spatial Pyramid and NB hierar-
chical features (and the baseline BoW). Table 2: Classification Accuracies on Caltech. BoW represents
our baseline BoW results, BoW* represents the results quoted in [37]. Note that [37] uses pyramid
kernel (and we use χ2) and different scale, shift for SIFT computation. NBC represents our best results
corresponding to L2, K2 = 250 with level 2 SPM.

Table 4.1: Caltech 101- NB + SP

SPM BoW L2(250) L3(200)
L 0 43.4± 1.2% 60.4± 0.7% 61.3± 1.4%
L 1 59.0± 0.8% 68.2± 0.8% 66.6± 1.6%
L 2 68.3± 1.3% 72.4± 0.6% 69.8± 0.9%
L 3 67.6± 0.7% 67.8± 1.1% 66.3± 1.4%

Table 4.2: Classification on Caltech

Method Accuracy
BoW* [37] 64.6± 0.8%
CDBN [40] 65.4± 0.5%
BoW 68.3± 1.3%
NBC 72.4± 1.8%

level, the patch size is 2 × 2 with a shift of 1 and K3 = 100, 200, vocabulary is computed using 5

random training images per class and using 25% of the keypoints per image. The classification pipeline
remains the same as in the baseline case.

The classification accuracies for these procedures can be seen in Tables 4.1 and 4.2. It can be seen
that hierarchical features learnt using the NB clustering approach significantly outperform the baseline
BoW representation. Table 4.1 compares the classification performance of the baseline BoW representa-
tion with features at levels 2 and 3 and also shows further improvement in classification performance by
using spatial pyramids on top of the image representations derived through the various methods. Hence,
the representative power of hierarchical features can be further enhanced by using spatial pyramids.
Note that in these experiments, we use only the spatial pyramid representation and not the pyramid
matching kernel. As mentioned earlier, we use a homogeneous χ2 kernel map; In Table 4.2, there are
two rows devoted to BoW. BoW represents our baseline experiments (with χ2 kernel), BoW* reports
the accuraries quoted in [37] (Note that [37] uses SIFT features computed at a scale of 16 and shift of
8, and a pyramid matching kernel).

It should be noted that while the dimension of the spatial pyramid representation increases many
folds as we move a level up, our hierarchical representations typically become more compact. We
achieve better classification performance despite this fact.

4.5.3 Pascal VOC 2007

Pascal VOC 2007 data set has a total of 9955 images, split into 5011 training and 4944 testing
images, distributed across 20 object categories. We use the entire dataset for our experiments. In these
experiments, the BoW codebook was computed by clustering the keypoints collected from 10 random
training images from each category (200 images in all). The classification scheme here is different from
our experiments on Caltech. Pascal dataset allows multiple object categories in the same image, hence
computing classification accuracies by assigning the class label of the classifier that returns the highest
score to the test image is not fair assessment. In this set of experiments, we train a classifier for each

39

class and compute Average Precision (AP) over the ranked list of test images. We finally report the
mean AP over all the classes. Note that for our final image representation, we use a 2nd level spatial
pyramid [37]. As mentioned in section 4.1, deep learning methods have not enjoyed much success
on this challenging dataset. Unlike Caltech 101, where the images are aligned and centered, Pascal
has significant variation in the scale, position and orientation of the object in the image; it also allows
multiple objects in the image. Note that CDBN [40] results are not available on Pascal 2007.

For level 2 features, we experiment with patch sizes of 2×2, 3×3 with shifts of 1 and 2 respectively.
To compute the level 2 vocabulary, we sample 10 images randomly from each class and further sample
each of these images to collect 25% of the total keypoints per image; we use K2 = 100, 250. For level
3, we use patches of size 2 × 2 with a shift of 1 and K2 = 100, 200. We use the same classification
pipeline to classify the features at level 2 and 3. Table 4.3 displays the classification results for the
mentioned methods. Here again, we significantly outperform the baseline results. While the baseline
representation achieves a mean AP of 52.8% using a representation size of 1000, our L3 representation
achieves 57% at a smaller representation size of 200. Hence, our representation is both richer and more
compact.

Table 4.3: Classification Results on the Pascal VOC 2007 dataset. The table shows mean classification
APs over 20 classes.

Method SIFT BoW L2 L2 L2 L3 L3 L3
p - 3 3 2 2 2 2
K 1000 100 250 100 250 100 200
AP 52.84 54.90 55.86 55.64 56.20 56.48 57.04

4.5.4 Discussion

Our results on two classes explore the semantic meaning of the learnt hierarchical representations.
Empirical comparisions with spatial pyramids reveal that we can achieve better classification accuracies
by using a simpler kernel and with a much smaller feature / representation size. Both these methods
endow BoW with means to use spatial context. However, there is a fundamental difference in both
approaches: while spatial pyramids intend to discover the same low level artifacts in different regions
of the image, we learn aggregates of such low level artifacts in the hope that these artifacts are part of a
larger context and repeating this process of aggregation over and over will eventually lead us to learning
the objects we are trying to classify.

By empirically outperforming both SPM and CDBN representations on the two datasets, we have
tried to demonstrate that our representations are not only richer but also more compact in size. For
example, in Table 4.3, our L3 representation of size 200 outperforms the baseline representation of
size 1000 significantly. The performance of our approach can be further improved by allowing a larger

40

representation size, i.e. by using multiple scales of SIFT features as in [29]. In these experiments, our
primary focus was to demonstrate the superiority of our representation over traditional BoW.

Finally a note on the the speed of the algorithm. Naive Bayes Clustering is typically slightly less
than an order slower than K-Means, simply because of the number of operations in each iteration. Any
algorithmic solution is characterized by several parameters: the accuracy of the solution, the simplicity,
the resources it consumes, and the processing time. In this chapter, we have endeavoured to improve the
accuracy of our solutions by building better representations, because typically most of our learning is
done offline, and not in a real time setting. Having said that, we acknowledge that the performance gains
we achieve come at computational costs. Our methods is iterative, and there are several algorithmic
parameters (the patch sizes, the learning rates etc) to tweak and tune. This tuning requires parameter
sweeps.

4.6 Summary

In this chapter we devised a clustering framework for symbolic data points which can be used to learn
hierarchical features starting with discrete data (such as BoW symbols.) Our method attempts to bridge
the gap between two directions of research by developing a framework that learns from both approaches.
We produce experimental evidence to argue that our hierarchical representations are semantically mean-
ingful. We back this claim by outperforming the traditional BoW and deep learning representations on
popular image classification datasets. It is quite possible that there are better distance functions be-
tween discrete features that may improve the learning procedure and the representative power of such a
framework.

41

Chapter 5

Learning Multiple Non-linear Subspaces using K Restricted Boltzmann

Machines

The overall complexity in building descriptive or discriminative models is shared between the fea-
tures derived from raw data and the models that use these features as inputs. Simple features require
complex models while more sophisticated features require simpler models to achieve the same level of
model quality. Learning semantically richer features is, therefore, the key to building simpler, more
interpretable, and more accurate models. In domains such as images, where the data (image patches)
might lie in multiple non-linear manifolds, feature learning becomes even more important. In this chap-
ter, we propose a framework that usesK Restricted Boltzmann Machines (K-RBMS) to learn non-linear
manifolds in the raw image space. We solve the coupled problem of finding the right non-linear man-
ifolds in the input space and associating image patches with those manifolds in an iterative Expection
Maximization (EM) like algorithm to minimize the overall reconstruction error. Extensive empirical
results over several popular image classification datasets show that such a framework outperforms the
traditional feature representations such as the SIFT based Bag-of-Words (BoW) and convolutional deep
belief networks.

5.1 Introduction and Prior Work

Feature extraction and modelling together address the overall complexity of mapping the raw input to
the final output in modelling. Rich features that capture most of the complexity in the input space require
simpler models while simpler features would require more complex models. This “law-of-conservation
of complexity” in modelling has driven many efforts in feature engineering, especially, in complex
domains such as computer vision where the raw input is not easily tamed by simple features. Finding
semantically rich features that capture the inherent complexity of the input data is one of a challenging
and necessary pre-processing step in many machine learning applications.

We propose a feature learning framework that uses the hypotheses: data really lies in multiple non-
linear manifolds and finding those manifolds and clustering the right data points into the right manifolds

42

will result in the kind of features we are looking for. This requires that we solve the “coupled” problem
of non-linear projection and clustering of data points into those projections simultaneously. Clustering
cannot be done in the raw input space because the data really lies in certain non-linear manifolds and
the right manifolds cannot be discovered without proper groupings of the data. This is demonstrated in
figure 5.1. While most of the work in clustering and projection methods is done independently, attempts
have been made to combine them [4, 41]. In this work, we take this “coupling” a step forward by
learning clusters and projections simultaneously. This is fundamentally different from an approach like
Sparse Subspace Clustering (SSC) [16] that first learns a sparse representation(SR) of the data and then
applies spectral clustering to a similarity matrix built from this SR.

Figure 5.1: Hypothesis 1: Clustering and projection are two coupled paradigms. Clustering cannot be
done in the raw feature space because the data lies in latent manifolds. The right manifolds cannot be
discovered without clustering the data.

The second hypothesis of this chapter is that in general further linear clusters might be present in
each of the non-linear manifolds. Thus the overall solution should first find multiple non-linear sub-
spaces within the data and then further cluster the data within each sub-space if necessary. The main
contribution of this work is two-fold. A systematic framework for a two-level clustering of input data
into meaningful clusters - first level being clustering coupled with non-linear projection while the second
level being a linear clustering in each non-linear manifold learnt by first level. We use K-RBMS for
the first level clustering and simple k-means on the RBM outputs for the second level clustering. The
second contribution of this work is the application of this framework for learning meaningful features
from image patches and applying them to improve the image classification accuracy through better
features derived from this framework.

Restricted Boltzmann Machines (RBMS) [66] are undirected, energy-based graphical models that
learn a non-linear subspace by minimizing reconstruction error. RBMs have gained popularity in re-
cent years because of their wide variety of applications. They have been used successfully to learn

43

features for image understanding and classification [26], speech representation [46], analyze user rating
of movies [60] , and better bag-of-word representation of text data [59]. Moreover, RBMS have been
stacked together to learn hierarchical representations such as deep belief networks [26, 7] and convo-
lutional deep belief networks [40] for finding semantically deeper freatures in complex domains such
as images. Most nonlinear subspace learning algorithms [28, 55] make various assumptions about the
nature of the manifolds they are trying to discover and use a variety of objective functions. RBMS, on
the other hand, are a generic framework for learning non-linear subspaces, make no assumptions about
the sub-spaces, use a standard energy based learning algorithm, and can model subspaces of any degree
of complexity via the number of hidden units making them most suitable as general purpose sub-space
learning machines.

Our model learns K RBMs simultaneously. Each RBM represents a subspace manifold in the data.
The association of a data point to an RBM depends on the reconstruction error of each RBM for that data
point. Each RBM updates its weights based on all the data points associated with it. Through various
learning tasks on synthetic and real data, we show the convergence properties, quality of subspaces
learnt, and improvement in the accuracies of both descriptive and predictive tasks.

5.2 Training RBMs

Figure 5.2: A simple Restricted Boltzmann Machine

As described in chapter 2, RBMS are two layered, fully connected networks that have a layer of
input/visible variables and a layer of hidden random variables. RBMS model a distribution over visible
variables by introducing a set of stochastic features. In applications where RBMS are used for image
analysis, the visible units correspond to the pixel values and the hidden units correspond to visual
features.

For an RBM with I visible units vi, i = 1, . . . , I (v0 = 1 is the bias terms), J hidden units hj , j =

1, . . . , J (h0 = 1 is the bias term) and symmetric weighted connections between the visible and hidden
layers denoted by w ∈ R(I+1)×(J+1) (these include asymmetric forward and backward bias terms), the

44

activation probabilities of units in one layer are computed based on the states of the opposite layer:

Pr(hj |v) = σ

(
I∑

i=0

wijvi

)
(5.1)

Pr(vi|h) = σ

 J∑
j=0

wijhj

 (5.2)

σ(·) is the sigmoid activation function. The RBM energy function, defined as the negative log proba-
bility of a configuration of states (v,h) is given by:

−logPr(v,h) = E(v, h) =
∑
i,j

vihjwij (5.3)

Training the RBM thus involves learning the RBM weights and biases that minimize this energyE(v,h).
Most RBM implementations do this in a gradient descent procedure.

Ideally the RBM parameters would be learnt by maximizing the likelihood. This objective function
is called the alternative Gibbs sampling. However, computing this maximum likelihood involves an
exponential number of terms, which makes the training slow and unmanageable. Fortunately, Hinton
[25] proposed another objective function called contrastive divergence (CD) which is an approximation
to the maximum likelihood objective function and can be efficiently minimized. We shall use the CD-1
objective. In the CD-1 forward pass (visible to hidden), we activate the hidden units h+j from visible
(input) unit activations v+i (Eq.5.1). In the backward pass (hidden to visible), we recompute visible unit
activations v−i from h+j (Eq.5.2). Finally we compute the hidden unit activations h−j again from v−i .
The weights are updated using the following rule:

∆wij = η(< v+i h
+
j > − < v−i h

−
j >) (5.4)

where η is the learning rate and <·> is defined as the mean over N examples. The reconstruction
error for any sample is computed as:

ε =

I∑
i=1

(v+i − v
−
i)

2 (5.5)

There are three kinds of design choices in building an RBM: the objective function used, the fre-
quency of parameter updates, and the type of visible and hidden units. Inspired by most recent methods,
we train RBMS by minimizing the contrastive divergence objective (CD-1)[25].

RBM weights are usually updated once per mini-batch. Other options are once per sample update
(fully online) and corpus level update (fully batch). We found that doing a full batch update gives a
more reliable gradient and slightly better reconstruction compared to mini batch or online updates.

An RBM can have binary or non-binary visible and hidden units. Most RBM implementations use
binary visible units. In our applications, we have used Gaussian visible units to model distributions

45

of real valued data. The stochastic output of hidden unit (Eq.5.1) is always a probability which is
thresholded against a random value between 0 and 1 to give a binary activation hj . In CD-1, it is
customary to use binary hidden states when the hidden units are driven by data (h+j) and the probabilities
without sampling when the hidden units are driven by reconstructions (h−j). Thresholding introduces
sparsity by creating an information bottleneck. We however always use the activation probabilities in
place of their binary states for parameter updates. This process, known as Rao-Blackwellization [9],
gives an estimator with lower variance and better clustering performance. This decision was based on
the desire to eliminate unnecessary randomness from our approach1 and was supported by extensive
experimentation.

5.3 Learning Multiple Non-Linear Subspaces using K-RBMs

Our non-linear subspace learning model uses K component RBMS. Each component RBM learns a
non-linear subspace. The visible units vi, i = 1, .., I correspond to an I dimensionsional visible (input)
space and the hidden units hj , j = 1, .., J correspond to a learnt non-linear J-dimensional subspace.
For the sake of simplicity, we experiment with RBMS of the same size; all the subspaces our model
learns have the same true dimensionality J . However, this restriction is unnecessary and we are free to
learn subspaces with different true dimensions.

5.3.1 K-RBMs

The K-RBM model has K component RBMS. Each of these maps a set of N sample points xn ∈ RI

to a projection in RJ . Each component RBM has a set of symmetric weights (and asymmetric biases)
wk ∈ R(I+1)×(J+1) that learns a non-linear subspace. Note that these weights include the forward and
backward bias terms. The error of reconstuction for a sample xn given by the kth RBM is simply the
squared Euclidean distance between the data point xn and its reconstruction by the kth RBM, computed
using (Eq.5.5). We denote this error by εkn. The total reconstruction error εt in any iteration t is given

by
N∑

n=1
min
k
{εkn}

The K RBMS are trained simultaneously. During the RBM training, we associate data points with
RBMs based on how well each component RBM is able to reconstruct the data points. A component
RBM is trained only on the training data points associated with it. The component RBMS are given
random initial weights wk, k = 1, ..,K.

1We use the reconstruction error as a cost function in our clustering; random thresholding introduces randomness in the
projections, hence affecting the reconstruction errors.

46

5.3.2 Clustering using K-RBMs

As in traditional K-means clustering, the algorithm alternates between two steps: (1) Computing
association of a data point with a cluster and (2) updating the cluster parameters. In K-RBMS nth data
point is associated with kth RBM (cluster) if its reconstruction error from that RBM is lowest compared
to other RBMS, i.e. if ekn < ek′n∀k 6= k′, k, k′ ∈ {1, ..,K}.

Once all the points are associated with one of the RBMS the weights of the RBMS are learnt in a
batch update. In hard clustering the data points are partitioned into the clusters exhaustively (i.e. each
data point must be associated with some cluster) and disjointly (i.e. each data point is associated with
only one cluster). In contrast with K-means where the update of the cluster center is a closed form
solution given the data association with clusters, in K-RBMS the weights are learnt iteratively.

We can extend our model to incorporate soft clustering where instead of assigning a data point to
only one RBM cluster, it can be assigned softly to multiple RBM clusters. The soft association of the
nth data point with the kth cluster is computed in terms of the reconstruction error of this data point
with the RBM:

αnk =
exp(−εkn/T)∑K

k′=1 exp(−εk′n/T)
(5.6)

where T is the temperature parameter that is reduced over time as in simulated annealing [32]. Each
sample xn contributes to the training of all RBMS in proportion to its association with the RBMS.
While updating weights, the association factor is also multiplied with the learning rate. A K-RBM
trained using the soft approach can be seen as a set of RBMS, each of which learns a distribution of
all the data but using more information from those it can represent most accurately. Each RBM can
reconstruct all the points, some more accurately than the others. This is fundamentally different from
the hard clustering where each component RBM learns the distribution of a subset of the data and tries
to distort samples from other clusters to look like the samples that it has learnt from.

5.3.3 Initialization and Convergence

Like most EM methods, our model is sensitive to initialization. However, following the standard
best RBM implementation practices ensures that this sensitivity is minimal, since the random initial
weights are small and the RBM parameters are updated by looking at the data. All our experiments
were conducted once with random initialization.

Our clustering framework seeks to learn both the associations (clusters) and the parameters (non-
linear subspaces) simultaneously. Thus, here we come across two kinds of convergences: the clustering
convergence and the RBM learning (subspace learning) convergence. In our experiments the clustering
process is said to have converged when more than 99% of the samples stop changing cluster associa-
tions. Usually we require only the cluster associations. We can stop the algorithm once the clustering
converges. However, the convergence of clustering just means that the points in each cluster belong to
the same non-linear manifold, it does not guarantee the accuracy of the learnt manifolds. If we require

47

(a) (b)

Figure 5.3: (a) Clustering convergence and RBM training convergence over epochs of the algorithm.
Clustering converges long before the RBM reconstruction errors stabilize. (b) A plot of reconstruction
errors vs epochs of training process for our experiments on the VOC Pascal dataset in section 5.4.3.
Reconstructions are significantly better when we use a K-RBM as opposed to a single RBM. For the
Single RBM case, we divide the mean error by 10 to bring it to scale with the others.

data projections in the non-linear subspaces, we continue training the RBMs until the total reconstruc-
tion error stabilizes. This is useful, if we intend to further partition the learnt non-linear subspaces
(section 5.4.3). In our experiments we found that while the clustering converged within 20 iterations
(the data points stopped changing their cluster associations), the reconstruction error continued to drop
beyond 100 iterations. We empirically decide the number of epochs our algorithm iterates for and we
call this number maxepoch. Figure 5.3b shows that K-RBMs significantly outperform the single RBM
in terms of the final mean reconstruction error per data point. This clearly validates our first hypothesis
that the input data lies in multiple simpler non-linear sub-spaces (multiple K-RBMs) and not in a single
complex non-linear sub-space (single RBM).

5.3.4 K-RBMs for Image Feature Learning

Traditionally, hand-crafted features like SIFT and HoG have been employed for image related tasks.
These features are relatively low level and often are not semantically meaningful representations of im-
ages. Also they are not learnt but just computed from raw data. Recent times have seen the introduction
of features that are learnt from the data. Deep belief networks [40, 46] and convolutional networks [39]
have been employed for feature learning to solve a variety of tasks. These methods are based on the
hypothesis that good data representations are hierarchical and can be learnt directly from the data; these
methods usually have hierarchical layered feature extractors. Although deep learning methods yield
robust features, training deep networks involves making many design choices, tuning many parameters,
and are often computationally challenging. We propose a feature learning scheme using K-RBMs that
learns from the data like the deep networks but is simpler in terms of the overall model complexity and
parameters. By doing so, we intend to take a step forward towards promoting feature extraction schemes

48

that “learn” semantically meaningful representations of the data from the data, while keeping a check
on the model complexity.

In image domains, we typically compute local features over patches in an image and then pool the
local features to get global image representations (e.g. BoW). Here, we describe dense local K-RBM
features. K-RBM features are computed by hard clustering patches from dense grids in images. K-
RBM features are the projections of these patches in the corresponding learnt manifolds. Unlike the
128−dimensional SIFT descriptors, the size of the K-RBM features is dictated by the number of hidden
units in the component RBMs. In our experiments, we work with patches of size 12 × 12 pixels.
Each patch can thus be represented as a 144−dimensional sample vector. Our component RBMs have
144 visible units and 36 hidden units. Each local K-RBM feature is thus 36−dimensional. Unlike
SIFT BoW representations where we can perform K-Means clustering of all the SIFT features directly,
we can’t cluster K-RBM features coming from different component RBMs since they lie in different
manifolds. All SIFT features lie in the same 128−dimensional space. However each K-RBM feature
lies in one of K different manifolds. Thus, we cluster the K-RBM features from each component RBM
separately, get a different BoW representation for each non-linear manifold and concatenate these BoW
representations to get the final BoW representation.

RBMs are generative models that learn a non-linear subspace the data lies in. RBM features are
merely projections of the data onto the learnt manifold. The RBM objective minimizes the error of re-
construction of the data from these projections, hence the projections are good “learnt” representations
of the data. RBM feature extraction can semantically be understood as non-linear dimensionality reduc-
tion of the data. K-RBM feature extraction partitions the data across several RBMs (or manifolds). This
has a two-fold advantage: (a) it gives more reliable similarity measures among data in the same man-
ifold, (b) much of the discriminative information is encoded into the data partitions. Figure 5.4 shows
image patches corresponding to different BoW/K-RBM clusters for SIFT and K-RBM features. SIFT
space is discrete in some sense because it counts the types of edge directions. K-RBMs use a knowl-
edge of the underlying non-linear manifolds to partition the data. In line with our second hypothesis,
K-Means followed by K-RBM clustering helps achieve better partitioning of the data and consequently
better vector quantization.

Both SIFT and K-RBM project image patches into some non-linear sub-spaces. While SIFT intro-
duces non-linearity by using non-linear filters followed by counting the number of directions the edges
take, K-RBMs “learn” features from the data without assuming a specific class of low level features
(e.g. edges assumed by SIFT). Thus while SIFT “computes” the features, K-RBMs are more adaptable
to the image corpus they are applied to. BoW representations work by counting types of artefacts. While
SIFT itself is a histogram of very simple artefacts (edges), K-RBMs treat each patch as an artefact. This
fundamental difference can be noticed in figure 5.4 easily.

49

(a) K-Means on SIFT (b) K-RBM (c) K-Means followed by K-RBM

Figure 5.4: Sample patches corresponding to the different clusters (experiments in section 5.4.4). Each
row in (a) and (b) represents a cluster. A row in (c) represents 2 clusters: the concatenation of these 2
clusters gives the cluster in corresponding row in (b). Patches in (a) are independent of (b) and (c). Total
number of SIFT clusters in (a) was 1000, K1 for (b) was 40, K2 in (c) was 50.

5.4 Applications

5.4.1 Clustering Synthetic Data

In this section, we demonstrate the use of K-RBMs for clustering. We compare the accuracy and
speed of K-RBM clustering with the state of the art subspace clustering methods, Random Sample
Consensus (RANSAC)[21] and Sparse Subspace Clustering (SSC)[16] in addition to PCA + K-means,
t-SNE [71] + K-means and RBM + K-means on two synthetic datasets where we can control the nature
of the sub-spaces in the data. t-SNE is a non-linear dimensionality reduction method which minimizes
the divergence between distributions over pairs of points. RANSAC works by iteratively sampling a
number of points randomly from the data, fitting a model to those points and rejecting outliers. SSC
computes a sparse representation (SR) of the data and applies spectral clustering to a matrix obtained
from the SR. These algorithms represent decoupled learning of projection and clustering.

The goal of these experiments is to investigate the first hypothesis i.e. clustering and projection are
better done in a coupled manner than in a sequential manner. In these experiments, we have compared
the performance of a K-RBM with that of KMeans over data processed by a single RBM. In these
comparisions, we could either (a) fix the complexity (size) of the latent non-linear subspaces by fixing
the number of hidden units in each RBM or (b) fix the number of total RBM parameters in the two
models (i.e. if we have a K-RBM with K components having J hidden units each, we allow the single
RBM to have KJ hidden units). For our evaluations, we have used the latter scheme, so it is implied
that the manifolds learnt by the two models have different dimensionalities. This was done to ensure
our model had no undue advantage over the single RBM model which would have a simpler complexity
otherwise.

The synthetic datasets in table 5.1 were generated using the code snippet in the SSC demo code
(available at http://www.vision.jhu.edu/downloads/). Dataset D1 comprises of 500 points drawn from
5 subspaces constructed using orthogonal basis functions, 100 points from each subspace. For all the
points, the dimension of the raw feature space is 144 while the true intrinsic dimensionality is 36. D1

also contains added Gaussian noise. Dataset D2 also consists of 500 points drawn from 5 subspaces.

50

However, these subspaces differ from the ones inD1 in the sense that they don’t have orthonormal basis
vectors, but oblique projections making it harder than D1.

The clustering results are reported in Table 5.1 in terms of misclassification error and mutual infor-
mation2 (M.I.) of cluster labels and the known class label. We also quote the running time of these
algorithms. We chose 36 principal components for (PCA + K-means). All the RBMs had 144 Gaussian
visible units. Each RBM in the K-RBM had 36 binary hidden units while the single RBM had 180.
It can be seen that not only K-RBM outperforms these two state of the art methods in terms of quality
metrics, it also learns the coupled projection and clustering orders of magnitude faster than these meth-
ods both of which are quadratic in the number of data points and hence not very practical to use without
serious sampling. Due to the time complexity of RANSAC and SSC it is impractical to train these
models on huge datasets without serious sampling.

Table 5.1: Running Time, Misclassification Errors and Mutual Information between cluster and class
labels of various methods on synthetic D1 and D2 datasets.

METHOD DATASET D1 DATASET D2
RUNTIME ERROR M.I. RUNTIME ERROR M.I.

K-MEANS 0.68s 27.4% 1.9219 2.76s 29.6% 1.9219
PCA + K-MEANS 0.37s 27.4% 1.9219 0.42s 29.8% 1.9219
T-SNE + K-MEANS 11.68s 11.3% 1.9619 11.93s 23.6% 1.9329
RBM + K-MEANS 3.29s 26.6% 1.9219 3.89s 28.2% 1.9219
RANSAC 134.80s 66.6% 0.1529 474.72s 69.6% 0.1499
SSC 365.29s 0% 2.3219 690.93s 15.6% 2.0732
K-RBM 0.46s 0% 2.3219 3.62s 0% 2.3219

5.4.2 K-RBMs for clustering MNIST Dataset

In this section, we demonstrate the use of K-RBMs to cluster the MNIST data [39]. The goal of
these experiments is to investigate our first hypothesis i.e. clustering and projection are better done in a
coupled manner than in a sequential manner. We compare the clustering performance of K-RBMs with
those of K-Means, PCA + K-Means and single RBM + Kmeans. As demonstrated in section 4.1 of the
paper, state of the art subspace clustering methods such as RANSAC and SSC are impractical on huge
datasets owing to their huge running times. Hence, we refrain from comparing our method with these
on MNIST.

In these experiments, we have compared the performance of a K-RBM with that of KMeans over
data processed by a single RBM. In these comparisions, we could either (a) fix the complexity (size) of
the latent non-linear subspaces by fixing the number of hidden units in each RBM or (b) fix the number

2Mutual Information between two random variables X (e.g. cluster labels from a clustering method) and Y (e.g. actual
class labels) is defined as: MI(X,Y) =

∑
y∈Y

∑
x∈X

P (x, y)log(P (x,y)
P (x)P (y)

) where P (x, y) is the joint probability of X and Y

and P (x) and P (y) are the marginal probability distributions of X and Y respectively.

51

of total RBM parameters in the two models (i.e. if we have a K-RBM with k components having J
hidden units each, we allow the single RBM to have kJ hidden units). Here, we have used the latter
scheme, so it is implied that the manifolds learnt by the two models have different dimensionalities.
This was done to ensure our model had no undue advantage over the single RBM model which would
have a simpler complexity otherwise.

The MNIST data has 70, 000 data points of binary handwritten digits from 0 to 9. Each data point
is size-normalized and centered in a fixed-size (28 × 28) image represented as a 784−dimensional
binary vector. To test our hypothesis we compare three methods: (i) PCA + K-means where the
784−dimensional raw data is first linearly projected using PCA into a 100−dimensional subspace and
this projected data is then clustered into 10 clusters using standard K-means clustering. (ii) Single RBM
+ K-means where the same 784−dimensional raw data is first non-linearly projected using a single
RBM into a single 1000−dimensional subspace (just to keep the complexity compatible) and this pro-
jected data is then clustered into 10 clusters using K-means. (iii) K-RBMS where the 784−dimensional
data is clustered using 10 RBMS, each with 100 hidden units. The first two (PCA + K-means and Single
RBM + K-means) represent the “decoupled” learning of a projection followed by a clustering. The third
(K-RBM) represents the coupled learning of both a generic non-linear subspace projection along with
clustering. The K-RBMs are learnt in two modes: with binary hidden units (K-RBM-b) and with real
valued hidden units (K-RBM-r). In both cases the visible units (input data) is binary.

Table 5.2 shows the results comparing the four methods on three (related) metrics: Mutual Infor-
mation, percentage misclassification error, and weighted mean cluster purity. Both the K-RBM-b and
K-RBM-r representing the coupled learning of projections and clustering (statistically) significantly out-
perform the two decoupled methods (PCA + K-means and RBM + K-means). Also note that K-RBM-r
significantly outperforms K-RBM-b indicating that the loss of information due to binarization of hidden
units in pursuit of sparsity may not be the right thing to do in all applications. Figure 4 shows examples
of data points in each class (digit) and their cluster centers (obtained by averaging the images of all
points associated with cluster), examples of reconstruction of digits from various classes by the single
RBM and examples of reconstruction of a digit by all the K-RBM-r here. It can be seen that using
linear clustering (K-means) for data that lies in non-linear subspaces is a bad idea. In K-means, the
cluster centers may be strikingly different from some of the samples. A single RBM first learns a non-
linear subspace that the data lies in and then using K-means on the projections in these subspaces makes
sense. However, this is not a very good approach because the data lies in multiple non-linear subspaces.
K-RBM clusters the data, learning the subspace of each cluster. These subspaces are specific to each
cluster and when samples from other clusters are reconstructed using these subspaces, they are distorted
to look like the ones in this cluster.

5.4.3 K-RBMs for Visual Bag-of-Words

These experiments investigate the second hypothesis: multi-variate real-valued data generally lies in
multiple non-linear subspace manifolds (e.g. as learnt by K-RBMS) and that there are further potential

52

Table 5.2: Comparision of coupled vs. de-coupled projection + clustering learning algorithms on
MNIST data.

Method Purity Error M.I.
K-means 59.43% 45.23% 1.6651
PCA + K-means 59.36% 45.24% 1.6627
RBM + K-means 60.20% 44.83% 1.6951
k-RBM-b 63.83% 42.79% 1.9127
k-RBM-r 65.16% 38.90% 2.0878

clusters within each of the sub-spaces. This points to a two stage clustering of data: first clustering
“coupled” with non-linear projection (e.g. K-RBM) followed by further sub-clustering within each
first level cluster. The second goal of these experiments is to propose an alternative to the traditional
bag-of-words representations used ubiquitously in computer vision applications.

We experiment with 3 datasets here: PASCAL VOC 2007 [17], 15 Scene Categories [37] and Caltech
101 [19]. PASCAL VOC 2007 data has a total of 5011 training images and 2944 testing images in 20
classes. The 15 Scene Categories dataset has 4485 images in all split over 15 different scene categories.
As in [37], we choose 100 random images per category for training and the rest for testing. We repeated
the experiments 5 times and report the average accuracy. Caltech 101 has 9146 images, split among
101 distinct object categories. In these experiments, we sampled 30 random images for training from
each of the 101 categories, getting a total of 3030 training images; the rest of the images were treated as
testing images; however, as in [37], we limited the number of testing images per category to 50. These
experiments were repeated 5 times with random subsampling and the mean classification accuracies
over the five experiments are reported.

SIFT features on all datasets are computed using a scale of 12 and a shift of 6. Each SIFT feature
is 128-dimensional. For the baseline BoW representation, we cluster SIFT features coming from 10

random images per class into 1000 visual words using standard K-means. We use a 2nd level spatial
pyramid [37] to get the BoW image representations. For Scene 15 and Caltech 101 datasets, we trained
a 1-vs-rest classifier for each class and the test image was assigned the label of the classifier with the
highest score. PASCAL VOC 2007 dataset allows multiple classes in the same image; classification
accuracy doesn’t make sense here. For PASCAL data, we train a 1-vs-rest classifier per class and report
the mean Average Precision per class.

In our approach, we create the 1000 clusters in a different way. We first train a K-RBM with K1

components over SIFT points. The RBMS use 128−dimensional Gaussan visible units. These are
reduced to 20−dimensional real valued hidden units. Thus the model here is that the feature points
in the original 128-dimensional SIFT space reside in K1 non-linear 20-dimensional subspaces. Once
trained, the K-RBM partitions the SIFT data points into K1 exhaustive and non-overlapping (we used
hard clustering) subsets. We further clustered each of the K1 subsets in the trasnformed 20-dimensional

53

Figure 5.5: Clustering results of K-means, Single RBM + K-means, K-RBM. C denotes the cluster
labels, R is the reconstruction in case of RBMS (R:0 is the reconstruction from the RBM corresponding
to cluster 0), mean in case of K-means. P is a positive example (correctly classified) from the cluster, N
is a negative example (incorrectly classified) from the cluster. X is the data sample.

space into K2 clusters using simple K-means clustering. This is in-line with our hypothesis that within
each sub-space there might be multiple clusters. To keep the total number of clusters compatible with
the baseline K = 1000, we chose K1 and K2 such that their product is 1000. The K1 and K2 we report
in table 5.4 for different datasets were learnt by using a validation set. Hence, each SIFT descriptor in
each image is first mapped to one of the K1 RBM clusters and then its transformed representation is
further mapped to one of the K2 clusters giving a K = 1000 final cluster BoW representation for the
images. Here too, we use the 2nd level spatial pyramid for the BoW image representation. The same
SVM classifier and evaluation methodology was used for this new image representation.

Overall mean classification average precision (AP) on various code-books on Pascal 2007 is shown
in Table 5.3. For K1 = 8, K2 = 125, mean AP is highest, significantly higher than traditional BoW.
Thus learning clusters in a two-stage process. Learning non-linear manifolds followed by clustering
within each manifold improves the quality of the clustering. Also, the right balance has to be struck on
how the complexity is distributed between the two stages. The size of projected RBM spaces (in our

54

case 20-dimensional) is also a factor in the overall complexity of the representation. These need to be
empirically determined for any dataset.

The results on the 3 datasets are listed in table 5.4. It can be seen that a 2 level clustering of SIFT
features yields better BoW representation. This is indicated by better classification performance on the
three datasets. Table 5.4 also lists the mean quantization error of the representations, which is the mean
euclidean distance between the SIFT/K-RBM features and the correspoding cluster centers, divided by
the length of the feature vector. Note that we normalize the SIFT vectors to contain all values between
0 and 1 (as for K-RBM features) to ensure fair comparision. The quantization errors are significantly
smaller for the two way clustering procedure; this indicates better understanding of the feature space.

Table 5.3: Mean Classification AP on VOC Pascal 2007

METHOD K1 K2 MEAN AP
BASELINE BOW (K-MEANS) - 1000 52.84%
K-RBM BOW 5 200 55.10%
K-RBM BOW 8 125 56.40%
K-RBM BOW 10 100 55.35%
K-RBM BOW 20 50 54.85%

Table 5.4: Classification Performance on VOC Pascal 2007, 15 Scene Categories and Caltech 101

DATASET BASELINE BOW K-RBM BOW
PERFORMANCE MEAN Q.E. PERFORMANCE MEAN Q.E.

VOC PASCAL 2007 52.84% 0.7678 56.40% (K1 = 8,K2 = 125) 0.1620
15 Scene 80.50± 0.5% 0.5635 85.75± 0.6% (K1 = 20,K2 = 50) 0.0840
Caltech 101 68.34± 1.3% 0.6420 72.80± 1.1% (K1 = 8,K2 = 125) 0.1365

5.4.4 Feature learning using K-RBMs

In this section, we compare the classification performance of K-RBM features with that of SIFT and
Convolutional Deep Belief Networks (CDBN) [40] on Caltech 101 and VOC Pascal 2007 datasets. Note
that CDBN classification results are unavailable on VOC 2007. Hierarchical methods such as CDBN
work well on Caltech 101 which has object-centered and cropped images, conducive to hierarchical
learning of artefacts. Pascal data has huge variation in the scale, position and orientation of objects,
even has multiple objects per image. Dense local K-RBM features work well even on Pascal because
they exploit the invariance of BoW representations.

SIFT and K-RBM features are computed over a dense grid of 12× 12 patches with a shift of 6. The
component RBMs have 144 Gaussian visible units and 36 real hidden units. We also use a 2nd level

55

spatial pyramid [37] to get the BoW Image representations. We fix the BoW vocabulary size to 1000 as
in section 5.4. We use a linear pegasos SVM classifier with the χ2 kernel map for classification [75].
For Caltech 101, as in section 5.4.3, we used 30 random images per class for training and use the rest
for testing, limiting the test images to 50 per category. We repeat the experiments 5 times and report
the mean classification accuracy. The classification schemes for the two datasets remain the same as
in section 5.4.3. K1,K2 are learnt using a validation set. The results are reported in tables 5.6 and
5.5. Features learnt using K-RBMS significantly outperform the SIFT and CDBN features. Low level
hand-crafted features work well because of scale, distortion invariant pooling schemes like BoW and
powerful SVM classifiers. Deep learning methods work because of semantically meaningful features.
Our approach combines rich features with powerful BoW representation and SVM classifiers and thus
outperforms the two competing classes of methods.

Classification Performance of K-RBM Features on Caltech 101 and VOC Pascal 2007 Datasets.

Table 5.5: Caltech 101

Method Accuracy
SIFT Features 68.34± 1.3%
CDBN (layers 1+2) 65.4± 0.5%
K-RBM Features (K1 = 20) 74.2± 1.7%

Table 5.6: VOC Pascal 2007

Method Mean AP
SIFT Features 52.84%
K-RBM Features (K1 = 20) 58.40%

5.5 Summary

We developed a framework that usesK RBMS to learn rich, complex, and more meaningful features.
Compared to the state of the art clustering methods like SSC and RANSAC, K-RBMS is faster and more
accurate. The two stage feature learning where first stage uses K-RBMs followed by K-Means for BoW
helps improve the overall image representation. K-RBM+K-means features outperform SIFT+Kmeans
and CDBN features for image classification. Complex input domains such as images where input lies
in multiple non-linear manifolds, the K-RBM approach provides a general, robust, and fast feature
learning framework compared to other methods that are either too computationally intensive or make
lots of assumptions about the nature of the data or need a lot of parameter tuning. Having said that, it
goes without saying that training K-RBMs is slower than training a single RBM, or methods that don’t
require training at all. This tradeoff between performance and training time needs to be considered
carefully when designing large scale systems. So far we have worked with an unsupervised version of
K-RBM but this can be extended to supervised version where a separate K-RBM can be learnt for each
class.

56

Chapter 6

Conclusions

In this thesis, we attempt to learn representations for some of the popular computer vision tasks:
action recognition, clustering, and visual classification. We study the prominent traditional feature
learning approaches in these domains, and devise novel approaches to learn representations for these
tasks. We compare our methods with the traditional approaches experimentally and produce evidence
to demonstrate the superiority of our methods over the traditional approaches. The major contributions
of this thesis are:

PLS kernel for computing similarity between video sequences: In chapter 3, we describe a
novel strategy of computing similarity between two video sequences that uses the Partial Least Squares
regression. We demonstrate the use of this similarity kernel to solve the tasks of hand gesture recognition
on the Cambridge dataset and human activity classification on the UCF sports dataset. Our approach
outperforms the previously published state of the art approaches on these two datasets.

Hierarchical Bag of Words using Naive Bayes clustering: In chapter 4, we devise a novel clus-
tering framework for symbolic data. We employ our clustering model to learn hierarchical features
starting with BoW symbols, and thus incorporate the traditional BoW model with means to exploit the
spatial context in images. It is to be noted that this work is an attempt to bridge the gap between two
orthogonal directions in the feature learning community. Our hierarchical feature learning approach
combines the advantages of the BoW model and the deep learning methods. We demonstrat the supe-
riority of our representations over the traditional BoW and deep learning approaches by outperforming
these on two popular image classification datasets: Caltech 101 and VOC Pascal 2007.

Learning Multiple Non-linear Subspaces using K-RBMs: In chapter 5, we describe a novel
approach to non-linear subspace clustering that employs Restricted Boltzmann Machines. We attribute
our model’s power to the facts that: (a) unlike most popular approaches, it makes no assumptions about
the nature of subspaces sought, and (b) it solves the “coupled” problem of learning the subspaces and
projections simultaneously. We demonstrate the superiority of our clustering method over traditional

57

clustering approaches on several synthetic and real datasets (MNIST).

K-RBMs for understanding data: One of our major claims in chapter 5 is that in general, data is
embedded in multiple non-linear subspaces and and within each manifold there may be further clusters.
Driven by this hypothesis, we discuss an overall solution to understanding data that first finds multi-
ple non-linear sub-spaces within the data using K-RBMs and then further clusters the data within each
sub-space linearly. We back this claim by using two-level clustering (as opposed to the conventional
one level of linear clustering) in the traditional BoW model. We build BoW representations by using
K-RBMs for non-linear clustering first and linearly clustering each manifold further. Representations
learnt using the two-level clustering outperform traditional BoW on three popular image classification
datasets.

K-RBMs for feature learning: We employed the K-RBM clustering algorithm described in chap-
ter 5 for feature learning from raw image patches. We experimentally demonstrate the superiority of
K-RBM features over the ubiquitously used SIFT features on popular image classification datasets.

As part of this thesis, we have worked on a variety of computer vision tasks, with a variety of datasets,
studied many interesting approaches to learning representations, and finally devised a few strategies of
our own that work. As mentioned before, “feature learning is not a problem, rather a set of problems,
a full fledged field of research per se”, and through our efforts, we have attempted to do our bit to
contribute to this field. However, research in this field will continue, for solving computer vision is still
a distant dream. We conclude this thesis with the final thought: the location of the holy grail is still
obscure and distant, but at times all we can hope is to know that we are walking in the right direction.

58

Related Publications

1. Partial Least Squares Kernel for Computing Similarities between Video Sequences (Oral)
Siddhartha Chandra & C.V. Jawahar.
International Conference on Pattern Recognition, Japan, November 2012

2. Learning Hierarchical Bag of Words using Naive Bayes Clustering
Siddhartha Chandra, Shailesh Kumar & C.V. Jawahar.
Asian Conference on Computer Vision, Korea, November 2012

3. Learning Multiple Non-Linear Supspaces using K-RBMs
Siddhartha Chandra, Shailesh Kumar & C.V. Jawahar.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013, USA

59

Bibliography

[1] Wikipedia.

[2] A. Agarwal and B. Triggs. Multilevel image coding with hyperfeatures. In IJCV, 2008.

[3] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In SODA, 2007.

[4] M. S. Baghshah and S. B. Shouraki. Semi-supervised metric learning using pairwise constraints. In IJCAI,

2009.

[5] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. M. Blei, and M. I. Jordan. Matching words and

pictures. JOURNAL OF MACHINE LEARNING RESEARCH, 3:1107–1135, 2003.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (surf). Comput. Vis. Image

Underst., 110(3):346–359, June 2008.

[7] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U. D. Montral, and M. Qubec. Greedy layer-wise

training of deep networks. In In NIPS. MIT Press, 2007.

[8] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). 2007.

[9] D. Blackwell. Conditional expectation and unbiased sequential estimation. Ann. Math. Statistics, 18:105–

110, 1947.

[10] O. Boiman, E. Shechtman, and M. Irani. In CVPR, 2008.

[11] R. Bowden and M. Sarhadi. Building temporal models for gesture recognition. In BMVC, 2000.

[12] M. Bregonzio, J. Li, S. Gong, and T. Xiang. Discriminative topics modelling for action feature selection

and recognition. In BMVC, 2010.

[13] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelli-

gent Systems and Technology, 2011.

[14] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints.

In ECCV, 2004.

[15] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, volume 1, 2005.

[16] E. Elhamifar and R. Vidal. Sparse subspace clustering. In CVPR, 2009.

[17] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object

Classes Challenge 2007 (VOC2007) Results.

[18] L. Fei-fei. A bayesian hierarchical model for learning natural scene categories. In In CVPR, pages 524–531,

2005.

60

[19] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An

incremental bayesian approach tested on 101 object categories. In WGMBV, 2004.

[20] R. Fergus, K. Yu, M. A. Ranzato, H. Lee, R. Salakhutdinov, and G. Taylor. Tutorial on deep learning

methods for vision. In CVPR 2012 Tutorial, http://cs.nyu.edu/f̃ergus/tutorials/deep learning cvpr12/.

[21] M. A. Fischler and R. C. Bolles. Random sample consensus. Commun. ACM, 1981.

[22] N. Gamage, Y. C. Kuang, R. Akmeliawati, and S. Demidenko. Gaussian process dynamical models for hand

gesture interpretation in sign language. In Pattern Recognition Letters, 2011.

[23] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image

features. In ICCV, 2005.

[24] K. Grauman and B. Leibe. Synthesis lecture on visual object recognition.

[25] G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation,

14:2002, 2000.

[26] G. E. Hinton, S. Osindero, and Y. whye Teh. A fast learning algorithm for deep belief nets. In Neural

Computation, 2006.

[27] F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. In CVPR, 2005.

[28] K. Kanatani. Motion segmentation by subspace separation and model selection. In ICCV, 2001.

[29] A. V. Ken Chatfield, Victor Lempitsky and A. Zisserman. The devil is in the details: an evaluation of recent

feature encoding methods. In BMVC, 2011.

[30] T.-K. Kim and R. Cipolla. Gesture recognition under small sample size. In ACCV (1), 2007.

[31] T.-K. Kim, S.-F. Wong, and R. Cipolla. Tensor canonical correlation analysis for action classification. In

CVPR, 2007.

[32] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 1983.

[33] A. Kovashka and K. Grauman. Learning a hierarchy of discriminative space-time neighborhood features for

human action recognition. In CVPR, 2010.

[34] Y. lan Boreau, F. Bach, Y. Lecun, and J. Ponce. Learning mid-level features for recognition. 2010.

[35] D. Larlus and F. Jurie. Latent mixture vocabularies for object categorization. In BMVC, 2006.

[36] S. Lazebnik, C. Schmid, and J. Ponce. A maximum entropy framework for part-based texture and object

recognition. In ICCV, 2005.

[37] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing

natural scene categories. In CVPR, pages 2169–2178, 2006.

[38] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

In Proceedings of the IEEE, pages 2278–2324, 1998.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 1998.

[40] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsuper-

vised learning of hierarchical representations. In ICML, 2009.

61

[41] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICDMW, 2010.

[42] J. Liu and M. Shah. Scene Modeling Using Co-Clustering. In ICCV, 2007.

[43] D. G. Lowe. Distinctive image features from scale-invariant keypoints. In IJCV, 2003.

[44] Y. M. Lui and J. R. Beveridge. Tangent bundle for human action recognition. In FG, 2011.

[45] Y. M. Lui, J. R. Beveridge, and M. Kirby. Action classification on product manifolds. In CVPR, 2010.

[46] A. Mohamed, G. Dahl, and G. Hinton. Deep belief networks for phone recognition. In ICASSP, 2011.

[47] F. Moosmann, E. Nowak, and F. Jurie. Randomized clustering forests for image classification. PAMI, 2008.

[48] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, 2006.

[49] A. Oliva and A. Torralba. Building the gist of a scene: the role of global image features in recognition. In

Progress in Brain Research, page 2006, 2006.

[50] V. Pavlovic, R. Sharma, and T. Huang. Visual interpretation of hand gestures for humancomputer interac-

tion: A review. In IEEE Trans. Patt. Anal. Mach. Intell., Vol. 19, 1997.

[51] F. Perronnin. Universal and Adapted Vocabularies for Generic Visual Categorization. 2008.

[52] F. Perronnin, J. Snchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In

IN: ECCV, 2010.

[53] T. Quack, V. Ferrari, B. Leibe, and L. V. Gool. Efficient mining of frequent and distinctive feature configu-

rations. In ICCV, 2007.

[54] P. Quelhas, F. Monay, J. M. Odobez, G. D. Perez, and T. Tuytelaars. A Thousand Words in a Scene. PAMI,

2007.

[55] S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation via robust subspace separation in the presence

of outlying, incomplete, or corrupted trajectories. In CVPR, 2008.

[56] M. Riesenhuber, T. Poggio, and E. Studies. Hierarchical models of object recognition in cortex, 1999.

[57] M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach: a spatio-temporal maximum average correlation

height filter for action recognition. In CVPR, 2008.

[58] R. Rosipal and N. Kramer. Overview and recent advances in partial least squares. In Lecture Notes in

Computer Science, 2006.

[59] R. Salakhutdinov and G. Hinton. Replicated softmax: an undirected topic model. In In NIPS, 2010.

[60] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In

ICML, 2004.

[61] D. Schonfeld. Motionsearch: Context-based video retrieval and activity recognition in video surveillance.

In AVSS, 2009.

[62] A. Shamaie and A. Sutherland. Graph-based matching of occluded hand gestures. In Proc. of the Applied

Imagery Pattern Recognition, 2001.

[63] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press,

2004.

62

[64] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman. Discovering objects and their location in

images. In ICCV, 2005.

[65] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV,

2003.

[66] P. Smolensky. In Parallel Distributed Processing: Volume 1: Foundations. 1987.

[67] M. Su, H. Huang, C. Lin, and C. Huang. Application of neural networks in spatio temporal hand gesture

recognition. In Proc. of the IEEE World Congress on Computational Intelligence, 1998.

[68] S. K. D. Tomasz Malisiewicz. Learning visual subcategories for basic-level categorization. In CVPR,

Fine-Grained Visual Categorization Workshop, 2011.

[69] T. Tuytelaars and C. Schmid. Vector quantizing feature space with a regular lattice. In ICCV, 2007.

[70] S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of intermediate complexity and their use in

classification. Nature neuroscience, pages 682–687, July 2002.

[71] L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. In JMLR, 2008.

[72] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W. M. Smeulders. Kernel codebooks for scene

categorization. In ECCV 2008, PART III. LNCS, pages 696–709. Springer, 2008.

[73] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, C. G. M. Snoek, and A. W. M. Smeulders. Robust

scene categorization by learning image statistics in context. In SLAM - CVPR, 2006.

[74] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algorithms, 2008.

[75] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In CVPR, 2010.

[76] J. Vogel and B. Schiele. Natural scene retrieval based on a semantic modeling step. In In CIVR, 2004.

[77] J. Vogel and B. Schiele. Semantic modeling of natural scenes for content-based image retrieval. IJCV, 2007.

[78] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image

classification. In CVPR, 2010.

[79] A. D. Wilson and A. Bobick. Parametric hidden markov models for gesture recognition. In IEEE Trans.

Patt. Anal. Mach. Intell, 1999.

[80] J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In ICCV,

2005.

[81] H. Wold. Path models with latent variables: The NIPALS approach. In Quantitative Sociology: Interna-

tional perspectives on mathematical and statistical model building, 1975.

[82] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image

classification. In CVPR, 2009.

[83] L. Yang, R. Jin, C. Pantofaru, and R. Sukthankar. Discriminative cluster refinement: Improving object

category recognition given limited training data. In CVPR, 2007.

[84] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image

descriptors. In ECCV, 2010.

63

